Science.gov

Sample records for simulated clinical conditions

  1. In vitro simulation of pathological bone conditions to predict clinical outcome of bone tissue engineered materials

    NASA Astrophysics Data System (ADS)

    Nguyen, Duong Thuy Thi

    According to the Centers for Disease Control, the geriatric population of ≥65 years of age will increase to 51.5 million in 2020; 40% of white women and 13% of white men will be at risk for fragility fractures or fractures sustained under normal stress and loading conditions due to bone disease, leading to hospitalization and surgical treatment. Fracture management strategies can be divided into pharmaceutical therapy, surgical intervention, and tissue regeneration for fracture prevention, fracture stabilization, and fracture site regeneration, respectively. However, these strategies fail to accommodate the pathological nature of fragility fractures, leading to unwanted side effects, implant failures, and non-unions. Compromised innate bone healing reactions of patients with bone diseases are exacerbated with protective bone therapy. Once these patients sustain a fracture, bone healing is a challenge, especially when fracture stabilization is unsuccessful. Traditional stabilizing screw and plate systems were designed with emphasis on bone mechanics rather than biology. Bone grafts are often used with fixation devices to provide skeletal continuity at the fracture gap. Current bone grafts include autologous bone tissue and donor bone tissue; however, the quality and quantity demanded by fragility fractures sustained by high-risk geriatric patients and patients with bone diseases are not met. Consequently, bone tissue engineering strategies are advancing towards functionalized bone substitutes to provide fracture reconstruction while effectively mediating bone healing in normal and diseased fracture environments. In order to target fragility fractures, fracture management strategies should be tailored to allow bone regeneration and fracture stabilization with bioactive bone substitutes designed for the pathological environment. The clinical outcome of these materials must be predictable within various disease environments. Initial development of a targeted

  2. [Clinical aspects and the course of psychopathologic conditions simulating vertebrogenic pathology].

    PubMed

    Ostroglazov, V G; Lisina, M A

    1989-01-01

    The study of clinical picture and the course of unclear pathological states simulating the vertebral pathology suggested that the major signs were centered around the primary general and muscular sensory disorders. These served as a basis for development of more complicated psychosensory and psychomotor disorders and creation of an interpretative hypochondriac++ delirium system. Domination of psychomotor disorders led to a high incidence of social and labor dysadaptation of the patients. Thus, the study of this unclear mental pathology has a major theoretic, clinico-psychopathological and also practical medico-social importance. PMID:2781926

  3. Accuracy of linear measurement in the Galileos cone beam computed tomography under simulated clinical conditions

    PubMed Central

    Ganguly, R; Ruprecht, A; Vincent, S; Hellstein, J; Timmons, S; Qian, F

    2011-01-01

    Objectives The aim of this study was to determine the geometric accuracy of cone beam CT (CBCT)-based linear measurements of bone height obtained with the Galileos CBCT (Sirona Dental Systems Inc., Bensheim, Hessen, Germany) in the presence of soft tissues. Methods Six embalmed cadaver heads were imaged with the Galileos CBCT unit subsequent to placement of radiopaque fiduciary markers over the buccal and lingual cortical plates. Electronic linear measurements of bone height were obtained using the Sirona software. Physical measurements were obtained with digital calipers at the same location. This distance was compared on all six specimens bilaterally to determine accuracy of the image measurements. Results The findings showed no statistically significant difference between the imaging and physical measurements (P > 0.05) as determined by a paired sample t-test. The intraclass correlation was used to measure the intrarater reliability of repeated measures and there was no statistically significant difference between measurements performed at the same location (P > 0.05). Conclusions The Galileos CBCT image-based linear measurement between anatomical structures within the mandible in the presence of soft tissues is sufficiently accurate for clinical use. PMID:21697155

  4. Computerized Clinical Simulations.

    ERIC Educational Resources Information Center

    Reinecker, Lynn

    1985-01-01

    Describes technique involved in designing a clinical simulation problem for the allied health field of respiratory therapy; discusses the structure, content, and scoring categories of the simulation; and provides a sample program which illustrates a programming technique in BASIC, including a program listing and a sample flowchart. (MBR)

  5. Benchtop study of leakages across the Portex, TaperGuard, and Microcuff endotracheal tubes under simulated clinical conditions.

    PubMed

    Lau, Arthur C W; Lam, S M; Yan, W W

    2014-02-01

    OBJECTIVES. To compare three endotracheal tubes for leakage across the cuff (microaspiration) under a comprehensive set of simulated clinical situations. These were the Mallinckrodt TaperGuard (Covidien, US) with a tapered polyvinyl chloride cuff; the KimVent Microcuff (Kimberly-Clark Health Care, US) with a cylindrical polyurethane cuff; and a conventional Portex (Smiths Medical International Ltd, UK) with a globular polyvinyl chloride cuff. DESIGN. A benchtop experimental study. SETTING AND MATERIALS. A silicone cylinder serving as the model trachea was intubated with each of the three endotracheal tubes, one at a time. A total of 20 mL of water were added above the cuff and leakage measured every minute for 20 minutes under five simulated mechanical ventilation scenarios, including different positive end-expiratory pressure levels, and disconnection with and without spontaneous breathing efforts. Each scenario was studied under three cuff pressures of 10, 20 and 30 cm H2O, and then repeated with the application of a continuous suction force of 200 cm H2O, and leakage measured every minute for 3 minutes. RESULTS. The outcome of interest was the cumulative amount of leakage. The Microcuff endotracheal tubes with an ultrathin polyurethane cuff consistently provided the best protection against microaspiration under all simulated clinical situations, followed by TaperGuard with a tapered cuff, and lastly Portex with a globular polyvinyl chloride cuff. Clinical scenarios associated with the greatest leakage were mechanical ventilation with zero positive end-expiratory pressure, circuit disconnection with spontaneous breathing efforts, application of suction, and a low cuff pressure. CONCLUSIONS. Microcuff endotracheal tubes outperformed TaperGuard and Portex endotracheal tubes in preventing microaspiration, which is one of the major mechanisms for ventilator-associated pneumonia. PMID:23878202

  6. Conditions simulating androgenetic alopecia.

    PubMed

    Rossi, A; Iorio, A; Di Nunno, D; Priolo, L; Fortuna, M C; Garelli, V; Carlesimo, M; Calvieri, S; Mari, E

    2015-07-01

    Androgenetic alopecia is a common form of hair loss, characterized by a progressive hair follicular miniaturization, caused by androgen hormones on a genetically susceptible hair follicle, in androgenic-dependent areas. Characteristic phenotype of androgenetic alopecia is also observed in many other hair disorders. These disorders are androgenetic-like diseases that cause many differential diagnosis or therapeutic error problems. The objective of this review was to systematically analyse the greatest number of conditions that mimic the AGA pattern and explain their disease pathogenesis. PMID:25571781

  7. PET-based dose delivery verification in proton therapy: a GATE based simulation study of five PET system designs in clinical conditions

    NASA Astrophysics Data System (ADS)

    Robert, Charlotte; Fourrier, Nicolas; Sarrut, David; Stute, Simon; Gueth, Pierre; Grevillot, Loïc; Buvat, Irène

    2013-10-01

    PET is a promising technique for in vivo treatment verification in hadrontherapy. Three main PET geometries dedicated to in-beam treatment monitoring have been proposed in the literature: the dual-head PET geometry, the OpenPET geometry and the slanted-closed ring geometry. The aim of this work is to characterize the performance of two of these dedicated PET detectors in realistic clinical conditions. Several configurations of the dual-head PET and OpenPET systems were simulated using GATE v6.2. For the dual-head configuration, two aperture angles (15° and 45°) were studied. For the OpenPET system, two gaps between rings were investigated (110 and 160 mm). A full-ring PET system was also simulated as a reference. After preliminary evaluation of the sensitivity and spatial resolution using a Derenzo phantom, a real small-field head and neck treatment plan was simulated, with and without introducing patient displacements. No wash-out was taken into account. 3D maps of the annihilation photon locations were deduced from the PET data acquired right after the treatment session (5 min acquisition) using a dedicated OS-EM reconstruction algorithm. Detection sensitivity at the center of the field-of-view (FOV) varied from 5.2% (45° dual-head system) to 7.0% (full-ring PET). The dual-head systems had a more uniform efficiency within the FOV than the OpenPET systems. The spatial resolution strongly depended on the location within the FOV for the ϕ = 45° dual-head system and for the two OpenPET systems. All investigated architectures identified the magnitude of mispositioning introduced in the simulations within a 1.5 mm accuracy. The variability on the estimated mispositionings was less than 2 mm for all PET systems.

  8. Clinical simulation in teaching preclinical dentistry.

    PubMed

    Suvinen, T I; Messer, L B; Franco, E

    1998-02-01

    Current and projected approaches to dental education have created a wide interest in clinical simulation, and recently there has been a considerable expansion in the availability of experiential learning tools which imitate "real life" clinical conditions in dentistry. These include patient simulation devices such as heads, jaws, teeth and clinical environments, standardized patients, interactive video-discs and computer-based instruction. This paper reviews some of the equipment currently available for simulation of clinical procedures, and assesses the initial experiences and responses of 2nd, 3rd and 4th year undergraduate dental students at The University of Melbourne to case-based simulations in a patient simulator in comparison with preclinical exercises in a traditional bench and manikin laboratory. Student response to teaching and learning in the simulator over a 3-year evaluation period, collected via a student questionnaire was uniformly positive. Students were very enthusiastic about the learning environment and educational approach, preferring it to traditional preclinical laboratory instruction. PMID:9588960

  9. Remote ischemic conditioning: a clinical trial's update.

    PubMed

    Candilio, Luciano; Hausenloy, Derek J; Yellon, Derek M

    2011-01-01

    Coronary artery disease (CAD) is the leading cause of death and disability worldwide, and early and successful restoration of myocardial reperfusion following an ischemic event is the most effective strategy to reduce final infarct size and improve clinical outcome. This process can, however, induce further myocardial damage, namely acute myocardial ischemia-reperfusion injury (IRI) and worsen clinical outcome. Therefore, novel therapeutic strategies are required to protect the myocardium against IRI in patients with CAD. In this regard, the endogenous cardioprotective phenomenon of "ischemic conditioning," in which the heart is put into a protected state by subjecting it to one or more brief nonlethal episodes of ischemia and reperfusion, has the potential to attenuate myocardial injury during acute IRI. Intriguingly, the heart can be protected in this manner by applying the "ischemic conditioning" stimulus to an organ or tissue remote from the heart (termed remote ischemic conditioning or RIC). Furthermore, the discovery that RIC can be noninvasively applied using a blood pressure cuff on the upper arm to induce brief episodes of nonlethal ischemia and reperfusion in the forearm has greatly facilitated the translation of RIC into the clinical arena. Several recently published proof-of-concept clinical studies have reported encouraging results with RIC, and large multicenter randomized clinical trials are now underway to investigate whether this simple noninvasive and virtually cost-free intervention has the potential to improve clinical outcomes in patients with CAD. In this review article, we provide an update of recently published and ongoing clinical trials in the field of RIC. PMID:21821533

  10. The Impact of Human Patient Simulation on Nursing Clinical Knowledge

    ERIC Educational Resources Information Center

    Shinnick, Mary Ann

    2010-01-01

    Public health relies on well trained nurses and clinical experience is an important component of that training. However, clinical experience training for student nurses also has significant challenges, as it can place patients at risk. Also it is difficult to schedule/predict patient conditions and procedures. Human patient simulation (HPS) can…

  11. Computer Clinical Simulations in Health Sciences.

    ERIC Educational Resources Information Center

    Jones, Gary L; Keith, Kenneth D.

    1983-01-01

    Discusses the key characteristics of clinical simulation, some developmental foundations, two current research studies, and some implications for the future of health science education. Investigations of the effects of computer-based simulation indicate that acquisition of decision-making skills is greater than with noncomputerized simulations.…

  12. Lunar Polar Environmental Testing: Regolith Simulant Conditioning

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie Elise

    2014-01-01

    As ISRU system development approaches flight fidelity, there is a need to test hardware in relevant environments. Extensive laboratory and field testing have involved relevant soil (lunar regolith simulants), but the current design iterations necessitate relevant pressure and temperature conditions. Including significant quantities of lunar regolith simulant in a thermal vacuum chamber poses unique challenges. These include facility operational challenges (dust tolerant hardware) and difficulty maintaining a pre-prepared soil state during pump down (consolidation state, moisture retention).For ISRU purposes, the regolith at the lunar poles will be of most interest due to the elevated water content. To test at polar conditions, the regolith simulant must be doped with water to an appropriate percentage and then chilled to cryogenic temperatures while exposed to vacuum conditions. A 1m tall, 28cm diameter bin of simulant was developed for testing these simulant preparation and drilling operations. The bin itself was wrapped with liquid nitrogen cooling loops (100K) so that the simulant bed reached an average temperature of 140K at vacuum. Post-test sampling was used to determine desiccation of the bed due to vacuum exposure. Depth dependent moisture data is presented from frozen and thawed soil samples.Following simulant only evacuation tests, drill hardware was incorporated into the vacuum chamber to test auguring techniques in the frozen soil at thermal vacuum conditions. The focus of this testing was to produce cuttings piles for a newly developed spectrometer to evaluate. This instrument, which is part of the RESOLVE program science hardware, detects water signatures from surface regolith. The drill performance, behavior of simulant during drilling, and characteristics of the cuttings piles will be offered.

  13. Implementation of conditional simulation by successive residuals

    NASA Astrophysics Data System (ADS)

    Jewbali, Arja; Dimitrakopoulos, Roussos

    2011-02-01

    Conditional simulation of ergodic and stationary Gaussian random fields using successive residuals is a new approach used to overcome the size limitations of the LU decomposition algorithm as well as provide fast updating of existing simulated realizations with new data. This paper discusses two different implementations of this approach. The implementations differ in the use of the new information available; in the first implementation new information is partially used to generate updated realizations; however, in the second implementation, the realizations are updated using all the new information available. The implementations are validated using the Walker Lake data set, and compared through a case study at a stockwork gold deposit.

  14. Numerical simulation and nasal air-conditioning

    PubMed Central

    Keck, Tilman; Lindemann, Jörg

    2011-01-01

    Heating and humidification of the respiratory air are the main functions of the nasal airways in addition to cleansing and olfaction. Optimal nasal air conditioning is mandatory for an ideal pulmonary gas exchange in order to avoid desiccation and adhesion of the alveolar capillary bed. The complex three-dimensional anatomical structure of the nose makes it impossible to perform detailed in vivo studies on intranasal heating and humidification within the entire nasal airways applying various technical set-ups. The main problem of in vivo temperature and humidity measurements is a poor spatial and time resolution. Therefore, in vivo measurements are feasible only to a restricted extent, solely providing single temperature values as the complete nose is not entirely accessible. Therefore, data on the overall performance of the nose are only based on one single measurement within each nasal segment. In vivo measurements within the entire nose are not feasible. These serious technical issues concerning in vivo measurements led to a large number of numerical simulation projects in the last few years providing novel information about the complex functions of the nasal airways. In general, numerical simulations merely calculate predictions in a computational model, e.g. a realistic nose model, depending on the setting of the boundary conditions. Therefore, numerical simulations achieve only approximations of a possible real situation. The aim of this review is the synopsis of the technical expertise on the field of in vivo nasal air conditioning, the novel information of numerical simulations and the current state of knowledge on the influence of nasal and sinus surgery on nasal air conditioning. PMID:22073112

  15. Simulating Clinical Carious Lesions in Composition Teeth.

    ERIC Educational Resources Information Center

    Ambrose, E. R.; And Others

    1981-01-01

    A step-by-step technique to alter stock composition teeth and create simulated carious conditions that are ideal or otherwise is presented. The procedures provide the student with life-like lesions, suitable in texture and location and similar to conditions found in the oral cavity. (MLW)

  16. [A simulation exercise in a flu clinic].

    PubMed

    Barthe, Juliette; Aubert, Jean-Pierre; Lecapitaine, Anne-Lise; Lecompte, Françoise; Szwebel-Chikli, Céline

    2011-01-01

    A simulation exercise aimed at assessing the management and provision of ambulatory care in the context of a highly pathogenic influenza pandemic was conducted in a specifically dedicated consultation center (Centre de Consultation Dédié (CCD) à la grippe) based on official French guidelines. The exercise was carried out in a school in Paris equipped to simulate a "flu clinic". 3 practitioners provided treatment lasting 2 hours to nursing students acting as patients. The exercise highlighted a number of major organizational issues. Staff were found to be unable to manage the center and to perform patient transfers; face masks were not routinely and consistently worn by doctors and patients; and communication between professionals within the clinic was limited. The exercise showed that much remains to be done to ensure that "flu clinics" are effective and functional. The results suggest that the exercise will need to be repeated on a larger scale and over a longer period. PMID:22365047

  17. 42 CFR 484.48 - Condition of participation: Clinical records.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Condition of participation: Clinical records. 484....48 Condition of participation: Clinical records. A clinical record containing pertinent past and... information; name of physician; drug, dietary, treatment, and activity orders; signed and dated clinical...

  18. 42 CFR 484.48 - Condition of participation: Clinical records.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 5 2011-10-01 2011-10-01 false Condition of participation: Clinical records. 484....48 Condition of participation: Clinical records. A clinical record containing pertinent past and... information; name of physician; drug, dietary, treatment, and activity orders; signed and dated clinical...

  19. [Clinical evaluation of oxypertine in anxiety conditions].

    PubMed

    Somohano, M D; Broissin, M C; Sobrino Z, A

    1976-01-01

    suspended the treatment when placebo was to be substituted. In this same group, six cases initiated treatment with oxypertine, and after two weeks or more the medication was changed to placebo due to the same reasons mentioned above. Results were fair in one and poor in five. A significant response was observed in those cases where oxypertine replaced placebo and no response was obtained when placebo substituted oxypertine. Few cases abandoned mainly for two reasons: satisfactory remission of the anxiety or symptoms exacerbation. Investigators emphasize that the psychological conditions of the patients studied in this trial were different from the ones who ordinarily assist to the out patient clinics or private practice, mainly because were subjects with legal and social problems, as already mentioned, confined in a rehabilitation center. The conclusion of the stldy is that the administration of oxpertine at the dosage of 20 mg to patients with severe anxiety and with the special conditions mentioned above, provides a relative anxiolytic effect. PMID:12484

  20. 42 CFR 493.1225 - Condition: Clinical cytogenetics.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Testing § 493.1225 Condition: Clinical cytogenetics. If the laboratory provides services in the specialty of Clinical cytogenetics, the laboratory must meet the requirements specified in §§ 493.1230 through... 42 Public Health 5 2010-10-01 2010-10-01 false Condition: Clinical cytogenetics. 493.1225...

  1. 42 CFR 493.1225 - Condition: Clinical cytogenetics.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 5 2011-10-01 2011-10-01 false Condition: Clinical cytogenetics. 493.1225 Section... Testing § 493.1225 Condition: Clinical cytogenetics. If the laboratory provides services in the specialty of Clinical cytogenetics, the laboratory must meet the requirements specified in §§ 493.1230...

  2. 42 CFR 485.60 - Condition of participation: Clinical records.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of participation: Clinical records. The facility must maintain clinical records on all patients in accordance with accepted professional standards and practice. The clinical records must be completely... 42 Public Health 5 2011-10-01 2011-10-01 false Condition of participation: Clinical records....

  3. A New Boundary Condition for Computer Simulations of Interfacial Systems

    SciTech Connect

    Wong, Ka-Yiu; Pettitt, Bernard M.; Montgomery, B.

    2000-08-18

    A new boundary condition for computer simulations of interfacial systems is presented. The simulation box used in this boundary condition is the asymmetric unit of space group Pb, and it contains only one interface. Compared to the simulation box using common periodic boundary conditions which contains two interfaces, the number of particles in the simulation is reduced by half. This boundary condition was tested against common periodic boundary conditions in molecular dynamic simulations of liquid water interacting with hydroxylated silica surfaces. It yielded results essentially identical to periodic boundary condition and consumed less CPU time for comparable statistics.

  4. A new boundary condition for computer simulations of interfacial systems

    NASA Astrophysics Data System (ADS)

    Wong, Ka-Yiu; Pettitt, B. Montgomery

    2000-08-01

    A new boundary condition for computer simulations of interfacial systems is presented. The simulation box used in this boundary condition is the asymmetric unit of space group Pb, and it contains only one interface. Compared to the simulation box using common periodic boundary conditions which contains two interfaces, the number of particles in the simulation is reduced by half. This boundary condition was tested against common periodic boundary conditions in molecular dynamic simulations of liquid water interacting with hydroxylated silica surfaces. It yielded results essentially identical to periodic boundary condition and consumed less CPU time for comparable statistics.

  5. 42 CFR 485.638 - Conditions of participation: Clinical records.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Conditions of participation: Clinical records. 485... HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION CONDITIONS OF PARTICIPATION: SPECIALIZED PROVIDERS Conditions of Participation: Critical Access Hospitals (CAHs) § 485.638 Conditions...

  6. Mathematical simulation of power conditioning systems. Volume 1: Simulation of elementary units. Report on simulation methodology

    NASA Technical Reports Server (NTRS)

    Prajous, R.; Mazankine, J.; Ippolito, J. C.

    1978-01-01

    Methods and algorithms used for the simulation of elementary power conditioning units buck, boost, and buck-boost, as well as shunt PWM are described. Definitions are given of similar converters and reduced parameters. The various parts of the simulation to be carried out are dealt with; local stability, corrective network, measurements of input-output impedance and global stability. A simulation example is given.

  7. Organic degradation under simulated Martian conditions

    NASA Astrophysics Data System (ADS)

    Stoker, Carol R.; Bullock, Mark A.

    1997-05-01

    We report on laboratory experiments which simulate the breakdown of organic compounds under Martian surface conditions. Chambers containing Mars-analog soil mixed with the amino acid glycine were evacuated and filled to 100 mbar pressure with a Martian atmosphere gas mixture and then irradiated with a broad spectrum Xe lamp. Headspace gases were periodically withdrawn and analyzed via gas chromatography for the presence of organic gases expected to be decomposition products of the glycine. The quantum efficiency for the decomposition of glycine by light at wavelengths from 2000 to 2400 Å was measured to be 1.46+/-1.0×10-6molecules/photon. Scaled to Mars, this represents an organic destruction rate of 2.24+/-1.2×10-4g of Cm-2yr-1. We compare this degradation rate with the rate that organic compounds are brought to Mars as a result of meteoritic infall to show that organic compounds are destroyed on Mars at rates far exceeding the rate that they are deposited by meteorites. Thus the fact that no organic compounds were found on Mars by the Viking Lander Gas Chromatograph Mass Spectrometer experiment can be explained without invoking the presence of strong oxidants in the surface soils. The organic destruction rate may be considered as an upper bound for the globally averaged biomass production rate of extant organisms at the surface of Mars. This upper bound is comparable to the slow growing cryptoendolithic microbial communities found in dry Antarctica deserts. Finally, comparing these organic destruction rates to recently reported experiments on the stability of carbonate on the surface of Mars, we find that organic compounds may currently be more stable than calcite.

  8. Clinical Inquiry. Does turmeric relieve inflammatory conditions?

    PubMed

    White, Brett; Judkins, Dolores Zegar

    2011-03-01

    Yes, but data aren't plentiful. Limited evidence suggests that turmeric and its active compound, curcumin, are effective for rheumatoid arthritis and other inflammatory conditions (strength of recommendation [SOR]: C, primarily low-quality cohort studies with small patient numbers). Curcumin has shown limited benefit for patients with psoriasis, inflammatory bowel disease (IBS), inflammatory eye diseases, familial adenomatous polyposis, and kidney transplantation (SOR: B, small, short randomized controlled trials [RCTs]). No evidence indicates that curcumin helps patients with human immunodeficiency virus (HIV) (SOR: B, single RCT). PMID:21369559

  9. Simulations Promote Understanding of Handicapping Conditions.

    ERIC Educational Resources Information Center

    Wesson, Caren; Mandell, Colleen

    1989-01-01

    Presented are suggestions for simulations for students in grades 3-12, designed to promote an understanding of how individuals with handicaps cope and adapt to their disability. Simulation ideas include toothbrushing while blindfolded and dressing with socks covering the hands. A participant's reaction form and an observer's reaction form are…

  10. 42 CFR 485.721 - Condition of participation: Clinical records.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 5 2012-10-01 2012-10-01 false Condition of participation: Clinical records. 485.721 Section 485.721 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION CONDITIONS OF PARTICIPATION: SPECIALIZED PROVIDERS Conditions of Participation for...

  11. Traction boundary conditions for molecular static simulations

    NASA Astrophysics Data System (ADS)

    Li, Xiantao; Lu, Jianfeng

    2016-08-01

    This paper presents a consistent approach to prescribe traction boundary conditions in atomistic models. Due to the typical multiple-neighbor interactions, finding an appropriate boundary condition that models a desired traction is a non-trivial task. We first present a one-dimensional example, which demonstrates how such boundary conditions can be formulated. We further analyze the stability, and derive its continuum limit. We also show how the boundary conditions can be extended to higher dimensions with an application to a dislocation dipole problem under shear stress.

  12. [Psychopathologic characteristics of conditions simulating spinal diseases].

    PubMed

    Ostroglazov, V G; Lisina, M A

    1989-01-01

    Combined investigation of 27 patients with unclear pathological states in a vertebral pathology unit yielded a description of a type of concealed mental pathology. A complex of three major determinants of the patients' state was detected: pathological hypochondric notions of delirious or hallucinatory type, psychosensory and psychomotor disorders. The latter were prevalent in clinical picture suggesting the vertebral pathology and thus leading to misdiagnosis of vertebral disorders. PMID:2728725

  13. A Simulated Interprofessional Rounding Experience in a Clinical Assessment Course

    PubMed Central

    Shrader, Sarah; McRae, Lacy; King, William M.; Kern, Donna

    2011-01-01

    Objective To implement a simulated interprofessional rounding experience using human patient simulators as a required activity for third-year pharmacy students in a clinical assessment course. Design Interprofessional student teams consisting of pharmacy, medical, and physician assistant students participated in a simulated interprofessional rounding experience in which they provided comprehensive medical care for a simulated patient in an inpatient setting. Assessment Students completed a survey instrument to assess interprofessional attitudes and satisfaction before and after participation in the simulated interprofessional rounding experience. Overall student attitudes regarding interprofessional teamwork and communication significantly improved; student satisfaction with the experience was high and students’ self-perceived clinical confidence improved after participation. The mean team clinical performance scores were 65% and 75% for each simulated interprofessional rounding experience. Conclusion Incorporating a simulated interprofessional rounding experience into a required clinical assessment course improved student attitudes regarding interprofessional teamwork and was associated with high student satisfaction. PMID:21769137

  14. Clinical Audit of Gastrointestinal Conditions Occurring among Adults with Down Syndrome Attending a Specialist Clinic

    ERIC Educational Resources Information Center

    Wallace, Robyn A.

    2007-01-01

    Background: Adults with Down syndrome (DS) are predisposed to syndromic and environmental gastrointestinal conditions. Method: In a hospital-based clinic for adults with DS, a chart audit was conducted to assess the range and frequency of gastrointestinal conditions. Results: From January 2003 to March 2005, 57 patients attended the clinic,…

  15. Simulation of boundary conditions for testing of masonry shear walls

    NASA Astrophysics Data System (ADS)

    Salmanpour, Amir Hosein; Mojsilović, Nebojša

    2015-12-01

    This paper is focused on the simulation of the fixed-ends boundary conditions in shear testing of unreinforced masonry walls. Two different approaches to simulate the fixed-ends boundary conditions, i.e. the static and kinematic approaches, are introduced, and their validity is discussed with the help of our own recent experimental data. It is shown that the static approach can result in unrealistic boundary conditions, and it is not a proper way to simulate the fixed-ends boundary conditions.

  16. Graphite Oxidation Simulation in HTR Accident Conditions

    SciTech Connect

    El-Genk, Mohamed

    2012-10-19

    Massive air and water ingress, following a pipe break or leak in steam-generator tubes, is a design-basis accident for high-temperature reactors (HTRs). Analysis of these accidents in both prismatic and pebble bed HTRs requires state-of-the-art capability for predictions of: 1) oxidation kinetics, 2) air helium gas mixture stratification and diffusion into the core following the depressurization, 3) transport of multi-species gas mixture, and 4) graphite corrosion. This project will develop a multi-dimensional, comprehensive oxidation kinetics model of graphite in HTRs, with diverse capabilities for handling different flow regimes. The chemical kinetics/multi-species transport model for graphite burning and oxidation will account for temperature-related changes in the properties of graphite, oxidants (O2, H2O, CO), reaction products (CO, CO2, H2, CH4) and other gases in the mixture (He and N2). The model will treat the oxidation and corrosion of graphite in geometries representative of HTR core component at temperatures of 900°C or higher. The developed chemical reaction kinetics model will be user-friendly for coupling to full core analysis codes such as MELCOR and RELAP, as well as computational fluid dynamics (CFD) codes such as CD-adapco. The research team will solve governing equations for the multi-dimensional flow and the chemical reactions and kinetics using Simulink, an extension of the MATLAB solver, and will validate and benchmark the model's predictions using reported experimental data. Researchers will develop an interface to couple the validated model to a commercially available CFD fluid flow and thermal-hydraulic model of the reactor , and will perform a simulation of a pipe break in a prismatic core HTR, with the potential for future application to a pebble-bed type HTR.

  17. Simulating Freshwater Availability under Future Climate Conditions

    NASA Astrophysics Data System (ADS)

    Zhao, F.; Zeng, N.; Motesharrei, S.; Gustafson, K. C.; Rivas, J.; Miralles-Wilhelm, F.; Kalnay, E.

    2013-12-01

    Freshwater availability is a key factor for regional development. Precipitation, evaporation, river inflow and outflow are the major terms in the estimate of regional water supply. In this study, we aim to obtain a realistic estimate for these variables from 1901 to 2100. First we calculated the ensemble mean precipitation using the 2011-2100 RCP4.5 output (re-sampled to half-degree spatial resolution) from 16 General Circulation Models (GCMs) participating the Coupled Model Intercomparison Project Phase 5 (CMIP5). The projections are then combined with the half-degree 1901-2010 Climate Research Unit (CRU) TS3.2 dataset after bias correction. We then used the combined data to drive our UMD Earth System Model (ESM), in order to generate evaporation and runoff. We also developed a River-Routing Scheme based on the idea of Taikan Oki, as part of the ESM. It is capable of calculating river inflow and outflow for any region, driven by the gridded runoff output. River direction and slope information from Global Dominant River Tracing (DRT) dataset are included in our scheme. The effects of reservoirs/dams are parameterized based on a few simple factors such as soil moisture, population density and geographic regions. Simulated river flow is validated with river gauge measurements for the world's major rivers. We have applied our river flow calculation to two data-rich watersheds in the United States: Phoenix AMA watershed and the Potomac River Basin. The results are used in our SImple WAter model (SIWA) to explore water management options.

