These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Antibacterial properties of silver nanoparticles synthesized by marine Ochrobactrum sp  

PubMed Central

Metal nanoparticle synthesis is an interesting area in nanotechnology due to their remarkable optical, magnetic, electrical, catalytic and biomedical properties, but there needs to develop clean, non-toxic and environmental friendly methods for the synthesis and assembly of nanoparticles. Biological agents in the form of microbes have emerged up as efficient candidates for nanoparticle synthesis due to their extreme versatility to synthesize diverse nanoparticles with varying size and shape. In the present study, an eco favorable method for the biosynthesis of silver nanoparticles using marine bacterial isolate has been attempted. Very interestingly, molecular identification proved it as a strain of Ochrobactrum anhtropi. In addition, the isolate was found to have the potential to form silver nanoparticles intracellularly at room temperature within 24 h. The biosynthesized silver nanoparticles were characterized by UV-Vis spectroscopy, transmission electron microscope (TEM) and scanning electron microscope (SEM). The UV-visible spectrum of the aqueous medium containing silver nanoparticles showed a peak at 450 nm corresponding to the plasmon absorbance of silver nanoparticles. The SEM and TEM micrographs revealed that the synthesized silver nanoparticles were spherical in shape with a size range from 38 nm – 85 nm. The silver nanoparticles synthesized by the isolate were also used to explore its antibacterial potential against pathogens like Salmonella Typhi, Salmonella Paratyphi, Vibrio cholerae and Staphylococcus aureus. PMID:25763025

Thomas, Roshmi; Janardhanan, Anju; Varghese, Rintu T.; Soniya, E.V.; Mathew, Jyothis; Radhakrishnan, E.K.

2014-01-01

2

Catalytically and biologically active silver nanoparticles synthesized using essential oil  

NASA Astrophysics Data System (ADS)

There are numerous reports on phytosynthesis of silver nanoparticles and various phytochemicals are involved in the reduction and stabilization. Pure explicit phytosynthetic protocol for catalytically and biologically active silver nanoparticles is of importance as it is an environmentally benign green method. This paper reports the use of essential oil of Myristica fragrans enriched in terpenes and phenyl propenes in the reduction and stabilization. FTIR spectra of the essential oil and the synthesized biogenic silver nanoparticles are in accordance with the GC-MS spectral analysis reports. Nanosilver is initially characterized by an intense SPR band around 420 nm, followed by XRD and TEM analysis revealing the formation of 12-26 nm sized, highly pure, crystalline silver nanoparticles. Excellent catalytic and bioactive potential of the silver nanoparticles is due to the surface modification. The chemocatalytic potential of nanosilver is exhibited by the rapid reduction of the organic pollutant, para nitro phenol and by the degradation of the thiazine dye, methylene blue. Significant antibacterial activity of the silver colloid against Gram positive, Staphylococcus aureus (inhibition zone - 12 mm) and Gram negative, Escherichia coli (inhibition zone - 14 mm) is demonstrated by Agar-well diffusion method. Strong antioxidant activity of the biogenic silver nanoparticles is depicted through NO scavenging, hydrogen peroxide scavenging, reducing power, DPPH and total antioxidant activity assays.

Vilas, Vidya; Philip, Daizy; Mathew, Joseph

2014-11-01

3

Characterization and Biocompatibility of ``Green'' Synthesized Silver Nanoparticles  

NASA Astrophysics Data System (ADS)

With ever increasing emphasis on nanotechnology, silver nanoparticle are being considered for many antimicrobial needs ranging from catheter coatings, to burn wound bandages. Current synthesis methods for creating silver nanoparticles typically call for potentially hazardous chemicals, extreme heat, and produce environmentally dangerous byproducts. As a culture intent on reducing our carbon footprint on the earth, societies' focus has turned to ``green'' production capabilities. Therefore, if nanotechnology is to continue to grow at its current rate it is essential that novel ``green'' synthesis of nanoparticles becomes a reality. Furthermore, with the current and near-future applications of silver nanoparticles in biological systems it is imperative to fully analyze the potential toxic effects of these nanoparticles. In this study we have shown that by reducing silver nitrate in solutions of tea extract or epinephrine of varying concentrations spherical silver nanoparticle are formed. Furthermore, evaluation of mitochondrial function (MTS) and membrane integrity (LDH) in alveolar rat macrophages and human keratinocytes showed that these ``green'' synthesized silver nanoparticles were nontoxic.

Moulton, Michael; Kunzelman, Samantha; Braydich-Stolle, Laura; Nadagouda, M.; Varma, R.; Hussain, Saber

2008-10-01

4

Synthesis and standardization of biologically synthesized silver nanoparticles  

NASA Astrophysics Data System (ADS)

The biological silver nanoparticle was synthesized extracellularly by using a fungi Aspergillus foetidus. The live cell filtrate of fungi has been used as reducing agent in the process of nanoparticles synthesis. In 50 ml cell filtrate a volume of AgNO3 stock solution was added to make finally the concentration as 1 mM of AgNO3 and allowed to shake in an incubator for several hrs in dark. The changed color was considered as the primary indication of nanoparticles formation and studies of UV-VIS, DLS, FTIR, AFM, TEM, EDS, Zeta pot. and nitrate reductase assay confirmed the same. It was indicated that stable & 20-40 nm roughly spherical shaped silver nanoparticles was formed. To standardize the nanoparticles biosynthesis different physical parameters like Substrate cone. (0-8 mM), PH-(5-12), Temp.-(5-50°C), incubation time (0-120) hrs and salinity (0.1-1.0 %) were investigated and it was observed that 4 mM AgNO3 conc., PH-9, Temp. -30°C, incubation time 72h and 0.2 % salinity were found to be optimum for the synthesis & stability of the silver nanoparticles.

Roy, Swarup; Das, Tapan Kumar

2013-06-01

5

Antimicrobial and mosquitocidal activity of microbial synthesized silver nanoparticles.  

PubMed

Microbial synthesis of nanoparticles is a green approach that interconnects nanotechnology and microbial biotechnology. Here, we synthesized the silver nanoparticles (AgNPs) using bacterial strains of Listeria monocytogenes, Bacillus subtilius and Streptomyces anulatus. We tested the efficacy of AgNPs against the larvae, pupae and adults of Anopheles stephensi and Culex quinquefasciatus. We have also investigated the antifungal activity of AgNPs against the soil keratinophilic fungus of Chrysosporium keratinophilum. The efficacy tests were then performed at different concentrations and varying numbers of hours by probit analysis. The results were obtained using a UV-visible spectrophotometer, and the images were recorded with a transmission electron microscope (TEM). The synthesized AgNPs were in varied shape and sizes. The larvae and pupae of Cx. quinquefasciatus were found highly susceptible to AgNPs synthesized using the L. monocytogenes, B. subtilius and S. anulatus than the An. stephensi, while the adults of An. stephensi were found more susceptible to the AgNPs synthesized using the L. monocytogenes, B. subtilius and S. anulatus the Cx. quinquefasciatus. Further, these nanoparticles have also been tested as antifungal activity against the entomopathogenic fungus C. keratinophilum. The higher zone of inhibition occurred at the concentration level of 50 ?l. This study gives an innovative approach to develop eco-friendly AgNPs which act as an effective antifungal agent/fungicide and insecticide. PMID:25544704

Soni, Namita; Prakash, Soam

2015-03-01

6

Antimicrobial Activities of Silver Nanoparticles Synthesized by Using Water Extract of Arnicae anthodium.  

PubMed

Green synthesis of nanoparticles has gained significant importance in recent years and has become the one of the most preferred methods. Also, green synthesis of nanoparticles is valuable branch of nanotechnology. Plant extracts are eco-friendly and can be an economic option for synthesis of nanoparticles. This study presents method the synthesis of silver nanoparticles using water extract of Arnicae anthodium. Formation of silver nanoparticles was confirmed by UV-visble spectroscopy, Fourier transform infrared spectroscopy and total reflection X-ray fluorescence analysis. The morphology of the synthesized silver nanoparticles was verified by SEM-EDS. The obtained silver nanoparticles were used to study their antimicrobial activity. PMID:25805903

Dobrucka, Renata; D?ugaszewska, Jolanta

2015-06-01

7

Silver Nanoparticles  

NASA Astrophysics Data System (ADS)

The bactericidal effect of silver nanoparticles obtained by a novel electrochemical method on Escherichia coli, Staphylococcus aureus, Aspergillus niger and Penicillium phoeniceum cultures has been studied. The tests conducted have demonstrated that synthesized silver nanoparticles — when added to water paints or cotton fabrics — show a pronounced antibacterial/antifungal effect. It was shown that smaller silver nanoparticles have a greater antibacterial/antifungal efficacy. The paper also provides a review of scientific literature with regard to recent developments in the field of toxicity of silver nanoparticles and its effect on environment and human health.

Khaydarov, R. R.; Khaydarov, R. A.; Estrin, Y.; Evgrafova, S.; Scheper, T.; Endres, C.; Cho, S. Y.

8

Characterization and Biocompatibility of Green Synthesized Silver Nanoparticles  

EPA Science Inventory

There are currently ~1,000 commercially available products which contain some form of silver nanotechnology, ranging from topological creams and cosmetics, to anti-microbial socks and household cleansers. Previous studies have indicated that silver nanoparticles (Ag NPs) have a ...

9

Antibacterial activity of silver nanoparticles synthesized from serine.  

PubMed

Silver nanoparticles (Ag NPs) were synthesized by a simple microwave irradiation method using polyvinyl pyrrolidone (PVP) as a capping agent and serine as a reducing agent. UV-Visible spectra were used to confirm the formation of Ag NPs by observing the surface plasmon resonance (SPR) band at 443nm. The emission spectrum of Ag NPs showed an emission band at 484nm. In the presence of microwave radiation, serine acts as a reducing agent, which was confirmed by Fourier transformed infrared (FT-IR) spectrum. High-resolution transmission electron microscopy (HR-TEM) and high-resolution scanning electron microscopy (HR-SEM) were used to investigate the morphology of the synthesized sample. These images showed the sphere-like morphology. The elemental composition of the sample was determined by the energy dispersive X-ray analysis (EDX). Selected area electron diffraction (SAED) was used to find the crystalline nature of the Ag NPs. The electrochemical behavior of the synthesized Ag NPs was analyzed by the cyclic voltammetry (CV). Antibacterial experiments showed that the prepared Ag NPs showed relatively similar antibacterial activities, when compared with AgNO3 against Gram-positive and Gram-negative bacteria. PMID:25686955

Jayaprakash, N; Judith Vijaya, J; John Kennedy, L; Priadharsini, K; Palani, P

2015-04-01

10

Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial adenocarcinoma cell line  

PubMed Central

The goal of the present study was to investigate the toxicity of biologically prepared small size of silver nanoparticles in human lung epithelial adenocarcinoma cells A549. Herein, we describe a facile method for the synthesis of silver nanoparticles by treating the supernatant from a culture of Escherichia coli with silver nitrate. The formation of silver nanoparticles was characterized using various analytical techniques. The results from UV-visible (UV-vis) spectroscopy and X-ray diffraction analysis show a characteristic strong resonance centered at 420 nm and a single crystalline nature, respectively. Fourier transform infrared spectroscopy confirmed the possible bio-molecules responsible for the reduction of silver from silver nitrate into nanoparticles. The particle size analyzer and transmission electron microscopy results suggest that silver nanoparticles are spherical in shape with an average diameter of 15 nm. The results derived from in vitro studies showed a concentration-dependent decrease in cell viability when A549 cells were exposed to silver nanoparticles. This decrease in cell viability corresponded to increased leakage of lactate dehydrogenase (LDH), increased intracellular reactive oxygen species generation (ROS), and decreased mitochondrial transmembrane potential (MTP). Furthermore, uptake and intracellular localization of silver nanoparticles were observed and were accompanied by accumulation of autophagosomes and autolysosomes in A549 cells. The results indicate that silver nanoparticles play a significant role in apoptosis. Interestingly, biologically synthesized silver nanoparticles showed more potent cytotoxicity at the concentrations tested compared to that shown by chemically synthesized silver nanoparticles. Therefore, our results demonstrated that human lung epithelial A549 cells could provide a valuable model to assess the cytotoxicity of silver nanoparticles. PMID:25242904

2014-01-01

11

Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit.  

PubMed

Silver nanoparticles synthesized through bio-green method has been reported to have biomedical applications to control pathogenic microbes as it is cost effective compared to commonly used physical and chemical methods. In present study, silver nanoparticles were synthesized using aqueous Piper longum fruit extract (PLFE) and confirmed by UV-visible spectroscopy. The nanoparticles were spherical in shape with an average particle size of 46nm as determined by scanning electronic microscopy (SEM) and dynamic light scattering (DLS) particle size analyzer respectively. FT-IR spectrum revealed the capping of the phytoconstituents, probably polyphenols from P. longum fruit extract and stabilizing the nanoparticles. Further the ferric ion reducing test, confirmed that the capping agents were condensed tannins. The aqueous P. longum fruit extract (PLFE) and the green synthesized silver nanoparticles (PLAgNPs) showed powerful antioxidant properties in in vitro antioxidant assays. The results from the antimicrobial assays suggested that green synthesized silver nanoparticles (PLAgNPs) were more potent against pathogenic bacteria than the P. longum fruit extract (PLFE) alone. The nanoparticles also showed potent cytotoxic effect against MCF-7 breast cancer cell lines with an IC 50 value of 67?g/ml/24h by the MTT assay. These results support the advantages of using bio-green method for synthesizing silver nanoparticles with antioxidant, antimicrobial and cytotoxic activities those are simple and cost effective as well. PMID:24268240

Reddy, N Jayachandra; Nagoor Vali, D; Rani, M; Rani, S Sudha

2014-01-01

12

Toxicity Study of Silver Nanoparticles Synthesized from Suaeda monoica on Hep-2 Cell Line  

PubMed Central

Recently there has been fabulous excitement in the nano-biotechnological area for the study of nanoparticles synthesis using some natural biological system, which has led the growth advanced nanomaterials. This intention made us to assess the biologically synthesized silver nanoparticles from the leaf of Suaeda monoica (S.monoica) using 1 mM silver nitrate. The leaf extract of S.monoica incubated with 1 mM silver nitrate solution and characterized by UV- spectrometer and AFM. The effect of synthesized silver nanoparticles on Human Epidermoid Larynx Carcinoma cell line was evaluated by the MTT colorimetric technique. As a result we observed gradual change in the colour of extract from greenish to brown. The synthesized silver nanoparticles confirmed by UV at 430 nm and spherical shape identified in the range of 31 nm under AFM. The effect of silver nanoparticles on Human Epidermoid Larynx Carcinoma cell line exhibits a dose-dependent toxicity for the cell tested and the viability of Hep-2 cells decreased to 50 % (IC50) at the concentration of 500 nM. Further findings will be determined the exact mechanisms of this cost effective Nano-treatments. PMID:23407847

Satyavani, Kaliyamurthi; Gurudeeban, Selvaraj; Ramanathan, Thiruganasambandam; Balasubramanian, Thangavel

2012-01-01

13

Photocatalytic activity of biogenic silver nanoparticles synthesized using potato (Solanum tuberosum) infusion.  

PubMed

In this study, we have reported a fast and eco-benign procedure to synthesis silver nanoparticle at room temperature using potato (Solanum tuberosum) infusion along with the study of its photocatalytic activity on methyl orange dye. After addition of potato infusion to silver nitrate solution, the color of the mixture changed indicating formation of silver nanoparticles. Time dependent UV-Vis spectra were obtained to study the rate of nanoparticle formation with time. Purity and crystallinity of the biogenic silver nanoparticles were examined by X-ray diffraction (XRD). Average size and morphology of the nanoparticles were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Fourier transform infra-red spectroscopy (FTIR) was employed to detect functional bio-molecules responsible that contribute to the reduction and capping of biosynthesized Ag nanoparticles. Further, these synthesized nanoparticles were used to investigate their ability to degrade methyl orange dye under sunlight irradiation and the results showed effective photocatalytic property of these biogenic silver nanoparticles. PMID:25819317

Roy, Kaushik; Sarkar, C K; Ghosh, C K

2015-07-01

14

Antibacterial activity of biogenic silver nanoparticles synthesized with gum ghatti and gum olibanum: a comparative study.  

PubMed

Presently, silver nanoparticles produced by biological methods have received considerable significance owing to the natural abundance of renewable, cost-effective and biodegradable materials, thus implementing the green chemistry principles. Compared with the nanoparticles synthesized using chemical methods, most biogenic silver nanoparticles are protein capped, which imparts stability and biocompatibility, and enhanced antibacterial activity. In this study, we compared the antibacterial effect of two biogenic silver nanoparticles produced with natural plant gums: gum ghatti and gum olibanum against Gram-negative and Gram-positive bacteria. Bacterial interaction with nanoparticles was probed both in planktonic and biofilm modes of growth; employing solid agar and liquid broth assays for inhibition zone, antibiofilm activity, inhibition of growth kinetics, leakage of intracellular contents, membrane permeabilization and reactive oxygen species production. In addition, cytotoxicity of the biogenic nanoparticles was evaluated in HeLa cells, a human carcinoma cell line. Antibacterial activity and cytotoxicity of the silver nanoparticles synthesized with gum ghatti (Ag NP-GT) was greater than that produced with gum olibanum (Ag NP-OB). This could be attributed to the smaller size (5.7?nm), monodispersity and zeta potential of the Ag NP-GT. The study suggests that Ag NP-GT can be employed as a cytotoxic bactericidal agent, whereas Ag NP-OB (7.5?nm) as a biocompatible bactericidal agent. PMID:25138141

Kora, Aruna Jyothi; Sashidhar, Rao Beedu

2015-02-01

15

Size-Controlled and Optical Properties of Monodispersed Silver Nanoparticles Synthesized by the Radiolytic Reduction Method  

PubMed Central

Size-controlled and monodispersed silver nanoparticles were synthesized from an aqueous solution containing silver nitrate as a metal precursor, polyvinyl alcohol as a capping agent, isopropyl alcohol as hydrogen and hydroxyl radical scavengers, and deionized water as a solvent with a simple radiolytic method. The average particle size decreased with an increase in dose due to the domination of nucleation over ion association in the formation of the nanoparticles by gamma reduction. The silver nanoparticles exhibit a very sharp and strong absorption spectrum with the absorption maximum ?max blue shifting with an increased dose, owing to a decrease in particle size. The absorption spectra of silver nanoparticles of various particle sizes were also calculated using a quantum physics treatment and an agreement was obtained with the experimental absorption data. The results suggest that the absorption spectrum of silver nanoparticles possibly derived from the intra-band excitations of conduction electrons from the lowest energy state (n = 5, l = 0) to higher energy states (n ? 6; ?l = 0, ±1; ?s = 0, ±1), allowed by the quantum numbers principle. This demonstrates that the absorption phenomenon of metal nanoparticles based on a quantum physics description could be exploited to be added into the fundamentals of metal nanoparticles and the related fields of nanoscience and nanotechnology. PMID:23579953

Saion, Elias; Gharibshahi, Elham; Naghavi, Kazem

2013-01-01

16

Antibacterial Activity of Green Synthesized Silver Nanoparticles Using Vasaka (Justicia adhatoda L.) Leaf Extract.  

PubMed

There is an increasing demand for silver nanoparticles due to its wide applicability in various area of biological science such as in field of antimicrobial and therapeutics, biosensing, drug delivery etc. To use in bioprocess the silver nanoparticles should be biocompatible and free from toxic chemicals. In the present study we report a cost effective and environment friendly route for green synthesis of silver nanoparticles using Vasaka (Justicia adhatoda L.) leaf extract as reducing as well as capping agent. This plant has been opted for the present study for its known medicinal properties and it is easily available. The biosynthesized silver nanoparticles are characterized by UV-Vis spectroscopy and TEM analysis. It is observed the nanoparticles are well shaped and the average particle size is 20 nm in the range of 5-50 nm. The antibacterial activity of these nanoparticles against Pseudomonas aeruginosa MTCC 741 has been measured by disc diffusion method, agar cup assay and serial dilution turbidity measurement assay. The results show green synthesized silver nanoparticles, using Vasaka leaf extract, have a potential to inhibit the growth of bacteria. PMID:25805902

Bose, Debadin; Chatterjee, Someswar

2015-06-01

17

Efficacy of plant-mediated synthesized silver nanoparticles against hematophagous parasites  

Microsoft Academic Search

The purpose of the present study was to investigate the acaricidal and larvicidal activity against the larvae of Haemaphysalis bispinosa Neumann (Acarina: Ixodidae) and larvae of hematophagous fly Hippobosca maculata Leach (Diptera: Hippoboscidae) and against the fourth-instar larvae of malaria vector, Anopheles stephensi Liston, Japanese encephalitis vector, Culex tritaeniorhynchus Giles (Diptera: Culicidae) of synthesized silver nanoparticles (AgNPs) utilizing aqueous leaf

Chidambaram Jayaseelan; Abdul Abdul Rahuman; Govindasamy Rajakumar; Thirunavukkarasu Santhoshkumar; Arivarasan Vishnu Kirthi; Sampath Marimuthu; Asokan Bagavan; Chinnaperumal Kamaraj; Abdul Abduz Zahir; Gandhi Elango; Kanayairam Velayutham; Kokati Venkata Bhaskara Rao; Loganathan Karthik; Sankariah Raveendran

18

Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system).  

PubMed

In this report, we have designed a simple and efficient green chemistry approach for the synthesis of colloidal silver nanoparticles (b-AgNPs) that is formed by the reduction of silver nitrate (AgNO3) solution using Olax scandens leaf extract. The colloidal b-AgNPs, characterized by various physico-chemical techniques exhibit multifunctional biological activities (4-in-1 system). Firstly, bio-synthesized silver nanoparticles (b-AgNPs) shows enhanced antibacterial activity compared to chemically synthesize silver nanoparticles (c-AgNPs). Secondly, b-AgNPs show anti-cancer activities to different cancer cells (A549: human lung cancer cell lines, B16: mouse melanoma cell line & MCF7: human breast cancer cells) (anti-cancer). Thirdly, these nanoparticles are biocompatible to rat cardiomyoblast normal cell line (H9C2), human umbilical vein endothelial cells (HUVEC) and Chinese hamster ovary cells (CHO) which indicates the future application of b-AgNPs as drug delivery vehicle. Finally, the bio-synthesized AgNPs show bright red fluorescence inside the cells that could be utilized to detect the localization of drug molecules inside the cancer cells (a diagnostic approach). All results together demonstrate the multifunctional biological activities of bio-synthesized AgNPs (4-in-1 system) that could be applied as (i) anti-bacterial & (ii) anti-cancer agent, (iii) drug delivery vehicle, and (iv) imaging facilitator. To the best of our knowledge, there is not a single report of biosynthesized AgNPs that demonstrates the versatile applications (4-in-1 system) towards various biomedical applications. Additionally, a plausible mechanistic approach has been explored for the synthesis of b-AgNPs and its anti-bacterial as well as anti-cancer activity. We strongly believe that bio-synthesized AgNPs will open a new direction towards various biomedical applications in near future. PMID:24505239

Mukherjee, Sudip; Chowdhury, Debabrata; Kotcherlakota, Rajesh; Patra, Sujata; B, Vinothkumar; Bhadra, Manika Pal; Sreedhar, Bojja; Patra, Chitta Ranjan

2014-01-01

19

Potential Theranostics Application of Bio-Synthesized Silver Nanoparticles (4-in-1 System)  

PubMed Central

In this report, we have designed a simple and efficient green chemistry approach for the synthesis of colloidal silver nanoparticles (b-AgNPs) that is formed by the reduction of silver nitrate (AgNO3) solution using Olax scandens leaf extract. The colloidal b-AgNPs, characterized by various physico-chemical techniques exhibit multifunctional biological activities (4-in-1 system). Firstly, bio-synthesized silver nanoparticles (b-AgNPs) shows enhanced antibacterial activity compared to chemically synthesize silver nanoparticles (c-AgNPs). Secondly, b-AgNPs show anti-cancer activities to different cancer cells (A549: human lung cancer cell lines, B16: mouse melanoma cell line & MCF7: human breast cancer cells) (anti-cancer). Thirdly, these nanoparticles are biocompatible to rat cardiomyoblast normal cell line (H9C2), human umbilical vein endothelial cells (HUVEC) and Chinese hamster ovary cells (CHO) which indicates the future application of b-AgNPs as drug delivery vehicle. Finally, the bio-synthesized AgNPs show bright red fluorescence inside the cells that could be utilized to detect the localization of drug molecules inside the cancer cells (a diagnostic approach). All results together demonstrate the multifunctional biological activities of bio-synthesized AgNPs (4-in-1 system) that could be applied as (i) anti-bacterial & (ii) anti-cancer agent, (iii) drug delivery vehicle, and (iv) imaging facilitator. To the best of our knowledge, there is not a single report of biosynthesized AgNPs that demonstrates the versatile applications (4-in-1 system) towards various biomedical applications. Additionally, a plausible mechanistic approach has been explored for the synthesis of b-AgNPs and its anti-bacterial as well as anti-cancer activity. We strongly believe that bio-synthesized AgNPs will open a new direction towards various biomedical applications in near future. PMID:24505239

Mukherjee, Sudip; Chowdhury, Debabrata; Kotcherlakota, Rajesh; Patra, Sujata; B, Vinothkumar; Bhadra, Manika Pal; Sreedhar, Bojja; Patra, Chitta Ranjan

2014-01-01

20

Mycosynthesis: antibacterial, antioxidant and antiproliferative activities of silver nanoparticles synthesized from Inonotus obliquus (Chaga mushroom) extract.  

PubMed

In the present study, silver nanoparticles (AgNPs) were rapidly synthesized from silver nitrate solution at room temperature using Inonotus obliquus extract. The mycogenic synthesized AgNPs were characterized by UV-Visible absorption spectroscopy, Fourier transform infrared (FTIR), scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM) and atomic force microscopy (AFM). SEM revealed mostly spherical nanoparticles ranging from 14.7 to 35.2nm in size. All AgNPs concentrations showed good ABT radical scavenging activity. Further, AgNPs showed effective antibacterial activity against both gram negative and gram positive bacteria and antiproliferative activity toward A549 human lung cancer (CCL-185) and MCF-7 human breast cancer (HTB-22) cell lines. The samples demonstrated considerably high antibacterial, and antiproliferative activities against bacterial strains and cell lines. PMID:24380885

Nagajyothi, P C; Sreekanth, T V M; Lee, Jae-il; Lee, Kap Duk

2014-01-01

21

Green synthesized silver nanoparticles using Nelumbonucifera root extract for efficient protein binding, antioxidant and cytotoxicity activities.  

PubMed

Silver nanoparticles (AgNPs) with a mean particle size of ? 16.7 nm were synthesized using an eco-friendly reducing material, aqueous Nelumbo nucifera root extract. Rapid reduction resulted in the formation of polydispersed nanoparticles. The formation of AgNPs was characterized by surface plasmon resonance, which was determined by ultraviolet-visible (UV-Vis) spectroscopy (band at 412 nm), Fourier transform infrared spectroscopy, scanning electron microscopy-energy dispersive X-ray spectroscopy, transmission electron microscopy and X-ray diffraction. The interaction of the green synthesized AgNPs with Bovine Serum Albumin (BSA) at various temperatures was investigated. Fluorescence quenching, synchronous and resonance light scattering spectroscopy along with UV-Vis absorption studies revealed the efficient binding between BSA and the AgNPs. In addition, the AgNPs exhibited moderate antioxidant and cytotoxicity activities against HeLa cell lines. PMID:25463656

Sreekanth, T V M; Ravikumar, Sambandam; Eom, In-Yong

2014-12-01

22

SERS active silver nanoparticles synthesized by inkjet printing on mesoporous silicon  

PubMed Central

Inkjet printing technique is exploited for the synthesis of Ag nanoparticles (NPs) patterned on electrochemically etched silicon-based substrates. The nanostructure morphology, here analyzed by scanning electron microscopy, is dictated by the ink composition and the printing parameters. Under suitable excitation conditions, resonant surface-enhanced Raman scattering (SERS) performed on such metal-dielectric nanostructures can approach single-molecule detection as recently demonstrated on silvered porous silicon synthesized by immersion plating. PACS 78.67.Bf; 78.30.-j PMID:25288917

2014-01-01

23

Antibacterial and cytotoxic potential of silver nanoparticles synthesized using latex of Calotropis gigantea L.  

PubMed

The present study aimed to synthesis silver nanoparticles (AgNPs) in a greener route using aqueous latex extract of Calotropis gigantea L. toward biomedical applications. Initially, synthesis of AgNPs was confirmed through UV-Vis spectroscopy which shows the surface plasmonic resonance peak (SPR) at 420 nm. Fourier transform infrared spectroscopy (FTIR) analysis provides clear evidence that protein fractions present in the latex extract act as reducing and stabilizing bio agents. Energy dispersive X-ray (EDAX) spectroscopy confirms the presence of silver as a major constituent element. X-ray diffractograms displays that the synthesized AgNPs were biphasic crystalline nature. Electron microscopic studies such as Field emission scanning electron microscopic (Fe-SEM) and Transmission electron microscope (TEM) reveals that synthesized AgNPs are spherical in shape with the size range between 5 and 30 nm. Further, crude latex aqueous extract and synthesized AgNPs were evaluated against different bacterial pathogens such as Bacillus cereus, Enterococci sp, Shigella sp, Pseudomonas aeruginosa, Klebsiella pneumonia, Staphylococcus aureus and Escherichia coli. Compared to the crude latex aqueous extract, biosynthesized AgNPs exhibits a remarkable antimicrobial activity. Likewise in vitro anticancer study manifests the cytotoxicity value of synthesized AgNPs against tested HeLa cells. The output of this study clearly suggesting that biosynthesized AgNPs using latex of C. gigantea can be used as promising nanomaterial for therapeutic application in context with nanodrug formulation. PMID:25459618

Rajkuberan, Chandrasekaran; Sudha, Kannaiah; Sathishkumar, Gnanasekar; Sivaramakrishnan, Sivaperumal

2015-02-01

24

Antibacterial and cytotoxic potential of silver nanoparticles synthesized using latex of Calotropis gigantea L.  

NASA Astrophysics Data System (ADS)

The present study aimed to synthesis silver nanoparticles (AgNPs) in a greener route using aqueous latex extract of Calotropis gigantea L. toward biomedical applications. Initially, synthesis of AgNPs was confirmed through UV-Vis spectroscopy which shows the surface plasmonic resonance peak (SPR) at 420 nm. Fourier transform infrared spectroscopy (FTIR) analysis provides clear evidence that protein fractions present in the latex extract act as reducing and stabilizing bio agents. Energy dispersive X-ray (EDAX) spectroscopy confirms the presence of silver as a major constituent element. X-ray diffractograms displays that the synthesized AgNPs were biphasic crystalline nature. Electron microscopic studies such as Field emission scanning electron microscopic (Fe-SEM) and Transmission electron microscope (TEM) reveals that synthesized AgNPs are spherical in shape with the size range between 5 and 30 nm. Further, crude latex aqueous extract and synthesized AgNPs were evaluated against different bacterial pathogens such as Bacillus cereus, Enterococci sp, Shigella sp, Pseudomonas aeruginosa, Klebsiella pneumonia, Staphylococcus aureus and Escherichia coli. Compared to the crude latex aqueous extract, biosynthesized AgNPs exhibits a remarkable antimicrobial activity. Likewise invitro anticancer study manifests the cytotoxicity value of synthesized AgNPs against tested HeLa cells. The output of this study clearly suggesting that biosynthesized AgNPs using latex of C. gigantea can be used as promising nanomaterial for therapeutic application in context with nanodrug formulation.

Rajkuberan, Chandrasekaran; Sudha, Kannaiah; Sathishkumar, Gnanasekar; Sivaramakrishnan, Sivaperumal

2015-02-01

25

CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Monodisperse Silver Nanoparticles Synthesized by a Microwave-Assisted Method  

NASA Astrophysics Data System (ADS)

Silver nanoparticles with an average size of about 20 nm are synthesized in a colloidal solution with the aid of microwave irradiation. Neither additional reductant nor stabilizer is required in this microwave-assisted method. The color of the colloidal solution is found to be dark green, different from the characteristic yellow of silver colloidal solutions. The silver nanoparticles in the colloidal solution have a narrow size distribution and large yield quantity. UV-visible absorption spectroscopy analysis reveals that the as-synthesized monodisperse silver nanoparticles have exceptional optical properties. Raman spectroscopy measurements demonstrate that these silver nanoparticles exhibit a notable surface-enhanced Raman scattering ability.

Zhu, Shao-Peng; Tang, Shao-Chun; Meng, Xiang-Kang

2009-07-01

26

Photocatalytic activity of biogenic silver nanoparticles synthesized using yeast (Saccharomyces cerevisiae) extract  

NASA Astrophysics Data System (ADS)

Synthesis of metallic and semiconductor nanoparticles through physical and chemical route is quiet common but biological synthesis procedures are gaining momentum due to their simplicity, cost-effectivity and eco-friendliness. Here, we report green synthesis of silver nanoparticles from aqueous solution of silver salts using yeast (Saccharomyces cerevisiae) extract. The nanoparticles formation was gradually investigated by UV-Vis spectrometer. X-ray diffraction analysis was done to identify different phases of biosynthesized Ag nanoparticles. Transmission electron microscopy was performed to study the particle size and morphology of silver nanoparticles. Fourier transform infrared spectroscopy of the nanoparticles was performed to study the role of biomolecules capped on the surface of Ag nanoparticles during interaction. Photocatalytic activity of these biosynthesized nanoparticles was studied using an organic dye, methylene blue under solar irradiation and these nanoparticles showed efficacy in degrading the dye within a few hours of exposure.

Roy, Kaushik; Sarkar, C. K.; Ghosh, C. K.

2014-12-01

27

Acaricidal activity of aqueous extract and synthesized silver nanoparticles from Manilkara zapota against Rhipicephalus (Boophilus) microplus.  

PubMed

Traditional parasite control is primarily based on the use of chemical acaricides, which unfortunately have many negative side effects. The aim of the present study was to evaluate the effect of plant synthesized silver nanoparticles (AgNPs) using aqueous leaf extract of Manilkara zapota to control Rhipicephalus (Boophilus) microplus. The synthesized AgNPs were characterized by UV-vis spectrum, scanning electron microscopy (SEM), Fourier transform infrared and X-ray diffraction. The UV-vis spectrum of the aqueous medium containing silver nanostructures showed a peak at 421 nm corresponding to the surface plasmon resonance band of AgNPs. SEM supports the biosynthesis and characterization of AgNPs with spherical and oval in shape and size of 70-140 nm. Acaricidal activity of aqueous leaf extract of M. zapota and synthesized AgNPs were carried out against R. (B.) microplus and the results showed the LC(50) values of 16.72 and 3.44 mg/L; r(2)=0.856 and 0.783), respectively. PMID:21906765

Rajakumar, G; Abdul Rahuman, A

2012-08-01

28

Microalgae associated Brevundimonas sp. MSK 4 as the nano particle synthesizing unit to produce antimicrobial silver nanoparticles  

NASA Astrophysics Data System (ADS)

The biosynthesis of silver nanoparticles and its antimicrobial property was studied using bacteria isolated from Spirulina products. Isolated bacteria were identified as Bacillus sp. MSK 1 (JX495945), Staphylococcus sp. MSK 2 (JX495946), Bacillus sp. MSK 3 (JX495947) and Brevundimonas sp. MSK 4 (JX495948). Silver nanoparticles (AgNPs) were synthesized using bacterial culture filtrate with AgNO3. The initial syntheses of Ag nanoparticles were characterized by UV-vis spectrophotometer (by measuring the color change to intense brown). Fourier Transform Infrared Spectroscopy (FTIR) study showed evidence that proteins are possible reducing agents and Energy-dispersive X-ray (EDX) study showing the metal silver as major signal. The structure of AgNPs was determined by Scanning electron microscopy (SEM) and X-ray diffraction (XRD). Synthesized Ag nanoparticles with an average size of 40-65 nm have antimicrobial property against human pathogens like Proteus vulgaris, Salmonella typhi, Vibrio cholera, Streptococcus sp., Bacillus subtilis, Staphylococcus aureus, and Escherichia coli. Among the isolates Brevundimonas sp. MSK 4 alone showed good activity in both synthesis of AgNPs and antimicrobial activity. This work demonstrates the possible use of biological synthesized silver nanoparticles to combat the drug resistant problem.

Rajamanickam, Karthic; Sudha, S. S.; Francis, Mebin; Sowmya, T.; Rengaramanujam, J.; Sivalingam, Periyasamy; Prabakar, Kandasamy

2013-09-01

29

Catalytic and biological activities of green silver nanoparticles synthesized from Plumeria alba (frangipani) flower extract.  

PubMed

Herein, we report the green synthesis of silver nanoparticles using Plumeria alba (frangipani) flower extract (FFE) and their biological applications. The formation of frangipani silver nanoparticles (FSNPs) was confirmed by UV-visible spectroscopy and characterized by DLS particle size analyzer, SEM/EDAX, FTIR, TGA/DSC and XRD. The synthesized spherical FSNPs were found to be 36.19nm in size as determined by DLS particle size analyzer. EDAX data and XRD pattern of FSNPs confirmed the presence and face-centered cubic (fcc) phase structure of silver. The bioactive groups C-C and C-N present in FFE were involved in the formation of FSNPs as identified by FTIR analysis. FSNPs exhibited powerful catalytic activity by reducing 4-nitrophenol to 4-aminophenol within 8min and the other organic dyes namely methylene blue and ethidium bromide were moderately degraded. Biological activities of FSNPs are evaluated by means of antioxidant, antibacterial and cytotoxic effect. Antioxidant potential of FSNPs was assessed by various in vitro assays in which they exhibited moderate antioxidant activity. The antibacterial effect of FSNPs was tested in two different pathogenic bacterial strains and their bacteriostatic effect was confirmed by growth kinetic study in Escherichia coli. The cytotoxic effect of FSNPs in COLO 205 was analyzed by MTT assay and the IC50 concentration was found at 5.5 and 4?g/ml respectively after 24 and 48h of incubation. Cytotoxic effect of FSNPs in COLO 205 cells was associated with the loss of membrane integrity and chromatin condensation which might have played a crucial role in the induction of apoptosis as evidenced in AO/EB staining. PMID:25842128

Mata, Rani; Reddy Nakkala, Jayachandra; Rani Sadras, Sudha

2015-06-01

30

Histopathological studies and oxidative stress of synthesized silver nanoparticles in Mozambique tilapia (Oreochromis mossambicus).  

PubMed

To evaluate the potential environmental effects of engineered nano metals, it is important to determine the adverse effects of various nanomaterials on aquatic species. Adult tilapia (Oreochromis mossambicus) were maintained in 10 L glass aquaria, and exposed to a graded series of synthesized silver nanoparticles (AgNPs) at 25, 50 and 75 mg/L for eight days. The LC50 value was 12.6 mg/L. Reduced activities of antioxidant enzymes and the contents of antioxidants were lowered in the gills and liver of fishes treated with AgNPs, which resulted in heavy accumulation of free radicals. Histopathological results imply that the balance between the oxidative and antioxidant system in the fish was broken down during Ag-NPs exposure. The principal concern related with the release of nanomaterials and their smaller particle may change the materials transport and potential toxicity to aquatic organisms compared to larger particles. PMID:23505877

Govindasamy, Rajakumar; Rahuman, Abdul Abdul

2012-01-01

31

Synthesis, characterization and biocompatibility of ``green'' synthesized silver nanoparticles using tea polyphenols  

NASA Astrophysics Data System (ADS)

Since ancient times, people have taken advantage of the antimicrobial effects of colloidal silver particles. Aside from the medical prospects, silver nanoparticles are found in a wide range of commercially available consumer products ranging from cosmetics to household cleansers. Current synthetic methods for creating silver nanoparticles typically call for potentially hazardous chemicals, extreme heat, and produce environmentally dangerous byproducts. Therefore, it is essential that novel ``green'' synthesis of nanoparticles becomes a reality, and it is imperative to fully analyze the potential toxic effects of these nanoparticles. In this study, we have shown that by reducing silver nitrate in solutions of tea extract or epicatechin of varying concentrations, spherical silver nanoparticles were formed that had controllable size distributions depending on the concentration of tea extract or epicatechin in the samples. Our ultra-resolution microscopy demonstrated that the nanoparticles were in fact interacting with the keratinocytes. Furthermore, evaluation of mitochondrial function (MTS) to assess cell viability and membrane integrity (LDH) in human keratinocytes showed that the silver nanoparticles were nontoxic. These results demonstrated that these nanoparicles are potentially biocompatible and warrant further evaluation in other biological systems.

Moulton, Michael C.; Braydich-Stolle, Laura K.; NadagoudaPresent Address: Pegasus Technical Services, 46 E. Hollister Street, Cincinnati, 45219, Ohio, Usa., Mallikarjuna N.; Kunzelman, Samantha; Hussain, Saber M.; Varma, Rajender S.

2010-05-01

32

Study on antibacterial activity of silver nanoparticles synthesized by gamma irradiation method using different stabilizers.  

PubMed

Colloidal solutions of silver nanoparticles (AgNPs) were synthesized by gamma Co-60 irradiation using different stabilizers, namely polyvinyl pyrrolidone (PVP), polyvinyl alcohol (PVA), alginate, and sericin. The particle size measured from TEM images was 4.3, 6.1, 7.6, and 10.2 nm for AgNPs/PVP, AgNPs/PVA, AgNPs/alginate, and AgNPs/sericin, respectively. The influence of different stabilizers on the antibacterial activity of AgNPs was investigated. Results showed that AgNPs/alginate exhibited the highest antibacterial activity against Escherichia coli (E. coli) among the as-synthesized AgNPs. Handwash solution has been prepared using Na lauryl sulfate as surfactant, hydroxyethyl cellulose as binder, and 15 mg/L of AgNPs/alginate as antimicrobial agent. The obtained results on the antibacterial test of handwash for the dilution to 3 mg AgNPs/L showed that the antibacterial efficiency against E. coli was of 74.6%, 89.8%, and 99.0% for the contacted time of 1, 3, and 5 min, respectively. Thus, due to the biocompatibility of alginate extracted from seaweed and highly antimicrobial activity of AgNPs synthesized by gamma Co-60 irradiation, AgNPs/alginate is promising to use as an antimicrobial agent in biomedicine, cosmetic, and in other fields. PMID:24708872

Van Phu, Dang; Quoc, Le Anh; Duy, Nguyen Ngoc; Lan, Nguyen Thi Kim; Du, Bui Duy; Luan, Le Quang; Hien, Nguyen Quoc

2014-01-01

33

Study on antibacterial activity of silver nanoparticles synthesized by gamma irradiation method using different stabilizers  

NASA Astrophysics Data System (ADS)

Colloidal solutions of silver nanoparticles (AgNPs) were synthesized by gamma Co-60 irradiation using different stabilizers, namely polyvinyl pyrrolidone (PVP), polyvinyl alcohol (PVA), alginate, and sericin. The particle size measured from TEM images was 4.3, 6.1, 7.6, and 10.2 nm for AgNPs/PVP, AgNPs/PVA, AgNPs/alginate, and AgNPs/sericin, respectively. The influence of different stabilizers on the antibacterial activity of AgNPs was investigated. Results showed that AgNPs/alginate exhibited the highest antibacterial activity against Escherichia coli ( E. coli) among the as-synthesized AgNPs. Handwash solution has been prepared using Na lauryl sulfate as surfactant, hydroxyethyl cellulose as binder, and 15 mg/L of AgNPs/alginate as antimicrobial agent. The obtained results on the antibacterial test of handwash for the dilution to 3 mg AgNPs/L showed that the antibacterial efficiency against E. coli was of 74.6%, 89.8%, and 99.0% for the contacted time of 1, 3, and 5 min, respectively. Thus, due to the biocompatibility of alginate extracted from seaweed and highly antimicrobial activity of AgNPs synthesized by gamma Co-60 irradiation, AgNPs/alginate is promising to use as an antimicrobial agent in biomedicine, cosmetic, and in other fields.

Van Phu, Dang; Quoc, Le Anh; Duy, Nguyen Ngoc; Lan, Nguyen Thi Kim; Du, Bui Duy; Luan, Le Quang; Hien, Nguyen Quoc

2014-04-01

34

Study on antibacterial activity of silver nanoparticles synthesized by gamma irradiation method using different stabilizers  

PubMed Central

Colloidal solutions of silver nanoparticles (AgNPs) were synthesized by gamma Co-60 irradiation using different stabilizers, namely polyvinyl pyrrolidone (PVP), polyvinyl alcohol (PVA), alginate, and sericin. The particle size measured from TEM images was 4.3, 6.1, 7.6, and 10.2 nm for AgNPs/PVP, AgNPs/PVA, AgNPs/alginate, and AgNPs/sericin, respectively. The influence of different stabilizers on the antibacterial activity of AgNPs was investigated. Results showed that AgNPs/alginate exhibited the highest antibacterial activity against Escherichia coli (E. coli) among the as-synthesized AgNPs. Handwash solution has been prepared using Na lauryl sulfate as surfactant, hydroxyethyl cellulose as binder, and 15 mg/L of AgNPs/alginate as antimicrobial agent. The obtained results on the antibacterial test of handwash for the dilution to 3 mg AgNPs/L showed that the antibacterial efficiency against E. coli was of 74.6%, 89.8%, and 99.0% for the contacted time of 1, 3, and 5 min, respectively. Thus, due to the biocompatibility of alginate extracted from seaweed and highly antimicrobial activity of AgNPs synthesized by gamma Co-60 irradiation, AgNPs/alginate is promising to use as an antimicrobial agent in biomedicine, cosmetic, and in other fields. PMID:24708872

2014-01-01

35

Photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from Ulva lactuca.  

PubMed

In this paper, we report on biosynthesis of silver nanoparticles using Ulva lactuca (seaweed) at room temperature along with photocatalytic degradation of methyl orange dye. UV spectral analysis showed peak at 430 nm with special reference to the excitation of surfaces plasmon vibration by silver nanoparticles. FT-IR studies reveal the presence of bioactive functional groups such as phenolic compounds, amines and aromatic ring are found to be the capping and stabilizing agents of nanoparticles. The morphology of silver nanoparticles was found to be spherical and ranges about 48.59 nm as confirmed by HR-SEM. Negative zeta potential value of -34 mV suggests that the nanoparticles are highly stable in colloidal solution. XRD patterns also suggest the occurrence of spherical shaped particles due to the presence of silver ions. Further, photocatalytic degradation of methyl orange was measured spectrophotometrically by using silver as nanocatalyst under visible light illumination. The results revealed that biosynthesized silver nanoparticles using U. lactuca was found to be impressive in degrading methyl orange. PMID:23266074

Kumar, P; Govindaraju, M; Senthamilselvi, S; Premkumar, K

2013-03-01

36

Efficacy of plant-mediated synthesized silver nanoparticles against hematophagous parasites.  

PubMed

The purpose of the present study was to investigate the acaricidal and larvicidal activity against the larvae of Haemaphysalis bispinosa Neumann (Acarina: Ixodidae) and larvae of hematophagous fly Hippobosca maculata Leach (Diptera: Hippoboscidae) and against the fourth-instar larvae of malaria vector, Anopheles stephensi Liston, Japanese encephalitis vector, Culex tritaeniorhynchus Giles (Diptera: Culicidae) of synthesized silver nanoparticles (AgNPs) utilizing aqueous leaf extract from Musa paradisiaca L. (Musaceae). The color of the extract changed to light brown within an hour, and later it changed to dark brown during the 30-min incubation period. AgNPs results were recorded from UV-vis spectrum at 426 nm; Fourier transform infrared (FTIR) analysis confirmed that the bioreduction of Ag(+) ions to silver nanoparticles are due to the reduction by capping material of plant extract, X-ray diffraction (XRD) patterns clearly illustrates that the nanoparticles formed in the present synthesis are crystalline in nature and scanning electron microscopy (SEM) support the biosynthesis and characterization of AgNPs with rod in shape and size of 60-150 nm. After reaction, the XRD pattern of AgNPs showed diffraction peaks at 2??=?34.37°, 38.01°, 44.17°, 66.34° and 77.29° assigned to the (100), (111), (102), (110) and (120) planes, respectively, of a faced centre cubic (fcc) lattice of silver were obtained. For electron microscopic studies, a 25 ?l sample was sputter-coated on copper stub, and the images of nanoparticles were studied using scanning electron microscopy. The spot EDX analysis showed the complete chemical composition of the synthesized AgNPs. The parasite larvae were exposed to varying concentrations of aqueous extract of M. paradisiaca and synthesized AgNPs for 24 h. In the present study, the percent mortality of aqueous extract of M. paradisiaca were 82, 71, 46, 29, 11 and 78, 66, 38, 31and 16 observed in the concentrations of 50, 40, 30, 20, 10 mg/l for 24 h against the larvae of H. bispinosa and Hip. maculata, respectively. The maximum efficacy was observed in the aqueous extract of M. paradisiaca against the H. bispinosa, Hip. maculata, and the larvae of A. stephensi, C. tritaeniorhynchus with LC(50) values of 28.96, 31.02, 26.32, and 20.10 mg/lm, respectively (r (2)?=?0.990, 0.968, 0.974, and 0.979, respectively). The synthesized AgNPs of M. paradisiaca showed the LC(50) and r (2) values against H. bispinosa, (1.87 mg/l; 0.963), Hip. maculata (2.02 mg/l; 0.976), and larvae of A. stephensi (1.39; 0.900 mg/l), against C. tritaeniorhynchus (1.63 mg/l; 0.951), respectively. The ? (2) values were significant at p?

Jayaseelan, Chidambaram; Rahuman, Abdul Abdul; Rajakumar, Govindasamy; Santhoshkumar, Thirunavukkarasu; Kirthi, Arivarasan Vishnu; Marimuthu, Sampath; Bagavan, Asokan; Kamaraj, Chinnaperumal; Zahir, Abdul Abduz; Elango, Gandhi; Velayutham, Kanayairam; Rao, Kokati Venkata Bhaskara; Karthik, Loganathan; Raveendran, Sankariah

2012-08-01

37

Antibiofilm properties of chemically synthesized silver nanoparticles found against Pseudomonas aeruginosa  

PubMed Central

Nanomedicine is now being introduced as a recent trend in the field of medicine. It has been documented that metal nanoparticles have antimicrobial effects for bacteria, fungi and viruses. Recent advances in technology has revived the use of silver nanoparticles in the medical field; treatment, diagnosis, monitoring and control of disease. It has been used since ancient times for treating wide range of illnesses. Bacterial cells adheres to surfaces and develop structures known as biofilms. These structures are natural survival strategy of the bacteria to invade the host. They are more tolerant to commonly used antimicrobial agents, thus being more difficult to be controlled. This leads to increase in severity of infection. In this study, we have investigated the effect of silver nanoparticles in the formation of biofilm in multidrug resistant strains of Pseudomonas aeruginosa. Observation showed that biofilm formation occurred at bacterial concentration of 106 cfu/ml for the sensitive strain of P. aeruginosa while in the resistant strain, the biofilm was evident at bacterial concentration of about 103 cfu/ml. The biofilm were then tested against various concentrations of silver nanoparticles to determine the inhibitory effect of the silver nanoparticles. In the sensitive strain, 20 ?g/ml of silver nanoparticles inhibited the growth optimally at bacterial concentration of 104 cfu/ml with an inhibition rate of 67%. Similarly, silver nanoparticles inhibited the formation of biofilm in the resistant strain at an optimal bacterial concentration of 105 cfu/ml with an inhibition rate of 56%. Thus, silver nanoparticles could be used as a potential alternative therapy to reduce severity of disease due to P. aeruginosa infections. PMID:24422704

2014-01-01

38

Evaluation of plant-mediated synthesized silver nanoparticles against vector mosquitoes.  

PubMed

Diseases transmitted by blood-feeding mosquitoes, such as dengue fever, dengue hemorrhagic fever, Japanese encephalitis, malaria, and filariasis, are increasing in prevalence, particularly in tropical and subtropical zones. To control mosquitoes and mosquito-borne diseases, which have worldwide health and economic impacts, synthetic insecticide-based interventions are still necessary, particularly in situations of epidemic outbreak and sudden increases of adult mosquitoes. Green nanoparticle synthesis has been achieved using environmentally acceptable plant extract and eco-friendly reducing and capping agents. In view of the recently increased interest in developing plant origin insecticides as an alternative to chemical insecticide, in the present study, the adulticidal activity of silver nanoparticles (AgNPs) synthesized using Heliotropium indicum plant leaf extract against adults of Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus was determined. Adult mosquitoes were exposed to varying concentrations of aqueous extract of H. indicum and synthesized AgNPs for 24 h. AgNPs were rapidly synthesized using the leaf extract of H. indicum, and the formation of nanoparticles was observed within 6 h. The results recorded from UV-vis spectrum, Fourier transform infrared, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy support the biosynthesis and characterization of AgNPs. The maximum efficacy was observed in synthesized AgNPs against the adult of A. stephensi (lethal dose (LD)???=?26.712 ?g/mL; LD???=?49.061 ?g/mL), A. aegypti (LD???=?29.626 ?g/mL; LD???=?54.269 ?g/mL), and C. quinquefasciatus (LD???=?32.077 ?g/mL; LD???=?58.426 ?g/mL), respectively. No mortality was observed in the control. These results suggest that the leaf aqueous extracts of H.indicum and green synthesis of AgNPs have the potential to be used as an ideal eco-friendly approach for the control of the A. stephensi, A. aegypti, and C. quinquefasciatus. This is the first report on the adulticidal activity of the plant extracts and AgNPs. PMID:25300419

Veerakumar, Kaliyan; Govindarajan, Marimuthu; Hoti, S L

2014-12-01

39

Larvicidal potential of silver nanoparticles synthesized from Leucas aspera leaf extracts against dengue vector Aedes aegypti.  

PubMed

Vector-borne diseases caused by mosquitoes are one of the major economic and health problems in many countries. The Aedes aegypti mosquito is a vector of several diseases in humans like yellow fever and dengue. Vector control methods involving the use of chemical insecticides are becoming less effective due to development of insecticides resistance, biological magnification of toxic substances through the food chain, and adverse effects on environmental quality and non-target organisms including human health. Application of active toxic agents from plant extracts as an alternative mosquito control strategy was available from ancient times. These are nontoxic, easily available at affordable prices, biodegradable, and show broad-spectrum target-specific activities against different species of vector mosquitoes. Today, nanotechnology is a promising research domain which has wide-ranging application vector control programs. The present study investigates the larvicidal potential of solvent leaf extracts of Leucas aspera and synthesized silver nanoparticles using aqueous leaf extract against fourth instar larvae of Aedes aegypti. Larvae were exposed to varying concentrations of plant extracts and synthesized AgNPs for 24 h. The results were recorded from UV-Vis spectra, x-ray diffraction (XRD), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM), and were used to characterize and support the biosynthesis of silver nanoparticles. The formation of the AgNPs synthesized from the XRD spectrum compared with Bragg reflections can be indexed to the (111) orientations, respectively, confirmed the presence of AgNPs. The FT-IR spectra of AgNPs exhibited prominent peaks at 3,447.77; 2,923.30; and 1,618.66 cm(-1). The spectra showed sharp and strong absorption band at 1,618.66 cm(-1) assigned to the stretching vibration of (NH) C?O group. The band 1,383 developed for C?C and C?N stretching, respectively, and was commonly found in the proteins. SEM analysis of the synthesized AgNPs clearly showed the clustered and irregular shapes, mostly aggregated, and having the size of 25-80 nm. Energy-dispersive x-ray spectroscopy showed the complete chemical composition of the synthesized AgNPs. In larvicidal activity, the results showed that the maximum efficacy was observed in synthesized AgNPs leaf extracts against the fourth instar larvae of A. aegypti (LC50 values of 8.5632, 10.0361, 14.4689, 13.4579, 17.4108, and 27.4936 mg/l) and (LC90 values of 21.5685, 93.03928, 39.6485, 42.2029, 31.3009, and 53.2576 mg/l), respectively. These results suggest that the synthesized AgNPs leaf extracts have a higher larvicidal potential as compared to crude solvent extracts thus making them an effective combination for controlling A. aegypti. PMID:24553980

Suganya, Ganesan; Karthi, Sengodan; Shivakumar, Muthugounder S

2014-05-01

40

Larvicidal potential of silver nanoparticles synthesized from Leucas aspera leaf extracts against dengue vector Aedes aegypti.  

PubMed

Vector-borne diseases caused by mosquitoes are one of the major economic and health problems in many countries. Aedes aegypti mosquito is a vector of several diseases in humans like yellow fever and dengue. Vector control methods involving use of chemical insecticides are becoming less effective due to the development of insecticides resistance, biological magnification of toxic substances through the food chain, and adverse effects on environmental quality and nontarget organisms including human health. Application of active toxic agents from plant extracts as an alternative mosquito control strategy was available from ancient times. These are nontoxic, easily available at affordable prices, biodegradable, and show broad-spectrum target-specific activities against different species of vector mosquitoes. Today, nanotechnology is a promising research domain which has a wide ranging application in vector control programs. The present study investigates the larvicidal potential of solvent leaf extracts of Leucas aspera and synthesized silver nanoparticles using aqueous leaf extract against fourth instar larvae of A. aegypti. Larvae were exposed to varying concentrations of plant extracts and synthesized AgNPs for 24 h. The results were recorded from UV-Vis spectra, X-ray diffraction (XRD), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM), and were used to characterize and support the biosynthesis of silver nanoparticles. The formation of the synthesized AgNPs from the XRD spectrum compared with Bragg reflections can be indexed to the (111) orientations, respectively, confirmed the presence of AgNPs. The FTIR spectra of AgNPs exhibited prominent peaks at 3,447.77, 2,923.30, and 1,618.66 cm(-1). The spectra showed sharp and strong absorption band at 1,618.66 cm(-1) assigned to the stretching vibration of (NH) C?O group. The band 1,383 developed for C?C and C?N stretching, respectively, and was commonly found in the proteins. SEM analysis of the synthesized AgNPs clearly showed the clustered and irregular shapes, mostly aggregated and having the size of 25-80 nm. Energy-dispersive X-ray spectroscopy (EDX) showed the complete chemical composition of the synthesized AgNPs. In larvicidal activity, the results showed that the maximum efficacy was observed in synthesized AgNP from leaf extracts against the fourth instar larvae of A. aegypti with LC?? values of 8.5632, 10.0361, 14.4689, 13.4579, 17.4108, and 27.4936 mg/l and LC?? values of 21.5685, 93.03928, 39.6485, 42.2029, 31.3009, and 53.2576 mg/l respectively. These results suggest that the synthesized AgNP from leaf extracts have a higher larvicidal potential as compared to crude solvent extracts thus making them an effective combination for controlling A. aegypti. PMID:24337613

Suganya, Ganesan; Karthi, Sengodan; Shivakumar, Muthugounder S

2014-03-01

41

Phytoextracts-Synthesized Silver Nanoparticles Inhibit Bacterial Fish Pathogen Aeromonas hydrophila.  