  18. Using simulations to teach clinical nursing.

    PubMed

    Hanna, D R

    1991-01-01

    Incorporating play into formal teaching strategies was introduced in theory over 75 years ago by John Dewey and the Gestalt theorists. Play, in the form of simulations, has had a significant role in contemporary nursing education. Simulations can teach more than a skill or an idea, since they can be designed to teach the complexification of ideas. The author explores the theoretical and historical development, the advantages and disadvantages, and future uses of simulations. PMID:2011280

  19. Application of nitric oxide measurements in clinical conditions beyond asthma

    PubMed Central

    Malinovschi, Andrei; Ludviksdottir, Dora; Tufvesson, Ellen; Rolla, Giovanni; Bjermer, Leif; Alving, Kjell; Diamant, Zuzana

    2015-01-01

    Fractional exhaled nitric oxide (FeNO) is a convenient, non-invasive method for the assessment of active, mainly Th2-driven, airway inflammation, which is sensitive to treatment with standard anti-inflammatory therapy. Consequently, FeNO serves as a valued tool to aid diagnosis and monitoring in several asthma phenotypes. More recently, FeNO has been evaluated in several other respiratory, infectious, and/or immunological conditions. In this short review, we provide an overview of several clinical studies and discuss the status of potential applications of NO measurements in clinical conditions beyond asthma. PMID:26672962

  20. Simulation of Flight Conditions for Rocket Engine Qualification

    NASA Astrophysics Data System (ADS)

    Schaefer, K.; Zimmermann, H.

    2004-10-01

    With the development of ARIANE 5 the test bench P5 for the VULCAIN engine was erected in 1990. New developments like advanced nozzles, the reignition capability of rocket engines or unexpected events during flight drive again the question how to qualify rocket engines and propellant systems. It's getting more and more necessary to test rocket engines closer to original flight conditions. This is mainly the simulation of pressure and temperature conditions. For the main stage engines it's the transition from sea level up to altitude conditions and for upper stage engines and satellite propulsion it's the high altitude with low vacuum pressures. The stage feeding conditions or special simulations like booster separation influences the behaviour of the engine and has to be simulated too. What are the needed simulation conditions to qualify for the flight? The rocket engines of the ARIANE launcher are taken to demonstrate the principle conditions. In 1992 the P4.2 was adapted to the AESTUS altitude simulation. Actual activities are the preparation of the altitude simulation for VINCI on P4.1 and the load simulation device for VULCAIN II nozzle on P5.

  1. Clinical simulation training improves the clinical performance of Chinese medical students

    PubMed Central

    Zhang, Ming-ya; Cheng, Xin; Xu, An-ding; Luo, Liang-ping; Yang, Xuesong

    2015-01-01

    Background Modern medical education promotes medical students’ clinical operating capacity rather than the mastery of theoretical knowledge. To accomplish this objective, clinical skill training using various simulations was introduced into medical education to cultivate creativity and develop the practical ability of students. However, quantitative analysis of the efficiency of clinical skill training with simulations is lacking. Methods In the present study, we compared the mean scores of medical students (Jinan University) who graduated in 2013 and 2014 on 16 stations between traditional training (control) and simulative training groups. In addition, in a clinical skill competition, the objective structured clinical examination (OSCE) scores of participating medical students trained using traditional and simulative training were compared. The data were statistically analyzed and qualitatively described. Results The results revealed that simulative training could significantly enhance the graduate score of medical students compared with the control. The OSCE scores of participating medical students in the clinical skill competition, trained using simulations, were dramatically higher than those of students trained through traditional methods, and we also observed that the OSCE marks were significantly increased for the same participant after simulative training for the clinical skill competition. Conclusions Taken together, these data indicate that clinical skill training with a variety of simulations could substantially promote the clinical performance of medical students and optimize the resources used for medical education, although a precise analysis of each specialization is needed in the future. PMID:26478142

  2. The accuracy of linear measurements of maxillary and mandibular edentulous sites in cone-beam computed tomography images with different fields of view and voxel sizes under simulated clinical conditions

    PubMed Central

    Ramesh, Aruna; Pagni, Sarah

    2016-01-01

    Purpose The objective of this study was to investigate the effect of varying resolutions of cone-beam computed tomography images on the accuracy of linear measurements of edentulous areas in human cadaver heads. Intact cadaver heads were used to simulate a clinical situation. Materials and Methods Fiduciary markers were placed in the edentulous areas of 4 intact embalmed cadaver heads. The heads were scanned with two different CBCT units using a large field of view (13 cm×16 cm) and small field of view (5 cm×8 cm) at varying voxel sizes (0.3 mm, 0.2 mm, and 0.16 mm). The ground truth was established with digital caliper measurements. The imaging measurements were then compared with caliper measurements to determine accuracy. Results The Wilcoxon signed rank test revealed no statistically significant difference between the medians of the physical measurements obtained with calipers and the medians of the CBCT measurements. A comparison of accuracy among the different imaging protocols revealed no significant differences as determined by the Friedman test. The intraclass correlation coefficient was 0.961, indicating excellent reproducibility. Inter-observer variability was determined graphically with a Bland-Altman plot and by calculating the intraclass correlation coefficient. The Bland-Altman plot indicated very good reproducibility for smaller measurements but larger discrepancies with larger measurements. Conclusion The CBCT-based linear measurements in the edentulous sites using different voxel sizes and FOVs are accurate compared with the direct caliper measurements of these sites. Higher resolution CBCT images with smaller voxel size did not result in greater accuracy of the linear measurements. PMID:27358816

  3. Ischaemic conditioning: pitfalls on the path to clinical translation

    PubMed Central

    Przyklenk, Karin

    2015-01-01

    The development of novel adjuvant strategies capable of attenuating myocardial ischaemia-reperfusion injury and reducing infarct size remains a major, unmet clinical need. A wealth of preclinical evidence has established that ischaemic ‘conditioning’ is profoundly cardioprotective, and has positioned the phenomenon (in particular, the paradigms of postconditioning and remote conditioning) as the most promising and potent candidate for clinical translation identified to date. However, despite this preclinical consensus, current phase II trials have been plagued by heterogeneity, and the outcomes of recent meta-analyses have largely failed to confirm significant benefit. As a result, the path to clinical application has been perceived as ‘disappointing’ and ‘frustrating’. The goal of the current review is to discuss the pitfalls that may be stalling the successful clinical translation of ischaemic conditioning, with an emphasis on concerns regarding: (i) appropriate clinical study design and (ii) the choice of the ‘right’ preclinical models to facilitate clinical translation. PMID:25560903

  4. 42 CFR 485.60 - Condition of participation: Clinical records.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Condition of participation: Clinical records. 485.60 Section 485.60 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND...) Progress notes or other documentation that reflect patient reaction to treatment, tests, or injury, or...

  5. Psychometric Study of the Clinical Treatment Planning Simulations (CTPS) for Assessing Clinical Judgment.

    ERIC Educational Resources Information Center

    Falvey, Janet Elizabeth; Hebert, David J.

    1992-01-01

    Examined psychometric properties of four clinical treatment planning simulations (CTPS) developed by interdisciplinary mental health experts to examine clinical judgment in treatment planning processes of practitioners. Found that scoring reliability was high and simulations demonstrated adequate content, discriminant, and predictive validity.…

  6. Measuring the instructional validity of clinical simulation problems.

    PubMed

    Feinstein, E; Gustavson, L P; Levine, H G

    1983-03-01

    Written clinical simulation problems in two formats--forced-choiced and essay--were used to test junior and senior medical students at the conclusion of their pediatric rotations. A comparison was made in the performance of students with varying levels of clinical experience. There seemed to be no consistent pattern of improvement with increased instructional time on the forced-choice management problems. Junior students did show improvement over time on the essay management problems, which also seemed to reflect the increased problem-solving and organizational skills of seniors in comparison to juniors. Correlations across problems and correlations between the clinical problem test and other measurement techniques were very weak, partly due to the low sampling reliability of clinical simulation problems. In this study, clinical simulation problems failed to demonstrate responsiveness to development and maturation in the problem-solving approach to patient care. PMID:10259952

  7. Preignition Characteristics of Several Fuels Under Simulated Engine Conditions

    NASA Technical Reports Server (NTRS)

    Spencer, R C

    1941-01-01

    The preignition characteristics of a number of fuels have been studied under conditions similar to those encountered in an engine. These conditions were simulated by suddenly compressing a fuel-air mixture in contact with an electrically heated hot spot in the cylinder head of the NACA combustion apparatus. Schlieren photographs and indicator cards were taken of the burning, and the hot-spot temperatures necessary to cause ignition under various conditions were determined.

  8. Exploring Iconic Interpretation and Mathematics Teacher Development through Clinical Simulations

    ERIC Educational Resources Information Center

    Dotger, Benjamin; Masingila, Joanna; Bearkland, Mary; Dotger, Sharon

    2015-01-01

    Field placements serve as the traditional "clinical" experience for prospective mathematics teachers to immerse themselves in the mathematical challenges of students. This article reports data from a different type of learning experience, that of a clinical simulation with a standardized individual. We begin with a brief background on…

  9. Piloting Augmented Reality Technology to Enhance Realism in Clinical Simulation.

    PubMed

    Vaughn, Jacqueline; Lister, Michael; Shaw, Ryan J

    2016-09-01

    We describe a pilot study that incorporated an innovative hybrid simulation designed to increase the perception of realism in a high-fidelity simulation. Prelicensure students (N = 12) cared for a manikin in a simulation lab scenario wearing Google Glass, a wearable head device that projected video into the students' field of vision. Students reported that the simulation gave them confidence that they were developing skills and knowledge to perform necessary tasks in a clinical setting and that they met the learning objectives of the simulation. The video combined visual images and cues seen in a real patient and created a sense of realism the manikin alone could not provide. PMID:27258807

  10. Clinical simulation: A method for development and evaluation of clinical information systems.

    PubMed

    Jensen, Sanne; Kushniruk, Andre W; Nøhr, Christian

    2015-04-01

    Use of clinical simulation in the design and evaluation of eHealth systems and applications has increased during the last decade. This paper describes a methodological approach for using clinical simulations in the design and evaluation of clinical information systems. The method is based on experiences from more than 20 clinical simulation studies conducted at the ITX-lab in the Capital Region of Denmark during the last 5 years. A ten-step approach to conducting simulations is presented in this paper. To illustrate the approach, a clinical simulation study concerning implementation of Digital Clinical Practice Guidelines in a prototype planning and coordination module is presented. In the case study potential benefits were assessed in a full-scale simulation test including 18 health care professionals. The results showed that health care professionals can benefit from such a module. Unintended consequences concerning terminology and changes in the division of responsibility amongst healthcare professionals were also identified, and questions were raised concerning future workflow across sector borders. Furthermore unexpected new possible benefits concerning improved communication, content of information in discharge letters and quality management emerged during the testing. In addition new potential groups of users were identified. The case study is used to demonstrate the potential of using the clinical simulation approach described in the paper. PMID:25684129

  11. Extremophiles Survival to Simulated Space Conditions: An Astrobiology Model Study

    NASA Astrophysics Data System (ADS)

    Mastascusa, V.; Romano, I.; Di Donato, P.; Poli, A.; Della Corte, V.; Rotundi, A.; Bussoletti, E.; Quarto, M.; Pugliese, M.; Nicolaus, B.

    2014-09-01

    In this work we investigated the ability of four extremophilic bacteria from Archaea and Bacteria domains to resist to space environment by exposing them to extreme conditions of temperature, UV radiation, desiccation coupled to low pressure generated in a Mars' conditions simulator. All the investigated extremophilic strains (namely Sulfolobus solfataricus, Haloterrigena hispanica, Thermotoga neapolitana and Geobacillus thermantarcticus) showed a good resistance to the simulation of the temperature variation in the space; on the other hand irradiation with UV at 254 nm affected only slightly the growth of H. hispanica, G. thermantarcticus and S. solfataricus; finally exposition to Mars simulated condition showed that H. hispanica and G. thermantarcticus were resistant to desiccation and low pressure.

  12. DSMC Simulations of Apollo Capsule Aerodynamics for Hypersonic Rarefied Conditions

    NASA Technical Reports Server (NTRS)

    Moss, James N.; Glass, Christopher E.; Greene, Francis A.

    2006-01-01

    Direct simulation Monte Carlo DSMC simulations are performed for the Apollo capsule in the hypersonic low density transitional flow regime. The focus is on ow conditions similar to that experienced by the Apollo Command Module during the high altitude portion of its reentry Results for aerodynamic forces and moments are presented that demonstrate their sensitivity to rarefaction that is for free molecular to continuum conditions. Also aerodynamic data are presented that shows their sensitivity to a range of reentry velocity encompasing conditions that include reentry from low Earth orbit lunar return and Mars return velocities to km/s. The rarefied results are anchored in the continuum regime with data from Navier Stokes simulations

  13. Extremophiles survival to simulated space conditions: an astrobiology model study.

    PubMed

    Mastascusa, V; Romano, I; Di Donato, P; Poli, A; Della Corte, V; Rotundi, A; Bussoletti, E; Quarto, M; Pugliese, M; Nicolaus, B

    2014-09-01

    In this work we investigated the ability of four extremophilic bacteria from Archaea and Bacteria domains to resist to space environment by exposing them to extreme conditions of temperature, UV radiation, desiccation coupled to low pressure generated in a Mars' conditions simulator. All the investigated extremophilic strains (namely Sulfolobus solfataricus, Haloterrigena hispanica, Thermotoga neapolitana and Geobacillus thermantarcticus) showed a good resistance to the simulation of the temperature variation in the space; on the other hand irradiation with UV at 254 nm affected only slightly the growth of H. hispanica, G. thermantarcticus and S. solfataricus; finally exposition to Mars simulated condition showed that H. hispanica and G. thermantarcticus were resistant to desiccation and low pressure. PMID:25573749

  14. Simulation-based medical education in clinical skills laboratory.

    PubMed

    Akaike, Masashi; Fukutomi, Miki; Nagamune, Masami; Fujimoto, Akiko; Tsuji, Akiko; Ishida, Kazuko; Iwata, Takashi

    2012-01-01

    Clinical skills laboratories have been established in medical institutions as facilities for simulation-based medical education (SBME). SBME is believed to be superior to the traditional style of medical education from the viewpoint of the active and adult learning theories. SBME can provide a learning cycle of debriefing and feedback for learners as well as evaluation of procedures and competency. SBME offers both learners and patients a safe environment for practice and error. In a full-environment simulation, learners can obtain not only technical skills but also non-technical skills, such as leadership, team work, communication, situation awareness, decision-making, and awareness of personal limitations. SBME is also effective for integration of clinical medicine and basic medicine. In addition, technology-enhanced simulation training is associated with beneficial effects for outcomes of knowledge, skills, behaviors, and patient-related outcomes. To perform SBME, effectively, not only simulators including high-fidelity mannequin-type simulators or virtual-reality simulators but also full-time faculties and instructors as professionals of SBME are essential in a clinical skills laboratory for SBME. Clinical skills laboratory is expected to become an integrated medical education center to achieve continuing professional development, integrated learning of basic and clinical medicine, and citizens' participation and cooperation in medical education. PMID:22449990

  15. Protection of chemolithoautotrophic bacteria exposed to simulated Mars environmental conditions

    NASA Astrophysics Data System (ADS)

    Gómez, Felipe; Mateo-Martí, Eva; Prieto-Ballesteros, Olga; Martín-Gago, Jose; Amils, Ricardo

    2010-10-01

    Current surface conditions (strong oxidative atmosphere, UV radiation, low temperatures and xeric conditions) on Mars are considered extremely challenging for life. The question is whether there are any features on Mars that could exert a protective effect against the sterilizing conditions detected on its surface. Potential habitability in the subsurface would increase if the overlaying material played a protective role. With the aim of evaluating this possibility we studied the viability of two microorganisms under different conditions in a Mars simulation chamber. An acidophilic chemolithotroph isolated from Río Tinto belonging to the Acidithiobacillus genus and Deinococcus radiodurans, a radiation resistant microorganism, were exposed to simulated Mars conditions under the protection of a layer of ferric oxides and hydroxides, a Mars regolith analogue. Samples of these microorganisms were exposed to UV radiation in Mars atmospheric conditions at different time intervals under the protection of 2 and 5 mm layers of oxidized iron minerals. Viability was evaluated by inoculation on fresh media and characterization of their growth cultures. Here we report the survival capability of both bacteria to simulated Mars environmental conditions.

  16. Response of HEPA filters to simulated-accident conditions

    SciTech Connect

    Gregory, W.S.; Martin, R.A.; Smith, P.R.; Fenton, D.E.

    1982-01-01

    High-efficiency particulate air (HEPA) filters have been subjected to simulated accident conditions to determine their response to abnormal operating events. Both domestic and European standard and high-capacity filters have been evaluated to determine their response to simulated fire, explosion, and tornado conditions. The HEPA filter structural limitations for tornado and explosive loadings are discussed. In addition, filtration efficiencies during these accident conditions are reported for the first time. Our data indicate efficiencies between 80% and 90% for shock loadings below the structural limit level. We describe two types of testing for ineffective filtration - clean filters exposed to pulse-entrained aerosol and dirty filters exposed to tornado and shock pulses. Efficiency and material loss data are described. Also, the resonse of standard HEPA filters to simulated fire conditions is presented. We describe a unique method of measuring accumulated combustion products on the filter. Additionally, data relating to pressure drop vs accumulated mass during plugging are reported for simulated combustion aerosols. The effects of concentration and moisture levels on filter plugging were evaluated. We are obtaining all of the above data so that mathematical models can be developed for fire, explosion, and tornado accident analysis computer codes. These computer codes can be used to assess the response of nuclear air cleaning systems to accident conditions.

  17. Clinical application of exome sequencing in undiagnosed genetic conditions

    PubMed Central

    Need, Anna C; Shashi, Vandana; Hitomi, Yuki; Schoch, Kelly; Shianna, Kevin V; McDonald, Marie T; Meisler, Miriam H

    2012-01-01

    Background There is considerable interest in the use of next-generation sequencing to help diagnose unidentified genetic conditions, but it is difficult to predict the success rate in a clinical setting that includes patients with a broad range of phenotypic presentations. Methods The authors present a pilot programme of whole-exome sequencing on 12 patients with unexplained and apparent genetic conditions, along with their unaffected parents. Unlike many previous studies, the authors did not seek patients with similar phenotypes, but rather enrolled any undiagnosed proband with an apparent genetic condition when predetermined criteria were met. Results This undertaking resulted in a likely genetic diagnosis in 6 of the 12 probands, including the identification of apparently causal mutations in four genes known to cause Mendelian disease (TCF4, EFTUD2, SCN2A and SMAD4) and one gene related to known Mendelian disease genes (NGLY1). Of particular interest is that at the time of this study, EFTUD2 was not yet known as a Mendelian disease gene but was nominated as a likely cause based on the observation of de novo mutations in two unrelated probands. In a seventh case with multiple disparate clinical features, the authors were able to identify homozygous mutations in EFEMP1 as a likely cause for macular degeneration (though likely not for other features). Conclusions This study provides evidence that next-generation sequencing can have high success rates in a clinical setting, but also highlights key challenges. It further suggests that the presentation of known Mendelian conditions may be considerably broader than currently recognised. PMID:22581936

  18. Phase Distribution Phenomena for Simulated Microgravity Conditions: Experimental Work

    NASA Technical Reports Server (NTRS)

    Singhal, Maneesh; Bonetto, Fabian J.; Lahey, R. T., Jr.

    1996-01-01

    This report summarizes the work accomplished at Rensselaer to study phase distribution phenomenon under simulated microgravity conditions. Our group at Rensselaer has been able to develop sophisticated analytical models to predict phase distribution in two-phase flows under variety of conditions. These models are based on physics and data obtained from carefully controlled experiments that are being conducted here. These experiments also serve to verify the models developed.

  19. Phase Distribution Phenomena for Simulated Microgravity Conditions: Experimental Work

    NASA Technical Reports Server (NTRS)

    Singhal, Maneesh; Bonetto, Fabian J.; Lahey, R. T., Jr.

    1996-01-01

    This report summarizes the work accomplished at Rensselaer to study phase distribution phenomenon under simulated microgravity conditions. Our group at Rensselaer has been able to develop sophisticated analytical models to predict phase distribution in two-phase flows under a variety of conditions. These models are based on physics and data obtained from carefully controlled experiments that are being conducted here. These experiments also serve to verify the models developed.

  20. Zircoloy Cladding Oxidation Simulation for LWR under LOCA Conditions

    Energy Science and Technology Software Center (ESTSC)

    2003-04-25

    PRECIP-2 simulates zircaloy cladding oxidation under LOCA conditions of LWR’s. The code calculates oxygen concentration distribution across the cladding wall by solving the diffusion equation with moving boundary conditions, taking into account the structure change of the beta— phase, i.e. alpha precipitation during the cooling period. The code also predicts total oxygen uptake, thicknesses of alpha, beta and oxide layers.

  1. Physiological and pathological clinical conditions and light scattering in brain.

    PubMed

    Kurata, Tsuyoshi; Iwata, Sachiko; Tsuda, Kennosuke; Kinoshita, Masahiro; Saikusa, Mamoru; Hara, Naoko; Oda, Motoki; Ohmae, Etsuko; Araki, Yuko; Sugioka, Takashi; Takashima, Sachio; Iwata, Osuke

    2016-01-01

    MRI of preterm infants at term commonly reveals subtle brain lesions such as diffuse white matter injury, which are linked with later cognitive impairments. The timing and mechanism of such injury remains unclear. The reduced scattering coefficient of near-infrared light (μs') has been shown to correlate linearly with gestational age in neonates. To identify clinical variables associated with brain μs', 60 preterm and full-term infants were studied within 7 days of birth. Dependence of μs' obtained from the frontal head on clinical variables was assessed. In the univariate analysis, smaller μs' was associated with antenatal glucocorticoid, emergency Caesarean section, requirement for mechanical ventilation, smaller gestational age, smaller body sizes, low 1- and 5-minute Apgar scores, higher cord blood pH and PO2, and higher blood HCO3(-) at the time of study. Multivariate analysis revealed that smaller gestational age, requirement for mechanical ventilation, and higher HCO3(-) at the time of study were correlated with smaller μs'. Brain μs' depended on variables associated with physiological maturation and pathological conditions of the brain. Further longitudinal studies may help identify pathological events and clinical conditions responsible for subtle brain injury and subsequent cognitive impairments following preterm birth. PMID:27511644

  2. Physiological and pathological clinical conditions and light scattering in brain

    PubMed Central

    Kurata, Tsuyoshi; Iwata, Sachiko; Tsuda, Kennosuke; Kinoshita, Masahiro; Saikusa, Mamoru; Hara, Naoko; Oda, Motoki; Ohmae, Etsuko; Araki, Yuko; Sugioka, Takashi; Takashima, Sachio; Iwata, Osuke

    2016-01-01

    MRI of preterm infants at term commonly reveals subtle brain lesions such as diffuse white matter injury, which are linked with later cognitive impairments. The timing and mechanism of such injury remains unclear. The reduced scattering coefficient of near-infrared light (μs’) has been shown to correlate linearly with gestational age in neonates. To identify clinical variables associated with brain μs’, 60 preterm and full-term infants were studied within 7 days of birth. Dependence of μs’ obtained from the frontal head on clinical variables was assessed. In the univariate analysis, smaller μs’ was associated with antenatal glucocorticoid, emergency Caesarean section, requirement for mechanical ventilation, smaller gestational age, smaller body sizes, low 1- and 5-minute Apgar scores, higher cord blood pH and PO2, and higher blood HCO3− at the time of study. Multivariate analysis revealed that smaller gestational age, requirement for mechanical ventilation, and higher HCO3− at the time of study were correlated with smaller μs’. Brain μs’ depended on variables associated with physiological maturation and pathological conditions of the brain. Further longitudinal studies may help identify pathological events and clinical conditions responsible for subtle brain injury and subsequent cognitive impairments following preterm birth. PMID:27511644

  3. Analysis of Boundary Conditions for Crystal Defect Atomistic Simulations

    NASA Astrophysics Data System (ADS)

    Ehrlacher, V.; Ortner, C.; Shapeev, A. V.

    2016-06-01

    Numerical simulations of crystal defects are necessarily restricted to finite computational domains, supplying artificial boundary conditions that emulate the effect of embedding the defect in an effectively infinite crystalline environment. This work develops a rigorous framework within which the accuracy of different types of boundary conditions can be precisely assessed. We formulate the equilibration of crystal defects as variational problems in a discrete energy space and establish qualitatively sharp regularity estimates for minimisers. Using this foundation we then present rigorous error estimates for (i) a truncation method (Dirichlet boundary conditions), (ii) periodic boundary conditions, (iii) boundary conditions from linear elasticity, and (iv) boundary conditions from nonlinear elasticity. Numerical results confirm the sharpness of the analysis.

  4. Automating Identification of Multiple Chronic Conditions in Clinical Practice Guidelines

    PubMed Central

    Leung, Tiffany I.; Jalal, Hawre; Zulman, Donna M.; Dumontier, Michel; Owens, Douglas K.; Musen, Mark A.; Goldstein, Mary K.

    2015-01-01

    Many clinical practice guidelines (CPGs) are intended to provide evidence-based guidance to clinicians on a single disease, and are frequently considered inadequate when caring for patients with multiple chronic conditions (MCC), or two or more chronic conditions. It is unclear to what degree disease-specific CPGs provide guidance about MCC. In this study, we develop a method for extracting knowledge from single-disease chronic condition CPGs to determine how frequently they mention commonly co-occurring chronic diseases. We focus on 15 highly prevalent chronic conditions. We use publicly available resources, including a repository of guideline summaries from the National Guideline Clearinghouse to build a text corpus, a data dictionary of ICD-9 codes from the Medicare Chronic Conditions Data Warehouse (CCW) to construct an initial list of disease terms, and disease synonyms from the National Center for Biomedical Ontology to enhance the list of disease terms. First, for each disease guideline, we determined the frequency of comorbid condition mentions (a disease-comorbidity pair) by exactly matching disease synonyms in the text corpus. Then, we developed an annotated reference standard using a sample subset of guidelines. We used this reference standard to evaluate our approach. Then, we compared the co-prevalence of common pairs of chronic conditions from Medicare CCW data to the frequency of disease-comorbidity pairs in CPGs. Our results show that some disease-comorbidity pairs occur more frequently in CPGs than others. Sixty-one (29.0%) of 210 possible disease-comorbidity pairs occurred zero times; for example, no guideline on chronic kidney disease mentioned depression, while heart failure guidelines mentioned ischemic heart disease the most frequently. Our method adequately identifies comorbid chronic conditions in CPG recommendations with precision 0.82, recall 0.75, and F-measure 0.78. Our work identifies knowledge currently embedded in the free text of

  5. Automating Identification of Multiple Chronic Conditions in Clinical Practice Guidelines.

    PubMed

    Leung, Tiffany I; Jalal, Hawre; Zulman, Donna M; Dumontier, Michel; Owens, Douglas K; Musen, Mark A; Goldstein, Mary K

    2015-01-01

    Many clinical practice guidelines (CPGs) are intended to provide evidence-based guidance to clinicians on a single disease, and are frequently considered inadequate when caring for patients with multiple chronic conditions (MCC), or two or more chronic conditions. It is unclear to what degree disease-specific CPGs provide guidance about MCC. In this study, we develop a method for extracting knowledge from single-disease chronic condition CPGs to determine how frequently they mention commonly co-occurring chronic diseases. We focus on 15 highly prevalent chronic conditions. We use publicly available resources, including a repository of guideline summaries from the National Guideline Clearinghouse to build a text corpus, a data dictionary of ICD-9 codes from the Medicare Chronic Conditions Data Warehouse (CCW) to construct an initial list of disease terms, and disease synonyms from the National Center for Biomedical Ontology to enhance the list of disease terms. First, for each disease guideline, we determined the frequency of comorbid condition mentions (a disease-comorbidity pair) by exactly matching disease synonyms in the text corpus. Then, we developed an annotated reference standard using a sample subset of guidelines. We used this reference standard to evaluate our approach. Then, we compared the co-prevalence of common pairs of chronic conditions from Medicare CCW data to the frequency of disease-comorbidity pairs in CPGs. Our results show that some disease-comorbidity pairs occur more frequently in CPGs than others. Sixty-one (29.0%) of 210 possible disease-comorbidity pairs occurred zero times; for example, no guideline on chronic kidney disease mentioned depression, while heart failure guidelines mentioned ischemic heart disease the most frequently. Our method adequately identifies comorbid chronic conditions in CPG recommendations with precision 0.82, recall 0.75, and F-measure 0.78. Our work identifies knowledge currently embedded in the free text of

  6. Clinical simulators: applications and implications for rural medical education.

    PubMed

    Ypinazar, V A; Margolis, S A

    2006-01-01

    Medical education has undergone significant changes globally. Calls for the revitalisation of centuries old pathways of learning have resulted in innovative medical curricula. Didactic modes of teaching which involved the learning of copious amounts of facts have given way to curricula that focus on the horizontal and vertical integration of basic and clinical sciences. Increasing concern for patient care and safety has led to a 'gap' between the needs of medical students to acquire necessary psychomotor skills and the safety and wellbeing of the patient. This has resulted in alternate teaching methods that include non-patient based training for the acquisition of clinical skills. The use of computerised, full-sized human simulators provides medical students with the necessary psychomotor and clinical reasoning skills in a realistic learning environment, while remaining risk free to patients. These clinical simulators are powerful learning tools that have applications at all levels of medical education across multiple disciplines, emphasising the multidisciplinary approach required in many medical situations. This article reviews the literature on medical simulation and provides the contextual basis for the establishment of a Clinical Simulation Learning Centre (CSLC) in a rural clinical school in Australia. The educational program, as well as the design, layout and equipment of the CSLC are described, as well as implications for rural practitioners. The CSLC has been a major capital investment in a relatively under-resourced part of regional Australia and has provided opportunities for ongoing education across a range of healthcare professionals in the community. PMID:16764503

  7. Cardioprotection by remote ischemic conditioning: Mechanisms and clinical evidences.

    PubMed

    Aimo, Alberto; Borrelli, Chiara; Giannoni, Alberto; Pastormerlo, Luigi Emilio; Barison, Andrea; Mirizzi, Gianluca; Emdin, Michele; Passino, Claudio

    2015-10-26

    In remote ischemic conditioning (RIC), several cycles of ischemia and reperfusion render distant organ and tissues more resistant to the ischemia-reperfusion injury. The intermittent ischemia can be applied before the ischemic insult in the target site (remote ischemic preconditioning), during the ischemic insult (remote ischemic perconditioning) or at the onset of reperfusion (remote ischemic postconditioning). The mechanisms of RIC have not been completely defined yet; however, these mechanisms must be represented by the release of humoral mediators and/or the activation of a neural reflex. RIC has been discovered in the heart, and has been arising great enthusiasm in the cardiovascular field. Its efficacy has been evaluated in many clinical trials, which provided controversial results. Our incomplete comprehension of the mechanisms underlying the RIC could be impairing the design of clinical trials and the interpretation of their results. In the present review we summarize current knowledge about RIC pathophysiology and the data about its cardioprotective efficacy. PMID:26516416

  8. Discretely Integrated Condition Event (DICE) Simulation for Pharmacoeconomics.

    PubMed

    Caro, J Jaime

    2016-07-01

    Several decision-analytic modeling techniques are in use for pharmacoeconomic analyses. Discretely integrated condition event (DICE) simulation is proposed as a unifying approach that has been deliberately designed to meet the modeling requirements in a straightforward transparent way, without forcing assumptions (e.g., only one transition per cycle) or unnecessary complexity. At the core of DICE are conditions that represent aspects that persist over time. They have levels that can change and many may coexist. Events reflect instantaneous occurrences that may modify some conditions or the timing of other events. The conditions are discretely integrated with events by updating their levels at those times. Profiles of determinant values allow for differences among patients in the predictors of the disease course. Any number of valuations (e.g., utility, cost, willingness-to-pay) of conditions and events can be applied concurrently in a single run. A DICE model is conveniently specified in a series of tables that follow a consistent format and the simulation can be implemented fully in MS Excel, facilitating review and validation. DICE incorporates both state-transition (Markov) models and non-resource-constrained discrete event simulation in a single formulation; it can be executed as a cohort or a microsimulation; and deterministically or stochastically. PMID:26961779

  9. Large Eddy Simulation in a Channel with Exit Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Cziesla, T.; Braun, H.; Biswas, G.; Mitra, N. K.