PubMed

Fish disease is a major stumbling block towards sustainable growth of the fisheries sector. Aeromonas hydrophila, which is a major infectious aquatic pathogen is reportedly the causative agent of ulcers, fin-rot, tail-rot, hemorrhagic septicemia in fish, and has reportedly developed resistance against many of the available antibiotics. In this context, the inhibitory function of silver nanoparticles (AgNPs) against A. hydrophila was studied to evaluate its possible application in aquaculture as alternative to antibiotics. AgNPs were synthesized using the leaf extracts of subtropical plants Mangifera indica (Mango), Eucalyptus terticornis (Eucalyptus), Carica papaya (Papaya) and Musa paradisiaca (Banana). The absorbance maxima, size range and shape of the AgNPs as characterized by the UV-Vis spectroscopy, high resolution transmission electron microscopy (HR-TEM), and energy dispersive X-ray spectroscopy (EDX) were, Mangifera-442, 50-65 nm, ovular; Eucalyptus-465, 60-150 nm, oval; Carica-442, 25-40 nm, round, irregular; and Musa-454, 10-50 nm, round, irregular, respectively. Well-diffusion of these AgNPs for their antimicrobial characteristics exhibited that, the papaya leaf extract synthesized AgNPs had maximum antimicrobial activity at 153.6 ?g/ml concentrations, and that from the eucalyptus leaves was least effective. As observed, the potency of the nanoparticles enhanced with the decrease in particle size, from 60-150 nm in eucalyptus to 25-40 nm in papaya. Due to its purely natural sourcing, phytosynthesized AgNPs can be applied as alternative to antibiotics and other biocides as a cost-effective and eco-friendly therapeutic agent against A. hydrophila stimulated diseases in aquatic animals. PMID:24426148

Mahanty, Arabinda; Mishra, Snehasish; Bosu, Ranadhir; Maurya, Uk; Netam, Surya Prakash; Sarkar, Biplab

2013-12-01

42

Evaluation of antibacterial activities of silver nanoparticles green-synthesized using pineapple leaf (Ananas comosus).  

PubMed

Pineapple leaf was used in this study for the synthesis of silver nanoparticles based on the search for sustainable synthetic means. Indeed, this offered an economical and sustainable synthetic route relative to expensive and toxic chemical methods. The leaf extract was used and the corresponding nanoparticles obtained were subjected to UV-vis analysis at different times. The UV-vis was used to monitor the silver nanoparticle formation through sampling at time intervals. The formation of silver nanoparticles was apparently displayed within 2 min with evidence of surface plasmon bands (SPB) between 440 and 460 nm. The crystals was equally characterized using FTIR, X-ray diffraction methods and TEM. The different results obtained suggested the appearance of silver nanoparticles (SNPs) as determined by the process parameters with a particle size of 12.4 nm. The sample was further screened against Staphylococcus aureus, Streptococcus pneumoniae, Proteus mirabilis and Escherichia coli using Gentamicin as control. From the results, there is evidence of inhibition towards bacteria growth. It can now be inferred from the studies that biosynthesis of nanoparticles could be a gateway to our numerous health issues. PMID:24268599

Emeka, Elemike Elias; Ojiefoh, Oseghale Charles; Aleruchi, Chuku; Hassan, Labulo Ayomide; Christiana, Owoseni Mojisola; Rebecca, Mfon; Dare, Enock Olugbenga; Temitope, Adesuji Elijah

2014-02-01

43

Cytotoxicity of Biologically Synthesized Silver Nanoparticles in MDA-MB-231 Human Breast Cancer Cells  

PubMed Central

Silver nanoparticles (AgNPs) have been used as an antimicrobial and disinfectant agents. However, there is limited information about antitumor potential. Therefore, this study focused on determining cytotoxic effects of AgNPs on MDA-MB-231 breast cancer cells and its mechanism of cell death. Herein, we developed a green method for synthesis of AgNPs using culture supernatant of Bacillus funiculus, and synthesized AgNPs were characterized by various analytical techniques such as UV-visible spectrophotometer, particle size analyzer, and transmission electron microscopy (TEM). The toxicity was evaluated using cell viability, metabolic activity, and oxidative stress. MDA-MB-231 breast cancer cells were treated with various concentrations of AgNPs (5 to 25??g/mL) for 24?h. We found that AgNPs inhibited the growth in a dose-dependent manner using MTT assay. AgNPs showed dose-dependent cytotoxicity against MDA-MB-231 cells through activation of the lactate dehydrogenase (LDH), caspase-3, reactive oxygen species (ROS) generation, eventually leading to induction of apoptosis which was further confirmed through resulting nuclear fragmentation. The present results showed that AgNPs might be a potential alternative agent for human breast cancer therapy. PMID:23936814

Gurunathan, Sangiliyandi; Han, Jae Woong; Eppakayala, Vasuki; Jeyaraj, Muniyandi; Kim, Jin-Hoi

2013-01-01

44

Antimicrobial and Synergistic Effects of Silver Nanoparticles Synthesized Using Soil Fungi of High Altitudes of Eastern Himalaya  

PubMed Central

Fifty three fungi isolated from soils of different microhabitats of eastern Himalayan range (3,400~3,600 msl) were screened for mycosynthesis of silver nanaoparticles (AgNPs) and their efficacy as antimicrobials were assessed in combination with commonly used antibiotics. Three isolates Aspergillus terreus SP5, Paecilomyces lilacinus SF1 and Fusarium sp. MP5 identified based on morphological and 18S rRNA gene sequences were found to synthesize AgNPs. These nanoparticles were characterized by visual observation followed by UV-visible spectrophotometric analysis. The AgNPs synthesized by Aspergillus terreus SP5, Paecilomyces lilacinus SF1 and Fusarium sp. MP5 showed absorbance maxima at 412, 419, and 421 nm respectively in the visible region. Transmission electron microscopy micrograph showed formation of spherical AgNPs of 5~50 nm size. The antimicrobial activity of the mycosynthesized nanoparticles were investigated alone and in combination with commonly used antibiotics for analysis of growth inhibition zone against test organisms, namely, Staphylococcus aureus MTCC96, Streptococcus pyogenes MTCC1925, Salmonella enterica MTCC735 and Enterococcus faecalis MTCC2729. The mycosynthesized nanoparticles showed potent antibacterial activity and interestingly their syngergistic effect with erythromycin, methicillin, chloramphenicol and ciprofloxacin was significantly higher as compared to inhibitions by AgNPs alone. The present study indicates that silver nanoparticles synthesized using soil borne indigenous fungus of high altitudes show considerable antimicrobial activity, deserving further investigation for potential applications. PMID:22783131

Devi, Lamabam Sophiya

2012-01-01

45

Antimicrobial and synergistic effects of silver nanoparticles synthesized using soil fungi of high altitudes of eastern himalaya.  

PubMed

Fifty three fungi isolated from soils of different microhabitats of eastern Himalayan range (3,400~3,600 msl) were screened for mycosynthesis of silver nanaoparticles (AgNPs) and their efficacy as antimicrobials were assessed in combination with commonly used antibiotics. Three isolates Aspergillus terreus SP5, Paecilomyces lilacinus SF1 and Fusarium sp. MP5 identified based on morphological and 18S rRNA gene sequences were found to synthesize AgNPs. These nanoparticles were characterized by visual observation followed by UV-visible spectrophotometric analysis. The AgNPs synthesized by Aspergillus terreus SP5, Paecilomyces lilacinus SF1 and Fusarium sp. MP5 showed absorbance maxima at 412, 419, and 421 nm respectively in the visible region. Transmission electron microscopy micrograph showed formation of spherical AgNPs of 5~50 nm size. The antimicrobial activity of the mycosynthesized nanoparticles were investigated alone and in combination with commonly used antibiotics for analysis of growth inhibition zone against test organisms, namely, Staphylococcus aureus MTCC96, Streptococcus pyogenes MTCC1925, Salmonella enterica MTCC735 and Enterococcus faecalis MTCC2729. The mycosynthesized nanoparticles showed potent antibacterial activity and interestingly their syngergistic effect with erythromycin, methicillin, chloramphenicol and ciprofloxacin was significantly higher as compared to inhibitions by AgNPs alone. The present study indicates that silver nanoparticles synthesized using soil borne indigenous fungus of high altitudes show considerable antimicrobial activity, deserving further investigation for potential applications. PMID:22783131

Devi, Lamabam Sophiya; Joshi, S R

2012-03-01

46

Silver Nanoparticles in Dental Biomaterials  

PubMed Central

Silver has been used in medicine for centuries because of its antimicrobial properties. More recently, silver nanoparticles have been synthesized and incorporated into several biomaterials, since their small size provides great antimicrobial effect, at low filler level. Hence, these nanoparticles have been applied in dentistry, in order to prevent or reduce biofilm formation over dental materials surfaces. This review aims to discuss the current progress in this field, highlighting aspects regarding silver nanoparticles incorporation, such as antimicrobial potential, mechanical properties, cytotoxicity, and long-term effectiveness. We also emphasize the need for more studies to determine the optimal concentration of silver nanoparticle and its release over time. PMID:25667594

Corrêa, Juliana Mattos; Mori, Matsuyoshi; Sanches, Heloísa Lajas; da Cruz, Adriana Dibo; Poiate, Isis Andréa Venturini Pola

2015-01-01

47

pH effect on the aggregation of silver nanoparticles synthesized by chemical reduction  

NASA Astrophysics Data System (ADS)

Silver colloidal nanoparticles were prepared according to the chemical reduction method in which the ascorbic acid was used as a reducing agent and sodium citrate as a stabilizing agent. The absorption spectra of all prepared samples obtained using the UV-Vis spectrophotometer showed a surface plasmon peak at a wavelength of about 420 nm. The size of the silver nanoparticles was controlled by changing the pH values of the reaction system. At high pH, smaller size silver nanoparticles were obtained compared to low pH values. This difference can be attributed to the difference in the reduction rate of the precursor. In addition to the inverse proportionality between the size and the pH value it is clear that increasing the pH value enables us to obtain spherical nanoparticles while at low pH, rods and triangular particle shapes were formed. Poor balance between nucleation and growth processes could be the cause of this result.

Alqadi, M. K.; Abo Noqtah, O. A.; Alzoubi, F. Y.; Alzouby, J.; Aljarrah, K.

2014-01-01

48

Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aqueous root extract of Erythrina indica lam.  

PubMed

Simple, yet an effective and rapid approach for the green synthesis of silver nanoparticles (Ag NPs) using root extract of Erythrina indica and its in vitro antibacterial activity was tried against human pathogenic bacteria and its cytotoxic effect in breast and lung cancer cell lines has been demonstrated in this study. Various instrumental techniques were adopted to characterize the synthesized Ag NPs viz. UV-Vis (Ultra violet), FTIR (Fourier Transform Infrared), XRD (X-ray diffraction), DLS (Dynamic light scattering), HR TEM (High-resolution transmission electron microscopy), EDX (Energy-dispersive X-ray spectroscopy). Surface plasmon spectra for Ag NPs are centered nearly at 438 nm with dark brown color. FTIR analysis revealed the presence of terpenes, phenol, flavonols and tannin act as effective reducing and capping agents for converting silver nitrate to Ag NPs. The synthesized Ag NPs were found to be spherical in shape with size in the range of 20-118 nm. Moreover, the synthesized Ag NPs showed potent antibacterial activity against Gram positive and Gram negative bacteria and these biologically synthesized nanoparticles were also proved to exhibit excellent cytotoxic effect on breast and lung cancer cell lines. PMID:25189525

Rathi Sre, P R; Reka, M; Poovazhagi, R; Arul Kumar, M; Murugesan, K

2015-01-25

49

Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aqueous root extract of Erythrina indica lam  

NASA Astrophysics Data System (ADS)

Simple, yet an effective and rapid approach for the green synthesis of silver nanoparticles (Ag NPs) using root extract of Erythrina indica and its in vitro antibacterial activity was tried against human pathogenic bacteria and its cytotoxic effect in breast and lung cancer cell lines has been demonstrated in this study. Various instrumental techniques were adopted to characterize the synthesized Ag NPs viz. UV-Vis (Ultra violet), FTIR (Fourier Transform Infrared), XRD (X-ray diffraction), DLS (Dynamic light scattering), HR TEM (High-resolution transmission electron microscopy), EDX (Energy-dispersive X-ray spectroscopy). Surface plasmon spectra for Ag NPs are centered nearly at 438 nm with dark brown color. FTIR analysis revealed the presence of terpenes, phenol, flavonols and tannin act as effective reducing and capping agents for converting silver nitrate to Ag NPs. The synthesized Ag NPs were found to be spherical in shape with size in the range of 20-118 nm. Moreover, the synthesized Ag NPs showed potent antibacterial activity against Gram positive and Gram negative bacteria and these biologically synthesized nanoparticles were also proved to exhibit excellent cytotoxic effect on breast and lung cancer cell lines.

Rathi Sre, P. R.; Reka, M.; Poovazhagi, R.; Arul Kumar, M.; Murugesan, K.

2015-01-01

50

Antibacterial properties of silver nanoparticles synthesized using Pulicaria glutinosa plant extract as a green bioreductant  

PubMed Central

The antibacterial properties of nanoparticles (NPs) can be significantly enhanced by increasing the wettability or solubility of NPs in aqueous medium. In this study, we investigated the effects of the stabilizing agent on the solubility of silver NPs and its subsequent effect on their antimicrobial activities. Silver NPs were prepared using an aqueous solution of Pulicaria glutinosa plant extract as bioreductant. The solution also acts as a capping ligand. During this study, the antimicrobial activities of silver NPs, as well as the plant extract alone, were tested against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Micrococcus luteus. Silver NPs were prepared with various concentrations of the plant extract to study its effect on antimicrobial activity. Interestingly, various concentrations of P. glutinosa extract did not show any effect on the growth of tested bacteria; however, a significant effect on the antimicrobial property of plant extract capped silver NPs (Ag-NPs-PE) was observed. For instance, the half maximal inhibitory concentration values were found to decrease (from 4% to 21%) with the increasing concentrations of plant extract used for the synthesis of Ag-NPs-PE. These results clearly indicate that the addition of P. glutinosa extracts enhances the solubility of Ag-NPs-PE and, hence, increases their toxicity against the tested microorganisms. PMID:25114525

Khan, Mujeeb; Khan, Shams Tabrez; Khan, Merajuddin; Adil, Syed Farooq; Musarrat, Javed; Al-Khedhairy, Abdulaziz A; Al-Warthan, Abdulrahman; Siddiqui, Mohammed Rafiq H; Alkhathlan, Hamad Z

2014-01-01

51

Evaluation of leaf aqueous extract and synthesized silver nanoparticles using Nerium oleander against Anopheles stephensi (Diptera: Culicidae).  

PubMed

Green nanoparticle synthesis has been achieved using environmentally acceptable plant extract and ecofriendly reducing and capping agents. The present study was carried out to establish the larvicidal activity of synthesized silver nanoparticles (AgNPs) using leaf extract of Nerium oleander (Apocynaceae) against the first to fourth instar larvae and pupae of malaria vector, Anopheles stephensi (Diptera: Culicidae). Nanoparticles are being used in many commercial applications. It was found that aqueous silver ions can be reduced by the aqueous extract of the plant parts to generate extremely stable silver nanoparticles in water. The results were recorded from UV-Vis spectrum, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX) spectroscopy analysis. The production of the AgNPs synthesized using leaf extract of N. oleander was evaluated through a UV-Vis spectrophotometer in a wavelength range of 200 to 700 nm. This revealed a peak at 440 nm in N. oleander leaf extracts, indicating the production of AgNPs. The FTIR spectra of AgNPs exhibited prominent peaks at 509.12 cm(-1) (C-H bend alkenes), 1,077.05 cm(-1) (C-O stretch alcohols), 1,600.63 cm(-1) (N-H bend amines), 2,736.49 and 2,479.04 cm(-1) (O-H stretch carboxylic acids), and 3,415.31 cm(-1) (N-H stretching due to amines group). An SEM micrograph showed 20-35-nm-size aggregates of spherical- and cubic-shaped nanoparticles. EDX showed the complete chemical composition of the synthesized nanoparticles of silver. Larvicidal activity of aqueous leaf extract of N. oleander and synthesized AgNPs was carried out against Anopheles stephensi, and the results showed that the highest larval mortality was found in the synthesized AgNPs against the first to fourth instar larvae and pupae of Anopheles stephensi with the following values: LC(50) of instar larvae 20.60, 24.90, 28.22, and 33.99 ppm; LC(90) of instar larvae 41.62, 50.33, 57.78, and 68.41 ppm; and LC(50) and LC(90) of pupae 39.55 and 79.10 ppm, respectively. The aqueous leaf extract exhibited larval toxicity against the first to fourth instar larvae and pupae of Anopheles stephensi with the following values: LC(50) of instar larvae 232.90, 273.71, 318.94, and 369.96 ppm; LC(90) of instar larvae 455.95, 563.10, 639.86, and 730.30 ppm; and LC(50) and LC(90) of pupae 426.01 and 805.13 ppm, respectively. The chi-square value was significant at p?nanoparticles through a membrane. The results could suggest that the use of plant N. oleander to synthesize silver nanoparticles is a rapid, environmentally safer, and greener approach for mosquito control. This could lead us to a new possibility in vector-control strategy. PMID:23239092

Roni, Mathath; Murugan, Kadarkarai; Panneerselvam, Chellasamy; Subramaniam, Jayapal; Hwang, Jiang-Shiou

2013-03-01

52

Biological synthesis of silver nanoparticles  

NASA Astrophysics Data System (ADS)

Fungus-mediated synthesis of silver nanoparticles is reported. The nanosilver was formed in contact with the cell-free filtrate of Penicillium strain studied. The nanoparticles were characterized by means of the UV-Vis spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The synthesized nanosilver showed a absorbed maximum at 425 nm in the visible region. The SEM characterization of the fungus cells treated with silver nitrite indicated that the protein might be responsible for the reduction of silver ions. Transmission electron microscopy (TEM) micrograph showed formation of silver nanoparticles in the range of 10-100 nm.

Maliszewska, I.; Szewczyk, K.; Waszak, K.

2009-01-01

53

Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using Euphorbia hirta against Anopheles stephensi Liston (Diptera: Culicidae).  

PubMed

Vector control is a critical requirement in epidemic disease situations, as is an urgent need to develop new and improved mosquito control methods that are economical and effective yet safe for nontarget organisms and the environment. Mosquitoes transmit serious human diseases, causing millions of deaths every year. Use of synthetic insecticides to control vector mosquitoes has caused physiological resistance and adverse environmental effects in addition to high operational cost. Insecticides of synthesized natural products for vector control have been a priority in this area. In the present study, activity of silver nanoparticles (AgNPs) synthesized using Euphorbia hirta (E. hirta) plant leaf extract against malarial vector Anopheles stephensi (A. stephensi) was determined. Range of concentrations of synthesized AgNPs (3.125, 6.25, 12.5, 25, and 50 ppm) and methanol crude extract (50, 100, 150, 200, and 250 ppm) were tested against larvae of A. stephensi. The synthesized AgNPs from E. hirta were highly toxic than methanolic crude extract against malarial vector, A. stephensi. The synthesized AgNPs were characterized by UV-vis spectrum, scanning electron microscopy (SEM), and X-ray diffraction. SEM analyses of the synthesized showed that AgNPs, measuring 30-60 nm in size, were clearly distinguishable. The synthesized AgNPs showed larvicidal effects after 24 h of exposure; however, the highest larval mortality was found in the synthesized AgNPs against the first to fourth instar larvae and pupae of values LC(50) (10.14, 16.82, 21.51, and 27.89 ppm, respectively), LC(90) (31.98, 50.38, 60.09, and 69.94 ppm, respectively), and the LC(50) and LC(90) values of pupae of 34.52 and 79.76 ppm, respectively. Methanol extract exhibited the larval toxicity against the first to fourth instar larvae and pupae of values LC(50) (121.51, 145.40, 169.11, and 197.40 ppm, respectively), LC(90) (236.44, 293.75, 331.42, and 371.34 ppm, respectively), and the LC(50) and LC(90) values of pupae of 219.15 and 396.70 ppm, respectively. No mortality was observed in the control. These results suggest that synthesized silver nanoparticles are a rapid, eco-friendly, and single-step approach; the AgNPs formed can be potential mosquito larvicidal agents. PMID:22562234

Priyadarshini, Karthikeyan Agalya; Murugan, Kadarkarai; Panneerselvam, Chellasamy; Ponarulselvam, Sekar; Hwang, Jiang-Shiou; Nicoletti, Marcello

2012-09-01

54

New procedure to synthesize silver nanoparticles and their interaction with local anesthetics  

PubMed Central

Silver nanoparticles (AgNPs) were prepared in aqueous colloid dispersions by the reduction of Ag+ with glucose in alkaline medium. Tetraethyl orthosilicate and L-asparagine were added as stabilizers of NPs. The AgNPs were characterized, and their interaction with three local anesthetics (procaine, dibucaine, or tetracaine) was investigated. Optical spectra show the characteristic absorption band of AgNPs, due to surface plasmon resonance. Modifications in the position and shape of this band reflect the self-assembly of metal NPs mediated by anesthetic molecules and the progress in time of the aggregation process. Zeta-potential measuring was applied in order to characterize the electrostatic stability of the NPs. The size and shape of the AgNPs, as well as the features of the assemblies formed by their association in the presence of anesthetics, were evidenced by transmission electron microscopy images. Atomic force microscopy images showed the characteristics of the films of AgNPs deposited on glass support. The effect of the anesthetics could be described in terms of electrostatic forces between the negatively charged AgNPs and the anesthetic molecules, existing also in their cationic form at the working pH. But also hydrophobic and hydrogen bonding interactions between the coated nanoparticles and anesthetics molecular species should be considered. PMID:24143090

Mocanu, Aurora; Pasca, Roxana Diana; Tomoaia, Gheorghe; Garbo, Corina; Frangopol, Petre T; Horovitz, Ossi; Tomoaia-Cotisel, Maria

2013-01-01

55

Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi?  

PubMed

Mosquitoes represent an important threat for lives of millions of people worldwide, acting as vectors for devastating pathogens, such as malaria, yellow fever, dengue, and West Nile. In addition, pathogens and parasites polluting water also constitute a severe plague for populations of developing countries. Here, we investigated the mosquitocidal and antibacterial properties of Aloe vera leaf extract and silver nanoparticles synthesized using A. vera extract. Mosquitocidal properties were assessed in laboratory against larvae (I-IV instar) and pupae of the malaria vector Anopheles stephensi. Green-synthesized silver nanoparticles were tested against An. stephensi also in field conditions. Antibacterial properties of nanoparticles were evaluated against Bacillus subtilis, Klebsiella pneumoniae, and Salmonella typhi using the agar disk diffusion and minimum inhibitory concentration protocol. The synthesized silver nanoparticles were characterized by UV-vis spectrum, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). In laboratory conditions, the A. vera extract was toxic against An. stephensi larvae and pupae, even at low dosages. LC50 were 48.79 ppm (I instar), 59.09 ppm (II instar), 70.88 ppm (III instar), 83.58 ppm (IV instar), and 152.55 ppm (pupae). Green-synthesized silver nanoparticles were highly toxic against An. stephensi. LC50 were 3.825 ppm (I instar), 4.119 ppm (II instar), 4.982 ppm (III instar), 5.711 ppm (IV instar), and 6.113 ppm (pupae). In field conditions, the application of A. vera-synthesized silver nanoparticles (10?×?LC50) leads to An. stephensi larval reduction of 74.5, 86.6, and 97.7 %, after 24, 48, and 72 h, respectively. Nanoparticles also showed antibacterial properties, and the maximum concentration tested (150 mg/L) evoked an inhibition zone wider than 80 mm in all tested bacterium species. This study adds knowledge about the use of green synthesis of nanoparticles in medical entomology and parasitology, allowing us to propose A. vera-synthesized silver nanoparticles as effective candidates to develop newer and safer mosquitocidal control tools. PMID:25653031

Dinesh, Devakumar; Murugan, Kadarkarai; Madhiyazhagan, Pari; Panneerselvam, Chellasamy; Mahesh Kumar, Palanisamy; Nicoletti, Marcello; Jiang, Wei; Benelli, Giovanni; Chandramohan, Balamurugan; Suresh, Udaiyan

2015-04-01

56

Evaluation of stem aqueous extract and synthesized silver nanoparticles using Cissus quadrangularis against Hippobosca maculata and Rhipicephalus (Boophilus) microplus.  

PubMed

The present study was to determine the efficacies of anti-parasitic activities of synthesized silver nanoparticles (Ag NPs) using stem aqueous extract of Cissus quadrangularis against the adult of hematophagous fly, Hippobosca maculata (Diptera: Hippoboscidae), and the larvae of cattle tick, Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Contact toxicity method was followed to determine the potential of parasitic activity. Twelve milliliters of stem aqueous extract of C. quadrangularis was treated with 88 ml of 1mM silver nitrate (AgNO(3)) solution at room temperature for 30 min and the resulting solution was yellow-brown color indicating the formation extracellular synthesis of Ag NPs. The synthesized Ag NPs were characterized with UV-visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Field emission scanning electron microscope (FESEM) and energy dispersive X-ray (EDX) spectroscopy. The synthesized Ag NPs were recorded by UV-visible spectrum at 420 nm and XRD patterns showed the nanoparticles crystalline in nature. FTIR analysis confirmed that the bioreduction of Ag((+)) ions to Ag NPs were due to the reduction by capping material of plant extract. FESEM image of Ag NPs showed spherical and oval in shape. By using the Bragg's Law and Scherrer's constant, the average mean size of synthesized Ag NPs was 42.46 nm. The spot EDX analysis showed the complete chemical composition of the synthesized Ag NPs. The mortality obtained by the synthesized Ag NPs from the C. quadrangularis was more effective than the aqueous extract of C. quadrangularis and AgNO(3) solution (1 mM). The adulticidal activity was observed in the aqueous extract, AgNO(3) solution and synthesized Ag NPs against the adult of H. maculata with LC(50) values of 37.08, 40.35 and 6.30 mg/L; LC(90) values of 175.46, 192.17 and 18.14 mg/L and r(2) values of 0.970, 0.992 and 0.969, respectively. The maximum efficacy showed in the aqueous extract, AgNO(3) solution and synthesized Ag NPs against the larvae of R. (B.) microplus with LC(50) values of 50.00, 21.72 and 7.61 mg/L; LC(90) values of 205.12, 82.99 and 22.68 mg/L and r(2) values of 0.968, 0.945 and 0.994, respectively. The present study is the first report on antiparasitic activity of the experimental plant extract and synthesized Ag NPs. This is an ideal eco-friendly and inexpensive approach for the control of H. maculata and R. (B.) microplus. PMID:22750410

Santhoshkumar, Thirunavukkarasu; Rahuman, Abdul Abdul; Bagavan, Asokan; Marimuthu, Sampath; Jayaseelan, Chidambaram; Kirthi, Arivarasan Vishnu; Kamaraj, Chinnaperumal; Rajakumar, Govindasamy; Zahir, Abdul Abduz; Elango, Gandhi; Velayutham, Kanayairam; Iyappan, Moorthy; Siva, Chinnadurai; Karthik, Loganathan; Rao, Kokati Venkata Bhaskara

2012-10-01

57

Feeding deterrent activity of synthesized silver nanoparticles using Manilkara zapota leaf extract against the house fly, Musca domestica (Diptera: Muscidae).  

PubMed

With a greater awareness of the hazards associated with the use of synthetic organic insecticides, there has been an urgent need to explore suitable alternative products for pest control. Musca domestica is ubiquitous insect that has the potential to spread a variety of pathogens to humans and livestock. They are mechanical carriers of more than hundred human and animal intestinal diseases and are responsible for protozoan, bacterial, helminthic, and viral infections. The present work aimed to investigate the feeding deterrent activity of synthesized silver nanoparticles (Ag NPs) using leaf aqueous extract of Manilkara zapota against M. domestica. The synthesized Ag NPs were recorded from UV-vis spectrum at 421 nm and scanning electron microscopy confirm the biosynthesis and characterization of Ag NPs with spherical and oval in shape and size of 70-140 nm. The FTIR analysis of the purified nanoparticles showed the presence of bands 1,079, 1,383, 1,627, 2,353, and 2,648 cm(-1), which were complete synthesis of AgNPs; the XRD pattern of AgNPs showed diffraction peaks at 2? values of 38.06°, 44.37°, 64.51°, and 77.31° sets of lattice planes were observed (111), (200), (220), and (311) facts of silver, respectively. Adult flies were exposed to different concentrations of the aqueous extract of synthesized Ag NPs, 1 mM silver nitrate (AgNO(3)) solution and aqueous extract of M. zapota for 1, 2, and 3 h; however, AgNPs showed 72% mortality in 1 h, 89% mortality was found in 2 h, and 100% mortality was found in 3 h exposure at the concentration of 10 mg/mL and the leaf aqueous extract showed 32% mortality in 1 h, 48% mortality was found in 2 h, and 83% mortality was found in 3 h exposure at concentration of 50 mg/mL. The most efficient activity was observed in synthesized Ag NPs against M. domestica (LD(50) = 3.64 mg/mL; LD(90) = 7.74 mg/mL), the moderate activity reported in the aqueous extract of M. zapota (LD(50) = 28.35 mg/mL; LD(90) = 89.19 mg/mL) and nil activity were observed in AgNO(3) solution at 3 h exposure time at 10 mg/mL. Dimethyl 2, 2-dichlorovinyl phosphate (DDVP) was used as a positive control and showed the LD(50) value of 3.38 mL/L. These results suggest that the synthesized Ag NPs have the potential to be used as an ideal eco-friendly approach for the control of the adult of M. domestica. This method is considered as a new approach to control sanitary pest. Therefore, this study provides first report on the feeding deterrent activity of synthesized Ag NPs against housefly. PMID:22033735

Kamaraj, Chinnaperumal; Rajakumar, Govindasamy; Rahuman, Abdul Abdul; Velayutham, Kanayairam; Bagavan, Asokan; Zahir, Abdul Abduz; Elango, Gandhi

2012-12-01

58

Acaricidal efficacy of synthesized silver nanoparticles using aqueous leaf extract of Ocimum canum against Hyalomma anatolicum anatolicum and Hyalomma marginatum isaaci (Acari: Ixodidae)  

Microsoft Academic Search

The use of acaricides had limited efficacy in reducing tick infestations and is often accompanied by serious drawbacks, including\\u000a the selection of acaricide resistant ticks, contamination of environment, and milk and meat products with drug residues. The\\u000a present study was based on assessments of the antiparasitic activities to determine the efficacy of synthesized silver nanoparticles\\u000a (AgNPs) utilizing aqueous leaf extract

Chidambaram Jayaseelan; Abdul Abdul Rahuman

59

Adulticidal properties of synthesized silver nanoparticles using leaf extracts of Feronia elephantum (Rutaceae) against filariasis, malaria, and dengue vector mosquitoes.  

PubMed

Mosquito-borne diseases with an economic impact create loss in commercial and labor outputs, particularly in countries with tropical and subtropical climates. Mosquito control is facing a threat because of the emergence of resistance to synthetic insecticides. Extracts from plants may be alternative sources of mosquito control agents because they constitute a rich source of bioactive compounds that are biodegradable into nontoxic products and potentially suitable for use to control mosquitoes. Insecticides of botanical origin may serve as suitable alternative biocontrol techniques in the future. In view of the recently increased interest in developing plant origin insecticides as an alternative to chemical insecticide, in the present study, the adulticidal activity of silver nanoparticles (AgNPs) synthesized using Feronia elephantum plant leaf extract against adults of Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus was determined. The range of concentrations of synthesized AgNPs (8, 16, 24, 32, and 40 ?g mL(-1)) and aqueous leaf extract (40, 80, 120, 160, and 200 ?g mL(-1)) were tested against the adults of A. stephensi, A. aegypti, and C. quinquefasciatus. Adults were exposed to varying concentrations of aqueous crude extract and synthesized AgNPs for 24 h. Considerable mortality was evident after the treatment of F. elephantum for all three important vector mosquitoes. The synthesized AgNPs from F. elephantum were highly toxic than crude leaf aqueous extract to three important vector mosquito species. The results were recorded from UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy analysis (EDX), and transmission electron microscopy (TEM). Synthesized AgNPs against the vector mosquitoes A. stephensi, A. aegypti, and C. quinquefasciatus had the following lethal dose (LD)?? and LD?? values: A. stephensi had LD?? and LD?? values of 18.041 and 32.575 ?g mL(-1); A. aegypti had LD?? and LD?? values of 20.399 and 37.534 ?g mL(-1); and C. quinquefasciatus had LD?? and LD?? values of 21.798 and 39.596 ?g mL(-1). No mortality was observed in the control. These results suggest that the leaf aqueous extracts of F. elephantum and green synthesis of AgNPs have the potential to be used as an ideal eco-friendly approach for the control of the A. stephensi, A. aegypti, and C. quinquefasciatus. This is the first report on the adulticidal activity of the plant extracts and AgNPs. PMID:25146645

Veerakumar, Kaliyan; Govindarajan, Marimuthu

2014-11-01

60

Synthesis of Silver Nanoparticles  

NSDL National Science Digital Library

This series of videos, presented by the Materials Research Science and Engineering Center at the University of Wisconsin-Madison, deals with the synthesis of silver nanoparticles. The experiment allows students to view the formation of silver nanoparticles that can be detected by the reflection of a laser beam. Silver nanoparticles are used in the creation of yellow stained glass in churches around the country, an interesting, but little known fact. This is a fairly inexpensive activity as it involves stock solutions, and equipment present in any science laboratory. Overall, students will enjoy this basic, but still challenging, experiment.

Johnson, Chris

61

Physiological, metabolic, and transcriptional effects of biologically-synthesized silver nanoparticles in turnip (Brassica rapa ssp. rapa L.).  

PubMed

Silver nanoparticles (AgNPs) use has been increased in recent years, which has potentially antagonistic effects on living organisms, including microbes, human, and plants. The physiological and molecular responses of AgNPs have been reported for several plants; however, the detailed mechanism of action of AgNPs is not known in turnip. Accordingly, the aim of this study was determined to evaluate the impact of AgNPs exposure in turnip seedlings at concentrations up to 10.0 mg/l. The frequency of seed germination decreased with increasing AgNPs concentration. Moreover, while exposure to 1.0 mg/l AgNPs significantly increased plant fresh biomass. The plant growth, biomass, and chlorophyll content were decreased at 5.0 and 10.0 mg/l AgNPs. Anthocyanin, malondialdehyde, and hydrogen peroxide levels were significantly increased with higher concentrations of AgNPs. Furthermore, reactive oxygen species (ROS) production and DNA damage were significantly elevated in plants treated with higher concentrations of AgNPs. The DNA damage potential was confirmed in the experiment of DNA laddering, comet, and TUNEL assays. Consequently, the study confirms the phytotoxic, cytotoxic, and genotoxic potentials induced by AgNPs. Moreover, higher concentrations (5.0 and 10.0 mg/l) of AgNPs significantly induced expression of genes related to glucosinolates and phenolics biosynthesis as well as abiotic and biotic stresses whereas down-regulated the carotenoid gene expressions. To our knowledge, this is the first report to evaluate the physiological, metabolic, and transcriptional responses of turnip to biologically synthesized AgNPs. PMID:25471476

Thiruvengadam, Muthu; Gurunathan, Sangiliyandi; Chung, Ill-Min

2014-12-01

62

The green synthesis, characterization, and evaluation of the biological activities of silver nanoparticles synthesized from Leptadenia reticulata leaf extract  

NASA Astrophysics Data System (ADS)

Biosynthesis of silver nanoparticles (Ag Nps) was carried out using methanol leaves extract of L. reticulata. Ag Nps were characterized based on the observations of UV-visible spectroscopy, transmission electron microscopy, and X-ray diffraction (XRD) analysis. These Ag Nps were tested for antimicrobial activity by agar well diffusion method against different pathogenic microorganisms and antioxidant activity was performed using DPPH assay. Further, the in vitro cytotoxic effects of Ag Nps were screened against HCT15 cancer cell line and viability of tumor cells was confirmed using MTT ((3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a yellow tetrazole)) assay. The nuclear condensation was studied using the propidium iodide-staining method. The color change from green to dark brown and the absorbance peak at about 420 nm indicated the formation of nanoparticles. XRD pattern showed characteristic peaks indexed to the crystalline planes (111), (200) and (220) of face-centered cubic silver. The nanoparticles were of spherical shape with varying sizes ranging from 50 to 70 nm. Biosynthesized Ag Nps showed potent antibacterial activity and effective radical scavenging activity. MTT assay revealed a dose-dependent decrease in cell viability. Microscopic observations showed distinct cellular morphological changes indicating unhealthy cells, whereas the control appeared normal. Increase in the number of propidium iodide positive cells were observed in maximum concentration. Methanolic leaf extract of L. reticulata acts as an excellent capping agent for the formation of silver nanoparticles and demonstrates immense biological activities. Hence, these Ag NPs can be used as antibacterial, antioxidant as well as cytotoxic agent in treating many medical complications.

Kumara Swamy, M.; Sudipta, K. M.; Jayanta, K.; Balasubramanya, S.

2015-01-01

63

Optical properties of shaped silver nanoparticles.  

PubMed

The influence of shape and dielectric property of surrounding media on surface plasmon absorption band of silver nanoparticles was studied. Spherical silver nanoparticles (d = 5.6 nm) synthesized in water using NaBH4 as a reducing agent are transferred in non-polar solvent (chloroform) with phase-transfer reagent oleylamine. The absorption spectrum of oleylamine-capped silver nanoparticles dispersed in chloroform shows a strong surface plasmon resonance band that is 19 nm red-shifted compared to unmodified particles in water. The values for peak position and corresponding half widths are compared with theoretical calculations based on Mie theory. Prismatic and plate-like silver nanoparticles were synthesized in water using trisodium citrate as a reducing agent and cetyltrimethylammonium bromide as stabilizer. Due to structural anisotropy of prismatic and plate-like silver nanoparticles three surface plasmon resonance bands were observed in absorption spectrum. Nanocomposites consisting of non-spherical silver nanoparticles and polyvinyl alcohol exhibit different optical properties compared to water colloid. Instead of three surface plasmon bands, nanocomposite film has only one peak at 460 nm. Reason for appearance of single surface plasmon resonance band in nanocomposite film was discussed according to Maxwell-Garnet theory. PMID:19051904

Vodnik, Vesna V; Bozani?, Dugan K; Bibi?, Natasa; Saponji?, Zoran V; Nedeljkovi?, Jovan M

2008-07-01

64

Mosquito larvicidal properties of silver nanoparticles synthesized using Heliotropium indicum (Boraginaceae) against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus (Diptera: Culicidae).  

PubMed

Mosquitoes transmit dreadful diseases to human beings wherein biological control of these vectors using plant-derived molecules would be an alternative to reduce mosquito population. In the present study activity of aqueous leaf extract and silver nanoparticles (AgNPs) synthesized using Helitropium indicum plant leaves against late third instar larvae of Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus. The range of varying concentrations of synthesized AgNPs (8, 16, 24, 32, and 40 ?g/mL) and aqueous leaf extract (30, 60, 90, 120, and 150 ?g/mL) were tested against the larvae of Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus. The synthesized AgNPs from H. indicum were highly toxic than crude leaf aqueous extract in three important vector mosquito species. The results were recorded from UV-Vis spectrum, Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy analysis, transmission electron microscopy, and histogram. The synthesized AgNPs showed larvicidal effects after 24 h of exposure. Considerable mortality was evident after the treatment of H. indicum for all three important vector mosquitoes. The LC50 and LC90 values of H. indicum aqueous leaf extract appeared to be effective against A. stephensi (LC50, 68.73 ?g/mL; LC90, 121.07 ?g/mL) followed by A. aegypti (LC50, 72.72 ?g/mL; LC90, 126.86 ?g/mL) and C. quinquefasciatus (LC50, 78.74 ?g/mL; LC90, 134.39 ?g/mL). Synthesized AgNPs against the vector mosquitoes of A. stephensi, A. aegypti, and C. quinquefasciatus had the following LC50 and LC90 values: A. stephensi had LC50 and LC90 values of 18.40 and 32.45 ?g/mL, A. aegypti had LC50 and LC90 values of 20.10 and 35.97 ?g/mL, and C. quinquefasciatus had LC50 and LC90 values of 21.84 and 38.10 ?g/mL. No mortality was observed in the control. These results suggest that the leaf aqueous extracts of H. indicum and green synthesis of silver nanoparticles have the potential to be used as an ideal ecofriendly approach for the control of A. stephensi, A. aegypti, and C. quinquefasciatus. This is the first report on the mosquito larvicidal activity of the plant extracts and synthesized nanoparticles. PMID:24770671

Veerakumar, Kaliyan; Govindarajan, Marimuthu; Rajeswary, Mohan; Muthukumaran, Udaiyan

2014-06-01

65

An Evidence-Based Environmental Perspective Of Manufactured Silver Nanoparticle In Syntheses And Applications: A Systematic Review And Critical Appraisal Of Peer-Reviewed Scientific Papers  

EPA Science Inventory

Most recently, renewed interest has arisen in manufactured silver nanoparticles because of their unusually enhanced physiochemical properties and biological activities compared to the bulk parent materials. A wide range of applications has emerged in consumer products ranging fr...

66

Antimicrobial Properties of Silver Nanoparticles  

NSDL National Science Digital Library

This module provides students the opportunity to "explore silver nanoparticles and their effectiveness against bacterial growth in hands-on laboratory activities." Students first make silver nanoparticles and then use them in an experiment they design. This lesson will require two or more class periods and is aimed at secondary students.The document is available to download in PDF file format.

Kouadio, Carrie

67

Syntheses and characterization of nearly monodispersed, size-tunable silver nanoparticles over a wide size range of 7-200 nm by tannic acid reduction.  

PubMed

Nearly monodispersed spherical silver nanoparticles (Ag NPs) were synthesized by using tannic acid (TA) as both reductant and stabilizer in a 30 °C water bath. The size of the as-prepared Ag NPs could be tuned in a range of 7-66 nm by changing the molar ratio of TA to silver nitrate and pH of the reaction solutions. UV-vis spectra, TEM observations, and temporal evolution of the monomer concentrations for the reactions carried out at different experimental conditions showed that the improved size distribution and size tunability of the Ag NPs were mainly attributed to the use of TA, which could promote the balance of nucleation and growth processes of the NPs effectively. The size of the Ag NPs was extendable up to 200 nm in one-pot fashion by the multi-injection approach. The size-dependent surface-enhanced Raman scattering (SERS) activity of the as-prepared Ag NPs was evaluated, and the NPs with size around 100 nm were identified to show a maximum enhanced factor of 3.6 × 10(5). Moreover, the as-prepared TA-coated Ag NPs presented excellent colloidal stability compared to the conventional citrate-coated ones. PMID:24628127

Cao, Yanzhen; Zheng, Rongfeng; Ji, Xiaohui; Liu, Hong; Xie, Renguo; Yang, Wensheng

2014-04-01

68

Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3  

NASA Astrophysics Data System (ADS)

Silver nanoparticles in the size range of 2-5 nm were synthesized extracellularly by a silver-tolerant yeast strain MKY3, when challenged with 1 mM soluble silver in the log phase of growth. The nanoparticles were separated from dilute suspension by devising a new method based on differential thawing of the sample. Optical absorption, transmission electron microscopy, x-ray diffraction and x-ray photoelectron spectroscopy investigations confirmed that metallic (elemental) silver nanoparticles were formed. Extracellular synthesis of nanoparticles could be highly advantageous from the point of view of synthesis in large quantities and easy downstream processing.

Kowshik, Meenal; Ashtaputre, Shriwas; Kharrazi, Sharmin; Vogel, W.; Urban, J.; Kulkarni, S. K.; Paknikar, K. M.

2003-01-01

69

Antimicrobial activity of silver nanoparticles impregnated wound dressing  

NASA Astrophysics Data System (ADS)

In this work, silver nanoparticles were synthesized by simple wet chemical reduction method. The silver nitrate was reduced by Sodium borohydride used as reducing agent and Poly (vinyl pyrrolidone) (PVP) as stabilizing agent. The formation of silver nanoparticles was evaluated by UV-visible spectroscope and transmission electron microscope (TEM). Absorption spectrum consist two plasmon peaks at 410 and 668 nm revels the formation of anisotropic nanoparticles confirmed by TEM. The formation of silver nanoparticles was also evidenced by dynamic light scattering (DLS) study. DLS showed polydisperse silver nanoparticles with hydrodynamic size 32 nm. Protecting mechanism of PVP was manifested by FT-Raman study. Silver nanoparticles were impregnated into wound dressing by sonochemical method. The Kirby-Bauer disc diffusion methods were used for antimicrobial susceptibility testing. The antimicrobial activity of the samples has been tested against gram-negative bacterium Escherichia coli and gram-positive bacterium Staphylococcus aureus.

Shinde, V. V.; Jadhav, P. R.; Patil, P. S.

2013-06-01

70

Sonochemical Synthesis of Silver Nanoparticles Using Starch: A Comparison  

PubMed Central

A novel approach was applied to synthesize silver nanoparticles using starch under sonication. Colloidal silver nanoparticles solution exhibited an increase of absorption from 420 to 440?nm with increase starch quantity. Transmission electron microscopy followed by selected area electron diffraction pattern analysis indicated the formation of spherical, polydispersed, amorphous, silver nanoparticles of diameter ranging from 23 to 97?nm with mean particle size of 45.6?nm. Selected area electron diffraction (SAED) confirmed partial crystalline and amorphous nature of silver nanoparticles. Silver nanoparticles synthesized in this manner can be used for synthesis of 2-aryl substituted benzimidazoles which have numerous biomedical applications. The optimized reaction conditions include 10?ml of 1?mM AgNO3, 25?mg starch, 11 pH range, and sonication for 20?min at room temperature. PMID:24587771

Smita, Kumari; Cumbal, Luis; Debut, Alexis; Pathak, Ravinandan Nath

2014-01-01

71

Silver nanoparticles incorporated onto ordered mesoporous silica from Tollen's reagent  

NASA Astrophysics Data System (ADS)

Noble metal nanostructures supported on mesoporous silica are bridge between traditional silica adsorbents and modern catalysts. In this work the Ag/SBA-15 mesoporous materials were synthesized and characterized. Various forms of nanosilver supported on ordered mesoporous template have been successfully obtained via proposed procedures. In all synthesized materials, Tollen's reagent (diammine silver complex [Ag(NH3)2]+) was used as a silver source. Silver nanoparticles were prepared by reduction of ammoniacal silver complex by formaldehyde in the solution of stabilizer. After reduction, Ag nanoparticles could be deposited on SBA-15, or added during traditional synthesis of SBA-15 giving silver or silver chloride nanoparticles in the combination with porous silica. Silver nanostructures as nanoparticles or nanowires were also embedded onto the SBA-15 by incipient wetness impregnation of silver ions. Absorbed silver ions were next reduced under hydrogen at high temperature. There are many advantages of utilized ammoniacal silver complex as a silver source. Proposed method is capable to synthesis of various metal nanostructures with controlled composition and morphology. The silver ammonia complex is composed of two ions surrounding and protecting the central silver ion, so it is possible to obtain very small nanoparticles using simple approach without any functionalization of external and internal surface of SBA-15. This approach allows obtaining greatly small silver nanoparticles on SBA-15 (4 nm) or nanowires depending on the metal loading amount. Moreover, the colloidal silver solution prepared from Tollen's reagent, in the presence of triblock copolymer, remains stable for a long time. Reduction of Tollen's reagent to silver colloidal solution seems to be efficient, fast and interesting approach for the preparation of supported silver nanostructures Obtained samples were characterized by powder X-ray diffraction, small angle X-ray scattering (SAXS), UV-vis spectroscopy, transmission electron microscopy (TEM), nitrogen adsorption-desorption isotherms and photoacoustic spectroscopy (PAS).

Zienkiewicz-Strza?ka, M.; Pasieczna-Patkowska, S.; Kozak, M.; Pikus, S.

2013-02-01

72

Synthesis of silver nanoparticles and antibacterial property of silk fabrics treated by silver nanoparticles  

NASA Astrophysics Data System (ADS)

A silver nanoparticle solution was prepared in one step by mixing AgNO3 and a multi-amino compound (RSD-NH2) solution under ambient condition. RSD-NH2 was in-house synthesized by methacrylate and polyethylene polyamine in methanol, which has abundant amino and imino groups. However, the characterization of silver nanoparticles indicated that these nanoparticles are easy to agglomerate in solution. Therefore, an in situ synthesis method of silver nanoparticles on the silk fabrics was developed. The examined results confirmed that the in situ synthesized silver nanoparticles were evenly distributed on the surface of fibers. The inhibition zone test and the antibacterial rate demonstrated that the finished fabrics have an excellent antibacterial property against Staphylococcus aureus and Escherichia coli. Moreover, the nanosilver-treated silk fabrics were laundered 0, 5, 10, 20, and 50 times and still retained the exceptional antibacterial property. When the treated fabrics were washed 50 times, the antibacterial rate is more than 97.43% for S. aureus and 99.86% for E. coli. The excellent laundering durability may be attributed to the tight binding between silver nanoparticles and silk fibers through the in situ synthesis. This method provides an economic method to enhance the antibacterial capability of silk fabrics with good resistance to washings.

Zhang, Guangyu; Liu, Yan; Gao, Xiaoliang; Chen, Yuyue

2014-05-01

73

Synthesis of silver nanoparticles and antibacterial property of silk fabrics treated by silver nanoparticles  

PubMed Central

A silver nanoparticle solution was prepared in one step by mixing AgNO3 and a multi-amino compound (RSD-NH2) solution under ambient condition. RSD-NH2 was in-house synthesized by methacrylate and polyethylene polyamine in methanol, which has abundant amino and imino groups. However, the characterization of silver nanoparticles indicated that these nanoparticles are easy to agglomerate in solution. Therefore, an in situ synthesis method of silver nanoparticles on the silk fabrics was developed. The examined results confirmed that the in situ synthesized silver nanoparticles were evenly distributed on the surface of fibers. The inhibition zone test and the antibacterial rate demonstrated that the finished fabrics have an excellent antibacterial property against Staphylococcus aureus and Escherichia coli. Moreover, the nanosilver-treated silk fabrics were laundered 0, 5, 10, 20, and 50 times and still retained the exceptional antibacterial property. When the treated fabrics were washed 50 times, the antibacterial rate is more than 97.43% for S. aureus and 99.86% for E. coli. The excellent laundering durability may be attributed to the tight binding between silver nanoparticles and silk fibers through the in situ synthesis. This method provides an economic method to enhance the antibacterial capability of silk fabrics with good resistance to washings. PMID:24872803

2014-01-01

74

Synthesis, characterization and SERS activity of biosynthesized silver nanoparticles.  

PubMed

Silver nanoparticles were rapidly synthesized using Moringa oleifera flower extract as the reducing agent shows surface plasmon resonance peak at 439nm. The size and shape of the nanoparticles controlled by varying the concentration of M. oleifera flower extract in the reaction medium. The synthesized silver nanoparticles were well-dispersed spherical nanoparticles with the average size of 14nm. The retinoic acid present in M. oleifera flower extract used as reducing agent and proteins was responsible for capping of the bioreduced silver nanoparticles. The obtained nanoparticle shows size-dependent SERS activity. The SERS spectrum indicates that the pyridine adsorbed on the silver surface in a stand-on orientation via its nitrogen lone pair electrons. PMID:23867642

Bindhu, M R; Sathe, V; Umadevi, M

2013-11-01

75

Synthesis, characterization and SERS activity of biosynthesized silver nanoparticles  

NASA Astrophysics Data System (ADS)

Silver nanoparticles were rapidly synthesized using Moringa oleifera flower extract as the reducing agent shows surface plasmon resonance peak at 439 nm. The size and shape of the nanoparticles controlled by varying the concentration of M. oleifera flower extract in the reaction medium. The synthesized silver nanoparticles were well-dispersed spherical nanoparticles with the average size of 14 nm. The retinoic acid present in M. oleifera flower extract used as reducing agent and proteins was responsible for capping of the bioreduced silver nanoparticles. The obtained nanoparticle shows size-dependent SERS activity. The SERS spectrum indicates that the pyridine adsorbed on the silver surface in a stand-on orientation via its nitrogen lone pair electrons.

Bindhu, M. R.; Sathe, V.; Umadevi, M.

2013-11-01

76

Effects of Surface Coating on Physical Properties of Silver Nanoparticles  

NASA Astrophysics Data System (ADS)

Polymer-coated nanoparticles improve the stability of materials against aggregation and enhance the physical properties, thus making it possible to use different applications in vast fields of science. In this work, silver nanoparticles were synthesized by a chemical reduction method and were further coated with the polymers polyvinyl alcohol (PVA) and polystyrene (PS). The influence of the polymer coating on the optical and electrical properties of the silver nanoparticles were investigated and compared with that of as-prepared silver nanoparticles. The nature of the prepared silver nanoparticles in the face-centered cubic structure is confirmed by peaks in the x-ray diffraction pattern. The temperature dependence of resistivity of the silver nanoparticles exhibit semiconducting behavior in the temperature range 100-300 K.

Tariq, M.; Hasnain, S. M.

2015-03-01

77

Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells  

NASA Astrophysics Data System (ADS)

Silver nanoparticles (AgNPs) are prominent group of nanomaterials and are recognized for their diverse applications in various health sectors. This study aimed to synthesize the AgNPs using the leaf extract of Artemisia princeps as a bio-reductant. Furthermore, we evaluated the multidimensional effect of the biologically synthesized AgNPs in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma (A549) cells. UV-visible (UV-vis) spectroscopy confirmed the synthesis of AgNPs. X-ray diffraction (XRD) indicated that the AgNPs are specifically indexed to a crystal structure. The results from Fourier transform infrared spectroscopy (FTIR) indicate that biomolecules are involved in the synthesis and stabilization of AgNPs. Dynamic light scattering (DLS) studies showed the average size distribution of the particle between 10 and 40 nm, and transmission electron microscopy (TEM) confirmed that the AgNPs were significantly well separated and spherical with an average size of 20 nm. AgNPs caused dose-dependent decrease in cell viability and biofilm formation and increase in reactive oxygen species (ROS) generation and DNA fragmentation in H. pylori and H. felis. Furthermore, AgNPs induced mitochondrial-mediated apoptosis in A549 cells; conversely, AgNPs had no significant effects on L132 cells. The results from this study suggest that AgNPs could cause cell-specific apoptosis in mammalian cells. Our findings demonstrate that this environmentally friendly method for the synthesis of AgNPs and that the prepared AgNPs have multidimensional effects such as anti-bacterial and anti-biofilm activity against H. pylori and H. felis and also cytotoxic effects against human cancer cells. This report describes comprehensively the effects of AgNPs on bacteria and mammalian cells. We believe that biologically synthesized AgNPs will open a new avenue towards various biotechnological and biomedical applications in the near future.

Gurunathan, Sangiliyandi; Jeong, Jae-Kyo; Han, Jae Woong; Zhang, Xi-Feng; Park, Jung Hyun; Kim, Jin-Hoi

2015-02-01

78

Mosquito larvicidal potential of silver nanoparticles synthesized using Chomelia asiatica (Rubiaceae) against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae).  

PubMed

Mosquitoes transmit serious human diseases, causing millions of deaths every year. Mosquito control is to enhance the health and quality of life of county residents and visitors through the reduction of mosquito populations. Mosquito control is a serious concern in developing countries like India due to the lack of general awareness, development of resistance, and socioeconomic reasons. Today, nanotechnology is a promising research domain which has a wide ranging application in vector control programs. These are nontoxic, easily available at affordable prices, biodegradable, and show broad-spectrum target-specific activities against different species of vector mosquitoes. In the present study, larvicidal activity of aqueous leaf extract and silver nanoparticles (AgNPs) synthesized using C. asiatica plant leaves against late third instar larvae of Anopheles stephensi, Aedes aegypti, and Cx. quinquefasciatus. The range of varying concentrations of synthesized AgNPs (8, 16, 24, 32, and 40 ?g/mL) and aqueous leaf extract (40, 80, 120, 160, and 200 ?g/mL) were tested against the larvae of An. stephensi, Ae. aegypti, and Cx. quinquefasciatus. The synthesized AgNPs from C. asiatica were highly toxic than crude leaf aqueous extract in three important vector mosquito species. The results were recorded from UV-Vis spectrum, Fourier transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy analysis (EDX). Considerable mortality was evident after the treatment of C. asiatica for all three important vector mosquitoes. The LC50 and LC90 values of C. asiatica aqueous leaf extract appeared to be effective against An. stephensi (LC50, 90.17 ?g/mL; LC90, 165.18 ?g/mL) followed by Ae. aegypti (LC50, 96.59 ?g/mL; LC90, 173.83 ?g/mL) and Cx. quinquefasciatus (LC50, 103.08 ?g/mL; LC90, 183.16 ?g/mL). Synthesized AgNPs against the vector mosquitoes of An. stephensi, Ae. aegypti, and Cx. quinquefasciatus had the following LC50 and LC90 values: An. stephensi had LC50 and LC90 values of 17.95 and 33.03 ?g/mL; Ae. aegypti had LC50 and LC90 values of 19.32 and 34.87 ?g/mL; and Cx. quinquefasciatus had LC50 and LC90 values of 20.92 and 37.41 ?g/mL. No mortality was observed in the control. These results suggest that the leaf aqueous extracts of C. asiatica and green synthesis of silver nanoparticles have the potential to be used as an ideal eco-friendly approach for the control of An. stephensi, Ae. aegypti, and Cx. quinquefasciatus. This is the first report on the mosquito larvicidal activity of the plant extracts and synthesized AgNPs. PMID:25544703

Muthukumaran, Udaiyan; Govindarajan, Marimuthu; Rajeswary, Mohan

2015-03-01

79

Synthesis of silver nanoparticles from Melia dubia leaf extract and their in vitro anticancer activity.  

PubMed

Silver nanoparticles have a significant role in the pharmaceutical science. Especially, silver nanoparticles synthesized by the plant extracts lead a significant role in biological activities such as antimicrobial, antioxidant and anticancer. Keeping this in mind, the present work investigation has been taken up with the synthesized silver nanoparticles using the plant extract of Melia dubia and it characterizes by using UV-visible, XRD and SEM-EDS. The effect of the silver nanoparticles on human breast cancer (KB) cell line has been tested. Silver nanoparticles showed remarkable cytotoxicity activity against KB cell line with evidence of high therapeutic index value are the results are discussed. PMID:24769382

Kathiravan, V; Ravi, S; Ashokkumar, S

2014-09-15

80

Synthesis of silver nanoparticles from Melia dubia leaf extract and their in vitro anticancer activity  

NASA Astrophysics Data System (ADS)

Silver nanoparticles have a significant role in the pharmaceutical science. Especially, silver nanoparticles synthesized by the plant extracts lead a significant role in biological activities such as antimicrobial, antioxidant and anticancer. Keeping this in mind, the present work investigation has been taken up with the synthesized silver nanoparticles using the plant extract of Melia dubia and it characterizes by using UV-visible, XRD and SEM-EDS. The effect of the silver nanoparticles on human breast cancer (KB) cell line has been tested. Silver nanoparticles showed remarkable cytotoxicity activity against KB cell line with evidence of high therapeutic index value are the results are discussed.

Kathiravan, V.; Ravi, S.; Ashokkumar, S.

2014-09-01

81

Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate  

Microsoft Academic Search

Background  The study investigated the distribution of silver after 28 days repeated oral administration of silver nanoparticles (AgNPs)\\u000a and silver acetate (AgAc) to rats. Oral administration is a relevant route of exposure because of the use of silver nanoparticles\\u000a in products related to food and food contact materials.\\u000a \\u000a \\u000a \\u000a \\u000a Results  AgNPs were synthesized with a size distribution of 14 ± 4 nm in

Katrin Loeschner; Niels Hadrup; Klaus Qvortrup; Agnete Larsen; Xueyun Gao; Ulla Vogel; Alicja Mortensen; Henrik Rye Lam; Erik H Larsen

2011-01-01

82

Toxicity of silver nanoparticles in zebrafish models  

NASA Astrophysics Data System (ADS)

This study was initiated to enhance our insight on the health and environmental impact of silver nanoparticles (Ag-np). Using starch and bovine serum albumin (BSA) as capping agents, silver nanoparticles were synthesized to study their deleterious effects and distribution pattern in zebrafish embryos (Danio rerio). Toxicological endpoints like mortality, hatching, pericardial edema and heart rate were recorded. A concentration-dependent increase in mortality and hatching delay was observed in Ag-np treated embryos. Additionally, nanoparticle treatments resulted in concentration-dependent toxicity, typified by phenotypes that had abnormal body axes, twisted notochord, slow blood flow, pericardial edema and cardiac arrhythmia. Ag+ ions and stabilizing agents showed no significant defects in developing embryos. Transmission electron microscopy (TEM) of the embryos demonstrated that nanoparticles were distributed in the brain, heart, yolk and blood of embryos as evident from the electron-dispersive x-ray analysis (EDS). Furthermore, the acridine orange staining showed an increased apoptosis in Ag-np treated embryos. These results suggest that silver nanoparticles induce a dose-dependent toxicity in embryos, which hinders normal development.

Asharani, P. V.; Lian Wu, Yi; Gong, Zhiyuan; Valiyaveettil, Suresh

2008-06-01

83

Subchronic oral toxicity of silver nanoparticles  

Microsoft Academic Search

BACKGROUND: The antibacterial effect of silver nanoparticles has resulted in their extensive application in health, electronic, consumer, medicinal, pesticide, and home products; however, silver nanoparticles remain a controversial area of research with respect to their toxicity in biological and ecological systems. RESULTS: This study tested the oral toxicity of silver nanoparticles (56 nm) over a period of 13 weeks (90

Yong Soon Kim; Moon Yong Song; Jung Duck Park; Kyung Seuk Song; Hyeon Ryol Ryu; Yong Hyun Chung; Hee Kyung Chang; Ji Hyun Lee; Kyung Hui Oh; Bruce J Kelman; In Koo Hwang; Il Je Yu

2010-01-01

84

Silver Nanoparticles and Graphitic Carbon Through Thermal Decomposition of a Silver/Acetylenedicarboxylic Salt  

PubMed Central

Spherically shaped silver nanoparticles embedded in a carbon matrix were synthesized by thermal decomposition of a Ag(I)/acetylenedicarboxylic acid salt. The silver nanoparticles, which are formed either by pyrolysis at 300 °C in an autoclave or thermolysis in xylene suspension at reflux temperature, are acting catalytically for the formation of graphite layers. Both reactions proceed through in situ reduction of the silver cations and polymerization of the central acetylene triple bonds and the exact temperature of the reaction can be monitored through DTA analysis. Interestingly, the thermal decomposition of this silver salt in xylene partly leads to a minor fraction of quasicrystalline silver, as established by HR-TEM analysis. The graphitic layers covering the silver nanoparticles are clearly seen in HR-TEM images and, furthermore, established by the presence of sp2carbon at the Raman spectrum of both samples. PMID:20628449

2009-01-01

85

Silver Nanoparticles and Graphitic Carbon Through Thermal Decomposition of a Silver/Acetylenedicarboxylic Salt  

NASA Astrophysics Data System (ADS)

Spherically shaped silver nanoparticles embedded in a carbon matrix were synthesized by thermal decomposition of a Ag(I)/acetylenedicarboxylic acid salt. The silver nanoparticles, which are formed either by pyrolysis at 300 °C in an autoclave or thermolysis in xylene suspension at reflux temperature, are acting catalytically for the formation of graphite layers. Both reactions proceed through in situ reduction of the silver cations and polymerization of the central acetylene triple bonds and the exact temperature of the reaction can be monitored through DTA analysis. Interestingly, the thermal decomposition of this silver salt in xylene partly leads to a minor fraction of quasicrystalline silver, as established by HR-TEM analysis. The graphitic layers covering the silver nanoparticles are clearly seen in HR-TEM images and, furthermore, established by the presence of sp2 carbon at the Raman spectrum of both samples.

Dallas, Panagiotis; Bourlinos, Athanasios B.; Komninou, Philomela; Karakassides, Michael; Niarchos, Dimitrios

2009-11-01

86

Silver nanoparticles and graphitic carbon through thermal decomposition of a silver/acetylenedicarboxylic salt.  

PubMed

Spherically shaped silver nanoparticles embedded in a carbon matrix were synthesized by thermal decomposition of a Ag(I)/acetylenedicarboxylic acid salt. The silver nanoparticles, which are formed either by pyrolysis at 300 degrees C in an autoclave or thermolysis in xylene suspension at reflux temperature, are acting catalytically for the formation of graphite layers. Both reactions proceed through in situ reduction of the silver cations and polymerization of the central acetylene triple bonds and the exact temperature of the reaction can be monitored through DTA analysis. Interestingly, the thermal decomposition of this silver salt in xylene partly leads to a minor fraction of quasicrystalline silver, as established by HR-TEM analysis. The graphitic layers covering the silver nanoparticles are clearly seen in HR-TEM images and, furthermore, established by the presence of sp(2) carbon at the Raman spectrum of both samples. PMID:20628449

Dallas, Panagiotis; Bourlinos, Athanasios B; Komninou, Philomela; Karakassides, Michael; Niarchos, Dimitrios

2009-01-01

87

Facile synthesis of anisotropic silver nanoparticles and their surface-enhanced Raman scattering properties  

NASA Astrophysics Data System (ADS)

In this work, polyvinylpyrrolidone(PVP)-capped silver nanoparticles were synthesized using ethylene glycol as solvent and reducing agent through a simple, one-pot solvothermal method at 160 °C. UV-vis spectroscopy, TEM and Raman spectra are used to characterize the PVP-capped silver nanoparticles. The results show that the formed silver nanoparticles are anisotropy with different size and morphology such as triangle, hexagon and pentagon. Moreover, the formation process of silver nanoparticles was discussed in detail. Furthermore, the formed silver nanoparticles displayed high surface-enhanced Raman scattering effects.

Zhang, Danhui; Yang, Houbo

2014-02-01

88

Method of synthesizing tungsten nanoparticles  

SciTech Connect

A method to synthesize tungsten nanoparticles has been developed that enables synthesis of nanometer-scale, monodisperse particles that can be stabilized only by tetrahydrofuran. The method can be used at room temperature, is scalable, and the product concentrated by standard means. Since no additives or stabilizing surfactants are required, this method is particularly well suited for producing tungsten nanoparticles for dispersion in polymers. If complete dispersion is achieved due to the size of the nanoparticles, then the optical properties of the polymer can be largely maintained.

Thoma, Steven G; Anderson, Travis M

2013-02-12

89

Green synthesis of silver nanoparticles for the control of mosquito disease vectors  

Technology Transfer Automated Retrieval System (TEKTRAN)

A biological method was used to synthesize stable silver nanoparticles. The nanoparticles were tested as larvicides against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. Annona squamosa leaf broth (5%) reduced aqueous AgNO3 to stable silver nanoparticles with average particle siz...

90

Synthesis, characterization and evaluation of silver nanoparticles through leaves of Abrus precatorius L.: an important medicinal plant  

NASA Astrophysics Data System (ADS)

Biologically synthesized nanoparticles have been widely used in the field of medicine. The present study reports the green synthesis of silver nanoparticles using Abrus precatorius leaf extract with silver nitrate solution as reducing agent. The synthesized silver nanoparticles were analyzed through UV-Visible spectroscopy, X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray analysis, atomic force microscopy and Fourier transform infrared. The synthesized silver nanoparticles were disk shaped with an average size of 19 nm. These silver nanoparticles were evaluated for antibacterial activity. The diameter of inhibition zones around the disk of Pseudomonas aeruginosa and Staphylococcus aureus are resistant to silver nanoparticles, whereas Escherichia coli and Bacillus thuringiensis are susceptible when compared with the other two species. The results were compared with the ciprofloxacin-positive control and silver nitrate. It is concluded that the green synthesis of silver nanoparticles is very fast, easy, cost-effective and eco-friendly and without any side effects.

Gaddala, Bhumi; Nataru, Savithramma

2015-01-01

91

Silver Nanoparticles Part 2: BDo Silver Nanoparticles Inhibit Bacterial Growth?  

NSDL National Science Digital Library

The NACK Center is an organization committed to supporting two â??year degree programs in micro and nanotechnology. The center offers online educational material for curriculum enhancement in this subject field. One of these resources is a lab documentation focusing on the topic of silver nanoparticles. The lab "may be used with a middle school through high school biology class.â? The lesson includes objectives, sample solution preparations, and sample data and calculations. Overall, the objectives of this lesson are to practice aseptic techniques to inoculate/grow bacteria and describe the impact of silver nanoparticles on bacterial growth. The site requires a free log-in for access to the material.

92

Anti-Bacterial Properties of Silver Nanoparticles  

NSDL National Science Digital Library

This lesson from The Lawrence Hall of Science was taught in spring 2013 and focuses on synthesizing and testing silver nanoparticles. The three part lab involves "synthesis, testing and characterization and was implemented with a collaborative model." Each part of the lab is to be completed by a different class of students - those studying chemistry, biology, and engineering, respectively. This page includes links to Source Articles for the Hands-on Module, the Project Staff Write-up of the Hands-on Module, as well as a PowerPoint presentation and three documents detailing the labs.

93

Agricultural waste Annona squamosa peel extract: Biosynthesis of silver nanoparticles  

NASA Astrophysics Data System (ADS)

Development of reliable and eco-friendly process for the synthesis of metallic nanoparticles is an important step in the field of application of nanotechnology. We have developed modern method by using agriculture waste to synthesize silver nanoparticles by employing an aqueous peel extract of Annona squamosa in AgNO3. Controlled growth of silver nanoparticles was formed in 4 h at room temperature (25 °C) and 60 °C. AgNPs were irregular spherical in shape and the average particle size was about 35 ± 5 nm and it is consistent with particle size obtained by XRD Scherer equation.

Kumar, Rajendran; Roopan, Selvaraj Mohana; Prabhakarn, Arunachalam; Khanna, Venkatesan Gopiesh; Chakroborty, Subhendu

2012-05-01

94

Antibacterial Activity of pH-Dependent Biosynthesized Silver Nanoparticles against Clinical Pathogen  

PubMed Central

Simple, nontoxic, environmental friendly method is employed for the production of silver nanoparticles. In this study the synthesized nanoparticles UV absorption band occurred at 400?nm because of the surface Plasmon resonance of silver nanoparticles. The pH of the medium plays important role in the synthesis of control shaped and sized nanoparticles. The colour intensity of the aqueous solution varied with pH. In this study, at pH 9, the colour of the aqueous solution was dark brown, whereas in pH 5 the colour was yellowish brown; the colour difference in the aqueous solution occurred due to the higher production of silver nanoparticles. The antibacterial activity of biosynthesized silver nanoparticles was carried out against E. coli. The silver nanoparticles synthesized at pH 9 showed maximum antibacterial activity at 50??L. PMID:24967396

Chitra, Kethirabalan; Annadurai, Gurusamy

2014-01-01

95

Development of antimicrobial water filtration hybrid material from bio source calcium carbonate and silver nanoparticles  

NASA Astrophysics Data System (ADS)

Biobased calcium carbonate and silver hybrid nanoparticles were synthesized using a simple mechanochemical milling technique. The XRD spectrum showed that the hybrid materials is composed of crystalline calcite and silver nanoparticles. The TEM results indicated that the silver nanoparticles are discrete, uncapped and well stabilized in the surface of the eggshell derived calcium carbonate particles. The silver nanoparticles are spherical in shape and 5-20 nm in size. The SEM studies indicated that the eggshells are in micron size with the silver nanoparticle embedded in their surface. The hybrid eggshell/silver nanocomposite exhibited superior inhibition of E. coli growth using the Kirby-Bauer discs diffusion assay and comparing the zone of inhibition around the filter paper disc impregnated with the hybrid particles against pristine silver nanoparticles.

Apalangya, Vitus; Rangari, Vijaya; Tiimob, Boniface; Jeelani, Shaik; Samuel, Temesgen

2014-03-01

96

Gold and silver nanoparticles from Trianthema decandra: synthesis, characterization, and antimicrobial properties  

PubMed Central

Background There is an increasing commercial demand for nanoparticles due to their wide applicability in various markets, including medicine, catalysis, electronics, chemistry, and energy. In this report, a simple and ecofriendly chemical reaction for the synthesis of gold and silver nanoparticles from Trianthema decandra (Aizoaceae) has been developed. Methods and results On treatment of aqueous solutions containing chloroauric acid or silver nitrate with root extract of T. decandra, stable gold or silver nanoparticles were rapidly formed. The kinetics of reduction of gold and silver ions during the reaction was analyzed by ultraviolet-visible spectroscopy. Field emission-scanning electron microscopy showed formation of gold nanoparticles in various shapes, including spherical, cubical, triangular, and hexagonal, while silver nanoparticles were spherical. The size of the gold nanoparticles was 33–65 nm and that of the silver nanoparticles was 36–74 nm. Energy dispersive x-ray and Fourier transform infrared spectroscopy confirmed the presence of metallic gold and metallic silver in the respective nanoparticles. The antimicrobial properties of the synthesized nanoparticles were analyzed using the Kirby-Bauer method. The results show varied susceptibility of microorganisms to the gold and silver nanoparticles. Conclusion It is believed that phytochemicals present in T. decandra extract reduce the silver and gold ions into metallic nanoparticles. This strategy reduces the cost of production and the environmental impact. The silver and gold nanoparticles formed showed strong activity against all microorganisms tested. PMID:23091381

Geethalakshmi, R; Sarada, DVL

2012-01-01

97

Rapid biological synthesis of silver nanoparticles using plant leaf extracts.  

PubMed

Five plant leaf extracts (Pine, Persimmon, Ginkgo, Magnolia and Platanus) were used and compared for their extracellular synthesis of metallic silver nanoparticles. Stable silver nanoparticles were formed by treating aqueous solution of AgNO(3) with the plant leaf extracts as reducing agent of Ag(+) to Ag(0). UV-visible spectroscopy was used to monitor the quantitative formation of silver nanoparticles. Magnolia leaf broth was the best reducing agent in terms of synthesis rate and conversion to silver nanoparticles. Only 11 min was required for more than 90% conversion at the reaction temperature of 95 degrees C using Magnolia leaf broth. The synthesized silver nanoparticles were characterized with inductively coupled plasma spectrometry (ICP), energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and particle analyzer. The average particle size ranged from 15 to 500 nm. The particle size could be controlled by changing the reaction temperature, leaf broth concentration and AgNO(3) concentration. This environmentally friendly method of biological silver nanoparticles production provides rates of synthesis faster or comparable to those of chemical methods and can potentially be used in various human contacting areas such as cosmetics, foods and medical applications. PMID:18438688

Song, Jae Yong; Kim, Beom Soo

2009-01-01

98

Green Synthesis of Silver Nanoparticles Using Neem Leaf (Azadirachta indica) Extract  

NASA Astrophysics Data System (ADS)

Silver nanoparticles were successfully synthesized using crude neem leaf (Azadirachta indica) extract at room temperature. The formation and crystallinity of synthesized silver nanoparticles was confirmed by X-Ray diffraction (XRD) pattern. The average size of these silver nanoparticles is about 20-50 nm as observed by Transmission electron microscopy (TEM) images. Optical absorption measurements were performed to determine band-edge energy gap of these silver nanoparticles. Photoluminescence (PL) studies were performed to emphasize its emission properties. The synthesized silver nanoparticles could have major applications in the area of nanoscale optoelectronics devices and biomedical engineering. Our synthesis method has advantage over other conventional chemical routes because it is cost effective & environmental compatibility.

Shukla, Vineet Kumar; Pandey, Shipra; Pandey, Avinash C.

2010-10-01

99

Synthesis of contamination-free silver nanoparticle suspensions for micro-interconnects  

Microsoft Academic Search

Silver nanoparticle suspensions synthesized by chemical reduction from silver nitrate in a formaldehyde reductant and PVP stabilizer using organic bases as the reaction promoter were studied in this research. Two different organic bases of different basicity, triethylamine and pyridine, were used in the reaction. The sizes of the silver particles prepared from the more basic triethylamine were around 20–30 nm. The

Steve Lien-Chung Hsu; Rong-Tarng Wu

2007-01-01

100

Synthesis and anti-fungal effect of silver nanoparticles–chitosan composite particles  

PubMed Central

Silver nanoparticles have been used in various fields, and several synthesis processes have been developed. The stability and dispersion of the synthesized nanoparticles is vital. The present article describes a novel approach for one-step synthesis of silver nanoparticles–embedded chitosan particles. The proposed approach was applied to simultaneously obtain and stabilize silver nanoparticles in a chitosan polymer matrix in-situ. The diameter of the synthesized chitosan composite particles ranged from 1.7 mm to 2.5 mm, and the embedded silver nanoparticles were measured to be 15±3.3 nm. Further, the analyses of ultraviolet-visible spectroscopy, energy dispersive spectroscopy, and X-ray diffraction were employed to characterize the prepared composites. The results show that the silver nanoparticles were distributed over the surface and interior of the chitosan spheres. The fabricated spheres had macroporous property, and could be used for many applications such as fungicidal agents in the future. PMID:25878501

Wang, Lung-Shuo; Wang, Chih-Yu; Yang, Chih-Hui; Hsieh, Chen-Ling; Chen, Szu-Yu; Shen, Chi-Yen; Wang, Jia-Jung; Huang, Keng-Shiang

2015-01-01

101

Titania-supported silver nanoparticles: An efficient and reusable catalyst for reduction of 4-nitrophenol  

NASA Astrophysics Data System (ADS)

Supported silver nanoparticles were synthesized via in situ sol-gel followed by reduction method with dextrose as reductant and sodium dodecyl sulfate as stabilizer. The synthesized nanoparticles were characterized by X-ray diffraction, transmission electron microscopy, Fourier transform Infra-Red spectroscopy and UV-visible measurements. The XRD peaks confirm the metallic face-centered cubic silver particles. The formation of silver nanoparticles was confirmed from the appearance of surface plasmon absorption maxima at 412 nm; which shifted to the longer wavelengths after supported on titania host lattice. TEM showed the spherical nanoparticles with size in the range of 18-23 nm. An efficient and simple method was reported for the reduction of 4-nitrophenol using titania-supported silver nanoparticles at room temperature. The reaction was first order with respect to the concentration of 4-nitrophenol with higher efficiency. Titania supported silver nanoparticles are reusable and stable heterogeneous catalyst.

Deshmukh, S. P.; Dhokale, R. K.; Yadav, H. M.; Achary, S. N.; Delekar, S. D.

2013-05-01

102

Biosynthesis, characterization and cytotoxic effect of plant mediated silver nanoparticles using Morinda citrifolia root extract.  

PubMed

Silver has been used since time to control bodily infection, prevent food spoilage and heal wounds by preventing infection. The present study aims at an environmental friendly method of synthesizing silver nanoparticles, from the root of Morinda citrifolia; without involving chemical agents associated with environmental toxicity. The obtained nanoparticles were characterized by UV-vis absorption spectroscopy with an intense surface plasmon resonance band at 413 nm clearly reveals the formation of silver nanoparticles. Fourier transmission infra red spectroscopy (FTIR) showed nanopartilces were capped with plant compounds. Field emission-scanning electron microscopy (FE-SEM) and Transmission electron microscopy (TEM) showed that the spherical nature of the silver nanoparticles with a size of 30-55 nm. The X-ray diffraction spectrum XRD pattern clearly indicates that the silver nanoparticles formed in the present synthesis were crystalline in nature. In addition these biologically synthesized nanoparticles were also proved to exhibit excellent cytotoxic effect on HeLa cell. PMID:23434694

Suman, T Y; Radhika Rajasree, S R; Kanchana, A; Elizabeth, S Beena

2013-06-01

103

Immobilization of silver nanoparticles on polyethylene terephthalate  

PubMed Central

Two different procedures of grafting with silver nanoparticles (AgNP) of polyethylene terephthalate (PET), activated by plasma treatment, are studied. In the first procedure, the PET foil was grafted with biphenyl-4,4?-dithiol and subsequently with silver nanoparticles. In the second one, the PET foil was grafted with silver nanoparticles previously coated with the same dithiol. X-ray photoelectron spectroscopy and electrokinetic analysis were used for characterization of the polymer surface at different modification steps. Silver nanoparticles were characterized by ultraviolet-visible spectroscopy and by transmission electron microscopy (TEM). The first procedure was found to be more effective. It was proved that the dithiol was chemically bonded to the surface of the plasma-activated PET and that it mediates subsequent grafting of the silver nanoparticles. AgNP previously coated by dithiol bonded to the PET surface much less. PMID:24994960

2014-01-01

104

Controlling the Shape and Crystallinity of Gold and Silver Nanoparticles  

NASA Astrophysics Data System (ADS)

The strong dependence of the optical, electronic, and catalytic properties of noble metal nanoparticles on their shape has necessitated the high-yield synthesis of gold and silver nanostructures with precisely defined morphologies. This directed synthesis requires a detailed mechanistic understanding of the chemical and physical factors which control nanoparticle shape; however, these mechanistic explanations are still incomplete. To this end, the work of this dissertation seeks to enhance the understanding of nanoparticle growth on a mechanistic level, while also developing synthetic methods for producing novel nanoparticle shapes. Chapter 1 describes the state of the art in shape-controlled noble metal nanoparticle synthesis prior to the work conducted in this dissertation. In Chapter 2, a method is reported for synthesizing {110}-faceted bipyramids and rhombic dodecahedra, in which the combination of a chloride-containing surfactant and a low concentration of silver ions leads to the stabilization of the {110} facets. Chapter 3 explores in mechanistic detail the use of silver underpotential deposition to control particle growth in the synthesis of four gold nanoparticle shapes: octahedra, rhombic dodecahedra, truncated ditetragonal prisms, and concave cubes. This mechanistic understanding is expanded in Chapter 4, where the independent and synergistic roles of silver ions and halide ions in the seed-mediated synthesis of gold nanoparticles are systematically probed, culminating in a set of design considerations for controlling the shape of gold nanoparticles. Chapter 5 investigates the role of excitation wavelength in controlling the rate of silver ion reduction in the plasmon-mediated synthesis of silver nanoparticles and describes the synthesis of silver cubes with an unusual twinning structure. Finally, Chapter 6 combines the mechanistic insights gained in Chapters 2-5 to address a standing challenge in shape-controlled gold nanoparticle synthesis: the direct, high-yield preparation of planar-twinned gold nanostructures. Planar-twinned silver nanoprisms are used as a seed platform for the growth of gold nanoparticles, which enables the synthesis of gold hexagonal bipyramids in high yield for the first time. As a whole, the work reported in this dissertation represents a significant step forward in understanding how shape and crystal structure can be deliberately controlled in the synthesis of gold and silver nanoparticles.

Personick, Michelle Louise

105

Bio-functionalized silver nanoparticles: a novel colorimetric probe for cysteine detection.  

PubMed

Chemical interactions between nanoparticles and biomolecules are vital for applying nanoparticles in medicine and life science. Development of sensitive, rapid, low-cost, and eco-friendly sensors for the detection of molecules acting as disease indicator is need of an hour. In the present investigation, a green trend for silver nanoparticle synthesis was followed using leaf extract of Calotropis procera. Silver nanoparticles exhibited surface plasmon absorption peak at 421 nm, spherical shape with average size of 10 nm, and zeta potential of -22.4 mV. The as-synthesized silver nanoparticles were used for selective and sensitive detection of cysteine. Cysteine induces aggregation in stable silver nanoparticles owing to selective and strong interaction of -SH group of cysteine with silver nanoparticle surface. Cysteine-induced silver nanoparticle aggregation can be observed visually by change in color of silver nanoparticles from yellow to pink. Cysteine concentration was estimated colorimetrically by measuring absorption at surface plasmon wavelength. Limit of detection for cysteine using silver nanoparticles is ultralow, i.e., 100 nM. The mechanistic insight into cysteine detection by silver nanoparticles was investigated using FT-IR, TEM, DLS, and TLC analysis. Proposed method can be applied for the detection of cysteine in blood plasma and may give rise to a new insight into development of eco-friendly fabricated nanodiagnostic device in future. PMID:25637511

Borase, Hemant P; Patil, Chandrashekhar D; Salunkhe, Rahul B; Suryawanshi, Rahul K; Kim, Beom S; Bapat, Vishwas A; Patil, Satish V

2015-04-01

106

Surface-independent antibacterial coating using silver nanoparticle-generating engineered mussel glue.  

PubMed

During implant surgeries, antibacterial agents are needed to prevent bacterial infections, which can cause the formation of biofilms between implanted materials and tissue. Mussel adhesive proteins (MAPs) derived from marine mussels are bioadhesives that show strong adhesion and coating ability on various surfaces even in wet environment. Here, we proposed a novel surface-independent antibacterial coating strategy based on the fusion of MAP to a silver-binding peptide, which can synthesize silver nanoparticles having broad antibacterial activity. This sticky recombinant fusion protein enabled the efficient coating on target surface and the easy generation of silver nanoparticles on the coated-surface under mild condition. The biosynthesized silver nanoparticles showed excellent antibacterial efficacy against both Gram-positive and Gram-negative bacteria and also revealed good cytocompatibility with mammalian cells. In this coating strategy, MAP-silver binding peptide fusion proteins provide hybrid environment incorporating inorganic silver nanoparticle and simultaneously mediate the interaction of silver nanoparticle with surroundings. Moreover, the silver nanoparticles were fully synthesized on various surfaces including metal, plastic, and glass by a simple, surface-independent coating manner, and they were also successfully synthesized on a nanofiber surface fabricated by electrospinning of the fusion protein. Thus, this facile surface-independent silver nanoparticle-generating antibacterial coating has great potential to be used for the prevention of bacterial infection in diverse biomedical fields. PMID:25311392

Jo, Yun Kee; Seo, Jeong Hyun; Choi, Bong-Hyuk; Kim, Bum Jin; Shin, Hwa Hui; Hwang, Byeong Hee; Cha, Hyung Joon

2014-11-26

107

Chemical synthesis and antibacterial activity of novel-shaped silver nanoparticles  

NASA Astrophysics Data System (ADS)

Silver nanoparticles are useful for medical applications due to their strong antibacterial activity. The antibacterial activity can be tuned by controlling the size and shape of the prepared silver nanoparticles. In this work, silver nanoparticles with different sizes and shapes were synthesized by solution phase routes, and their interactions with Escherichia coli were studied. Triangular silver nanoprisms were prepared by the reduction of silver nitrate at room temperature in the presence of polyvinylpyrrolidone, sodium citrate, hydrogen peroxide and sodium borohydride. Spherical silver nanoparticles were also prepared using silver nitrate as metal precursor and sodium citrate as well as sodium borohydride as reducing agents. The morphologies and structures of the nanoparticles were characterized by transmission electron microscopy, UV-visible spectroscopy and X-ray diffraction. The results indicated that spherical silver nanoparticles were obtained with different average sizes of 4, 21 and 40 nm, respectively. The edged silver nanoprisms containing mainly {111} lattice planes were obtained in the range size of 25 to 400 nm. The antibacterial study revealed that the edged triangular silver nanoprisms with {111} lattice planes exhibited the strongest antibacterial property, compared with spherical nanoparticles. Our study demonstrated that triangular silver nanoprisms with sharp edges also display a good antibacterial activity in comparison to other shaped nanoparticles.

Van Dong, Pham; Ha, Chu Hoang; Binh, Le Tran; Kasbohm, Jörn

2012-06-01

108

In situ synthesis of nano silver/lecithin on wool: enhancing nanoparticles diffusion.  

PubMed

Silver nanoparticles are being used increasingly in various applications because of their antibacterial properties. It is necessary to lower their direct contact with the skin by embedding in a polymer reducing their side effects. In this study, silver nanoparticles were synthesized inside the wool fibers acted as a polyfunctional ligands. Lecithin as a biological lipid was used to enhance the diffusion of silver ions and nanoparticles into the wool fibers reducing cytotoxicity effects of the nano silver loaded wool. The highest loading efficiency and inhibition zone was observed on the wool with the highest lecithin concentration. Presence of lecithin reduced the rate of nano silver release which results in decreasing the specific coefficient of lethality. Also, the extracted solution of the synthesized silver nanoparticles on the wool has not altered the morphology of L929 fibroblast cells. PMID:22178185

Barani, Hossein; Montazer, Majid; Samadi, Nasrin; Toliyat, Tayebeh

2012-04-01

109

Photocurrent enhancement in polythiophene doped with silver nanoparticles  

NASA Astrophysics Data System (ADS)

We studied the spectral dependence of the influence of silver nanoparticles (Ag NPs) on the photoconductivity of poly(3-hexylthiophene) (P3HT) thin films. 7 ± 2 nm silver nanoparticles were synthesized by thermal decomposition of an organometallic silver salt in organic solvent. Optical properties of the mixture of P3HT and Ag NPs and thin films with various Ag content were investigated. Spectral dependences of the photocurrent were measured for the films cast on the top of interdigitated microelectrodes. Antibatic behavior of the photocurrent with respect to the absorption spectrum was observed. Results shows 40-150 times enhancement of the photocurrents, depending on the wavelength, in films doped with Ag NPs compared with the pristine films. The existing theories on the influence of metallic nanoparticles in the photoactive layer of organic solar cells are reviewed and discussed.

Szeremeta, Janusz; Nyk, Marcin; Samoc, Marek

2014-11-01

110

Procedure optimization for green synthesis of silver nanoparticles by aqueous extract of Eucalyptus oleosa  

NASA Astrophysics Data System (ADS)

The present study is dealing with the green synthesis of silver nanoparticles using the aqueous extract of Eucalyptus oleosa as a green synthesis procedure without any catalyst, template or surfactant. Colloidal silver nanoparticles were synthesized by reacting aqueous AgNO3 with E. oleosa leaf extract at non-photomediated conditions. The significance of some synthesis conditions such as: silver nitrate concentration, concentration of the plant extract, time of synthesis reaction and temperature of plant extraction procedure on the particle size of synthesized silver particles was investigated and optimized. The participations of the studied factors in controlling the particle size of reduced silver were quantitatively evaluated via analysis of variance (ANOVA). The results of this investigation showed that silver nanoparticles could be synthesized by tuning significant parameters, while performing the synthesis procedure at optimum conditions leads to form silver nanoparticles with 21 nm as averaged size. Ultraviolet-visible spectroscopy was used to monitor the development of silver nanoparticles formation. Meanwhile, produced silver nanoparticles were characterized by scanning electron microscopy, energy-dispersive X-ray, and FT-IR techniques.

Pourmortazavi, Seied Mahdi; Taghdiri, Mehdi; Makari, Vajihe; Rahimi-Nasrabadi, Mehdi

2015-02-01

111

In situ synthesis of water dispersible bovine serum albumin capped gold and silver nanoparticles and their cytocompatibility studies.  

PubMed

A simple and convenient one step room temperature method is described for the synthesis of bovine serum albumin (BSA) capped gold and silver nanoparticles. BSA reduces silver ions to silver nanoparticles but does not directly reduce gold ions to gold nanoparticles at room temperature and varying pH conditions. However, when silver and gold ions are simultaneously added to BSA, silver ions get reduced to metallic silver first and these in turn reduce gold ions to gold nanoparticles through a galvanic exchange reaction. The so synthesized silver and gold nanoparticles are easily water dispersible and can withstand addition of salt even at high concentrations. It is shown that the capped protein retains its secondary structure and the helicity to a large extent on the nanoparticles surface and that the protein capping makes the nanoparticles cytocompatible. PMID:19570660

Murawala, Priyanka; Phadnis, S M; Bhonde, R R; Prasad, B L V

2009-10-15

112

Synthesis of silver nanoparticles by using tea leaf extract from Camellia Sinensis  

PubMed Central

The development of the biological synthesis of nanoparticles using microorganisms or plant extracts plays an important role in the field of nanotechnology as it is environmentally friendly and does not involve any harmful chemicals. In this study, the synthesis of silver nanoparticles using the leaves extract of Chinese tea from Camellia sinensis is reported. The synthesized nanoparticles were characterized using UV-vis spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. The XRD analysis shows that the synthesized silver nanoparticles are of face-centered cubic structure. Well-dispersed silver nanoparticles with an approximate size of 4 nm were observed in the TEM image. The application of the green synthesized nanoparticles can be used in many fields such as cosmetics, foods, and medicine. PMID:22904632

Loo, Yuet Ying; Chieng, Buong Woei; Nishibuchi, Mitsuaki; Radu, Son

2012-01-01

113

Surface plasmon resonance optical sensor and antibacterial activities of biosynthesized silver nanoparticles.  

PubMed

Silver nanoparticles were prepared using aqueous fruit extract of Ananas comosus as reducing agent. These silver nanoparticles showed surface plasmon peak at 439 nm. They were monodispersed and spherical in shape with an average particle size of 10 nm. The crystallinity of these nanoparticles was evident from clear lattice fringes in the HRTEM images and bright circular spots in the SAED pattern. The antibacterial activities of prepared nanoparticles were found to be size-dependent, the smaller nanoparticles showing more bactericidal effect. Aqueous Zn(2+) and Cu(4+) selectivity and sensitivity study of this green synthesized nanoparticle was performed by optical sensor based surface plasmon resonance (SPR) at room temperature. PMID:24291437

Bindhu, M R; Umadevi, M

2014-01-01

114

Electrodeposited Silver Nanoparticles Patterned Hexagonally for SERS  

SciTech Connect

We have fabricated hexagonally patterned silver nanoparticles for surface-enhanced Raman scattering (SERS) by electrodepositing silver on the surface of an aluminum plate prepared by completely removing the oxide from anodic aluminum oxide (AAO) templates. Even after completely removing the oxide, well-ordered hexagonal patterns, similar to the shape of graphene, remained on the surface of the aluminum plate. The borders of the hexagonal pattern protruded up to form sorts of nano-mountains at both the sides and apexes of the hexagon, with the apexes protruding even more significantly than the sides. The aluminum plate prepared by completely removing the oxide has been used in the preparation of SERS substrates by sputter-coating of gold or silver on it. Instead of sputter-coating, here we have electro-deposited silver on the aluminum plate. When silver was electro-deposited on the plate, silver nanoparticles were made along the hexagonal margins.

Gu, Geun Hoi; Lee, Sue Yeone; Suh, Jung Sang [Nano-materials Laboratory, Department of Chemistry, Seoul National University, Kwanakgu, Kwanakro 599, Seoul 151-747 (Korea, Republic of)

2010-08-06

115

Cytotoxic Potential of Silver Nanoparticles  

PubMed Central

Silver nanoparticles (AgNPs) have been widely used in industrial, household, and healthcare-related products due to their excellent antimicrobial activity. With increased exposure of AgNPs to human beings, the risk of safety has attracted much attention from the public and scientists. In review of recent studies, we discuss the potential impact of AgNPs on individuals at the cell level. In detail, we highlight the main effects mediated by AgNPs on the cell, such as cell uptake and intracellular distribution, cytotoxicity, genotoxicity, and immunological responses, as well as some of the major factors that influence these effects in vivo and in vivo, such as dose, time, size, shape, surface chemistry, and cell type. At the end, we summarize the main influences on the cell and indicate the challenges in this field, which may be helpful for assessing the risk of AgNPs in future. PMID:24532494

Zhang, Tianlu; Wang, Liming

2014-01-01

116

Biological synthesis of very small silver nanoparticles by culture supernatant of Klebsiella pneumonia: The effects of visible-light irradiation and the liquid mixing process  

SciTech Connect

This study has investigated different visible-light irradiation's effect on the formation of silver nanoparticles from silver nitrate using the culture supernatant of Klebsiella pneumonia. Our study shows that visible-light emission can significantly prompt the synthesis of silver nanoparticles. Also, the study experimentally investigated the liquid mixing process effect on silver nanoparticle synthesis by visible-light irradiation. This study successfully synthesized uniformly dispersed silver nanoparticles with a uniform size and shape in the range of 1-6 nm with an average size of 3 nm. Furthermore, the study investigated the mechanism of the reduction of silver ions by culture supernatant of K. pneumonia, and used X-ray diffraction to characterize silver chloride as an intermediate compound. Silver chloride was prepared synthetically and used as a substrate for the synthesis of silver nanoparticles by culture supernatant of K. pneumonia. The silver nanoparticles have been prepared from silver chloride during this investigation for the first time.

Mokhtari, Narges [Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Daneshpajouh, Shahram; Seyedbagheri, Seyedali; Atashdehghan, Reza [Hydrometallurgy Research Unit, Research and Development Center, National Iranian Copper Industries Company, Sarcheshmeh, Rafsanjan (Iran, Islamic Republic of); Abdi, Khosro [Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Sarkar, Saeed [Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Minaian, Sara [Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Shahverdi, Hamid Reza [Department of Material Science, Faculty of Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Shahverdi, Ahmad Reza, E-mail: shahverd@sina.tums.ac.ir [Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

2009-06-03

117

Green Synthesis of Robust, Biocompatible Silver Nanoparticles Using Garlic Extract  

PubMed Central

This paper details a facile approach for the synthesis of stable and monodisperse silver nanoparticles performed at ambient/low temperature where Allium sativum (garlic) extract functions as the silver salt reducing agent during nanoparticle synthesis as well as the post-synthesis stabilizing ligands. Varying the synthesis conditions provides control of particle size, size-distribution, and kinetics of particle formation. Infrared spectroscopy, energy dispersive x-ray chemical analysis, and high performance liquid chromatography indicated that the carbohydrates present in the garlic extract are the most likely nanoparticle stabilizing chemistry. The synthesized silver nanoparticles also demonstrate potential for biomeical applications, owing to the 1) enhanced stability in biological media, 2) resistance to oxidation by the addition of H2O2, 3) ease and scalability of synthesis, and 4) lack of harsh chemicals required for synthesis. Cytotoxicity assays indicated no decrease in cellular proliferation for vascular smooth muscle cells and 3T3 fibroblasts at a concentration of 25 ?g/ml, confirming that garlic extract prepared silver nanoparticles are ideal candidates for future experimentation and implementation into biomedical applications. PMID:24683414

Von White, Gregory; Kerscher, Petra; Brown, Ryan M.; Morella, Jacob D.; McAllister, William; Dean, Delphine; Kitchens, Christopher L.

2012-01-01

118

Cytocompatible antifungal acrylic resin containing silver nanoparticles for dentures  

PubMed Central

Background Inhibition of Candida albicans on denture resins could play a significant role in preventing the development of denture stomatitis. The safety of a new dental material with antifungal properties was analyzed in this work. Methods Poly(methyl methacrylate) [PMMA] discs and PMMA-silver nanoparticle discs were formulated, with the commercial acrylic resin, Nature-CrylTM, used as a control. Silver nanoparticles were synthesized and characterized by ultraviolet-visible spectroscopy, dispersive Raman spectroscopy, and transmission electron microscopy. The antifungal effect was assessed using a luminescent microbial cell viability assay. Biocompatibility tests were carried out using NIH-3T3 mouse embryonic fibroblasts and a Jurkat human lymphocyte cell line. Cells were cultured for 24 or 72 hours in the presence or absence of the polymer formulations and analyzed using three different tests, ie, cellular viability by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and cell proliferation by enzyme-linked immunosorbent assay BrdU, and genomic DNA damage (Comet assay). Finally, the samples were evaluated mechanically, and the polymer-bearing silver nanoparticles were analyzed microscopically to evaluate dispersion of the nanoparticles. Results The results show that PMMA-silver nanoparticle discs significantly reduce adherence of C. albicans and do not affect metabolism or proliferation. They also appear not to cause genotoxic damage to cells. Conclusion The present work has developed a new biocompatible antifungal PMMA denture base material. PMID:22969297

Acosta-Torres, Laura Susana; Mendieta, Irasema; Nuñez-Anita, Rosa Elvira; Cajero-Juárez, Marcos; Castaño, Víctor M

2012-01-01

119

Development of nanostructured silver vanadates decorated with silver nanoparticles as a novel antibacterial agent.  

PubMed

In this work we report the synthesis, characterization and application of silver vanadate nanowires decorated with silver nanoparticles as a novel antibacterial agent. These hybrid materials were synthesized by a precipitation reaction of ammonium vanadate and silver nitrate followed by hydrothermal treatment. The silver vanadate nanowires have lengths of the order of microns and diameters around 60 nm. The silver nanoparticles decorating the nanowires present a diameter distribution varying from 1 to 20 nm. The influence of the pH of the reaction medium on the chemical structure and morphology of silver vanadates was studied and we found that synthesis performed at pH 5.5-6.0 led to silver vanadate nanowires with a higher morphological yield. The antimicrobial activity of these materials was evaluated against three strains of Staphylococcus aureus and very promising results were found. The minimum growth inhibiting concentration value against a MRSA strain was found to be ten folds lower than for the antibiotic oxacillin. PMID:20378952

Holtz, R D; Souza Filho, A G; Brocchi, M; Martins, D; Durán, N; Alves, O L

2010-05-01

120

Fabrication of silver nanoparticles deposited on boehmite sol for surface enhanced Raman scattering  

NASA Astrophysics Data System (ADS)

The composite consisting of silver nanoparticles deposited on boehmite hybrid was synthesized by NaBH 4 reduction technique. The morphology of the composite was studied by TEM, UV/Vis spectrophotometer and particle sizer. The size of the silver nanoparticles deposited on the surface of the boehmite ranged from 10 nm to 100 nm. The contact of silver nanoparticles increased by means of deposition of silver nanoparticles on the boehmite sol and the aggregation of the composites. This leads to the appearance of a shoulder at 450 nm in the UV-Vis absorption spectra with the addition of 0.15 mg and 1.5 mg boehmite. It was found that the intensity of the SERS in the case of the composite was higher than for silver colloids consisting of a concentration of silver greater than 3.2 mM.

Towata, Atsuya; Lee, Judy; Yasui, Kyuichi; Tuziuti, Toru; Kozuka, Teruyuki; Iida, Yasuo

2011-05-01

121

Silver nanoparticles to self-assembled films: green synthesis and characterization.  

PubMed

In the present paper silver nanoparticle was synthesized by chemical reduction of silver nitrate by oxalic acid in aqueous solution. The nanoparticle film (self-assembled; mirror like illumination) on the wall of the clean glass surface was also observed after some days. The synthesized silver particles show an intense surface resonance plasmon band in the visible region at 425 nm. Transmission electron microscopy, selected areas electron diffraction, and UV-visible spectroscopy have been employed to characterize Ag-nanoparticles. The nanoparticle films were also observed using conventional visual and scanning electron microscope (spherical particles and size ranging from 23 to 245 nm). The transmission electron micrograph revealed that the average size of silver nanoparticle were ?10 nm and 21-60 nm, respectively. PMID:22055624

Zaheer, Zoya; Rafiuddin

2012-02-01

122

Heteroaggregation of Silver Nanoparticles with Clay Minerals in Aqueous System  

NASA Astrophysics Data System (ADS)

Nanoparticles are increasingly being used in industrial processes and consumer products that exploit their beneficial properties and improve our daily lives. Nevertheless, they also attract attention when released into natural environment due to their potential for causing adverse effects. The fate and transport of nanoparticles in aqueous systems have been the focus of intense study. However, their interactions with other natural particles have received only limited attention. Clay minerals are ubiquitous in most aquatic systems and their variably charged surfaces can act as deposition sites that can alter the fate and transport of nanoparticles in natural aqueous environments. In this study, we investigated the homoaggregation of silver nanoparticles with different coating layers and their heteroaggregation behavior with clay minerals (illite, kaolinite, montmorillonite) in neutral pH solutions. Silver nanoparticles with a nominal diameter of 80 nm were synthesized with three different surface coating layers: uncoated, citrate-coated and Tween-coated. Illite (IMt-2), kaolinite (KGa-2), and montmorillonite (SWy-2) were purchased from the Clay Mineral Society (Indiana) and pretreated to obtain monocationic (Na-clay) and dicationic (Ca-clay) suspensions before the experiments. The change in hydrodynamic diameter as a function of time was monitored using dynamic light scattering (DLS) measurements in order to evaluate early stage aggregation as a function of electrolyte concentration in both the homo- and heteroaggregation scenarios. A shift in the critical coagulation concentration (CCC) values to lower electrolyte concentrations was observed in binary systems, compared to single silver nanoparticle and clay systems. The results also suggest more rapid aggregation in binary system during the early aggregation stage when compared to the single-particle systems. The behavior of citrate-coated silver nanoparticles was similar to that of the bare particles, while the Tween-coated silver nanoparticles showed high stability in both single and binary systems. There were no significant differences in early stage aggregation kinetics observed inthe Na-clay-nanoparticle or Ca-clay-nanoparticle systems, which suggested that the CCC values of the single Na- or Ca-clay suspensions depend only on the electrolyte concentration, not the original cations on the clay surface. These results provide a basic idea for understanding the heteroaggregation of different silver nanoparticles and clays, which can be utilized in further study of fate and transport of engineered nanoparticles in natural aqueous system.

Liu, J.; Burrow, E.; Hwang, Y.; Lenhart, J.

2013-12-01

123

Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi.  

PubMed

In this present study, silver nanoparticles were synthesized by green chemistry approach using Acalypha indica leaf extract as reducing agents. The reaction medium employed in the synthesis process was optimized to attain better yield, controlled size and stability. Further, the biosynthesized silver nanoparticles were conformed through UV-vis spectrum, XRD and HR-TEM analyses. Different concentration of silver nanoparticles were tested to know the inhibitory effect of fungal plant pathogens namely Alternaria alternata, Sclerotinia sclerotiorum, Macrophomina phaseolina, Rhizoctonia solani, Botrytis cinerea and Curvularia lunata. Interestingly, 15 mg concentration of silver nanoparticles showed excellent inhibitory activity against all the tested pathogens. Thus, the obtained results clearly suggest that silver nanoparticles may have important applications in controlling various plant diseases caused by fungi. PMID:22465774

Krishnaraj, C; Ramachandran, R; Mohan, K; Kalaichelvan, P T

2012-07-01

124

Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi  

NASA Astrophysics Data System (ADS)

In this present study, silver nanoparticles were synthesized by green chemistry approach using Acalypha indica leaf extract as reducing agents. The reaction medium employed in the synthesis process was optimized to attain better yield, controlled size and stability. Further, the biosynthesized silver nanoparticles were conformed through UV-vis spectrum, XRD and HR-TEM analyses. Different concentration of silver nanoparticles were tested to know the inhibitory effect of fungal plant pathogens namely Alternaria alternata, Sclerotinia sclerotiorum, Macrophomina phaseolina, Rhizoctonia solani, Botrytis cinerea and Curvularia lunata. Interestingly, 15 mg concentration of silver nanoparticles showed excellent inhibitory activity against all the tested pathogens. Thus, the obtained results clearly suggest that silver nanoparticles may have important applications in controlling various plant diseases caused by fungi.

Krishnaraj, C.; Ramachandran, R.; Mohan, K.; Kalaichelvan, P. T.

125

Time-dependent effect in green synthesis of silver nanoparticles  

PubMed Central

The application of “green” chemistry rules to nanoscience and nanotechnology is very important in the preparation of various nanomaterials. In this work, we successfully developed an eco-friendly chemistry method for preparing silver nanoparticles (Ag-NPs) in natural polymeric media. The colloidal Ag-NPs were synthesized in an aqueous solution using silver nitrate, gelatin, and glucose as a silver precursor, stabilizer, and reducing agent, respectively. The properties of synthesized colloidal Ag-NPs were studied at different reaction times. The ultraviolet-visible (UV-vis) spectra were in excellent agreement with the obtained nanostructure studies performed by transmission electron microscopy (TEM) and their size distributions. The prepared samples were also characterized by X-ray diffraction (XRD) and atomic force microscopy (AFM). The use of eco-friendly reagents, such as gelatin and glucose, provides green and economic attributes to this work. PMID:21556342

Darroudi, Majid; Ahmad, Mansor Bin; Zamiri, Reza; Zak, AK; Abdullah, Abdul Halim; Ibrahim, Nor Azowa

2011-01-01

126

Plant-mediated biosynthesis of silver and gold nanoparticles.  

PubMed

Single-pot biosynthesis of silver and gold quasi-spherical nanoparticles (SNPs and GNPs) in the size range of 10-30 nm was attempted using Chenopodium album (an obnoxious weed). This method is rapid, facile, convenient and environmentally safe. Average crystal size was approximately 12 nm and 10 nm for silver and gold nanocrystals respectively. Synthesized NPs were stable in a wide range of pH as there was less variation in zeta potential values. In synthesis of SNPs and GNPs, naturally occurring oxalic acid played significant role in bio-reduction of silver nitrate and auric acid solution into their corresponding silver and gold nano-colloids in single step rapid process. PMID:21485852

Dwivedi, Amarendra Dhar; Gopal, Krishna

2011-02-01

127

Formation Of Defined Nanoparticle Constructs Containing Gold, Silver, And Gold-Silver Nanoparticles  

NASA Astrophysics Data System (ADS)

Nanoparticles represent versatile building blocks in material science and nanotechnology. Thereby, the defined assembly of nanostructures is of significant importance. Short DNA sequences can be bound to the nanoparticle surface thus enabeling highly specific DNA hybridization-driven events that direct the formation of nanoparticle constructs. The well-established system based on thiolated DNA was thereby complemented with amino-functionalized DNA. Here, examples for the defined formation of gold/gold and gold/silver nanoparticle constructs are demonstrated, respectively. In addition, gold-silver core-shell nanoparticles are introduced as further building blocks for the hybridization-controlled formation of nanoparticle constructs.

Steinbrück, Andrea; Csaki, Andrea; Ritter, Kathrin; Leich, Martin; Köhler, J. Michael; Fritzsche, Wolfgang

2008-10-01

128

Biosynthesis of silver nanoparticles using Moringa oleifera leaf extract and its application to optical limiting.  

PubMed

The Development of biologically inspired experimental processes for the synthesis of nanoparticles is evolving into an important branch of nanotechnology. The work presented here with the biosynthesis of silver nanoparticles using Moringa oleifera leaf extract as reducing and stabilizing agent and its application in nonlinear optics. The aqueous silver ions when exposed to Moringa oleifera leaf extract are reduced resulting in silver nanoparticles demonstrating the biosynthesis. The silver nanoparticles were characterized by UV-Visible, X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR) and transmission electron microscopy (TEM) techniques. TEM analysis shows a dispersion of the nanoparticles in a range of 5-80 nm with the average around 46 nm and are crystallized in face centred cubic symmetry. To show that these biosynthesized silver nanoparticles possess very good nonlinear properties similar to those nanoparticles synthesized by chemical route, we carried out the Z-scan studies with a 6 ns, 532 nm pulsed laser. We estimated the nonlinear absorption coefficient and compare it with the literature values of the nanoparticles synthesized through chemical route. The silver nanoparticles suspended in solution exhibited reverse saturable absorption with optical limiting threshold of 100 mJ/cm2. PMID:21449344

Sathyavathi, R; Krishna, M Bala Murali; Rao, D Narayana

2011-03-01

129

Biosynthesis of silver nanoparticles from the marine seaweed Sargassum wightii and their antibacterial activity against some human pathogens  

NASA Astrophysics Data System (ADS)

In this paper, we have reported on biological synthesis of nano-sized silver and its antibacterial activity against human pathogens. The nanoparticles of silver were formed by the reduction of silver nitrate to aqueous silver metal ions during exposure to the extract of marine seaweed Sargassum wightii. The optical properties of the obtained silver nanoparticles were characterized using UV-visible absorption and room temperature photoluminescence. The X-ray diffraction results reveal that the synthesized silver nanoparticles are in the cubic phase. The existence of functional groups was identified using Fourier transform infrared spectroscopy. The morphology and size of the synthesized particles were studied with atomic force microscope and high-resolution transmission electron microscope measurements. The synthesized nanoparticles have an effective antibacterial activity against S. aureus, K. pneumoniae, and S. typhi.

Shanmugam, N.; Rajkamal, P.; Cholan, S.; Kannadasan, N.; Sathishkumar, K.; Viruthagiri, G.; Sundaramanickam, A.

2014-10-01

130

Light-driven transformation processes of anisotropic silver nanoparticles.  

PubMed

The photoinduced formation of silver nanoprisms from smaller silver seed particles in the presence of citrate anions is a classic example of a photomorphic reaction. In this case, light is used as a convenient tool to dynamically manipulate the shape of metal nanoparticles. To date, very little is known about the prevailing reaction mechanism of this type of photoreaction. Here we provide a detailed study of the shape transformation dynamics as a function of a range of different process parameters, such as photon energy and photon flux. For the first time, we provide direct evidence that the photochemical synthesis of silver nanoprisms from spherical seed nanoparticles proceeds via a light-activated two-dimensional coalescence mechanism. On the other hand, we could show that Ostwald ripening becomes the dominant reaction mechanism when larger silver nanoprisms are grown from photochemically synthesized smaller nanoprisms. This two-step reaction proceeds significantly faster and yields more uniform, sharper nanoprisms than the classical one-step photodevelopment process from seeds. The ability to dynamically control nanoparticle shapes and properties with light opens up novel synthesis avenues but also, more importantly, allows one to conceive new applications that exploit the nonstatic character of these nanoparticles and the ability to control and adjust their properties at will in a highly dynamic fashion. PMID:23730850

Lee, George P; Shi, Yichao; Lavoie, Ellen; Daeneke, Torben; Reineck, Philipp; Cappel, Ute B; Huang, David M; Bach, Udo

2013-07-23

131

Green synthesis of silver nanoparticles using marine macroalga Chaetomorpha linum  

NASA Astrophysics Data System (ADS)

The present investigation demonstrates the formation of silver nanoparticles by the reduction of the aqueous silver metal ions during exposure to the seaweed ( Chaetomorpha linum) extract . The silver nanoparticles obtained were characterized by UV-visible spectrum, FTIR and scanning electron microscopy. The characteristic absorption peak at 422 nm in UV-vis spectrum confirmed the formation of silver nanoparticles. The colour intensity at 422 nm increased with duration of incubation. The size of nanoparticles synthesized varied from 3 to 44 nm with average of ~30 nm. The FTIR spectrum of C. linum extract showed peaks at 1,020, 1,112, 1,325, 1,512, 1,535, 1,610, 1,725, 1,862, 2,924, 3,330 cm-1. The vibrational bands corresponding to the bonds such as -C=C (ring), -C-O, -C-O-C and C=C (chain) are derived from water-soluble compounds such as amines, peptides, flavonoids and terpenoids present in C. linum extract. Hence, it may be inferred that these biomolecules are responsible for capping and efficient stabilization. Since no synthetic reagents were used in this investigation, it is environmentally safe and have potential for application in biomedicine and agriculture.

Kannan, R. Ragupathi Raja; Arumugam, R.; Ramya, D.; Manivannan, K.; Anantharaman, P.

2013-06-01

132

Synthesis of copolymer-stabilized silver nanoparticles for coating materials  

Microsoft Academic Search

Silver ions being less toxic than silver nanoparticles, a more safe material can be obtained to be used as antimicrobial coating.\\u000a This can be achieved by using thiol chemistry and covalently attach the silver nanoparticles in the coating. Our aim is to\\u000a produce a coating having antimicrobial properties of silver ions but with the silver nanoparticles firmly attached in the

Jukka Niskanen; Jun Shan; Heikki Tenhu; Hua Jiang; Esko Kauppinen; Violeta Barranco; Fernando Picó; Kirsi Yliniemi; Kyösti Kontturi

2010-01-01

133

Biosynthesis of silver nanoparticles using citrus sinensis peel extract and its antibacterial activity  

NASA Astrophysics Data System (ADS)

Biosynthesis of silver nanoparticles (AgNPs) was achieved by a novel, simple green chemistry procedure using citrus sinensis peel extract as a reducing and a capping agent. The effect of temperature on the synthesis of silver nanoparticles was carried out at room temperature (25 °C) and 60 °C. The successful formation of silver nanoparticles has been confirmed by UV-vis, FTIR, XRD, EDAX, FESEM and TEM analysis and their antibacterial activity against Escherichia coli, Pseudomonas aeruginosa (Gram-negative), and Staphylococcus aureus (Gram-positive) has been studied. The results suggest that the synthesized AgNPs act as an effective antibacterial agent.

Kaviya, S.; Santhanalakshmi, J.; Viswanathan, B.; Muthumary, J.; Srinivasan, K.