    1996-01-01

    The influence of the exit boundary conditions (vanishing first derivative of the velocity components and constant pressure) on the large eddy simulation of the fully developed turbulent channel flow has been investigated for equidistant and stretched grids at the channel exit. Results show that the chosen exit boundary conditions introduce some small disturbance which is mostly damped by the grid stretching. The difference between the fully developed turbulent channel flow obtained with LES with periodicity condition and the inlet and exit and the LES with fully developed flow at the inlet and the exit boundary condition is less than 10% for equidistant grids and less than 5% for the case grid stretching. The chosen boundary condition is of interest because it may be used in complex flows with backflow at exit.

  10. A brief simulation intervention increasing basic science and clinical knowledge

    PubMed Central

    Sheakley, Maria L.; Gilbert, Gregory E.; Leighton, Kim; Hall, Maureen; Callender, Diana; Pederson, David

    2016-01-01

    Background The United States Medical Licensing Examination (USMLE) is increasing clinical content on the Step 1 exam; thus, inclusion of clinical applications within the basic science curriculum is crucial. Including simulation activities during basic science years bridges the knowledge gap between basic science content and clinical application. Purpose To evaluate the effects of a one-off, 1-hour cardiovascular simulation intervention on a summative assessment after adjusting for relevant demographic and academic predictors. Methods This study was a non-randomized study using historical controls to evaluate curricular change. The control group received lecture (nl=515) and the intervention group received lecture plus a simulation exercise (nl+s=1,066). Assessment included summative exam questions (n=4) that were scored as pass/fail (≥75%). USMLE-style assessment questions were identical for both cohorts. Descriptive statistics for variables are presented and odds of passage calculated using logistic regression. Results Undergraduate grade point ratio, MCAT-BS, MCAT-PS, age, attendance at an academic review program, and gender were significant predictors of summative exam passage. Students receiving the intervention were significantly more likely to pass the summative exam than students receiving lecture only (P=0.0003). Discussion Simulation plus lecture increases short-term understanding as tested by a written exam. A longitudinal study is needed to assess the effect of a brief simulation intervention on long-term retention of clinical concepts in a basic science curriculum. PMID:27060102

  11. Enhancing pediatric clinical competency with high-fidelity simulation.

    PubMed

    Birkhoff, Susan D; Donner, Carol

    2010-09-01

    In today's tertiary pediatric hospital setting, the increased complexity of patient care demands seamless coordination and collaboration among multidisciplinary team members. In an effort to enhance patient safety, clinical competence, and teamwork, simulation-based learning has become increasingly integrated into pediatric clinical practice as an innovative educational strategy. The simulated setting provides a risk-free environment where learners can incorporate cognitive, psychomotor, and affective skill acquisition without fear of harming patients. One pediatric university hospital in Southeastern Pennsylvania has enhanced the traditional American Heart Association (AHA) Pediatric Advanced Life Support (PALS) course by integrating high-fidelity simulation into skill acquisition, while still functioning within the guidelines and framework of the AHA educational standards. However, very little research with reliable standardized testing methods has been done to measure the effect of simulation-based learning. This article discusses the AHA guidelines for PALS, evaluation of PALS and nursing clinical competencies, communication among a multidisciplinary team, advantages and disadvantages of simulation, incorporation of high-fidelity simulation into pediatric practice, and suggestions for future practice. PMID:20506930

  12. Adenomyosis: A Clinical Review of a Challenging Gynecologic Condition.

    PubMed

    Struble, Jennifer; Reid, Shannon; Bedaiwy, Mohamed A

    2016-02-01

    Adenomyosis is a heterogenous gynecologic condition. Patients with adenomyosis can have a range of clinical presentations. The most common presentation of adenomyosis is heavy menstrual bleeding and dysmenorrhea; however, patients can also be asymptomatic. Currently, there are no standard diagnostic imaging criteria, and choosing the optimal treatment for patients is challenging. Women with adenomyosis often have other associated gynecologic conditions such as endometriosis or leiomyomas, therefore making the diagnosis and evaluating response to treatment challenging. The objective of this review was to highlight current clinical information regarding the epidemiology, risk factors, pathogenesis, clinical manifestations, diagnosis, imaging findings, and treatment of adenomyosis. Several studies support the theory that adenomyosis results from invasion of the endometrium into the myometrium, causing alterations in the junctional zone. These changes are commonly seen on imaging studies such as transvaginal ultrasound (TVUS) and magnetic resonance imaging (MRI). The second most common theory is that adenomyosis results from embryologic-misplaced pluripotent mullerian remnants. Traditionally, adenomyosis was only diagnosed after hysterectomy; however, studies have shown that a diagnosis can be made with biopsies at hysteroscopy and laparoscopy. Noninvasive imaging can be used to help guide the differential diagnosis. The most common findings on 2-dimensional/3-dimensional TVUS and MRI are reviewed. Two-dimensional TVUS and MRI have a respectable sensitivity and specificity; however, recent studies indicate that 3-dimensional TVUS is superior to 2-dimensional TVUS for the diagnosis of adenomyosis and may allow for the diagnosis of early-stage disease. Management options for adenomyosis, both medical and surgical, are reviewed. Currently, the only definitive management option for patients is hysterectomy. PMID:26427702

  13. Generating Optimal Initial Conditions for Smoothed Particle Hydrodynamics Simulations

    NASA Astrophysics Data System (ADS)

    Diehl, S.; Rockefeller, G.; Fryer, C. L.; Riethmiller, D.; Statler, T. S.

    2015-12-01

    We review existing smoothed particle hydrodynamics setup methods and outline their advantages, limitations, and drawbacks. We present a new method for constructing initial conditions for smoothed particle hydrodynamics simulations, which may also be of interest for N-body simulations, and demonstrate this method on a number of applications. This new method is inspired by adaptive binning techniques using weighted Voronoi tessellations. Particles are placed and iteratively moved based on their proximity to neighbouring particles and the desired spatial resolution. This new method can satisfy arbitrarily complex spatial resolution requirements.

  14. DSMC Shock Simulation of Saturn Entry Probe Conditions

    NASA Technical Reports Server (NTRS)

    Higdon, Kyle J.; Cruden, Brett A.; Brandis, Aaron M.; Liechty, Derek S.; Goldstein, David B.; Varghese, Philip L.

    2016-01-01

    This work describes the direct simulation Monte Carlo (DSMC) investigation of Saturn entry probe scenarios and the influence of non-equilibrium phenomena on Saturn entry conditions. The DSMC simulations coincide with rarefied hypersonic shock tube experiments of a hydrogen-helium mixture performed in the Electric Arc Shock Tube (EAST) at the NASA Ames Research Center. The DSMC simulations are post-processed through the NEQAIR line-by-line radiation code to compare directly to the experimental results. Improved collision cross-sections, inelastic collision parameters, and reaction rates are determined for a high temperature DSMC simulation of a 7-species H2-He mixture and an electronic excitation model is implemented in the DSMC code. Simulation results for 27.8 and 27.4 km/s shock waves are obtained at 0.2 and 0.1 Torr, respectively, and compared to measured spectra in the VUV, UV, visible, and IR ranges. These results confirm the persistence of non-equilibrium for several centimeters behind the shock and the diffusion of atomic hydrogen upstream of the shock wave. Although the magnitude of the radiance did not match experiments and an ionization inductance period was not observed in the simulations, the discrepancies indicated where improvements are needed in the DSMC and NEQAIR models.

  15. DSMC Shock Simulation of Saturn Entry Probe Conditions

    NASA Technical Reports Server (NTRS)

    Higdon, Kyle J.; Cruden, Brett A.; Brandis, Aaron; Liechty, Derek S.; Goldstein, David B.; Varghese, Philip L.

    2016-01-01

    This work describes the direct simulation Monte Carlo (DSMC) investigation of Saturn entry probe scenarios and the influence of non-equilibrium phenomena on Saturn entry conditions. The DSMC simulations coincide with rarefied hypersonic shock tube experiments of a hydrogen-helium mixture performed in the Electric Arc Shock Tube (EAST) at NASA Ames Research Center. The DSMC simulations are post-processed through the NEQAIR line-by-line radiation code to compare directly to the experimental results. Improved collision cross-sections, inelastic collision parameters, and reaction rates are determined for a high temperature DSMC simulation of a 7-species H2-He mixture and an electronic excitation model is implemented in the DSMC code. Simulation results for 27.8 and 27.4 kms shock waves are obtained at 0.2 and 0.1 Torr respectively and compared to measured spectra in the VUV, UV, visible, and IR ranges. These results confirm the persistence of non-equilibrium for several centimeters behind the shock and the diffusion of atomic hydrogen upstream of the shock wave. Although the magnitude of the radiance did not match experiments and an ionization inductance period was not observed in the simulations, the discrepancies indicated where improvements are needed in the DSMC and NEQAIR models.

  16. Evidence of clinical competence by simulation, a hermeneutical observational study.

    PubMed

    Lejonqvist, Gun-Britt; Eriksson, Katie; Meretoja, Riitta

    2016-03-01

    Making the transition from theory to practise easier in nursing education through simulation is widely implemented all over the world, and there is research evidence of the positive effects of simulation. The pre-understanding for this study is based on a definition of clinical competence as encountering, knowing, performing, maturing and developing, and the hypothesis is that these categories should appear in simulated situations. The aim of the study was to explore the forms and expressions of clinical competence in simulated situations and furthermore to explore if and how clinical competence could be developed by simulation. An observational hermeneutic study with a hypothetic-deductive approach was used in 18 simulated situations with 39 bachelor degree nursing students. In the situations, the scenarios, the actors and the plots were described. The story told was "the way from suffering to health" in which three main plots emerged. The first was, doing as performing and knowing, which took the shape of knowing what to do, acting responsibly, using evidence and equipment, appearing confident and feeling comfortable, and sharing work and information with others. The second was, being as encountering the patient, which took the shape of being there for him/her and confirming by listening and answering. The third plot was becoming as maturing and developing which took the shape of learning in co-operation with other students. All the deductive categories, shapes and expressions appeared as dialectic patterns having their negative counterparts. The study showed that clinical competence can be made evident and developed by simulation and that the challenge is in encountering the patient and his/her suffering. PMID:26763209

  17. Simulation of Earth textures by conditional image quilting

    NASA Astrophysics Data System (ADS)

    Mahmud, K.; Mariethoz, G.; Caers, J.; Tahmasebi, P.; Baker, A.

    2014-04-01

    Training image-based approaches for stochastic simulations have recently gained attention in surface and subsurface hydrology. This family of methods allows the creation of multiple realizations of a study domain, with a spatial continuity based on a training image (TI) that contains the variability, connectivity, and structural properties deemed realistic. A major drawback of these methods is their computational and/or memory cost, making certain applications challenging. It was found that similar methods, also based on training images or exemplars, have been proposed in computer graphics. One such method, image quilting (IQ), is introduced in this paper and adapted for hydrogeological applications. The main difficulty is that Image Quilting was originally not designed to produce conditional simulations and was restricted to 2-D images. In this paper, the original method developed in computer graphics has been modified to accommodate conditioning data and 3-D problems. This new conditional image quilting method (CIQ) is patch based, does not require constructing a pattern databases, and can be used with both categorical and continuous training images. The main concept is to optimally cut the patches such that they overlap with minimum discontinuity. The optimal cut is determined using a dynamic programming algorithm. Conditioning is accomplished by prior selection of patches that are compatible with the conditioning data. The performance of CIQ is tested for a variety of hydrogeological test cases. The results, when compared with previous multiple-point statistics (MPS) methods, indicate an improvement in CPU time by a factor of at least 50.

  18. The Dialysis Exercise: A Clinical Simulation for Preclinical Medical Students.

    ERIC Educational Resources Information Center

    And Others; Bernstein, Richard A.

    1980-01-01

    A clinical decision-making simulation that helps students understand the relationship between psychosocial factors and medical problem-solving is described. A group of medical students and one faculty member comprise a selection committee to agree on the order in which four patients will be selected for renal dialysis. (MLW)

  19. [Simulation and air-conditioning in the nose].

    PubMed

    Keck, T; Lindemann, J

    2010-05-01

    Heating and humidification of the respiratory air are the main functions of the nasal airways in addition to cleansing and olfaction. Optimal nasal air conditioning is mandatory for an ideal pulmonary gas exchange in order to avoid dessication and adhesion of the alveolar capillary bed. The complex three-dimensional anatomical structure of the nose makes it impossible to perform detailed in vivo studies on intranasal heating and humidification within the entire nasal airways applying various technical set-ups. The main problem of in vivo temperature and humidity measurements is a poor spatial and time resolution. Therefore, in vivo measurements are feasible to a restricted extent, only providing single temperature values as the complete nose is not entirely accessible. Therefore, data on the overall performance of the nose are only based on one single measurement within each nasal segment. In vivo measurements within the entire nose are not feasible. These serious technical issues concerning in vivo measurements led to a large number of numerical simulation projects in the last few years providing novel information about the complex functions of the nasal airways. In general, numerical simulations only calculate predictions in a computational model, e. g. realistic nose model, depending on the setting of the boundary conditions. Therefore, numerical simulations achieve only approximations of a possible real situation. The aim of this report is the synopsis of the technical expertise on the field of in vivo nasal air conditioning, the novel information of numerical simulations and the current state of knowledge on the influence of nasal and sinus surgery on nasal air conditioning. PMID:20352565

  20. Multiscale molecular simulations of proteins in cell-like conditions

    NASA Astrophysics Data System (ADS)

    Samiotakis, Antonios

    Proteins are the workhorses of all living organisms, performing a broad range of functions in the crowded cellular interior. However, little is known about how proteins function in cell-like conditions since most studies focus in dilute aqueous environments. In order to address this problem we incorporated molecular simulations and coarse-grained models that capture the protein dynamics in the cellular interior. We study the macromolecular crowding effects of cell-like environments on protein Borrelia Burgdorferi VlsE (variable major protein-like sequence-expressed), an aspherical membrane protein, and the enzyme Phosphoglycerate kinase. We show that protein conformation can be significantly perturbed under crowded cell-like conditions which, in turn, can have dramatic effects to the proteins' function. In addition, we look into the effects of mutations in the folding pathways of the topologically frustrated protein apoflavodoxin while correlation with experiments is also achieved. We further developed a multiscale simulation scheme that combines the sampling efficiency of low-resolution models with the detail of all-atomistic simulations. An algorithm that reconstructs all-atomistic conformations from coarse-grained representations was developed, in addition to an energy function that accounts for chemical interference based on the Boltzamn inversion method. The multiscale simulation scheme manages to sample all-atomistic structures of the protein Trp-cage that match very well with experiments. The folding kinetic behavior of Trp-cage was also studied in the combined presence of urea denaturant and macromolecular crowding.

  1. Program Code Generator for Cardiac Electrophysiology Simulation with Automatic PDE Boundary Condition Handling

    PubMed Central

    Punzalan, Florencio Rusty; Kunieda, Yoshitoshi; Amano, Akira

    2015-01-01

    Clinical and experimental studies involving human hearts can have certain limitations. Methods such as computer simulations can be an important alternative or supplemental tool. Physiological simulation at the tissue or organ level typically involves the handling of partial differential equations (PDEs). Boundary conditions and distributed parameters, such as those used in pharmacokinetics simulation, add to the complexity of the PDE solution. These factors can tailor PDE solutions and their corresponding program code to specific problems. Boundary condition and parameter changes in the customized code are usually prone to errors and time-consuming. We propose a general approach for handling PDEs and boundary conditions in computational models using a replacement scheme for discretization. This study is an extension of a program generator that we introduced in a previous publication. The program generator can generate code for multi-cell simulations of cardiac electrophysiology. Improvements to the system allow it to handle simultaneous equations in the biological function model as well as implicit PDE numerical schemes. The replacement scheme involves substituting all partial differential terms with numerical solution equations. Once the model and boundary equations are discretized with the numerical solution scheme, instances of the equations are generated to undergo dependency analysis. The result of the dependency analysis is then used to generate the program code. The resulting program code are in Java or C programming language. To validate the automatic handling of boundary conditions in the program code generator, we generated simulation code using the FHN, Luo-Rudy 1, and Hund-Rudy cell models and run cell-to-cell coupling and action potential propagation simulations. One of the simulations is based on a published experiment and simulation results are compared with the experimental data. We conclude that the proposed program code generator can be used to

  2. Program Code Generator for Cardiac Electrophysiology Simulation with Automatic PDE Boundary Condition Handling.

    PubMed

    Punzalan, Florencio Rusty; Kunieda, Yoshitoshi; Amano, Akira

    2015-01-01

    Clinical and experimental studies involving human hearts can have certain limitations. Methods such as computer simulations can be an important alternative or supplemental tool. Physiological simulation at the tissue or organ level typically involves the handling of partial differential equations (PDEs). Boundary conditions and distributed parameters, such as those used in pharmacokinetics simulation, add to the complexity of the PDE solution. These factors can tailor PDE solutions and their corresponding program code to specific problems. Boundary condition and parameter changes in the customized code are usually prone to errors and time-consuming. We propose a general approach for handling PDEs and boundary conditions in computational models using a replacement scheme for discretization. This study is an extension of a program generator that we introduced in a previous publication. The program generator can generate code for multi-cell simulations of cardiac electrophysiology. Improvements to the system allow it to handle simultaneous equations in the biological function model as well as implicit PDE numerical schemes. The replacement scheme involves substituting all partial differential terms with numerical solution equations. Once the model and boundary equations are discretized with the numerical solution scheme, instances of the equations are generated to undergo dependency analysis. The result of the dependency analysis is then used to generate the program code. The resulting program code are in Java or C programming language. To validate the automatic handling of boundary conditions in the program code generator, we generated simulation code using the FHN, Luo-Rudy 1, and Hund-Rudy cell models and run cell-to-cell coupling and action potential propagation simulations. One of the simulations is based on a published experiment and simulation results are compared with the experimental data. We conclude that the proposed program code generator can be used to

  3. Conditions for the relevance of infant research to clinical psychoanalysis.

    PubMed

    Fajardo, B

    1993-10-01

    There is increased pluralism within psychoanalysis today, and the practice of psychoanalysis rests on many different theories and distinctly different epistemologic perspectives about the nature of the truth, the position of the observer-analyst in the process, and the phenomena to be observed. The relevance of developmental observation research to clinical psychoanalysis will vary with the epistemological perspective of the practitioner, and to be relevant the perspective of the researcher must 'match' that of the clinician. Additionally, its relevance is conditioned by what is considered 'empirical' data, i.e. whether the data are defined behaviourally or by empathic judgements of an observer. Three broad categories of psychoanalytic perspectives are discussed: empirical-natural science, hermeneutic-empirical, and hermeneutic-constructivist. A patient in analysis is described, with details of two sessions. Three imaginary consultants, each representing one of the major epistemological clinical perspectives, comment on the material to demonstrate the relationship among technique, epistemology, and the ways infants and developmental observation research may be relevant (or not relevant). PMID:8307704

  4. Numerical simulations of clinical focused ultrasound functional neurosurgery

    PubMed Central

    Pulkkinen, Aki; Werner, Beat; Martin, Ernst; Hynynen, Kullervo

    2014-01-01

    A computational model utilizing grid and finite difference methods was developed to simulate focused ultrasound functional neurosurgery interventions. The model couples the propagation of ultrasound in fluids (soft tissues) and solids (skull) with acoustic and visco-elastic wave equations. The computational model was applied to simulate clinical focused ultrasound functional neurosurgery treatments performed in patients suffering from therapy resistant chronic neuropathic pain. Datasets of five patients were used to derive the treatment geometry. Eight sonications performed in the treatments were then simulated with the developed model. Computations were performed by driving the simulated phased array ultrasound transducer with the acoustic parameters used in the treatments. Resulting focal temperatures and size of the thermal foci were compared quantitatively, in addition to qualitative inspection of the simulated pressure and temperature fields. This study found that the computational model and the simulation parameters predicted an average of 24 ± 13 % lower focal temperature elevations than observed in the treatments. The size of the simulated thermal focus was found to be 40 ± 13 % smaller in the anterior–posterior direction and 22 ± 14% smaller in the inferior–superior direction than in the treatments. The location of the simulated thermal focus was off from the prescribed target by 0.3 ± 0.1 mm, while the peak focal temperature elevation observed in the measurements was off by 1.6 ± 0.6 mm. Although the results of the simulations suggest that there could be some inaccuracies in either the tissue parameters used, or in the simulation methods, the simulations were able to predict the focal spot locations and temperature elevations adequately for initial treatment planning performed to assess, for example, the feasibility of sonication. The accuracy of the simulations could be improved if more precise ultrasound tissue properties (especially of the

  5. Numerical simulations of clinical focused ultrasound functional neurosurgery.

    PubMed

    Pulkkinen, Aki; Werner, Beat; Martin, Ernst; Hynynen, Kullervo

    2014-04-01

    A computational model utilizing grid and finite difference methods were developed to simulate focused ultrasound functional neurosurgery interventions. The model couples the propagation of ultrasound in fluids (soft tissues) and solids (skull) with acoustic and visco-elastic wave equations. The computational model was applied to simulate clinical focused ultrasound functional neurosurgery treatments performed in patients suffering from therapy resistant chronic neuropathic pain. Datasets of five patients were used to derive the treatment geometry. Eight sonications performed in the treatments were then simulated with the developed model. Computations were performed by driving the simulated phased array ultrasound transducer with the acoustic parameters used in the treatments. Resulting focal temperatures and size of the thermal foci were compared quantitatively, in addition to qualitative inspection of the simulated pressure and temperature fields. This study found that the computational model and the simulation parameters predicted an average of 24 ± 13% lower focal temperature elevations than observed in the treatments. The size of the simulated thermal focus was found to be 40 ± 13% smaller in the anterior-posterior direction and 22 ± 14% smaller in the inferior-superior direction than in the treatments. The location of the simulated thermal focus was off from the prescribed target by 0.3 ± 0.1 mm, while the peak focal temperature elevation observed in the measurements was off by 1.6 ± 0.6 mm. Although the results of the simulations suggest that there could be some inaccuracies in either the tissue parameters used, or in the simulation methods, the simulations were able to predict the focal spot locations and temperature elevations adequately for initial treatment planning performed to assess, for example, the feasibility of sonication. The accuracy of the simulations could be improved if more precise ultrasound tissue properties (especially of the

  6. Numerical simulations of clinical focused ultrasound functional neurosurgery

    NASA Astrophysics Data System (ADS)

    Pulkkinen, Aki; Werner, Beat; Martin, Ernst; Hynynen, Kullervo

    2014-04-01

    A computational model utilizing grid and finite difference methods were developed to simulate focused ultrasound functional neurosurgery interventions. The model couples the propagation of ultrasound in fluids (soft tissues) and solids (skull) with acoustic and visco-elastic wave equations. The computational model was applied to simulate clinical focused ultrasound functional neurosurgery treatments performed in patients suffering from therapy resistant chronic neuropathic pain. Datasets of five patients were used to derive the treatment geometry. Eight sonications performed in the treatments were then simulated with the developed model. Computations were performed by driving the simulated phased array ultrasound transducer with the acoustic parameters used in the treatments. Resulting focal temperatures and size of the thermal foci were compared quantitatively, in addition to qualitative inspection of the simulated pressure and temperature fields. This study found that the computational model and the simulation parameters predicted an average of 24 ± 13% lower focal temperature elevations than observed in the treatments. The size of the simulated thermal focus was found to be 40 ± 13% smaller in the anterior-posterior direction and 22 ± 14% smaller in the inferior-superior direction than in the treatments. The location of the simulated thermal focus was off from the prescribed target by 0.3 ± 0.1 mm, while the peak focal temperature elevation observed in the measurements was off by 1.6 ± 0.6 mm. Although the results of the simulations suggest that there could be some inaccuracies in either the tissue parameters used, or in the simulation methods, the simulations were able to predict the focal spot locations and temperature elevations adequately for initial treatment planning performed to assess, for example, the feasibility of sonication. The accuracy of the simulations could be improved if more precise ultrasound tissue properties (especially of the

  7. Modelling and simulation of air-conditioning cycles

    NASA Astrophysics Data System (ADS)

    Rais, Sandi; Kadono, Yoshinori; Murayama, Katsunori; Minakuchi, Kazuya; Takeuchi, Hisae; Hasegawa, Tatsuya

    2016-05-01

    The heat-pump cycle for air conditioning was investigated both numerically and experimentally by evaluating the coefficient of performance (COP) under Japanese Industrial Standard (JIS B 8619:1999) and ANSI/AHRI standard 750-2007 operating conditions. We used two expansion valve coefficients Cv_{(\\varphi )} = 0.12 for standard operating conditions (Case 1) approaching 1.3 MPa at high pressure and 0.2 MPa at low pressure, and Cv_{(\\varphi )} = 0.06 namely poor operating conditions (Case 2). To improve the performance of the air conditioner, we compared the performance for two outside air temperatures, 35 and 40 °C (Case 3). The simulation and experiment comparison resulted the decreasing of the COP for standard operating condition is equal to 14 %, from 3.47 to 2.95 and a decrease of the cooling capacity is equal to 18 %, from 309.72 to 253.53 W. This result was also occurred in poor operating condition which the COP was superior at 35 °C temperature.

  8. Boundary conditions towards realistic simulation of jet engine noise

    NASA Astrophysics Data System (ADS)

    Dhamankar, Nitin S.

    Strict noise regulations at major airports and increasing environmental concerns have made prediction and attenuation of jet noise an active research topic. Large eddy simulation coupled with computational aeroacoustics has the potential to be a significant research tool for this problem. With the emergence of petascale computer clusters, it is now computationally feasible to include the nozzle geometry in jet noise simulations. In high Reynolds number experiments on jet noise, the turbulent boundary layer on the inner surface of the nozzle separates into a turbulent free shear layer. Inclusion of a nozzle with turbulent inlet conditions is necessary to simulate this phenomenon realistically. This will allow a reasonable comparison of numerically computed noise levels with the experimental results. Two viscous wall boundary conditions are implemented for modeling the nozzle walls. A characteristic-based approach is compared with a computationally cheaper, extrapolation-based formulation. In viscous flow over a circular cylinder under two different regimes, excellent agreement is observed between the results of the two approaches. The results agree reasonably well with reference experimental and numerical results. Both the boundary conditions are thus found to be appropriate, the extrapolation-based formulation having an edge with its low cost. This is followed with the crucial step of generation of a turbulent boundary layer inside the nozzle. A digital filter-based turbulent inflow condition, extended in a new way to non-uniform curvilinear grids is implemented to achieve this. A zero pressure gradient flat plate turbulent boundary layer is simulated at a high Reynolds number to show that the method is capable of producing sustained turbulence. The length of the adjustment region necessary for synthetic inlet turbulence to recover from modeling errors is estimated. A low Reynolds number jet simulation including a round nozzle geometry is performed and the method

  9. Growth of Methanogens on a Mars Soil Simulant Under Simulated Martian Conditions

    NASA Astrophysics Data System (ADS)

    Kral, Timothy A.; Bekkum, Curtis R.; McKay, Christopher P.

    2004-06-01

    Due to the hostile conditions at the surface, any life forms existing on Mars today would most likely inhabit a subsurface environment where conditions are potentially wetter and warmer, but organic compounds may be lacking and light energy for photosynthesis would be absent. Methanogens, members of the domain Archaea, are microorganisms from planet Earth that can grow under these relatively extreme conditions. We have demonstrated that certain methanogenic species can indeed grow on a Mars soil simulant, JSC Mars-1, with limited amounts of water, under conditions approaching a possible subsurface environment on Mars.

  10. Survival rates of some terrestrial microorganisms under simulated space conditions

    NASA Astrophysics Data System (ADS)

    Koike, J.; Oshima, T.; Koike, K. A.; Taguchi, H.; Tanaka, R.; Nishimura, K.; Miyaji, M.

    1992-10-01

    In connection with planetary quarantine, we have been studying the survival rates of nine species of terrestrial microorganisms (viruses, bacteria, yeasts, fungi, etc.) under simulated interstellar conditions. If common terrestrial microorganisms cannot survive in space even for short periods, we can greatly reduce expenditure for sterilizing space probes. The interstellar environment in the solar system has been simulated by low temperature, high vacuum (77 k, 4 × 10-6 torr), and protons irradiation from a Van de Graaff generator. After exposure to a barrage of protons corresponding to about 250 years of irradiation in solar space, Tobacco mosaic virus. Bacillus subtilis spores, Aspergillus niger spores, and Clostridium mangenoti spores showed survival rates of 82%, 45%, 28%, and 25%, respectively. Furthermore, pathogenic Candida albicans showed 7% survival after irradiation corresponding to about 60 years in space.