2011-08-01

134

Piper nigrum Leaf and Stem Assisted Green Synthesis of Silver Nanoparticles and Evaluation of Its Antibacterial Activity Against Agricultural Plant Pathogens  

PubMed Central

Utilization of biological materials in synthesis of nanoparticles is one of the hottest topics in modern nanoscience and nanotechnology. In the present investigation, the silver nanoparticles were synthesized by using the leaf and stem extract of Piper nigrum. The synthesized nanoparticle was characterized by UV-vis spectroscopy, X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive X-ray analysis (EDAX), and Fourier Transform Infrared Spectroscopy (FTIR). The observation of the peak at 460?nm in the UV-vis spectra for leaf- and stem-synthesized silver nanoparticles reveals the reduction of silver metal ions into silver nanoparticles. Further, XRD analysis has been carried out to confirm the crystalline nature of the synthesized silver nanoparticles. The TEM images show that the leaf- and stem-synthesized silver nanoparticles were within the size of about 7–50?nm and 9–30?nm, respectively. The FTIR analysis was performed to identify the possible functional groups involved in the synthesis of silver nanoparticles. Further, the antibacterial activity of the green-synthesized silver nanoparticles was examined against agricultural plant pathogens. The antibacterial property of silver nanoparticles is a beneficial application in the field of agricultural nanotechnology. PMID:24558336

Paulkumar, Kanniah; Gnanajobitha, Gnanadhas; Vanaja, Mahendran; Rajeshkumar, Shanmugam; Malarkodi, Chelladurai; Pandian, Kannaiyan; Annadurai, Gurusamy

2014-01-01

135

In vivo Genotoxicity of Silver Nanoparticles after 90-day Silver Nanoparticle Inhalation Exposure  

PubMed Central

Objectives The antimicrobial activity of silver nanoparticles has resulted in their widespread use in many consumer products. Yet, despite their many advantages, it is also important to determine whether silver nanoparticles may represent a hazard to the environment and human health. Methods Thus, to evaluate the genotoxic potential of silver nanoparticles, in vivo genotoxicity testing (OECD 474, in vivo micronuclei test) was conducted after exposing male and female Sprague-Dawley rats to silver nanoparticles by inhalation for 90 days according to OECD test guideline 413 (Subchronic Inhalation Toxicity: 90 Day Study) with a good laboratory practice system. The rats were exposed to silver nanoparticles (18 nm diameter) at concentrations of 0.7 × 106 particles/cm3 (low dose), 1.4 × 106 particles/cm3 (middle dose), and 2.9 × 106 particles/cm3 (high dose) for 6 hr/day in an inhalation chamber for 90 days. The rats were killed 24 hr after the last administration, then the femurs were removed and the bone marrow collected and evaluated for micronucleus induction. Results There were no statistically significant differences in the micronucleated polychromatic erythrocytes or in the ratio of polychromatic erythrocytes among the total erythrocytes after silver nanoparticle exposure when compared with the control. Conclusion The present results suggest that exposure to silver nanoparticles by inhalation for 90 days does not induce genetic toxicity in male and female rat bone marrow in vivo. PMID:22953185

Kim, Jin Sik; Sung, Jae Hyuck; Ji, Jun Ho; Song, Kyung Seuk; Lee, Ji Hyun; Kang, Chang Soo

2011-01-01

136

A convenient route to polyacrylonitrile\\/silver nanoparticle composite by simultaneous polymerization–reduction approach  

Microsoft Academic Search

Polyacrylonitrile (PAN)\\/silver (Ag) nanoparticle composites were in-situ synthesized by ultraviolet irradiation of a mixture of silver nitrate (AgNO3) and acrylonitrile (AN) monomers. The resultant composites were characterized by infrared spectroscopy (IR), X-ray powder diffraction (XRD) and high-resolution transmission electron microscopy (TEM). It was found that polymerization of AN monomers and reduction of silver ions occurred simultaneously, thereby leading to the

Zhongping Zhang; Lide Zhang; Shixing Wang; Wei Chen; Yong Lei

2001-01-01

137

Lysozyme-coated silver nanoparticles for differentiating bacterial strains on the basis of antibacterial activity  

PubMed Central

Lysozyme, an antibacterial enzyme, was used as a stabilizing ligand for the synthesis of fairly uniform silver nanoparticles adopting various strategies. The synthesized particles were characterized using UV-visible spectroscopy, FTIR, dynamic light scattering (DLS), and TEM to observe their morphology and surface chemistry. The silver nanoparticles were evaluated for their antimicrobial activity against several bacterial species and various bacterial strains within the same species. The cationic silver nanoparticles were found to be more effective against Pseudomonas aeruginosa 3 compared to other bacterial species/strains investigated. Some of the bacterial strains of the same species showed variable antibacterial activity. The difference in antimicrobial activity of these particles has led to the conclusion that antimicrobial products formed from silver nanoparticles may not be equally effective against all the bacteria. This difference in the antibacterial activity of silver nanoparticles for different bacterial strains from the same species may be due to the genome islands that are acquired through horizontal gene transfer (HGT). These genome islands are expected to possess some genes that may encode enzymes to resist the antimicrobial activity of silver nanoparticles. These silver nanoparticles may thus also be used to differentiate some bacterial strains within the same species due to variable silver resistance of these variants, which may not possible by simple biochemical tests. PMID:25435831

2014-01-01

138

Growth mechanism of silver nanowires synthesized by polyvinylpyrrolidone-assisted polyol reduction  

Microsoft Academic Search

Silver (Ag) nanowires with a pentagonal cross section have been synthesized by polyvinylpyrrolidone (PVP)-assisted polyol reduction in the presence of Pt nanoparticle seeds. The UV-visible absorption spectra and scanning electron microscopy have been used to trace the growth process of the Ag nanowires. X-ray photoelectron spectroscopy investigation further shows that the PVP molecules are adsorbed on the surface of the

Yan Gao; Peng Jiang; Li Song; Lifeng Liu; Xiaoqin Yan; Zhenping Zhou; Dongfang Liu; Jianxiong Wang; Huajun Yuan; Zengxing Zhang; Xiaowei Zhao; Xinyuan Dou; Weiya Zhou; Gang Wang; Sishen Xie

2005-01-01

139

Biological synthesis of very small silver nanoparticles by culture supernatant of Klebsiella pneumonia: The effects of visible-light irradiation and the liquid mixing process  

Microsoft Academic Search

This study has investigated different visible-light irradiation's effect on the formation of silver nanoparticles from silver nitrate using the culture supernatant of Klebsiella pneumonia. Our study shows that visible-light emission can significantly prompt the synthesis of silver nanoparticles. Also, the study experimentally investigated the liquid mixing process effect on silver nanoparticle synthesis by visible-light irradiation. This study successfully synthesized uniformly

Narges Mokhtari; Shahram Daneshpajouh; Seyedali Seyedbagheri; Reza Atashdehghan; Khosro Abdi; Saeed Sarkar; Sara Minaian; Hamid Reza Shahverdi; Ahmad Reza Shahverdi

2009-01-01

140

Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity  

NASA Astrophysics Data System (ADS)

A green rapid biogenic synthesis of silver nanoparticles AgNPs using Alternanthera dentata (A. dentata) aqueous extract was demonstrated in this present study. The formation of silver nanoparticles was confirmed by Surface Plasmon Resonance (SPR) at 430 nm using UV-visible spectrophotometer. The reduction of silver ions to silver nanoparticles by A. dentata extract was completed within 10 min. Synthesized nanoparticles were characterized using UV-visible spectroscopy; Fourier transformed infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy and transmission electron microscopy (TEM). The extracellular silver nanoparticles synthesis by aqueous leaf extract demonstrates rapid, simple and inexpensive method comparable to chemical and microbial methods. The colloidal solution of silver nanoparticles were found to exhibit antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia and, Enterococcus faecalis.

Kumar, Deenadayalan Ashok; Palanichamy, V.; Roopan, Selvaraj Mohana

2014-06-01

141

Green synthesis of silver nanoparticles using Calotropis gigantea and their potential mosquito larvicidal property  

Technology Transfer Automated Retrieval System (TEKTRAN)

In recent years the utilization of secondary metabolites from plant extract has emerged as a novel technology for the synthesis of nanoparticles. The aim of the present study was to evaluate the effect of plant synthesized silver nanoparticles (Ag NPs) using aqueous leaf extract of Calotropis gigan...

142

Glutathione promoted expeditious green synthesis of silver nanoparticles in water using microwaves  

EPA Science Inventory

Silver nanoparticles with size range 5-10 nm has been synthesized under microwave irradiation conditions using gluathione, an absolutely benign antioxidant that serves as the reducing as well as capping agent in aqueous medium. This rapid protocol yields the nanoparticles within ...

143

Chrysopogon zizanioides aqueous extract mediated synthesis, characterization of crystalline silver and gold nanoparticles for biomedical applications.  

PubMed

The exploitation of various plant materials for the biosynthesis of nanoparticles is considered a green technology as it does not involve any harmful chemicals. The aim of this study was to develop a simple biological method for the synthesis of silver and gold nanoparticles using Chrysopogon zizanioides. To exploit various plant materials for the biosynthesis of nanoparticles was considered a green technology. An aqueous leaf extract of C. zizanioides was used to synthesize silver and gold nanoparticles by the bioreduction of silver nitrate (AgNO3) and chloroauric acid (HAuCl4) respectively. Water-soluble organics present in the plant materials were mainly responsible for reducing silver or gold ions to nanosized Ag or Au particles. The synthesized silver and gold nanoparticles were characterized by ultraviolet (UV)-visible spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) analysis. The kinetics decline reactions of aqueous silver/gold ion with the C. zizanioides crude extract were determined by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to the extract were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20-50 nm. This eco-friendly approach for the synthesis of nanoparticles is simple, can be scaled up for large-scale production with powerful bioactivity as demonstrated by the synthesized silver nanoparticles. The synthesized nanoparticles can have clinical use as antibacterial, antioxidant, as well as cytotoxic agents and can be used for biomedical applications. PMID:23861583

Arunachalam, Kantha D; Annamalai, Sathesh Kumar

2013-01-01

144

A facile and green route to silver nanoparticles in water.  

PubMed

Stable water-dispersible silver nanoparticles with a narrow size distribution are obtained by light-assisted spontaneous reduction of silver nitrate with gelatin, which acts as both the reducing and the stabilizing agents, in water. The formation mechanism of the silver nanoparticles involves an in-situ conversion of Ag(+)-gelatin aggregates to gelatin-stabilized silver nanoparticles via a Ag(+)-mediated oxidation of primary amine groups of the gelatin to carboxylic acid groups. The resultant silver nanoparticles are well within the quantum size domain (10 nm). In addition, the nanoparticles are stable in aqueous solutions and can be separated easily by simple pH adjustment. PMID:21137744

Wang, Yansong; Zhang, Youwei; Du, Weiping; Wu, Chengxun; Zhao, Jiongxin

2010-10-01

145

Effect of Accelerator in Green Synthesis of Silver Nanoparticles  

PubMed Central

Silver nanoparticles (Ag-NPs) were successfully synthesized in the natural polymeric matrix. Silver nitrate, gelatin, glucose, and sodium hydroxide have been used as silver precursor, stabilizer, reducing agent, and accelerator reagent, respectively. This study investigated the role of NaOH as the accelerator. The resultant products have been confirmed to be Ag-NPs using powder X-ray diffraction (PXRD), UV-vis spectroscopy, and transmission electron microscopy (TEM). The colloidal sols of Ag-NPs obtained at different volumes of NaOH show strong and different surface plasmon resonance (SPR) peaks, which can be explained from the TEM images of Ag-NPs and their particle size distribution. Compared with other synthetic methods, this work is green, rapid, and simple to use. The newly prepared Ag-NPs may have many potential applications in chemical and biological industries. PMID:21152307

Darroudi, Majid; Ahmad, Mansor Bin; Abdullah, Abdul Halim; Ibrahim, Nor Azowa; Shameli, Kamyar

2010-01-01

146

Development of intracanal formulation containing silver nanoparticles.  

PubMed

This study aimed to synthetize, characterize and evaluate the antimicrobial properties of silver nanoparticles to be used in the development of a root intracanal formulation. Silver nanoparticles (AgNPs) were obtained by reduction of silver nitrate with sodium borohydride and characterized by UV-Visible spectrophotometry, scanning electron microscopy (SEM) and dynamic light scattering (DLS). The antimicrobial activity of nanoparticle formulation was evaluated by determinations of the minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) against different bacterial species by the microdilution method, according to recommendations of the Clinical and Laboratory Standards Institute (CLSI). Three potential vehicles, hydroxyethylcellulose, Carbomer and polyethylene glycol were tested as carriers for formulations containing AgNPs. The efficiency of the synthesis method chosen to produce AgNPs was demonstrated by four characterization techniques. The nanoparticles showed antibacterial activity against all species tested. Incorporation of AgNPs into all experimental vehicles produced stable formulations but the one in hydroxyethylcellulose presented better physical proprieties. The results indicate that silver nanoparticles are potential antiseptic agents to be used in root canals and incorporation in adequate vehicles may favor a broader application. PMID:25250493

Bruniera, João Felipe Bonatto; Silva-Sousa, Yara Teresinha Corrêa; Lara, Marilisa Guimarães; Pitondo-Silva, André; Marcaccini, Andrea Marcia; Miranda, Carlos Eduardo Saraiva

2014-01-01

147

Selective synthesis of silver nanoparticles onto potassium hexaniobate: structural organisation with bactericidal properties.  

PubMed

Silver-based nanocomposites are known to act as biocides against a series of microorganisms and are largely studied as an alternative to substitute conventional antibiotics that show decreasing efficacy. In this work, an eco-friendly method to synthesize silver nanoparticles assembled on the surface of hexaniobate crystals is reported. By means of ion exchange, K(+) ions of layered potassium hexaniobate were partially substituted by Ag(+) ions and the resulting material was exposed to UV light. The irradiation allowed the reduction of silver ions with consequent formation of silver nanoparticles located only on the hexaniobate surface, whereas Ag(+) ions located in the interlayer space remained in the ionic form. Increasing UV-light exposure times allowed controlling of the silver nanoparticle size. The antibacterial effects of the pristine potassium hexaniobate and of silver-containing hexaniobate samples were tested against Escherichia coli (E. coli). The antibacterial efficacy was determined to be related to the presence of silver in hexaniobate. An increasing activity against E. coli was observed with the decrease in silver nanoparticles size, suggesting that silver nanoparticles of distinct sizes interact differently with bacterial cell walls. PMID:24323852

de Souza E Silva, Juliana Martins; Pastorello, Murilo; Kobarg, Jörg; Cardoso, Mateus Borba; Mazali, Italo Odone

2013-12-16

148

Silver Nanoparticle Coatings on Optical Glass  

Microsoft Academic Search

We deposited monolayer films of shaped Ag nanoparticles on optical substrates using a simple low-temperature wet-chemical route. We add silver nitrate and sodium borohydride as reducing agent to a water solution with sodium citrate, hydrogen peroxide and poly(vinyl) pyrrolidone, in order to prepare a colloidal solution of the Ag nanoparticles, and deposited the monolayer film on optical glass substrates by

Victor Torres; Mónica Popa; Daniel Crespo; José M. Calderón-Moreno

149

Biosynthesis, Antimicrobial and Cytotoxic Effect of Silver Nanoparticles Using a Novel Nocardiopsis sp. MBRC-1  

PubMed Central

The biosynthesis of nanoparticles has been proposed as a cost effective environmental friendly alternative to chemical and physical methods. Microbial synthesis of nanoparticles is under exploration due to wide biomedical applications, research interest in nanotechnology and microbial biotechnology. In the present study, an ecofriendly process for the synthesis of nanoparticles using a novel Nocardiopsis sp. MBRC-1 has been attempted. We used culture supernatant of Nocardiopsis sp. MBRC-1 for the simple and cost effective green synthesis of silver nanoparticles. The reduction of silver ions occurred when silver nitrate solution was treated with the Nocardiopsis sp. MBRC-1 culture supernatant at room temperature. The nanoparticles were characterized by UV-visible, TEM, FE-SEM, EDX, FTIR, and XRD spectroscopy. The nanoparticles exhibited an absorption peak around 420?nm, a characteristic surface plasmon resonance band of silver nanoparticles. They were spherical in shape with an average particle size of 45 ± 0.15?nm. The EDX analysis showed the presence of elemental silver signal in the synthesized nanoparticles. The FTIR analysis revealed that the protein component in the form of enzyme nitrate reductase produced by the isolate in the culture supernatant may be responsible for reduction and as capping agents. The XRD spectrum showed the characteristic Bragg peaks of 1 2 3, 2 0 4, 0 4 3, 1 4 4, and 3 1 1 facets of the face centered cubic silver nanoparticles and confirms that these nanoparticles are crystalline in nature. The prepared silver nanoparticles exhibited strong antimicrobial activity against bacteria and fungi. Cytotoxicity of biosynthesized AgNPs against in vitro human cervical cancer cell line (HeLa) showed a dose-response activity. IC50 value was found to be 200??g/mL of AgNPs against HeLa cancer cells. Further studies are needed to elucidate the toxicity and the mechanism involved with antimicrobial and anticancer activity of the synthesized AgNPs as nanomedicine. PMID:23936787

Manivasagan, Panchanathan; Senthilkumar, Kalimuthu; Sivakumar, Kannan; Kim, Se-Kwon

2013-01-01

150

Biosynthesis of silver nanoparticles from Premna serratifolia L. leaf and its anticancer activity in CCl4-induced hepato-cancerous Swiss albino mice  

NASA Astrophysics Data System (ADS)

In this study, we report the biosynthesis of silver nanoparticles using the ethanolic leaf powder extract of Premna serratifolia L. and its anticancer activity in carbon tetra chloride (CCl4)-induced liver cancer in Swiss albino mice (Balb/c). The synthesized silver nanoparticles were characterized by SEM, FTIR and XRD analyses. The Debye-Scherrer equation was used to calculate particle size and the average size of silver nanoparticles synthesized from P. serratifolia leaf extract was 22.97 nm. The typical pattern revealed that the sample contained cubic structure of silver nanoparticles. FTIR analysis confirmed that the bioreduction of silver ions to silver nanoparticles is due to reduction by capping material of the plant extract. The silver nanoparticles of P. serratifolia leaf extract were effective in treating liver cancer in Swiss albino mice when compared with P. serratifolia leaf extract with isoleucine.

Arockia John Paul, J.; Karunai Selvi, B.; Karmegam, N.

2015-01-01

151

Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles  

PubMed Central

We used an aqueous leaf extract of Memecylon edule (Melastomataceae) to synthesize silver and gold nanoparticles. To our knowledge, this is the first report where M. edule leaf broth was found to be a suitable plant source for the green synthesis of silver and gold nanoparticles. On treatment of aqueous solutions of silver nitrate and chloroauric acid with M. edule leaf extract, stable silver and gold nanoparticles were rapidly formed. The gold nanoparticles were characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX) and Fourier transform infra-red spectroscopy (FTIR). The kinetics of reduction of aqueous silver and gold ions during reaction with the M. edule leaf broth were easily analyzed by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to M. edule leaf broth, were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20–50 nm. TEM analysis of gold nanoparticles showed formation of triangular, circular, and hexagonal shapes in the size range 10–45 nm. The resulting silver nanoparticles were predominantly square with uniform size range 50–90 nm. EDAX results confirmed the presence of triangular nanoparticles in the adsorption peak of 2.30 keV. Further FTIR analysis was also done to identify the functional groups in silver and gold nanoparticles. The characterized nanoparticles of M. edule have potential for various medical and industrial applications. Saponin presence in aqueous extract of M. edule is responsible for the mass production of silver and gold nanoparticles. PMID:21753878

Elavazhagan, Tamizhamudu; Arunachalam, Kantha D

2011-01-01

152

Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles.  

PubMed

We used an aqueous leaf extract of Memecylon edule (Melastomataceae) to synthesize silver and gold nanoparticles. To our knowledge, this is the first report where M. edule leaf broth was found to be a suitable plant source for the green synthesis of silver and gold nanoparticles. On treatment of aqueous solutions of silver nitrate and chloroauric acid with M. edule leaf extract, stable silver and gold nanoparticles were rapidly formed. The gold nanoparticles were characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX) and Fourier transform infra-red spectroscopy (FTIR). The kinetics of reduction of aqueous silver and gold ions during reaction with the M. edule leaf broth were easily analyzed by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to M. edule leaf broth, were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20-50 nm. TEM analysis of gold nanoparticles showed formation of triangular, circular, and hexagonal shapes in the size range 10-45 nm. The resulting silver nanoparticles were predominantly square with uniform size range 50-90 nm. EDAX results confirmed the presence of triangular nanoparticles in the adsorption peak of 2.30 keV. Further FTIR analysis was also done to identify the functional groups in silver and gold nanoparticles. The characterized nanoparticles of M. edule have potential for various medical and industrial applications. Saponin presence in aqueous extract of M. edule is responsible for the mass production of silver and gold nanoparticles. PMID:21753878

Elavazhagan, Tamizhamudu; Arunachalam, Kantha D

2011-01-01

153

Utilization of hydroxypropyl carboxymethyl cellulose in synthesis of silver nanoparticles.  

PubMed

Hydroxypropyl carboxymethyl cellulose samples having varying degrees of substitution and varying degrees of polymerization were used to reduce silver nitrate to silver nanoparticles. UV spectral analysis of silver nanoparticles colloidal solution reveal that increasing the pH of the reduction solution leads to improvement in the intensity of the absorption band for silver nanoparticles, to be maximum at pH 11. The absorption peak intensity also enhanced upon prolonging the reaction duration up to 60min. The conversion of silver ions to metallic silver nanoparticles was found to be temperature-dependent and maximum transformation occurs at 60°C. The reduction efficiency of hydroxypropyl carboxymethyl cellulose was found to be affected by its degree of polymerization. Colloidal solutions of silver nanoparticles having concentration up to 1000ppm can be prepared upon fixing the ratio between silver nitrate and hydroxypropyl carboxymethyl cellulose at 0.017-0.3g per each 100ml of the reduction solution. PMID:25697673

Abdel-Halim, E S; Alanazi, Humaid H; Al-Deyab, Salem S

2015-04-01

154

Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum  

SciTech Connect

Development of environmental friendly procedures for the synthesis of metal nanoparticles through biological processes is evolving into an important branch of nanobiotechnology. In this paper, we report on the use of fungus 'Fusarium semitectum' for the extracellular synthesis of silver nanoparticles from silver nitrate solution (i.e. through the reduction of Ag{sup +} to Ag{sup 0}). Highly stable and crystalline silver nanoparticles are produced in solution by treating the filtrate of the fungus F. semitectum with the aqueous silver nitrate solution. The formations of nanoparticles are understood from the UV-vis and X-ray diffraction studies. Transmission electron microscopy of the silver particles indicated that they ranged in size from 10 to 60 nm and are mostly spherical in shape. Interestingly the colloidal suspensions of silver nanoparticles are stable for many weeks. Possible medicinal applications of these silver nanoparticles are envisaged.

Basavaraja, S.; Balaji, S.D. [Department of Materials Science, Gulbarga University, Gulbarga 585106, Karnataka (India); Department of Chemistry, Gulbarga University, Gulbarga 585106, Karnataka (India); Lagashetty, Arunkumar [Appa Institute of Engineering and Technology, Gulbarga 585102, Karnataka (India); Rajasab, A.H. [Department of Botany, Gulbarga University, Gulbarga 585106, Karnataka (India); Venkataraman, A. [Department of Materials Science, Gulbarga University, Gulbarga 585106, Karnataka (India); Department of Chemistry, Gulbarga University, Gulbarga 585106, Karnataka (India)], E-mail: raman_chem@rediffmail.com

2008-05-06

155

Synthesis of silver nanoparticles using reducing agents obtained from natural sources (Rumex hymenosepalus extracts)  

PubMed Central

We have synthesized silver nanoparticles from silver nitrate solutions using extracts of Rumex hymenosepalus, a plant widely found in a large region in North America, as reducing agent. This plant is known to be rich in antioxidant molecules which we use as reducing agents. Silver nanoparticles grow in a single-step method, at room temperature, and with no addition of external energy. The nanoparticles have been characterized by ultraviolet-visible spectroscopy and transmission electron microscopy, as a function of the ratio of silver ions to reducing agent molecules. The nanoparticle diameters are in the range of 2 to 40 nm. High-resolution transmission electron microscopy and fast Fourier transform analysis show that two kinds of crystal structures are obtained: face-centered cubic and hexagonal. PMID:23841946

2013-01-01

156

Synthesis of silver nanoparticles using reducing agents obtained from natural sources (Rumex hymenosepalus extracts).  

PubMed

We have synthesized silver nanoparticles from silver nitrate solutions using extracts of Rumex hymenosepalus, a plant widely found in a large region in North America, as reducing agent. This plant is known to be rich in antioxidant molecules which we use as reducing agents. Silver nanoparticles grow in a single-step method, at room temperature, and with no addition of external energy. The nanoparticles have been characterized by ultraviolet-visible spectroscopy and transmission electron microscopy, as a function of the ratio of silver ions to reducing agent molecules. The nanoparticle diameters are in the range of 2 to 40 nm. High-resolution transmission electron microscopy and fast Fourier transform analysis show that two kinds of crystal structures are obtained: face-centered cubic and hexagonal. PMID:23841946

Rodríguez-León, Ericka; Iñiguez-Palomares, Ramón; Navarro, Rosa Elena; Herrera-Urbina, Ronaldo; Tánori, Judith; Iñiguez-Palomares, Claudia; Maldonado, Amir

2013-01-01

157

Facile and green synthesis of silver nanoparticles using oxidized pectin.  

PubMed

In the current work, an alternative route for facile synthesis of nanosilver is reported. Oxidized pectin has been used as the reducing agent as well as the stabilizing agent, resulting in the formation of oxidized pectin-nanosilver (OP-NS) core sheath nanohydrogels. The effect of reaction parameters on the synthesized nanoparticles is investigated. The structural and morphological features have been analyzed using X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) respectively. The crystal size of the synthesized nanosilver was calculated to be 28.76nm. While the average size of the core sheath structure varied from 289nm to 540nm, the size of the silver nanoparticle entities at the core varied from 100nm to 180nm, with variation in reaction time. From the morphological examination, it could be seen that flower like nanostructures are formed with nanosilver in the core surrounded by a polymeric halo. PMID:25746242

Tummalapalli, Mythili; Deopura, B L; Alam, M S; Gupta, Bhuvanesh

2015-05-01

158

Subchronic oral toxicity of silver nanoparticles  

PubMed Central

Background The antibacterial effect of silver nanoparticles has resulted in their extensive application in health, electronic, consumer, medicinal, pesticide, and home products; however, silver nanoparticles remain a controversial area of research with respect to their toxicity in biological and ecological systems. Results This study tested the oral toxicity of silver nanoparticles (56 nm) over a period of 13 weeks (90 days) in F344 rats following Organization for Economic Cooperation and Development (OECD) test guideline 408 and Good Laboratory Practices (GLP). Five-week-old rats, weighing about 99 g for the males and 92 g for the females, were divided into four 4 groups (10 rats in each group): vehicle control, low-dose (30 mg/kg), middle-dose (125 mg/kg), and high-dose (500 mg/kg). After 90 days of exposure, clinical chemistry, hematology, histopathology, and silver distribution were studied. There was a significant decrease (P < 0.05) in the body weight of male rats after 4 weeks of exposure, although there were no significant changes in food or water consumption during the study period. Significant dose-dependent changes were found in alkaline phosphatase and cholesterol for the male and female rats, indicating that exposure to more than 125 mg/kg of silver nanoparticles may result in slight liver damage. Histopathologic examination revealed a higher incidence of bile-duct hyperplasia, with or without necrosis, fibrosis, and/or pigmentation, in treated animals. There was also a dose-dependent accumulation of silver in all tissues examined. A gender-related difference in the accumulation of silver was noted in the kidneys, with a twofold increase in female kidneys compared to male kidneys. Conclusions The target organ for the silver nanoparticles was found to be the liver in both the male and female rats. A NOAEL (no observable adverse effect level) of 30 mg/kg and LOAEL (lowest observable adverse effect level) of 125 mg/kg are suggested from the present study. PMID:20691052

2010-01-01

159

Fabrication and characterization of silver nanoparticles using Delonix elata leaf broth  

NASA Astrophysics Data System (ADS)

The synthesis of nanoparticles from plant sources has proved to be an effective and alternative method for the novel production of nanoparticles. This paper reports the bioreduction of silver nitrate into silver nanoparticle by the leaf extract of Delonix elata. The synthesized silver nanoparticles were characterized by UV-visible (UV-vis) spectroscopy, Fourier infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) coupled with Energy Dispersive Spectroscopy (EDS), high resolution transmission electron microscope (HRTEM). In addition the size of the NPs was calculated by using Malvern Zetasizer and the stability by zeta potential. UV-vis spectra show the surface plasmon resonance (SPR) at 432 nm. This reveals the reduction of silver ions (Ag+) into silver (Ag°) and indicating the formation of silver nanoparticles (AgNPs). SEM analysis revealed the spherical shape of the particles with sizes in the range of 35-45 nm and EDS spectrum confirmed the presence of silver along with other elements in the plant metabolite. The XRD analysis showed that the AgNPs are crystalline in nature and have face-centered cubic structure. FT-IR spectra show the existence of biomolecules responsible for the reduction of silver nitrate. The size of the AgNPs estimated from particle size distribution curve shows the 70 nm. The zeta potential of AgNPs was found to be -18 mV, indicating the dispersion and stability.

Sathiya, C. K.; Akilandeswari, S.

2014-07-01

160

Biosynthesis of Silver Nanoparticles from Desmodium triflorum: A Novel Approach Towards Weed Utilization  

PubMed Central

A single-step environmental friendly approach is employed to synthesize silver nanoparticles. The biomolecules found in plants induce the reduction of Ag+ ions from silver nitrate to silver nanoparticles (AgNPs). UV-visible spectrum of the aqueous medium containing silver ions demonstrated a peak at 425?nm corresponding to the plasmon absorbance of silver nanoparticles. Transmission electron microscopy (TEM) showed the formation of well-dispersed silver nanoparticles in the range of 5–20?nm. X-ray diffraction (XRD) spectrum of the AgNPs exhibited 2? values corresponding to the silver nanocrystal. The process of reduction is extracellular and fast which may lead to the development of easy biosynthesis of silver nanoparticles. Plants during glycolysis produce a large amount of H+ ions along with NAD which acts as a strong redoxing agent; this seems to be responsible for the formation of AgNPs. Water-soluble antioxidative agents like ascorbic acids further seem to be responsible for the reduction of AgNPs. These AgNPs produced show good antimicrobial activity against common pathogens. PMID:21350660

Ahmad, Naheed; Sharma, Seema; Singh, V. N.; Shamsi, S. F.; Fatma, Anjum; Mehta, B. R.

2011-01-01

161

Inoculation of silicon nanoparticles with silver atoms  

PubMed Central

Silicon (Si) nanoparticles were coated inflight with silver (Ag) atoms using a novel method to prepare multicomponent heterostructured metal-semiconductor nanoparticles. Molecular dynamics (MD) computer simulations were employed, supported by high-resolution bright field (BF) transmission electron microscopy (HRTEM) and aberration-corrected scanning transmission electron microscopy (STEM) with a resolution ?0.1?nm in high angle annular dark field (HAADF) mode. These studies revealed that the alloying behavior and phase dynamics during the coating process are more complex than when attaching hetero-atoms to preformed nanoparticles. According to the MD simulations, Ag atoms condense, nucleate and diffuse into the liquid Si nanoparticles in a process that we term “inoculation”, and a phase transition begins. Subsequent solidification involves an intermediate alloying stage that enabled us to control the microstructure and crystallinity of the solidified hybrid heterostructured nanoparticles. PMID:24170178

Cassidy, Cathal; Singh, Vidyadhar; Grammatikopoulos, Panagiotis; Djurabekova, Flyura; Nordlund, Kai; Sowwan, Mukhles

2013-01-01

162

Extracellular synthesis of silver nanoparticles by novel Pseudomonas veronii AS41G inhabiting Annona squamosa L. and their bactericidal activity.  

PubMed

In present investigation extracellular synthesis of silver nanoparticles were synthesized using cell free supernatant of Pseudomonas veronii AS41G isolated from Annona squamosa L. The bacterium significantly reduced silver nitrate to generate silver nanoparticles which was characterized with hyphenated techniques. Synthesis of silver nanoparticles preliminary confirmed by UV-Visible spectrophotometry with the intense peak at 410nm, Further FTIR analysis revealed the possible role of biomolecules in the supernatant responsible for mediating the nanoparticles formation. The XRD spectra exhibited the characteristic Bragg peaks of 100, 111, 200, and 220 facets of the face centred cubic symmetry of nanoparticles suggesting that these nanoparticles were crystalline in nature. TEM microgram showed polydispersity of nanoparticles with size ranging from 5 to 50nm. Synthesized silver nanoparticles showed antibacterial activity against human and environmental pathogens including MRSA. The study enlightens the role of biosynthesized silver nanoparticles as an emerging alternative for drug resistant microorganisms. The obtained results are promising enough to pave the environmentally benign nanoparticle synthesis processes without use of any toxic chemicals and also envision the emerging role of endophytes towards synthesis of nanoparticles. With scanty reports available on P.veronii species, a new role has been reported in this study which will be very valuable for future researchers working on it. PMID:25459703

Baker, Syed; Mohan Kumar, K; Santosh, P; Rakshith, D; Satish, S

2014-10-19

163

Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna  

PubMed Central

Background To better understand the potential ecotoxicological impacts of silver nanoparticles released into freshwater environments, the Daphnia magna 48-hour immobilization test was used. Methods The toxicities of silver nitrate, two types of colloidal silver nanoparticles, and a suspension of silver nanoparticles were assessed and compared using standard OECD guidelines. Also, the swimming behavior and visible uptake of the nanoparticles by Daphnia were investigated and compared. The particle suspension and colloids used in the toxicity tests were well-characterized. Results The results obtained from the exposure studies showed that the toxicity of all the silver species tested was dose and composition dependent. Plus, the silver nanoparticle powders subsequently suspended in the exposure water were much less toxic than the previously prepared silver nanoparticle colloids, whereas the colloidal silver nanoparticles and AgNO3 were almost similar in terms of mortality. The silver nanoparticles were ingested by the Daphnia and accumulated under the carapace, on the external body surface, and connected to the appendages. All the silver species in this study caused abnormal swimming by the D. magna. Conclusion According to the present results, silver nanoparticles should be classified according to GHS (Globally Harmonized System of classification and labeling of chemicals) as "category acute 1" to Daphnia neonates, suggesting that the release of nanosilver into the environment should be carefully considered. PMID:22472056

2012-01-01

164

Synthesis and Study of Silver Nanoparticles  

ERIC Educational Resources Information Center

A laboratory experiment was conducted in which the students synthesized yellow colloidal silver, estimate particle size using visible spectroscopy and studied aggregation effects. The students were thus introduced to nanotechnology along with other topics such as redox chemistry, limiting and excess reactants, spectroscopy and atomic size.

Soloman, Sally D.; Bahadory, Mozghan; Jeyarajasingam, Aravindan V.; Rutkowsky, Susan A.; Boritz, Charles; Mulfinger, Lorraine

2007-01-01

165

Biosynthesis and structural characterization of silver nanoparticles from bacterial isolates  

SciTech Connect

Graphical abstract: In this study five bacterial isolates belong to different genera were found to be able to biosynthesize silver nanoparticles. Biosynthesis and spectral characterization are reported here. Highlights: {yields} About 300 bacterial isolates were screened for their ability to produce nanosilvers {yields} Five of them were potential candidates for synthesis of silver nanoparticles {yields} Production of silver nanoparticles was examined using UV-Vis, XRD, SEM and EDS. {yields} The presence of nanoparticles with all five bacterial isolates was confirmed. -- Abstract: This study aimed to develop a green process for biosynthesis of silver nanomaterials by some Egyptian bacterial isolates. This target was achieved by screening an in-house culture collection consists of 300 bacterial isolates for silver nanoparticle formation. Through screening process, it was observed that strains belonging to Escherichia coli (S30, S78), Bacillus megaterium (S52), Acinetobacter sp. (S7) and Stenotrophomonas maltophilia (S54) were potential candidates for synthesis of silver nanoparticles. The extracellular production of silver nanoparticles by positive isolates was investigated by UV-Vis spectroscopy, X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results demonstrated that UV-visible spectrum of the aqueous medium containing silver ion showed a peak at 420 nm corresponding to the plasmon absorbance of silver nanoparticles. Scanning electron microscopy micrograph showed formation of silver nanoparticles in the range of 15-50 nm. XRD-spectrum of the silver nanoparticles exhibited 2{theta} values corresponding to the silver nanocrystal that produce in hexagonal and cubic crystal configurations with different plane of orientation. In addition, the signals of the silver atoms were observed by EDS-spectrum analysis that confirms the presence of silver nanoparticles (AgNPs) in all positive bacterial isolates.

Zaki, Sahar, E-mail: saharzaki@yahoo.com [Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, Mubarak City for Scientific Research and Technology Applications, Alexandria, 21934 New Burgelarab City (Egypt)] [Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, Mubarak City for Scientific Research and Technology Applications, Alexandria, 21934 New Burgelarab City (Egypt); El Kady, M.F. [Fabrication Technology Department, Advanced Technology and New Materials Research Institute (ATNMRI), Mubarak City for Scientific Research and Technology Applications, Alexandria (Egypt)] [Fabrication Technology Department, Advanced Technology and New Materials Research Institute (ATNMRI), Mubarak City for Scientific Research and Technology Applications, Alexandria (Egypt); Abd-El-Haleem, Desouky [Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, Mubarak City for Scientific Research and Technology Applications, Alexandria, 21934 New Burgelarab City (Egypt)] [Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, Mubarak City for Scientific Research and Technology Applications, Alexandria, 21934 New Burgelarab City (Egypt)

2011-10-15

166

Preparation and Characterization of Gelatin Nanofibers Containing Silver Nanoparticles  

PubMed Central

Ag nanoparticles (NPs) were synthesized in formic acid aqueous solutions through chemical reduction. Formic acid was used for a reducing agent of Ag precursor and solvent of gelatin. Silver acetate, silver tetrafluoroborate, silver nitrate, and silver phosphate were used as Ag precursors. Ag+ ions were reduced into Ag NPs by formic acid. The formation of Ag NPs was characterized by a UV-Vis spectrophotometer. Ag NPs were quickly generated within a few minutes in silver nitrate (AgNO3)/formic acid solution. As the water content of formic acid aqueous solution increased, more Ag NPs were generated, at a higher rate and with greater size. When gelatin was added to the AgNO3/formic acid solution, the Ag NPs were stabilized, resulting in smaller particles. Moreover, gelatin limits further aggregation of Ag NPs, which were effectively dispersed in solution. The amount of Ag NPs formed increased with increasing concentration of AgNO3 and aging time. Gelatin nanofibers containing Ag NPs were fabricated by electrospinning. The average diameters of gelatin nanofibers were 166.52 ± 32.72 nm, but these decreased with the addition of AgNO3. The average diameters of the Ag NPs in gelatin nanofibers ranged between 13 and 25 nm, which was confirmed by transmission electron microscopy (TEM). PMID:24758929

Jeong, Lim; Park, Won Ho

2014-01-01

167

Coarsening of silver nanoparticles in polyelectrolyte multilayers.  

PubMed

In polyelectrolyte multilayer (PEM) films assembled from poly(diallyldimethylammonium chloride) and poly(styrene sulfonate) via the layer-by-layer deposition technique, the counterions were exchanged with silver ions, which were subsequently reduced in situ to produce silver (Ag) nanoparticles. The Ag nanoparticles embedded in the PEMs were found to undergo an interesting coarsening process over time, through which smaller Ag nanoparticles coalesce into larger ones until reaching an equilibrium. The process was investigated by monitoring the localized surface plasmon resonance of the Ag nanoparticles using UV-vis extinction spectroscopy, and the spectral evolution revealed an increase in nanoparticle size with time, a trend in qualitative agreement with theoretical calculation and further confirmed by transmission electron microscopy. The kinetics of the coarsening process and the size of Ag nanoparticles at equilibrium were found to be affected by the PEM structure as well as the temperature and relative humidity the PEM was exposed to, and coalescence was identified to be the mechanism. PMID:23944934

Wei, Jingjing; Wang, Liming; Zhang, Xin; Ma, Xiaojing; Wang, Hui; Su, Zhaohui

2013-09-10

168

The role of silver nanoparticles on silver modified titanosilicate ETS10 in visible light photocatalysis  

Microsoft Academic Search

Nanoparticles of noble metals, such as silver and gold, have been investigated as one way to hinder the recombination of electrons and holes produced by irradiated semiconductors. However, the exact role silver plays in hindering electron–hole recombination is unclear. In order to assess the role of ionic silver, Ag+, and metallic silver, Ag0, on the potential photocatalytic activity of a

Zhaoxia Ji; Mariam N. Ismail; Dennis M. Callahan; Eko Pandowo; Zhuhua Cai; Trevor L. Goodrich; Katherine S. Ziemer; Juliusz Warzywoda; Albert Sacco

2011-01-01

169

Synthesis of monodispersed silver nanoparticles using Hibiscus cannabinus leaf extract and its antimicrobial activity  

NASA Astrophysics Data System (ADS)

Synthesis of silver nanoparticles using leaf extract of Hibiscus cannabinus has been investigated. The influences of different concentration of H. cannabinus leaf extract, different metal ion concentration and different reaction time on the above cases on the synthesis of nanoparticles were evaluated. The synthesized nanoparticles were characterized using UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). The prepared silver nanoparticles were monodispersed, spherical in shape with the average particle size of 9 nm and shows surface plasmon peak at 446 nm. The study also reveals that the ascorbic acid present in H. cannabinus leaf extract has been used as reducing agent. The prepared silver nanoparticle shows good antimicrobial activity against Escherichia coli, Proteus mirabilis and Shigella flexneri.

Bindhu, M. R.; Umadevi, M.

2013-01-01

170

Optimization of Green Synthesis of Silver Nanoparticles from Leaf Extracts of Pimenta dioica (Allspice)  

PubMed Central

Production of silver nanoparticles from the leaf extracts of Pimenta dioica is reported for the first time in this paper. Three different sets of leaves were utilized for the synthesis of nanoparticles—fresh, hot-air oven dried, and sun-dried. These nanoparticles were characterized using UV-Vis spectroscopy and AFM. The results were diverse in that different sizes were seen for different leaf conditions. Nanoparticles synthesized using sun-dried leaves (produced using a particular ratio (1?:?0.5) of the leaf extract sample and silver nitrate (1?mM), resp.) possessed the smallest sizes. We believe that further optimization of the current green-synthesis method would help in the production of monodispersed silver nanoparticles having great potential in treating several diseases. PMID:24453836

Geetha, Akshay Rajeev

2013-01-01

171

Optimization of green synthesis of silver nanoparticles from leaf extracts of Pimenta dioica (Allspice).  

PubMed

Production of silver nanoparticles from the leaf extracts of Pimenta dioica is reported for the first time in this paper. Three different sets of leaves were utilized for the synthesis of nanoparticles-fresh, hot-air oven dried, and sun-dried. These nanoparticles were characterized using UV-Vis spectroscopy and AFM. The results were diverse in that different sizes were seen for different leaf conditions. Nanoparticles synthesized using sun-dried leaves (produced using a particular ratio (1 : 0.5) of the leaf extract sample and silver nitrate (1 mM), resp.) possessed the smallest sizes. We believe that further optimization of the current green-synthesis method would help in the production of monodispersed silver nanoparticles having great potential in treating several diseases. PMID:24453836

Geetha, Akshay Rajeev; George, Elizabeth; Srinivasan, Akshay; Shaik, Jameel

2013-01-01

172

Substrate independent silver nanoparticle based antibacterial coatings.  

PubMed

Infections arising from bacterial adhesion and colonization on medical device surfaces are a significant healthcare problem. Silver based antibacterial coatings have attracted a great deal of attention as a potential solution. This paper reports on the development of a silver nanoparticles based antibacterial surface that can be applied to any type of material surface. The silver nanoparticles were surface engineered with a monolayer of 2-mercaptosuccinic acid, which facilitates the immobilization of the nanoparticles to the solid surface, and also reduces the rate of oxidation of the nanoparticles, extending the lifetime of the coatings. The coatings had excellent antibacterial efficacy against three clinically significant pathogenic bacteria i.e. Staphylococcus epidermidis, Staphylococcus aureus and Pseudomonas aeruginosa. Studies with primary human fibroblast cells showed that the coatings had no cytotoxicity in vitro. Innate immune studies in cultures of primary macrophages demonstrated that the coatings do not significantly alter the level of expression of pro-inflammatory cytokines or the adhesion and viability of these cells. Collectively, these coatings have an optimal combination of properties that make them attractive for deposition on medical device surfaces such as wound dressings, catheters and implants. PMID:24630091

Taheri, Shima; Cavallaro, Alex; Christo, Susan N; Smith, Louise E; Majewski, Peter; Barton, Mary; Hayball, John D; Vasilev, Krasimir

2014-05-01

173

Catalytic degradation of methylene blue using biosynthesized gold and silver nanoparticles.  

PubMed

The scientific community is searching for new synthesis methods for the production of metallic nanoparticles. Green synthesis has now become a vast developing area of research. Here we report for the first time to best of our knowledge, a new green method for the synthesis of silver and gold nanoparticles using the Kashayam, Guggulutiktham, an ayurvedic medicine. This method is nontoxic and environmentally benign. The reduction and the stabilization capacity of the ayurvedic Kashayam are described in this paper. The size and shape of the silver and gold nanoparticles can be tuned by varying the quantity of the Kashayam. The synthesized nanoparticles are characterized using UV-VIS spectroscopy, TEM, XRD and FTIR. The size dependent catalytic activity of the synthesized nanoparticles is established in the reduction of Methylene Blue (MB) by NaBH4. PMID:24091344

Suvith, V S; Philip, Daizy

2014-01-24

174

Synthesis of Gold and Silver Nanoparticles Stabilized with Glycosaminoglycans having Distinctive Biological Activities  

PubMed Central

Metal nanoparticles have been studied for their anticoagulant and anti-inflammatory efficacy in various models. Specifically, gold and silver nanoparticles exhibit properties that make these ideal candidates for biological applications. The typical synthesis of gold and silver nanoparticles incorporates contaminants that could pose further problems. Here we demonstrate a clean method of synthesizing gold and silver nanoparticles that exhibit biological functions. These nanoparticles were prepared by reducing AuCl4 and AgNO3 using heparin and hyaluronan, as both reducing and stabilizing agents. The particles show stability under physiological conditions, and narrow size distributions for heparin particles and wider distribution for hyaluronan particles. Studies show that the heparin nanoparticles exhibit anticoagulant properties. Additionally, either gold- or silver- heparin nanoparticles exhibit local anti-inflammatory properties without any significant effect on systemic hemostasis upon administration in carrageenan-induced paw edema models. In conclusion, gold and silver nanoparticles complexed with heparin demonstrated effective anticoagulant and anti-inflammatory efficacy, having potential in various local applications. PMID:19226107

Kemp, Melissa M.; Kumar, Ashavani; Mousa, Shaymaa; Park, Tae-Joon; Ajayan, Pulickel; Kubotera, Natsuki; Mousa, Shaker

2009-01-01

175

Antibacterial potential of silver nanoparticles against isolated urinary tract infectious bacterial pathogens  

NASA Astrophysics Data System (ADS)

The silver nanoparticles were synthesized by chemical reduction method and the nanoparticles were characterized using ultraviolet-visible (UV-Vis) absorption spectroscopy and X-ray diffraction (XRD) studies. The synthesized silver nanoparticles were investigated to evaluate the antibacterial activity against urinary tract infectious (UTIs) bacterial pathogens. Thirty-two bacteria were isolated from mid urine samples of 25 male and 25 female patients from Thondi, Ramanathapuram District, Tamil Nadu, India and identified by conventional methods. Escherichia coli was predominant (47%) followed by Pseudomonas aeruginosa (22%), Klebsiella pneumoniae (19%), Enterobacter sp. (6%), Proteus morganii (3%) and Staphylococcus aureus (3%). The antibacterial activity of silver nanoparticles was evaluated by disc diffusion assay. P. aeruginosa showed maximum sensitivity (11 ± 0.58 mm) followed by Enterobacter sp. (8 ± 0.49 mm) at a concentration of 20 ?g disc-1 and the sensitivity was highly comparable with the positive control kanamycin and tetracycline. K. pneumoniae, E. coli, P. morganii and S. aureus showed no sensitivity against all the tested concentrations of silver nanoparticles. The results provided evidence that, the silver nanoparticles might indeed be the potential sources to treat urinary tract infections caused by P. aeruginosa and Enterobacter sp.

Jacob Inbaneson, Samuel; Ravikumar, Sundaram; Manikandan, Nachiappan

2011-12-01

176

Synthesis of starch-stabilized silver nanoparticles and their application as a surface plasmon resonance-based sensor of hydrogen peroxide  

Microsoft Academic Search

Stable and uniform starch-stabilized silver nanoparticles with average diameter 14.4±3.3nm are synthesized via green synthetic procedure, using ultrasound mediated reduction of silver nitrate by d-glucose. UV–vis spectroscopy, high-resolution transmission electron microscopy, X-ray diffraction, thermogravimetric\\/differential thermal analysis and differential scanning calorimetry are used to completely characterize the starch-stabilized silver nanoparticles. These nanoparticles exhibit a catalytic activity in the reduction of hydrogen

P. Vasileva; B. Donkova; I. Karadjova; C. Dushkin

2011-01-01

177

Magnetite and magnetite/silver core/shell nanoparticles with diluted magnet-like behavior  

SciTech Connect

In the present work is reported the use of the biopolymer chitosan as template for the preparation of magnetite and magnetite/silver core/shell nanoparticles systems, following a two step procedure of magnetite nanoparticles in situ precipitation and subsequent silver ions reduction. The crystalline and morphological characteristics of both magnetite and magnetite/silver core/shell nanoparticles systems were analyzed by high resolution transmission electron microscopy (HRTEM) and nanobeam diffraction patterns (NBD). The results of these studies corroborate the core/shell morphology and the crystalline structure of the magnetite core and the silver shell. Moreover, magnetization temperature dependent, M(T), measurements show an unusual diluted magnetic behavior attributed to the dilution of the magnetic ordering in the magnetite and magnetite/silver core/shell nanoparticles systems. - Graphical abstract: Biopolymer chitosan was used as stabilization media to synthesize both magnetite and magnetite/silver core/shell nanoparticles. Results of HRTEM and NBD patterns confirm core/shell morphology of the obtained nanoparticles. It was found that the composites show diluted magnet-like behavior.

Garza-Navarro, Marco [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n, Cd. Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); Torres-Castro, Alejandro, E-mail: alejandro.torrescs@uanl.edu.m [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n, Cd. Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia, Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon 66600 (Mexico); Gonzalez, Virgilio; Ortiz, Ubaldo [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n, Cd. Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia, Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon 66600 (Mexico); De la Rosa, Elder [Centro de Investigaciones en Optica, A.P. 1-948, Leon Gto. 37160 (Mexico)

2010-01-15

178

Interaction of Bacteriocin-Capped Silver Nanoparticles with Food Pathogens and Their Antibacterial Effect  

Microsoft Academic Search

With the emergence of multiple-drug-resistant pathogens, the antibacterial property of silver in colloidal form has emerged as a potential candidate for combating infectious diseases. A combination of antibacterial agents along with nanosilver could prove to be more potent due to broadened antibacterial spectrum with possibly lower doses. In the present study, a facile single-step green method of synthesizing silver nanoparticles

Tarun Kumar Sharma; Mahak Sapra; Aradhana Chopra; Rekha Sharma; Supriya Deepak Patil; Ravinder Kumar Malik; Ranjana Pathania; Naveen Kumar Navani

2012-01-01

179

Laser-induced silver nanojoining of gold nanoparticles.  

PubMed

Gold nanoparticles have been silver-joined to fabricate nanowires by irradiating gold nanospheres of 25 nm in diameter and silver nanospheres of 8 nm in diameter held together on a carbon-coated copper grid with a 30 ps laser pulse of 532 nm for 20 min at a fluence of 3.0 mJ/cm2. Laser-induced nanojoining of silver nanoparticles as well as that of gold nanoparticles has also been carried out by varying the wavelength and fluence of irradiation laser pulses. Irradiation at an optimum condition of laser fluence is essential for the proper silver nanojoining of gold nanospheres to produce gold@silver core-shell composite nanowires. The excitation of the surface plasmon resonances of the base-metallic gold nanospheres rather than the filler-metallic silver nanospheres paves the way for the silver nanojoining of gold nanoparticles. PMID:23882834

Son, Myounghee; Kim, Seol Ji; Kim, Jong-Yeob; Jang, Du-Jeon

2013-08-01

180

Extracellular synthesis of silver nanoparticles using living peanut seedling  

NASA Astrophysics Data System (ADS)

Synthesis of nanoparticles by environment friendly method is an important aspect of nanotechnology. In the present study, extracellular reduction of silver ions to silver nanoparticles was carried out using living peanut plant. The electron microscopic analysis shows that the formed nanoparticles were of different shapes and sizes. The formed nanoparticles were polydispersed. The shapes of the nanoparticles were spherical, square, triangle, hexagonal and rod. Most of the particles were spherical and 56 nm in size. EDS analysis confirmed the formed nanoparticles were of silver. The crystalline nature of nanoparticles was confirmed by diffraction. This method opens up an exciting possibility of plant-based synthesis of other inorganic nanomaterials. This study confirms the synthesis of extracellular silver nanoparticles by living plant.

Raju, D.; Paneliya, Nikita; Mehta, Urmil J.

2014-10-01

181

Synthesis of silver nanoparticles by silver salt reduction and its characterization  

NASA Astrophysics Data System (ADS)

The wet chemical method route by metal salt reduction has been used to synthesize nanoparticles, using silver nitrate as an inorganic salt, aldehyde as a reducing agent and amino acid as a catalyst. During the reaction aldehyde oxidizes to carboxylic acid and encapsulates the silver nanoparticles to prevent agglomeration and provide barrier in the growth of particle. The existing work produces particles using lab grade chemical, here the presented work is by using industrial grade chemicals to make the process more cost & time effective. The nano silver powder has been studied for their formation, particle size, shape & compositional analysis using Scanning Electron Microscope (SEM) equipped with EDS. The particles size distributions were analyzed by Laser Particle Analyzer (LPA), structure & morphological analysis using x-ray diffraction (XRD) and Fourier-transform-infrared Spectroscopy (FTIR) confirmed the stabilization of particles by coating of carboxylic group. These studies infer that the particles are mostly spherical in shape and have an average size between 70 to 350 nm.

Muzamil, Muhammad; Khalid, Naveed; Danish Aziz, M.; Aun Abbas, S.

2014-06-01

182

Direct nucleation of silver nanoparticles on graphene sheet.  

PubMed

Silver (Ag) nanoparticles were synthesized on the surface of graphene sheet by the simultaneous reduction of Ag+ and graphene oxide (GO) in the presence of simple reducing agent, hydrazine hydrate (N2H4 x H2O). Both the Ag+ and GO were reduced and Ag+ was nucleated onto graphene. GO flakes were prepared by conventional chemical exfoliation method and in the presence of strong acidic medium of potassium chlorate. Silver nanoparticles were prepared using 0.01 M AgNO3 solution. The reduced GO sheet decorated with Ag is referred as G-Ag sample. G-Ag was characterized by FTIR (Fourier transform infrared) spectroscopy using GO as standard. An explicit alkene peak appeared around 1625 cm(-1) was observed in G-Ag sample. Besides, the characteristic carbonyl and hydroxyl peaks shows well reduction of GO. The FTIR therefore confirms the direct interaction of Ag into Graphene. SEM (scanning electron microscopy) and TEM (transmission electron microscopy) analysis were performed for morphological probing. The average size of Ag nanoparticles was confirmed by around 5-10 nm by the high-resolution TEM (HRTEM). The Ag quantum dots incorporated nanocomposite material could become prominent candidate for diverse applications including photovoltaic, catalysis, and biosensors etc. PMID:22962814

Singh, Manoj K; Titus, E; Krishna, R; Hawaldar, R R; Goncalves, G; Marques, P A A P; Gracio, J

2012-08-01

183

One-step synthesis of silver nanoparticle-filled Nylon 6 nanofibers and their antibacterial properties  

Technology Transfer Automated Retrieval System (TEKTRAN)

A novel and facile one-step approach to in situ synthesize silver nanoparticle-filled nylon 6 nanofibers by electrospinning is reported. The method does not need post-treatments and can be carried out at ambient conditions without using additional chemicals. It employs the electrospinning solvent as...

184

Synthesis of silver nanoparticles in textile finish aqueous system and their antimicrobial properties on cotton fibers  

Technology Transfer Automated Retrieval System (TEKTRAN)

Silver nanoparticles (NPs) were synthesized by a simple and environmentally benign procedure using poly (ethylene glycol) (PEG) as reducing agent and stabilizer in the textile finish aqueous system, and their antimicrobial properties on greige (mechanically cleaned) and bleached cotton fibers were i...

185

Synthesis and Antimicrobial Activity of Silver-Doped Hydroxyapatite Nanoparticles  

PubMed Central

The synthesis of nanosized particles of Ag-doped hydroxyapatite with antibacterial properties is of great interest for the development of new biomedical applications. The aim of this study was the evaluation of Ca10?xAgx(PO4)6(OH)2 nanoparticles (Ag:HAp-NPs) for their antibacterial and antifungal activity. Resistance to antimicrobial agents by pathogenic bacteria has emerged in the recent years and became a major health problem. Here, we report a method for synthesizing Ag doped nanocrystalline hydroxyapatite. A silver-doped nanocrystalline hydroxyapatite was synthesized at 100°C in deionised water. Also, in this paper Ag:HAp-NPs are evaluated for their antimicrobial activity against Gram-positive and Gram-negative bacteria and fungal strains. The specific antimicrobial activity revealed by the qualitative assay is demonstrating that our compounds are interacting differently with the microbial targets, probably due to the differences in the microbial wall structures. PMID:23509801

Ciobanu, Carmen Steluta; Iconaru, Simona Liliana; Chifiriuc, Mariana Carmen; Costescu, Adrian; Le Coustumer, Philippe; Predoi, Daniela

2013-01-01

186

Caging antimicrobial silver nanoparticles inside cotton  

Technology Transfer Automated Retrieval System (TEKTRAN)

In this study, a stable, non-leaching Ag-cotton nanocomposite fiber has been characterized. Siver nanoparticles (Ag NPs) were previously synthesized in the alkali-swollen substructure of cotton fiber; the nano-sized micofibrillar channels allowed diffusion-controlled conditions to produce mono-dispe...

187

Active Silver Nanoparticles for Wound Healing  

PubMed Central

In this preliminary study, the silver nanoparticle (Ag NP)-based dressing, Acticoat™ Flex 3, has been applied to a 3D fibroblast cell culture in vitro and to a real partial thickness burn patient. The in vitro results show that Ag NPs greatly reduce mitochondrial activity, while cellular staining techniques show that nuclear integrity is maintained, with no signs of cell death. For the first time, transmission electron microscopy (TEM) and inductively coupled plasma mass spectrometry (ICP-MS) analyses were carried out on skin biopsies taken from a single patient during treatment. The results show that Ag NPs are released as aggregates and are localized in the cytoplasm of fibroblasts. No signs of cell death were observed, and the nanoparticles had different distributions within the cells of the upper and lower dermis. Depth profiles of the Ag concentrations were determined along the skin biopsies. In the healed sample, most of the silver remained in the surface layers, whereas in the unhealed sample, the silver penetrated more deeply. The Ag concentrations in the cell cultures were also determined. Clinical observations and experimental data collected here are consistent with previously published articles and support the safety of Ag NP-based dressing in wound treatment. PMID:23455461

Rigo, Chiara; Ferroni, Letizia; Tocco, Ilaria; Roman, Marco; Munivrana, Ivan; Gardin, Chiara; Cairns, Warren R. L.; Vindigni, Vincenzo; Azzena, Bruno; Barbante, Carlo; Zavan, Barbara

2013-01-01

188

Removal of silver nanoparticles by coagulation processes.  

PubMed

Commercial use of silver nanoparticles (AgNPs) will lead to a potential route for human exposure via potable water. Coagulation followed by sedimentation, as a conventional technique in the drinking water treatment facilities, may become an important barrier to prevent human from AgNP exposures. This study investigated the removal of AgNP suspensions by four regular coagulants. In the aluminum sulfate and ferric chloride coagulation systems, the water parameters slightly affected the AgNP removal. However, in the poly aluminum chloride and polyferric sulfate coagulation systems, the optimal removal efficiencies were achieved at pH 7.5, while higher or lower of pH could reduce the AgNP removal. Besides, the increasing natural organic matter (NOM) would reduce the AgNP removal, while Ca(2+) and suspended solids concentrations would also affect the AgNP removal. In addition, results from the transmission electron microscopy and X-ray diffraction showed AgNPs or silver-containing nanoparticles were adsorbed onto the flocs. Finally, natural water samples were used to validate AgNP removal by coagulation. This study suggests that in the case of release of AgNPs into the source water, the traditional water treatment process, coagulation/sedimentation, can remove AgNPs and minimize the silver ion concentration under the well-optimized conditions. PMID:23973474

Sun, Qian; Li, Yan; Tang, Ting; Yuan, Zhihua; Yu, Chang-Ping

2013-10-15

189

Fluorescence of pyrene in inhomogeneous media containing silver nanoparticles  

NASA Astrophysics Data System (ADS)

Pyrene fluorescence in inhomogeneous media based on ionic detergents containing silver nanoparticles with different morphologies is investigated. An increase in pyrene monomer emissions in the spectral range of 400-500 nm is observed, due to the resonance between electronic transitions in pyrene molecules in that region and the plasmonic oscillations of silver nanoparticles.

Romanovskaya, G. I.

2014-05-01

190

Transformation of Silver Nanoparticles in Fresh, Aged, and Incinerated Biosolids  

EPA Science Inventory

Abstract The purpose of this research was to assess the chemical transformation of silver nanoparticles (AgNPs) in aged, fresh, and incinerated biosolids in order to provide information for AgNP life cycle analyses. Silver nanoparticles were introduced to the influent of a pilot...

191

Tuning of optical properties of PMMA by incorporating silver nanoparticles  

NASA Astrophysics Data System (ADS)

Nanocomposite films of Poly (methylmethacrylate) filled with different concentration of silver nanoparticles were prepared by ex-situ method. Firstly, silver nanoparticles were obtained by reducing the aqueous solution of silver nitrate with sodium borohydride then Ag/PMMA films were prepared by mixing colloidal solution of silver nanoparticles with solution of polymer. From absorption and specular reflection spectra, the optical band gap and refractive index (n) have been calculated. The decrease in optical bandgap and increase in refractive index has been indicative of the modifications in optical band structure of the PMMA matrix.

Alisha, Rozra, Jyoti; Saini, Isha; Sharma, Annu; Sharma, Pawan

2012-06-01

192

Intracellular synthesis of silver nanoparticle by actinobacteria and its antimicrobial activity  

NASA Astrophysics Data System (ADS)

Intracellular synthesis of silver nanoparticles (AgNPs) using Rhodococcus spp. is demonstrated. The synthesized nanoparticles were characterized by UV-Vis spectroscopy, X-ray diffraction, energy dispersive spectroscopy, Fourier trans-form infrared spectroscopy, and transmission electron microscopy. Transmission electron microscopy study of microorganisms' revealed synthesis of nanoparticle was occurring inside the cell, in the cytoplasm. AgNPs ranged from 5 to 50 nm. Formed nanoparticles were stable in the colloidal solution due to presence of proteins on the surface. AgNPs showed excellent bactericidal and bacteriostatic activity against pathogenic microorganisms.

Otari, S. V.; Patil, R. M.; Ghosh, S. J.; Thorat, N. D.; Pawar, S. H.

2015-02-01

193

Silver and gold nanoparticles for sensor and antibacterial applications  

NASA Astrophysics Data System (ADS)

Green biogenic method for the synthesis of gold and silver nanoparticles using Solanum lycopersicums extract as reducing agent was studied. The biomolecules present in the extract was responsible for reduction of Au3+ and Ag+ ions from HAuCl4 and AgNO3 respectively. The prepared nanoparticles were characterized by UV-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) technique to identify the size, shape of nanoparticles and biomolecules act as reducing agents. UV-visible spectra show the surface plasmon resonance peak at 546 nm and 445 nm corresponding to gold and silver nanoparticles respectively. Crystalline nature of the nanoparticles was evident from TEM images and XRD analysis. TEM images showed average size of 14 nm and 12 nm for prepared gold and silver nanoparticles respectively. FTIR analysis provides the presence of biomolecules responsible for the reduction and stability of the prepared silver and gold nanoparticles. XRD analysis of the silver and gold nanoparticles confirmed the formation of metallic silver and gold. The prepared gold and silver nanoparticles show good sensing and antimicrobial activity.

Bindhu, M. R.; Umadevi, M.

2014-07-01

194

Colored and functional silver nanoparticle-wool fiber composites.  

PubMed

Silver nanoparticles utilizing the surface plasmon resonance effect of silver have been used to color merino wool fibers as well as imparting antimicrobial and antistatic properties to them to produce a novel silver nanoparticle-wool composite material. This is accomplished by the reduction of silver ions in solution by trisodium citrate (TSC) in the presence of merino wool fibers or fabrics. The silver metal nanoparticles simultaneously bind to the amino acids of the keratin protein in the wool fibers using TSC as the linker. The colors of the resulting merino wool-silver nanoparticle composites range from yellow/brown to red/brown and then to brown/black, because of the surface plasmon resonance effect of silver, and are tuned by controlling the reduction of silver ions to silver nanoparticles to give the required particle size on the fiber surface. In addition to the surface plasmon resonance optical effects, the silver nanoparticle-wool composites exhibit effective antimicrobial activity, thus inhibiting the growth of microbes and also an increase in the electrical conductivity, imparting antistatic properties to the fibers. Therefore, silver nanoparticles function as a simultaneous colorant and antimicrobial and antistatic agent for wool. Chemical and physical characterizations of the silver nanoparticle-merino wool composite materials have been carried out using scanning electron microscopy, transmission electron microscopy, energy-dispersive spectroscopy, synchrotron radiation X-ray diffraction, atomic absorption spectroscopy, X-ray photoelectron spectroscopy, direct-current electrical conductivity measurements, wash-fast and rub-fast tests, and antimicrobial tests. PMID:21381777

Kelly, Fern M; Johnston, James H

2011-04-01

195

Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors  

Microsoft Academic Search

The aim of this study was to investigate the larvicidal potential of the hexane, chloroform, ethyl acetate, acetone, methanol,\\u000a and aqueous leaf extracts of Nelumbo nucifera Gaertn. (Nymphaeaceae) and synthesized silver nanoparticles using aqueous leaf extract against fourth instar larvae of Anopheles subpictus Grassi and Culex quinquefasciatus Say (Diptera: Culicidae). Nanoparticles are being used in many commercial applications. It was

Thirunavukkarasu Santhoshkumar; Abdul Abdul Rahuman; Govindasamy Rajakumar; Sampath Marimuthu; Asokan Bagavan; Chidambaram Jayaseelan; Abdul Abduz Zahir; Gandhi Elango; Chinnaperumal Kamaraj

2011-01-01

196

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles.  

PubMed

New water-soluble nontoxic nanocomposites of nanosized silver particles in a polymer matrix were synthesized by a green chemistry method. Nontoxic poly(1-vinyl-1,2,4-triazole) was used as a stabilizing precursor agent in aqueous medium. Glucose and dimethyl sulfoxide were used as the silver ion-reducing agents to yield silver nanoparticles 2-26 nm and 2-8 nm in size, respectively. The nanocomposites were characterized by transmission electron microscopy, ultraviolet-visible and Fourier transform infrared spectroscopy, X-ray diffraction, atomic absorption, and thermogravimetric data analysis. The nanocomposites showed strong antimicrobial activity against Gram-negative and Gram-positive bacteria. PMID:24790430

Prozorova, Galina F; Pozdnyakov, Alexsandr S; Kuznetsova, Nadezhda P; Korzhova, Svetlana A; Emel'yanov, Artem I; Ermakova, Tamara G; Fadeeva, Tat'yana V; Sosedova, Larisa M

2014-01-01

197

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles  

PubMed Central

New water-soluble nontoxic nanocomposites of nanosized silver particles in a polymer matrix were synthesized by a green chemistry method. Nontoxic poly(1-vinyl-1,2,4-triazole) was used as a stabilizing precursor agent in aqueous medium. Glucose and dimethyl sulfoxide were used as the silver ion-reducing agents to yield silver nanoparticles 2–26 nm and 2–8 nm in size, respectively. The nanocomposites were characterized by transmission electron microscopy, ultraviolet-visible and Fourier transform infrared spectroscopy, X-ray diffraction, atomic absorption, and thermogravimetric data analysis. The nanocomposites showed strong antimicrobial activity against Gram-negative and Gram-positive bacteria. PMID:24790430

Prozorova, Galina F; Pozdnyakov, Alexsandr S; Kuznetsova, Nadezhda P; Korzhova, Svetlana A; Emel’yanov, Artem I; Ermakova, Tamara G; Fadeeva, Tat’yana V; Sosedova, Larisa M

2014-01-01

198

Phytosynthesis of silver nanoparticles using Coccinia grandis leaf extract and its application in the photocatalytic degradation.  

PubMed

Silver nanoparticles were successfully synthesized from aqueous AgNO(3) through a simple green route using the leaf extract of Coccinia grandis as a reducing as well as capping agent. The results obtained from UV-vis spectrum, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and Fourier-transform infra red spectroscopy (FTIR) and high-resolution transmission electron microscopy (HRTEM) revealed that the biosynthesis of silver nanoparticles were in the size range of 20-30 nm and is crystallized in face centered cubic symmetry. Further, the thermal stability of nanoparticles was studied using thermo gravimetric analyzer (TGA) and differential scanning calorimeter (DSC). Photocatalytic property of the Ag nanoparticles was investigated by degradation of Coomassie Brilliant Blue G-250 under UV light. The results show that Ag nanoparticles have suitable activity for the degradation of Coomassie Brilliant Blue G-250. PMID:22348986

Arunachalam, Rajeswari; Dhanasingh, Sujatha; Kalimuthu, Balasaraswathi; Uthirappan, Mani; Rose, Chellan; Mandal, Asit Baran

2012-06-01

199

Green synthesis of silver nanoparticles from the extract of the inflorescence of Cocos nucifera (Family: Arecaceae) for enhanced antibacterial activity  

NASA Astrophysics Data System (ADS)

Green synthesis of nanoparticles using plant source has been given much importance. In the present study, silver nanoparticles (AgNPs) were synthesized using the ethyl acetate and methanol (EA: M 40:60) extracts of the inflorescence of the tree Cocous nucifera. The synthesized nanoparticles were characterized by UV-visible spectroscope, FTIR and TEM analysis. The particle size of the synthesized AgNPs was 22 nm as confirmed by TEM. The qualitative assessment of reducing potential of the extracts of inflorescence indicated the presence of reducing agents. Synthesized AgNPs exhibited significant antimicrobial activity against human bacterial pathogens viz., Klebsiella pneumoniae, Bacillus subtilis, Pseudomonas aeruginosa and Salmonella paratyphi.

Mariselvam, R.; Ranjitsingh, A. J. A.; Usha Raja Nanthini, A.; Kalirajan, K.; Padmalatha, C.; Mosae Selvakumar, P.

2014-08-01

200

Circular dichroism study of chiral biomolecules conjugated with silver nanoparticles  

NASA Astrophysics Data System (ADS)

Chiral biomolecules conjugated with silver nanoparticles were investigated by circular dichroism (CD) spectroscopy. Silver nanoparticles were prepared by the citrate reduction method and were characterized by UV spectroscopy and TEM. Conjugation of thiol group-containing biomolecules, such as cysteine, glutathione and penicillamine, with silver nanoparticles resulted in the generation of new characteristic CD signals in the region of 240-400 nm, whereas no CD signal changes were found with lysine or glutamine. Association through hydrogen bonding among the biomolecules is considered to be essential for CD signal generation, which was confirmed by experiment with cysteine methyl ester. Interestingly, Au nanoparticles were not found to generate CD signals in the wavelength region tested, indicating that this phenomenon is a unique feature of silver nanoparticles, distinguished from gold nanoparticles.

Li, Taihua; Park, Hyun Gyu; Lee, Hee-Seung; Choi, Seong-Ho

2004-10-01

201

Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics  

NASA Astrophysics Data System (ADS)

In this study, monodisperse silver nanoparticles were synthesized with a new reduction system consisting of adipoyl hydrazide and dextrose at ambient temperature. By this facile and rapid approach, high concentration monodisperse silver nanoparticles were obtained on a large scale at low protectant/AgNO3 mass ratio which was highly beneficial to low cost and high conductivity. Based on the synthesized monodisperse silver nanoparticles, conductive inks were prepared with water, ethanol and ethylene glycol as solvents, and were expected to be more environmentally friendly. A series of electrocircuits were fabricated by ink-jet printing silver nanoparticle ink on paper substrate with a commercial printer, and they had low resistivity in the range of 9.18 × 10 - 8-8.76 × 10 - 8 ? m after thermal treatment at 160 °C for 30 min, which was about five times that of bulk silver (1.586 × 10 - 8 ? m). Moreover, a radio frequency identification (RFID) antenna was fabricated by ink-jet printing, and 6 m wireless identification was realized after an Alien higgs-3 chip was mounted on the printed antenna by the flip-chip method. These flexible electrocircuits produced by ink-jet printing would have enormous potential for low cost electrodes and sensor devices.

Zhang, Zhiliang; Zhang, Xingye; Xin, Zhiqing; Deng, Mengmeng; Wen, Yongqiang; Song, Yanlin

2011-10-01

202

Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics.  

PubMed

In this study, monodisperse silver nanoparticles were synthesized with a new reduction system consisting of adipoyl hydrazide and dextrose at ambient temperature. By this facile and rapid approach, high concentration monodisperse silver nanoparticles were obtained on a large scale at low protectant/AgNO(3) mass ratio which was highly beneficial to low cost and high conductivity. Based on the synthesized monodisperse silver nanoparticles, conductive inks were prepared with water, ethanol and ethylene glycol as solvents, and were expected to be more environmentally friendly. A series of electrocircuits were fabricated by ink-jet printing silver nanoparticle ink on paper substrate with a commercial printer, and they had low resistivity in the range of 9.18 × 10( - 8)-8.76 × 10( - 8) ? m after thermal treatment at 160?°C for 30 min, which was about five times that of bulk silver (1.586 × 10( - 8) ? m). Moreover, a radio frequency identification (RFID) antenna was fabricated by ink-jet printing, and 6 m wireless identification was realized after an Alien higgs-3 chip was mounted on the printed antenna by the flip-chip method. These flexible electrocircuits produced by ink-jet printing would have enormous potential for low cost electrodes and sensor devices. PMID:21937786

Zhang, Zhiliang; Zhang, Xingye; Xin, Zhiqing; Deng, Mengmeng; Wen, Yongqiang; Song, Yanlin

2011-10-21

203

Silver nanoparticles: synthesis and application in mineralization of pesticides using membrane support  

NASA Astrophysics Data System (ADS)

Pesticides are deliberately used for controlling the pests in agriculture and public health, due to which, a part of it is present in the drinking water. Due to their widespread use, they are present in both surface and ground water. Most of the pesticides are resistant to biodegradation and are found to be carcinogenic in nature even at trace levels. Conventional methods of pesticide removal are disadvantageous due to their inherent time consumption or expensiveness. Nanoparticles alleviate both of these drawbacks and hence, they can be effectively utilized for the mineralization of pesticides. To prevent the presence of nanoparticles in the purified water after mineralization of pesticides, they need to be incorporated on a support. In earlier studies, researchers employed activated carbon and alumina as support for silver nanoparticles in pesticide mineralization. However, not many studies have been carried out on polymeric membranes as support for silver nanoparticles in the mineralization of pesticides (chlorpyrifos and malathion). With this in view, a detailed study has been carried out to estimate the mineralization potential of silver nanoparticles (synthesized using glucose) supported on cellulose acetate membrane. It is observed that the silver nanoparticles can effectively mineralize the pesticides, and the concentration of nanoparticles enhances the rate of mineralization.

Manimegalai, G.; Shanthakumar, S.; Sharma, Chandan

2014-05-01

204

Biosynthesis, characterization, and antimicrobial applications of silver nanoparticles  

PubMed Central

In the present study, the strain Brevibacterium frigoritolerans DC2 was explored for the efficient and extracellular synthesis of silver nanoparticles. These biosynthesized silver nanoparticles were characterized by ultraviolet-visible spectrophotometry, which detected the formation of silver nanoparticles in the reaction mixture and showed a maximum absorbance at 420 nm. In addition, field emission transmission electron microscopy revealed the spherical shape of the nanoparticles. The dynamic light scattering results indicated the average particle size of the product was 97 nm with a 0.191 polydispersity index. Furthermore, the product was analyzed by energy dispersive X-ray spectroscopy, X-ray diffraction, and elemental mapping, which displayed the presence of elemental silver in the product. Moreover, on a medical platform, the product was checked against pathogenic microorganisms including Vibrio parahaemolyticus, Salmonella enterica, Bacillus anthracis, Bacillus cereus, Escherichia coli, and Candida albicans. The nanoparticles demonstrated antimicrobial activity against all of these pathogenic microorganisms. Additionally, the silver nanoparticles were evaluated for their combined effects with the commercial antibiotics lincomycin, oleandomycin, vancomycin, novobiocin, penicillin G, and rifampicin against these pathogenic microorganisms. These results indicated that the combination of antibiotics with biosynthesized silver nanoparticles enhanced the antimicrobial effects of antibiotics. Therefore, the current study is a demonstration of an efficient biological synthesis of silver nanoparticles by B. frigoritolerans DC2 and its effect on the enhancement of the antmicrobial efficacy of well-known commercial antibiotics.

Singh, Priyanka; Kim, Yeon Ju; Singh, Hina; Wang, Chao; Hwang, Kyu Hyon; Farh, Mohamed El-Agamy; Yang, Deok Chun

2015-01-01

205

Characterization and antimicrobial activity of silver nanoparticles prepared by a thermal decomposition technique  

NASA Astrophysics Data System (ADS)

Recently, there has been an increasing need of efficient synthetic protocols using eco-friendly conditions including low costs and green chemicals for production of metal nanoparticles. In this work, silver nanoparticles (silver NPs) with average particle size about 10 nm were synthesized by using a thermal decomposition technique. Unlike the colloidal chemistry method, the thermal decomposition method developed has advantages such as the high crystallinity, single-reaction synthesis, and easy dispersion ability of the synthesized NPs in organic solvents. In a modified synthesis process, we used sodium oleate as a capping agent to modify the surface of silver NPs because the oleate has a C18 tail with a double bond in the middle, therefore, forming a kink which is to be effective for aggregative stability. Importantly, the as-synthesized silver NPs have demonstrated strong antimicrobial effects against various bacteria and fungi strains. Electron microscopic studies reveal physical insights into the interaction and bactericidal mechanism between the prepared silver NPs and tested bacteria in question. The observed excellent antibacterial and antifungal activity of the silver NPs make them ideal for disinfection and biomedicine applications.

Tam, Le Thi; Phan, Vu Ngoc; Lan, Hoang; Thuy, Nguyen Thanh; Hien, Tran Minh; Huy, Tran Quang; Quy, Nguyen Van; Chinh, Huynh Dang; Tung, Le Minh; Tuan, Pham Anh; Lam, Vu Dinh; Le, Anh-Tuan

2013-11-01

206

Shape-Controlled Synthesis of Gold and Silver Nanoparticles  

Microsoft Academic Search

Monodisperse samples of silver nanocubes were synthesized in large quantities by reducing silver nitrate with ethylene glycol in the presence of poly(vinyl pyrrolidone) (PVP). These cubes were single crystals and were characterized by a slightly truncated shape bounded by {100}, {110}, and {111} facets. The presence of PVP and its molar ratio (in terms of repeating unit) relative to silver

Yugang Sun; Younan Xia

2002-01-01

207

Biological Mechanism of Silver Nanoparticle Toxicity  

NASA Astrophysics Data System (ADS)

Silver nanoparticles (AgNPs), like almost all nanoparticles, are potentially toxic beyond a certain concentration because the survival of the organism is compromised due to scores of pathophysiological abnormalities above that concentration. However, the mechanism of AgNP toxicity remains undetermined. Instead of applying a toxic dose, these investigations were attempted to monitor the effects of AgNPs at a non-lethal concentration on wild type Drosophila melanogaster by exposing them to nanoparticles throughout their development. All adult flies raised in AgNP doped food indicated that of not more than 50 mg/L had no negative influence on median survival; however, these flies appeared uniformly lighter in body color due to the loss of melanin pigments in their cuticle. Additionally, fertility and vertical movement ability were compromised after AgNP feeding. The determination of the amount of free ionic silver (Ag+) indicated that the observed biological effects had resulted from the AgNPs and not from Ag+. Biochemical analysis suggests that the activity of copper dependent enzymes, namely tyrosinase and Cu-Zn superoxide dismutase, were decreased significantly following the consumption of AgNPs, despite the constant level of copper present in the tissue. Furthermore, copper supplementation restored the loss of AgNP induced demelanization, and the reduction of functional Ctr1 in Ctr1 heterozygous mutants caused the flies to be resistant to demelanization. Consequently, these studies proposed a mechanism whereby consumption of excess AgNPs in association with membrane bound copper transporter proteins cause sequestration of copper, thus creating a condition that resembles copper starvation. This model also explained the cuticular demelanization effect resulting from AgNP since tyrosinase activity is essential for melanin biosynthesis. Finally, these investigations demonstrated that Drosophila, an established genetic model system, can be well utilized for further characterizing the biological effects of nanoparticles.

Armstrong, Najealicka Nicole

208

A Facile Route for Synthesis of Octyl Amine Capped Silver Nanoparticle  

NASA Astrophysics Data System (ADS)

This paper presents a simple and convenient procedure for the preparation of octyl amine capped silver nanoparticles. AgNO3 has been reduced by octyl amine with benzene or toluene as solvent at 100°C to produce silver nanoparticles. Octyl amine plays its role both as reducing and capping agent and thus provides the advantage of avoiding the use of extra stabilizing agent. Time dependent formation mechanism of silver nanoparticle has been investigated. Thermo gravimetric analysis (TGA) shows weight change due to loss of capping agent. The reaction can easily be monitored from variation of color with time. The method is easy and reproducible. Very low concentration (1 mM) of metal ion is used. The particles synthesized were characterized by UV-Visible, FTIR, TGA, TEM and X-ray diffraction studies.

Agasti, Nityananda; Kaushik, N. K.

2014-11-01

209

A Novel Photosynthesis of Carboxymethyl Starch-Stabilized Silver Nanoparticles  

PubMed Central

The water soluble photoinitiator (PI) 4-(trimethyl ammonium methyl) benzophenone chloride is used for the first time in the synthesis of silver nanoparticles (AgNPs). A new green synthesis method involves using PI/UV system, carboxymethyl starch (CMS), silver nitrate, and water. A mechanism of the reduction of silver ions to AgNPs by PI/UV system as well as by the newly born aldehydic groups was proposed. The synthesis process was assessed by UV-vis spectra and TEM of AgNPs colloidal solution. The highest absorbance was obtained using CMS, PI and AgNO3 concentrations of 10?g/L, 1?g/L, and 1?g/L, respectively; 40°C; 60?min; pH 7; and a material?:?liquor ratio 1?:?20. AgNPs so-obtained were stable in aqueous solution over a period of three weeks at room temperature (~25°C) and have round shape morphology. The sizes of synthesized AgNPs were in the range of 1–21?nm and the highest counts % of these particles were for particles of 6–10 and 1–3?nm, respectively. PMID:24672325

El-Sheikh, M. A.

2014-01-01

210

An Evaluation of Coating Material Dependent Toxicity of Silver Nanoparticles  

NASA Astrophysics Data System (ADS)

Silver nanoparticles (AgNPs) synthesized using numerous types of coating materials may exhibit different toxicity effects. The study evaluated coating material dependent toxicity by selecting 3 types of AgNP synthesis methods with different coating materials (citrate, polyvinyl pyrrolidone, and branched polyethyleneimine, coated AgNPs as citrate-AgNPs, PVP-AgNPs, and BPEI-AgNPs respectively). Two acute aquatic toxicity tests were performed; 48hr D. magna and MetPLATE E. coli toxicity tests. Significantly different toxicity effects were observed in D. magna test exhibiting lethal median concentrations (LC50) for citrate-AgNPs, PVP-AgNPs, and BPEI AgNPs respectively as, 2.7, 11.2, and 0.57microg/L. Median inhibitory concentrations (EC50) for MetPLATE tests were 1.27, 1.73, and 0.31mg/L respectively with significant different toxicity effects. Silver ion fractions were detected in the range of 2.4-19.2% in tested NP suspensions. Study suggests the toxicity effects are due to the cumulative action of ionic and nanoparticle fractions in the suspensions.

Silva, Thilini Upekshika

211

A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature.  

PubMed

Biomolecules present in plant extracts can be used to reduce metal ions to nanoparticles in a single-step green synthesis process. This biogenic reduction of metal ion to base metal is quite rapid, readily conducted at room temperature and pressure, and easily scaled up. Mediated Synthesis by plant extracts is environmentally benign. The involved reducing agents include the various water soluble plant metabolites (e.g. alkaloids, phenolic compounds, terpenoids) and co-enzymes. Silver (Ag) nanoparticles have the particular focus of plant-based syntheses. Extracts of a diverse range of Ziziphora tenuior (Zt) have been successfully used in making nanoparticles. The aim of this study was to investigate the antioxidant properties of this plant and its ability to synthesize silver nanoparticles. Z.tenuior leaves were used to prepare the aqueous extract for this study. Silver nanoparticles were characterized with different techniques such as UV-vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), Scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Transmission electron microscopy experiments showed that these nanoparticles are spherical and uniformly distributed and its size is from 8 to 40 nm. FT-IR spectroscopy revealed that silver nanoparticles were functionalized with biomolecules that have primary amine group (NH?), carbonyl group, -OH groups and other stabilizing functional groups. X-ray diffraction pattern showed high purity and face centered cubic structure of silver nanoparticles with size of 38 nm. In addition to plant extracts, live plants can be used for the synthesis. Here were view the methods of making nanoparticles using plant extracts. The scanning electron microscopy (SEM) implies the right of forming silver nanoparticles. The results of TEM, SEM, FT-IR, UV-VIS and XRD confirm that the leaves extract of Zt can synthesis silver nanoparticles. PMID:25022503

Sadeghi, Babak; Gholamhoseinpoor, F

2015-01-01

212

A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature  

NASA Astrophysics Data System (ADS)

Biomolecules present in plant extracts can be used to reduce metal ions to nanoparticles in a single-step green synthesis process. This biogenic reduction of metal ion to base metal is quite rapid, readily conducted at room temperature and pressure, and easily scaled up. Mediated Synthesis by plant extracts is environmentally benign. The involved reducing agents include the various water soluble plant metabolites (e.g. alkaloids, phenolic compounds, terpenoids) and co-enzymes. Silver (Ag) nanoparticles have the particular focus of plant-based syntheses. Extracts of a diverse range of Ziziphora tenuior (Zt) have been successfully used in making nanoparticles. The aim of this study was to investigate the antioxidant properties of this plant and its ability to synthesize silver nanoparticles. Z.tenuior leaves were used to prepare the aqueous extract for this study. Silver nanoparticles were characterized with different techniques such as UV-vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), Scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Transmission electron microscopy experiments showed that these nanoparticles are spherical and uniformly distributed and its size is from 8 to 40 nm. FT-IR spectroscopy revealed that silver nanoparticles were functionalized with biomolecules that have primary amine group (sbnd NH2), carbonyl group, sbnd OH groups and other stabilizing functional groups. X-ray diffraction pattern showed high purity and face centered cubic structure of silver nanoparticles with size of 38 nm. In addition to plant extracts, live plants can be used for the synthesis. Here were view the methods of making nanoparticles using plant extracts. The scanning electron microscopy (SEM) implies the right of forming silver nanoparticles. The results of TEM, SEM, FT-IR, UV-VIS and XRD confirm that the leaves extract of Zt can synthesis silver nanoparticles.

Sadeghi, Babak; Gholamhoseinpoor, F.

2015-01-01

213

Synthesis of silver nanoparticles using DL-alanine for ESR dosimetry applications  

NASA Astrophysics Data System (ADS)

The potential use of alanine for the production of nanoparticles is presented here for the first time. Silver nanoparticles were synthesized using a simple green method, namely the thermal treatment of silver nitrate aqueous solutions with DL-alanine. The latter compound was employed both as a reducing and a capping agent. Particles with average size equal to 7.5 nm, face-centered cubic crystalline structure, narrow size distribution, and spherical shape were obtained. Interaction between the silver ions present on the surface of the nanoparticles and the amine group of the DL-alanine molecule seems to be responsible for reduction of the silver ions and for the stability of the colloid. The bio-hybrid nano-composite was used as an ESR dosimeter. The amount of silver nanoparticles in the nanocomposite was not sufficient to cause considerable loss of tissue equivalency. Moreover, the samples containing nanoparticles presented increased sensitivity and reduced energetic dependence as compared with pure DL-alanine, contributing to the construction of small-sized dosimeters.

Guidelli, Eder José; Ramos, Ana Paula; Zaniquelli, Maria Elisabete D.; Nicolucci, Patricia; Baffa, Oswaldo

2012-03-01

214

Significant modifications in the electrical properties of poly(methyl methacrylate) thin films upon dispersion of silver nanoparticles  

NASA Astrophysics Data System (ADS)

Electrical conductivity of thin solid films of PMMA with dispersed silver nanoparticles, synthesized by a novel method, was studied in dark conditions by changing the applied voltage and temperature and also under photoexcitation (by a mercury lamp, 125 W) at room temperature. Anomalous hysteresis in current-temperature characteristics during heating and cooling cycles was observed. The hysteresis-like behaviour was explained on the basis of the movements of molecules associated with different parts of a PMMA matrix and diffusion of silver nanoparticles in the PMMA matrix. Dark current in the PMMA films with dispersed silver nanoparticles has been observed to be higher than the corresponding current in the PMMA films without silver nanoparticles due to the creation of conduction paths by the silver nanoparticles/nanoclusters. The photoresponse in the thin solid films of PMMA with dispersed silver nanoparticles was the reverse of that observed in thin solid films of PMMA without silver nanoparticles. A decrease in photocurrent under illumination of light was observed due to the destruction of conduction paths by the illumination of light.

Basak, Dhrubajyoti; Karan, Santanu; Mallik, Biswanath

2007-03-01

215

Lectin sensitized anisotropic silver nanoparticles for detection of some bacteria.  

PubMed

A method of bacteria detection by sensitized anisotropic silver nanoparticles is presented. Anisotropic silver nanoparticles with two bands of surface plasmon resonance (SPR) are prepared and sensitized with potato lectin. These nanoparticles are able to detect three bacterial species: Escherichia coli, Bacillus subtilis and Staphylococcus aureus. The interaction of these bacteria with such nanoparticles induces drastic changes in optical spectra of nanoparticles that are correlated with bacteria titer. The maximal sensitivity is observed for S. aureus (up to 1.5×10(4) mL(-1)). PMID:23427804

Gasparyan, Vardan K; Bazukyan, Inga L

2013-03-01

216

A new approach causing the patterns fabricated by silver nanoparticles to be conductive without sintering  

NASA Astrophysics Data System (ADS)

Silver nanoparticles (Ag NPs) with a mean size of about 90 nm were synthesized by polyol reduction of silver nitrate with ethylene glycol (EG) in the presence of poly(vinyl pyrrolidone) (PVP). The Ag NPs undergo a spontaneous coalescence in the presence of chloride ions even without a traditional sintering process which occurs at a relatively high temperature. Such behavior can cause a rapid decrease in the resistivity of the patterns fabricated by Ag NPs. Conductive silver lines were successfully fabricated on FR-4 substrate using this method. The resulting conductivity of the silver lines reached about 16% of the bulk silver value, which enables fabrication of conductive patterns on some electronic devices.

Tang, Yao; He, Wei; Zhou, Guoyun; Wang, Shouxu; Yang, Xiaojian; Tao, Zhihua; Zhou, Juncheng

2012-09-01

217

Synthesis of silver nanoparticles in montmorillonite and their antibacterial behavior.  

PubMed

Silver nanoparticles (Ag NPs) were synthesized by the chemical reducing method in the external and interlamellar space of montmorillonite (MMT) as a solid support at room temperature. AgNO(3) and NaBH(4) were used as a silver precursor and reducing agent, respectively. The most favorable experimental conditions for synthesizing Ag NPs in the MMT are described in terms of the initial concentration of AgNO(3). The interlamellar space limits changed little (d-spacing = 1.24-1.47 nm); therefore, Ag NPs formed on the MMT suspension with d-average = 4.19-8.53 nm diameter. The Ag/MMT nanocomposites (NCs), formed from AgNO(3)/MMT suspension, were characterizations with different instruments, for example UV-visible, PXRD, TEM, SEM, EDXRF, FT-IR, and ICP-OES analyzer. The antibacterial activity of different sizes of Ag NPs in MMT were investigated against Gram-positive, ie, Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) and Gram-negative bacteria, ie, Escherichia coli, Escherichia coli O157:H7, and Klebsiella pneumoniae, by the disk diffusion method using Mueller-Hinton agar (MHA). The smaller Ag NPs were found to have significantly higher antibacterial activity. These results showed that Ag NPs can be used as effective growth inhibitors in different biological systems, making them applicable to medical applications. PMID:21674015

Shameli, Kamyar; Ahmad, Mansor Bin; Zargar, Mohsen; Yunus, Wan Md Zin Wan; Rustaiyan, Abdolhossein; Ibrahim, Nor Azowa

2011-01-01

218

Synthesis of silver nanoparticles in montmorillonite and their antibacterial behavior  

PubMed Central

Silver nanoparticles (Ag NPs) were synthesized by the chemical reducing method in the external and interlamellar space of montmorillonite (MMT) as a solid support at room temperature. AgNO3 and NaBH4 were used as a silver precursor and reducing agent, respectively. The most favorable experimental conditions for synthesizing Ag NPs in the MMT are described in terms of the initial concentration of AgNO3. The interlamellar space limits changed little (d-spacing = 1.24–1.47 nm); therefore, Ag NPs formed on the MMT suspension with d-average = 4.19–8.53 nm diameter. The Ag/MMT nanocomposites (NCs), formed from AgNO3/MMT suspension, were characterizations with different instruments, for example UV-visible, PXRD, TEM, SEM, EDXRF, FT-IR, and ICP-OES analyzer. The antibacterial activity of different sizes of Ag NPs in MMT were investigated against Gram-positive, ie, Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) and Gram-negative bacteria, ie, Escherichia coli, Escherichia coli O157:H7, and Klebsiella pneumoniae, by the disk diffusion method using Mueller-Hinton agar (MHA). The smaller Ag NPs were found to have significantly higher antibacterial activity. These results showed that Ag NPs can be used as effective growth inhibitors in different biological systems, making them applicable to medical applications. PMID:21674015

Shameli, Kamyar; Ahmad, Mansor Bin; Zargar, Mohsen; Yunus, Wan Md Zin Wan; Rustaiyan, Abdolhossein; Ibrahim, Nor Azowa

2011-01-01

219

Doubly localized surface plasmon resonance in bimodally distributed silver nanoparticles.  

PubMed

Growth of bimodally distributed silver nanoparticles using sequential physical vapour deposition (PVD) is reported. Growth conditions of nanoparticles are defined in the following three steps: In the first step, nanoparticles are grown at a heated substrate and then exposed to atmosphere, in the second step, nanoparticles are vacuum annealed and finally re-deposition of silver is performed in the third step. This special way of deposition leads to the formation of bimodally distributed nanoparticles. It has been investigated that by changing the deposition time, different sets of bimodally distributed nanoparticles can be grown. Localized surface plasmon resonance (LSPR) of such bimodally distributed nanoparticles generates double plasmon resonance peaks with overlapped absorption spectra. Double plasmon resonance peaks provide a quick indication of the existence of two sets of nanoparticles. LSPR spectra of such bimodally distributed nanoparticles could be modeled with double Lorentz oscillator model. Inclusion of double Lorentz oscillator model indicates that there exist two sets of non-interacting nanoparticles resonating at different plasma frequencies. It is also reported that silver nanoparticles grown at a heated substrate, again attain the new shape while being exposed to atmosphere, followed by vacuum annealing at the same temperature. This is because of physisorption of oxygen at the silver surface and change in surface free energy. The re-shaping due to the adsorbed oxygen on the surface is responsible for bimodal size distribution of nanoparticles. PMID:22905497

Ranjan, M

2012-06-01

220

Luminescent and Raman Active Silver Nanoparticles with Polycrystalline Structure  

PubMed Central

We report the synthesis of silver nanoparticles with grain sizes down to electron Fermi wavelength. These nanoparticles exhibit bright luminescence and large Raman enhancement effect. The number of photons emitted from these nanoparticles exceeded that from quantum dots or dye molecules by approximately 2 or 5 orders of magnitude, respectively. PMID:18636722

Zheng, Jie; Ding, Yong; Tian, Bozhi; Wang, Zhong Lin; Zhuang, Xiaowei

2009-01-01

221

Reprotoxicity of gold, silver, and gold-silver alloy nanoparticles on mammalian gametes.  

PubMed

Metal and alloy nanoparticles are increasingly developed for biomedical applications, while a firm understanding of their biocompatibility is still missing. Various properties have been reported to influence the toxic potential of nanoparticles. This study aimed to assess the impact of nanoparticle size, surface ligands and chemical composition of gold, silver or gold-silver alloy nanoparticles on mammalian gametes. An in vitro assay for porcine gametes was developed, since these are delicate primary cells, for which well-established culture systems exist and functional parameters are defined. During coincubation with oocytes for 46 h neither any of the tested gold nanoparticles nor the gold-silver alloy particles with a silver molar fraction of up to 50% showed any impact on oocyte maturation. Alloy nanoparticles with 80% silver molar fraction and pure silver nanoparticles inhibited cumulus-oocyte maturation. Confocal microscopy revealed a selective uptake of gold nanoparticles by oocytes, while silver and alloy particles mainly accumulated in the cumulus cell layer surrounding the oocyte. Interestingly sperm vitality parameters (motility, membrane integrity and morphology) were not affected by any of the tested nanoparticles. Only sporadic association of nanoparticles with the sperm plasma membrane was found by transmission electron microscopy. In conclusion, mammalian oocytes were sensitive to silver containing nanoparticles. Likely, the delicate process of completing meiosis in maternal gametes features high vulnerability towards nanomaterial derived toxicity. The results imply that released Ag(+)-ions are responsible for the observed toxicity, but the compounding into an alloy seemed to alleviate the toxic effects to a certain extent. PMID:24171189

Tiedemann, Daniela; Taylor, Ulrike; Rehbock, Christoph; Jakobi, Jurij; Klein, Sabine; Kues, Wilfried A; Barcikowski, Stephan; Rath, Detlef

2014-03-01

222

Toxicity of fungal-generated silver nanoparticles to soil-inhabiting Pseudomonas putida KT2440, a rhizospheric bacterium responsible for plant protection and bioremediation.  

PubMed

Silver nanoparticles have attracted considerable attention due to their beneficial properties. But toxicity issues associated with them are also rising. The reports in the past suggested health hazards of silver nanoparticles at the cellular, molecular, or whole organismal level in eukaryotes. Whereas, there is also need to examine the exposure effects of silver nanoparticle to the microbes, which are beneficial to humans as well as environment. The available literature suggests the harmful effects of physically and chemically synthesised silver nanoparticles. The toxicity of biogenically synthesized nanoparticles has been less studied than physically and chemically synthesised nanoparticles. Hence, there is a greater need to study the toxic effects of biologically synthesised silver nanoparticles in general and mycosynthesized nanoparticles in particular. In the present study, attempts have been made to assess the risk associated with the exposure of mycosynthesized silver nanoparticles on a beneficial soil microbe Pseudomonas putida. KT2440. The study demonstrates mycosynthesis of silver nanoparticles and their characterisation by UV-vis spectrophotometry, FTIR, X-ray diffraction, nanosight LM20 - a particle size distribution analyzer and TEM. Silver nanoparticles obtained herein were found to exert the hazardous effect at the concentration of 0.4?g/ml, which warrants further detailed investigations concerning toxicity. PMID:25562807

Gupta, Indarchand R; Anderson, Anne J; Rai, Mahendra

2015-04-01

223

Effect of the crystallinity of silver nanoparticles on surface plasmon resonance induced enhancement of effective absorption cross-section of dyes  

NASA Astrophysics Data System (ADS)

The effective absorption cross-section of dye, and therefore, the efficiency of dye-sensitized solar cell can be increased by surface plasmon resonance (SPR) of metal nanoparticles with enhanced dephasing time. Further, the dephasing time is proportional to the enhancement factor of electric field in the vicinity of nanoparticle surface, and is governed by size, shape, and dielectric constant of surrounding medium. In this paper, we demonstrate that crystallinity of silver nanoparticles plays an important role in enhancing the dephasing time of SPR. Our theoretical formulation indicates that the dephasing time is higher for single crystalline silver nanoparticles as compared to that of polycrystalline nanoparticles, which is attributed to the presence of scattering centers in the latter. This suggests that single crystalline silver nanoparticles are interesting candidates for the enhancement of effective absorption cross-section of dyes. In order to validate our theoretical formulation, we have synthesized single crystalline and polycrystalline silver nanoparticles and studied their effect on absorption cross-section of N719 dye. We observed that dye incorporated with single crystalline silver nanoparticles showed a significant enhancement as compared to polycrystalline silver nanoparticles (24.42% in solution, 21.01% in thin film form in single crystalline silver nanoparticles while 8.52% in solution, 7.97% in thin film form in polycrystalline silver nanoparticles, respectively).

Tanvi, Mahajan, Aman; Bedi, R. K.; Kumar, Subodh; Saxena, Vibha; Aswal, D. K.

2015-02-01

224

A versatile synthesis of highly bactericidal Myramistin® stabilized silver nanoparticles  

NASA Astrophysics Data System (ADS)

Silver nanoparticles stabilized by a well-known antibacterial surfactant benzyldimethyl[3-(myristoylamino)propyl]ammonium chloride (Myramistin®) were produced for the first time by borohydride reduction of silver chloride sol in water. Stable aqueous dispersions of silver nanoparticles without evident precipitation for several months could be obtained. In vitro bactericidal tests showed that Myramistin® capped silver NPs exhibited notable activity against six different microorganisms—gram-positive and gram-negative bacteria, yeasts and fungi. The activity was up to 20 times higher (against E. coli) compared to Myramistin® at the same concentrations and on average 2 times higher if compared with citrate-stabilized NPs.

Vertelov, G. K.; Krutyakov, Yu A.; Efremenkova, O. V.; Olenin, A. Yu; Lisichkin, G. V.

2008-09-01

225

Green synthesis of silver and gold nanoparticles using Zingiber officinale root extract and antibacterial activity of silver nanoparticles against food pathogens.  

PubMed

In the present study, we synthesized silver and gold nanoparticles with a particle size of 10-20 nm, using Zingiber officinale root extract as a reducing and capping agent. Chloroauric acid (HAuCl4) and silver nitrate (AgNO3) were mixed with Z. officinale root extract for the production of silver (AgNPs) and gold nanoparticles (AuNPs). The surface plasmon absorbance spectra of AgNPs and AuNPs were observed at 436-531 nm, respectively. Optimum nanoparticle production was achieved at pH 8 and 9, 1 mM metal ion, a reaction temperature 50 °C and reaction time of 150-180 min for AgNPs and AuNPs, respectively. An energy-dispersive X-ray spectroscopy (SEM-EDS) study provides proof for the purity of AgNPs and AuNPs. Transmission electron microscopy images show the diameter of well-dispersed AgNPs (10-20 nm) and AuNPs (5-20 nm). The nanocrystalline phase of Ag and Au with FCC crystal structures have been confirmed by X-ray diffraction analysis. Fourier transform infrared spectroscopy analysis shows the respective peaks for the potential biomolecules in the ginger rhizome extract, which are responsible for the reduction in metal ions and synthesized AgNPs and AuNPs. In addition, the synthesized AgNPs showed a moderate antibacterial activity against bacterial food pathogens. PMID:24668029

Velmurugan, Palanivel; Anbalagan, Krishnan; Manosathyadevan, Manoharan; Lee, Kui-Jae; Cho, Min; Lee, Sang-Myeong; Park, Jung-Hee; Oh, Sae-Gang; Bang, Keuk-Soo; Oh, Byung-Taek

2014-10-01

226

Synthesis and characterization of polyethylene glycol mediated silver nanoparticles by the green method.  

PubMed

The roles of green chemistry in nanotechnology and nanoscience fields are very significant in the synthesis of diverse nanomaterials. Herein, we report a green chemistry method for synthesized colloidal silver nanoparticles (Ag NPs) in polymeric media. The colloidal Ag NPs were synthesized in an aqueous solution using silver nitrate, polyethylene glycol (PEG), and ?-D-glucose as a silver precursor, stabilizer, and reducing agent, respectively. The properties of synthesized colloidal Ag NPs were studied at different reaction times. The ultraviolet-visible spectra were in excellent agreement with the obtained nanostructure studies performed by transmission electron microscopy (TEM) and their size distributions. The Ag NPs were characterized by utilizing X-ray diffraction (XRD), zeta potential measurements and Fourier transform infrared (FT-IR). The use of green chemistry reagents, such as glucose, provides green and economic features to this work. PMID:22837654

Shameli, Kamyar; Ahmad, Mansor Bin; Jazayeri, Seyed Davoud; Sedaghat, Sajjad; Shabanzadeh, Parvaneh; Jahangirian, Hossein; Mahdavi, Mahnaz; Abdollahi, Yadollah

2012-01-01

227

Anticancer activity of Moringa oleifera mediated silver nanoparticles on human cervical carcinoma cells by apoptosis induction.  

PubMed

Silver nanomaterial plays a crucial role in the growing field of nanotechnology as there is an increasing commercial demand for silver nanoparticles (AgNPs) owing to their wide biological applications. The present investigation aims at developing anti-cancerous colloidal silver using Moringa olifera stem bark extract. Electron and atomic force microscopic images were taken to analyze the surface morphology of the synthesized AgNPs. The effects of synthesized AgNPs were tested against human cervical carcinoma cells (HeLa) and cell morphology was further evaluated using 4,6-diamidino-2-phenylindole (DAPI) staining. The efficiency of green synthesized AgNPs was studied with the help of fluorescence activated cell sorting (FACS) and was shown to induce apoptosis through reactive oxygen species (ROS) generation in HeLa cells. PMID:24681047

Vasanth, Karunamoorthy; Ilango, Kaliappan; MohanKumar, Ramasamy; Agrawal, Aruna; Dubey, Govind Prasad

2014-05-01

228

Orientation of N-(1-(2-chlorophenyl)-2-(2-nitrophenyl)ethyl)-4-methylbenzenesulfonamide on silver nanoparticles: SERS studies.  

PubMed

In the present study, the silver nanoparticles were synthesized using a solution combustion method with urea as fuel. The prepared silver nanoparticles show an FCC crystalline structure with particle size of 59nm. FESEM image shows the prepared silver is a rod like structure. The surface-enhanced Raman scattering (SERS) spectrum indicates that the N-(1-(2-chlorophenyl)-2-(2-nitrophenyl)ethyl)-4-methylbenzenesulfonamide (CS) molecule adsorbed on the silver nanoparticles. The spectral analysis reveals that the sulfonamide is adsorbed by tilted orientation on the silver surface. The Hatree Fock calculations were also performed to predict the vibrational motions of CS. This present investigation has been a model system to deduce the interaction of drugs with DNA. PMID:24835927

Anuratha, M; Jawahar, A; Umadevi, M; Sathe, V G; Vanelle, P; Terme, T; Meenakumari, V; Milton Franklin Benial, A

2014-10-15

229

Orientation of N-(1-(2-chlorophenyl)-2-(2-nitrophenyl)ethyl)-4-methylbenzenesulfonamide on silver nanoparticles: SERS studies  

NASA Astrophysics Data System (ADS)

In the present study, the silver nanoparticles were synthesized using a solution combustion method with urea as fuel. The prepared silver nanoparticles show an FCC crystalline structure with particle size of 59 nm. FESEM image shows the prepared silver is a rod like structure. The surface-enhanced Raman scattering (SERS) spectrum indicates that the N-(1-(2-chlorophenyl)-2-(2-nitrophenyl)ethyl)-4-methylbenzenesulfonamide (CS) molecule adsorbed on the silver nanoparticles. The spectral analysis reveals that the sulfonamide is adsorbed by tilted orientation on the silver surface. The Hatree Fock calculations were also performed to predict the vibrational motions of CS. This present investigation has been a model system to deduce the interaction of drugs with DNA.

Anuratha, M.; Jawahar, A.; Umadevi, M.; Sathe, V. G.; Vanelle, P.; Terme, T.; Meenakumari, V.; Milton Franklin Benial, A.

2014-10-01

230

Plant-mediated biosynthesis of silver nanoparticles using Prosopis farcta extract and its antibacterial properties.  

PubMed

"Green" synthesis of metal nanoparticles has become a promising synthetic strategy in nanoscience and nanotechnology in recent years. In this work, silver nanoparticles (Ag-NPs) were synthesized from extract of Prosopis farcta at room temperature. Formation of Ag-NPs at 1mM concentration of AgNO3 gave spherical shape nanoparticles with mean diameter about 10.8nm. The formation of nanoparticle was confirmed by the surface Plasmon resonance (SPR) band illustrated in UV-vis spectrophotometer. The morphology and size of the Ag-NPs were determined using high magnification transmission electron microscopy (TEM). The crystalline structure of obtained nanoparticles was investigated using the powder X-ray diffraction (PXRD) pattern. In addition, these green synthesized Ag-NPs were found to show higher antibacterial activity against multi drug resistant clinical isolates. PMID:25682217

Miri, Abdolhossein; Sarani, Mina; Rezazade Bazaz, Mahere; Darroudi, Majid

2015-04-15

231

Green synthesis of silver nanoparticles from aqueous Aegle marmelos leaf extract  

SciTech Connect

Graphical abstract: Silver nanoparticles capped with polyphenols present in Aegle marmelos leaf extract. Display Omitted Highlights: ? Silver nanoparticles are synthesized using Aegle marmelos leaf extract in aqueous media. ? Reduction reaction is fast and occurs at room temperature. ? The presence of polyphenols acts as in situ capping agent. -- Abstract: Synthesis of nanoparticles by green route is an emerging technique drawing more attention recently because of several advantages over the convention chemical routes. The present study reports one-pot synthesis and in situ stabilization of silver nanoparticles using Aegle marmelos leaf extract. Nanoparticles of almost uniform spherical size (?60 nm) were synthesized within ?25 min reaction time at room temperature. The size of particles depends on the ratio of AgNO{sub 3} and leaf extract. The crystallinity, size, and shape of the nanoparticles were characterized by X-ray diffraction, dynamic light scattering, and scanning electron microscopy respectively. The size stability was attained by the capping effect of polyphenolic tannin compound, procatacheuate in the extract. The capped polyphenols can be removed from the particle surface by simple NaOH/methanol wash. The involvement of phenolic compounds in metal ion reduction and capping were supported by UV–visible spectroscopy, infrared spectroscopy, high performance liquid chromatography, and zeta potential measurements.

Jagajjanani Rao, K. [Department of Chemical Engineering, National Institute of Technology, Rourkela 769 008, Orissa (India)] [Department of Chemical Engineering, National Institute of Technology, Rourkela 769 008, Orissa (India); Paria, Santanu, E-mail: santanuparia@yahoo.com [Department of Chemical Engineering, National Institute of Technology, Rourkela 769 008, Orissa (India)] [Department of Chemical Engineering, National Institute of Technology, Rourkela 769 008, Orissa (India)

2013-02-15

232

Synthesis of eco-friendly silver nanoparticles from Morinda tinctoria leaf extract and its larvicidal activity against Culex quinquefasciatus.  

PubMed

Mosquitoes are the major vector for the transmission of malaria, dengue fever, yellow fever, filariasis, chikungunya and Japanese encephalitis, and they accounted for global mortality and morbidity with increased resistance to common insecticides. The aim of this study was to investigate the larvicidal potential of the acetone leaf extracts of Morinda tinctoria and synthesized silver nanoparticles against third instar larvae of Culex quinquefasciatus Say (Diptera: Culicidae). Nanoparticles are being used in many commercial applications. It was found that aqueous silver ions can be reduced by aqueous extract of plant parts to generate extremely stable silver nanoparticles in water. Synthesized AgNPs were characterized by ultraviolet-visible (UV-vis) spectroscopy, Atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FT-IR) analysis. The synthesized silver nanoparticles have also been tested against the third instar larvae of C. quinquefasciatus. The leaf extract and the AgNPs high mortality values were 50 % lethal concentration (LC50)?=?8.088 and 1.442 ppm against C. quinquefasciatus, respectively. The results recorded from ultraviolet-visible spectroscopy, atomic force microscopy and Fourier transform infrared spectroscopy support the biosynthesis and characterization of silver nanoparticles. These results suggest that the leaf extract of M. tinctoria and synthesis of AgNPs have the potential to be used as an ideal eco-friendly approach for the control of C. quinquefasciatus. By this approach, it is suggestive that this rapid synthesis of nanoparticles would be proper for developing a biological process for mosquito control. PMID:25373452

Kumar, K Ramesh; Nattuthurai, N; Gopinath, Ponraj; Mariappan, Tirupathi

2015-02-01

233

Optical, structural and morphological properties of silver nanoparticles and its influence on the photocatalytic activity of TiO2.  

PubMed

Silver nanoparticles (Ag NPs) were synthesized by solution combustion method using glycine and citric acid as fuels. The prepared Ag NPs were characterized by optical absorption spectroscopy, X-Ray Diffraction (XRD), High Resolution Transmission Electron Microscopy (HRTEM), Fourier Transform Infrared spectroscopy (FTIR) and Energy Dispersion Spectroscopic (EDS) techniques. Surface plasmon resonance peak was appeared at 410 and 418 nm for glycine (GAg) and citric acid (CAg) assisted silver nanoparticles respectively. The silver NPs are fcc in crystal structure. The calculated average particle size from XRD was found around 29 nm for GAg and 41 nm for CAg. HRTEM image shows that the silver nanoparticles have strain and fivefold symmetry formed by twinning in the crystal structure. The photocatalytic activity of TiO2 nanoparticles with Ag NPs were also elucidated and were found that the Ag NPs enhance the photocatalytic activity of TiO2. PMID:23608130

Umadevi, M; Jegatha Christy, A

2013-07-01

234

Malva parviflora extract assisted green synthesis of silver nanoparticles  

NASA Astrophysics Data System (ADS)

Five plant leaf extracts (Malva parviflora, Beta vulgaris subsp. Vulgaris, Anethum graveolens, Allium kurrat and Capsicum frutescens) were screened for their bioreduction behavior for synthesis of silver nanoparticles. M. parviflora (Malvaceae) was found to exhibit the best reducing and protecting action in terms of synthesis rate and monodispersity of the prepared silver nanoparticles. Our measurements indicate that biosynthesis of Ag nanoparticles by M. parviflora produces Ag nanoparticles with the diameters in the range of 19-25 nm. XRD studies reveal a high degree of crystallinity and monophasic Ag nanoparticles of face-centered cubic structure. FTIR analysis proved that particles are reduced and stabilized in solution by the capping agent that is likely to be proteins secreted by the biomass. The present process is an excellent candidate for the synthesis of silver nanoparticles that is simple, easy to perform, pollutant free and inexpensive.

Zayed, Mervat F.; Eisa, Wael H.; Shabaka, A. A.

2012-12-01

235

Malva parviflora extract assisted green synthesis of silver nanoparticles.  

PubMed

Five plant leaf extracts (Malva parviflora, Beta vulgaris subsp. Vulgaris, Anethum graveolens, Allium kurrat and Capsicum frutescens) were screened for their bioreduction behavior for synthesis of silver nanoparticles. M. parviflora (Malvaceae) was found to exhibit the best reducing and protecting action in terms of synthesis rate and monodispersity of the prepared silver nanoparticles. Our measurements indicate that biosynthesis of Ag nanoparticles by M. parviflora produces Ag nanoparticles with the diameters in the range of 19-25 nm. XRD studies reveal a high degree of crystallinity and monophasic Ag nanoparticles of face-centered cubic structure. FTIR analysis proved that particles are reduced and stabilized in solution by the capping agent that is likely to be proteins secreted by the biomass. The present process is an excellent candidate for the synthesis of silver nanoparticles that is simple, easy to perform, pollutant free and inexpensive. PMID:23010627

Zayed, Mervat F; Eisa, Wael H; Shabaka, A A

2012-12-01

236

Synthesis of monodisperse, quasi-spherical silver nanoparticles with sizes defined by the nature of silver precursors.  