  11. Animated-simulation modeling facilitates clinical-process costing.

    PubMed

    Zelman, W N; Glick, N D; Blackmore, C C

    2001-09-01

    Traditionally, the finance department has assumed responsibility for assessing process costs in healthcare organizations. To enhance process-improvement efforts, however, many healthcare providers need to include clinical staff in process cost analysis. Although clinical staff often use electronic spreadsheets to model the cost of specific processes, PC-based animated-simulation tools offer two major advantages over spreadsheets: they allow clinicians to interact more easily with the costing model so that it more closely represents the process being modeled, and they represent cost output as a cost range rather than as a single cost estimate, thereby providing more useful information for decision making. PMID:11552586

  12. Characterization of Apollo Bulk Soil Samples Under Simulated Lunar Conditions

    NASA Astrophysics Data System (ADS)

    Donaldson Hanna, K. L.; Pieters, C. M.; Thomas, I.; Bowles, N. E.; Greenhagen, B. T.

    2013-12-01

    Remote observations provide key insights into the composition and evolution of planetary surfaces. A fundamentally important component to any remote compositional analysis of planetary surfaces is laboratory measurements of well-characterized samples measured under the appropriate environmental conditions. The vacuum environment of airless bodies like the Moon creates a steep thermal gradient in the upper hundreds of microns of regolith. Lab studies of particulate rocks and minerals as well as selected lunar soils under vacuum and lunar-like conditions have identified significant effects of this thermal gradient on thermal infrared (TIR) spectral measurements [e.g. Logan et al. 1973, Salisbury and Walter 1989, Thomas et al. 2012, Donaldson Hanna et al. 2012]. Such lab studies demonstrate the high sensitivity of TIR emissivity spectra to environmental conditions under which they are measured. To best understand the effects of the near surface-environment of the Moon, a consortium of four institutions with the capabilities of characterizing lunar samples was created. The goal of the Thermal Infrared Emission Studies of Lunar Surface Compositions Consortium (TIRES-LSCC) is to characterize Apollo bulk soil samples with a range of compositions and maturities in simulated lunar conditions to provide better context for the spectral effects due to varying compositions and soil maturity as well as for the interpretation of data obtained by the LRO Diviner Lunar Radiometer and future lunar and airless body thermal emission spectrometers. An initial set of thermal infrared emissivity measurements of the bulk lunar soil samples will be made in three of the laboratories included in the TIRES-LSCC: the Asteroid and Lunar Environment Chamber (ALEC) in RELAB at Brown University, the Simulated Lunar Environment chamber in the Planetary Spectroscopy Facility (PSF) at the University of Oxford, and the Simulated Airless Body Emission Laboratory (SABEL) at the Jet Propulsion Laboratory

  13. Simulating the Phoenix Lander meteorological conditions with a Mars GCM

    NASA Astrophysics Data System (ADS)

    Daerden, F.; Neary, L.; Whiteway, J.; Dickinson, C.; Komguem, L.; McConnell, J. C.; Kaminski, J. W.

    2012-04-01

    An updated version of the GEM-Mars Global Circulation Model [1] is applied for the simulation of the meteorological conditions at the Phoenix lander site for the time period of the surface operations (Ls=76-150). The simulation results for pressure and temperature at the surface are compared to data from the Phoenix Meteorological Station (MET). The vertical profiles of dust and temperature are compared to Phoenix LIDAR measurements and data from orbit (CRISM and MCS on MRO). The simulated conditions in the PBL are compared to those obtained in a dedicated PBL-Aeolian dust model [2] which was successfully applied to drive a detailed microphysical model [3] for the interpretation of clouds and precipitation observed by the LIDAR on Phoenix [4,5]. [1] Moudden, Y. and J.C. McConnell (2005): A new model for multiscale modeling of the Martian atmosphere, GM3, J. Geophys. Res. 110, E04001, doi:10.1029/2004JE002354 [2] Davy, R., P. A. Taylor, W. Weng, and P.-Y. Li (2009), A model of dust in the Martian lower atmosphere, J. Geophys. Res., 114, D04108, doi:10.1029/2008JD010481. [3] Daerden, F., J.A. Whiteway, R. Davy, C. Verhoeven, L. Komguem, C. Dickinson, P. A. Taylor, and N. Larsen (2010), Simulating Observed Boundary Layer Clouds on Mars, Geophys. Res. Lett., 37, L04203, doi:10.1029/2009GL041523 [4] Whiteway, J., M. Daly, A. Carswell, T. Duck, C. Dickinson, L. Komguem, and C. Cook (2008), Lidar on the Phoenix mission to Mars, J. Geophys. Res., 113, E00A08, doi:10.1029/2007JE003002. [5] Whiteway, J., et al. (2009), Mars water ice clouds and precipitation, Science, 325, 68 - 70.

  14. Recognizing Clinical Styles in a Dental Surgery Simulator.

    PubMed

    Rhienmora, Phattanapon; Haddawy, Peter; Suebnukarn, Siriwan; Shrestha, Poonam; Dailey, Matthew N

    2015-01-01

    Recognizing clinical style is essential for generating intelligent guidance in virtual reality simulators for dental skill acquisition. The aim of this study was to determine the potential of Dynamic Time Warping (DTW) in matching novices' tooth cutting sequences with those of experts. Forty dental students and four expert dentists were enrolled to perform access opening to the root canals with a simulator. Four experts performed in manners that differed widely in the tooth preparation sequence. Forty students were randomly allocated into four groups and were trained following each expert. DTW was performed between each student's sequence and all the expert sequences to determine the best match. Overall, the accuracy of the matching was high (95%). The current results suggest that the DTW is a useful technique to find the best matching expert for a student so that feedback based on that expert's performance can be given to the novice in clinical skill training. PMID:26262031

  15. Simulating Realistic Imaging Conditions For In-Situ Liquid Microscopy

    PubMed Central

    Welch, David A.; Faller, Roland; Evans, James E.; Browning, Nigel D.

    2013-01-01

    In situ transmission electron microscopy enables the imaging of biological cells, macromolecular protein complexes, nanoparticles, and other systems in a near-native environment. In order to improve interpretation of image contrast features and also predict ideal imaging conditions ahead of time, new virtual electron microscopic techniques are needed. A technique for virtual fluid-stage high-angle annular dark-field scanning transmission electron microscopy with the multislice method is presented that enables the virtual imaging of model fluid-stage systems composed of millions of atoms. The virtual technique is exemplified by simulating images of PbS nanoparticles under different imaging conditions and the results agree with previous experimental findings. General insight is obtained on the influence of the effects of fluid path length, membrane thickness, nanoparticle position, defocus and other microscope parameters on attainable image quality. PMID:23872040

  16. Simulating realistic imaging conditions for in situ liquid microscopy

    SciTech Connect

    Welch, David A.; Faller, Roland; Evans, James E.; Browning, Nigel D.

    2013-12-01

    In situ transmission electron microscopy enables the imaging of biological cells, macromolecular protein complexes, nanoparticles, and other systems in a near-native environment. In order to improve interpretation of image contrast features and also predict ideal imaging conditions ahead of time, new virtual electron microscopic techniques are needed. A technique for virtual fluid-stage high-angle annular dark-field scanning transmission electron microscopy with the multislice method is presented that enables the virtual imaging of model fluid-stage systems composed of millions of atoms. The virtual technique is exemplified by simulating images of PbS nanoparticles under different imaging conditions and the results agree with previous experimental findings. General insight is obtained on the influence of the effects of fluid path length, membrane thickness, nanoparticle position, defocus and other microscope parameters on attainable image quality.

  17. A Boundary Condition for Simulation of Flow Over Porous Surfaces

    NASA Technical Reports Server (NTRS)

    Frink, Neal T.; Bonhaus, Daryl L.; Vatsa, Veer N.; Bauer, Steven X. S.; Tinetti, Ana F.

    2001-01-01

    A new boundary condition is presented.for simulating the flow over passively porous surfaces. The model builds on the prior work of R.H. Bush to eliminate the need for constructing grid within an underlying plenum, thereby simplifying the numerical modeling of passively porous flow control systems and reducing computation cost. Code experts.for two structured-grid.flow solvers, TLNS3D and CFL3D. and one unstructured solver, USM3Dns, collaborated with an experimental porosity expert to develop the model and implement it into their respective codes. Results presented,for the three codes on a slender forebody with circumferential porosity and a wing with leading-edge porosity demonstrate a good agreement with experimental data and a remarkable ability to predict the aggregate aerodynamic effects of surface porosity with a simple boundary condition.

  18. Quantifying strain on posterior shoulder tissues during 5 simulated clinical tests: A cadaver study

    PubMed Central

    Borstad, John D.; Dashottar, Amitabh

    2011-01-01

    Study design Controlled laboratory study using a repeated measures approach. Objective To quantify the amount of strain on cadaver posterior shoulder tissues during simulated clinical tests across different tissue conditions. Background Several clinical tests are used to quantify posterior glenohumeral joint (GHJ) tissue tightness; however the ability of these tests to directly assess the flexibility or tightness of the posterior capsule has not been evaluated. Methods The middle and lower regions of the posterior shoulder tissues were instrumented with strain gauges on 8 cadaver shoulder specimens. Strain was quantified on the posterior shoulder muscles, on the native posterior GHJ capsule (baseline condition), and on the posterior GHJ capsule after it was experimentally contracted using thermal energy. Five simulated clinical tests were compared across each of the 3 conditions; humerus cross-body adduction, and GHJ internal rotation with the humerus positioned in 4 combinations of plane and elevation angle. Repeated measures ANOVA were used to compare strain measured during the 5 simulated clinical tests across the 3 conditions, and to evaluate the change in strain after contracting the posterior capsule. Results There was a statistically significant interaction between tests and conditions for the middle region of the posterior shoulder. In the experimentally contracted condition, strain was greater when GHJ internal rotation was added to humerus flexion than when GHJ internal rotation was added to humerus abduction. There was a statistically significant main effect of tests at the lower region of the posterior shoulder, with internal rotation in abduction and internal rotation in the GHJ resting position demonstrating greater strain than cross-body adduction. The percent change in strain between the baseline and contracted capsule conditions did not reach statistical significance at either region. Conclusion Strain on an experimentally contracted posterior GHJ

  19. MHD simulations using average solar wind conditions for substorms observed under northward IMF conditions

    NASA Astrophysics Data System (ADS)

    Park, K. S.; Lee, D.-Y.; Ogino, T.; Lee, D. H.

    2015-09-01

    Substorms are known to sometimes occur even under northward interplanetary magnetic field (IMF) conditions. In this paper, we perform three-dimensional global magnetohydrodynamic simulations to examine dayside reconnection, tail, and ionospheric signatures for two cases of substorm observations under prolonged northward and dawnward IMF conditions: (1) a strongly northward/dawnward IMF case with BIMF = (0, -20, 20) nT; (2) a weakly northward/dawnward IMF case with BIMF = (0, -2, 2) nT. Throughout the simulations, we used the constant solar wind conditions to reflect the prolonged solar wind conditions around the substorm times. We found that, in both cases, the tail reconnection occurred after the usual high-latitude reconnection on the dayside, providing a possible energy source for later triggered substorm observations under northward IMF conditions. The presence of an equal amount of IMF By allows the high-latitude reconnected magnetic field lines to transport to the tail lobe, eventually leading to the tail reconnection. The simulation results also revealed the following major differences between the two cases: First, the reconnection onset (both on dayside and in the tail) occurs earlier in the strongly northward IMF case than in the weakly northward IMF case. Second, the polar cap size, which is finite in both cases despite the northward IMF conditions and thus supports the lobe energy buildup needed for the substorm occurrences, is larger in the strongly northward IMF case. Accordingly, the polar cap potential is far larger in the strongly northward IMF case (hundreds of kilovolt) than in the weakly northward IMF case (tens of kilovolt). Third, in the strongly northward IMF case, the strong earthward tail plasma flow appears to be caused by the enhanced convection (so enhanced duskward Ey) due to the tail reconnection. In contrast, in the weakly northward IMF case, the earthward tail plasma flow increases gradually in association with a modestly increased

  20. Leaching of metals from cement under simulated environmental conditions.

    PubMed

    Lu, Huixia; Wei, Fang; Tang, Jingchun; Giesy, John P

    2016-03-15

    Leaching of metals from cement under various environmental conditions was measured to evaluate their environmental safety. A cement product containing clinker, which was produced from cement kiln co-processing of hazardous wastes, was solidified and leaching of metals was characterized using the 8-period test. Concentrations and speciation of metals in cements were determined. Effects of ambient environment and particle size on leachability of metals and mineralogical phases of cement mortars were evaluated by use of XRD and SEM. Results indicated that metals in cements were leachable in various media in descending order of: sea water, groundwater and acid rain. Cr, Ni, As, Co and V were leached by simulated sea water, while Cu, Cd, Pb, Zn, Mn, Sb and Tl were not leached in simulated sea water, groundwater or acid rain. When exposed to simulated acid rain or groundwater, amounts of Cr, Ni, As and V leached was inversely proportional to particle size of cement mortar. According to the one-dimensional diffusion equation, Cr was most leachable and the cumulative leached mass was predicted to be 9.6 mg kg(-1) after 20 years. Results of this study are useful in predicting releases of metals from cement products containing ash and clinkers cement kiln co-processing of hazardous wastes, so that they can be safely applied in the environment. PMID:26802528

  1. Overall Thermal Performance of Flexible Piping Under Simulated Bending Conditions

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.; Augustynowicz, S. D.; Demko, J. A.; Thompson, Karen (Technical Monitor)

    2001-01-01

    Flexible, vacuum-insulated transfer lines for low-temperature applications have higher thermal losses than comparable rigid lines. Typical flexible piping construction uses corrugated tubes, inner and outer, with a multilayer insulation (MLI) system in the annular space. Experiments on vacuum insulation systems in a flexible geometry were conducted at the Cryogenics Test Laboratory of NASA Kennedy Space Center. The effects of bending were simulated by causing the inner tube to be eccentric with the outer tube. The effects of spacers were simulated in a controlled way by inserting spacer tubes for the length of the cylindrical test articles. Two material systems, standard MLI and a layered composite insulation (LCI), were tested under the full range of vacuum levels using a liquid nitrogen boiloff calorimeter to determine the apparent thermal conductivity (k-value). The results indicate that the flexible piping under simulated bending conditions significantly degrades the thermal performance of the insulation system. These data are compared to standard MLI for both straight and flexible piping configurations. The definition of an overall k-value for actual field installations (k(sub oafi)) is described for use in design and analysis of cryogenic piping systems.

  2. Overall thermal performance of flexible piping under simulated bending conditions

    NASA Astrophysics Data System (ADS)

    Fesmire, J. E.; Augustynowicz, S. D.; Demko, J. A.

    2002-05-01

    Flexible, vacuum-insulated transfer lines for low-temperature applications have higher thermal losses than comparable rigid lines. Typical flexible piping construction uses corrugated tubes, inner and outer, with a multilayer insulation (MLI) system in the annular space. Experiments on vacuum insulation systems in a flexible geometry were conducted at the Cryogenics Test Laboratory of NASA Kennedy Space Center. The effects of bending were simulated by causing the inner tube to be eccentric with the outer tube. The effects of spacers were simulated in a controlled way by inserting spacer tubes for the length of the cylindrical test articles. Two material systems, standard MLI and a layered composite insulation (LCI), were tested under the full range of vacuum levels using a liquid nitrogen boiloff calorimeter to determine the apparent thermal conductivity (k-value). The results indicate that the flexible piping under simulated bending conditions significantly degrades the thermal performance of the insulation system. These data are compared to standard MLI for both straight and flexible piping configurations. The definition of an overall k-value for actual field installations (koafi) is described for use in design and analysis of cryogenic piping systems.

  3. On stochastic inlet boundary condition for unsteady simulations

    NASA Astrophysics Data System (ADS)

    Niedoba, P.; Jícha, M.; Čermák, L.

    2014-03-01

    The paper deals with the stochastic generation of synthesized turbulence, which may be used for a generating of an inlet boundary condition for unsteady simulations, e.g. Direct Numerical Simulation (DNS) or Large Eddy Simulation (LES). Assumptions for the generated turbulence are isotropy and homogeneity. The described method produces a stochastic turbulent velocity field using the synthesis of a finite sum of random Fourier modes. The calculation of individual Fourier modes is based on known energy spectrum of turbulent flow, and some turbulent quantities, e.g. turbulent kinetic energy and turbulent dissipation rate. A division of wave number range of the energy spectrum determines directly the number of Fourier modes, and has a direct impact on accuracy and speed of this calculation. Therefore, this work will examine the influence of the number of Fourier modes on a conservation of the first and second statistical moments of turbulent velocity components, which are prespecified. It is important to ensure a sufficient size of a computational domain, and a sufficient number of cells for meaningful comparative results. Dimensionless parameters characterizing the resolution and size of the computational domain according to a turbulent length scale will be introduced for this purpose. Subsequently, the sufficient values of this parameters will be shown for individual numbers of Fourier modes.

  4. Numerical simulation of isolated droplet combustion under microgravity conditions

    NASA Astrophysics Data System (ADS)

    Kroenlein, Kenneth G.

    A new numerical model for the simulation of liquid fuel droplet vaporization and combustion time-histories under conditions of no body forces or bulk fluid flow is developed. Assuming spherosymmetry, the model applies finite volume methods combined with high-order implicit time integration to the system of interest. Molecular transport, thermal radiation, thermophysical properties, and chemical kinetic behaviors are represented in rigorous detail. Specifically, this effort represents the first implementation of a Stefan-Maxwellian transport formulation and of a spectrally-resolved radiant thermal transport formulation to this physical configuration. Particular effort has been applied toward computational efficiency so that the interactive complexities of these phenomena can be represented with substantial detail. Liquid fuels, consisting of n-heptane, n-nonane, n-hexadecane and methanol, under a variety of ambient conditions were simulated yielding generally good agreement with experiment and highlighting areas for future model development where discrepancies do exist. In particular, the highly modular design allows for the inclusion and comparison of differing chemical, thermodynamic and transport representations, aiding in the validation of simplified representations, highlighting the impact of more detailed ones and making the inclusion of new phenomena such as soot production or radiative penetration of the liquid phase dependent only on developing the appropriate submodel.

  5. Modelling and simulation of concrete leaching under outdoor exposure conditions.

    PubMed

    Schiopu, Nicoleta; Tiruta-Barna, Ligia; Jayr, Emmanuel; Méhu, Jacques; Moszkowicz, Pierre

    2009-02-15

    Recently, a demand regarding the assessment of release of dangerous substances from construction products was raised by European Commission which has issued the Mandate M/366 addressed to CEN. This action is in relation with the Essential Requirement No. 3 "Hygiene, Health and Environment" of the Construction Products Directive (89/106/EC). The potential hazard for environment and health may arise in different life cycle stages of a construction product. During the service life stage, the release of substances due to contact with the rain water is the main potential hazard source, as a consequence of the leaching phenomenon. The objective of this paper is to present the development of a coupled chemical-transport model for the case of a concrete based construction product, i.e. concrete paving slabs, exposed to rain water under outdoor exposure conditions. The development of the model is based on an iterative process of comparing the experimental results with the simulated results up to an acceptable fit. The experiments were conducted at laboratory scale (equilibrium and dynamic leaching tests) and field scale. The product was exposed for one year in two types of leaching scenarios under outdoor conditions, "runoff" and "stagnation", and the element release was monitored. The model was calibrated using the experimental data obtained at laboratory scale and validated against measured field data, by taking into account the specific rain water balance and the atmospheric CO2 uptake as input parameters. The numerical tool used in order to model and simulate the leaching behaviour was PHREEQC, coupled with the Lawrence Livermore National Laboratory (LLNL) thermodynamic data base. The simulation results are satisfying and the paper demonstrates the feasibility of the modelling approach for the leaching behaviour assessment of concrete type construction materials. PMID:19118868

  6. Influence of Spanwise Boundary Conditions on Slat Noise Simulations

    NASA Technical Reports Server (NTRS)

    Lockard, David P.; Choudhari, Meelan M.; Buning, Pieter G.

    2015-01-01

    The slat noise from the 30P/30N high-lift system is being investigated through computational fluid dynamics simulations with the OVERFLOW code in conjunction with a Ffowcs Williams-Hawkings acoustics solver. In the present study, two different spanwise grids are being used to investigate the effect of the spanwise extent and periodicity on the near-field unsteady structures and radiated noise. The baseline grid with periodic boundary conditions has a short span equal to 1/9th of the stowed chord, whereas the other, longer span grid adds stretched grids on both sides of the core, baseline grid to allow inviscid surface boundary conditions at both ends. The results indicate that the near-field mean statistics obtained using the two grids are similar to each other, as are the directivity and spectral shapes of the radiated noise. However, periodicity forces all acoustic waves with less than one wavelength across the span to be two-dimensional, without any variation in the span. The spanwise coherence of the acoustic waves is what is needed to make estimates of the noise that would be radiated from realistic span lengths. Simulations with periodic conditions need spans of at least six slat chords to allow spanwise variation in the low-frequencies associated with the peak of broadband slat noise. Even then, the full influence of the periodicity is unclear, so employing grids with a fine, central region and highly stretched meshes that go to slip walls may be a more efficient means of capturing the spanwise decorrelation of low-frequency acoustic phenomena.

  7. Aqueous alteration of VHTR fuels particles under simulated geological conditions

    NASA Astrophysics Data System (ADS)

    Ait Chaou, Abdelouahed; Abdelouas, Abdesselam; Karakurt, Gökhan; Grambow, Bernd

    2014-05-01

    Very High Temperature Reactor (VHTR) fuels consist of the bistructural-isotropic (BISO) or tristructural-isotropic (TRISO)-coated particles embedded in a graphite matrix. Management of the spent fuel generated during VHTR operation would most likely be through deep geological disposal. In this framework we investigated the alteration of BISO (with pyrolytic carbon) and TRISO (with SiC) particles under geological conditions simulated by temperatures of 50 and 90 °C and in the presence of synthetic groundwater. Solid state (scanning electron microscopy (SEM), micro-Raman spectroscopy, electron probe microanalyses (EPMA) and X-ray photoelectron spectroscopy (XPS)) and solution analyses (ICP-MS, ionique chromatography (IC)) showed oxidation of both pyrolytic carbon and SiC at 90 °C. Under air this led to the formation of SiO2 and a clay-like Mg-silicate, while under reducing conditions (H2/N2 atmosphere) SiC and pyrolytic carbon were highly stable after a few months of alteration. At 50 °C, in the presence and absence of air, the alteration of the coatings was minor. In conclusion, due to their high stability in reducing conditions, HTR fuel disposal in reducing deep geological environments may constitute a viable solution for their long-term management.

  8. Responses to simulated winter conditions differ between threespine stickleback ecotypes.

    PubMed

    Gibbons, Taylor C; Rudman, Seth M; Schulte, Patricia M

    2016-02-01

    Abiotic factors can act as barriers to colonization and drive local adaptation. During colonization, organisms may cope with changes in abiotic factors using existing phenotypic plasticity, but the role of phenotypic plasticity in assisting or hindering the process of local adaptation remains unclear. To address these questions, we explore the role of winter conditions in driving divergence during freshwater colonization and the effects of plasticity on local adaptation in ancestral marine and derived freshwater ecotypes of threespine stickleback (Gasterosteus aculeatus). We found that freshwater-resident stickleback had greater tolerance of acute exposure to low temperatures than marine stickleback, but these differences were abolished after acclimation to simulated winter conditions (9L:15D photoperiod at 4 °C). Plasma chloride levels differed between the ecotypes, but showed a similar degree of plasticity between ecotypes. Gene expression of the epithelial calcium channel (ECaC) differed between ecotypes, with the freshwater ecotype demonstrating substantially greater expression than the marine ecotype, but there was no plasticity in this trait under these conditions in either ecotype. In contrast, growth (assessed as final mass) and the expression of an isoform of the electroneutral Na(+)/H(+) exchanger (NHE3) exhibited substantial change with temperature in the marine ecotype that was not observed in the freshwater ecotype under the conditions tested here, which is consistent with evolution of these traits by a process such as genetic assimilation. These data demonstrate substantial divergence in many of these traits between freshwater and marine stickleback, but also illustrate the complexity of possible relationships between plasticity and local adaptation. PMID:26645643

  9. Spectral Characterization of Phobos Analogues Under Simulated Environmental Conditions

    NASA Astrophysics Data System (ADS)

    Donaldson Hanna, K. L.; Bowles, N. E.; Edwards, C. S.; Glotch, T. D.; Greenhagen, B. T.; Pieters, C. M.; Thomas, I.

    2014-12-01

    The surface of Phobos holds many keys for understanding its formation and evolution as well as the history and dynamics of the Mars-Phobos system. Visible to near infrared (VNIR) observations suggests that Phobos' surface is compositionally heterogeneous with 'redder' and 'bluer' units that both appear to be anhydrous in nature. Lunar highland spectra have been identified as spectral analogues for the 'redder' and 'bluer' units while thermally metamorphosed CI/CM chondrites, lab-heated carbonaceous chondrites and highly space weathered mafic mineral assemblages have been identified as the best analogues for the 'bluer' surface units. Additionally, thermal infrared emissivity spectra indicate that if Phobos' surface is optically mature it may be rich in feldspar, which is consistent with VNIR observations of Phobos' surface being spectrally similar to lunar highland spectra. While remote observations provide key insights into the composition and evolution of planetary surfaces, a fundamentally important component to any remote compositional analysis of planetary surfaces is laboratory measurements of well-characterized samples measured under the appropriate environmental conditions. The vacuum environment of airless bodies creates a steep thermal gradient in the upper hundreds of microns of regolith. Lab studies of particulate rocks and minerals as well as selected lunar soils under vacuum and lunar-like conditions have identified significant effects of this thermal gradient on thermal infrared (TIR) spectral measurements. However recent lab measurements of carbonaceous chondrites demonstrated that simulated asteroid conditions do not affect the resulting emissivity spectra to the degree observed in lunar soils and is highly dependent on composition. Such lab studies demonstrate the high sensitivity of TIR emissivity spectra to environmental conditions under which they are measured and indicate that the near surface environment of all airless bodies do not

  10. Effects of Perchlorate on Organic Molecules under Simulated Mars Conditions

    NASA Astrophysics Data System (ADS)

    Carrier, B. L.; Kounaves, S. P.

    2014-12-01

    Perchlorate (ClO4-) was discovered in the northern polar region of Mars by the Mars Phoenix Lander in 2008 and has also been recently detected by the Curiosity Rover in Gale Crater [1,2]. Perchlorate has also been shown to be formed under current Mars conditions via the oxidation of mineral chlorides, further supporting the theory that perchlorate is present globally on Mars [3]. The discovery of perchlorate on Mars has raised important questions about the effects of perchlorate on the survival and detection of organic molecules. Although it has been shown that pyrolysis in the presence of perchlorate results in the alteration or destruction of organic molecules [4], few studies have been conducted on the potential effects of perchlorate on organic molecules under martian surface conditions. Although perchlorate is typically inert under Mars-typical temperatures [5], perchlorate does absorb high energy UV radiation, and has been shown to decompose to form reactive oxychlorine species such as chlorite (ClO2-) when exposed to martian conditions including UV or ionizing radiation [6,7]. Here we investigate the effects of perchlorate on the organic molecules tryptophan, benzoic acid and mellitic acid in order to determine how perchlorate may alter these compounds under Mars conditions. Experiments are performed in a Mars Simulation Chamber (MSC) capable of reproducing the temperature, pressure, atmospheric composition and UV flux found on Mars. Soil simulants are prepared consisting of SiO2 and each organic, as well as varying concentrations of perchlorate salts, and exposed in the MSC. Subsequent to exposure in the MSC samples are leached and the leachate analyzed by HPLC and LC-MS to determine the degree of degradation of the original organic and the identity of any potential decomposition products formed by oxidation or chlorination. References: [1] Kounaves et al., J. Geophys. Res. Planets, Vol. 115, p. E00E10, 2010 [2] Glavin et al., J. Geophys. Res. Planets, Vol

  11. Properties of Cerro Prieto rock at simulated in situ conditions

    SciTech Connect

    Schatz, J.F.

    1981-01-01

    Rocks from the Cerro Prieto Geothermal Field were tested under simulated in situ conditions in the laboratory to determine their properties and response to pore pressure reduction as would be caused by reservoir production. The primary purpose of the project was to provide information on compaction and creep as they may contribute to surface subsidence. Results show typical compressibilities for reservoir rocks of about 1 x 10/sup -6/ psi/sup -1/ and creep compaction rates of about 1 x 10/sup -9/ sec/sup -1/ when triggered by 1000 psi pore pressure reduction. This creep rate would cause significant porosity reduction if it continued for several years. Therefore it becomes important to learn how to correctly extrapolate such data to long times.

  12. Filter Media Tests Under Simulated Martian Atmospheric Conditions

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.

    2016-01-01

    Human exploration of Mars will require the optimal utilization of planetary resources. One of its abundant resources is the Martian atmosphere that can be harvested through filtration and chemical processes that purify and separate it into its gaseous and elemental constituents. Effective filtration needs to be part of the suite of resource utilization technologies. A unique testing platform is being used which provides the relevant operational and instrumental capabilities to test articles under the proper simulated Martian conditions. A series of tests were conducted to assess the performance of filter media. Light sheet imaging of the particle flow provided a means of detecting and quantifying particle concentrations to determine capturing efficiencies. The media's efficiency was also evaluated by gravimetric means through a by-layer filter media configuration. These tests will help to establish techniques and methods for measuring capturing efficiency and arrestance of conventional fibrous filter media. This paper will describe initial test results on different filter media.

  13. Simulating flight boundary conditions for orbiter payload modal survey

    NASA Technical Reports Server (NTRS)

    Chung, Y. T.; Sernaker, M. L.; Peebles, J. H.

    1993-01-01

    An approach to simulate the characteristics of the payload/orbiter interfaces for the payload modal survey was developed. The flexure designed for this approach is required to provide adequate stiffness separation in the free and constrained interface degrees of freedom to closely resemble the flight boundary condition. Payloads will behave linearly and demonstrate similar modal effective mass distribution and load path as the flight if the flexure fixture is used for the payload modal survey. The potential non-linearities caused by the trunnion slippage during the conventional fixed base modal survey may be eliminated. Consequently, the effort to correlate the test and analysis models can be significantly reduced. An example is given to illustrate the selection and the sensitivity of the flexure stiffness. The advantages of using flexure fixtures for the modal survey and for the analytical model verification are also demonstrated.