PubMed

Monodisperse, quasi-spherical silver nanoparticles (Ag NPs) with controlled sizes have been produced directly in water via adding the aqueous solutions of the mixtures of AgNO3 and sodium citrate to boiling aqueous solutions of ascorbic acid (AA). Different compounds, including NaCl, NaBr, KI, Na2SO4, Na2CO3, Na2S, and Na3PO4, are added to the AgNO3/citrate mixture solutions to form new silver compounds with fairly low solubility in water, which are used as precursors instead of soluble Ag(+) ions to synthesize Ag NPs via AA/citrate reduction. This enables us not only to produce monodisperse, quasi-spherical Ag NPs but also to tune the sizes of the resulting NPs from 16 to 30 nm according to the potential of new silver precursors as well as the concentrations of anions. PMID:24528373

Li, Houshen; Xia, Haibing; Ding, Wenchao; Li, Yijing; Shi, Qiurong; Wang, Dayang; Tao, Xutang

2014-03-11

237

Silver Nanoparticles Obtained by Laser Ablation Using Different Stabilizers  

NASA Astrophysics Data System (ADS)

We have synthesized silver nanoparticles by laser ablation in water using three stabilizers: hexadecyltrimethylammonium (CTAB) surfactant, polyamidoamine dendrimer second generation (PAMAM 2G) and polyamidoamine dendrimer fourth generation (PAMAM 4G) at different concentrations. We obtained spherical nanoparticles with narrow size distributions and average sizes ranging from 6 to 20 nm depending on the type of stabilizer and its concentration. For all cases the highest stabilizer concentration yielded the lowest average particle size; 15.5, 9.5, and 5.6 nm for CTAB, PAMAM 2G and PAMAM 4G respectively. We have also studied the stability of the nanoparticle colloids over a period of 30 days. Only the colloids of CTAB 10-3 M, all the concentrations of PAMAM 4G and pure water were stable after this time. This is explained in terms of steric hindrance of the stabilizer molecules and particle charge from Zeta potential measurements. All the results from transmission electron microscopy correlate well with those observed from the ultraviolet and visible spectra of each sample in terms of absorbance, peak width and peak maximum.

Olea-Mejía, Oscar; Pote-Orozco, Héctor; Camacho-López, Marco A.; Olea-Cardoso, Oscar; López-Castañares, Rafael; Vilchis-Néstor, Alfredo R.

2013-11-01

238

Toxicity of two types of silver nanoparticles to aquatic crustaceans Daphnia magna and Thamnocephalus platyurus.  

PubMed

Although silver nanoparticles (NPs) are increasingly used in various consumer products and produced in industrial scale, information on harmful effects of nanosilver to environmentally relevant organisms is still scarce. This paper studies the adverse effects of silver NPs to two aquatic crustaceans, Daphnia magna and Thamnocephalus platyurus. For that, silver NPs were synthesized where Ag is covalently attached to poly(vinylpyrrolidone) (PVP). In parallel, the toxicity of collargol (protein-coated nanosilver) and AgNO? was analyzed. Both types of silver NPs were highly toxic to both crustaceans: the EC50 values in artificial freshwater were 15-17 ppb for D. magna and 20-27 ppb for T. platyurus. The natural water (five different waters with dissolved organic carbon from 5 to 35 mg C/L were studied) mitigated the toxic effect of studied silver compounds up to 8-fold compared with artificial freshwater. The toxicity of silver NPs in all test media was up to 10-fold lower than that of soluble silver salt, AgNO?. The pattern of the toxic response of both crustacean species to the silver compounds was almost similar in artificial freshwater and in natural waters. The chronic 21-day toxicity of silver NPs to D. magna in natural water was at the part-per-billion level, and adult mortality was more sensitive toxicity test endpoint than the reproduction (the number of offspring per adult). PMID:23143296

Blinova, Irina; Niskanen, Jukka; Kajankari, Paula; Kanarbik, Liina; Käkinen, Aleksandr; Tenhu, Heikki; Penttinen, Olli-Pekka; Kahru, Anne

2013-05-01

239

Powerful colloidal silver nanoparticles for the prevention of gastrointestinal bacterial infections  

NASA Astrophysics Data System (ADS)

In this work we have demonstrated a powerful disinfectant ability of colloidal silver nanoparticles (NPs) for the prevention of gastrointestinal bacterial infections. The silver NPs colloid was synthesized by a UV-enhanced chemical precipitation. Two gastrointestinal bacterial strains of Escherichia coli (ATCC 43888-O157:k-:H7) and Vibrio cholerae (O1) were used to verify the antibacterial activity of the as-prepared silver NPs colloid by means of surface disinfection assay in agar plates and turbidity assay in liquid media. Transmission electron microscopy was also employed to analyze the ultrastructural changes of bacterial cells caused by silver NPs. Noticeably, our silver NPs colloid displayed a highly effective bactericidal effect against two tested gastrointestinal bacterial strains at a silver concentration as low as ˜3 mg l?1. More importantly, the silver NPs colloid showed an enhancement of antibacterial activity and long-lasting disinfectant effect as compared to conventional chloramin B (5%) disinfection agent. These advantages of the as-prepared colloidal silver NPs make them very promising for environmental treatments contaminated with gastrointestinal bacteria and other infectious pathogens. Moreover, the powerful disinfectant activity of silver-containing materials can also help in controlling and preventing further outbreak of diseases.

Le, Anh-Tuan; Tam Le, Thi; Quy Nguyen, Van; Hoang Tran, Huy; Dang, Duc Anh; Tran, Quang Huy; Vu, Dinh Lam

2012-12-01

240

Silver nanoparticle-embedded polymersome nanocarriers for the treatment of antibiotic-resistant infections  

NASA Astrophysics Data System (ADS)

The rapidly diminishing number of effective antibiotics that can be used to treat infectious diseases and associated complications in a physician's arsenal is having a drastic impact on human health today. This study explored the development and optimization of a polymersome nanocarrier formed from a biodegradable diblock copolymer to overcome bacterial antibiotic resistance. Here, polymersomes were synthesized containing silver nanoparticles embedded in the hydrophobic compartment, and ampicillin in the hydrophilic compartment. Results showed for the first time that these silver nanoparticle-embedded polymersomes (AgPs) inhibited the growth of Escherichia coli transformed with a gene for ampicillin resistance (bla) in a dose-dependent fashion. Free ampicillin, AgPs without ampicillin, and ampicillin polymersomes without silver nanoparticles had no effect on bacterial growth. The relationship between the silver nanoparticles and ampicillin was determined to be synergistic and produced complete growth inhibition at a silver-to-ampicillin ratio of 1 : 0.64. In this manner, this study introduces a novel nanomaterial that can effectively treat problematic, antibiotic-resistant infections in an improved capacity which should be further examined for a wide range of medical applications.

Geilich, Benjamin M.; van de Ven, Anne L.; Singleton, Gloria L.; Sepúlveda, Liuda J.; Sridhar, Srinivas; Webster, Thomas J.

2015-02-01

241

Light-induced modification of silver nanoparticles with functional polymers.  

PubMed

A mild, efficient and ambient temperature photochemical approach for the synthesis of silver nanoparticle core-shell structures employing a zwitterionic polymer as well as polyethylene glycol is presented. PMID:24643477

Stolzer, Lukas; Ahmed, Ishtiaq; Rodriguez-Emmenegger, Cesar; Trouillet, Vanessa; Bockstaller, Pascal; Barner-Kowollik, Christopher; Fruk, Ljiljana

2014-05-01

242

Silver Nanoparticles Part 1: Synthesis and Spectroscopy  

NSDL National Science Digital Library

The NACK Center is an organization committed to supporting two â??year degree programs in micro and nanotechnology. The center offers online educational material for curriculum enhancement in this subject field. One of these resources is a lab documentation focusing on the topic of silver nanoparticles. The lab is "designed for an advanced chemistry class, but may also be done with first year student. Prior experience with spectroscopy is recommended.â? The lesson includes objectives, sample solution preparations, and sample data and calculations. Overall, the objectives of this lesson are to demonstrate the use of a spectrophotometer, the observation of nanoscale physical properties and conversion of different unit measurements. The site requires a free log-in for access to the material.

243

Green and Rapid Synthesis of Anticancerous Silver Nanoparticles by Saccharomyces boulardii and Insight into Mechanism of Nanoparticle Synthesis  

PubMed Central

Rapidly developing field of nanobiotechnology dealing with metallic nanoparticle (MNP) synthesis is primarily lacking control over size, shape, dispersity, yield, and reaction time. Present work describes an ecofriendly method for the synthesis of silver nanoparticles (AgNPs) by cell free extract (CFE) of Saccharomyces boulardii. Parameters such as culture age (stationary phase growth), cell mass concentration (400?mg/mL), temperature (35°C), and reaction time (4?h), have been optimized to exercise a control over the yield of nanoparticles and their properties. Nanoparticle (NP) formation was confirmed by UV-Vis spectroscopy, elemental composition by EDX (energy dispersive X-rays) analysis, and size and shape by transmission electron microscopy. Synthesized nanoparticles had the size range of 3–10?nm with high negative zeta potential (?31?mV) indicating excellent stability. Role of proteins/peptides in NP formation and their stability were also elucidated. Finally, anticancer activity of silver nanoparticles as compared to silver ions was determined on breast cancer cell lines. PMID:24298556

Kaler, Abhishek; Jain, Sanyog; Banerjee, Uttam Chand

2013-01-01

244

Green and rapid synthesis of anticancerous silver nanoparticles by Saccharomyces boulardii and insight into mechanism of nanoparticle synthesis.  

PubMed

Rapidly developing field of nanobiotechnology dealing with metallic nanoparticle (MNP) synthesis is primarily lacking control over size, shape, dispersity, yield, and reaction time. Present work describes an ecofriendly method for the synthesis of silver nanoparticles (AgNPs) by cell free extract (CFE) of Saccharomyces boulardii. Parameters such as culture age (stationary phase growth), cell mass concentration (400?mg/mL), temperature (35°C), and reaction time (4?h), have been optimized to exercise a control over the yield of nanoparticles and their properties. Nanoparticle (NP) formation was confirmed by UV-Vis spectroscopy, elemental composition by EDX (energy dispersive X-rays) analysis, and size and shape by transmission electron microscopy. Synthesized nanoparticles had the size range of 3-10?nm with high negative zeta potential (-31?mV) indicating excellent stability. Role of proteins/peptides in NP formation and their stability were also elucidated. Finally, anticancer activity of silver nanoparticles as compared to silver ions was determined on breast cancer cell lines. PMID:24298556

Kaler, Abhishek; Jain, Sanyog; Banerjee, Uttam Chand

2013-01-01

245

Facile preparation of silver nanoparticles immobilized on chitin nanofiber surfaces to endow antifungal activities.  

PubMed

Silver nanoparticles were prepared on chitin nanofiber surfaces by UV light reduction of silver ions. The chitin nanofibers could be efficient substrates to immobilize silver nanoparticles with stable dispersion states. The dispersion and the nanocomposite film with acrylic resin showed characteristic absorption property in the visible light region due to the effect of the silver nanoparticles. Silver nanoparticles endowed strong antifungal activity to chitin nanofibers. PMID:25498704

Ifuku, Shinsuke; Tsukiyama, Yui; Yukawa, Taisuke; Egusa, Mayumi; Kaminaka, Hironori; Izawa, Hironori; Morimoto, Minoru; Saimoto, Hiroyuki

2015-03-01

246

Antimicrobial surface functionalization of plastic catheters by silver nanoparticles  

Microsoft Academic Search

Objectives: To test the antimicrobial activity and evaluate the risk of systemic toxicity of novel catheters coated with silver nanoparticles. Methods: Catheters were coated with silver using AgNO3, a surfactant and N,N,N 0,N 0-tetramethylethy- lenediamine as a reducing agent. Particle size was determined by electron microscopy. Silver release from the catheters was determined in vitro and in vivo using radioactive

David Roe; Balu Karandikar; Nathan Bonn-Savage; Bruce Gibbins; Jean-Baptiste Roullet

2008-01-01

247

Green synthesis of protein capped silver nanoparticles from phytopathogenic fungus Macrophomina phaseolina (Tassi) Goid with antimicrobial properties against multidrug-resistant bacteria  

NASA Astrophysics Data System (ADS)

In recent years, green synthesis of nanoparticles, i.e., synthesizing nanoparticles using biological sources like bacteria, algae, fungus, or plant extracts have attracted much attention due to its environment-friendly and economic aspects. The present study demonstrates an eco-friendly and low-cost method of biosynthesis of silver nanoparticles using cell-free filtrate of phytopathogenic fungus Macrophomina phaseolina. UV-visible spectrum showed a peak at 450 nm corresponding to the plasmon absorbance of silver nanoparticles. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM) revealed the presence of spherical silver nanoparticles of the size range 5 to 40 nm, most of these being 16 to 20 nm in diameter. X-ray diffraction (XRD) spectrum of the nanoparticles exhibited 2 ? values corresponding to silver nanoparticles. These nanoparticles were found to be naturally protein coated. SDS-PAGE analysis showed the presence of an 85-kDa protein band responsible for capping and stabilization of the silver nanoparticles. Antimicrobial activities of the silver nanoparticles against human as well as plant pathogenic multidrug-resistant bacteria were assayed. The particles showed inhibitory effect on the growth kinetics of human and plant bacteria. Furthermore, the genotoxic potential of the silver nanoparticles with increasing concentrations was evaluated by DNA fragmentation studies using plasmid DNA.

Chowdhury, Supriyo; Basu, Arpita; Kundu, Surekha

2014-07-01

248

Green synthesis of protein capped silver nanoparticles from phytopathogenic fungus Macrophomina phaseolina (Tassi) Goid with antimicrobial properties against multidrug-resistant bacteria.  

PubMed

In recent years, green synthesis of nanoparticles, i.e., synthesizing nanoparticles using biological sources like bacteria, algae, fungus, or plant extracts have attracted much attention due to its environment-friendly and economic aspects. The present study demonstrates an eco-friendly and low-cost method of biosynthesis of silver nanoparticles using cell-free filtrate of phytopathogenic fungus Macrophomina phaseolina. UV-visible spectrum showed a peak at 450 nm corresponding to the plasmon absorbance of silver nanoparticles. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM) revealed the presence of spherical silver nanoparticles of the size range 5 to 40 nm, most of these being 16 to 20 nm in diameter. X-ray diffraction (XRD) spectrum of the nanoparticles exhibited 2? values corresponding to silver nanoparticles. These nanoparticles were found to be naturally protein coated. SDS-PAGE analysis showed the presence of an 85-kDa protein band responsible for capping and stabilization of the silver nanoparticles. Antimicrobial activities of the silver nanoparticles against human as well as plant pathogenic multidrug-resistant bacteria were assayed. The particles showed inhibitory effect on the growth kinetics of human and plant bacteria. Furthermore, the genotoxic potential of the silver nanoparticles with increasing concentrations was evaluated by DNA fragmentation studies using plasmid DNA. PMID:25114655

Chowdhury, Supriyo; Basu, Arpita; Kundu, Surekha

2014-01-01

249

Green synthesis of protein capped silver nanoparticles from phytopathogenic fungus Macrophomina phaseolina (Tassi) Goid with antimicrobial properties against multidrug-resistant bacteria  

PubMed Central

In recent years, green synthesis of nanoparticles, i.e., synthesizing nanoparticles using biological sources like bacteria, algae, fungus, or plant extracts have attracted much attention due to its environment-friendly and economic aspects. The present study demonstrates an eco-friendly and low-cost method of biosynthesis of silver nanoparticles using cell-free filtrate of phytopathogenic fungus Macrophomina phaseolina. UV-visible spectrum showed a peak at 450 nm corresponding to the plasmon absorbance of silver nanoparticles. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM) revealed the presence of spherical silver nanoparticles of the size range 5 to 40 nm, most of these being 16 to 20 nm in diameter. X-ray diffraction (XRD) spectrum of the nanoparticles exhibited 2? values corresponding to silver nanoparticles. These nanoparticles were found to be naturally protein coated. SDS-PAGE analysis showed the presence of an 85-kDa protein band responsible for capping and stabilization of the silver nanoparticles. Antimicrobial activities of the silver nanoparticles against human as well as plant pathogenic multidrug-resistant bacteria were assayed. The particles showed inhibitory effect on the growth kinetics of human and plant bacteria. Furthermore, the genotoxic potential of the silver nanoparticles with increasing concentrations was evaluated by DNA fragmentation studies using plasmid DNA. PMID:25114655

2014-01-01

250

Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli.  

PubMed

Vibrio cholerae and enterotoxic Escherichia coli (ETEC) remain two dominant bacterial causes of severe secretory diarrhea and still a significant cause of death, especially in developing countries. In order to investigate new effective and inexpensive therapeutic approaches, we analyzed nanoparticles synthesized by a green approach using corresponding salt (silver or zinc nitrate) with aqueous extract of Caltropis procera fruit or leaves. We characterized the quantity and quality of nanoparticles by UV-visible wavelength scans and nanoparticle tracking analysis. Nanoparticles could be synthesized in reproducible yields of approximately 10(8) particles/ml with mode particles sizes of approx. 90-100 nm. Antibacterial activity against two pathogens was assessed by minimal inhibitory concentration assays and survival curves. Both pathogens exhibited similar resistance profiles with minimal inhibitory concentrations ranging between 5×10(5) and 10(7) particles/ml. Interestingly, zinc nanoparticles showed a slightly higher efficacy, but sublethal concentrations caused adverse effects and resulted in increased biofilm formation of V. cholerae. Using the expression levels of the outer membrane porin OmpT as an indicator for cAMP levels, our results suggest that zinc nanoparticles inhibit adenylyl cyclase activity. This consequently deceases the levels of this second messenger, which is a known inhibitor of biofilm formation. Finally, we demonstrated that a single oral administration of silver nanoparticles to infant mice colonized with V. cholerae or ETEC significantly reduces the colonization rates of the pathogens by 75- or 100-fold, respectively. PMID:25466205

Salem, Wesam; Leitner, Deborah R; Zingl, Franz G; Schratter, Gebhart; Prassl, Ruth; Goessler, Walter; Reidl, Joachim; Schild, Stefan

2015-01-01

251

Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli  

PubMed Central

Vibrio cholerae and enterotoxic Escherichia coli (ETEC) remain two dominant bacterial causes of severe secretory diarrhea and still a significant cause of death, especially in developing countries. In order to investigate new effective and inexpensive therapeutic approaches, we analyzed nanoparticles synthesized by a green approach using corresponding salt (silver or zinc nitrate) with aqueous extract of Caltropis procera fruit or leaves. We characterized the quantity and quality of nanoparticles by UV–visible wavelength scans and nanoparticle tracking analysis. Nanoparticles could be synthesized in reproducible yields of approximately 108 particles/ml with mode particles sizes of approx. 90–100 nm. Antibacterial activity against two pathogens was assessed by minimal inhibitory concentration assays and survival curves. Both pathogens exhibited similar resistance profiles with minimal inhibitory concentrations ranging between 5 × 105 and 107 particles/ml. Interestingly, zinc nanoparticles showed a slightly higher efficacy, but sublethal concentrations caused adverse effects and resulted in increased biofilm formation of V. cholerae. Using the expression levels of the outer membrane porin OmpT as an indicator for cAMP levels, our results suggest that zinc nanoparticles inhibit adenylyl cyclase activity. This consequently deceases the levels of this second messenger, which is a known inhibitor of biofilm formation. Finally, we demonstrated that a single oral administration of silver nanoparticles to infant mice colonized with V. cholerae or ETEC significantly reduces the colonization rates of the pathogens by 75- or 100-fold, respectively. PMID:25466205

Salem, Wesam; Leitner, Deborah R.; Zingl, Franz G.; Schratter, Gebhart; Prassl, Ruth; Goessler, Walter; Reidl, Joachim; Schild, Stefan

2015-01-01

252

Euphorbia helioscopia Linn as a green source for synthesis of silver nanoparticles and their optical and catalytic properties.  

PubMed

During this study, we report the green synthesis of silver nanoparticles (Ag NPs) using Euphorbia helioscopia Linn leaf extract for the synthesis of propargylamines. Also, the structural and optical properties are studied. The synthesized nanoparticles are characterized by TEM, XRD, FT-IR and UV-visible techniques. UV-visible studies show an absorption band at 440nm due to surface plasmon resonance (SPR) of the silver nanoparticles. Furthermore, the catalyst exhibits high catalytic activity, superior cycling stability and excellent substrate applicability. PMID:25854504

Nasrollahzadeh, Mahmoud; Mohammad Sajadi, S; Babaei, Ferydon; Maham, Mehdi

2015-07-15

253

In situ formation of silver nanoparticles in linear and branched polyelectrolyte matrices using various reducing agents  

PubMed Central

Silver nanoparticles were synthesized in linear and branched polyelectrolyte matrices using different reductants and distinct synthesis conditions. The effect of the host hydrolyzed linear polyacrylamide and star-like copolymers dextran-graft-polyacrylamide of various compactness, the nature of the reductant, and temperature were studied on in situ synthesis of silver sols. The related nanosystems were analyzed by high-resolution transmission electron microscopy and UV-vis absorption spectrophotometry. It was established that the internal structure of the polymer matrix as well as the nature of the reductant determines the process of the silver nanoparticle formation. Specifically, the branched polymer matrices were much more efficient than the linear ones for stable nanosystem preparation. PMID:24708898

2014-01-01

254

Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure.  

PubMed

We report the results of a 28-day oral exposure study in rats, exposed to <20 nm noncoated, or <15 nm PVP-coated silver nanoparticles ([Ag] = 90 mg/kg body weight (bw)), or AgNO(3) ([Ag] = 9 mg/kg bw), or carrier solution only. Dissection was performed at day 29, and after a wash-out period of 1 or 8 weeks. Silver was present in all examined organs with the highest levels in the liver and spleen for all silver treatments. Silver concentrations in the organs were highly correlated to the amount of Ag(+) in the silver nanoparticle suspension, indicating that mainly Ag(+), and to a much lesser extent silver nanoparticles, passed the intestines in the silver nanoparticle exposed rats. In all groups silver was cleared from most organs after 8 weeks postdosing, but remarkably not from the brain and testis. Using single particle inductively coupled plasma mass spectrometry, silver nanoparticles were detected in silver nanoparticle exposed rats, but, remarkably also in AgNO(3) exposed rats, hereby demonstrating the formation of nanoparticles from Ag(+)in vivo that are probably composed of silver salts. Biochemical markers and antibody levels in blood, lymphocyte proliferation and cytokine release, and NK-cell activity did not reveal hepatotoxicity or immunotoxicity of the silver exposure. In conclusion, oral exposure to silver nanoparticles appears to be very similar to exposure to silver salts. However, the consequences of in vivo formation of silver nanoparticles, and of the long retention of silver in brain and testis should be considered in a risk assessment of silver nanoparticles. PMID:22857815

van der Zande, Meike; Vandebriel, Rob J; Van Doren, Elke; Kramer, Evelien; Herrera Rivera, Zahira; Serrano-Rojero, Cecilia S; Gremmer, Eric R; Mast, Jan; Peters, Ruud J B; Hollman, Peter C H; Hendriksen, Peter J M; Marvin, Hans J P; Peijnenburg, Ad A C M; Bouwmeester, Hans

2012-08-28

255

Green synthesis of silver nanoparticles using Nelumbo nucifera seed extract and its antibacterial activity.  

PubMed

Silver nanoparticles (AgNPs) were synthesized using a Nelumbo nucifera dry seed extract, which is a simple, non-toxic, eco-friendly "green material". The synthesized nanoparticles were confirmed by the color changes and characterized by UV-visible spectroscopy. The AgNPs were stable at room temperature for 2 months. Scanning electron microscopy (SEM) revealed the formation of well-dispersed and spherical shapes. Transmission electron microscopy (TEM) of the synthesized AgNPs showed the formation of spherical nanoparticles, 5.03-16.62 nm in size. Fourier transform infrared spectroscopy (FTIR) indicated the involvement of amine, aromatic and alkynes groups in the synthetic process. X-ray diffraction (XRD) confirmed the crystalline nature of AgNPs. These AgNPs were highly toxic to found to Gram negative bacteria. PMID:24169723

Tho, Nguyen Thi Mai; An, Tran Nguyen Minh; Tri, Mai Dinh; Sreekanth, Thupakula Venkata Madhukar; Lee, Jae-Soon; Nagajyothi, Patnamsetty Chidanandha; Lee, Kap Duk

2013-01-01

256

Impregnation of silver nanoparticles into polysaccharide substrates and their properties.  

PubMed

A method to impregnate silver nanoparticles (AgNPs) into different polysaccharides substrates (cellulose powder (CP), microcrystalline cellulose (MCC), carboxymethyl cellulose (CMC) and chitosan (Chit)) by using glucose as reducing agent, is presented. X-ray diffraction analyses of polysaccharides coated with AgNPs showed the formation of silver particle sizes in the range of 3.7-5.6nm and have almost spherical shape. The entire prepared composite shows antimicrobial effect. The antibacterial activity of polysaccharides loaded with silver nanoparticles was evaluated against Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) bacteria. The results suggest excellent antibacterial activity. PMID:25817678

Hassabo, Ahmed G; Nada, Ahmed A; Ibrahim, Hassan M; Abou-Zeid, N Y

2015-05-20

257

Magnetic Silver-Coated Ferrite Nanoparticles and Their Application in Thick Films  

NASA Astrophysics Data System (ADS)

Magnetic silver-coated ferrite nanoparticles with 39.8% weight gain (relative to ferrite nanopowder coated by a silver layer) were synthesized by electroless deposition of silver on ferrite nanopowder. The mechanism of the electroless deposition was explored in terms of pretreatment, sensitization, activation, and the reduction of silver-ammonia complexes. Experiments showed that the optimal deposition conditions were a temperature of 50°C, pH value of 10 to 12, duration of 65 min with ethanol plus polyethylene glycol as additives, and ultrasonic vibration as a method of dispersing the nanoparticles. From transmission electron microscopy (TEM) images, it was observed that as-synthesized nanoparticles had a core-shell structure with a particle size of 35 nm to 90 nm and a shell thickness of 5 nm to 20 nm. X-ray diffraction (XRD) analysis confirmed that only ferrite and metallic silver were present in the product. Electrical resistance and magnetic hysteresis measurements demonstrated that the nanoparticles were both electrically conductive (volume electrical resistivity on the order of 10-4 ? cm to 10-3 ? cm when compressed to pressure of 2 × 10 6 Pa) and possessed ferrimagnetic properties. After a thick-film paste, obtained with the nanoparticles as the functional phase, was directly written and sintered, scanning electron microscopy (SEM) analysis and electrical resistance measurements of conductive lines in the acquired array pattern showed that an electrically conductive network with some defects and cavities was formed, with a volume electrical resistivity of 1 × 10-4 ? cm to 1 × 10-3 ? cm.

Liu, Jianguo; Huang, Baling; Li, Xiangyou; Li, Ping; Zeng, Xiaoyan

2010-12-01

258

Second harmonic generation from silver nanoparticles in aqueous solution with different protective agents  

NASA Astrophysics Data System (ADS)

Nanometer-sized metallic colloidal particles with plasmonic resonances in the visible range are widely investigated for their attractive optical properties as sensors, for imaging and cancer treatment. Their second-order nonlinear optical properties are remarkably high. In this work, silver colloidal solutions have been synthesized by a simple and quick method in aqueous solutions with different protective agents (PVA, PVP). The first hyperpolarizability ? values of Ag per atom and per particle for nanospheres at 1064 nm have been measured. Silver nanoparticles, which possess intense visible region surface plasmon absorption bands, prove to be excellent nonlinear scatterers.

Ngo, Hoang M.; Ledoux-Rak, Isabelle

2014-08-01

259

Carboxylate-Passivated Silver Nanoparticles and Their Application to Sintered Interconnection: A Replacement for High Temperature Lead-Rich Solders  

NASA Astrophysics Data System (ADS)

Lead-free silver nanoparticle pastes have been tested as a replacement for high temperature lead-rich solders used in electronic manufacturing. The pastes contain a small amount of solvent, and primarily consist of submicron-silver powder and passivated silver nanoparticles. The nanoparticles were synthesized from Ag2CO3 and a long-chain alcohol by a method that produced a passivating layer consisting almost exclusively of the carboxylate of the reactant alcohol. The pastes were used to connect a silicon diode chip to copper bases without applied pressure when sintered at 350°C under nitrogen. Diode packages made with sintered silver interconnects had electrical and thermal properties equal to those with lead-soldered interconnects, even after 3000 thermal cycles between -55°C and +150°C. The mechanical strength was half that of lead-rich solder joints, but still strong enough for practical use.

Ogura, Hiroshi; Maruyama, Minoru; Matsubayashi, Ryo; Ogawa, Tetsuya; Nakamura, Shigeyoshi; Komatsu, Teruo; Nagasawa, Hiroshi; Ichimura, Akio; Isoda, Seiji

2010-08-01

260

Adsorption of N-(1-(2-bromophenyl)-2-(2-nitrophenyl)ethyl)-4-methylbenzenesulfonamide on silver nanoparticles: SERS investigation.  

PubMed

SERS provides essential data regarding the interaction of molecules in drugs with DNA. In the present study silver nanoparticles were synthesized using a solution combustion method with urea as fuel. The prepared silver nanoparticles are rod like structure. Surface-enhanced Raman scattering (SERS) of N-(1-2-bromophenyl)-2-(2-nitrophenyl)ethyl)-4-methylbenzenesulfonamide (BrS) adsorbed on the silver nanoparticle was studied. The nRs and Raman spectral analysis reveal that the BrS adsorbed tilted orientation on the silver surface. Vibrational modes of nRs along with HF calculations are also performed to study the HOMO and LUMO behavior and vibrational features of BrS. PMID:25498819

Anuratha, M; Jawahar, A; Umadevi, M; Sathe, V G; Vanelle, P; Terme, T; Khoumeri, O; Meenakumari, V; Milton Franklin Benial, A

2015-03-01

261

Adsorption of N-(1-(2-bromophenyl)-2-(2-nitrophenyl)ethyl)-4-methylbenzenesulfonamide on silver nanoparticles: SERS investigation  

NASA Astrophysics Data System (ADS)

SERS provides essential data regarding the interaction of molecules in drugs with DNA. In the present study silver nanoparticles were synthesized using a solution combustion method with urea as fuel. The prepared silver nanoparticles are rod like structure. Surface-enhanced Raman scattering (SERS) of N-(1-2-bromophenyl)-2-(2-nitrophenyl)ethyl)-4-methylbenzenesulfonamide (BrS) adsorbed on the silver nanoparticle was studied. The nRs and Raman spectral analysis reveal that the BrS adsorbed tilted orientation on the silver surface. Vibrational modes of nRs along with HF calculations are also performed to study the HOMO and LUMO behavior and vibrational features of BrS.

Anuratha, M.; Jawahar, A.; Umadevi, M.; Sathe, V. G.; Vanelle, P.; Terme, T.; Khoumeri, O.; Meenakumari, V.; Milton Franklin Benial, A.

2015-03-01

262

Genus-Wide Physicochemical Evidence of Extracellular Crystalline Silver Nanoparticles Biosynthesis by Morganella spp  

PubMed Central

This study was performed to determine whether extracellular silver nanoparticles (AgNPs) production is a genus-wide phenotype associated with all the members of genus Morganella, or only Morganella morganii RP-42 isolate is able to synthesize extracellular Ag nanoparticles. To undertake this study, all the available Morganella isolates were exposed to Ag+ ions, and the obtained nanoproducts were thoroughly analyzed using physico-chemical characterization tools such as transmission electron microscopy (TEM), UV-visible spectrophotometry (UV-vis), and X-ray diffraction (XRD) analysis. It was identified that extracellular biosynthesis of crystalline silver nanoparticles is a unique biochemical character of all the members of genus Morganella, which was found independent of environmental changes. Significantly, the inability of other closely related members of the family Enterobacteriaceae towards AgNPs synthesis strongly suggests that AgNPs synthesis in the presence of Ag+ ions is a phenotypic character that is uniquely associated with genus Morganella. PMID:21713008

Parikh, Rasesh Y.; Ramanathan, Rajesh; Coloe, Peter J.; Bhargava, Suresh K.; Patole, Milind S.; Shouche, Yogesh S.; Bansal, Vipul

2011-01-01

263

Silver nanoparticles and silver molybdate nanowires complex for surface-enhanced Raman scattering substrate  

Microsoft Academic Search

Selective synthesis of silver and uniform single crystalline silver molybdate nanowires in large scale can be easily realized\\u000a by a facile soft template approach. Ag6Mo10O33 nanowires with a uniform diameter of about 50 nm and the length up to several hundred micrometers were synthesized in large\\u000a scale for the first time at room temperature using 12-silicotungstic acid system. The silver

Zhiyong Bao; Li Zhang; Yucheng Wu

2011-01-01

264

Size-controlled green synthesis of silver nanoparticles mediated by gum ghatti (Anogeissus latifolia) and its biological activity  

PubMed Central

Background Gum ghatti is a proteinaceous edible, exudate tree gum of India and is also used in traditional medicine. A facile and ecofriendly green method has been developed for the synthesis of silver nanoparticles from silver nitrate using gum ghatti (Anogeissus latifolia) as a reducing and stabilizing agent. The influence of concentration of gum and reaction time on the synthesis of nanoparticles was studied. UV–visible spectroscopy, transmission electron microscopy and X-ray diffraction analytical techniques were used to characterize the synthesized nanoparticles. Results By optimizing the reaction conditions, we could achieve nearly monodispersed and size controlled spherical nanoparticles of around 5.7 ± 0.2 nm. A possible mechanism involved in the reduction and stabilization of nanoparticles has been investigated using Fourier transform infrared spectroscopy and Raman spectroscopy. Conclusions The synthesized silver nanoparticles had significant antibacterial action on both the Gram classes of bacteria. As the silver nanoparticles are encapsulated with functional group rich gum, they can be easily integrated for various biological applications. PMID:22571686

2012-01-01

265

Size-dependent structure of silver nanoparticles under high pressure  

SciTech Connect

Silver noble metal nanoparticles that are<10 nm often possess multiply twinned grains allowing them to adopt shapes and atomic structures not observed in bulk materials. The properties exhibited by particles with multiply twinned polycrystalline structures are often far different from those of single-crystalline particles and from the bulk. I will present experimental evidence that silver nanoparticles<10 nm undergo a reversible structural transformation under hydrostatic pressures up to 10 GPa. Results for nanoparticles in the intermediate size range of 5 to 10 nm suggest a reversible linear pressure-dependent rhombohedral distortion which has not been previously observed in bulk silver. I propose a mechanism for this transitiion that considers the bond-length distribution in idealized multiply twinned icosahedral particles. Results for nanoparticles of 3.9 nm suggest a reversible linear pressure-dependent orthorhombic distortion. This distortion is interpreted in the context of idealized decahedral particles. In addition, given these size-dependent measurements of silver nanoparticle compression with pressure, we have constructed a pressure calibration curve. Encapsulating these silver nanoparticles in hollow metal oxide nanospheres then allows us to measure the pressure inside a nanoshell using x-ray diffraction. We demonstrate the measurement of pressure gradients across nanoshells and show that these nanoshells have maximum resolved shear strengths on the order of 500 MPa to IGPa.

Koski, Kristie Jo

2008-12-31

266

Electrospun polyacrylonitrile nanofibers loaded with silver nanoparticles by silver mirror reaction.  

PubMed

The silver mirror reaction (SMR) method was selected in this paper to modify electrospun polyacrylonitrile (PAN) nanofibers, and these nanofibers loaded with silver nanoparticles showed excellent antibacterial properties. PAN nanofibers were first pretreated in AgNO3 aqueous solution before the SMR process so that the silver nanoparticles were distributed evenly on the outer surface of the nanofibers. The final PAN nanofibers were characterized by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), transmission electron microscopy (TEM), TEM-selected area electron diffraction (SAED), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). SEM, TEM micrographs and SAED patterns confirmed homogeneous dispersion of the silver nanoparticles which were composed of monocrystals with diameters 20-30nm. EDS and XRD results showed that these monocrystals tended to form face-centered cubic single silver. TGA test indicated that the nanoparticles loaded on the nanofibers reached above 50wt.%. This material was also evaluated by the viable cell-counting method. The results indicated that PAN nanofibers loaded with silver nanoparticles exhibited excellent antimicrobial activities against gram-negative Escherichia coli (E. coli), gram-positive Staphylococcus aureus (S. aureus) and the fungus Monilia albicans. Thus, this material had many potential applications in biomedical fields. PMID:25842144

Shi, Yongzheng; Li, Yajing; Zhang, Jianfeng; Yu, Zhongzhen; Yang, Dongzhi

2015-06-01

267

Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil  

NASA Astrophysics Data System (ADS)

Developing bactericidal coatings using simple green chemical methods could be a promising route to potential environmentally friendly applications. Here, we describe an environmentally friendly chemistry approach to synthesize metal-nanoparticle (MNP)-embedded paint, in a single step, from common household paint. The naturally occurring oxidative drying process in oils, involving free-radical exchange, was used as the fundamental mechanism for reducing metal salts and dispersing MNPs in the oil media, without the use of any external reducing or stabilizing agents. These well-dispersed MNP-in-oil dispersions can be used directly, akin to commercially available paints, on nearly all kinds of surface such as wood, glass, steel and different polymers. The surfaces coated with silver-nanoparticle paint showed excellent antimicrobial properties by killing both Gram-positive human pathogens (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli). The process we have developed here is quite general and can be applied in the synthesis of a variety of MNP-in-oil systems.

Kumar, Ashavani; Vemula, Praveen Kumar; Ajayan, Pulickel M.; John, George

2008-03-01

268

Biogenic silver nanoparticles using Rhinacanthus nasutus leaf extract: synthesis, spectral analysis, and antimicrobial studies  

PubMed Central

Nanotechnology is gaining momentum due to its ability to transform metals into nanoparticles. The synthesis, characterization, and applications of biologically synthesized nanomaterials have become an important branch of nanotechnology. Plant extracts are a cost-effective, ecologically friendly, and efficient alternative for the large-scale synthesis of nanoparticles. In this study, silver nanoparticles (AgNps) were synthesized using Rhinacanthus nasutus leaf extract. After exposing the silver ions to the leaf extract, the rapid reduction of silver ions led to the formation of AgNps in solution. The synthesis was confirmed by ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy. The in vitro antimicrobial activity of the AgNps synthesized using R. nasutus leaf extract was investigated against Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumonia, Escherichia coli, Aspergillus niger, and Aspergillus flavus using a disc diffusion method. The AgNps showed potential activity against all of the bacterial strains and fungal colonies, indicating that R. nasutus has the potential to be used in the development of value-added products in the biomedical and nanotechnology-based industries. PMID:24039419

Pasupuleti, Visweswara Rao; Prasad, TNVKV; Shiekh, Rayees Ahmad; Balam, Satheesh Krishna; Narasimhulu, Ganapathi; Reddy, Cirandur Suresh; Rahman, Ismail Ab; Gan, Siew Hua

2013-01-01

269

New Paradigm Shift for the Green Synthesis of Antibacterial Silver Nanoparticles Utilizing Plant Extracts  

PubMed Central

This review covers general information regarding the green synthesis of antibacterial silver nanoparticles. Owing to their antibacterial properties, silver nanoparticles are widely used in many areas, especially biomedical applications. In green synthesis practices, the chemical reducing agents are eliminated, and biological entities are utilized to convert silver ions to silver nanoparticles. Among the various biological entities, natural plant extracts have emerged as green reducing agents, providing eco-friendly routes for the preparation of silver nanomaterials. The most obvious merits of green synthesis are the increased biocompatibility of the resulting silver nanoparticles and the ease with which the reaction can be carried out. This review summarizes some of the plant extracts that are used to produce antibacterial silver nanoparticles. Additionally, background information regarding the green synthesis and antibacterial activity of silver nanoparticles is provided. Finally, the toxicological aspects of silver nanoparticles are briefly mentioned. PMID:25343010

2014-01-01

270

Synthesis and antibacterial activity of of silver nanoparticles  

NASA Astrophysics Data System (ADS)

Silver nanoparticles have been known to have inhibitory and bactericidal effects but the antimicrobial mechanism have not been clearly revealed. Here, we report on the synthesis of metallic nanoparticles of silver using wild strains of Penicillium isolated from environment. Kinetics of the formation of nanosilver was monitored using the UV-Vis. TEM micrographs showed the formation of silver nanoparticles in the range 10-100 nm. Obtained Ag nanoparticles were evaluated for their antimicrobial activity against the gram-positive and gram-negative bacteria. As results, Bacillus cereus, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa were effectively inhibited. Nanosilver is a promising candidate for development of future antibacterial therapies because of its wide spectrum of activity.

Maliszewska, I.; Sadowski, Z.

2009-01-01

271

One-step green synthesis and characterization of leaf extract-mediated biocompatible silver and gold nanoparticles from Memecylon umbellatum  

PubMed Central

In this experiment, green-synthesized silver and gold nanoparticles were produced rapidly by treating silver and gold ions with an extract of Memecylon umbellatum leaf. The reaction process was simple and easy to handle, and was monitored using ultraviolet-visible spectroscopy. The effect of the phytochemicals present in M. umbellatum, including saponins, phenolic compounds, phytosterols, and quinones, on formation of stable silver and gold nanoparticles was investigated by Fourier-transform infrared spectroscopy. The morphology and crystalline phase of the nanoparticles were determined by transmission electron microscopy and energy-dispersive x-ray spectroscopy. The results indicate that the saponins, phytosterols, and phenolic compounds present in the plant extract play a major role in formation of silver and gold nanoparticles in their respective ions in solution. The characteristics of the nanoparticles formed suggest application of silver and gold nanoparticles as chemical sensors in the future. Given the simple and eco-friendly approach for synthesis, these nanoparticles could easily be commercialized for large-scale production. PMID:23569372

Arunachalam, Kantha D; Annamalai, Sathesh Kumar; Hari, Shanmugasundaram

2013-01-01

272

One-step green synthesis and characterization of leaf extract-mediated biocompatible silver and gold nanoparticles from Memecylon umbellatum.  

PubMed

In this experiment, green-synthesized silver and gold nanoparticles were produced rapidly by treating silver and gold ions with an extract of Memecylon umbellatum leaf. The reaction process was simple and easy to handle, and was monitored using ultraviolet-visible spectroscopy. The effect of the phytochemicals present in M. umbellatum, including saponins, phenolic compounds, phytosterols, and quinones, on formation of stable silver and gold nanoparticles was investigated by Fourier-transform infrared spectroscopy. The morphology and crystalline phase of the nanoparticles were determined by transmission electron microscopy and energy-dispersive x-ray spectroscopy. The results indicate that the saponins, phytosterols, and phenolic compounds present in the plant extract play a major role in formation of silver and gold nanoparticles in their respective ions in solution. The characteristics of the nanoparticles formed suggest application of silver and gold nanoparticles as chemical sensors in the future. Given the simple and eco-friendly approach for synthesis, these nanoparticles could easily be commercialized for large-scale production. PMID:23569372

Arunachalam, Kantha D; Annamalai, Sathesh Kumar; Hari, Shanmugasundaram

2013-01-01

273

Saccharide Sensing Using Gold and Silver Nanoparticles-A Review  

Microsoft Academic Search

We review new methodologies for glucose sensing from our laboratories based on the specific biological interactions between Con A, dextran-coated gold nanoparticles and glucose, and the interactions between dextran, glucose, and boronic-acid capped silver nanoparticles in solution. Our new approaches promise new tunable glucose sensing platforms. Dextran-coated gold nanoparticles were aggregated with the addition of Con A resulting in increase

Kadir Aslan; Jian Zhang; Joseph R. Lakowicz; Chris D. Geddes

2004-01-01

274

Silver nanoparticles in hydrogels and microemulsions—a comparative account of their properties and bio-activity  

NASA Astrophysics Data System (ADS)

Stable silver nanoparticles were prepared in sodium Aerosol OT (AOT) based microemulsions and hydrogels. The various gel and microemulsion compositions used for nanoparticle synthesis were obtained from the phase diagram of the AOT/n-heptane/H2O system. It was found that only in gels can AOT play a dual role of stabilizer as well as reducing agent. In microemulsions, AOT acts as a stabilizer only. In gels, the commonly used NaBH4 reduction results in spherical silver nanoparticles while the AOT based reduction yields highly facetted particles. In microemulsion however, larger particles of undefined shapes are formed in low yield while for the gels, a large number of particles are formed. The synthesized silver nanoparticles show strong antibacterial activity.

Ray, Debajyoti; Chatterjee, Saptarshi; Sarkar, Keka; De, Swati

2014-09-01

275

Synthesis and bioactivities of silver nanoparticles capped with 5-Amino-ß-resorcylic acid hydrochloride dihydrate.  

PubMed

BackgroundConjugated and drug loaded silver nanoparticles are getting an increased attention for various biomedical applications. Nanoconjugates showed significant enhancement in biological activity in comparison to free drug molecules. In this perspective, we report the synthesis of bioactive silver capped with 5-Amino-ß-resorcylic acid hydrochloride dihydrate (AR). The in vitro antimicrobial (antibacterial, antifungal), enzyme inhibition (xanthine oxidase, urease, carbonic anhydrase, ¿-chymotrypsin, cholinesterase) and antioxidant activities of the developed nanostructures was investigated before and after conjugation to silver metal.ResultsThe conjugation of AR to silver was confirmed through FTIR, UV¿vis and TEM techniques. The amount of AR conjugated with silver was characterized through UV¿vis spectroscopy and found to be 9% by weight. The stability of synthesized nanoconjugates against temperature, high salt concentration and pH was found to be good. Nanoconjugates, showed significant synergic enzyme inhibition effect against xanthine and urease enzymes in comparison to standard drugs, pure ligand and silver.ConclusionsOur synthesized nanoconjugate was found be to efficient selective xanthine and urease inhibitors in comparison to Ag and AR. On a per weight basis, our nanoconjugates required less amount of AR (about 11 times) for inhibition of these enzymes. PMID:25201390

Naz, Syeda; Shah, Muhammad; Islam, Nazar; Khan, Ajmal; Nazir, Samina; Qaisar, Sara; Alam, Syed

2014-09-01

276

Sesbania grandiflora leaf extract mediated green synthesis of antibacterial silver nanoparticles against selected human pathogens  

NASA Astrophysics Data System (ADS)

Simple, effective and rapid approach for the green synthesis of silver nanoparticles (AgNPs) using leaf extract of Sesbania grandiflora and their in vitro antibacterial activity against selected human pathogens has been demonstrated in the study. Various instrumental techniques were adopted to characterize the synthesized AgNPs viz. UV-Vis, FTIR, XRD, TEM, EDX and AFM. Surface Plasmon spectra for AgNPs are centered at 422 nm with dark brown color. The synthesized AgNPs were found to be spherical in shape with size in the range of 10-25 nm. The presence of water soluble proteins in the leaf extract was identified by FTIR which were found to be responsible for the reduction of silver ions (Ag+) to AgNPs. Moreover, the synthesized AgNPs showed potent antibacterial activity against multi-drug resistant (MDR) bacteria such as Salmonella enterica and Staphylococcus aureus.

Das, J.; Paul Das, M.; Velusamy, P.

2013-03-01

277

Antibacterial activity of silver nanoparticle-coated fabric and leather against odor and skin infection causing bacteria.  

PubMed

We present a simple, eco-friendly synthesis of silver and gold nanoparticles using a natural polymer pine gum solution as the reducing and capping agent. The pine gum solution was combined with silver nitrate (AgNO3) or a chloroauric acid (HAuCl4) solution to produce silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs), respectively. The reaction process was simple; formation of the nanoparticles was achieved by autoclaving the silver and gold ions with the pine gum. UV-Vis spectra showed surface plasmon resonance (SPR) for silver and gold nanoparticles at 432 and 539 nm, respectively. The elemental forms of AgNPs and AuNPs were confirmed by energy-dispersive X-ray spectroscopy (EDX). Fourier transform infrared spectroscopy (FTIR) showed the biomolecules present in the pine gum, AgNPs, and AuNPs. Transmission electron microscopy (TEM) images showed the shape and size of AgNPs and AuNPs. The crystalline nature of synthesized AgNPs and AuNPs was confirmed by X-ray crystallography [X-ray diffraction (XRD)]. Application of synthesized AgNPs onto cotton fabrics and leather, in order to evaluate their antibacterial properties against odor- or skin infection-causing bacteria, is also discussed. Among the four tested bacteria, AgNP-coated cotton fabric and leather samples displayed excellent antibacterial activity against Brevibacterium linens. PMID:25073519

Velmurugan, Palanivel; Lee, Sang-Myeong; Cho, Min; Park, Jung-Hee; Seo, Sang-Ki; Myung, Hyun; Bang, Keuk-Soo; Oh, Byung-Taek

2014-10-01

278

Eco-friendly synthesis of silver and gold nanoparticles with enhanced bactericidal activity and study of silver catalyzed reduction of 4-nitrophenol  

NASA Astrophysics Data System (ADS)

The present study reports a simple and robust method for synthesis of silver and gold nanoparticles using Coleus forskohlii root extract as reducing and stabilizing agent. Stable silver nanoparticles (AgNPs) and gold nanopoarticles (AuNPs) were formed on treatment of an aqueous silver nitrate (AgNO3) and chloroauric acid (HAuCl4) solutions with the root extract. The nanoparticles obtained were characterized by UV-Visible spectroscopy, Transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). UV-Vis and TEM analysis indicate that with higher quantities of root extract, the interaction is enhanced leading to size reduction of spherical metal nanoparticles. XRD confirms face-centered cubic phase and the diffraction peaks can be attributed to (1 1 1), (2 0 0), (2 2 2) and (3 1 1) planes for these nanoparticles. These synthesized Ag and Au nanoparticles were found to exhibit excellent bactericidal activity against clinically isolated selected pathogens such as Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus). The synthesized AgNPs were also found to function as an efficient green catalyst in the reduction of anthropogenic pollutant 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by sodium borohydride, which was apparent from the periodical color change from bright yellow to colorless, after the addition of AgNPs.

Naraginti, Saraschandra; Sivakumar, A.

2014-07-01

279

Eco-friendly synthesis of silver and gold nanoparticles with enhanced bactericidal activity and study of silver catalyzed reduction of 4-nitrophenol.  

PubMed

The present study reports a simple and robust method for synthesis of silver and gold nanoparticles using Coleus forskohlii root extract as reducing and stabilizing agent. Stable silver nanoparticles (AgNPs) and gold nanopoarticles (AuNPs) were formed on treatment of an aqueous silver nitrate (AgNO3) and chloroauric acid (HAuCl4) solutions with the root extract. The nanoparticles obtained were characterized by UV-Visible spectroscopy, Transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). UV-Vis and TEM analysis indicate that with higher quantities of root extract, the interaction is enhanced leading to size reduction of spherical metal nanoparticles. XRD confirms face-centered cubic phase and the diffraction peaks can be attributed to (111), (200), (222) and (311) planes for these nanoparticles. These synthesized Ag and Au nanoparticles were found to exhibit excellent bactericidal activity against clinically isolated selected pathogens such as Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus). The synthesized AgNPs were also found to function as an efficient green catalyst in the reduction of anthropogenic pollutant 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by sodium borohydride, which was apparent from the periodical color change from bright yellow to colorless, after the addition of AgNPs. PMID:24681320

Naraginti, Saraschandra; Sivakumar, A

2014-07-15

280

Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract  

PubMed Central

Objective To synthesize silver nanopaticles from leaves extract of Eucalyptus chapmaniana (E. chapmaniana) and test the antimicrobial of the nanoparticles against different pathogenic bacteria, yeast and its toxicity against human acute promyelocytic leukemia (HL-60) cell line. Methods Ten milliliter of leaves extract was mixed with 90 mL of 0.01 mmol/mL or 0.02 mmol/mL aqueous AgNO3 and exposed to sun light for 1 h. A change from yellowish to reddish brown color was observed. Characterization using UV-vis spectrophotometery and X-ray diffraction analysis were performed. Antimicrobial activity against six microorganisms was tested using well diffusion method and cytoxicity test using 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide, a yellow tetrazole was obtained on the human leukemia cell line (HL-60). Results UV-vis spectral analysis showed silver surface plasmon resonance band at 413 nm. X-ray diffraction showed that the particles were crystalline in nature with face centered cubic structure of the bulk silver with broad beaks at 38.50° and 44.76°. The synthesized silver nanoparticles efficiently inhibited various pathogenic organisms and reduced viability of the HL-60 cells in a dose-dependent manner. Conclusions It has been demonstrated that the extract of E. chapmaniana leaves are capable of producing silver nanoparticles extracellularly and the Ag nanoparticles are quite stable in solution. Further studies are needed to fully characterize the toxicity and the mechanisms involved with the antimicrobial and anticancer activity of these particles. PMID:23570018

Sulaiman, Ghassan Mohammad; Mohammed, Wasnaa Hatif; Marzoog, Thorria Radam; Al-Amiery, Ahmed Abdul Amir; Kadhum, Abdul Amir H.; Mohamad, Abu Bakar

2013-01-01

281

Hydroxy propyl cellulose capped silver nanoparticles produced by simple dialysis process  

SciTech Connect

Silver (Ag) nanoparticles ({approx}6 nm) were synthesized using a novel dialysis process. Silver nitrate was used as a starting precursor, ethylene glycol as solvent and hydroxy propyl cellulose (HPC) introduced as a capping agent. Different batches of reaction mixtures were prepared with different concentrations of silver nitrate (AgNO{sub 3}). After the reduction and aging, these solutions were subjected to ultra-violet visible spectroscopy (UVS). Optimized solution, containing 250 mg AgNO{sub 3} revealed strong plasmon resonance peak at {approx}410 nm in the spectrum indicating good colloidal state of Ag nanoparticles in the diluted solution. The optimized solution was subjected to dialysis process to remove any unreacted solvent. UVS of the optimized solution after dialysis showed the plasmon resonance peak shifting to {approx}440 nm indicating the reduction of Ag ions into zero-valent Ag. This solution was dried at 80 {sup o}C and the resultant HPC capped Ag (HPC/Ag) nanoparticles were studied using transmission electron microscopy (TEM) for their particle size and morphology. The particle size distribution (PSD) analysis of these nanoparticles showed skewed distribution plot with particle size ranging from 3 to 18 nm. The nanoparticles were characterized for phase composition using X-ray diffractrometry (XRD) and Fourier transform infrared spectroscopy (FT-IR).

Francis, L. [University of Genova, Department of Chemistry and Industrial Chemistry, via Dodecaneso 31, 16146 Genova (Italy)] [University of Genova, Department of Chemistry and Industrial Chemistry, via Dodecaneso 31, 16146 Genova (Italy); Balakrishnan, A. [Laboratoire SIMaP - GPM2, Grenoble-INP/UJF/CNRS BP46, 38042 Saint Martin d'Heres cedex (France)] [Laboratoire SIMaP - GPM2, Grenoble-INP/UJF/CNRS BP46, 38042 Saint Martin d'Heres cedex (France); Sanosh, K.P. [Department of Innovation Engineering, University of Lecce, via per Monteroni, 73100 Lecce (Italy)] [Department of Innovation Engineering, University of Lecce, via per Monteroni, 73100 Lecce (Italy); Marsano, E., E-mail: marsano@chimica.unige.it [University of Genova, Department of Chemistry and Industrial Chemistry, via Dodecaneso 31, 16146 Genova (Italy)

2010-08-15

282

Silver Nanoparticle Paste for Low-Temperature Bonding of Copper  

NASA Astrophysics Data System (ADS)

Silver nanoparticle (NP) paste was fabricated and used to bond copper wire to copper foil at low temperatures down to 160°C. The silver NP paste was developed by increasing the concentration of 50 nm silver NP sol from 0.001 vol.% to 0.1 vol.% by centrifugation. The 0.001 vol.% silver NP sol was fabricated in water by reducing silver nitrate (AgNO3) using sodium citrate dihydrate (Na3C6H5O7·2H2O). The bond was formed by solid-state sintering among the individual silver NPs and solid-state bonding of these silver NPs onto both copper wire and foil. Metallurgical bonds between silver NPs and copper were confirmed by transmission electron microscopy (TEM). The silver NPs were coated with an organic shell to prevent sintering at room temperature (RT). It was found that the organic shell decomposed at 160°C, the lowest temperature at which a bond could be formed. Shear tests showed that the joint strength increased as the bonding temperature increased, due to enhanced sintering of silver NPs at higher temperatures. Unlike low-temperature soldering techniques, bonds formed by our method have been proved to withstand temperatures above the bonding temperature.

Alarifi, Hani; Hu, Anming; Yavuz, Mustafa; Zhou, Y. Norman

2011-06-01

283

Titania–silver and alumina–silver composite nanoparticles: Novel, versatile synthesis, reaction mechanism and potential antimicrobial application  

Microsoft Academic Search

Titania–silver (TiO2–Ag) and alumina–silver (Al2O3–Ag) composite nanoparticles were synthesised by a simple, reproducible, wet chemical method under ambient conditions. The surface of the oxides was modified with oleic acid, which acted as an intermediate between the oxide surface and the silver nanoparticles. The resulting composite nanoparticles were thoroughly characterised by XRD, TEM, XPS, FTIR and TGA to elucidate the mode

Tanushree Bala; Gordon Armstrong; Fathima Laffir; Roibeard Thornton

2011-01-01

284

Synergistic Interaction between Silver Nanoparticles and Membrane-Permeabilizing Antimicrobial Peptides?  

PubMed Central

Silver nanoparticles, as well as antimicrobial peptides (AMPs), can be used to fight infectious diseases. Since AMPs are known to permeabilize bacterial membranes and might therefore help silver nanoparticles to access internal target sites, we investigated their combined activities and showed synergistic effects between polymyxin B and silver nanoparticles for gram-negative bacteria. PMID:19528287

Ruden, Serge; Hilpert, Kai; Berditsch, Marina; Wadhwani, Parvesh; Ulrich, Anne S.

2009-01-01

285

Controlled monodisperse Fe nanoparticles synthesized by chemical method  

Microsoft Academic Search

Monodisperse 5 to 20 nm Fe nanoparticles have been directly synthesized by chemical method. Growth processes of Fe nanoparticles were studied by analyzing samples of different reaction stages. The growth process of particles is not simply proportional to the reaction time. In initial reaction, the precursors abruptly decompose to many nuclei and then the nuclei grow up to small particles.