  14. Multi-Scale Initial Conditions For Cosmological Simulations

    SciTech Connect

    Hahn, Oliver; Abel, Tom; /KIPAC, Menlo Park /ZAH, Heidelberg /HITS, Heidelberg

    2011-11-04

    We discuss a new algorithm to generate multi-scale initial conditions with multiple levels of refinements for cosmological 'zoom-in' simulations. The method uses an adaptive convolution of Gaussian white noise with a real-space transfer function kernel together with an adaptive multi-grid Poisson solver to generate displacements and velocities following first- (1LPT) or second-order Lagrangian perturbation theory (2LPT). The new algorithm achieves rms relative errors of the order of 10{sup -4} for displacements and velocities in the refinement region and thus improves in terms of errors by about two orders of magnitude over previous approaches. In addition, errors are localized at coarse-fine boundaries and do not suffer from Fourier-space-induced interference ringing. An optional hybrid multi-grid and Fast Fourier Transform (FFT) based scheme is introduced which has identical Fourier-space behaviour as traditional approaches. Using a suite of re-simulations of a galaxy cluster halo our real-space-based approach is found to reproduce correlation functions, density profiles, key halo properties and subhalo abundances with per cent level accuracy. Finally, we generalize our approach for two-component baryon and dark-matter simulations and demonstrate that the power spectrum evolution is in excellent agreement with linear perturbation theory. For initial baryon density fields, it is suggested to use the local Lagrangian approximation in order to generate a density field for mesh-based codes that is consistent with the Lagrangian perturbation theory instead of the current practice of using the Eulerian linearly scaled densities.

  15. Inner Magnetosphere Simulations: Exploring Magnetosonic Wave Generation Conditions

    NASA Astrophysics Data System (ADS)

    Zaharia, S. G.; Jordanova, V. K.; MacDonald, E.; Thomsen, M. F.

    2012-12-01

    We investigate the conditions for magnetosonic wave generation in the near-Earth magnetosphere by performing numerical simulations with our newly improved self-consistent model, RAM-SCB. The magnetosonic (ion Bernstein) instability, a potential electron acceleration mechanism in the outer radiation belt, is driven by a positive slope in the ion distribution function perpendicular to the magnetic field, a so-called "velocity ring" distribution at energies above 1 keV. The formation of such distributions is dependent on the interplay of magnetic and electric drifts, as well as ring current losses, and therefore its study requires a realistic treatment of both plasma and field dynamics. The RAM-SCB model represents a 2-way coupling of the kinetic ring current-atmosphere interactions model (RAM) with a 3D plasma equilibrium code. In RAM-SCB the magnetic field is computed in force balance with the RAM anisotropic pressures and then returned to RAM to guide the particle dynamics. RAM-SCB thus properly treats both the kinetic drift physics crucial in the inner magnetosphere and the self-consistent interaction between plasma and magnetic field (required due to the strong field depressions during storms, depressions that strongly affect particle drifts). In order to provide output at geosynchronous locations, recently the RAM-SCB boundary has been expanded to 9 RE from Earth, with plasma pressure and magnetic field boundary conditions prescribed there from empirical models. This presentation will analyze, using event simulations with the improved model and comparisons with LANL MPA geosynchronous observations, the occurrence and location of magnetosonic unstable regions in the inner magnetosphere and their dependence on the following factors: 1). geomagnetic activity level (including quiet time, storm main phase and recovery); 2). magnetic field self-consistency (stretched vs. dipole fields). We will also discuss the physical mechanism for the occurrence of the velocity

  16. Numerical Simulations of Conditionally Unstable Flows over a Mountain Ridge

    NASA Astrophysics Data System (ADS)

    Rotunno, R.

    2009-09-01

    This presentation describes numerical simulations of conditionally unstable flows impinging on an idealized mesoscale mountain ridge. These idealized simulations, which were performed with an explicitly resolving cloud model, allow the investigation of the solution precipitation characteristics as a function of the prescribed environment. The numerical solutions were first carried out for different uniform-wind profiles impinging on a bell-shaped ridge 2000 m high. In the experiments with weaker environmental wind speeds (2.5 m/s), the cold-air outflow, caused by the evaporative cooling of rain from precipitating convective cells, is the main mechanism for cell redevelopment and movement; this outflow produces new convective cells near the head of the up- and down-stream density currents, which rapidly propagate far from the ridge, so that no rainfall is produced close to the ridge at later times. For larger wind speeds (10, 20 m/s), there is less time for upwind, evaporation-induced, cold-pool formation before air parcels reach the ridge top and descend downwind and so the (statistically) steady rainfall tends to be concentrated near the ridge top. Further experiments with different ridge heights and half-widths were carried out in order to analyze their effect on the distribution and intensity of precipitation. Dimensional analysis reveals that the maximum (nondimensional) rainfall rate mainly depends on the ratio of mountain height to the level of free convection, the ridge aspect ratio and on a parameter that measures the ratio of advective to convective time scale.

  17. Denitrification by Pseudomonas Aeruginosa Under Simulated Engineered Martain Conditions

    NASA Astrophysics Data System (ADS)

    Hart, S. D.; Currier, P. A.; Thomas, D. J.

    The growth of Pseudomonas aeruginosa in denitrifying medium was observed for 14 days in the presence of a martian soil analog (JSC Mars-1) and elevated CO2 levels. A four-way test was conducted comparing growth of experimental samples to growth in the presence of inert silica (“Earth soil”) and normal terrestrial atmosphere. The combination of 50 mL of fluorescence-denitrification medium and 10 grams of soil additive simulated an aquatic environment, which was contained in sealed culture bottles. Nitrite assays of the media (to test for consumption during denitrification), gas sampling from the bottles to observe nitrogen production, and colony counts to quantify growth rate were all performed at 0, 7 and 14 days after inoculation. Supplemental tests performed included nitrate assays (to confirm the occurrence of denitrification) and culture fluorescence (as a non-invasive growth test). Growth and denitrification took place under all conditions, and no significant differ- ences were observed between samples. These data indicate that the presence of simulated martian regolith and elevated CO2 have little or no effect on the growth of or denitrification by P. aeruginosa at the concentrations used.

  18. Reactivity landscape of pyruvate under simulated hydrothermal vent conditions

    PubMed Central

    Novikov, Yehor; Copley, Shelley D.

    2013-01-01

    Pyruvate is an important “hub” metabolite that is a precursor for amino acids, sugars, cofactors, and lipids in extant metabolic networks. Pyruvate has been produced under simulated hydrothermal vent conditions from alkyl thiols and carbon monoxide in the presence of transition metal sulfides at 250 °C [Cody GD et al. (2000) Science 289(5483):1337–1340], so it is plausible that pyruvate was formed in hydrothermal systems on the early earth. We report here that pyruvate reacts readily in the presence of transition metal sulfide minerals under simulated hydrothermal vent fluids at more moderate temperatures (25–110 °C) that are more conducive to survival of biogenic molecules. We found that pyruvate partitions among five reaction pathways at rates that depend upon the nature of the mineral present; the concentrations of H2S, H2, and NH4Cl; and the temperature. In most cases, high yields of one or two primary products are found due to preferential acceleration of certain pathways. Reactions observed include reduction of ketones to alcohols and aldol condensation, both reactions that are common in extant metabolic networks. We also observed reductive amination to form alanine and reduction to form propionic acid. Amino acids and fatty acids formed by analogous processes may have been important components of a protometabolic network that allowed the emergence of life. PMID:23872841

  19. Reactivity landscape of pyruvate under simulated hydrothermal vent conditions.

    PubMed

    Novikov, Yehor; Copley, Shelley D

    2013-08-13

    Pyruvate is an important "hub" metabolite that is a precursor for amino acids, sugars, cofactors, and lipids in extant metabolic networks. Pyruvate has been produced under simulated hydrothermal vent conditions from alkyl thiols and carbon monoxide in the presence of transition metal sulfides at 250 °C [Cody GD et al. (2000) Science 289(5483):1337-1340], so it is plausible that pyruvate was formed in hydrothermal systems on the early earth. We report here that pyruvate reacts readily in the presence of transition metal sulfide minerals under simulated hydrothermal vent fluids at more moderate temperatures (25-110 °C) that are more conducive to survival of biogenic molecules. We found that pyruvate partitions among five reaction pathways at rates that depend upon the nature of the mineral present; the concentrations of H2S, H2, and NH4Cl; and the temperature. In most cases, high yields of one or two primary products are found due to preferential acceleration of certain pathways. Reactions observed include reduction of ketones to alcohols and aldol condensation, both reactions that are common in extant metabolic networks. We also observed reductive amination to form alanine and reduction to form propionic acid. Amino acids and fatty acids formed by analogous processes may have been important components of a protometabolic network that allowed the emergence of life. PMID:23872841

  20. Computer simulation of equilibrium conditions following a plant 'trip'

    NASA Astrophysics Data System (ADS)

    Limb, D.

    When a process or part of a process experiences an emergency 'trip', the contained fluids redistribute themselves based upon the prevailing pressure gradients and depending upon the positions of valves at the time of the trip. Reverse flow through rotating compression machinery may occur, depending upon the locations of non-return valves. Reduction in pressure and mixing of cryogenic fluids of different compositions and/or temperatures can both lead to generation of significant volumes of vapour. This equilibration process is usually largely over in a matter of seconds rather than minutes. Key questions facing process and mechanical designers are: what is the settle-out pressure, and can we ensure relief valves do not lift following a trip? To answer these related questions it is necessary to analyse the state of the system prior to the trip, and then, based upon valve positions, etc., construct a model of the worst case probable scenarios for the qualitative redistribution of fluid inventory. At this point the simulation program may be employed to help calculate rigorously the final settle out conditions for each of the possible scenarios. This technique is particularly appropriate for cryogenic processes including refrigeration cycles. It is illustrated here with the help of a multistage hydrocarbon compressor example. Other related non-standard applications of the steady state process simulation program are identified.

  1. An R package for simulation experiments evaluating clinical trial designs.

    PubMed

    Wang, Yuanyuan; Day, Roger

    2010-01-01

    This paper presents an open-source application for evaluating competing clinical trial (CT) designs using simulations. The S4 system of classes and methods is utilized. Using object-oriented programming provides extensibility through careful, clear interface specification; using R, an open-source widely-used statistical language, makes the application extendible by the people who design CTs: biostatisticians. Four key classes define the specifications of the population models, CT designs, outcome models and evaluation criteria. Five key methods define the interfaces for generating patient baseline characteristics, stopping rule, assigning treatment, generating patient outcomes and calculating the criteria. Documentation of their connections with the user input screens, with the central simulation loop, and with each other faciliates the extensibility. New subclasses and instances of existing classes meeting these interfaces can integrate immediately into the application. To illustrate the application, we evaluate the effect of patient pharmacokinetic heterogeneity on the performance of a common Phase I "3+3" design. PMID:21347151

  2. Teaching Nursing Leadership: Comparison of Simulation versus Traditional Inpatient Clinical.

    PubMed

    Gore, Teresa N; Johnson, Tanya Looney; Wang, Chih-hsuan

    2015-01-01

    Nurse educators claim accountability to ensure their students are prepared to assume leadership responsibilities upon graduation. Although front-line nurse leaders and nurse executives feel new graduates are not adequately prepared to take on basic leadership roles, professional nursing organizations such as the American Nurses Association (ANA) and the Association of Colleges of Nursing (AACN) deem leadership skills are core competencies of new graduate nurses. This study includes comparison of a leadership-focused multi-patient simulation and the traditional leadership clinical experiences in a baccalaureate nursing leadership course. The results of this research show both environments contribute to student learning. There was no statistical difference in the overall score. Students perceived a statistically significant difference in communication with patients in the traditional inpatient environment. However, the students perceived a statistical significant difference in teaching-learning dyad toward simulation. PMID:25928758

  3. Students' experiences of learning manual clinical skills through simulation.

    PubMed

    Johannesson, Eva; Silén, Charlotte; Kvist, Joanna; Hult, Håkan

    2013-03-01

    Learning manual skills is a fundamental part of health care education, and motor, sensory and cognitive learning processes are essential aspects of professional development. Simulator training has been shown to enhance factors that facilitate motor and cognitive learning. The present study aimed to investigate the students' experiences and thoughts about their learning through simulation skills training. The study was designed for an educational setting at a clinical skills centre. Ten third-year undergraduate nursing students performed urethral catheterisation, using the virtual reality simulator UrecathVision™, which has haptic properties. The students practised in pairs. Each session was videotaped and the video was used to stimulate recall in subsequent interviews. The interviews were analysed using qualitative content analysis. The analysis from interviews resulted in three themes: what the students learn, how the students learn, and the simulator's contribution to the students' learning. Students learned manual skills, how to perform the procedure, and professional behaviour. They learned by preparing, watching, practising and reflecting. The simulator contributed by providing opportunities for students to prepare for the skills training, to see anatomical structures, to feel resistance, and to become aware of their own performance ability. The findings show that the students related the task to previous experiences, used sensory information, tested themselves and practised techniques in a hands-on fashion, and reflected in and on action. The simulator was seen as a facilitator to learning the manual skills. The study design, with students working in pairs combined with video recording, was found to enhance opportunities for reflection. PMID:22395307

  4. DNA damage under simulated extraterrestrial conditions in bacteriophage T7

    NASA Astrophysics Data System (ADS)

    Fekete, A.; Módos, K.; Hegedüs, M.; Kovács, G.; Rontó, Gy.; Péter, Á.; Lammer, H.; Panitz, C.

    The experiment "Phage and Uracil response" will be accommodated in the EXPOSE facility of the International Space Station. Its objective is to examine and quantify the effect of specific space conditions on nucleic acid models, especially on bacteriophage T7 and isolated T7 DNA thin films. In order to define the environmental and technical requirements of the EXPOSE, the samples were subjected to the experiment verification test (EVT). During EVT, the samples were exposed to vacuum (10 -4-10 -6 Pa) and polychromatic UV-radiation (200-400 nm) in air, in inert atmosphere, as well as in simulated space vacuum. The effect of extreme temperature in vacuum and the influence of temperature fluctuations around 0 °C were also studied. The total intraphage/isolated DNA damage was determined by quantitative PCR using 555 and 3826 bp fragments of T7 DNA. The type of the damage was resolved using a combination of enzymatic probes and neutral and alkaline agarose gel electrophoresis; the structural/chemical effects were analyzed by spectroscopic and microscopical methods. We obtained substantial evidence that DNA lesions accumulate throughout exposure, but the amount of damage depends on the thickness of the layers. According to our preliminary results, the damages by exposure to conditions of dehydration and UV-irradiation are larger than the sum of vacuum alone, or radiation alone case, suggesting a synergistic action of space vacuum and UV radiation with DNA being the critical target.

  5. 42 CFR 410.45 - Rural health clinic services: Scope and conditions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 2 2011-10-01 2011-10-01 false Rural health clinic services: Scope and conditions... Services § 410.45 Rural health clinic services: Scope and conditions. (a) Medicare Part B pays for the following rural health clinic services, if they are furnished in accordance with the requirements...

  6. [Caries occurrence and periodontal condition in 100 dental students in their clinical semester. A clinical study].

    PubMed

    Kern, M; Jonas, I

    1988-06-01

    The purpose of this study was to examine the prevalence of caries and periodontal condition of 100 randomly selected clinical dental students (73 males, 27 females) in the age range of 22-37 years (means = 26.1 +/- 3.3 years). The statistical analysis revealed the following results: DMF-T Index (Klein & Palmer 1940) = 12.61 +/- 5.41 Plaque Index (Silness & Löe 1964) = 0.37 +/- 0.23 Gingiva Index (Löe & Silness 1963) = 0.39 +/- 0.20 Periodontal pocket depth = 1.65 +/- 0.27 mm. In relation to the results of other studies, clinical dental students had a decreased DMF-T Index and were in a better state of oral health and restaurations as compared to other groups of the same age. Female students had significantly less carious teeth, plaque and gingival disease than the male students. Increasing age had a highly significant correlation to DMF-T Index. Gingiva Index and pocket depth, whereas Plaque Index was correlated to a lesser degree. Plaque was confirmed as the essential factor of gingival disease. PMID:3273778

  7. Heart rate, anxiety and performance of residents during a simulated critical clinical encounter: a pilot study

    PubMed Central

    2014-01-01

    Background High-fidelity patient simulation has been praised for its ability to recreate lifelike training conditions. The degree to which high fidelity simulation elicits acute emotional and physiologic stress among participants – and the influence of acute stress on clinical performance in the simulation setting – remain areas of active exploration. We examined the relationship between residents’ self-reported anxiety and a proxy of physiologic stress (heart rate) as well as their clinical performance in a simulation exam using a validated assessment of non-technical skills, the Ottawa Crisis Resource Management Global Rating Scale (Ottawa GRS). Methods This was a prospective observational cohort study of emergency medicine residents at a single academic center. Participants managed a simulated clinical encounter. Anxiety was assessed using a pre- and post-simulation survey, and continuous cardiac monitoring was performed on each participant during the scenario. Performance in the simulation scenario was graded by faculty raters using a critical actions checklist and the Ottawa GRS instrument. Results Data collection occurred during the 2011 academic year. Of 40 eligible residents, 34 were included in the analysis. The median baseline heart rate for participants was 70 beats per minute (IQR: 62 – 78). During the simulation, the median maximum heart rate was 140 beats per minute (IQR: 137 – 151). The median minimum heart rate during simulation was 81 beats per minute (IQR: 72 – 92), and mean heart rate was 117 beats per minute (95% CI: 111 – 123). Pre- and post-simulation anxiety scores were equal (mean 3.3, IQR: 3 to 4). The minimum and maximum Overall Ottawa GRS scores were 2.33 and 6.67, respectively. The median Overall score was 5.63 (IQR: 5.0 to 6.0). Of the candidate predictors of Overall performance in a multivariate logistic regression model, only PGY status showed statistical significance (P = 0.02). Conclusions Simulation is associated

  8. 42 CFR 493.1453 - Condition: Laboratories performing high complexity testing; clinical consultant.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Condition: Laboratories performing high complexity testing; clinical consultant. The laboratory must have a... testing; clinical consultant. 493.1453 Section 493.1453 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION...

  9. 40 CFR 86.162-03 - Approval of alternative air conditioning test simulations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... conditioning test simulations. 86.162-03 Section 86.162-03 Protection of Environment ENVIRONMENTAL PROTECTION... alternative air conditioning test simulations. (a) Upon petition from a manufacturer or upon the Agency's own initiative, the Administrator will approve a simulation of the environmental cell for air conditioning...

  10. CO2/ brine substitution experiments at simulated reservoir conditions

    NASA Astrophysics Data System (ADS)

    Kummerow, Juliane; Spangenberg, Erik

    2015-04-01

    Capillary properties of rocks affect the mobility of fluids in a reservoir. Therefore, the understanding of the capillary pressure behaviour is essential to assess the long-term behaviour of CO2 reservoirs. Beyond this, a calibration of the petrophysical properties on water saturation of reservoir rocks at simulated in situ conditions is crucial for a proper interpretation of field monitoring data. We present a set-up, which allows for the combined measurements of capillary pressure, electric resistivity, and elastic wave velocities under controlled reservoir conditions (pconf = 400 bar, ppore = 180 bar, T = 65 ° C) at different brine-CO2 saturations. The capillary properties of the samples are measured using the micropore membrane technique. The sample is jacketed with a Viton tube (thickness = 4 mm) and placed between two current electrode endcaps, which as well contain pore fluid ports and ultrasonic P and S wave transducers. Between the sample and the lower endcap the hydrophilic semi-permeable micro-pore membrane (pore size = 100 nm) is integrated. It is embedded into filter papers to establish a good capillary contact and to protect the highly sensitive membrane against mechanical damage under load. Two high-precision syringe pumps are used to displace a quantified volume of brine by CO2 and determine the corresponding sample saturation. The fluid displacement induces a pressure gradient along the sample, which corresponds to the capillary pressure at a particular sample saturation. It is measured with a differential pressure sensor in the range between 0 - 0.2 MPa. Drainage and imbibition cycles are performed to provide information on the efficiency of capillary trapping and to get a calibration of the petrophysical parameters of the sample.

  11. Experiments and numerical simulation of mixing under supercritical conditions

    NASA Astrophysics Data System (ADS)

    Schmitt, T.; Rodriguez, J.; Leyva, I. A.; Candel, S.

    2012-05-01

    Supercritical pressure conditions designate a situation where the working fluid pressure is above the critical point. Among these conditions, it is interesting to identify a transcritical range which corresponds to cases where the pressure is above the critical point, but the injection temperature is below the critical value. This situation is of special interest because it raises fundamental issues which have technological relevance in the analysis of flows in liquid rocket engines. This situation is here envisaged by analyzing the behavior of a nitrogen shear coaxial jet comprising an inner stream injected at temperatures close to the critical temperature and a coaxial flow at a higher temperature. Experiments are carried out both in the absence of external modulation and by imposing a large amplitude transverse acoustic field. Real gas large eddy simulations are performed for selected experiments. The combination of experiments and calculations is used to evaluate effects of injector geometry and operating parameters. Calculations retrieve what is observed experimentally when the momentum flux ratio of the outer to the inner stream J= (ρ _eu_e^2)/(ρ _iu_i^2) is varied. Results exhibit the change in flow structure and the development of a recirculation region when this parameter exceeds a critical value. The instantaneous flow patterns for different momentum flux ratios are used in a second stage to characterize the dynamical behavior of the flow in terms of power spectral density of velocity and density fluctuations. Results obtained under acoustic modulation provide insight into mixing enhancement of coaxial streams with a view of its possible consequences in high frequency combustion instabilities. It is shown in particular that the presence of strong acoustic modulations notably reduces the high density jet core length, indicating an increased mixing efficiency. This behavior is more pronounced when the jet is placed at the location of maximum transverse

  12. Comparing Burned and Unburned Forest Conditions Using Simulated Rill Experiments

    NASA Astrophysics Data System (ADS)

    Robichaud, P. R.; Brown, R. E.; Wagenbrenner, J. W.

    2007-12-01

    Despite the dominance of concentrated flow or rill erosion in the erosion processes in disturbed forests, few studies have quantified the effects of different types of forest disturbance on rill erosion. This study quantified the effects of four forest conditions--natural (recently undisturbed), low soil burn severity, high soil burn severity, and skid trails--on rill runoff quantity, runoff velocity, and rill erosion. Simulated rill experiments were conducted at sites in eastern Oregon (Tower Fire) and in northern Washington (North 25 Fire) on forested slopes with granitic and volcanic soils, respectively. The natural and skid trail conditions were established near each burned area in unburned forest. For each rill experiment, concentrated flow was applied at the top of the plot through an energy dissipater at five inflow rates for 12 min each. Runoff was sampled every 2 min and runoff volume and sediment concentration were determined for each sample. The runoff velocity was measured using a dyed calcium chloride solution and two conductivity probes placed a known distance apart. Runoff volume, runoff velocities, and sediment concentrations increased with increasing levels of disturbance. The natural plots had very low runoff rates and sediment concentrations at both the Tower and North 25 sites. The low soil burn severity plots had greater responses than the natural plots, but the responses in the two sites were different as a result of variability in effect of burning and differences in time between burning and the rill experiments. The high soil burn severity and the skid trail plots had the highest runoff ratios, runoff velocities, and sediment concentrations and the responses were similar at both sites. These results suggest that any differences in responses related to soil type or other site factors were masked by the increase in response resulting from the high levels of disturbance.

  13. 42 CFR 418.104 - Condition of participation: Clinical records.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...: (1) The initial plan of care, updated plans of care, initial assessment, comprehensive assessment, updated comprehensive assessments, and clinical notes. (2) Signed copies of the notice of patient rights... medications, symptom management, treatments, and services. (4) Outcome measure data elements, as described...

  14. 42 CFR 418.104 - Condition of participation: Clinical records.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...: (1) The initial plan of care, updated plans of care, initial assessment, comprehensive assessment, updated comprehensive assessments, and clinical notes. (2) Signed copies of the notice of patient rights... medications, symptom management, treatments, and services. (4) Outcome measure data elements, as described...

  15. Simulation of cosmic irradiation conditions in thick target arrangements

    NASA Technical Reports Server (NTRS)

    Theis, S.; Englert, P.; Reedy, R. C.; Arnold, J. R.

    1986-01-01

    One approach to simulate 2-pi irradiation conditions of planetary surfaces which has been widely applied in the past are bombardments of so called thick targets. A very large thick target was exposed recently to 2.1 GeV protons at the Bevatron-Bevalac in Berkeley. In a 100x100x180 cm steel-surrounded granodiorite target radioactive medium and high energy spallation products of the incident primary and of secondary particles were analyzed along the beam axis down to depths of 140 g/cm(2) in targets such as Cu, Ni, Co, Fe, T, Si, SiO2 and Al. Activities of these nuclides were exclusively determined via instrumental gamma-ray spectroscopy. Relative yields of neutron capture and spallation products induced in Co and Cu targets during the thick target bombardment are shown as a function of depth. The majority of the medium energy products such as Co-58 from Co targets exhibit a maximum at shallow depths of 40-60 g/cm(2) and then decrease exponentially. In a comparable 600 MeV proton bombarded thick target such a slight maximum for medium energy products was not observed. Rather, Co-58 activities in Co decreased steadily with the highest activity at the surface. The activities of the n-capture product Co-60 increase steadily starting at the surface. This indicates the rapidly growing flux of low energy neutrons within the target.

  16. Structural performance of HEPA filters under simulated tornado conditions

    SciTech Connect

    Horak, H.L.; Gregory, W.S.; Ricketts, C.I.; Smith, P.R.

    1982-02-01

    This report contains the results of structural tests to determine the response of High Efficiency Particulate Air filters to simulated tornado conditions. The data include the structural limits of the filters, their resistance at high flow rates, and the effects of filter design features and tornado parameters. Considering all the filters tested, the mean break pressure or structural limit was found to be 2.35 pse (16.2 kPa). The maximum value was 2.87 psi (19.8 kPa), and the low value found was 1.31 psi (9.0 kPa). The type of failure was usually a medium break of the downstream filter fold. The type of filters that were evaluated were nuclear grade with design flow rates of 1000 cfm (0.472 m/sup 3//s), standard separators, and folded medium design. The parameters evaluated that are characteristic of the filter included manufacturer, separator type, faceguards, pack tightness, and aerosol loading. Manufacturer and medium properties were found to have a large effect on the structural limits.

  17. Coke Reactivity in Simulated Blast Furnace Shaft Conditions

    NASA Astrophysics Data System (ADS)

    Haapakangas, Juho; Suopajärvi, Hannu; Iljana, Mikko; Kemppainen, Antti; Mattila, Olli; Heikkinen, Eetu-Pekka; Samuelsson, Caisa; Fabritius, Timo

    2016-08-01

    Despite the fact that H2 and H2O are always present in the gas atmosphere of a blast furnace shaft, their role in the solution-loss reactions of coke has not been thoroughly examined. This study focuses on how H2 and H2O affect the reaction behavior and whether a strong correlation can be found between reactivity in the conditions of the CRI test (Coke Reactivity Index) and various simulated blast furnace shaft gas atmospheres. Partial replacement of CO/CO2 with H2/H2O was found to significantly increase the reactivity of all seven coke grades at 1373 K (1100 °C). H2 and H2O, however, did not have a significant effect on the threshold temperature of gasification. The reactivity increasing effect was found to be temperature dependent and clearly at its highest at 1373 K (1100 °C). Mathematical models were used to calculate activation energies for the gasification, which were notably lower for H2O gasification compared to CO2 indicating the higher reactivity of H2O. The reactivity results in gas atmospheres with CO2 as the sole gasifying component did not directly correlate with reactivity results in gases also including H2O, which suggests that the widely used CRI test is not entirely accurate for estimating coke reactivity in the blast furnace.

  18. Structural performance of HEPA filters under simulated tornado conditions

    NASA Astrophysics Data System (ADS)

    Horak, H. L.; Gregory, W. S.; Ricketts, C. I.; Smith, P. R.

    1982-02-01

    The response of high efficiency particulate air filters to simulated tornado conditions was determined. The data include the structural limits of the filters, their resistance at high flow rates, and the effects of filter design features and tornado parameters. Considering all the filters tested, the mean break pressure or structural limit was found to be 2.35 pse (16.2 kPa). The maximum value was 2.87 psi (19.8 kPa), and the low value found was 1.31 psi (9.0 kPa). The type of failure was usually a medium break of the downstream filter fold. The types of filters that were evaluated were nuclear grade with design flow rates of 1000 cfm (0.472 cu m/s), standard separators, and folded medium design. The parameters evaluated that are characteristic of the filter included manufacturer, separator type, face-guards, pack tightness, and aerosol loading. Manufacturer and medium properties were found to have a large effect on the structural limits.

  19. Arsenopyrite weathering under conditions of simulated calcareous soil.

    PubMed

    Lara, René H; Velázquez, Leticia J; Vazquez-Arenas, Jorge; Mallet, Martine; Dossot, Manuel; Labastida, Israel; Sosa-Rodríguez, Fabiola S; Espinosa-Cristóbal, León F; Escobedo-Bretado, Miguel A; Cruz, Roel

    2016-02-01

    Mining activities release arsenopyrite into calcareous soils where it undergoes weathering generating toxic compounds. The research evaluates the environmental impacts of these processes under semi-alkaline carbonated conditions. Electrochemical (cyclic voltammetry, chronoamperometry, EIS), spectroscopic (Raman, XPS), and microscopic (SEM, AFM, TEM) techniques are combined along with chemical analyses of leachates collected from simulated arsenopyrite weathering to comprehensively examine the interfacial mechanisms. Early oxidation stages enhance mineral reactivity through the formation of surface sulfur phases (e.g., S n (2-)/S(0)) with semiconductor properties, leading to oscillatory mineral reactivity. Subsequent steps entail the generation of intermediate siderite (FeCO3)-like, followed by the formation of low-compact mass sub-micro ferric oxyhydroxides (α, γ-FeOOH) with adsorbed arsenic (mainly As(III), and lower amounts of As(V)). In addition, weathering reactions can be influenced by accessible arsenic resulting in the formation of a symplesite (Fe3(AsO4)3)-like compound which is dependent on the amount of accessible arsenic in the system. It is proposed that arsenic release occurs via diffusion across secondary α, γ-FeOOH structures during arsenopyrite weathering. We suggest weathering mechanisms of arsenopyrite in calcareous soil and environmental implications based on experimental data. PMID:26498805

  20. Coke Reactivity in Simulated Blast Furnace Shaft Conditions

    NASA Astrophysics Data System (ADS)

    Haapakangas, Juho; Suopajärvi, Hannu; Iljana, Mikko; Kemppainen, Antti; Mattila, Olli; Heikkinen, Eetu-Pekka; Samuelsson, Caisa; Fabritius, Timo

    2016-04-01

    Despite the fact that H2 and H2O are always present in the gas atmosphere of a blast furnace shaft, their role in the solution-loss reactions of coke has not been thoroughly examined. This study focuses on how H2 and H2O affect the reaction behavior and whether a strong correlation can be found between reactivity in the conditions of the CRI test (Coke Reactivity Index) and various simulated blast furnace shaft gas atmospheres. Partial replacement of CO/CO2 with H2/H2O was found to significantly increase the reactivity of all seven coke grades at 1373 K (1100 °C). H2 and H2O, however, did not have a significant effect on the threshold temperature of gasification. The reactivity increasing effect was found to be temperature dependent and clearly at its highest at 1373 K (1100 °C). Mathematical models were used to calculate activation energies for the gasification, which were notably lower for H2O gasification compared to CO2 indicating the higher reactivity of H2O. The reactivity results in gas atmospheres with CO2 as the sole gasifying component did not directly correlate with reactivity results in gases also including H2O, which suggests that the widely used CRI test is not entirely accurate for estimating coke reactivity in the blast furnace.

  1. Simulated Firefighting Task Performance and Physiology Under Very Hot Conditions

    PubMed Central

    Larsen, Brianna; Snow, Rod; Williams-Bell, Michael; Aisbett, Brad

    2015-01-01

    Purpose: To assess the impact of very hot (45°C) conditions on the performance of, and physiological responses to, a simulated firefighting manual-handling task compared to the same work in a temperate environment (18°C). Methods: Ten male volunteer firefighters performed a 3-h protocol in both 18°C (CON) and 45°C (VH). Participants intermittently performed 12 × 1-min bouts of raking, 6 × 8-min bouts of low-intensity stepping, and 6 × 20-min rest periods. The area cleared during the raking task determined work performance. Core temperature, skin temperature, and heart rate were measured continuously. Participants also periodically rated their perceived exertion (RPE) and thermal sensation. Firefighters consumed water ad libitum. Urine specific gravity (USG) and changes in body mass determined hydration status. Results: Firefighters raked 19% less debris during the VH condition. Core and skin temperature were 0.99 ± 0.20 and 5.45 ± 0.53°C higher, respectively, during the VH trial, and heart rate was 14–36 beats.min−1 higher in the VH trial. Firefighters consumed 2950 ± 1034 mL of water in the VH condition, compared to 1290 ± 525 in the CON trial. Sweat losses were higher in the VH (1886 ± 474 mL) compared to the CON trial (462 ± 392 mL), though both groups were hydrated upon protocol completion (USG < 1.020). Participants' average RPE was higher in the VH (15.6 ± 0.9) compared to the CON trial (12.6 ± 0.9). Similarly, the firefighers' thermal sensation scores were significantly higher in the VH (6.4 ± 0.5) compared to the CON trial (4.4 ± 0.4). Conclusions: Despite the decreased work output and aggressive fluid replacement observed in the VH trial, firefighters' experienced increases in thermal stress, and exertion. Fire agencies should prioritize the health and safety of fire personnel in very hot temperatures, and consider the impact of reduced productivity on fire suppression efforts. PMID:26617527

  2. 42 CFR 485.721 - Condition of participation: Clinical records.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Providers of Outpatient Physical Therapy and Speech-Language Pathology Services § 485.721 Condition of...) Identification data and consent forms. (3) Medical history. (4) Report of physical examinations, if any....

  3. 42 CFR 485.721 - Condition of participation: Clinical records.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Providers of Outpatient Physical Therapy and Speech-Language Pathology Services § 485.721 Condition of...) Identification data and consent forms. (3) Medical history. (4) Report of physical examinations, if any....

  4. 42 CFR 485.721 - Condition of participation: Clinical records.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Providers of Outpatient Physical Therapy and Speech-Language Pathology Services § 485.721 Condition of...) Identification data and consent forms. (3) Medical history. (4) Report of physical examinations, if any....

  5. 42 CFR 485.721 - Condition of participation: Clinical records.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Providers of Outpatient Physical Therapy and Speech-Language Pathology Services § 485.721 Condition of...) Identification data and consent forms. (3) Medical history. (4) Report of physical examinations, if any....

  6. An Oracle: Antituberculosis Pharmacokinetics-Pharmacodynamics, Clinical Correlation, and Clinical Trial Simulations To Predict the Future▿

    PubMed Central

    Pasipanodya, Jotam; Gumbo, Tawanda

    2011-01-01

    Antimicrobial pharmacokinetic-pharmacodynamic (PK/PD) science and clinical trial simulations have not been adequately applied to the design of doses and dose schedules of antituberculosis regimens because many researchers are skeptical about their clinical applicability. We compared findings of preclinical PK/PD studies of current first-line antituberculosis drugs to findings from several clinical publications that included microbiologic outcome and pharmacokinetic data or had a dose-scheduling design. Without exception, the antimicrobial PK/PD parameters linked to optimal effect were similar in preclinical models and in tuberculosis patients. Thus, exposure-effect relationships derived in the preclinical models can be used in the design of optimal antituberculosis doses, by incorporating population pharmacokinetics of the drugs and MIC distributions in Monte Carlo simulations. When this has been performed, doses and dose schedules of rifampin, isoniazid, pyrazinamide, and moxifloxacin with the potential to shorten antituberculosis therapy have been identified. In addition, different susceptibility breakpoints than those in current use have been identified. These steps outline a more rational approach than that of current methods for designing regimens and predicting outcome so that both new and older antituberculosis agents can shorten therapy duration. PMID:20937778

  7. [A Critical Condition of Clinical Studies in Japan -- A Battle of Clinical Study Groups].

    PubMed

    Furukawa, Hiroshi

    2016-04-01

    The post-marketing clinical study groups have been losing their activity due to stop of financial support. As the result, clinical study groups cannot achieve any EBM for treatment guidelines. Financial supports should be restarted immediately not to extinguish the post-marketing clinical studies and study groups. PMID:27220798

  8. Numerical Simulation of HIWC Conditions with the Terminal Area Simulation System

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Switzer, George F.

    2016-01-01

    Three-dimensional, numerical simulation of a mesoconvective system is conducted in order to better understand conditions associated with High Ice Water Content (HIWC) and its threat to aviation safety. Although peak local values of ice water content may occur early in the storm lifetime, large areas of high concentrations expand with time and persist even when the storm tops begin to warm. The storm canopy which contains HIWC, has low radar reflectivity factor and is fed by an ensemble of regenerating thermal pulses.

  9. Potential workload in applying clinical practice guidelines for patients with chronic conditions and multimorbidity: a systematic analysis

    PubMed Central

    Buffel du Vaure, Céline; Ravaud, Philippe; Baron, Gabriel; Barnes, Caroline; Gilberg, Serge; Boutron, Isabelle

    2016-01-01

    Objectives To describe the potential workload for patients with multimorbidity when applying existing clinical practice guidelines. Design Systematic analysis of clinical practice guidelines for chronic conditions and simulation modelling approach. Data sources National Guideline Clearinghouse index of US clinical practice guidelines. Study selection We identified the most recent guidelines for adults with 1 of 6 prevalent chronic conditions in primary care (ie hypertension, diabetes, coronary heart disease (CHD), chronic obstructive pulmonary disease (COPD), osteoarthritis and depression). Data extraction From the guidelines, we extracted all recommended health-related activities (HRAs) such as drug management, self-monitoring, visits to the doctor, laboratory tests and changes of lifestyle for a patient aged 45–64 years with moderate severity of conditions. Simulation modelling approach For each HRA identified, we performed a literature review to determine the potential workload in terms of time spent on this HRA. Then, we used a simulation modelling approach to estimate the potential workload needed to comply with these recommended HRAs for patients with several of these chronic conditions. Results Depending on the concomitant chronic condition, patients with 3 chronic conditions complying with all the guidelines would have to take a minimum of 6 to a maximum of 13 medications per day, visit a health caregiver a minimum of 1.2 to a maximum of 5.9 times per month and spend a mean (SD) of 49.6 (27.3) to 71.0 (34.5) h/month in HRAs. The potential workload increased greatly with increasing number of concomitant conditions, rising to 18 medications per day, 6.6 visits per month and 80.7 (35.8) h/month in HRAs for patients with 6 chronic conditions. PMID:27006342

  10. Using a simulated environment to support students learning clinical skills.

    PubMed

    Doody, O; Condon, M

    2013-11-01

    Within intellectual disability nursing students are prepared within a biopsychosocialeducational model and curriculum address these challenges. Using a simulated learning environment has great potential for promoting competence and in-depth knowledge of substantive topics relevant to practice. This article presents an assignment designed to more closely resemble real-world activities to allow students develop and exercise skills that translate to practice activities and incorporates a student's reflective comments on the process. The assignment was designed to foster intellectual disability student nurses ability to facilitate family/client education. The aim of the assignment was fulfilled through the students designing a clinical skill teaching session that could be used with families/clients. The sessions were recorded and the student reviewed their recording to reflect on their performance and to self assess. To facilitate student learning the modules academic lecturer also reviewed the recording and both lecturer and student meet to discuss the reflection and self assessment. PMID:23602694

  11. Flux Based Surface Boundary Conditions for Navier-Stokes Simulations

    NASA Astrophysics Data System (ADS)

    Fertig, M.; Auweter-Kurtz, M.

    2005-02-01

    During re-entry high thermal combined with mechanical loads arise at the TPS surface of a re-entry vehicle. Due to low gas density, high Knudsen Numbers arise, which indicate rarefaction effects such as thermo-chemical non-equilibrium as well as temperature and velocity slip. With increasing altitude, local Knudsen Numbers predict the failure of continuum equations starting in the bow shock and at the surface. While local failure of the equations in the shock can be neglected for the determination of surface loads, local failure at the surface is not negligible. The validity of continuum models can be extended by emploing surface boundary equations accounting for temperature and velocity slip. A new flux based model has been developed originating on the Boltzmann Equation. Making use of the Enskog Method perturbed partition functions for a multi-component gas are determined from the Boltzmann Equation. By introduction of the moments of Boltzmann's Equation, Maxwell's Transport Equation can be obtained. Particles approaching the surface are distinguished from particles leaving the surface depending on their molecular velocities. Hence, mass, momentum and energy fluxes to the surface can be determined employing the collisional invariants. Reactive as well as scattering models can be easily introduced in order to compute the fluxes from the surface. Finally, flux differences are balanced with the continuum fluxes from the Navier-Stokes equations. Hence, the model is able to predict temperature and velocity slip at the surface of a re-entry vehicle under rarefied conditions. Moreover, it is valid in the continuum regime as well. The boundary equations are solved fully implicit and fully coupled with the non-equilibrium Navier-Stokes Code URANUS. Results are compared to DSMC simulations for the re-entry of the US Space Shuttle orbiter at high altitudes. Key words: Navier-Stokes; re-entry; slip; non-equilibrium.

  12. DNA damage under simulated extraterrestrial conditions in bacteriophage T7

    NASA Astrophysics Data System (ADS)

    Fekete, A.; Kovács, G.; Hegedüs, M.; Módos, K.; Rontó, Gy.; Lammer, H.; Panitz, C.

    The experiment ``Phage and uracil response'' (PUR) will be accommodated in the EXPOSE facility of the ISS aiming to examine and quantify the effect of specific space conditions on bacteriophage T7 and isolated T7 DNA thin films. To achieve this new method was elaborated for the preparation of DNA and nucleoprotein thin films (1). During the EXPOSE Experiment Verification Tests (EVT) the samples were exposed to vacuum (10 -6 Pa), to monochromatic (254 nm) and polychromatic (200-400 nm) UV radiation in air as well in simulated space vacuum. Using neutral density (ND) filters dose-effect curves were performed in order to define the maximum doses tolerated, and we also studied the effect of temperature in vacuum as well as the influence of temperature fluctuations. We obtained substantial evidence that DNA lesions (e.g. strand breaks, DNA-protein cross-links, DNA-DNA cross-links) accumulate throughout exposure. DNA damage was determined by quantitative PCR using 555 bp and 3826 bp fragments of T7 DNA (2) and by neutral and alkaline agarose gel electrophoresis; the structural/chemical effects were analyzed by spectroscopic and microscopical methods. Characteristic changes in the absorption spectrum, in the electrophoretic pattern of DNA and the decrease of the amount of the PCR products have been detected indicating the damage of isolated and intraphage DNA. Preliminary results suggest a synergistic action of space vacuum and UV radiation with DNA being the critical target. Fekete et al. J. Luminescence 102-103, 469-475, 2003 Hegedüs et al. Photochem. Photobiol. 78, 213-219, 2003

  13. Monte Carlo simulation of photon way in clinical laser therapy

    NASA Astrophysics Data System (ADS)

    Ionita, Iulian; Voitcu, Gabriel

    2011-07-01

    The multiple scattering of light can increase efficiency of laser therapy of inflammatory diseases enlarging the treated area. The light absorption is essential for treatment while scattering dominates. Multiple scattering effects must be introduced using the Monte Carlo method for modeling light transport in tissue and finally to calculate the optical parameters. Diffuse reflectance measurements were made on high concentrated live leukocyte suspensions in similar conditions as in-vivo measurements. The results were compared with the values determined by MC calculations, and the latter have been adjusted to match the specified values of diffuse reflectance. The principal idea of MC simulations applied to absorption and scattering phenomena is to follow the optical path of a photon through the turbid medium. The concentrated live cell solution is a compromise between homogeneous layer as in MC model and light-live cell interaction as in-vivo experiments. In this way MC simulation allow us to compute the absorption coefficient. The values of optical parameters, derived from simulation by best fitting of measured reflectance, were used to determine the effective cross section. Thus we can compute the absorbed radiation dose at cellular level.

  14. Simulated prostate biopsy: prostate cancer distribution and clinical correlation

    NASA Astrophysics Data System (ADS)

    Bauer, John J.; Zeng, Jianchao; Zhang, Wei; Sesterhenn, Isabell A.; Dean, Robert; Moul, Judd W.; Mun, Seong K.

    2000-04-01

    Our group has recently obtained data based upon whole- mounted step-sectioned radical prostatectomy specimens using a 3D computer assisted prostate biopsy simulator that suggests an increased detection rate is possible using laterally placed biopsies. A new 10-core biopsy pattern was demonstrated to be superior to the traditional sextant biopsy. This patter includes the traditional sextant biopsy cores and four laterally placed biopsies in the right and left apex and mid portion of the prostate gland. The objective of this study is to confirm the higher prostate cancer defection rate obtained using our simulated 10-core biopsy pattern in a small clinical trial. We retrospectively reviewed 35 consecutive patients with a pathologic diagnosis of prostate cancer biopsied by a single urologist using the 10-core prostate biopsy patterns were compared with respect to prostate cancer detection rate. Of the 35 patients diagnosed with prostate cancer, 54.3 percent were diagnosed when reviewing the sextant biopsy data only. Review of the 10-core pattern revealed that an additional 45.7 percent were diagnosed when reviewing the sextant biopsy data only. Review of the 10-core pattern revealed that an additional 45.7 percent of patients were diagnosed solely with the laterally placed biopsies. Our results suggest that biopsy protocols that use laterally placed biopsies based upon a five region anatomical model are superior to the routinely used sextant prostate biopsy pattern.

  15. Synthesis of hydrogen cyanide under simulated hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Pinedo-González, Paulina

    Nitrogen is a fundamental element for life, where is present in structural (e.g., proteins), catalytic (e.g., enzymes and ribozymes), energy transfer (e.g., ATP) and information storage (RNA and DNA) biomolecules. Atmospheric and planetary models suggest that nitrogen was abundant in the early atmospheres of Earth as dinitrogen (N2 ), an inert gas under normal atmospheric conditions. To be available for prebiotic synthesis it must be converted into hydrogen cyanide (HCN), ammonia (NH3 ) and/or nitric oxide (NO), in a process referred to as nitrogen fixation. Due to the strength of the triple bond in N2 , nitrogen fixation, while thermodynamically favored is kinetically restricted. In a reducing atmosphere dominated by CH4 -N2 , thunderstorm lightning efficiently produces HCN and NH3 (Stribling and Miller, 1987). Nevertheless, photochemical and geochemical constraints strongly suggest that the early atmosphere was weakly reducing, dominated by CO2 and N2 with traces of CH4 , CO, and H2 (Kasting, 1993). Under these conditions, HCN is no longer synthesized in the lightning channel and instead NO is formed (Navarro-Gonźlez, et al., 2001). In volcanic plumes, where magmatic gases a were more reducing than in the atmosphere, NO can also be formed by the lava heat (Mather et al., 2004) or volcanic lightning (Navarro-Gonźlez et al., 1998). Surprisingly, dinitrogen can be a reduced to NH3 in hydrothermal systems (Brandes et al., 1998), but the formation of HCN and its derivates were not investigated. The present work explores the possibility of the formation of HCN as well as other nitrile derivatives catalyzed by mineral surfaces in hydrothermal vents. To simulate a hydrothermal atmosphere, the experiments were carried out in a stainless steel Parr R minireactor with a 0.1 M NH4 HCO3 solution (200 ml) with or without a mineral surface exposed at 1 bar at temperatures ranging from 100 to 375° C. Different mineral matrices are been investigated. Our preliminary results

  16. 42 CFR 493.1453 - Condition: Laboratories performing high complexity testing; clinical consultant.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... testing; clinical consultant. 493.1453 Section 493.1453 Public Health CENTERS FOR MEDICARE & MEDICAID... Condition: Laboratories performing high complexity testing; clinical consultant. The laboratory must have a clinical consultant who meets the requirements of § 493.1455 of this subpart and provides...

  17. 42 CFR 493.1415 - Condition: Laboratories performing moderate complexity testing; clinical consultant.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... complexity testing; clinical consultant. 493.1415 Section 493.1415 Public Health CENTERS FOR MEDICARE... § 493.1415 Condition: Laboratories performing moderate complexity testing; clinical consultant. The laboratory must have a clinical consultant who meets the qualification requirements of § 493.1417 of...

  18. Simultaneous Bilateral Spontaneous Pneumothorax: A Rare Emergency Clinical Condition

    PubMed Central

    Aydin, Yener; Turkyilmaz, Atila; İntepe, Yavuz Selim; Eroglu, Atilla

    2010-01-01

    Objective: Spontaneous pneumothorax is a disease that may cause serious respiratory distress and can be a life-threatening condition. A total of 1.3% of all spontaneous pneumothorax cases are simultaneous bilateral spontaneous pneumothorax (SBSP). In this study, because of its rarity, we discuss SBSP cases in light of previously reported cases. Materials and Methods: Between January 2004 and December 2009, SBSP was detected in five patients. Results: All patients were male, and the mean patient age was 18.6 (between 16 and 22 years of age). All patients had various degrees of dyspnea and chest pain. All diagnoses were established by chest X-rays. Two patients (40%) had primary spontaneous pneumothorax (PSP), and three (60%) had secondary spontaneous pneumothorax (SSP) (two patients had silicosis, and one had Staphylococcus aureus pneumonia). Previously, bilateral tube thoracostomies were performed on all patients. One PSP patient had a left apical pleurectomy with axillary thoracotomy; the other had a right apical pleurectomy. Tetracycline pleurodesis was performed on one of the silicosis patients. No additional surgical procedure or pleurodesis was performed on the other silicosis patient or on the pneumonia patient. No recurrence of pneumothorax was observed in any patient. Conclusions: SBSP could be a life-threatening condition; therefore, urgent diagnosis and appropriate treatment of this condition can save patients’ lives. PMID:25610108

  19. Nursing Students' Perceptions of Satisfaction and Self-Confidence with Clinical Simulation Experience

    ERIC Educational Resources Information Center

    Omer, Tagwa

    2016-01-01

    Nursing and other health professionals are increasingly using simulation as a strategy and a tool for teaching and learning at all levels that need clinical training. Nursing education for decades used simulation as an integral part of nursing education. Recent studies indicated that simulation improves nursing knowledge, clinical practice,…

  20. Computer-Based versus High-Fidelity Mannequin Simulation in Developing Clinical Judgment in Nursing Education

    ERIC Educational Resources Information Center

    Howard, Beverly J.

    2013-01-01

    The purpose of this study was to determine if students learn clinical judgment as effectively using computer-based simulations as when using high-fidelity mannequin simulations. There was a single research questions for this study: What is the difference in clinical judgment between participants completing high-fidelity human simulator mannequin…

  1. Asynclitism: a literature review of an often forgotten clinical condition.

    PubMed

    Malvasi, Antonio; Barbera, Antonio; Di Vagno, Giovanni; Gimovsky, Alexis; Berghella, Vincenzo; Ghi, Tullio; Di Renzo, Gian Carlo; Tinelli, Andrea

    2015-11-01

    Asynclitism is defined as the "oblique malpresentation of the fetal head in labor". Asynclitism is a clinical diagnosis that may be difficult to make; it may be found during vaginal examination. It is significant because it may cause failure of progress operative or cesarean delivery. We reviewed all literature for asynclitism by performing an extensive electronic search of studies from 1959 to 2013. All studies were first reviewed by a single author and discussed with co-authors. The following studies were identified: 8 book chapters, 14 studies on asynclitism alone and 10 papers on both fetal occiput posterior position and asynclitism. The fetal head in a laboring patient may be associated with some degree of asynclitism; this is seen as usual way of the fetal head to adjust to maternal pelvic diameters. However, marked asynclitism is often detected in presence of a co-existing fetal head malposition, especially the transverse and occipital posterior positions. Digital diagnosis of asynclitism is enhanced by intrapartum ultrasound with transabdominal or transperineal approach. The accurate diagnosis of asynclitism, in an objective way, may provide a better assessment of the fetal head position that will help in the correct application of vacuum and forceps, allowing the prevention of unnecessary cesarean deliveries. PMID:25283847

  2. 40 CFR 86.162-03 - Approval of alternative air conditioning test simulations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... alternative air conditioning test simulations. (a) Upon petition from a manufacturer or upon the Agency's own initiative, the Administrator will approve a simulation of the environmental cell for air conditioning test... the tailpipe emissions, air conditioning compressor load, and fuel economy. (2) For any...

  3. Water ice nucleation characteristics of JSC Mars-1 regolith simulant under simulated Martian atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Phebus, Bruce D.; Johnson, Alexandria V.; Mar, Brendan; Stone, Bradley M.; Colaprete, Anthony; Iraci, Laura T.

    2011-04-01

    Water ice clouds in the Martian atmosphere are governed by parameters such as number density and particle size distribution that in turn affect how they influence the climate. With some of the underlying properties of cloud formation well known only for Earth, extrapolations to Mars are potentially misleading. We report here continued laboratory experiments to identify critical onset conditions for water ice formation under Martian cloud forming temperatures and water partial pressures (155-182 K, 7.6 × 10-5 to 7.7 × 10-3 Pa H2O). By observing the 3 μm infrared band to monitor nucleation and growth, we observe significant temperature dependence in the nucleation of ice on JSC Mars-1 regolith simulant, with critical saturation ratios, Scrit, as high as 3.8 at 155 K. At temperatures below ˜180 K, ice nucleation on JSC Mars-1 requires significant supersaturation, potentially impacting the Martian hydrological cycle.

  4. Development of Automatic Controller of Brain Temperature Based on the Conditions of Clinical Use

    NASA Astrophysics Data System (ADS)

    Utsuki, Tomohiko; Wakamatsu, Hidetoshi

    A new automatic controller of brain temperature was developed based on the inevitable conditions of its clinical use from the viewpoint of various kinds of feasibility, in particular, electric power consumption of less than 1,500W in ICU. The adaptive algorithm was employed to cope with individual time-varying characteristic change of patients. The controller under water-surface cooling hypothermia requires much power for the frequent regulation of the water temperature of cooling blankets. Thus, in this study, the power consumption of the controller was checked by several kinds of examinations involving the control simulation of brain temperature using a mannequin with thermal characteristics similar to that of adult patients. The required accuracy of therapeutic brain hypothermia, i.e. control deviation within ±0.1C was experimentally confirmed using “root mean square of the control error”, despite the present controller consumes less energy comparing with the one in the case of our conventional controller, where it can still keeps remaining power margin more than 300W even in the full operation. Thereby, the clinically required water temperature was also confirmed within the limit of power supply, thus its practical application is highly expected with less physical burden of medical staff inclusive of more usability and more medical cost performance.

  5. Pressure Drop in Tortuosity/Kinking of the Internal Carotid Artery: Simulation and Clinical Investigation

    PubMed Central

    Wang, Lijun; Zhao, Feng; Wang, Daming; Hu, Shen; Liu, Jiachun; Zhou, Zhilun; Lu, Jun; Qi, Peng; Song, Shiying

    2016-01-01

    Background. Whether carotid tortuosity/kinking of the internal carotid artery leads to cerebral ischemia remains unclear. There is very little research about the hemodynamic variation induced by carotid tortuosity/kinking in the literature. The objective of this study was to research the blood pressure changes induced by carotid tortuosity/kinking. Methods. We first created a geometric model of carotid tortuosity/kinking. Based on hemodynamic boundary conditions, the hemodynamics of carotid tortuosity and kinking were studied via a finite element simulation. Then, an in vitro system was built to validate the numerical simulation results. The mean arterial pressure changes before and after carotid kinking were measured using pressure sensors in 12 patients with carotid kinking. Results. Numerical simulation revealed that the pressure drops increased with increases in the kinking angles. Clinical tests and in vitro experiments confirmed the numerical simulation results. Conclusions. Carotid kinking leads to blood pressure reduction. In certain conditions, kinking may affect the cerebral blood supply and be associated with cerebral ischemia. PMID:27195283

  6. Visual-search observers for SPECT simulations with clinical backgrounds

    NASA Astrophysics Data System (ADS)

    Gifford, Howard C.

    2016-03-01

    The purpose of this work was to test the ability of visual-search (VS) model observers to predict the lesion- detection performance of human observers with hybrid SPECT images. These images consist of clinical back- grounds with simulated abnormalities. The application of existing scanning model observers to hybrid images is complicated by the need for extensive statistical information, whereas VS models based on separate search and analysis processes may operate with reduced knowledge. A localization ROC (LROC) study involved the detection and localization of solitary pulmonary nodules in Tc-99m lung images. The study was aimed at op- timizing the number of iterations and the postfiltering of four rescaled block-iterative reconstruction strategies. These strategies implemented different combinations of attenuation correction, scatter correction, and detector resolution correction. For a VS observer in this study, the search and analysis processes were guided by a single set of base morphological features derived from knowledge of the lesion profile. One base set used difference-of- Gaussian channels while a second base set implemented spatial derivatives in combination with the Burgess eye filter. A feature-adaptive VS observer selected features of interest for a given image set on the basis of training-set performance. A comparison of the feature-adaptive observer results against previously acquired human-observer data is presented.

  7. Desert Cyanobacteria under simulated space and Martian conditions

    NASA Astrophysics Data System (ADS)

    Billi, D.; Ghelardini, P.; Onofri, S.; Cockell, C. S.; Rabbow, E.; Horneck, G.

    2008-09-01

    The environment in space and on planets such as Mars, can be lethal to living organisms and high levels of tolerance to desiccation, cold and radiation are needed for survival: rock-inhabiting cyanobacteria belonging to the genus Chroococcidiopsis can fulfil these requirements [1]. These cyanobacteria constantly appear in the most extreme and dry habitats on Earth, including the McMurdo Dry Valleys (Antarctica) and the Atacama Desert (Chile), which are considered the closest terrestrial analogs of two Mars environmental extremes: cold and aridity. In their natural environment, these cyanobacteria occupy the last refuges for life inside porous rocks or at the stone-soil interfaces, where they survive in a dry, dormant state for prolonged periods. How desert strains of Chroococcidiopsis can dry without dying is only partially understood, even though experimental evidences support the existence of an interplay between mechanisms to avoid (or limit) DNA damage and repair it: i) desert strains of Chroococcidiopsis mend genome fragmentation induced by ionizing radiation [2]; ii) desiccation-survivors protect their genome from complete fragmentation; iii) in the dry state they show a survival to an unattenuated Martian UV flux greater than that of Bacillus subtilis spores [3], and even though they die following atmospheric entry after having orbited the Earth for 16 days [4], they survive to simulated shock pressures up to 10 GPa [5]. Recently additional experiments were carried out at the German Aerospace Center (DLR) of Cologne (Germany) in order to identify suitable biomarkers to investigate the survival of Chroococcidiopsis cells present in lichen-dominated communities, in view of their direct and long term space exposition on the International Space Station (ISS) in the framework of the LIchens and Fungi Experiments (LIFE, EXPOSEEuTEF, ESA). Multilayers of dried cells of strains CCMEE 134 (Beacon Valley, Antarctica), and CCMEE 123 (costal desert, Chile ), shielded by

  8. Problem-Solving in the Pre-Clinical Curriculum: The Uses of Computer Simulations.

    ERIC Educational Resources Information Center

    Michael, Joel A.; Rovick, Allen A.

    1986-01-01

    Promotes the use of computer-based simulations in the pre-clinical medical curriculum as a means of providing students with opportunities for problem solving. Describes simple simulations of skeletal muscle loads, complex simulations of major organ systems and comprehensive simulation models of the entire human body. (TW)

  9. Effects of an Experiential Learning Simulation Design on Clinical Nursing Judgment Development.

    PubMed

    Chmil, Joyce Victor; Turk, Melanie; Adamson, Katie; Larew, Charles

    2015-01-01

    Simulation design should be theory based and its effect on outcomes evaluated. This study (1) applied a model of experiential learning to design a simulation experience, (2) examined how this design affected clinical nursing judgment development, and (3) described the relationship between clinical nursing judgment development and student performance when using the experiential learning design. Findings suggest that using an experiential learning simulation design results in more highly developed nursing judgment and competency in simulation performance. PMID:25763781

  10. Simulating Expert Clinical Comprehension: Adapting Latent Semantic Analysis to Accurately Extract Clinical Concepts from Psychiatric Narrative

    PubMed Central

    Cohen, Trevor; Blatter, Brett; Patel, Vimla

    2008-01-01

    Cognitive studies reveal that less-than-expert clinicians are less able to recognize meaningful patterns of data in clinical narratives. Accordingly, psychiatric residents early in training fail to attend to information that is relevant to diagnosis and the assessment of dangerousness. This manuscript presents cognitively motivated methodology for the simulation of expert ability to organize relevant findings supporting intermediate diagnostic hypotheses. Latent Semantic Analysis is used to generate a semantic space from which meaningful associations between psychiatric terms are derived. Diagnostically meaningful clusters are modeled as geometric structures within this space and compared to elements of psychiatric narrative text using semantic distance measures. A learning algorithm is defined that alters components of these geometric structures in response to labeled training data. Extraction and classification of relevant text segments is evaluated against expert annotation, with system-rater agreement approximating rater-rater agreement. A range of biomedical informatics applications for these methods are suggested. PMID:18455483

  11. Simulation of Martian surface conditions and dust transport

    NASA Astrophysics Data System (ADS)

    Nørnberg, P.; Merrison, J. P.; Finster, K.; Folkmann, F.; Gunnlaugsson, H. P.; Hansen, A.; Jensen, J.; Kinch, K.; Lomstein, B. Aa.; Mugford, R.