Wenli Pei; Saku Kakibe; Ippei Ohta; Migaku Takahashi

2005-01-01

286

Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder  

PubMed Central

Green synthesis of noble metal nanoparticles is a vastly developing area of research. Metallic nanoparticles have received great attention from chemists, physicists, biologists, and engineers who wish to use them for the development of a new-generation of nanodevices. In this study, silver nanoparticles were biosynthesized from aqueous silver nitrate through a simple and eco-friendly route using Curcuma longa tuber-powder extracts, which acted as a reductant and stabilizer simultaneously. Characterizations of nanoparticles were done using different methods, which included ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray fluorescence spectrometry, and Fourier-transform infrared spectroscopy. The ultraviolet-visible spectrum of the aqueous medium containing silver nanoparticles showed an absorption peak at around 415 nm. Transmission electron microscopy showed that mean diameter and standard deviation for the formation of silver nanoparticles was 6.30 ± 2.64 nm. Powder X-ray diffraction showed that the particles are crystalline in nature, with a face-centered cubic structure. The most needed outcome of this work will be the development of value-added products from C. longa for biomedical and nanotechnology-based industries. PMID:23341739

Shameli, Kamyar; Ahmad, Mansor Bin; Zamanian, Ali; Sangpour, Parvanh; Shabanzadeh, Parvaneh; Abdollahi, Yadollah; Zargar, Mohsen

2012-01-01

287

Green synthesis of silver nanoparticles as antibacterial agent using Rhodomyrtus tomentosa acetone extract  

NASA Astrophysics Data System (ADS)

The capability of Rhodomyrtus tomentosa acetone extract (RAE) for the production of silver nanoparticles (AgNPs) has been explored for the first time. Silver nanoparticles with a surface plasmon resonance band centered at 420-430 nm were synthesized by reacting RAE with AgNO3. Reaction time, temperature, concentration of AgNO3 and RAE could accelerate the reduction rate of Ag+ and affect AgNPs size. The nanoparticles were found to be 10-30 nm in size and spherical in shape. XRD data demonstrated crystalline nature of AgNPs dominated by (200) facets. FTIR results showed decrease in intensity of peaks at 3394, 1716 and 1618 cm-1 indicating the involvement of O-H, carbonyl group and C=C stretching with the formation of AgNPs with RAE, respectively. The C-O-C and C-N stretching suggested the presence of many phytochemicals on the surface of the nanoparticles. High negative zeta potential values confirmed the stability of AgNPs in water. In vitro antibacterial activity of AgNPs was tested against Staphylococcus aureus using broth microdilution method. AgNPs capped with RAE demonstrated profound antibacterial activity against the organisms with minimum inhibitory concentration and minimum bactericidal concentration in the range between 3.1-6.2 and 6.2-50 ?gmL-1, respectively. The synthesized nanoparticles could be applied as an effective antimicrobial agent against staphylococcal infections.

Voravuthikunchai, Supayang P.; Chorachoo, Julalak; Jaiswal, Lily; Shankar, Shiv

2013-12-01

288

Cellular oxido-reductive proteins of Chlamydomonas reinhardtii control the biosynthesis of silver nanoparticles  

PubMed Central

Background Elucidation of molecular mechanism of silver nanoparticles (SNPs) biosynthesis is important to control its size, shape and monodispersity. The evaluation of molecular mechanism of biosynthesis of SNPs is of prime importance for the commercialization and methodology development for controlling the shape and size (uniform distribution) of SNPs. The unicellular algae Chlamydomonas reinhardtii was exploited as a model system to elucidate the role of cellular proteins in SNPs biosynthesis. Results The C. reinhardtii cell free extract (in vitro) and in vivo cells mediated synthesis of silver nanoparticles reveals SNPs of size range 5 ± 1 to 15 ± 2 nm and 5 ± 1 to 35 ± 5 nm respectively. In vivo biosynthesized SNPs were localized in the peripheral cytoplasm and at one side of flagella root, the site of pathway of ATP transport and its synthesis related enzymes. This provides an evidence for the involvement of oxidoreductive proteins in biosynthesis and stabilization of SNPs. Alteration in size distribution and decrease of synthesis rate of SNPs in protein-depleted fractions confirmed the involvement of cellular proteins in SNPs biosynthesis. Spectroscopic and SDS-PAGE analysis indicate the association of various proteins on C. reinhardtii mediated in vivo and in vitro biosynthesized SNPs. We have identified various cellular proteins associated with biosynthesized (in vivo and in vitro) SNPs by using MALDI-MS-MS, like ATP synthase, superoxide dismutase, carbonic anhydrase, ferredoxin-NADP+ reductase, histone etc. However, these proteins were not associated on the incubation of pre-synthesized silver nanoparticles in vitro. Conclusion Present study provides the indication of involvement of molecular machinery and various cellular proteins in the biosynthesis of silver nanoparticles. In this report, the study is mainly focused towards understanding the role of diverse cellular protein in the synthesis and capping of silver nanoparticles using C. reinhardtii as a model system. PMID:22152042

2011-01-01

289

Photonic Crystal Fibre SERS Sensors Based on Silver Nanoparticle Colloid  

NASA Astrophysics Data System (ADS)

A photonic crystal fibre (PCF) surface enhanced Raman scattering (SERS) sensor is developed based on silver nanoparticle colloid. Analyte solution and silver nanoparticles are injected into the air holes of PCF by a simple modified syringe to overcome mass-transport constraints, allowing more silver nanoparticles involved in SERS activity. This sensor offers significant benefit over the conventional SERS sensor with high flexibility, easy manufacture. We demonstrate the detection of 4-mercaptobenzoic acid (4-MBA) molecules with the injecting way and the common dipping measurement. The injecting way shows obviously better results than the dipping one. Theoretical analysis indicates that this PCF SERS substrate offers enhancement of about 7 orders of magnitude in SERS active area.

Xie, Zhi-Guo; Lu, Yong-Hua; Wang, Pei; Lin, Kai-Qun; Yan, Jie; Ming, Hai

2008-12-01

290

Rapid tarnishing of silver nanoparticles in ambient laboratory air  

NASA Astrophysics Data System (ADS)

Silver has useful surface-plasmon-resonance properties for many potential applications. However, chemical activity in silver nanoparticles exposed to laboratory air can make interpretation of optical scattering and extinction spectra problematic. We have measured the shift of the plasmon polariton wavelength of arrays of silver nanoparticles with increasing exposure to ambient laboratory air. The resonance peak wavelength shifts 65 nm in 36 h (1.8 nm/h). We show by scanning Auger spectroscopy that the shift is due to contamination from sulfur, most likely chemisorbed on the surface. The rate of corrosion product growth on the nanoparticles is estimated to be 3 nm per day, 7.5 times higher than that of bulk Ag under the same conditions.

McMahon, M. D.; Lopez, R.; Meyer, H. M.; Feldman, L. C.; Haglund, R. F.

2005-06-01

291

Sulfidation of Silver Nanoparticles: Natural antidote to their toxicity  

PubMed Central

Nanomaterials are highly dynamic in biological and environmental media. A critical need for advancing environmental health and safety research for nanomaterials is to identify commonly occurring physical and chemical transformations affecting nanomaterial properties and toxicity. Silver nanoparticles, one of the most ecotoxic and well-studied nanomaterials, readily sulfidize in the environment. Here, we show that very low degrees of sulfidation (0.019 S/Ag mass ratio) universally and significantly decreases the toxicity of silver nanoparticles to four diverse types of aquatic and terrestrial eukaryotic organisms. Toxicity reduction is primarily associated with a decrease in Ag+ availability after sulfidation due to the lower solubility of Ag2S relative to elemental Ag (Ag(0)). We also show that chloride in exposure media determines silver nanoparticle toxicity by controlling the speciation of Ag. These results highlight the need to consider environmental transformation of NPs in assessing their toxicity to accurately portray their potential environmental risks. PMID:24180218

Levard, Clément; Hotze, Ernest M.; Colman, Benjamin P.; Truong, Lisa; Yang, X. Y.; Bone, Audrey; Brown, Gordon E.; Tanguay, Robert L.; Di Giulio, Richard T.; Bernhardt, Emily S.; Meyer, Joel N.; Wiesner, Mark R.; Lowry, Gregory V.

2014-01-01

292

Biogenic synthesis of multi-applicative silver nanoparticles by using Ziziphus Jujuba leaf extract.  

PubMed

Herein, we are reporting for the first time one step biogenic synthesis of silver nanoparticles (AgNPs) at room temperature by using Ziziphus Jujuba leaf extract as a reducing and stabilizing agent. The process of nanoparticles preparation is green, rapid, environmentally benign and cost effective. The synthesized AgNPs were characterized by means of UV-Vis., XRD, FT-IR, TEM, DLS and Zeta potential. The absorption band centered at ?max 434 nm in UV-Vis. reflects surface plasmon resonance (SPR) of AgNPs. XRD analysis revealed, that biosynthesized AgNPs are crystalline in nature with the face centered cubic structure. FT-IR analysis indicates that nanoparticles were capped with the leaf extract. TEM images shows the synthesized nanoparticles are having different shapes with 20-30 nm size. The data obtained from DLS that support the hydrodynamic size of 28 nm. Zeta potential of -26.4 mV indicates that the nanoparticles were highly stable in colloidal state. The effect of pH, quantity of leaf extract and concentrations of AgNO3 were also studied to attend control over the particle size and stability. The synthesized AgNPs shows highly efficient catalytic activity towards the reduction of anthropogenic pollutant 4-nitrophenol (4-NP) and Methylene Blue (MB) for environmental protection. Synthesized AgNPs also exhibited good antimicrobial activity against Escherichia coli. PMID:25459621

Gavade, N L; Kadam, A N; Suwarnkar, M B; Ghodake, V P; Garadkar, K M

2015-02-01

293

Biogenic synthesis of multi-applicative silver nanoparticles by using Ziziphus Jujuba leaf extract  

NASA Astrophysics Data System (ADS)

Herein, we are reporting for the first time one step biogenic synthesis of silver nanoparticles (AgNPs) at room temperature by using Ziziphus Jujuba leaf extract as a reducing and stabilizing agent. The process of nanoparticles preparation is green, rapid, environmentally benign and cost effective. The synthesized AgNPs were characterized by means of UV-Vis., XRD, FT-IR, TEM, DLS and Zeta potential. The absorption band centered at ?max 434 nm in UV-Vis. reflects surface plasmon resonance (SPR) of AgNPs. XRD analysis revealed, that biosynthesized AgNPs are crystalline in nature with the face centered cubic structure. FT-IR analysis indicates that nanoparticles were capped with the leaf extract. TEM images shows the synthesized nanoparticles are having different shapes with 20-30 nm size. The data obtained from DLS that support the hydrodynamic size of 28 nm. Zeta potential of -26.4 mV indicates that the nanoparticles were highly stable in colloidal state. The effect of pH, quantity of leaf extract and concentrations of AgNO3 were also studied to attend control over the particle size and stability. The synthesized AgNPs shows highly efficient catalytic activity towards the reduction of anthropogenic pollutant 4-nitrophenol (4-NP) and Methylene Blue (MB) for environmental protection. Synthesized AgNPs also exhibited good antimicrobial activity against Escherichia coli.

Gavade, N. L.; Kadam, A. N.; Suwarnkar, M. B.; Ghodake, V. P.; Garadkar, K. M.

2015-02-01

294

Silver nanoparticle assisted urine sugar determination using thermal lens spectroscopy  

NASA Astrophysics Data System (ADS)

Nanotechnology plays a vital role in the development of biosensors by enhancing their sensitivity and performance. In this paper, we report a novel urine sugar sensing method that makes use of the unique properties of silver-nanofluids in combination with the laser induced photothermal lens technique. The thermal lens signal decreases with increase in sugar levels in urine samples, which may be attributed to the enhanced interaction of glucose and conduction electrons of silver-nanoparticles, thereby changing the surface plasmon energy.

Thomas, Lincy; John, Jisha; George, Nibu A.; Kurian, Achamma

2014-11-01

295

Nanowires of silver-polyaniline nanocomposite synthesized via in situ polymerization and its novel functionality as an antibacterial agent.  

PubMed

Silver-polyaniline (Ag-PANI) nanocomposite was synthesized by in situ polymerization method using ammonium persulfate (APS) as an oxidizing agent in the presence of dodecylbenzene sulfonic acid (DBSA) and silver nitrate (AgNO(3)). The as synthesized Ag-PANI nanocomposite was characterized by using different analytical techniques such as UV-visible (UV-vis) and Fourier transform Infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), thermo gravimetric analysis (TGA), X-ray diffraction (XRD), and transmission electron microscopy (TEM). UV-visible spectra of the synthesized nanocomposite showed a sharp peak at ~420 nm corresponding to the surface plasmon resonance (SPR) of the silver nanoparticles (AgNPs) embedded in the polymer matrix which is overlapped by the polaronic peak of polyaniline appearing at that wavelength. Nanowires of Ag-PANI nanocomposite with diameter 50-70 nm were observed in FE-SEM and TEM. TGA has indicated an enhanced thermal stability of nanocomposite as compared to that of pure polymer. The Ag-PANI nanocomposite has shown an antibacterial activity against model organisms, a gram positive Bacillus subtilis NCIM 6633 in Mueller-Hinton (MH) medium, which is hitherto unattempted. The Ag-PANI nanocomposite with monodispersed AgNPs is considered to have potential applications in sensors, catalysis, batteries and electronic devices. PMID:22178182

Tamboli, Mohaseen S; Kulkarni, Milind V; Patil, Rajendra H; Gade, Wasudev N; Navale, Shalaka C; Kale, Bharat B

2012-04-01

296

Preparation of starch-stabilized silver nanoparticles from amylose-sodium palmitate inclusion complexes  

Technology Transfer Automated Retrieval System (TEKTRAN)

Starch-stabilized silver nanoparticles were prepared from amylose-sodium palmitate complexes by first converting sodium palmitate to silver palmitate by reaction with silver nitrate and then reducing the silver ion to metallic silver. This process produced water solutions that could be dried and the...

297

Silver nanoparticle production by Rhizopus stolonifer and its antibacterial activity against extended spectrum {beta}-lactamase producing (ESBL) strains of Enterobacteriaceae  

SciTech Connect

Highlights: {yields} Silver nanoparticle production by using Rhizopus stolonifer. {yields} Antibacterial activity of silver nanoparticles against extended spectrum {beta}-lactamase producing (ESBL) strains of Enterobacteriaceae. {yields} Synergistic effect of antibiotics with silver nanoparticles towards ESBL-strains. {yields} Characterization of silver nanoparticles made by UV-vis spectra, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) spectroscopy, atomic force microscopy (AFM). -- Abstract: This report focuses on the synthesis of silver nanoparticles using the fungus, Rhizopus stolonifer and its antimicrobial activity. Research in nanotechnology highlights the possibility of green chemistry pathways to produce technologically important nanomaterials. Characterization of newly synthesized silver nanoparticles was made by UV-visible absorption spectroscopy, scanning electron microscope (SEM), transmission electron microscope (TEM), Fourier transform infrared (FTIR) spectroscopy and atomic force microscope (AFM). TEM micrograph revealed the formation of spherical nanoparticles with size ranging between 3 and 20 nm. The biosynthesized silver nanoparticles (AgNPs) showed excellent antibacterial activity against ESBL-strains which includes E. coli, Proteus. sp. and Klebsiella sp.

Banu, Afreen [Department of Microbiology, Gulbarga University, Gulbarga 585106, Karnataka (India)] [Department of Microbiology, Gulbarga University, Gulbarga 585106, Karnataka (India); Rathod, Vandana, E-mail: drvandanarathod@rediffmail.com [Department of Microbiology, Gulbarga University, Gulbarga 585106, Karnataka (India)] [Department of Microbiology, Gulbarga University, Gulbarga 585106, Karnataka (India); Ranganath, E. [Department of Microbiology, Gulbarga University, Gulbarga 585106, Karnataka (India)] [Department of Microbiology, Gulbarga University, Gulbarga 585106, Karnataka (India)

2011-09-15

298

Hydroxyapatite-silver nanoparticles coatings on porous polyurethane scaffold.  

PubMed

The present paper is focused on a study regarding the possibility of obtaining hydroxyapatite-silver nanoparticle coatings on porous polyurethane scaffold. The method applied is based on a combined strategy involving hydroxyapatite biomimetic deposition on polyurethane surface using a Supersaturated Calcification Solution (SCS), combined with silver ions reduction and in-situ crystallization processes on hydroxyapatite-polyurethane surface by sample immersing in AgNO3 solution. The morphology, composition and phase structure of the prepared samples were characterized by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS) measurements. The data obtained show that a layer of hydroxyapatite was deposited on porous polyurethane support and the silver nanoparticles (average size 34.71 nm) were dispersed among and even on the hydroxyapatite crystals. Hydroxyapatite/polyurethane surface acts as a reducer and a stabilizing agent for silver ions. The surface plasmon resonance peak in UV-Vis absorption spectra showed an absorption maximum at 415 nm, indicating formation of silver nanoparticles. The hydroxyapatite-silver polyurethane scaffolds were tested against Staphylococcus aureus and Escherichia coli and the obtained data were indicative of good antibacterial properties of the materials. PMID:24411349

Ciobanu, Gabriela; Ilisei, Simona; Luca, Constantin

2014-02-01

299

Agar films containing silver nanoparticles as new supports for electromembrane extraction.  

PubMed

A new support containing silver nanoparticles to assist electromembrane extraction (EME) procedures is proposed. For the first time, synthesized agar films containing silver nanoparticles (AgNPs) have been used as a support for liquid membranes in EME. Agarose films of 20 ?m thickness containing 107.9 mg Ag/g agar were synthesized and characterized by transmission electron microscopy (TEM) and atomic force microscopy (AFM), showing isolated spherical silver nanoparticles of 20-30 nm diameter with homogeneous distribution. Nanometallic films were cut and glued to narrow bore glass tubes and used as supports for a dihexyl ether liquid membrane for use in an EME procedure. EME conditions were optimized and applied to the extraction of selected non-steroidal anti-inflammatory drugs (NSAIDs). The results were compared to those using polypropylene membranes (450 ?m and 100 ?m thickness), achieving 10- to 70-fold higher extraction efficiency. This article opens a new line of research into electrically assisted microextraction systems by combining other possible kinds of nanometallic films, including different metals, film functionalization through metallic NPs, and the use of low polarity solvents. Also, very low currents are obtained during the extraction process, which lead to high electromigration of the analytes. PMID:25519723

Hidalgo, Cristina Román; Ramos-Payán, María; Ocaña-González, Juan Antonio; Martín-Valero, María Jesús; Bello-López, Miguel Ángel

2015-02-01

300

Innovative method to avoid the reduction of silver ions to silver nanoparticles \\left( A{{g}^{+}}\\to Ag{}^\\circ \\right) in silver ion conducting based polymer electrolytes  

NASA Astrophysics Data System (ADS)

In this research work an innovative method is used to prevent the silver ion reduction in solid polymer electrolytes. The x-ray diffraction (XRD) results reveal the disruption of the crystalline nature of chitosan (CS) and formation of silver nanoparticles upon addition of silver triflate (AgTf) salt. The UV-vis measurement confirms the existence of silver nanoparticles via the broad surface plasmon resonance (SPR) peak. Upon the addition of Al2O3 nanoparticles the SPR peak intensity is greatly reduced. The amorphous domain of the CS:silver triflate (CS:AgTf) system increases with the addition of Al2O3 nanoparticles up to 4 wt.%. Deconvolution of the XRD results reveals that a larger crystallite size is obtained for higher Al2O3 concentrations and the peaks due to silver nanoparticles almost disappear. Scanning electron microscope (SEM) analyses show that Al2O3 nanoparticles are well dispersed at low concentrations and the leakage of chains of silver nanoparticles to the membrane surface almost disappear. The XRD, UV-vis, SEM and energy-dispersive x-ray (EDX) results strongly support that the reduction of silver ions to silver nanoparticles (Ag+ ? Ag°) in the CS:silver triflate system is significantly avoided upon the addition of an Al2O3 filler.

Aziz, Shujahadeen B.; Abidin, Zul Hazrin Z.; Kadir, M. F. Z.

2015-03-01

301

Preferential adhesion of silver nanoparticles onto crystal faces of alpha-cyclodextrin/carboxylic acids inclusion compounds.  

PubMed

Alpha-Cyclodextrin (alpha-CD) inclusion compounds containing the carboxylic acids (octanoic, decanoic, lauric or dodecanoic, myristic or tetradecanoic, palmitic or hexadecanoic and stearic or octadecanoic) as guests were synthesized and applied for preferential adhesion of silver nanoparticles (AgNPs). The binding affinity depends of the chain length of the respective guest and is most efficient for octanoic and decanoic acids. The immobilization of nanoparticles is caused by the spatial replacing of the stabilized shell of the nanoparticles by COOH groups of the guests molecules, located at the entrance of cavity of alpha-CD, corresponding to the {001} crystal plane. Crystalline coating with nanoparticles provides a means of storing of AgNPs on solids state without aggregation. The stabilization of the particles on the surface is valid for a given length and ordering of the guest in the cavities of the alpha-CD being the octanoic and decanoic acid the most appropriated. PMID:23447940

Rodríguez-Llamazares, S; Jara, P; Yutronic, N; Noyong, M; Fischler, M; Simon, U

2012-12-01

302

Controlled green synthesis of silver nanoparticles by Allium cepa and Musa acuminata with strong antimicrobial activity  

NASA Astrophysics Data System (ADS)

A controlled "green synthesis" approach to synthesize silver nanoparticles by Allium cepa and Musa acuminata plant extract has been reported. The effect of different process parameters, such as pH, temperature and time, on synthesis of Ag nanoparticles from plant extracts has been highlighted. The work reports an easy approach to control the kinetics of interaction of metal ions with reducing agents, stabilized by ammonia to achieve sub-10 nm particles with narrow size distribution. The nanoparticles have been characterized by UV-Visible spectra and TEM analysis. Excellent antimicrobial activity at extremely low concentration of the nanoparticles was observed against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Fusarium oxysporum which may allow their exploitation as a new generation nanoproduct in biomedical and agricultural applications.

Sahni, Geetika; Panwar, Amit; Kaur, Balpreet

2015-02-01

303

Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Emblica officinalis fruit extract.  

PubMed

A green straight forward method of synthesizing silver nanoparticles (AgNPs) in an aqueous medium was designed using Emblica officinalis (EO) fruit extract as stabilizer and reducer. The formation of AgNPs depends on the effect of extract concentration and pH were studied. The AgNPs was synthesized using E.officinalis (fruit extract) and nanoparticles were characterized using UV-Vis spectrophotometer, the presence of biomolecules of E.officinalis capped in AgNPs was found by FT-IR analysis, shape and size were examined by SEM and XRD. The XRD analysis respects the Bragg's law and confirmed the crystalline nature of silver nanoparticles. From XRD the average size of AgNPs was found to be around 15nm. AFM has proved to be very helpful in the determination and verification of various morphological features and parameters. EO fruit extract mediated AgNPs was synthesized and confirmed through kinetic behavior of nanoparticles. The shape of the bio-synthesized AgNPs was spherical. Potent biomolecules of E.officinalis such as polyphenols, glucose, and fructose was capped with AgNPs which reduces the toxicity. The synthesized AgNPs were tested for its antibacterial activity against the isolates by disc diffusion method. The obtained results confirmed that the E.officinalis fruit extract is a very good bioreductant for the synthesis of AgNPs. It was investigated that the synthesized AgNPs showed inhibition and had significant antibacterial against both gram-positive and gram-negative bacterial strains. PMID:25710891

Ramesh, P S; Kokila, T; Geetha, D

2015-05-01

304

Interaction between Silver Nanoparticles and Spinach Leaf  

NASA Astrophysics Data System (ADS)

Interactions of engineered nanoparticles (ENPs) with plant surfaces are critical to assessing the bioavailability of ENPs to edible plants and to further evaluating impacts of ENPs on ecological health and food safety. Silver nanoparticles (i.e., nanoAg) could enter the agroecosystems either as an active ingredient in pesticides or from other industrial and consumer applications. Thus, in the events of pesticide application, rainfall, and irrigation, vegetable leaves could become in contact and then interact with nanoAg. The present study was to assess whether the interaction of nanoAg with spinach leaves can be described by classical sorption models and to what extent it depends on and varies with dispersion methods, environmental temperature, and ion release. We investigated the stability and ion release of nanoAg dispersed by sodium dodecyl sulfate (SDS, 1%) and humic acid (HA, 10 mg C/L) solutions, as well as sorption and desorption of nanoAg on and from the fresh spinach leaf. Results showed SDS-nanoAg released about 2%-8% more Ag ion than HA-nanoAg. The sorption of Ag ion, described by the Freundlich model in the initial concentration range of 0.6-50 mg/L, was 2-4 times higher than that of nanoAg. The sorption of nanoAg on spinach leaf can be fitted by the Langmuir model, and the maximum sorption amount of HA-nanoAg and SDS-nanoAg was 0.21 and 0.41 mg/g, respectively. The higher sorption of SDS-nanoAg relative to that of HA-nanoAg could be partially resulted from the higher release of Ag ion from the former. The maximum desorption amount of HA-nanoAg and SDS-nanoAg in 1% SDS solution was 0.08 and 0.10 mg/g, respectively. NanoAg attachment on and its penetration to the spinach leaf was visualized by the Scanning Electron Microscope equipped with an Energy Dispersive Spectrometer (SEM-EDS). It is equally important that the less sorption of nanoAg under low environmental temperature could be partially due to the closure of stomata, as verified by SEM-EDS. CytoViva Hyperspectral Imaging System was also employed to map the distribution of nanoAg in the leaf profile. Significant sorption of nanoAg on spinach leaf should urge the precaution with potential widespread use of ENPs in agriculture.

Tian, Y.; Li, H.; Zhang, Y.; Riser, E.; He, S.; Zhang, W.

2013-12-01

305

Silver Nanoparticles as Real Topical Bullets for Wound Healing  

PubMed Central

Nanotechnology is on the threshold of providing a host of new materials and approaches, revolutionizing the medical and pharmaceutical fields. Several areas of medical care are already profiting from the advantage that nanotechnology offers. Recently, silver nanoparticles are attracting interest for a clinical application because of its potential biological properties such as antibacterial activity, anti-inflammatory effects, and wound healing efficacy, which could be exploited in developing better dressings for wounds and ulcers. This article reviews the role of silver nanoparticles in wound healing. PMID:24527370

Gunasekaran, Thirumurugan; Nigusse, Tadele; Dhanaraju, Magharla Dasaratha

2012-01-01

306

An insight into silver nanoparticles bioavailability in rats.  

PubMed

A comprehensive study of the bioavailability of orally administered silver nanoparticles (AgNPs) was carried out using a rat model. The silver uptake was monitored in liver and kidney tissues, as well as in urine and in feces. Significant accumulation of silver was found in both organs, the liver being the principal target of AgNPs. A significant (?50%) fraction of silver was found in feces whereas the fraction excreted via urine was negligible (< 0.01%). Intact silver nanoparticles were found in feces by asymmetric flow field-flow fractionation (AsFlFFF) coupled with UV-Vis analysis. Laser ablation-ICP MS imaging showed that AgNPs were able to penetrate into the liver, in contrast to kidneys where they were retained in the cortex. Silver speciation analysis in cytosols from kidneys showed the metallothionein complex as the major species whereas in the liver the majority of silver was bound to high-molecular (70-25 kDa) proteins. These findings demonstrate the presence of Ag(i), released by the oxidation of AgNPs in the biological environment. PMID:25363792

Jiménez-Lamana, Javier; Laborda, Francisco; Bolea, Eduardo; Abad-Álvaro, Isabel; Castillo, Juan R; Bianga, Juliusz; He, Man; Bierla, Katarzyna; Mounicou, Sandra; Ouerdane, Laurent; Gaillet, Sylvie; Rouanet, Jean-Max; Szpunar, Joanna

2014-12-01

307

Size-Controlled Dissolution of Organic-Coated Silver Nanoparticles  

SciTech Connect

The solubility of Ag NPs can affect their toxicity and persistence in the environment. We measured the solubility of organic-coated silver nanoparticles (Ag NPs) having particle diameters ranging from 5 to 80 nm that were synthesized using various methods, and with different organic polymer coatings including poly(vinylpyrrolidone) and gum arabic. The size and morphology of Ag NPs were characterized by transmission electron microscopy (TEM). X-ray absorption fine structure (XAFS) spectroscopy and synchrotron-based total X-ray scattering and pair distribution function (PDF) analysis were used to determine the local structure around Ag and evaluate changes in crystal lattice parameters and structure as a function of NP size. Ag NP solubility dispersed in 1 mM NaHCO{sub 3} at pH 8 was found to be well correlated with particle size based on the distribution of measured TEM sizes as predicted by the modified Kelvin equation. Solubility of Ag NPs was not affected by the synthesis method and coating as much as by their size. Based on the modified Kelvin equation, the surface tension of Ag NPs was found to be {approx}1 J/m{sup 2}, which is expected for bulk fcc (face centered cubic) silver. Analysis of XAFS, X-ray scattering, and PDFs confirm that the lattice parameter, {alpha}, of the fcc crystal structure of Ag NPs did not change with particle size for Ag NPs as small as 6 nm, indicating the absence of lattice strain. These results are consistent with the finding that Ag NP solubility can be estimated based on TEM-derived particle size using the modified Kelvin equation for particles in the size range of 5-40 nm in diameter.

Ma, Rui; Levard, Clément; Marinakos, Stella M.; Cheng, Yingwen; Liu, Jie; Michel, F. Marc; Brown, Jr., Gordon E.; Lowry, Gregory V. (Duke)

2012-04-02

308

Transport of Silver Nanoparticles in Saturated Soil Columns  

NASA Astrophysics Data System (ADS)

The effect of soil properties on the transport of silver nanoparticles (AgNPs) was studied in a set of laboratory column experiments. Mediterranean red sandy clay soil was collected from the upper 0-10 cm layer of an agricultural field at Beit Dagan, Israel. Following sieving, columns were packed with different size fractions (having similar composition and properties) of the soil and fully saturated with water. The transport of AgNPs in the column was monitored by collection of solution from the outlet and analysis by ICP-MS and DLS; bromide was also used as a benchmark tracer. The AgNPs were synthesized from dissolved silver citrate solution by chemical reduction. The produced particles had an average size of ~30 nm, and yielded a stable suspension in water with zeta potential of -40 mV. This facilitated their transport through the negatively charged soil. Two main features were observed. First, in all column experiments, early breakthrough of AgNPs in the soil column was observed, which may indicate preferential flow. Second, the distributions of AgNPs along the soil columns at the end of each experiment suggest that mechanical filtration is the main mechanism for AgNP retention in the soil. AgNP transport through the column decreased when the finer size fraction of the soil was used. Micro-CT and image analysis tools were used to investigate structural features of the soil pore space. These analyses suggest that although there is a difference of about three orders of magnitude between the AgNP particle diameter and the average pore diameter, the pore diameter distribution in the soil strongly affects the transport of AgNPs.

Sagee, O.; Dror, I.; Berkowitz, B.

2011-12-01

309

Facile preparation of silver nanoparticle films as an efficient surface-enhanced Raman scattering substrate  

NASA Astrophysics Data System (ADS)

Here, we report a new and facile method to prepare silver nanoparticles (Ag NPs) film for surface-enhanced Raman scattering (SERS)-based sensing. The porous Ni foam was used as a template to generate high quality of Ag NPs by seed-mediated growth of metallic nanoparticles. The preparation process is very economic and environment-friendly, can achieve the recovery of the raw materials. We found that the type of silver-plating solution and the growth time are two key factors to determine the magnitude of SERS signal enhancement. Using rhodamine 6G (R6G) and 4-animothiophenol (4-ATP) as probe molecules, the created Ag NP films exhibited relatively high enhancement ability, good stability, and well reproducibility. The synthesized SERS-active substrate was further used to detect melamine molecules, an illegal additive in infant milk powder, and the limitation of detection can reach 1 ?M.

Sun, Yujing; Zhang, Yue; Shi, Yan; Xiao, Xianping; Dai, Haichao; Hu, Jingting; Ni, Pengjuan; Li, Zhuang

2013-10-01

310

Gripe water-mediated green synthesis of silver nanoparticles and their applications in nonlinear optics and surface-enhanced Raman spectroscopy  

NASA Astrophysics Data System (ADS)

In the present study, silver nanoparticles were synthesized from aqueous silver nitrate through a simple, eco-friendly and `green' method using gripe water as reducing as well as stabilizing agent. Control over the dispersity of silver (Ag) nanoparticles was attained by altering the synthesis process. The size and morphology of the particles were perceived using high-resolution transmission electron microscope and the surface plasmon resonance of the prepared nanoparticles was observed by UV-VIS spectrum. Herein, we report the nonlinear optical behavior and surface-enhanced Raman spectroscopy of silver nanoparticles with different particle size and dispersity. The nonlinear optical behavior was studied by single beam Z-scan technique using tunable Ti: Sapphire mode-locked femtosecond laser as source. The nonlinear optical parameters such as the nonlinear refractive index, nonlinear absorption coefficient ? and the third-order nonlinear susceptibility ? 3 of the prepared Ag nanoparticles were obtained for various wavelengths by tuning the wavelength of the laser from 700 to 950 nm. Surface-enhanced Raman spectroscopy (SERS) is an inspiring phenomenon especially in the case of silver nanoparticles. The as-synthesized silver nanoparticles show huge enhancements in the order of 109 in the Raman spectrum of rhodamine 6G dye.

Kirubha, E.; Vishista, K.; Palanisamy, P. K.

2014-11-01

311

Mangifera Indica leaf-assisted biosynthesis of well-dispersed silver nanoparticles  

NASA Astrophysics Data System (ADS)

The use of various parts of plants for the synthesis of nanoparticles is considered as a green technology as it does not involve any harmful chemicals. The present study reports a facile and rapid biosynthesis of well-dispersed silver nanoparticles. The method developed is environmentally friendly and allows the reduction to be accelerated by changing the temperature and pH of the reaction mixture consisting of aqueous AgNO 3 and Mangifera Indica leaf extract. At a pH of 8, the colloid consists of well-dispersed triangular, hexagonal and nearly spherical nanoparticles having size ˜20 nm. The UV-vis spectrum of silver nanoparticles gave surface plasmon resonance (SPR) at 439 nm. The synthesized nanocrystals were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Water soluble organics present in the leaf are responsible for the reduction of silver ions. This green method provides faster synthesis comparable to chemical methods and can be used in areas such as cosmetics, foods and medical applications.

Philip, Daizy

2011-01-01

312

Physicochemical characterization and in vitro hemolysis evaluation of silver nanoparticles.  

PubMed

Silver nanomaterials are increasingly being used as antimicrobial agents in medical devices. This study assessed the in vitro hemolytic potential of unbound silver particles in human blood to determine which physical and chemical particle properties contribute to mechanisms of red blood cell (RBC) damage. Four silver particle powders (two nano-sized and two micron-sized) were dispersed in water and characterized using transmission electron microscopy, dynamic light scattering, surface-enhanced Raman spectroscopy, and zeta potential measurement. Particle size and agglomeration were dependent on the suspension media. Under similar conditions to the hemolysis assay, with the particles added to phosphate buffered saline (PBS) and plasma, the size of the nanoparticles increased compared with particles suspended in water alone due to interaction with chloride ions and plasma proteins. To determine hemolysis response, aqueous particle suspensions were mixed with heparinized human blood diluted in PBS for 3.5 h at 37°C. Both nanoparticle preparations were significantly more hemolytic than micron-sized particles at equivalent mass concentrations > 220 ?g/ml and at estimated surface area concentrations > 10 cm(2)/ml. The presence or absence of surface citrate on nanoparticles showed no significant difference in hemolysis. However, the aqueous nanoparticle preparations released significantly more silver ions than micron-sized particles, which correlated with increased hemolysis. Although significant size changes occurred to the silver particles due to interaction with media components, the higher level of in vitro hemolysis observed with nanoparticles compared with micron-sized particles may be related to their greater surface area, increased silver ion release, and direct interaction with RBCs. PMID:21652737

Choi, Jonghoon; Reipa, Vytas; Hitchins, Victoria M; Goering, Peter L; Malinauskas, Richard A

2011-09-01

313

Interaction studies between biosynthesized silver nanoparticle with calf thymus DNA and cytotoxicity of silver nanoparticles.  

PubMed

The interaction of calf thymus DNA (CTDNA) with silver nanoparticles (SNP) has been investigated following spectroscopic studies, analysis of melting temperature (Tm) curves and hydrodynamic measurement. In spectrophotometric titration and thermal denaturation studies of CTDNA it was found that SNP can form a complex with double-helical DNA and the increasing value of Tm also supported the same. The association constant of SNP with DNA from UV-Vis study was found to be 4.1×10(3)L/mol. The fluorescence emission spectra of intercalated ethidium bromide (EB) with increasing concentration of SNP represented a significant reduction of EB intensity and quenching of EB fluorescence. The results of circular dichroism (CD) suggested that SNP can change the conformation of DNA. From spectroscopic, hydrodynamic, and DNA melting studies, SNP has been found to be a DNA groove binder possessing partial intercalating property. Cell cytotoxicity of SNP was compared with that of normal silver salt solution on HeLa cells. Our results show that SNP has less cytotoxicity compared to its normal salt solution and good cell staining property. PMID:25668698

Roy, Swarup; Sadhukhan, Ratan; Ghosh, Utpal; Das, Tapan Kumar

2015-04-15

314

Adsorption mechanisms of RNA mononucleotides on silver nanoparticles.  

PubMed

Surface-enhanced Raman scattering (SERS) of four RNA mononucleotides (AMP, GMP, CMP and UMP) has been studied on the citrate-reduced silver colloid aggregated with sodium sulfate. Concentration dependent spectra in the range of 1×10(-7)-1×10(-4) mol dm(-3) were obtained, assigned and interpreted according to the surface selection rules. For purine mononucleotides, AMP and GMP, adsorption onto the silver nanoparticles through the six-membered ring of the nitrogenous base was suggested. Concentration dependent splitting of the ring breathing band in the spectra of AMP indicated coexistence of two species on the silver surface, which differed in contribution of the adenine N1 atom and the exocyclic NH2 group in binding. Unlike the AMP spectra, the spectra of GMP implied only one mode of adsorption of the molecules onto the silver nanoparticles, taking place through the guanine N1H and C=O group. Weak SERS spectra of pyrimidine mononucleotides, CMP and UMP, pointed to involvement of carbonyl oxygen in adsorption process, whereby the molecules adopted the position on the nanoparticles with ribose close to the metal surface. Intense bands in the low wavenumber region, associated with stretching of the formed Ag-N and/or Ag-O bonds, supported chemical binding of the RNA mononucleotides with the silver surface. PMID:25306131

Miljani?, Snežana; Dijanoši?, Adriana; Mati?, Ivona

2015-02-25

315

Adsorption mechanisms of RNA mononucleotides on silver nanoparticles  

NASA Astrophysics Data System (ADS)

Surface-enhanced Raman scattering (SERS) of four RNA mononucleotides (AMP, GMP, CMP and UMP) has been studied on the citrate-reduced silver colloid aggregated with sodium sulfate. Concentration dependent spectra in the range of 1 × 10-7-1 × 10-4 mol dm-3 were obtained, assigned and interpreted according to the surface selection rules. For purine mononucleotides, AMP and GMP, adsorption onto the silver nanoparticles through the six-membered ring of the nitrogenous base was suggested. Concentration dependent splitting of the ring breathing band in the spectra of AMP indicated coexistence of two species on the silver surface, which differed in contribution of the adenine N1 atom and the exocyclic NH2 group in binding. Unlike the AMP spectra, the spectra of GMP implied only one mode of adsorption of the molecules onto the silver nanoparticles, taking place through the guanine N1H and Cdbnd O group. Weak SERS spectra of pyrimidine mononucleotides, CMP and UMP, pointed to involvement of carbonyl oxygen in adsorption process, whereby the molecules adopted the position on the nanoparticles with ribose close to the metal surface. Intense bands in the low wavenumber region, associated with stretching of the formed Agsbnd N and/or Agsbnd O bonds, supported chemical binding of the RNA mononucleotides with the silver surface.

Miljani?, Snežana; Dijanoši?, Adriana; Mati?, Ivona

2015-02-01

316

SERS spectroscopy of nanocomposite porous films containing silver nanoparticles  

NASA Astrophysics Data System (ADS)

It is demonstrated that surface-enhanced Raman scattering spectroscopy allows detecting 10-10 M Rhodamine 6G (Rh 6G) on nanocomposite films containing silver nanoparticles with an amplification factor of 3 × 107. The films used for SERS, which exhibit gradients of thickness and have silver particles and pores of different size, were obtained by pulse laser deposition from the low-energy backward erosion flux. To activate the SERS signal, the films were treated in solutions of metal chlorides and hydrogen chloride to achieve formation of anions of [AgCl2]- complexes. The composition of shells of silver nanoparticles, in particular, replacement of silver compounds preventing Rh 6G adsorption by anions of [AgCl2]- complexes enabling adsorption of Rh 6G cation between them, has been monitored by means of SERS spectroscopy. The obtained SERS spectra of Rh 6G in several locations on the film surface allowed determining the area with an optimal size of silver nanoparticles that gives rise to highest SERS signal intensity. The transmission spectra of the films revealed narrowing of the band corresponding to the local surface plasmon absorption, its shift toward the blue spectral region, and enhancement of plasmon resonance upon introduction of chlorine anion. The changes in absorption spectra of the films correlate with the activation of the Rh 6G SERS spectra.

Kaganovich, E. B.; Krischenko, I. M.; Kravchenko, S. A.; Manoilov, E. G.; Golichenko, B. O.; Kolomys, A. F.; Strel'chuk, V. V.

2015-02-01

317

Electrochemical synthesis, characterisation and phytogenic properties of silver nanoparticles  

NASA Astrophysics Data System (ADS)

This work exemplifies a simple and rapid method for the synthesis of silver nanodendrite with a novel electrochemical technique. The antibacterial activity of these silver nanoparticles (Ag NPs) against pathogenic bacteria was investigated along with the routine study of optical and spectral characterisation. The optical properties of the silver nanoparticles were characterised by diffuse reflectance spectroscopy. The optical band gap energy of the electrodeposited Ag NPs was determined from the diffuse reflectance using Kubelka-Munk formula. X-ray diffraction (XRD) studies were carried out to determine the crystalline nature of the silver nanoparticles which confirmed the formation of silver nanocrystals. The XRD pattern revealed that the electrodeposited Ag NPs were in the cubic geometry with dendrite preponderance. The average particle size and the peak broadening were deliberated using Debye-Scherrer equation and lattice strain due to the peak broadening was studied using Williamson-Hall method. Surface morphology of the Ag NPs was characterised by high-resolution scanning electron microscope and the results showed the high degree of aggregation in the particles. The antibacterial activity of the Ag NPs was evaluated and showed unprecedented level antibacterial activity against multidrug resistant strains such as Staphylococcus aureus, Bacillus subtilis, Klebsiella pneumonia and Escherichia coli in combination with Streptomycin.

Singaravelan, R.; Bangaru Sudarsan Alwar, S.

2015-01-01

318

Influence of gold, silver and gold–silver alloy nanoparticles on germ cell function and embryo development  

PubMed Central

Summary The use of engineered nanoparticles has risen exponentially over the last decade. Applications are manifold and include utilisation in industrial goods as well as medical and consumer products. Gold and silver nanoparticles play an important role in the current increase of nanoparticle usage. However, our understanding concerning possible side effects of this increased exposure to particles, which are frequently in the same size regime as medium sized biomolecules and accessorily possess highly active surfaces, is still incomplete. That particularly applies to reproductive aspects, were defects can be passed onto following generations. This review gives a brief overview of the most recent findings concerning reprotoxicological effects. The here presented data elucidate how composition, size and surface modification of nanoparticles influence viablility and functionality of reproduction relevant cells derived from various animal models. While in vitro cultured embryos displayed no toxic effects after the microinjection of gold and silver nanoparticles, sperm fertility parameters deteriorated after co-incubation with ligand free gold nanoparticles. However, the effect could be alleviated by bio-coating the nanoparticles, which even applies to silver and silver-rich alloy nanoparticles. The most sensitive test system appeared to be in vitro oocyte maturation showing a dose-dependent response towards protein (BSA) coated gold–silver alloy and silver nanoparticles leading up to complete arrest of maturation. Recent biodistribution studies confirmed that nanoparticles gain access to the ovaries and also penetrate the blood–testis and placental barrier. Thus, the design of nanoparticles with increased biosafety is highly relevant for biomedical applications.

Rehbock, Christoph; Kues, Wilfried A

2015-01-01

319

The Speciation Of Silver Nanoparticles In Antimicrobial Fabric Before and After Exposure To A Hypochlorite/Detergent Solution  

EPA Science Inventory

Because of their antibacterial properties, silver nanoparticles are often used in consumer products. To assess environmental and/or human health risks from these nanoparticles, there is a need to identify the chemical transformations that Silver nanoparticles undergo in differen...

320

Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds  

PubMed Central

The advance in nanotechnology has enabled us to utilize particles in the size of the nanoscale. This has created new therapeutic horizons, and in the case of silver, the currently available data only reveals the surface of the potential benefits and the wide range of applications. Interactions between viral biomolecules and silver nanoparticles suggest that the use of nanosystems may contribute importantly for the enhancement of current prevention of infection and antiviral therapies. Recently, it has been suggested that silver nanoparticles (AgNPs) bind with external membrane of lipid enveloped virus to prevent the infection. Nevertheless, the interaction of AgNPs with viruses is a largely unexplored field. AgNPs has been studied particularly on HIV where it was demonstrated the mechanism of antiviral action of the nanoparticles as well as the inhibition the transmission of HIV-1 infection in human cervix organ culture. This review discusses recent advances in the understanding of the biocidal mechanisms of action of silver Nanoparticles. PMID:21812950

2011-01-01

321

Stirring time effect of silver nanoparticles prepared in glutathione mediated by green method  

PubMed Central

Background This study aims to investigate the influence of different stirring time for synthesis of silver nanoparticles in glutathione (GSH) aqueous solution. The silver nanoparticles (Ag-NPs) were prepared by green synthesis method using GSH as reducing agent and stabilizer, under moderate temperature at different stirring times. Silver nitrate (AgNO3) was taken as the metal precursor while Ag-NPs were prepared in the over reaction time. Results Formation of Ag-NPs was determined by UV–vis spectroscopy where surface plasmon absorption maxima can be observed at 344–354 nm from the UV–vis spectrum. The synthesized nanoparticles were also characterized by X-ray diffraction (XRD). The peaks in the XRD pattern confirmed that the Ag-NPs possessed a face-centered cubic and peaks of contaminated crystalline phases were unable to be located. Transmission electron microscopy (TEM) revealed that Ag-NPs synthesized were in spherical shape. Zeta potential results indicate that the stability of the Ag-NPs is increases at the 72 h stirring time of reaction comparison to GSH. The Fourier transform infrared (FT-IR) spectrum suggested the complexation present between GSH and Ag-NPs. The use of green chemistry reagents, such as peptide, provides green and economic features to this work. Conclusions Ag-NPs were successfully synthesized in GSH aqueous solution under moderate temperature at different stirring times. The study clearly showed that the Ag-NPs synthesized in the long times of stirring, thus, the kinetic of GSH reaction is very slow. TEM results shows that with the increase of stirring times the mean particle size of Ag-NPs become increases. The FT-IR spectrum suggested the complexation present between GSH and Ag-NPs. These suggest that Ag-NPs can be employed as an effective bacteria inhibitor and can be applied in medical field. PMID:24524329

2014-01-01

322

Extracellular synthesis of mycogenic silver nanoparticles by Cylindrocladium floridanum and its homogeneous catalytic degradation of 4-nitrophenol  

NASA Astrophysics Data System (ADS)

Green synthesis of extracellular mycogenic silver nanoparticles using the fungus, Cylindrocladium floridanum is reported. The synthesized mycogenic silver nanoparticles were characterized using UV-Vis absorption spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) techniques. The nanoparticles exhibit fcc structure with Bragg's reflections of (1 1 1), (2 0 0), (2 2 0) and (3 1 1) was evidenced by XRD pattern, high-resolution TEM lattice fringes and circular rings in selected-area electron diffraction (SAED) pattern. The morphology of nanoparticles was roughly spherical in shape with an average size of ca. 25 nm. From FTIR spectrum, it was found that the biomolecules with amide I and II band were involved in the stabilization of nanoparticles. These mycogenic silver nanoparticles exhibited the homogeneous catalytic potential in the reduction of pollutant, 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) using sodium borohydride, which followed a pseudo-first-order kinetic model. Thus, the synthesis of metal nanoparticles using sustainable microbial approach opens up possibilities in the usage of mycogenic metal nanoparticles as catalysts in various chemical reactions.

Narayanan, Kannan Badri; Park, Hyun Ho; Sakthivel, Natarajan

2013-12-01

323

Selective growth and integration of silver nanoparticles on silver nanowires at room conditions for transparent nano-network electrode.  

PubMed

Recently, metal nanowires have received great research interests due to their potential as next-generation flexible transparent electrodes. While great efforts have been devoted to develop enabling nanowire electrodes, reduced contact resistance of the metal nanowires and improved electrical stability under continuous bias operation are key issues for practical applications. Here, we propose and demonstrate an approach through a low-cost, robust, room temperature and room atmosphere process to fabricate a conductive silver nano-network comprising silver nanowires and silver nanoparticles. To be more specific, silver nanoparticles are selectively grown and chemically integrated in situ at the junction where silver nanowires meet. The site-selective growth of silver nanoparticles is achieved by a plasmon-induced chemical reaction using a simple light source at very low optical power density. Compared to silver nanowire electrodes without chemical treatment, we observe tremendous conductivity improvement in our silver nano-networks, while the loss in optical transmission is negligible. Furthermore, the silver nano-networks exhibit superior electrical stability under continuous bias operation compared to silver nanowire electrodes formed by thermal annealing. Interestingly, our silver nano-network is readily peeled off in water, which can be easily transferred to other substrates and devices for versatile applications. We demonstrate the feasibly transferrable silver conductive nano-network as the top electrode in organic solar cells. Consequently, the transparent and conductive silver nano-networks formed by our approach would be an excellent candidate for various applications in optoelectronics and electronics. PMID:25285984

Lu, Haifei; Zhang, Di; Ren, Xingang; Liu, Jian; Choy, Wallace C H

2014-10-28

324

Ecosystem protection by effluent bioremediation: silver nanoparticles impregnation in a textile fabrics process  

Microsoft Academic Search

This work studied a bioremediation process of silver nanoparticles with the bacterium Chromobacterium violaceum. These nanoparticles were obtained from several washes of cotton fabrics impregnated with silver nanoparticles produced by\\u000a the fungus Fusarium oxysporum. The optimized growth of C. violaceum for silver nanoparticles bioremediation was obtained. The effluents of wash process of the cotton fabric were efficiently\\u000a treated with C.

Nelson Durán; Priscyla D. Marcato; Oswaldo L. Alves; João P. S. Da Silva; Gabriel I. H. De Souza; Flávio A. Rodrigues; Elisa Esposito

2010-01-01

325

Green synthesis of silver nanoparticles from the extract of the inflorescence of Cocos nucifera (Family: Arecaceae) for enhanced antibacterial activity.  

PubMed

Green synthesis of nanoparticles using plant source has been given much importance. In the present study, silver nanoparticles (AgNPs) were synthesized using the ethyl acetate and methanol (EA: M 40:60) extracts of the inflorescence of the tree Cocous nucifera. The synthesized nanoparticles were characterized by UV-visible spectroscope, FTIR and TEM analysis. The particle size of the synthesized AgNPs was 22nm as confirmed by TEM. The qualitative assessment of reducing potential of the extracts of inflorescence indicated the presence of reducing agents. Synthesized AgNPs exhibited significant antimicrobial activity against human bacterial pathogens viz., Klebsiella pneumoniae, Bacillus subtilis, Pseudomonas aeruginosa and Salmonella paratyphi. PMID:24762541

Mariselvam, R; Ranjitsingh, A J A; Usha Raja Nanthini, A; Kalirajan, K; Padmalatha, C; Mosae Selvakumar, P

2014-08-14

326

A facile biomimetic preparation of highly stabilized silver nanoparticles derived from seed extract of Vigna radiata and evaluation of their antibacterial activity  

NASA Astrophysics Data System (ADS)

The significant antibacterial activity of silver nanoparticles draws the major attention toward the present nanobiotechnology. Also, the use of plant material for the synthesis of metal nanoparticles is considered as a green technology. In this context, a non-toxic, eco-friendly, and cost-effective method has been developed for the synthesis of silver nanoparticles using seed extract of mung beans (Vigna radiata). The synthesized nanoparticles have been characterized by UV-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), atomic absorption spectroscopy (AAS), and X-ray diffraction (XRD). The UV-visible spectrum showed an absorption peak at around 440 nm. The different types of phytochemicals present in the seed extract synergistically reduce the Ag metal ions, as each phytochemical is unique in terms of its structure and antioxidant function. The colloidal silver nanoparticles were observed to be highly stable, even after 5 months. XRD analysis showed that the silver nanoparticles are crystalline in nature with face-centered cubic geometry and the TEM micrographs showed spherical particles with an average size of 18 nm. Further, the antibacterial activity of silver nanoparticles was evaluated by well-diffusion method and it was observed that the biogenic silver nanoparticles have an effective antibacterial activity against Escherichia coli and Staphylococcus aureus. The outcome of this study could be useful for nanotechnology-based biomedical applications.

Choudhary, Manoj Kumar; Kataria, Jyoti; Cameotra, Swaranjit Singh; Singh, Jagdish

2015-02-01

327

Green synthesis and characterization of silver nanoparticle using Aloe barbadensis  

SciTech Connect

Green synthesis of silver nanoparticles was achieved by simple visible light irradiation using aloe barbadensis leaf extract as reducing agent. UV-Vis spectroscopic analysis was used for confirmation of the successful formation of nanoparticles. Investigated the effect of light irradiation time on the light absorption of the nanoparticles. It is observed that upto 25 minutes of light irradiation, the absorption is linearly increasing with time and after that it becomes saturated. Finally, theoretically fitted the time-absorption graph and modeled a relation between them with the help of simulation software.

Thappily, Praveen, E-mail: pravvmon@gmail.com, E-mail: shiiuvenus@gmail.com; Shiju, K., E-mail: pravvmon@gmail.com, E-mail: shiiuvenus@gmail.com [Laboratory for Molecular Photonics and Electronics (LAMP), Department of Physics, National Institute of Technology, Calicut, Kerala 673601 (India)

2014-10-15

328

A new, simple, green, and one-pot four-component synthesis of bare and poly(?,?, L-glutamic acid)-capped silver nanoparticles  

PubMed Central

A simple and green chemical method has been developed to synthesize stable bare and capped silver nanoparticles based on the reduction of silver ions by glucose and capping by poly(?,?,L-glutamic acid) (PGA). The use of ammonia during synthesis was avoided. PGA has had a dual role in the synthesis and was used as a capping agent to make the silver nanoparticle more biocompatible and to protect the nanoparticles from agglomerating in the liquid medium. The synthesized PGA-capped silver nanoparticles in the size range 5–45 nm were stable over long periods of time, without signs of precipitation. Morphological examination has shown that the silver nanoparticles had a nearly spherical, multiply twinned structure. The effects of the reaction temperature and the reaction time during the synthesis were investigated too. The biocompatibility of the PGA-capped silver nano-particles is discussed in terms of in vitro toxicity with human intestinal Caco-2 cells. The samples were characterized by UV–Visible spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, and zeta potential measurements. PMID:24062597

Savanovi?, Igor; Uskokovi?, Vuk; Škapin, Sre?o D.; Bra?ko, Ines; Jovanovi?, Uroš; Uskokovi?, Dragan

2013-01-01

329

Synthesis of silver nanoparticles using Solanum trilobatum fruits extract and its antibacterial, cytotoxic activity against human breast cancer cell line MCF 7.  

PubMed

In the present study, we have synthesized silver nanoparticles by a simple and eco-friendly method using unripe fruits of Solanum trilobatum. The aqueous silver ions when exposed to unripe fruits extract were reduced and stabilized over long time resulting in biosynthesis of surface functionalized silver nanoparticles. The bio-reduced silver nanoparticles were characterized by UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDX) and X-ray diffraction (XRD). These biologically synthesized silver nanoparticles were tested for its antibacterial activity against few human pathogenic bacteria including Gram-positive (Streptococcus mutans, Enterococcus faecalis) and Gram-negative (Escherichia coli, Klebsiella pneumoniae) bacteria. In addition, we also demonstrated anticancer activity of these nanoparticles in vitro against human breast cancer cell line (MCF 7) using MTT, nuclear morphology assay, Western blot and RT-PCR expression. These results taken together show the potential applications of biosynthesized silver nanoparticles using S. trilobatum fruits. PMID:25613692

Ramar, Manikandan; Manikandan, Beulaja; Marimuthu, Prabhu Narayanan; Raman, Thiagarajan; Mahalingam, Anjugam; Subramanian, Palanisamy; Karthick, Saravanan; Munusamy, Arumugam

2015-04-01

330

Magnetron sputtering synthesis silver and organic PEO nanocomposite  

Microsoft Academic Search

A nanocomposite, silver nanoparticles embedded into polyethylene oxide (PEO) is synthesized by magnetron sputtering. The embedded silver in PEO matrix is confirmed by transmission electron microscopy (TEM) image, X-ray diffraction (XRD) pattern, and atomic force microscopy (AFM) analysis. By TEM image the sizes of silver nanoparticles are found to be tunable, and the silver crystallization is preferentially grown in facet

Qiang Chen; Meili Zhou; Yabo Fu; Jing Weng; Yuefei Zhang; Lei Yue; Fenyan Xie; Chunqing Huo

2008-01-01

331

Assessment of silver nanoparticle-induced physiological and molecular changes in Arabidopsis thaliana.  