    2002-11-01

    The suspended atmospheric dust which is also found deposited over most of the Martian globe plays an important (possibly vital) role in shaping the surface environment. It affects the weather (solar flux), water transport and possibly also the electrical properties at the surface. The simulation facilities at Aarhus provide excellent tools for studying the properties of this Martian environment. Much can be learned from such simulations, supporting and often inspiring new investigations of the planet. Electrical charging of a Mars analogue dust is being studied within a wind tunnel simulation aerosol. Here electric fields are used to extract dust from suspension. Although preliminary the results indicate that a large fraction of the dust is charged to a high degree, sufficient to dominate adhesion/cohesion processes. A Mars analogue dust layer has been shown to be an excellent trap for moisture, causing increased humidity in the soil below. This allows the possibility for liquid water to be stable close to the surface (less than 10 cm). This is being investigated in an environment simulator where heat and moisture transport can be studied through layers of Mars analogue dust.

  12. Parametric initial conditions for core-collapse supernova simulations

    NASA Astrophysics Data System (ADS)

    Suwa, Yudai; Müller, Ewald

    2016-08-01

    We investigate a method to construct parametrized progenitor models for core-collapse supernova simulations. Different from all modern core-collapse supernova studies, which rely on progenitor models from stellar evolution calculations, we follow the methodology of Baron & Cooperstein to construct initial models. Choosing parametrized spatial distributions of entropy and electron fraction as a function of mass coordinate and solving the equation of hydrostatic equilibrium, we obtain the initial density structures of our progenitor models. First, we calculate structures with parameters fitting broadly the evolutionary model s11.2 of Woosley et al. (2002). We then demonstrate the reliability of our method by performing general relativistic hydrodynamic simulations in spherical symmetry with the isotropic diffusion source approximation to solve the neutrino transport. Our comprehensive parameter study shows that initial models with a small central entropy (≲0.4 kB nucleon-1) can explode even in spherically symmetric simulations. Models with a large entropy (≳6 kB nucleon-1) in the Si/O layer have a rather large explosion energy (˜4 × 1050 erg) at the end of the simulations, which is still rapidly increasing.

  13. Parametric initial conditions for core-collapse supernova simulations

    NASA Astrophysics Data System (ADS)

    Suwa, Yudai; Müller, Ewald

    2016-08-01

    We investigate a method to construct parametrized progenitor models for core-collapse supernova simulations. Different from all modern core-collapse supernova studies, which rely on progenitor models from stellar evolution calculations, we follow the methodology of Baron & Cooperstein (1990) to construct initial models. Choosing parametrized spatial distributions of entropy and electron fraction as a function of mass coordinate and solving the equation of hydrostatic equilibrium, we obtain the initial density structures of our progenitor models. First, we calculate structures with parameters fitting broadly the evolutionary model s11.2 of Woosley et al. (2002). We then demonstrate the reliability of our method by performing general relativistic hydrodynamic simulations in spherical symmetry with the isotropic diffusion source approximation to solve the neutrino transport. Our comprehensive parameter study shows that initial models with a small central entropy ($\\lesssim 0.4\\,k_B$ nucleon$^{-1}$) can explode even in spherically symmetric simulations. Models with a large entropy ($\\gtrsim 6\\,k_B$ nucleon$^{-1}$) in the Si/O layer have a rather large explosion energy ($\\sim 4\\times 10^{50}$ erg) at the end of the simulations, which is still rapidly increasing.

  14. Clinical significance of microembolus detection by transcranial Doppler sonography in cardiovascular clinical conditions.

    PubMed

    Hudorović, Narcis

    2006-01-01

    Transcranial Doppler can detect microembolic signals, which are characterized by unidirectional high intensity increase, short duration, and random occurrence, producing a "whistling" sound. Microembolic signals have been proven to represent solid or gaseous particles within the blood flow. Microemboli have been detected in a number of clinical cardiovascular settings: carotid artery stenosis, aortic arch plaques, atrial fibrillation, myocardial infarction, prosthetic heart valves, patent foramen ovale, valvular stenosis, during invasive procedures (angiography, percutaneous transluminal angioplasty) and surgery (carotid, cardiopulmonary bypass). Despite numerous studies performed so far, clinical significance of microembolic signals is still unclear. This article provides an overview of the development and current state of technical and clinical aspects of microembolus detection. PMID:17462357

  15. Sensitivity of a Simulated Derecho Event to Model Initial Conditions

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    2014-05-01

    Since 2003, the MMM division at NCAR has been experimenting cloud-permitting scale weather forecasting using Weather Research and Forecasting (WRF) model. Over the years, we've tested different model physics, and tried different initial and boundary conditions. Not surprisingly, we found that the model's forecasts are more sensitive to the initial conditions than model physics. In 2012 real-time experiment, WRF-DART (Data Assimilation Research Testbed) at 15 km was employed to produce initial conditions for twice-a-day forecast at 3 km. On June 29, this forecast system captured one of the most destructive derecho event on record. In this presentation, we will examine forecast sensitivity to different model initial conditions, and try to understand the important features that may contribute to the success of the forecast.

  16. Ophthalmology simulation for undergraduate and postgraduate clinical education

    PubMed Central

    Ting, Daniel Shu Wei; Sim, Shaun Sebastian Khung Peng; Yau, Christine Wen Leng; Rosman, Mohamad; Aw, Ai Tee; Yeo, Ian Yew San

    2016-01-01

    This is a review education paper on the current ophthalmology simulators utilized worldwide for undergraduate and postgraduate training. At present, various simulators such as the EYE Exam Simulator (Kyoto Kagaku Co. Ltd., Kyoto, Japan), Eyesi direct ophthalmoscope simulator (VRmagic, GmbH, Mannheim, Germany), Eyesi indirect ophthalmoscope simulator (VRmagic, GmbH, Mannheim, Germany) and Eyesi cataract simulators (VRmagic, GmbH, Mannheim, Germany). These simulators are thought to be able to reduce the initial learning curve for the ophthalmology training but further research will need to be conducted to assess the effectiveness of the simulation-assisted Ophthalmology training. Future research will be of great value to assess the medical students and residents' responses and performance regarding the usefulness of the individual eye simulator. PMID:27366698

  17. Ophthalmology simulation for undergraduate and postgraduate clinical education.

    PubMed

    Ting, Daniel Shu Wei; Sim, Shaun Sebastian Khung Peng; Yau, Christine Wen Leng; Rosman, Mohamad; Aw, Ai Tee; Yeo, Ian Yew San

    2016-01-01

    This is a review education paper on the current ophthalmology simulators utilized worldwide for undergraduate and postgraduate training. At present, various simulators such as the EYE Exam Simulator (Kyoto Kagaku Co. Ltd., Kyoto, Japan), Eyesi direct ophthalmoscope simulator (VRmagic, GmbH, Mannheim, Germany), Eyesi indirect ophthalmoscope simulator (VRmagic, GmbH, Mannheim, Germany) and Eyesi cataract simulators (VRmagic, GmbH, Mannheim, Germany). These simulators are thought to be able to reduce the initial learning curve for the ophthalmology training but further research will need to be conducted to assess the effectiveness of the simulation-assisted Ophthalmology training. Future research will be of great value to assess the medical students and residents' responses and performance regarding the usefulness of the individual eye simulator. PMID:27366698

  18. Enhancing nursing informatics competencies and critical thinking skills using wireless clinical simulation laboratories.

    PubMed

    Cholewka, Patricia A; Mohr, Bernard

    2009-01-01

    Nursing students at New York City College of Technology are assigned client care experiences that focus on common alterations in health status. However, due to the unpredictability of client census within any healthcare facility, it is not possible for all students to have the same opportunity to care for clients with specific medical conditions. But with the use of patient simulators in a dedicated Clinical Simulation Laboratory setting, students can be universally, consistently, and repeatedly exposed to programmed scenarios that connect theory with the clinical environment. Outcomes from using patient simulators include improved nursing knowledge base, enhanced critical thinking, reflective learning, and increased understanding of information technology for using a Personal Digital Assistant and documenting care by means of an electronic Patient Record System. An innovative nursing education model using a wireless, inter-connective data network was developed by this college in response to the need for increasing nursing informatics competencies and critical thinking skills by students in preparation for client care. PMID:19592905

  19. Clinical simulation as a boundary object in design of health IT-systems.

    PubMed

    Rasmussen, Stine Loft; Jensen, Sanne; Lyng, Karen Marie

    2013-01-01

    Healthcare organizations are very complex, holding numerous stakeholders with various approaches and goals towards the design of health IT-systems. Some of these differences may be approached by applying the concept of boundary objects in a participatory IT-design process. Traditionally clinical simulation provides the opportunity to evaluate the design and the usage of clinical IT-systems without endangering the patients and interrupting clinical work. In this paper we present how clinical simulation additionally holds the potential to function as a boundary object in the design process. The case points out that clinical simulation provides an opportunity for discussions and mutual learning among the various stakeholders involved in design of standardized electronic clinical documentation templates. The paper presents and discusses the use of clinical simulation in the translation, transfer and transformation of knowledge between various stakeholders in a large healthcare organization. PMID:23941951

  20. The impact of training and working conditions on junior doctors’ intention to leave clinical practice

    PubMed Central

    2014-01-01

    Background The shortage of physicians is an evolving problem throughout the world. In this study we aimed to identify to what extent junior doctors’ training and working conditions determine their intention to leave clinical practice after residency training. Methods A prospective cohort study was conducted in 557 junior doctors undergoing residency training in German hospitals. Self-reported specialty training conditions, working conditions and intention to leave clinical practice were measured over three time points. Scales covering training conditions were assessed by structured residency training, professional support, and dealing with lack of knowledge; working conditions were evaluated by work overload, job autonomy and social support, based on the Demand–Control–Support model. Multivariate ordinal logistic regression analyses with random intercept for longitudinal data were applied to determine the odds ratio of having a higher level of intention to leave clinical practice. Results In the models that considered training and working conditions separately to predict intention to leave clinical practice we found significant baseline effects and change effects. After modelling training and working conditions simultaneously, we found evidence that the change effect of job autonomy (OR 0.77, p = .005) was associated with intention to leave clinical practice, whereas for the training conditions, only the baseline effects of structured residency training (OR 0.74, p = .017) and dealing with lack of knowledge (OR 0.74, p = .026) predicted intention to leave clinical practice. Conclusions Junior doctors undergoing specialty training experience high workload in hospital practice and intense requirements in terms of specialty training. Our study indicates that simultaneously improving working conditions over time and establishing a high standard of specialty training conditions may prevent junior doctors from considering leaving clinical practice after

  1. Boundary conditions and the simulation of low Mach number flows

    NASA Technical Reports Server (NTRS)

    Hagstrom, Thomas; Lorenz, Jens

    1993-01-01

    The problem of accurately computing low Mach number flows, with the specific intent of studying the interaction of sound waves with incompressible flow structures, such as concentrations of vorticity is considered. This is a multiple time (and/or space) scales problem, leading to various difficulties in the design of numerical methods. Concentration is on one of these difficulties - the development of boundary conditions at artificial boundaries which allow sound waves and vortices to radiate to the far field. Nonlinear model equations are derived based on assumptions about the scaling of the variables. Then these are linearized about a uniform flow and exact boundary conditions are systematically derived using transform methods. Finally, useful approximations to the exact conditions which are valid for small Mach number and small viscosity are computed.

  2. Dissolved carbon in extreme conditions characterized by first principles simulations

    NASA Astrophysics Data System (ADS)

    Pan, Ding; Galli, Giulia

    One key component to understanding carbon transport in the Earth interior is the determination of the molecular species formed when carbon bearing materials are dissolved in water at extreme conditions. We used first principles molecular dynamics to investigate oxidized carbon in water at high pressure (P) and high temperature (T), up to the conditions of the Earth's upper mantle. Contrary to popular geochemistry models assuming that CO2 is the major carbon species present in water, we found that most of the dissolved carbon at 10 GPa and 1000 K is in the form of solvated CO32- and HCO3-anions. We also found that ion pairing between alkali metal cations and CO32- or HCO3-anions is greatly affected by P-T conditions, decreasing with pressure along an isotherm. Our study shows that it is crucial to take into account the specific molecular structure of water under extreme conditions and the changes in hydrogen bonding occurring at high P and T, in order to predict chemical reactions in dissolved carbon. Our findings also shed light on possible reduction mechanisms of CO2 when it is geologically stored, depending on the availability of water. The work is supported by the Sloan Foundation through the Deep Carbon Observatory.

  3. Survival of bacterial spores under some simulated lunar surface conditions.

    PubMed

    Horneck, G; Bucker, H; Wollenhaupt, H

    1971-01-01

    Spores of Bacillus subtilis were exposed to simulated lunar environmental factors, in order to estimate the chance of living matter to survive on the moon. Vacuum, radiation and extreme temperature were selected and their individual and combined influence was tested. High vacuum up to 2 x 10(-7) torr and ultra-high vacuum up to 5 x 10(-9) torr, ultraviolet rays (254 nm) and a temperature of 80 degrees C were used. The results were compared with those of experiments on vegetative cells. PMID:12206178

  4. 40 CFR 86.162-03 - Approval of alternative air conditioning test simulations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... initiative, the Administrator will approve a simulation of the environmental cell for air conditioning test... approvals will be granted, the Administrator will consider data showing how well the simulation matches environmental cell test data for the range of vehicles to be covered by the simulation including items such...

  5. 40 CFR 86.162-03 - Approval of alternative air conditioning test simulations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... initiative, the Administrator will approve a simulation of the environmental cell for air conditioning test... approvals will be granted, the Administrator will consider data showing how well the simulation matches environmental cell test data for the range of vehicles to be covered by the simulation including items such...

  6. 40 CFR 86.162-03 - Approval of alternative air conditioning test simulations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... initiative, the Administrator will approve a simulation of the environmental cell for air conditioning test... environmental cell test data for the range of vehicles to be covered by the simulation including items such as the tailpipe emissions, air conditioning compressor load, and fuel economy. (2) For any...

  7. Developing Clinical Competency in Crisis Event Management: An Integrated Simulation Problem-Based Learning Activity

    ERIC Educational Resources Information Center

    Liaw, S. Y.; Chen, F. G.; Klainin, P.; Brammer, J.; O'Brien, A.; Samarasekera, D. D.

    2010-01-01

    This study aimed to evaluate the integration of a simulation based learning activity on nursing students' clinical crisis management performance in a problem-based learning (PBL) curriculum. It was hypothesized that the clinical performance of first year nursing students who participated in a simulated learning activity during the PBL session…

  8. Shifted periodic boundary conditions for simulations of wall-bounded turbulent flows

    NASA Astrophysics Data System (ADS)

    Munters, Wim; Meneveau, Charles; Meyers, Johan

    2016-02-01

    In wall-bounded turbulent flow simulations, periodic boundary conditions combined with insufficiently long domains lead to persistent spanwise locking of large-scale turbulent structures. This leads to statistical inhomogeneities of 10%-15% that persist in time averages of 60 eddy turnover times and more. We propose a shifted periodic boundary condition that eliminates this effect without the need for excessive streamwise domain lengths. The method is tested based on a set of direct numerical simulations of a turbulent channel flow, and large-eddy simulations of a high Reynolds number rough-wall half-channel flow. The method is very useful for precursor simulations that generate inlet conditions for simulations that are spatially inhomogeneous, but require statistically homogeneous inlet boundary conditions in the spanwise direction. The method's advantages are illustrated for the simulation of a developing wind-farm boundary layer.

  9. Confirmation of uncontrolled flow dynamics in clinical simulated multi-infusion setups using absorption spectral photometry

    NASA Astrophysics Data System (ADS)

    Timmerman, Anna M.; Riphagen, Brechtje; Klaessens, John H.; Verdaasdonk, Rudolf M.

    2010-02-01

    Multi-infusion systems are used frequently at intensive care units to administer several liquid therapeutic agents to patients simultaneously. By passively combining the separate infusion lines in one central line, the number of punctures needed to access the patient's body, is reduced. So far, the mutual influence between the different infusion lines is unknown. Although the flow properties of single infusion systems have been investigated extensively, only a few research groups have investigated the flow properties of multi-infusion systems. We showed in a previous study that applying multi-infusion can lead to fluctuations in syringe pump infusions, resulting in uncontrolled and inaccurate drug administration. This study presents a performance analysis of multi-infusion systems as used in the Neonatology Intensive Care Unit. The dynamics between multiple infusion lines in multi-infusion systems were investigated by simulation experiments of clinical conditions. A newly developed real-time spectral-photometric method was used for the quantitative determination of concentration and outflow volume using a deconvolution method of absorption spectra of mixed fluids. The effects for common clinical interventions were studied in detail. Results showed mutual influence between the different infusion lines following these interventions. This mutual influence led to significant volume fluctuations up to 50%. These deviations could result in clinically dangerous situations. A complete analysis of the multiinfusion system characteristics is recommended in further research to estimate both the presence and severity of potential risks in clinical use.

  10. A suitable boundary condition for bounded plasma simulation without sheath resolution

    SciTech Connect

    Parker, S.E.; Procassini, R.J.; Birdsall, C.K. ); Cohen, B.I. )

    1993-01-01

    We have developed a technique that allows for a sheath boundary layer without having to resolve the inherently small space and time scales of the sheath region. We refer to this technique as the logical sheath boundary condition. This boundary condition, when incorporated into a direct-implicit particle code, permits large space- and time-scale simulations of bounded systems, which would otherwise be impractical on current supercomputers. The lack of resolution of the collector sheath potential drop obtained from conventional implicit simulations at moderate values of [omega][sub pe][Delta]t and [Delta]z/[lambda][sup De] provides the motivation for the development of the logical sheath boundary condition. The algorithm for use of the logical sheath boundary condition in a particle simulation is presented. Results from simulations which use the logical sheath boundary condition are shown to compare reasonably well with those from an analytic theory and simulations in which the sheath is resolved.

  11. Computer simulations of planetary accretion dynamics: Sensitivity to initial conditions

    NASA Technical Reports Server (NTRS)

    Isaacman, R.; Sagan, C.

    1976-01-01

    The implications and limitations of program ACRETE were tested. The program is a scheme based on Newtonian physics and accretion with unit sticking efficiency, devised to simulate the origin of the planets. The dependence of the results on a variety of radial and vertical density distribution laws, the ratio of gas to dust in the solar nebula, the total nebular mass, and the orbital eccentricity of the accreting grains was explored. Only for a small subset of conceivable cases are planetary systems closely like our own generated. Many models have tendencies towards one of two preferred configurations: multiple star systems, or planetary systems in which Jovian planets either have substantially smaller masses than in our system or are absent altogether. But for a wide range of cases recognizable planetary systems are generated - ranging from multiple star systems with accompanying planets, to systems with Jovian planets at several hundred AU, to single stars surrounded only by asteroids.

  12. Clinical simulation: a sine qua non of nurse education or a white elephant?

    PubMed

    Stayt, Louise C

    2012-07-01

    An emphasis has been placed on clinical skill development in nurse education curricula due to the expressed concern about nursing students' clinical competence at the point of registration. Hence, the use of clinical simulation as an educational tool has become increasingly popular. The aim of this article is to examine the learning theory that underpins clinical simulation by utilising Carper's patterns of knowing (1978) as a theoretical framework. It is revealed that there is a philosophical conflict between the different learning approaches required to meet all the expected learning outcomes. It would also appear that due to a paucity of the current evidence base that the cost benefits of clinical simulation are largely unknown. The implications of these limitations may in part be overcome by future research endeavours, judicious curriculum development and a pluralistic approach to the facilitation of clinical simulation. PMID:21741136

  13. Preparation and reactivity of lepidocrocite under simulated feedwater conditions

    SciTech Connect

    McGarvey, G.B.; Burnett, K.B.; Owen, D.G.

    1998-02-01

    Lepidocrocite ({gamma}-FeOOH), prepared using several different aging temperatures and aging times, possesses widely varying morphological and structural features. Mean particle dimensions and surface areas were all found to depend on the conditions of the synthesis. Studies of the aqueous reduction of several of the lepidocrocite samples to magnetite indicated that the initial steps in the dissolution-reprecipitation process were influenced by the crystallinity of the material. Results of the morphological studies and the transformation reaction studies are described within the context of corrosion-product generation and stability in secondary feedwater systems of pressurized heavy-water nuclear reactors.

  14. Effects of Simulated Functional Loading Conditions on Dentin, Composite, and Laminate Structures

    PubMed Central

    Walker, Mary P.; Teitelbaum, Heather K.; Eick, J. David; Williams, Karen B.

    2008-01-01

    Use of composite restorations continues to increase, tempered by more potential problems when placed in posterior dentition. Thus, it is essential to understand how these materials function under stress-bearing clinical conditions. Since mastication is difficult to replicate in the laboratory, cyclic loading is frequently used within in vitro evaluations but often employs traditional fatigue testing, which typically does not simulate occlusal loading because higher stresses and loading frequencies are used, so failure mechanisms may be different. The present investigation utilized relevant parameters (specimen size; loading frequency) to assess the effects of cyclic loading on flexural mechanical properties and fracture morphology of (coronal) dentin, composite, and dentin-adhesive-composite “laminate” structures. Incremental monitoring of flexural modulus on individual beams over 60,000 loading cycles revealed a gradual increase across materials; post-hoc comparisons indicated statistical significance only for 1 versus 60k cycles. Paired specimens were tested (one exposed to 60k loading cycles, one to static loading only), and comparisons of flexural modulus and strength showed statistically significantly higher values for cyclically-loaded specimens across materials, with no observable differences in fracture morphology. Localized reorganization of dentin collagen and polymer chains could have increased flexural modulus and strength during cyclic loading, which may have implications toward the life and failure mechanisms of clinical restorations and underlying tooth structure. PMID:18823019

  15. Effects of simulated functional loading conditions on dentin, composite, and laminate structures.

    PubMed

    Walker, Mary P; Teitelbaum, Heather K; Eick, J David; Williams, Karen B

    2009-02-01

    Use of composite restorations continues to increase, tempered by more potential problems when placed in posterior dentition. Thus, it is essential to understand how these materials function under stress-bearing clinical conditions. Because mastication is difficult to replicate in the laboratory, cyclic loading is frequently used within in vitro evaluations but often employs traditional fatigue testing, which typically does not simulate occlusal loading because higher stresses and loading frequencies are used, so failure mechanisms may be different. This investigation utilized relevant parameters (specimen size, loading frequency) to assess the effects of cyclic loading on flexural mechanical properties and fracture morphology of (coronal) dentin, composite, and dentin-adhesive-composite "laminate" structures. Incremental monitoring of flexural modulus on individual beams over 60,000 loading cycles revealed a gradual increase across materials; post hoc comparisons indicated statistical significance only for 1 versus 60k cycles. Paired specimens were tested (one exposed to 60k loading cycles, one to static loading only), and comparisons of flexural modulus and strength showed statistically significantly higher values for cyclically loaded specimens across materials, with no observable differences in fracture morphology. Localized reorganization of dentin collagen and polymer chains could have increased flexural modulus and strength during cyclic loading, which may have implications toward the life and failure mechanisms of clinical restorations and underlying tooth structure. PMID:18823019

  16. Auditory spatial discrimination by barn owls in simulated echoic conditions

    NASA Astrophysics Data System (ADS)

    Spitzer, Matthew W.; Bala, Avinash D. S.; Takahashi, Terry T.

    2003-03-01

    In humans, directional hearing in reverberant conditions is characterized by a ``precedence effect,'' whereby directional information conveyed by leading sounds dominates perceived location, and listeners are relatively insensitive to directional information conveyed by lagging sounds. Behavioral studies provide evidence of precedence phenomena in a wide range of species. The present study employs a discrimination paradigm, based on habituation and recovery of the pupillary dilation response, to provide quantitative measures of precedence phenomena in the barn owl. As in humans, the owl's ability to discriminate changes in the location of lagging sources is impaired relative to that for single sources. Spatial discrimination of lead sources is also impaired, but to a lesser extent than discrimination of lagging sources. Results of a control experiment indicate that sensitivity to monaural cues cannot account for discrimination of lag source location. Thus, impairment of discrimination ability in the two-source conditions most likely reflects a reduction in sensitivity to binaural directional information. These results demonstrate a similarity of precedence effect phenomena in barn owls and humans, and provide a basis for quantitative comparison with neuronal data from the same species.

  17. Degradation of orthodontic wires under simulated cariogenic and erosive conditions.

    PubMed

    Jaber, Laura Cavalcante Lima; Rodrigues, José Augusto; Amaral, Flávia Lucisano Botelho; França, Fabiana Mantovani Gomes; Basting, Roberta Tarkany; Turssi, Cecilia Pedroso

    2014-01-01

    This study examined the effect of cariogenic and erosive challenges (CCs and ECs, respectively) on the degradation of copper-nickel-titanium (CuNiTi) orthodontic wires. Sixty wire segments were divided into four treatment groups and exposed to CCs, ECs, artificial saliva, or dry storage (no-treatment control). CC and EC were simulated using a demineralizing solution (pH 4.3) and a citric acid solution (pH 2.3), respectively. Following treatment, the average surface roughness (Ra) of the wires was assessed, and friction between the wires and a passive self-ligating bracket was measured. CuNiTi wires subjected to ECs exhibited significantly higher Ra values than did those that were stored in artificial saliva. In contrast, surface roughness was not affected by CCs. Finally, friction between the treated wires and brackets was not affected by ECs or CCs. Our results indicate that CuNiTi orthodontic wires may suffer degradation within the oral cavity, as ECs increased the surface roughness of these wires. However, rougher surfaces did not increase friction between the wire and the passive self-ligating bracket. PMID:25098823

  18. Nanophase Separation of Polymers Exposed to Simulated Bonding Conditions

    PubMed Central

    Ye, Qiang; Wang, Yong; Spencer, Paulette

    2009-01-01

    Under in vivo conditions, there is little control over the amount of water left on the tooth during dentin bonding. As a result, it is possible to leave the dentin surface so wet that the adhesive actually undergoes physical separation into hydrophobic- and hydrophilic-rich phases. Using tapping mode atomic force microscopy/PhaseImaging technique, nanosized phases with worm-like features were found on the surface of model HEMA/BisGMA dentin adhesives cured in the presence of varying concentrations of water. The phase contrast became evident with the increase of water concentration in the initial adhesive formulation and varied with the ratio of hydrophilic/hydrophobic composition. Oversaturated water droplets of variable sizes may accumulate as micro-voids within the hydrophilic and hydrophobic polymer phases. The phase domains were also identified following ethanol-etching in combination with SEM/AFM techniques. PMID:18335432

  19. Behavior of trace metals in simulated gasification conditions

    SciTech Connect

    Benson, S.A.; Erickson, T.A.; Zygarlicke, C.J.

    1995-03-01

    The fate of trace metals is being investigated in two emerging coal gasification electric power-generating systems: integrated gasification combined cycle (IGCC) and integrated gasification fuel cell (IGFC). Some of the trace metals in coal are considered air toxics when released into the atmosphere and can also cause the degradation of fuel cell efficiency as a result of contamination. The fate of trace metals during coal conversion in GCC and IGFC systems is closely tied to how the trace metals are associated in the coal and gasification conditions. Bench- and pilot-scale gasification experiments were performed using Illinois No. 6 coal to determine the partitioning of mercury, selenium, arsenic, nickel, cadmium, lead, and chromium into gas, liquid, and solid phases as a function of gasification conditions and coal composition. Entrained ash was collected from the small-scale reactor using a multicyclone and impinger sampling train. Coal analysis revealed arsenic, mercury, nickel, lead, and selenium to be primarily associated with pyrite. Chromium was associated primarily with clay minerals, and cadmium appeared to have mostly an organic association. The partitioning during gasification indicated that chromium, lead, and nickel were enriched in the small ash particulate fraction (less than 1.5 {mu}m), while arsenic, selenium, and mercury were depleted in the particulate and more enriched in the vapor-phase fraction (collected in the impingers). Oxygen contents were varied to represent both combustion and gasification systems. Most of the work was conducted at lower oxygen-to-carbon ratios. Lower oxygen-to-carbon ratios resulted in more reducing environments in the gasification system, which appeared to drive more mercury to the vapor phase. Under constant oxygen-to-carbon ratios, mercury, selenium, and cadmium showed increasing volatility with increasing reaction zone temperature.

  20. Using a Clinical Knowledge Base to Assess Comorbidity Interrelatedness Among Patients with Multiple Chronic Conditions

    PubMed Central

    Zulman, Donna M.; Martins, Susana B.; Liu, Yan; Tu, Samson W.; Hoffman, Brian B.; Asch, Steven M.; Goldstein, Mary K.

    2015-01-01

    Decision support tools increasingly integrate clinical knowledge such as medication indications and contraindications with electronic health record (EHR) data to support clinical care and patient safety. The availability of this encoded information and patient data provides an opportunity to develop measures of clinical decision complexity that may be of value for quality improvement and research efforts. We investigated the feasibility of using encoded clinical knowledge and EHR data to develop a measure of comorbidity interrelatedness (the degree to which patients’ co-occurring conditions interact to generate clinical complexity). Using a common clinical scenario—decisions about blood pressure medications in patients with hypertension—we quantified comorbidity interrelatedness by calculating the number of indications and contraindications to blood pressure medications that are generated by patients’ comorbidities (e.g., diabetes, gout, depression). We examined properties of comorbidity interrelatedness using data from a decision support system for hypertension in the Veterans Affairs Health Care System. PMID:26958279

  1. Martian dust threshold measurements: Simulations under heated surface conditions

    NASA Technical Reports Server (NTRS)

    White, Bruce R.; Greeley, Ronald; Leach, Rodman N.