PubMed

In this study, the effect of silver nanoparticles and silver ions on Arabidopsis thaliana was investigated at physiological and molecular levels. The seedlings were grown in sublethal concentrations of silver nanoparticles and silver ions (0.2, 0.5, and 1 mg/L) in 1/4 Hoagland's medium for 14 days under submerged hydroponic conditions. Significantly higher reduction in the total chlorophyll and increase in anthocyanin content were observed after exposure to 0.5 and 1 mg/L silver nanoparticles as compared to similar concentrations of silver ions. Lipid peroxidation increased significantly after exposure to 0.2, 0.5, and 1 mg/L of silver nanoparticles and 0.5 and 1 mg/L of silver ions. Qualitative analysis with dichloro-dihydro-fluorescein diacetate and rhodamine 123 fluorescence showed a dose-dependent increase in reactive oxygen species production and changes in mitochondrial membrane potential in the roots of seedlings exposed to different concentrations of silver nanoparticles. Real-time PCR analysis showed significant upregulation in the expression of sulfur assimilation, glutathione biosynthesis, glutathione S-transferase, and glutathione reductase genes upon exposure to silver nanoparticles as compared with silver ions. Overall, based on the physiological and molecular level responses, it was observed that exposure to silver nanoparticles exerted more toxic response than silver ions in A. thaliana. PMID:24723349

Nair, Prakash M Gopalakrishnan; Chung, Ill Min

2014-07-01

332

The general synthesis of Ag nanoparticles anchored on silver vanadium oxides: towards high  

E-print Network

The general synthesis of Ag nanoparticles anchored on silver vanadium oxides: towards high-pot synthesis of Ag nanoparticles uniformly anchored on silver vanadium oxides (SVOs) including AgVO3, Ag2V4O11, silver vanadium oxides (SVOs) with a number of phases can be obtained using variations in reaction

Cao, Guozhong

333

Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains  

Microsoft Academic Search

Extracellular production of metal nanoparticles by several strains of the fungus Fusarium oxysporum was carried out. It was found that aqueous silver ions when exposed to several Fusarium oxysporum strains are reduced in solution, thereby leading to the formation of silver hydrosol. The silver nanoparticles were in the range of 20–50 nm in dimensions. The reduction of the metal ions

Nelson Durán; Priscyla D Marcato; Oswaldo L Alves; Gabriel IH De Souza; Elisa Esposito

2005-01-01

334

Photoinduced formation and aggregation of silver nanoparticles at the surface of carboxymethylcellulose films  

Microsoft Academic Search

Formation and aggregation of photolytic silver nanoparticles at the surface of silver salt of carboxymethylcellulose films (CMCAg films) have been investigated. Detailed X-ray photoelectron spectroscopy (XPS) study and field emission type scanning electron microscopy (FE-SEM) observation have been carried out to characterize silver nanoparticles at the film surface. When the CMCAg films were irradiated with UV light in wet air

Toshihito Miyama; Yoshiro Yonezawa

2004-01-01

335

Optical absorption properties of dispersed gold and silver alloy nanoparticles.  

PubMed

The oldest topic in nanoscience is the size-dependent optical properties of gold and silver colloids or nanoparticles, first investigated scientifically by Michael Faraday in 1857. In the modern era, advances in both synthesis and characterization have resulted in new insights into the size-dependent absorbance of Au and Ag nanoparticles with sizes below the classical limit for Mie theory. In this paper we discuss the synthesis and properties of core/shell and nanoalloy particles of Au and Ag, compare them to particles of pure gold and silver, and discuss how alloying affects nanoparticle chemical stability. We show that composition, size, and nanostructure (e.g., core/shell vs quasi-random nanoalloy) can all be employed to adjust the optical absorbance properties. The type of nanostructure--core/shell vs alloy--is reflected in their optical absorbance features. PMID:19708105

Wilcoxon, Jess

2009-03-01

336

Bacterial growth on a superhydrophobic surface containing silver nanoparticles  

NASA Astrophysics Data System (ADS)

The antibacterial effect of silver can be exploited in the food and beverage industry and medicinal applications to reduce biofouling of surfaces. Very small amount of silver ions are enough to destructively affect the metabolism of bacteria. Moreover, superhydrophobic properties could reduce bacterial adhesion to the surface. In this study we fabricated superhydrophobic surfaces that contained nanosized silver particles. The superhydrophobic surfaces were manufactured onto stainless steel as combination of ceramic nanotopography and hydrophobication by fluorosilane. Silver nanoparticles were precipitated onto the surface by a chemical method. The dissolution of silver from the surface was tested in an aqueous environment under pH values of 1, 3, 5, 7, 9, 11 and 13. The pH value was adjusted with nitric acid and ammonia. It was found that dissolution rate of silver increased as the pH of the solution altered from the pH of de-ionized water to lower and higher pH values but dissolution occurred also in de-ionized water. The antimicrobial potential of this coating was investigated using bacterial strains isolated from the brewery equipment surfaces. The results showed that the number of bacteria adhering onto steel surface was significantly reduced (88%) on the superhydrophobic silver containing coating.

Heinonen, S.; Nikkanen, J.-P.; Laakso, J.; Raulio, M.; Priha, O.; Levänen, E.

2013-12-01

337

Completely green synthesis of dextrose reduced silver nanoparticles, its antimicrobial and sensing properties.  

PubMed

We herein report the green synthesis of highly monodispersed, water soluble, stable and smaller sized dextrose reduced gelatin capped-silver nanoparticles (Ag-NPs) via an eco-friendly, completely green method. The synthesis involves the use of silver nitrate, gelatin, dextrose and water as the silver precursor, stabilizing agent, reducing agent and solvent respectively. By varying the reaction time, the temporal evolution of the growth, optical, antimicrobial and sensing properties of the as-synthesised Ag-NPs were investigated. The nanoparticles were characterized using UV-vis absorption spectroscopy, Fourier transform infra-red spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HR-TEM). The absorption maxima of the as-synthesized materials at different reaction time showed characteristic silver surface plasmon resonance (SPR) peak. The as-synthesised Ag-NPs show better antibacterial efficacy than the antibiotics; ciproflaxin and imipenem against Pseudomonas aeruginosa with minimum inhibition concentration (MIC) of 6 ?g/mL, and better efficacy than imipenem against Escherichia coli with MIC of 10 ?g/mL. The minimum bactericidal concentration (MBC) of the as-synthesised Ag-NPs is 12.5 ?g/mL. The sensitivity of the dextrose reduced gelatin-capped Ag-NPs towards hydrogen peroxide indicated that the sensor has a very good sensitivity and a linear response over wide concentration range of 10(-1)-10(-6)M H2O2. PMID:24721103

Mohan, Sneha; Oluwafemi, Oluwatobi S; George, Soney C; Jayachandran, V P; Lewu, Francis B; Songca, Sandile P; Kalarikkal, Nandakumar; Thomas, Sabu

2014-06-15

338

Green synthesis of the silver nanoparticles mediated by pullulan and 6-carboxypullulan.  

PubMed

Unoxidized and carboxylated pullulan (obtained by pullulan oxidation using TEMPO-sodium hypochlorite-sodium bromide system) have been used as mediators for the silver nanoparticles formation (AgNPs), under environment-friendly conditions: using aqueous solutions, room temperature and notably, by using both mediators as reducing and stabilizing agents. The formation of AgNPs was first screened by measuring the surface plasmon resonance peak in the range of 380-440 nm using UV-vis spectroscopy. The morphology of the synthesized silver nanoparticles was determined by TEM, which indicated that the AgNPs differ on shape and thickness of the polymer shell by varying the silver nitrate concentration, different size and shape of AgNPs was achieved. The presence of elemental silver and the crystalline structure of the AgNPs were confirmed by EDX and XRD analyses. Moreover, the possible functional groups of pullulan (oxidized pullulan) responsible for the reduction and stabilization of AgNPs were evaluated using FT-IR. The results showed that both, pullulan and 6-carboxypullulan could be successfully used as reducing as well as capping agents for the AgNPs synthesis which shows potential antimicrobial activity against Gram positive and Gram negative bacteria. PMID:25458267

Coseri, Sergiu; Spatareanu, Alina; Sacarescu, Liviu; Rimbu, Cristina; Suteu, Daniela; Spirk, Stefan; Harabagiu, Valeria

2015-02-13

339

A physiologically based pharmacokinetic model for ionic silver and silver nanoparticles  

PubMed Central

Silver is a strong antibiotic that is increasingly incorporated into consumer products as a bulk, salt, or nanosilver, thus potentially causing side-effects related to human exposure. However, the fate and behavior of (nano)silver in the human body is presently not well understood. In order to aggregate the existing experimental information, a physiologically based pharmacokinetic model (PBPK) was developed in this study for ionic silver and nanosilver. The structure of the model was established on the basis of toxicokinetic data from intravenous studies. The number of calibrated parameters was minimized in order to enhance the predictive capability of the model. We validated the model structure for both silver forms by reproducing exposure conditions (dermal, oral, and inhalation) of in vivo experiments and comparing simulated and experimentally assessed organ concentrations. Therefore, the percutaneous, intestinal, or pulmonary absorption fraction was estimated based on the blood silver concentration of the respective experimental data set. In all of the cases examined, the model could successfully predict the biodistribution of ionic silver and 15–150 nm silver nanoparticles, which were not coated with substances designed to prolong the circulatory time (eg, polyethylene glycol). Furthermore, the results of our model indicate that: (1) within the application domain of our model, the particle size and coating had a minor influence on the biodistribution; (2) in vivo, it is more likely that silver nanoparticles are directly stored as insoluble salt particles than dissolve into Ag+; and (3) compartments of the mononuclear phagocytic system play a minor role in exposure levels that are relevant for human consumers. We also give an example of how the model can be used in exposure and risk assessments based on five different exposure scenarios, namely dietary intake, use of three separate consumer products, and occupational exposure. PMID:24039420

Bachler, Gerald; von Goetz, Natalie; Hungerbühler, Konrad

2013-01-01

340

Consequence of silver nanoparticles embedment on the carrier mobility and space charge limited conduction in doped polyaniline  

NASA Astrophysics Data System (ADS)

The present study depicts a one-pot strategy to fabricate silver-polyaniline hybrid nanocomposites with superior and tunable electrical properties, supported by structural characterizations and detail analysis of their temperature dependent current density (J)-voltage (V) characteristics. TEM micrographs clearly reveal that the nanocomposites synthesized by this one-pot strategy contain higher dispersion of sliver nanoparticle within the polyaniline matrix with respect to that obtained from the embedment of externally pre-synthesized silver nanoparticles. The results obtained from the analysis of J-V characteristics indicate the prevalence of trapped charge-limited conduction mechanism in doped polyaniline and its nanocomposites. For the nanocomposites obtained from one-pot strategy, a transition of charge transport mechanism from deep exponential trap limited to shallow traps limited conduction has been occurred due to higher dispersion of silver nanoparticles within the polyaniline matrix. Such distinct variation of charge conduction is absent in the nanocomposites obtained from the embedment of externally pre-synthesized silver nanoparticles. A direct evaluation of carrier mobility as a function of electric field and temperature illustrates that the incorporation of only ?13 to 18 wt% of silver nanoparticles within the polyaniline matrix enhances the carrier mobility in a large extent by reducing the concentration of traps within the polymer matrix. The calculated mobility is consistent with the Poole-Frenkel form for the electrical field up to a certain temperature range. The nonlinear low temperature dependency of mobility of all the nanostructured samples has been explained by Mott variable range hopping conduction mechanisms. Qualitative estimation of various disorder parameters such as optimal hopping distance, localization lengths etc., would help us to outspread the strategies for the fabrication of new organic semiconducting nano-structured devices.

Biswas, Swarup; Dutta, Bula; Bhattacharya, Subhratanu

2014-02-01

341

Biosynthesis, characterization and antimicrobial activity of silver nanoparticles by Streptomyces sp. SS2.  

PubMed

In the present study the microbial biosynthesis of silver nanoparticles (AgNPs) by secondary metabolites of Streptomyces sp. SS2 in an eco-friendly approach has been reported. The Streptomyces sp. SS2 was isolated from the soil sediment of Similipal Biosphere Reserve. The identification of this strain was determined by phenotypical characteristics (morphological and biochemical) and molecular characterization method using 16 s rDNA sequencing. The morphological study was also done by high-resolution scanning electron microscopy. The preliminary characterization of biosynthesized silver nanoparticle was carried out using UV-Vis spectrum analysis, which showed an absorption peak at 420 nm corresponding to plasmon absorption of silver. The average size and charge (zeta potential) of the particles were found to be 67.95 ± 18.52 nm and -17.7 ± 5.30 mV, respectively. The functional groups were identified by FTIR studies and their morphology (round and spherical shape) was determined by scanning electron microscopy. The synthesized AgNPs exhibited excellent antibacterial activity against Escherichia coli (MTCC 1089), Bacillus subtilis (MTCC 7164), Staphylococcus epidermis (MTCC 3615), Vibrio cholerae (MTCC 3904) and Staphylococcus aureus (MTCC 1144). These biotechnological approaches of synthesis of nanoparticles can direct a new path in biomaterial sciences and enrich biomedical applications. PMID:24842223

Mohanta, Yugal Kishore; Behera, Sujit Kumar

2014-11-01

342

Fabrication of silver nanoparticles doped in the zeolite framework and antibacterial activity.  

PubMed

Using the chemical reduction method, silver nanoparticles (Ag NPs) were effectively synthesized into the zeolite framework in the absence of any heat treatment. Zeolite, silver nitrate, and sodium borohydride were used as an inorganic solid support, a silver precursor, and a chemical reduction agent, respectively. Silver ions were introduced into the porous zeolite lattice by an ion-exchange path. After the reduction process, Ag NPs formed in the zeolite framework, with a mean diameter of about 2.12-3.11 nm. The most favorable experimental condition for the synthesis of Ag/zeolite nanocomposites (NCs) is described in terms of the initial concentration of AgNO(3). The Ag/zeolite NCs were characterized by ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence, and Fourier transform infrared. The results show that Ag NPs form a spherical shape with uniform homogeneity in the particle size. The antibacterial activity of Ag NPs in zeolites was investigated against Gram-negative bacteria (ie, Escherichia coli and Shigella dysentriae) and Gram-positive bacteria (ie, Staphylococcus aureus and methicillin-resistant Staphylococcus aureus) by disk diffusion method using Mueller-Hinton agar at different sizes of Ag NPs. All of the synthesized Ag/zeolite NCs were found to have antibacterial activity. These results show that Ag NPs in the zeolite framework can be useful in different biological research and biomedical applications. PMID:21383858

Shameli, Kamyar; Ahmad, Mansor Bin; Zargar, Mohsen; Yunus, Wan Md Zin Wan; Ibrahim, Nor Azowa

2011-01-01

343

Fabrication of silver nanoparticles doped in the zeolite framework and antibacterial activity  

PubMed Central

Using the chemical reduction method, silver nanoparticles (Ag NPs) were effectively synthesized into the zeolite framework in the absence of any heat treatment. Zeolite, silver nitrate, and sodium borohydride were used as an inorganic solid support, a silver precursor, and a chemical reduction agent, respectively. Silver ions were introduced into the porous zeolite lattice by an ion-exchange path. After the reduction process, Ag NPs formed in the zeolite framework, with a mean diameter of about 2.12–3.11 nm. The most favorable experimental condition for the synthesis of Ag/zeolite nanocomposites (NCs) is described in terms of the initial concentration of AgNO3. The Ag/zeolite NCs were characterized by ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence, and Fourier transform infrared. The results show that Ag NPs form a spherical shape with uniform homogeneity in the particle size. The antibacterial activity of Ag NPs in zeolites was investigated against Gram-negative bacteria (ie, Escherichia coli and Shigella dysentriae) and Gram-positive bacteria (ie, Staphylococcus aureus and methicillin-resistant Staphylococcus aureus) by disk diffusion method using Mueller–Hinton agar at different sizes of Ag NPs. All of the synthesized Ag/zeolite NCs were found to have antibacterial activity. These results show that Ag NPs in the zeolite framework can be useful in different biological research and biomedical applications. PMID:21383858

Shameli, Kamyar; Ahmad, Mansor Bin; Zargar, Mohsen; Yunus, Wan Md Zin Wan; Ibrahim, Nor Azowa

2011-01-01

344

Iodine-125 radiolabeling of silver nanoparticles for in vivo SPECT imaging  

PubMed Central

Silver nanoparticles are increasingly finding applications in medicine; however, little is known about their in vivo tissue distribution. Here, we have developed a rapid method for radiolabeling of silver nanoparticles with iodine-125 in order to track in vivo tissue uptake of silver nanoparticles after systemic administration by biodistribution analysis and single-photon emission computerized tomography (SPECT) imaging. Poly(N-vinyl-2 -pyrrolidone)-capped silver nanoparticles with an average size of 12 nm were labeled by chemisorption of iodine-125 with a > 80% yield of radiolabeling efficiency. Radiolabeled silver nanoparticles were intravenously injected in Balb/c mice, and the in vivo distribution pattern of these nanoparticles was evaluated by noninvasive whole-body SPECT imaging, which revealed uptake of the nanoparticles in the liver and spleen. Biodistribution analysis confirmed predominant accumulation of the silver nanoparticles in the spleen (41.5%ID/g) and liver (24.5%ID/g) at 24 h. Extensive uptake in the tissues of the reticuloendothelial system suggests that further investigation of silver nanoparticle interaction with hepatic and splenic tissues at the cellular level is critical for evaluation of the in vivo effects and potential toxicity of silver nanoparticles. This method enables rapid iodine-125 radiolabeling of silver nanoparticles with a specific activity sufficient for in vivo imaging and biodistribution analysis. PMID:20856841

Chrastina, Adrian; Schnitzer, Jan E

2010-01-01

345

PEGylated silver doped zinc oxide nanoparticles as novel photosensitizers for photodynamic therapy against Leishmania.  

PubMed

We describe daylight responsive silver (Ag) doped semiconductor nanoparticles of zinc oxide (DSNs) for photodynamic therapy (PDT) against Leishmania. The developed materials were characterized by X-ray diffraction analysis (XRD), Rutherford backscattering (RBS), diffused reflectance spectroscopy (DRS), and band-gap analysis. The Ag doped semiconductor nanoparticles of zinc oxide were PEGylated to enhance their biocompatibility. The DSNs demonstrated effective daylight response in the PDT of Leishmania protozoans, through the generation of reactive oxygen species (ROS) with a quantum yield of 0.13 by nondoped zinc oxide nanoparticles (NDSN) whereas 0.28 by DSNs. None of the nanoparticles have shown any antileishmanial activity in dark, confirming that only ROS produced in the daylight were involved in the killing of leishmanial cells. Furthermore, the synthesized nanoparticles were found biocompatible. Using reactive oxygen species scavengers, cell death was attributable mainly to 77-83% singlet oxygen and 18-27% hydroxyl radical. The nanoparticles caused permeability of the cell membrane, leading to the death of parasites. Further, the uptake of nanoparticles by Leishmania cells was confirmed by inductively coupled plasma atomic emission spectroscopy (ICP-AES). We believe that these DSNs are widely applicable for the PDT of leishmaniasis, cancers, and other infections due to daylight response. PMID:25266330

Nadhman, Akhtar; Nazir, Samina; Khan, Malik Ihsanullah; Arooj, Syeda; Bakhtiar, Muhammad; Shahnaz, Gul; Yasinzai, Masoom

2014-12-01

346

Enhanced antibacterial activity of silver/polyrhodanine-composite-decorated silica nanoparticles.  

PubMed

This work describes the synthesis of silver/polyrhodanine-composite-decorated silica nanoparticles and their antibacterial activity. Polymerization of polyrhodanine proceeded preferentially on the surface of the silica nanoparticles where Ag(+) ions were located. In addition, the embedded Ag(+) ions were reduced to form metallic Ag nanoparticles; consequently, silver/polyrhodanine-composite nanoparticles (approximately 7 nm in diameter) were formed on the surface of the silica nanoparticles. The resulting nanostructure was investigated using electron microscopy, Fourier-transform infrared spectroscopy, ultraviolet-visible spectroscopy, and X-ray photoelectron spectroscopy. The silver/polyrhodanine-nanocomposite-decorated silica nanoparticles exhibited excellent antimicrobial activity toward gram-negative Escherichia coli and gram-positive Staphylococcus aureus because of the antibacterial effects of the silver nanoparticles and the polyrhodanine. The silver/polyrhodanine-composite nanoparticles may therefore have potential for use as a long-term antibacterial agent. PMID:24156562

Song, Jooyoung; Kim, Hyunyoung; Jang, Yoonsun; Jang, Jyongsik

2013-11-27

347

Antibacterial potential of biosynthesised silver nanoparticles using Avicennia marina mangrove plant  

NASA Astrophysics Data System (ADS)

The present study was aimed to identify the antibacterial potential of biosynthesised silver nanoparticles using different plant parts (leaves, bark and root) of Avicenna marina mangrove plant. Of the selected three different parts, the leaf extract showed the maximum synthesis of silver nanoparticles. The in vitro antibacterial assay (100 ?g disk-1 concentration) showed the results of maximum zone of inhibition with the E. coli (18.40 ± 0.97 mm), and minimum (10.87 ± 1.33 mm) zone of inhibition with S. aureus but the concentrations of MIC and MBC values ranged between 6.25 and 50.0 ?g ml-1 between the selected bacterial strains. The FTIR results of most potent leaf extract-synthesized silver nanoparticles showed the prominent peaks (620.967; 1,061.02; 1,116.58; 1,187.94; 1,280.50; 1,353.79; 1,384.64; 1,598.50; 1,629.56; 2,854.14 and 2,927.42) in different ranges. Further, the results of XRD analysis showed the 2 ? intense values (38.11 and 70.57) within the ranges of Bragg's reflection. In addition, the AFM analysis showed the results of particle sizes (71-110 nm), particle roughness (11.8 nm), maximum height of the particle roughness (111.8 nm), and average maximum height of the particle roughness (57.5 nm). It can be concluded from the present findings that, the biosynthesis of silver nanoparticles from the leaf extract of A. marina can be used as potential antibacterial agents.

Gnanadesigan, M.; Anand, M.; Ravikumar, S.; Maruthupandy, M.; Syed Ali, M.; Vijayakumar, V.; Kumaraguru, A. K.

2012-06-01

348

Biosynthesis of silver nanoparticles using Plectranthus amboinicus leaf extract and its antimicrobial activity  

NASA Astrophysics Data System (ADS)

This study reports the simple green synthesis method for the preparation of silver nanoparticles (Ag NPs) using Plectranthus amboinicus leaf extract. The pathway of nanoparticles formation is by means of reduction of AgNO3 by leaf extract, which acts as both reducing and capping agents. Synthesized Ag NPs were subjected to different characterizations for studying the structural, chemical, morphological, optical and antimicrobial properties. The bright circular fringes in SAED pattern and diffraction peaks in XRD profile reveals high crystalline nature of biosynthesized Ag NPs. Morphological studies shows the formation of nearly spherical nanoparticles. FTIR spectrum confirms the existence of various functional groups of biomolecules capping the nanoparticles. UV-visible spectrum displays single SPR band at 428 nm indicating the absence of anisotropic particles. The synthesized Ag NPs exhibited better antimicrobial property towards gram negative Escherichia coli and towards tested Penicillium spp. than other tested microorganisms using disc diffusion method. Finally it has proven that the synthesized bio-inspired Ag NPs have potent antimicrobial effect.

Ajitha, B.; Ashok Kumar Reddy, Y.; Sreedhara Reddy, P.

2014-07-01

349

Green preparation and spectroscopic characterization of plasmonic silver nanoparticles using fruits as reducing agents  

PubMed Central

Summary Chemicals typically available in plants have the capability to reduce silver and gold salts and to create silver and gold nanoparticles. We report the preparation of silver nanoparticles with sizes between 10 and 300 nm from silver nitrate using fruit extract collected from pineapples and oranges as reducing agents. The evolvement of a characteristic surface plasmon extinction spectrum in the range of 420 nm to 480 nm indicates the formation of silver nanoparticles after mixing silver nitrate solution and fruit extract. Shifts in plasmon peaks over time indicate the growth of nanoparticles. Electron microscopy shows that the shapes of the nanoparticles are different depending on the fruit used for preparation. The green preparation process can result in individual nanoparticles with a very poor tendency to form aggregates with narrow gaps even when aggregation is forced by the addition of NaCl. This explains only modest enhancement factors for near-infrared-excited surface enhanced Raman scattering. In addition to the surface plasmon band, UV–visible absorption spectra show features in the UV range which indicates also the presence of small silver clusters, such as Ag4 2+. The increase of the plasmon absorption correlates with the decrease of absorption band in the UV. This confirms the evolution of silver nanoparticles from silver clusters. The presence of various silver clusters on the surface of the “green” plasmonic silver nanoparticles is also supported by a strong multicolor luminesce signal emitted by the plasmonic particles during 473 nm excitation.

Ærøe Hyllested, Jes; Espina Palanco, Marta; Hagen, Nicolai; Mogensen, Klaus Bo

2015-01-01

350

Green preparation and spectroscopic characterization of plasmonic silver nanoparticles using fruits as reducing agents.  

PubMed

Chemicals typically available in plants have the capability to reduce silver and gold salts and to create silver and gold nanoparticles. We report the preparation of silver nanoparticles with sizes between 10 and 300 nm from silver nitrate using fruit extract collected from pineapples and oranges as reducing agents. The evolvement of a characteristic surface plasmon extinction spectrum in the range of 420 nm to 480 nm indicates the formation of silver nanoparticles after mixing silver nitrate solution and fruit extract. Shifts in plasmon peaks over time indicate the growth of nanoparticles. Electron microscopy shows that the shapes of the nanoparticles are different depending on the fruit used for preparation. The green preparation process can result in individual nanoparticles with a very poor tendency to form aggregates with narrow gaps even when aggregation is forced by the addition of NaCl. This explains only modest enhancement factors for near-infrared-excited surface enhanced Raman scattering. In addition to the surface plasmon band, UV-visible absorption spectra show features in the UV range which indicates also the presence of small silver clusters, such as Ag4 (2+). The increase of the plasmon absorption correlates with the decrease of absorption band in the UV. This confirms the evolution of silver nanoparticles from silver clusters. The presence of various silver clusters on the surface of the "green" plasmonic silver nanoparticles is also supported by a strong multicolor luminesce signal emitted by the plasmonic particles during 473 nm excitation. PMID:25821667

Ærøe Hyllested, Jes; Espina Palanco, Marta; Hagen, Nicolai; Mogensen, Klaus Bo; Kneipp, Katrin

2015-01-01

351

Electrochemical detection of DNA hybridization based on silver-enhanced gold nanoparticle label  

Microsoft Academic Search

An electrochemical detection method for analyzing sequence-specific DNA using gold nanoparticle DNA probes and subsequent signal amplification step by silver enhancement is described. The assay relies on the electrostatic adsorption of target oligonucleotides onto the sensing surface of the glassy carbon electrode (GCE) and its hybridization to the gold nanoparticle-labeled oligonucleotides DNA probe. After silver deposition onto gold nanoparticles, binding

Hong Cai; Yanqing Wang; Pingang He; Yuzhi Fang

2002-01-01

352

Extracellular biosynthesis, characterisation and in-vitro antibacterial potential of silver nanoparticles using Agaricus bisporus  

Microsoft Academic Search

Microbial silver nanoparticles have been known to have bactericidal effects but the antimicrobial mechanism has not been clearly revealed. The use of microorganisms in the synthesis of nanoparticles emerges as an ecofriendly and exciting approach. Here we report on the extracellular synthesis method for the preparation of silver nanoparticles in water using the extract of Agaricus bisporus, a naturally occurring

Dharumadurai Dhanasekaran; Selvanathan Latha; Subhasish Saha; Nooruddin Thajuddin; Annamalai Panneerselvam

2012-01-01

353

TOXICITY OF SILVER NANOPARTICLES TO DAPHNIA MAGNA  

EPA Science Inventory

Relatively little is known regarding toxicity of nanoparticles in the environment. It is widely assumed that the toxicity of nanoparticles will be less than that of their metallic ions. Also the effect of organics on metal toxicity is well established. Presented here are the resu...

354

ARSENIC REMOVAL USING SOL-GEL SYNTHESIZED TITANIUM DIOXIDE NANOPARTICLES  

EPA Science Inventory

In this study, the effectiveness of TiO2 nanoparticles in arsenic adsorption was examined. TiO2 particles (LS) were synthesized via sol-gel techniques and characterized for their crystallinity, surface area and pore volume. Batch adsorption studies were perf...

355

Attenuation of allergic airway inflammation and hyperresponsiveness in a murine model of asthma by silver nanoparticles  

PubMed Central

The use of silver in the past demonstrated the certain antimicrobial activity, though this has been replaced by other treatments. However, nanotechnology has provided a way of producing pure silver nanoparticles, and it shows cytoprotective activities and possible pro-healing properties. But, the mechanism of silver nanoparticles remains unknown. This study was aimed to investigate the effects of silver nanoparticles on bronchial inflammation and hyperresponsiveness. We used ovalbumin (OVA)-inhaled female C57BL/6 mice to evaluate the roles of silver nanoparticles and the related molecular mechanisms in allergic airway disease. In this study with an OVA-induced murine model of allergic airway disease, we found that the increased inflammatory cells, airway hyperresponsiveness, increased levels of IL-4, IL-5, and IL-13, and the increased NF-?B levels in lungs after OVA inhalation were significantly reduced by the administration of silver nanoparticles. In addition, we have also found that the increased intracellular reactive oxygen species (ROS) levels in bronchoalveolar lavage fluid after OVA inhalation were decreased by the administration of silver nanoparticles. These results indicate that silver nanoparticles may attenuate antigen-induced airway inflammation and hyperresponsiveness. And antioxidant effect of silver nanoparticles could be one of the molecular bases in the murine model of asthma. These findings may provide a potential molecular mechanism of silver nanoparticles in preventing or treating asthma. PMID:20957173

Park, Hee Sun; Kim, Keun Hwa; Jang, Sunhyae; Park, Ji Won; Cha, Hye Rim; Lee, Jeong Eun; Kim, Ju Ock; Kim, Sun Young; Lee, Choong Sik; Kim, Joo Pyung; Jung, Sung Soo

2010-01-01

356

Shaped platinum nanoparticles directly synthesized inside mesoporous silica supports.  

PubMed

It is difficult to deposit shape-controlled nanoparticles into a mesoporous framework while preserving the shape. For shaped platinum nanoparticles, which are typically 5-10 nm in size, capillary inclusion by sonication or the formation of a mesoporous framework around the shaped platinum nanoparticles has been attempted, but the nanoparticles aggregated or their shapes were degraded easily. In this work, we directly nucleated platinum on the surface inside a mesoporous silica support and controlled the overgrowth step, producing cubic shaped nanoparticles. Mercaptopropyltrimethoxysilane was used as an anchoring agent causing nucleation at the silica surface, and it also helped to shape the nanoparticles. Platinum nanocubes, which were synthesized with polymeric capping agents separately, were deposited inside the mesoporous silica by sonication, but most of the nanoparticles were clogged at the entrance to the pores, and the surface of the platinum had very few sites that were catalytically active, as evidenced by the small H2 uptake. Unshaped platinum nanoparticles, which were prepared by conventional wet impregnation, showed a similar amount of H2 uptake as the in situ shaped platinum cubes, but the selectivity for pyrrole hydrogenation was poorer towards the production of pyrrolidine. The mesoporosity and the residual thiol groups on the surface of the in situ shaped Pt nanocubes might cause a high selectivity for pyrrolidine. PMID:25177923

Kim, Jiwhan; Bae, Youn-Sang; Lee, Hyunjoo

2014-11-01

357

Biogenic Silver Nanoparticles by Gelidiella acerosa Extract and their Antifungal Effects  

PubMed Central

The synthesis, characterization and application of biologically synthesized nanomaterials are an important aspect in nanotechnology. The present study deals with the synthesis of silver nanoparticles (Ag-NPs) using the aqueous extract of red seaweed Gelidiella acerosa as the reducing agent to study the antifungal activity. The formation of Ag-NPs was confirmed by UV-Visible Spectroscopy, X-Ray Diffraction (XRD) pattern, Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The synthesized Ag-NPs was predominately spherical in shape and polydispersed. Fourier Transform Infra-Red (FT-IR) spectroscopy analysis showed that the synthesized nano-Ag was capped with bimolecular compounds which are responsible for reduction of silver ions. The antifungal effects of these nanoparticles were studied against Humicola insolens (MTCC 4520), Fusarium dimerum (MTCC 6583), Mucor indicus (MTCC 3318) and Trichoderma reesei (MTCC 3929). The present study indicates that Ag-NPs have considerable antifungal activity in comparison with standard antifungal drug, and hence further investigation for clinical applications is necessary. PMID:23408653

Vivek, Marimuthu; Kumar, Palanisamy Senthil; Steffi, Sesurajan; Sudha, Sellappa

2011-01-01

358

One pot light assisted green synthesis, storage and antimicrobial activity of dextran stabilized silver nanoparticles.  

PubMed

BackgroundGreen synthesis of nanomaterials finds the edge over chemical methods due to its environmental compatibility. Herein, we report green synthesis of silver nanoparticles (Ag NPs) mediated with dextran. Dextran was used as a stabilizer and capping agent to synthesize Ag NPs using silver nitrate (AgNO3) under diffused sunlight conditions.ResultsUV¿vis spectra of as synthesized Ag nanoparticles showed characteristic surface plasmon band in the range from ~405-452 nm. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies showed spherical Ag NPs in the size regime of ~50-70 nm. Face centered cubic lattice of Ag NPs was confirmed by powder X-ray diffraction (PXRD). FT-IR spectroscopy confirmed that dextran not only acts as reducing agent but also functionalizes the surfaces of Ag NPs to make very stable dispersions. Moreover, on drying, the solution of dextran stabilized Ag NPs resulted in the formation of thin films which were found stable over months with no change in the plasmon band of pristine Ag NPs. The antimicrobial assay of the as synthesized Ag NPs showed remarkable activity.ConclusionBeing significantly active against microbes, the Ag NPs can be explored for antimicrobial medical devices. PMID:25468206

Hussain, Muhammad; Shah, Abdullah; Jantan, Ibrahim; Tahir, Muhammad; Shah, Muhammad; Ahmed, Riaz; Bukhari, Syed

2014-12-01

359

Bio-functionalized silver nanoparticles for selective colorimetric sensing of toxic metal ions and antimicrobial studies.  

PubMed

Hibiscus Sabdariffa (Gongura) plant extracts (leaves (HL) and stem (HS)) were used for the first time in the green synthesis of bio-functionalized silver nanoparticles (AgNPs). The bio-functionality of AgNPs has been successfully utilized for selective colorimetric sensing of potentially health and environmentally hazardous Hg(2+), Cd(2+) and Pb(2+) metal ions at ppm level in aqueous solution. Importantly, clearly distinguishable colour for all three metal ions was observed. The influence of extract preparation condition and pH were also explored on the formation of AgNPs. Both selectivity and sensitivity differed for AgNPs synthesized from different parts of the plant. Direct correlation between the stability of green synthesized AgNPs at different pH and its antibacterial effects has been established. The selective colorimetric sensing of toxic metal ions and antimicrobial effect of green synthesized AgNPs demonstrated the multifunctional applications of green nanotechnology. PMID:24717716

Vinod Kumar, V; Anbarasan, S; Christena, Lawrence Rene; SaiSubramanian, Nagarajan; Philip Anthony, Savarimuthu

2014-08-14

360

Synthesis of biomacromolecule-stabilized silver nanoparticles and their surface-enhanced Raman scattering properties  

NASA Astrophysics Data System (ADS)

In this work, water soluble silver nanoparticles stabilized by biomacromolecule, were produced through using an aqueous solution of silver nitrate with Bovine Serum Albumin (BSA) under different reducing agents (such as sodium borohydride, hydrazine, N, N-dimethyl formamide) at the room temperature, where BSA provided the main function to form monodispersed silver nanoparticles. UV-vis spectroscopy, Fluorescence spectra, TEM and HR-TEM are used to characterize the BSA-capped silver nanoparticles under different condition. The results show that the formed silver nanoparticles have different size and morphology under the three different reducing agents. Moreover, the fluorescence intensity of BSA was drastically quenched in presence of Ag nanoparticles from the results of fluorescence spectra. Furthermore, the surface-enhanced Raman scattering effects of the formed silver nanoparticles were also displayed and we made a comparison under three different reducing agents.

Zhang, Danhui; Yang, Houbo

2013-09-01

361

Effect of silver nanoparticles on human mesenchymal stem cell differentiation  

PubMed Central

Summary Background: Silver nanoparticles (Ag-NP) are one of the fastest growing products in nano-medicine due to their enhanced antibacterial activity at the nanoscale level. In biomedicine, hundreds of products have been coated with Ag-NP. For example, various medical devices include silver, such as surgical instruments, bone implants and wound dressings. After the degradation of these materials, or depending on the coating technique, silver in nanoparticle or ion form can be released and may come into close contact with tissues and cells. Despite incorporation of Ag-NP as an antibacterial agent in different products, the toxicological and biological effects of silver in the human body after long-term and low-concentration exposure are not well understood. In the current study, we investigated the effects of both ionic and nanoparticulate silver on the differentiation of human mesenchymal stem cells (hMSCs) into adipogenic, osteogenic and chondrogenic lineages and on the secretion of the respective differentiation markers adiponectin, osteocalcin and aggrecan. Results: As shown through laser scanning microscopy, Ag-NP with a size of 80 nm (hydrodynamic diameter) were taken up into hMSCs as nanoparticulate material. After 24 h of incubation, these Ag-NP were mainly found in the endo-lysosomal cell compartment as agglomerated material. Cytotoxicity was observed for differentiated or undifferentiated hMSCs treated with high silver concentrations (?20 µg·mL?1 Ag-NP; ?1.5 µg·mL?1 Ag+ ions) but not with low-concentration treatments (?10 µg·mL?1 Ag-NP; ?1.0 µg·mL?1 Ag+ ions). Subtoxic concentrations of Ag-NP and Ag+ ions impaired the adipogenic and osteogenic differentiation of hMSCs in a concentration-dependent manner, whereas chondrogenic differentiation was unaffected after 21 d of incubation. In contrast to aggrecan, the inhibitory effect of adipogenic and osteogenic differentiation was confirmed by a decrease in the secretion of specific biomarkers, including adiponectin (adipocytes) and osteocalcin (osteoblasts). Conclusion: Aside from the well-studied antibacterial effect of silver, little is known about the influence of nano-silver on cell differentiation processes. Our results demonstrate that ionic or nanoparticulate silver attenuates the adipogenic and osteogenic differentiation of hMSCs even at non-toxic concentrations. Therefore, more studies are needed to investigate the effects of silver species on cells at low concentrations during long-term treatment. PMID:25551033

Diendorf, Jörg; Epple, Matthias; Schildhauer, Thomas A; Köller, Manfred

2014-01-01

362

Sprayable elastic conductors based on block copolymer silver nanoparticle composites.  

PubMed

Block copolymer silver nanoparticle composite elastic conductors were fabricated through solution blow spinning and subsequent nanoparticle nucleation. The reported technique allows for conformal deposition onto nonplanar substrates. We additionally demonstrated the ability to tune the strain dependence of the electrical properties by adjusting nanoparticle precursor concentration or localized nanoparticle nucleation. The stretchable fiber mats were able to display electrical conductivity values as high as 2000 ± 200 S/cm with only a 12% increase in resistance after 400 cycles of 150% strain. Stretchable elastic conductors with similar and higher bulk conductivity have not achieved comparable stability of electrical properties. These unique electromechanical characteristics are primarily the result of structural changes during mechanical deformation. The versatility of this approach was demonstrated by constructing a stretchable light emitting diode circuit and a strain sensor on planar and nonplanar substrates. PMID:25491507

Vural, Mert; Behrens, Adam M; Ayyub, Omar B; Ayoub, Joseph J; Kofinas, Peter

2015-01-27

363

One-step synthesis of silver nanoparticles, nanorods, and nanowires on the surface of DNA network.  

PubMed

Here, we describe a one-step synthesis of silver nanoparticles, nanorods, and nanowires on DNA network surface in the absence of surfactant. Silver ions were first adsorbed onto the DNA network and then reduced in sodium borohydride solution. Silver nanoparticles, nanorods, and nanowires were formed by controlling the size of pores of the DNA network. The diameter of the silver nanoparticles and the aspect ratio of the silver nanorods and nanowires can be controlled by adjusting the DNA concentration and reduction time. PMID:16852035

Wei, Gang; Zhou, Hualan; Liu, Zhiguo; Song, Yonghai; Wang, Li; Sun, Lanlan; Li, Zhuang

2005-05-12

364

Anodic Stripping Voltammetry of Silver Nanoparticles: Aggregation Leads to Incomplete Stripping  

PubMed Central

The influence of nanoparticle aggregation on anodic stripping voltammetry is reported. Dopamine-capped silver nanoparticles were chosen as a model system, and melamine was used to induce aggregation in the nanoparticles. Through the anodic stripping of the silver nanoparticles that were aggregated to different extents, it was found that the peak area of the oxidative signal corresponding to the stripping of silver to silver(I) ions decreases with increasing aggregation. Aggregation causes incomplete stripping of the silver nanoparticles. Two possible mechanisms of ‘partial oxidation’ and ‘inactivation’ of the nanoparticles are proposed to account for this finding. Aggregation effects must be considered when anodic stripping voltammetry is used for nanoparticle detection and quantification. Hence, drop casting, which is known to lead to aggregation, is not encouraged for preparing electrodes for analytical purposes. PMID:25861566

Cloake, Samantha J; Toh, Her Shuang; Lee, Patricia T; Salter, Chris; Johnston, Colin; Compton, Richard G

2015-01-01

365

Studies on surface plasmon resonance and photoluminescence of silver nanoparticles  

NASA Astrophysics Data System (ADS)

Silver nanoparticles of different sizes were prepared by citrate reduction and characterized by UV-vis absorbance spectra, TEM images and photoluminescence spectra. The morphology of the colloids obtained consists of a mixture of nanorods and spheres. The surface plasmon resonance (SPR) and photoemission properties of Ag nanoparticles are found to be sensitive to citrate concentration. A blue shift in SPR and an enhancement in photoluminescence intensity are observed with increase in citrate concentration. Effect of addition of KCl and variation of pH in photoluminescence was also studied.

Smitha, S. L.; Nissamudeen, K. M.; Philip, Daizy; Gopchandran, K. G.

2008-11-01

366

Rapid evolution of silver nanoparticle resistance in Escherichia coli  

PubMed Central

The recent exponential increase in the use of engineered nanoparticles (eNPs) means both greater intentional and unintentional exposure of eNPs to microbes. Intentional use includes the use of eNPs as biocides. Unintentional exposure results from the fact that eNPs are included in a variety of commercial products (paints, sunscreens, cosmetics). Many of these eNPs are composed of heavy metals or metal oxides such as silver, gold, zinc, titanium dioxide, and zinc oxide. It is thought that since metallic/metallic oxide NPs impact so many aspects of bacterial physiology that it will difficult for bacteria to evolve resistance to them. This study utilized laboratory experimental evolution to evolve silver nanoparticle (AgNP) resistance in the bacterium Escherichia coli (K-12 MG1655), a bacterium that does not harbor any known silver resistance elements. After 225 generations of exposure to the AgNP environment, the treatment populations demonstrated greater fitness vs. control strains as measured by optical density (OD) and colony forming units (CFU) in the presence of varying concentrations of 10 nm citrate-coated silver nanoparticles (AgNP) or silver nitrate (AgNO3). Genomic analysis shows that changes associated with AgNP resistance were already accumulating within the treatment populations by generation 100, and by generation 200 three mutations had swept to high frequency in the AgNP resistance stocks. This study indicates that despite previous claims to the contrary bacteria can easily evolve resistance to AgNPs, and this occurs by relatively simple genomic changes. These results indicate that care should be taken with regards to the use of eNPs as biocides as well as with regards to unintentional exposure of microbial communities to eNPs in waste products. PMID:25741363

Graves, Joseph L.; Tajkarimi, Mehrdad; Cunningham, Quincy; Campbell, Adero; Nonga, Herve; Harrison, Scott H.; Barrick, Jeffrey E.

2015-01-01

367

Rapid evolution of silver nanoparticle resistance in Escherichia coli.  

PubMed

The recent exponential increase in the use of engineered nanoparticles (eNPs) means both greater intentional and unintentional exposure of eNPs to microbes. Intentional use includes the use of eNPs as biocides. Unintentional exposure results from the fact that eNPs are included in a variety of commercial products (paints, sunscreens, cosmetics). Many of these eNPs are composed of heavy metals or metal oxides such as silver, gold, zinc, titanium dioxide, and zinc oxide. It is thought that since metallic/metallic oxide NPs impact so many aspects of bacterial physiology that it will difficult for bacteria to evolve resistance to them. This study utilized laboratory experimental evolution to evolve silver nanoparticle (AgNP) resistance in the bacterium Escherichia coli (K-12 MG1655), a bacterium that does not harbor any known silver resistance elements. After 225 generations of exposure to the AgNP environment, the treatment populations demonstrated greater fitness vs. control strains as measured by optical density (OD) and colony forming units (CFU) in the presence of varying concentrations of 10 nm citrate-coated silver nanoparticles (AgNP) or silver nitrate (AgNO3). Genomic analysis shows that changes associated with AgNP resistance were already accumulating within the treatment populations by generation 100, and by generation 200 three mutations had swept to high frequency in the AgNP resistance stocks. This study indicates that despite previous claims to the contrary bacteria can easily evolve resistance to AgNPs, and this occurs by relatively simple genomic changes. These results indicate that care should be taken with regards to the use of eNPs as biocides as well as with regards to unintentional exposure of microbial communities to eNPs in waste products. PMID:25741363

Graves, Joseph L; Tajkarimi, Mehrdad; Cunningham, Quincy; Campbell, Adero; Nonga, Herve; Harrison, Scott H; Barrick, Jeffrey E

2015-01-01

368

Biocomposites of nanofibrillated cellulose, polypyrrole, and silver nanoparticles with electroconductive and antimicrobial properties.  

PubMed

In this work, flexible and free-standing composite films of nanofibrillated cellulose/polypyrrole (NFC/PPy) and NFC/PPy-silver nanoparticles (NFC/PPy-Ag) have been synthesized for the first time via in situ one-step chemical polymerization and applied in potential biomedical applications. Incorporation of NFC into PPy significantly improved its film formation ability resulting in composite materials with good mechanical and electrical properties. It is shown that the NFC/PPy-Ag composite films have strong inhibition effect against the growth of Gram-positive bacteria, e.g., Staphylococcus aureus. The electrical conductivity and strong antimicrobial activity makes it possible to use the silver composites in various applications aimed at biomedical treatments and diagnostics. Additionally, we report here the structural and morphological characterization of the composite materials with Fourier-transform infrared spectroscopy, atomic force microscopy, and scanning and transmission electron microscopy techniques. PMID:25162821

Bober, Patrycja; Liu, Jun; Mikkonen, Kirsi S; Ihalainen, Petri; Pesonen, Markus; Plumed-Ferrer, Carme; von Wright, Atte; Lindfors, Tom; Xu, Chunlin; Latonen, Rose-Marie

2014-10-13

369

Facile synthesis of gold-silver alloy nanoparticles for application in metal enhanced bioluminescence.  

PubMed

In the present study we explored metal enhanced bioluminescence in luciferase enzymes for the first time. For this purpose a simple and reproducible one pot synthesis of gold-silver alloy nanoparticles was developed. By changing the molar ratio of tri-sodium citrate and silver nitrate we could synthesize spherical Au-Ag colloids of sizes ranging from 10 to 50 nm with a wide range of localized surface plasmon resonance (LSPR) peaks (450-550 nm). The optical tunability of the Au-Ag colloids enabled their effective use in enhancement of bioluminescence in a luminescent bacterium Photobacterium leiognathi and in luciferase enzyme systems from fireflies and bacteria. Enhancement of bioluminescence was 250% for bacterial cells, 95% for bacterial luciferase and 52% for firefly luciferase enzyme. The enhancement may be a result of energy transfer or plasmon induced enhancement. Such an increase can lead to higher sensitivity in detection of bioluminescent signals with potential applications in bio-analysis. PMID:24865663

Abhijith, K S; Sharma, Richa; Ranjan, Rajeev; Thakur, M S

2014-07-01

370

Stable silver nanoparticles synthesis by citrus sinensis (orange) and assessing activity against food poisoning microbes.  

PubMed

Silver nanoparticles are considered as good antimicrobial agent. AgNPs were synthesized by mixing silver nitrate solution with citrus sinesis extract for 2 h at 37 °C and analyzed by UV-visible spectra, SEM, XRD, and FTIR. AgNPs were tested against B. subtilis, Shigella, S. aureus, and E. coli. Minimum inhibitory concentration of AgNPs was 20 µg/mL for B. subtilis and Shigella and 30 µg/mL for S. aureus and E. coli. Antibiofilm activity (80% to 90%) was observed at 25 µg/mL. AgNPs were stable for five months with sustained antimicrobial activity. Biosynthesized AgNPs can be used to inhibit food poisoning microbial growth. PMID:25341818

Naila, Arooj; Nadia, Dar; Zahoor, Qadir Samra

2014-10-01

371

Green synthesis of silver nanoparticles using Delphinium denudatum root extract exhibits antibacterial and mosquito larvicidal activities  

NASA Astrophysics Data System (ADS)

Green synthesis of silver nanoparticles (AgNPs) using aqueous root extract of Delphinium denudatum (Dd) by reduction of Ag+ ions from silver nitrate solution has been investigated. The synthesized DdAgNPs were characterized by using UV-Vis spectroscopy, X-ray diffraction (XRD), Field emission scanning electron microscope (FESEM) and Fourier transform infrared spectroscopy (FTIR). The prepared DdAgNPs showed maximum absorbance at 416 nm and particles were polydispersed in nature, spherical in shape and the size of the particle obtained was ?85 nm. The DdAgNPs exhibited antibacterial activity against Staphylococcus aureus ATCC 6538, Bacillus cereus NCIM 2106, Escherichia coli ATCC 8739 and Pseudomonas aeruginosa ATCC 9027. The DdAgNPs showed potent larvicidal activity against second instar larvae of dengue vector Aedes aegypti with a LC50 value of 9.6 ppm.

Suresh, Gopal; Gunasekar, Poosali Hariharan; Kokila, Dhanasegaran; Prabhu, Durai; Dinesh, Devadoss; Ravichandran, Nagaiya; Ramesh, Balasubramanian; Koodalingam, Arunagirinathan; Vijaiyan Siva, Ganesan

2014-06-01

372

Green synthesis of silver nanoparticles using Delphinium denudatum root extract exhibits antibacterial and mosquito larvicidal activities.  

PubMed

Green synthesis of silver nanoparticles (AgNPs) using aqueous root extract of Delphinium denudatum (Dd) by reduction of Ag(+) ions from silver nitrate solution has been investigated. The synthesized DdAgNPs were characterized by using UV-Vis spectroscopy, X-ray diffraction (XRD), Field emission scanning electron microscope (FESEM) and Fourier transform infrared spectroscopy (FTIR). The prepared DdAgNPs showed maximum absorbance at 416nm and particles were polydispersed in nature, spherical in shape and the size of the particle obtained was?85nm. The DdAgNPs exhibited antibacterial activity against Staphylococcus aureus ATCC 6538, Bacillus cereus NCIM 2106, Escherichia coli ATCC 8739 and Pseudomonas aeruginosa ATCC 9027. The DdAgNPs showed potent larvicidal activity against second instar larvae of dengue vector Aedes aegypti with a LC50 value of 9.6ppm. PMID:24632157

Suresh, Gopal; Gunasekar, Poosali Hariharan; Kokila, Dhanasegaran; Prabhu, Durai; Dinesh, Devadoss; Ravichandran, Nagaiya; Ramesh, Balasubramanian; Koodalingam, Arunagirinathan; Vijaiyan Siva, Ganesan

2014-06-01

373

Control of the plasmon resonance from poly-dispersed silver nanoparticles  

NASA Astrophysics Data System (ADS)

Poly-dispersed silver nanoparticles (AgNPs) were synthesized through a polyol reaction and separated by a centrifuging process to control the target plasmon resonance frequency. When the ratio between the polar side group of polyvinyl pyrrolidone and silver ions is less than 1, AgNPs of various sizes and a broad extinction spectrum can be obtained through a single process. Following the physical separation of the poly-dispersed AgNPs, both the plasmon resonance and the size distribution can be tuned depending on the centrifuging speed. Fitting the measured absorption spectrum using a Mie calculation confirms that the centrifuging method of poly-dispersed AgNPs is compatible with a simple and reliable form of fabrication for selectively extraction AgNPs with a desired size distribution.

Hyun, Jae Young; Yun, Changhun; Kim, Ki Hyun; Kim, Wan Ho; Jeon, Sie-Wook; Im, Won Bin; Kim, Jae Pil

2015-02-01

374

Potential sensing platform of silver nanoparticles embedded in functionalized silicate shell for nitroaromatic compounds.  

PubMed

A simple and new method to grow a pentagonally twinned structure of silver-silicate core-shell nanoparticles in aqueous environment at room temperature and its application in nitrobenzene (NB) sensing is described here. Silver-silicate core-shell nanoparticles were obtained by one-step synthesis using N-[3-(trimethoxysilyl)propyl]-ethylene diamine (EDAS) as a reducing/stabilizing agent and cetyltrimethylammonium bromide (CTAB) as the growing agent for the growth of silver nanoparticles (Ag(nps)). The silver-silicate core-shell nanoparticles were characterized by high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), scanning electron microscope (SEM), UV-visible absorption, emission, excitation, and electrochemical measurements. The electrochemical studies of silver-silicate core-shell nanoparticles modified electrode showed the silver nanoparticle's oxidation potential and their corresponding reduction potential at 0.24 and -0.16 V, respectively. The optical and electrochemical applications silicate-shell stabilized silver nanoparticles were established toward nitrobenzene. The optical sensing of nitrobenzene by silver-silicate core-shell nanoparticles studied using absorption and emission spectral methods showed experimentally determined lowest detection limits (LOD) of 1 and 10 microM, respectively. Silver-silicate core-shell nanoparticles showed excellent electrocatalytic activity toward the reduction of nitrobenzene. The electrochemical sensor showed the lowest detection limit (LOD) of 2.5 nM toward nitrobenzene sensing. PMID:19691270

Maduraiveeran, Govindhan; Ramaraj, Ramasamy

2009-09-15

375

The double effects of silver nanoparticles on the PVDF membrane: Surface hydrophilicity and antifouling performance  

NASA Astrophysics Data System (ADS)

In this study, silver nanoparticles were used to endow poly(vinylidene fluoride) (PVDF) membrane with excellent surface hydrophilicity and outstanding antifouling performance. Silver nanoparticles were successfully immobilized onto PVDF membrane surface under the presence of poly(acrylic acid) (PAA). The double effects of silver nanoparticles on PVDF membrane, i.e., surface hydrophilicity and anti-fouling performance, were systematically investigated. Judging from result of water static contact measurement, silver nanoparticles had provided a significant improvement in PVDF membrane surface hydrophilicity. And the possible explanation on the improvement of PVDF membrane surface hydrophilicity with silver nanoparticles was firstly proposed in this study. Membrane permeation and anti-bacterial tests were carried out to characterize the antifouling performance of PVDF membrane. Flux recovery ratio (FRR) increased about 40% after the presence of silver nanoparticles on the PVDF membrane surface, elucidating the anti-organic fouling performance of PVDF membrane was elevated by silver nanoparticles. Simultaneously, anti-bacterial test confirmed that PVDF membrane showed superior anti-biofouling activity because of silver nanoparticles. The above-mentioned results clarified that silver nanoparticles can endow PVDF membrane with both excellent surface hydrophilicity and outstanding antifouling performance in this study.

Li, Jian-Hua; Shao, Xi-Sheng; Zhou, Qing; Li, Mi-Zi; Zhang, Qi-Qing

2013-01-01

376

Accumulation of silver nanoparticles by cultured primary brain astrocytes  

Microsoft Academic Search

Silver nanoparticles (AgNP) are components of various food industry products and are frequently used for medical equipment and materials. Although such particles enter the vertebrate brain, little is known on their biocompatibility for brain cells. To study the consequences of an AgNP exposure of brain cells we have treated astrocyte-rich primary cultures with polyvinylpyrrolidone (PVP)-coated AgNP. The incubation of cultured

Eva M. Luther; Yvonne Koehler; Joerg Diendorf; Matthias Epple; Ralf Dringen

2011-01-01

377

Biosynthesis of silver fine particles and particles decorated with nanoparticles using the extract of Illicium verum (star anise) seeds.  

PubMed

Given the upsurge of new technologies based on nanomaterials, the development of sustainable methods to obtain functional nanostructures has become an imperative task. In this matter, several recent researches have shown that the biodegradable natural antioxidants of several plant extracts can be used simultaneously as reducing and stabilizing agents in the wet chemical synthesis of metallic nanoparticles, opening new opportunities to design greener synthesis. However, the challenge of these new techniques is to produce stable colloidal nanoparticles with controlled particle uniformity, size, shape and aggregation state, in similar manner than the well-established synthetic methods. In the present work, colloidal metallic silver nanoparticles have been synthesized using silver nitrate and extracts of Illicium verum (star anise) seeds at room temperature in a facile one-step procedure. The resulting products were colloidal suspensions of two populations of silver nanoparticles, one of them with particle sizes of few nanometers and the other with particles of tens of nm. Strikingly, the variation of the AgNO3/extract weight ratio in the reaction medium yielded to the variation of the spatial distribution of the nanoparticles: high AgNO3/extract concentration ratios yielded to randomly dispersed particles, whereas for lower AgNO3/extract ratios, the biggest particles appeared coated with the finest nanoparticles. This biosynthesized colloidal system, with controlled particle aggregation states, presents plasmonic and SERS properties with potential applications in molecular sensors and nanophotonic devices. PMID:25659741

Luna, Carlos; Chávez, V H G; Barriga-Castro, Enrique Díaz; Núñez, Nuria O; Mendoza-Reséndez, Raquel

2015-04-15

378

Titania-silver and alumina-silver composite nanoparticles: novel, versatile synthesis, reaction mechanism and potential antimicrobial application.  

PubMed

Titania-silver (TiO(2)-Ag) and alumina-silver (Al(2)O(3)-Ag) composite nanoparticles were synthesised by a simple, reproducible, wet chemical method under ambient conditions. The surface of the oxides was modified with oleic acid, which acted as an intermediate between the oxide surface and the silver nanoparticles. The resulting composite nanoparticles were thoroughly characterised by XRD, TEM, XPS, FTIR and TGA to elucidate the mode of assembly of Ag nanoparticles on the oxide surfaces. Epoxy nanocomposites were formulated with TiO(2)-Ag and Al(2)O(3)-Ag to examine potential applications for the composite nanoparticles. Prelim