    1991-01-01

    Diurnal changes in solar radiation on Mars set up a cycle of cooling and heating of the planetary boundary layer, this effect strongly influences the wind field. The stratification of the air layer is stable in early morning since the ground is cooler than the air above it. When the ground is heated and becomes warmer than the air its heat is transferred to the air above it. The heated parcels of air near the surface will, in effect, increase the near surface wind speed or increase the aeolian surface stress the wind has upon the surface when compared to an unheated or cooled surface. This means that for the same wind speed at a fixed height above the surface, ground-level shear stress will be greater for the heated surface than an unheated surface. Thus, it is possible to obtain saltation threshold conditions at lower mean wind speeds when the surface is heated. Even though the mean wind speed is less when the surface is heated, the surface shear stress required to initiate particle movement remains the same in both cases. To investigate this phenomenon, low-density surface dust aeolian threshold measurements have been made in the MARSWIT wind tunnel located at NASA Ames Research Center, Moffett Field, California. The first series of tests examined threshold values of the 100 micron sand material. At 13 mb surface pressure the unheated surface had a threshold friction speed of 2.93 m/s (and approximately corresponded to a velocity of 41.4 m/s at a height of 1 meter) while the heated surface equivalent bulk Richardson number of -0.02, yielded a threshold friction speed of 2.67 m/s (and approximately corresponded to a velocity of 38.0 m/s at a height of 1 meter). This change represents an 8.8 percent decrease in threshold conditions for the heated case. The values of velocities are well within the threshold range as observed by Arvidson et al., 1983. As the surface was heated the threshold decreased. At a value of bulk Richardson number equal to -0.02 the threshold

  2. Postnatal development under conditions of simulated weightlessness and space flight

    NASA Technical Reports Server (NTRS)

    Walton, K.

    1998-01-01

    The adaptability of the developing nervous system to environmental influences and the mechanisms underlying this plasticity has recently become a subject of interest in space neuroscience. Ground studies on neonatal rats using the tail suspension model of weightlessness have shown that the force of gravity clearly influences the events underlying the postnatal development of motor function. These effects depend on the age of the animal, duration of the perturbation and the motor function studied. A nine-day flight study has shown that a dam and neonates can develop under conditions of space flight. The motor function of the flight animals after landing was consistent with that seen in the tail suspension studies, being marked by limb joint extension. However, there were expected differences due to: (1) the unloading of the vestibular system in flight, which did not occur in the ground-based experiments; (2) differences between flight and suspension durations; and (3) the inability to evaluate motor function during the flight. The next step is to conduct experiments in space with the flexibility and rigor that is now limited to ground studies: an opportunity offered by the International Space Station. Copyright 1998 Published by Elsevier Science B.V.

  3. In Silico Simulation of a Clinical Trial Concerning Tumour Response to Radiotherapy

    SciTech Connect

    Dionysiou, Dimitra D.; Stamatakos, Georgios S.; Athanaileas, Theodoras E.; Merrychtas, Andreas; Kaklamani, Dimitra; Varvarigou, Theodora; Uzunoglu, Nikolaos

    2008-11-06

    The aim of this paper is to demonstrate how multilevel tumour growth and response to therapeutic treatment models can be used in order to simulate clinical trials, with the long-term intention of both better designing clinical studies and understanding their outcome based on basic biological science. For this purpose, an already developed computer simulation model of glioblastoma multiforme response to radiotherapy has been used and a clinical study concerning glioblastoma multiforme response to radiotherapy has been simulated. In order to facilitate the simulation of such virtual trials, a toolkit enabling the user-friendly execution of the simulations on grid infrastructures has been designed and developed. The results of the conducted virtual trial are in agreement with the outcome of the real clinical study.

  4. The impact of clinical simulation on learner self-efficacy in pre-registration nursing education.

    PubMed

    Pike, Tamsin; O'Donnell, Victoria

    2010-07-01

    Clinical simulation is becoming increasingly popular in pre-registration nursing education. Incorporating teaching and learning strategies that enhance learner self-efficacy will theoretically improve clinical competence (Bandura, 1986, 1997). This paper presents the findings of a study that aimed to explore the impact of clinical simulation on self-efficacy beliefs amongst pre-registration nurses. A preliminary study (Pike, 2008) used a pre- and post-test design to measure learner self-efficacy before and after a clinical simulation session. Qualitative responses to questions on the post-test questionnaire provided themes to explore in a focus group interview with a convenience sample of nine participants. Thematic content analysis of the interview highlighted two principal findings. Firstly, students described low levels of self-efficacy with regards to communication skills, an area identified as a priority within pre-registration nursing education (NMC, 2007a). Second, students highlighted the need for learning experiences within clinical simulation to be more authentic, to improve the theory to practice gap. It is argued by incorporating strategies within clinical simulation that enhance learner self-efficacy, overall clinical competence will be improved. Suggestions for how pedagogical approaches may be developed within clinical simulation are discussed, whilst acknowledging the limitations of the small scale nature of the study. PMID:19883960

  5. Integrated Clinical Training for Space Flight Using a High-Fidelity Patient Simulator in a Simulated Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Hurst, Victor; Doerr, Harold K.; Polk, J. D.; Schmid, Josef; Parazynksi, Scott; Kelly, Scott

    2007-01-01

    This viewgraph presentation reviews the use of telemedicine in a simulated microgravity environment using a patient simulator. For decades, telemedicine techniques have been used in terrestrial environments by many cohorts with varied clinical experience. The success of these techniques has been recently expanded to include microgravity environments aboard the International Space Station (ISS). In order to investigate how an astronaut crew medical officer will execute medical tasks in a microgravity environment, while being remotely guided by a flight surgeon, the Medical Operation Support Team (MOST) used the simulated microgravity environment provided aboard DC-9 aircraft teams of crew medical officers, and remote flight surgeons performed several tasks on a patient simulator.

  6. Boundary objects in clinical simulation and design of eHealth.

    PubMed

    Jensen, Sanne; Kushniruk, Andre

    2016-06-01

    Development and implementation of eHealth is challenging due to the complexity of clinical work practices and organizations. Standardizing work processes and documentation procedures is one way of coping with these challenges, and acceptance of these initiatives and acceptance of the clinical information system are vital for success. Clinical simulation may be used as "boundary objects" and help transferring of knowledge between groups of stakeholders and help to better understand needs and requirements in other parts of the organization. This article presents a case study about design of electronic documentation templates for nurses' initial patient assessment, where clinical simulation was used as a boundary object and thereby achieved mutual clinical agreement on the content. Results showed that meetings prior to and in between workshops allowed all communities of practice an opportunity to voice their point of view and affect the final result. Implications of considering clinical simulations as boundary objects are discussed. PMID:25301197

  7. The empathic brain and its dysfunction in psychiatric populations: implications for intervention across different clinical conditions

    PubMed Central

    Decety, Jean; Moriguchi, Yoshiya

    2007-01-01

    Empathy is a concept central to psychiatry, psychotherapy and clinical psychology. The construct of empathy involves not only the affective experience of the other person's actual or inferred emotional state but also some minimal recognition and understanding of another's emotional state. It is proposed, in the light of multiple levels of analysis including social psychology, cognitive neuroscience and clinical neuropsychology, a model of empathy that involves both bottom-up and top-down information processing underpinned by parallel and distributed computational mechanisms. The predictive validity of this model is explored with reference to clinical conditions. As many psychiatric conditions are associated with deficits or even lack of empathy, we discuss a limited number of these disorders including psychopathy/antisocial personality disorders, borderline and narcissistic personality disorders, autistic spectrum disorders, and alexithymia. We argue that future clinical investigations of empathy disorders can only be informative if behavioral, dispositional and biological factors are combined. PMID:18021398

  8. RANS simulation of cavitation and hull pressure fluctuation for marine propeller operating behind-hull condition

    NASA Astrophysics Data System (ADS)

    Paik, Kwang-Jun; Park, Hyung-Gil; Seo, Jongsoo

    2013-12-01

    Simulations of cavitation flow and hull pressure fluctuation for a marine propeller operating behind a hull using the unsteady Reynolds-Averaged Navier-Stokes equations (RANS) are presented. A full hull body submerged under the free surface is modeled in the computational domain to simulate directly the wake field of the ship at the propeller plane. Simulations are performed in design and ballast draught conditions to study the effect of cavitation number. And two propellers with slightly different geometry are simulated to validate the detectability of the numerical simulation. All simulations are performed using a commercial CFD software FLUENT. Cavitation patterns of the simulations show good agreement with the experimental results carried out in Samsung CAvitation Tunnel (SCAT). The simulation results for the hull pressure fluctuation induced by a propeller are also compared with the experimental results showing good agreement in the tendency and amplitude, especially, for the first blade frequency.

  9. Using Clinical Trial Simulators to Analyse the Sources of Variance in Clinical Trials of Novel Therapies for Acute Viral Infections

    PubMed Central

    Weverling, Gerrit-Jan; de Wolf, Frank; Anderson, Roy M.

    2016-01-01

    Background About 90% of drugs fail in clinical development. The question is whether trials fail because of insufficient efficacy of the new treatment, or rather because of poor trial design that is unable to detect the true efficacy. The variance of the measured endpoints is a major, largely underestimated source of uncertainty in clinical trial design, particularly in acute viral infections. We use a clinical trial simulator to demonstrate how a thorough consideration of the variability inherent in clinical trials of novel therapies for acute viral infections can improve trial design. Methods and Findings We developed a clinical trial simulator to analyse the impact of three different types of variation on the outcome of a challenge study of influenza treatments for infected patients, including individual patient variability in the response to the drug, the variance of the measurement procedure, and the variance of the lower limit of quantification of endpoint measurements. In addition, we investigated the impact of protocol variation on clinical trial outcome. We found that the greatest source of variance was inter-individual variability in the natural course of infection. Running a larger phase II study can save up to $38 million, if an unlikely to succeed phase III trial is avoided. In addition, low-sensitivity viral load assays can lead to falsely negative trial outcomes. Conclusions Due to high inter-individual variability in natural infection, the most important variable in clinical trial design for challenge studies of potential novel influenza treatments is the number of participants. 100 participants are preferable over 50. Using more sensitive viral load assays increases the probability of a positive trial outcome, but may in some circumstances lead to false positive outcomes. Clinical trial simulations are powerful tools to identify the most important sources of variance in clinical trials and thereby help improve trial design. PMID:27332704

  10. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    SciTech Connect

    Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

    1992-06-01

    The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 {times} 3.0 {times} 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models.

  11. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    SciTech Connect

    Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

    1992-06-01

    The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 [times] 3.0 [times] 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models.

  12. OVERALL MASS TRANSFER COEFFICIENT FOR POLLUTANT EMISSIONS FROM SMALL WATER POOLS UNDER SIMULATED INDOOR ENVIRONMENTAL CONDITIONS

    EPA Science Inventory

    Small chamber tests were conducted to experimentally determine the overall mass transfer coefficient for pollutant emissions from still water under simulated indoor-residential or occupational-environmental conditions. Fourteen tests were conducted in small environmental chambers...

  13. Simulations of Prebiotic Chemistry under Post-Impact Conditions on Titan

    PubMed Central

    Turse, Carol; Leitner, Johannes; Firneis, Maria; Schulze-Makuch, Dirk

    2013-01-01

    The problem of how life began can be considered as a matter of basic chemistry. How did the molecules of life arise from non-biological chemistry? Stanley Miller’s famous experiment in 1953, in which he produced amino acids under simulated early Earth conditions, was a huge leap forward in our understanding of this problem. Our research first simulated early Earth conditions based on Miller’s experiment and we then repeated the experiment using Titan post-impact conditions. We simulated conditions that could have existed on Titan after an asteroid strike. Specifically, we simulated conditions after a potential strike in the subpolar regions of Titan that exhibit vast methane-ethane lakes. If the asteroid or comet was of sufficient size, it would also puncture the icy crust and bring up some of the subsurface liquid ammonia-water mixture. Since, O’Brian, Lorenz and Lunine showed that a liquid water-ammonia body could exist between about 102–104 years on Titan after an asteroid impact we modified our experimental conditions to include an ammonia-water mixture in the reaction medium. Here we report on the resulting amino acids found using the Titan post-impact conditions in a classical Miller experimental reaction set-up and how they differ from the simulated early Earth conditions. PMID:25369885

  14. The human simulation lab-dissecting sex in the simulator lab: the clinical lacuna of transsexed embodiment.

    PubMed

    Singer, Ben

    2013-06-01

    This article begins with an ethnographically documented incident whereby nursing students dissected a medical human simulator model and rearranged it so that the "male" head and torso was attached to the "female" lower half. They then joked about the embodiment of the model, thus staging a scene of anti-trans ridicule. The students' lack of ability, or purposeful refusal, to recognize morphological biodiversity in medical settings indicates a lacuna in clinical imaginaries. Even as trans-identified and gender nonconforming people increasingly access care in the clinic, the lacuna of transsex-as a proxy term for non-binary embodiment-persists at the heart of clinical practice. This article concludes that we might engage in more ethical clinical practice if we recognize and affirm the trace of multiple forms of human being in the non-human simulator. PMID:23475454

  15. A Simulation of Strategic Decision Making in Situational Stereotype Conditions for Entrepreneurial Companies.

    ERIC Educational Resources Information Center

    West, G. Page, III; Wilson, E. Vance

    1995-01-01

    Examines simulation in entrepreneurial research, reviews cognitive structures and theories, and presents a computerized simulation of strategic decision-making in situational stereotype conditions for entrepreneurial companies. The study suggests repeated exposure to a pattern recognition issue in entrepreneurship may lead to a broader…

  16. ISIM3D: AN ANSI-C THREE-DIMENSIONAL MULTIPLE INDICATOR CONDITIONAL SIMULATION PROGRAM

    EPA Science Inventory

    The indicator conditional simulation technique provides stochastic simulations of a variable that (i) honor the initial data and (ii) can feature a richer family of spatial structures not limited by Gaussianity. he data are encoded into a series of indicators which then are used ...

  17. Simulated Family Therapy Interviews in Clinical Social Work Education

    ERIC Educational Resources Information Center

    Mooradian, John K.

    2007-01-01

    This article describes a learning method that employed theatre students as family clients in an advanced social work practice course. Students were provided with an opportunity to integrate and apply their learning of theory, clinical skills, and professional conduct in full-length family therapy sessions that occurred in the classroom and were…

  18. Students' Experiences of Learning Manual Clinical Skills through Simulation

    ERIC Educational Resources Information Center

    Johannesson, Eva; Silen, Charlotte; Kvist, Joanna; Hult, Hakan

    2013-01-01

    Learning manual skills is a fundamental part of health care education, and motor, sensory and cognitive learning processes are essential aspects of professional development. Simulator training has been shown to enhance factors that facilitate motor and cognitive learning. The present study aimed to investigate the students' experiences and…

  19. Recognition and Evaluation of Clinical Section Headings in Clinical Documents Using Token-Based Formulation with Conditional Random Fields.

    PubMed

    Dai, Hong-Jie; Syed-Abdul, Shabbir; Chen, Chih-Wei; Wu, Chieh-Chen

    2015-01-01

    Electronic health record (EHR) is a digital data format that collects electronic health information about an individual patient or population. To enhance the meaningful use of EHRs, information extraction techniques have been developed to recognize clinical concepts mentioned in EHRs. Nevertheless, the clinical judgment of an EHR cannot be known solely based on the recognized concepts without considering its contextual information. In order to improve the readability and accessibility of EHRs, this work developed a section heading recognition system for clinical documents. In contrast to formulating the section heading recognition task as a sentence classification problem, this work proposed a token-based formulation with the conditional random field (CRF) model. A standard section heading recognition corpus was compiled by annotators with clinical experience to evaluate the performance and compare it with sentence classification and dictionary-based approaches. The results of the experiments showed that the proposed method achieved a satisfactory F-score of 0.942, which outperformed the sentence-based approach and the best dictionary-based system by 0.087 and 0.096, respectively. One important advantage of our formulation over the sentence-based approach is that it presented an integrated solution without the need to develop additional heuristics rules for isolating the headings from the surrounding section contents. PMID:26380302

  20. Recognition and Evaluation of Clinical Section Headings in Clinical Documents Using Token-Based Formulation with Conditional Random Fields

    PubMed Central

    Dai, Hong-Jie; Syed-Abdul, Shabbir; Chen, Chih-Wei; Wu, Chieh-Chen

    2015-01-01

    Electronic health record (EHR) is a digital data format that collects electronic health information about an individual patient or population. To enhance the meaningful use of EHRs, information extraction techniques have been developed to recognize clinical concepts mentioned in EHRs. Nevertheless, the clinical judgment of an EHR cannot be known solely based on the recognized concepts without considering its contextual information. In order to improve the readability and accessibility of EHRs, this work developed a section heading recognition system for clinical documents. In contrast to formulating the section heading recognition task as a sentence classification problem, this work proposed a token-based formulation with the conditional random field (CRF) model. A standard section heading recognition corpus was compiled by annotators with clinical experience to evaluate the performance and compare it with sentence classification and dictionary-based approaches. The results of the experiments showed that the proposed method achieved a satisfactory F-score of 0.942, which outperformed the sentence-based approach and the best dictionary-based system by 0.087 and 0.096, respectively. One important advantage of our formulation over the sentence-based approach is that it presented an integrated solution without the need to develop additional heuristics rules for isolating the headings from the surrounding section contents. PMID:26380302

  1. Teaching medical students a clinical approach to altered mental status: simulation enhances traditional curriculum

    PubMed Central

    Sperling, Jeremy D.; Clark, Sunday; Kang, Yoon

    2013-01-01

    Introduction Simulation-based medical education (SBME) is increasingly being utilized for teaching clinical skills in undergraduate medical education. Studies have evaluated the impact of adding SBME to third- and fourth-year curriculum; however, very little research has assessed its efficacy for teaching clinical skills in pre-clerkship coursework. To measure the impact of a simulation exercise during a pre-clinical curriculum, a simulation session was added to a pre-clerkship course at our medical school where the clinical approach to altered mental status (AMS) is traditionally taught using a lecture and an interactive case-based session in a small group format. The objective was to measure simulation's impact on students’ knowledge acquisition, comfort, and perceived competence with regards to the AMS patient. Methods AMS simulation exercises were added to the lecture and small group case sessions in June 2010 and 2011. Simulation sessions consisted of two clinical cases using a high-fidelity full-body simulator followed by a faculty debriefing after each case. Student participation in a simulation session was voluntary. Students who did and did not participate in a simulation session completed a post-test to assess knowledge and a survey to understand comfort and perceived competence in their approach to AMS. Results A total of 154 students completed the post-test and survey and 65 (42%) attended a simulation session. Post-test scores were higher in students who attended a simulation session compared to those who did not (p<0.001). Students who participated in a simulation session were more comfortable in their overall approach to treating AMS patients (p=0.05). They were also more likely to state that they could articulate a differential diagnosis (p=0.03), know what initial diagnostic tests are needed (p=0.01), and understand what interventions are useful in the first few minutes (p=0.003). Students who participated in a simulation session were more likely

  2. Epidemiology of Autism Spectrum Disorder in Portugal: Prevalence, Clinical Characterization, and Medical Conditions

    ERIC Educational Resources Information Center

    Oliveira, Guiomar; Ataide, Assuncao; Marques, Carla; Miguel, Teresa S.; Coutinho, Ana Margarida; Mota-Vieira, Luisa; Goncalves, Esmeralda; Lopes, Nazare Mendes; Rodrigues, Vitor; Carmona da Mota, Henrique; Vicente, Astrid Moura

    2007-01-01

    The objective of this study was to estimate the prevalence of autistic spectrum disorder (ASD) and identify its clinical characterization, and medical conditions in a paediatric population in Portugal. A school survey was conducted in elementary schools, targeting 332 808 school-aged children in the mainland and 10 910 in the Azores islands.…

  3. Laboratory assessment of impression accuracy by clinical simulation.

    PubMed

    Wassell, R W; Abuasi, H A

    1992-04-01

    Some laboratory tests of impression material accuracy mimic the clinical situation (simulatory) while others attempt to quantify a material's individual properties. This review concentrates on simulatory testing and aims to give a classification of the numerous tests available. Measurements can be made of the impression itself or the resulting cast. Cast measurements are divided into those made of individual dies and those made of interdie relations. Contact measurement techniques have the advantage of simplicity but are potentially inaccurate because of die abrasion. Non-contact techniques can overcome the abrasion problem but the measurements, especially those made in three dimensions, may be difficult to interpret. Nevertheless, providing that care is taken to avoid parallax error non-contact methods are preferable as experimental variables are easier to control. Where measurements are made of individual dies these should include the die width across the finishing line, as occlusal width measurements provide only limited information. A new concept of 'differential die distortion' (dimensional difference from the master model in one plane minus the dimensional difference in the perpendicular plane) provides a clinically relevant method of interpreting dimensional changes. Where measurements are made between dies movement of the individual dies within the master model must be prevented. Many of the test methods can be criticized as providing clinically unrealistic master models/dies or impression trays. Phantom head typodonts form a useful basis for the morphology of master models providing that undercuts are standardized and the master model temperature adequately controlled. PMID:1564180

  4. Periodic boundary conditions for long-time nonequilibrium molecular dynamics simulations of incompressible flows

    NASA Astrophysics Data System (ADS)

    Dobson, Matthew

    2014-11-01

    This work presents a generalization of the Kraynik-Reinelt (KR) boundary conditions for nonequilibrium molecular dynamics simulations. In the simulation of steady, homogeneous flows with periodic boundary conditions, the simulation box deforms with the flow, and it is possible for image particles to become arbitrarily close, causing a breakdown in the simulation. The KR boundary conditions avoid this problem for planar elongational flow and general planar mixed flow [T. A. Hunt, S. Bernardi, and B. D. Todd, J. Chem. Phys. 133, 154116 (2010)] through careful choice of the initial simulation box and by periodically remapping the simulation box in a way that conserves image locations. In this work, the ideas are extended to a large class of three-dimensional flows by using multiple remappings for the simulation box. The simulation box geometry is no longer time-periodic (which was shown to be impossible for uniaxial and biaxial stretching flows in the original work by Kraynik and Reinelt [Int. J. Multiphase Flow 18, 1045 (1992)]. The presented algorithm applies to all flows with nondefective flow matrices, and in particular, to uniaxial and biaxial flows.

  5. Dynamics Modeling and Simulation of Large Transport Airplanes in Upset Conditions

    NASA Technical Reports Server (NTRS)

    Foster, John V.; Cunningham, Kevin; Fremaux, Charles M.; Shah, Gautam H.; Stewart, Eric C.; Rivers, Robert A.; Wilborn, James E.; Gato, William

    2005-01-01

    As part of NASA's Aviation Safety and Security Program, research has been in progress to develop aerodynamic modeling methods for simulations that accurately predict the flight dynamics characteristics of large transport airplanes in upset conditions. The motivation for this research stems from the recognition that simulation is a vital tool for addressing loss-of-control accidents, including applications to pilot training, accident reconstruction, and advanced control system analysis. The ultimate goal of this effort is to contribute to the reduction of the fatal accident rate due to loss-of-control. Research activities have involved accident analyses, wind tunnel testing, and piloted simulation. Results have shown that significant improvements in simulation fidelity for upset conditions, compared to current training simulations, can be achieved using state-of-the-art wind tunnel testing and aerodynamic modeling methods. This paper provides a summary of research completed to date and includes discussion on key technical results, lessons learned, and future research needs.

  6. Clinical validation of robot simulation of toothbrushing - comparative plaque removal efficacy

    PubMed Central

    2014-01-01

    Background Clinical validation of laboratory toothbrushing tests has important advantages. It was, therefore, the aim to demonstrate correlation of tooth cleaning efficiency of a new robot brushing simulation technique with clinical plaque removal. Methods Clinical programme: 27 subjects received dental cleaning prior to 3-day-plaque-regrowth-interval. Plaque was stained, photographically documented and scored using planimetrical index. Subjects brushed teeth 33–47 with three techniques (horizontal, rotating, vertical), each for 20s buccally and for 20s orally in 3 consecutive intervals. The force was calibrated, the brushing technique was video supported. Two different brushes were randomly assigned to the subject. Robot programme: Clinical brushing programmes were transfered to a 6-axis-robot. Artificial teeth 33–47 were covered with plaque-simulating substrate. All brushing techniques were repeated 7 times, results were scored according to clinical planimetry. All data underwent statistical analysis by t-test, U-test and multivariate analysis. Results The individual clinical cleaning patterns are well reproduced by the robot programmes. Differences in plaque removal are statistically significant for the two brushes, reproduced in clinical and robot data. Multivariate analysis confirms the higher cleaning efficiency for anterior teeth and for the buccal sites. Conclusions The robot tooth brushing simulation programme showed good correlation with clinically standardized tooth brushing. This new robot brushing simulation programme can be used for rapid, reproducible laboratory testing of tooth cleaning. PMID:24996973

  7. Teaching Clinical Reasoning and Problem-solving Skills Using Human Patient Simulation

    PubMed Central

    Vyas, Deepti; Ottis, Erica J.; Caligiuri, Frank J.

    2011-01-01

    This paper discusses using human patient simulation (HPS) to expose students to complex dynamic patient cases that require clinical judgment, problem-solving skills, and teamwork skills for success. An example of an HPS exercise used to teach multifaceted clinical concepts in a therapeutics course also is provided. PMID:22171117

  8. High-Fidelity Patient Simulators to Expose Undergraduate Students to the Clinical Relevance of Physiology Concepts

    ERIC Educational Resources Information Center

    Harris, David M.; Bellew, Christine; Cheng, Zixi J.; Cendán, Juan C.; Kibble, Jonathan D.

    2014-01-01

    The use of high-fidelity patient simulators (HFPSs) has expanded throughout medical, nursing, and allied health professions education in the last decades. These manikins can be programmed to represent pathological states and are used to teach clinical skills as well as clinical reasoning. First, the students are typically oriented either to the…

  9. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1987-01-01

    Laboratory measurements were conducted to evaluate properties of atmospheric gases under simulated conditions for the outer planets. A significant addition to this effort was the capability to make such measurements at millimeter wavelengths. Measurements should soon be completed on the millimeter wave absorption from ammonia under Jovian conditions. Also studied will be the feasibility of measuring the microwave and millimeter wave properties of phosphine (PH3) under simulated Jovian conditions. Further analysis and application of the laboratory results to microwave and millimeter wave absorption data for the outer planet, such as Voyager Radio Occultation experiments, will be pursued.

  10. Performance evaluation of automated fingerprint identification systems for specific conditions observed in casework using simulated fingermarks.

    PubMed

    de Jongh, Arent; Rodriguez, Crystal M

    2012-07-01

    Few studies have been reported on the performance evaluation of automated fingerprint identification systems (AFIS) for fingermark-to-fingerprint comparisons. This paper aims to illustrate to fingerprint examiners the relevance of evaluating the AFIS performance under specific conditions by carrying out five types of performance tests. The conditions addressed are the number of minutiae assigned to a fingermark, manual and automatic assignment of the minutiae, the finger region from which the fingermark originates, the degree of distortion in the fingermark, and the difference in orientation between fingermarks and fingerprints. In these tests, the magnitude of the influence for each condition was quantified. The comparisons were performed using a research AFIS technology with simulated fingermarks. Simulated fingermarks provide a practical way to create fingermarks for specific conditions in large quantities. The results showed that each condition influences the performance significantly, emphasizing the relevance of developing, and applying performance tests for specific conditions. PMID:22458701

  11. From Ischemic Conditioning to ‘Hyperconditioning’: Clinical Phenomenon and Basic Science Opportunity

    PubMed Central

    Whittaker, Peter; Przyklenk, Karin

    2014-01-01

    Thousands of articles have been published on the topic of ischemic conditioning. Nevertheless, relatively little attention has been given to assessment of conditioning’s dose-response characteristics. Specifically, the consequences of multiple conditioning episodes, what we will term “hyperconditioning”, have seldom been examined. We propose that hyperconditioning warrants investigation because it; (1) may be of clinical importance, (2) could provide insight into conditioning mechanisms, and (3) might result in development of novel models of human disease. The prevalence of angina pectoris and intermittent claudication is sufficiently high and the potential for daily ischemia-reperfusion episodes sufficiently large that hyperconditioning is a clinically relevant phenomenon. In basic science, attenuation of conditioning-mediated infarct size reduction found in some studies after hyperconditioning offers a possible means to facilitate further discernment of cardioprotective signaling pathways. Moreover, hyperconditioning’s impact extends beyond cytoprotection to tissue structural elements. Several studies demonstrate that hyperconditioning produces collagen injury (primarily fiber breakage). Such structural impairment could have adverse clinical consequences; however, in laboratory studies, selective collagen damage could provide the basis for models of cardiac rupture and dilated cardiomyopathy. Accordingly, we propose that hyperconditioning represents the dark, but potentially illuminating, side of ischemic conditioning - a paradigm that merits attention and prospective evaluation. PMID:25552962

  12. Growth and photosynthesis of Japanese flowering cherry under simulated microgravity conditions

    NASA Technical Reports Server (NTRS)

    Sugano, Mami; Ino, Yoshio; Nakamura, Teruko

    2002-01-01

    The photosynthetic rate, the leaf characteristics related to photosynthesis, such as the chlorophyll content, chlorophyll a/b ratio and density of the stomata, the leaf area and the dry weight in seedlings of Japanese flowering cherry grown under normal gravity and simulated microgravity conditions were examined. No significant differences were found in the photosynthetic rates between the two conditions. Moreover, leaf characteristics such as the chlorophyll content, chlorophyll a/b ratio and density of the stomata in the seedlings grown under the simulated microgravity condition were not affected. However, the photosynthetic product of the whole seedling under the simulated microgravity condition increased compared with the control due to its leaf area increase. The results suggest that dynamic gravitational stimulus controls the partitioning of the products of photosynthesis.

  13. Design, simulation and conditioning of the fundamental power couplers for BNL SRF gun

    SciTech Connect

    Xu W.; Altinbas, Z.; Belomestnykh, S.; Ben-Zvi, I. et al

    2012-05-20

    The 704 MHz SRF gun for the BNL Energy Recovery Linac (ERL) prototype uses two fundamental power couplers (FPCs) to deliver up to 1 MW of CW RF power to the half-cell cavity. To prepare the couplers for high-power RF service and process multipacting, the FPCs should be conditioned prior to installation into the gun cryomodule. A room-temperature test stand was configured for conditioning FPCs in full reflection regime with varied phase of the reflecting wave. The FPCs have been conditioned up to 250 kW in pulse mode and 125 kW in CW mode. The multipacting simulations were carried out with Track3P code developed at SLAC. The simulations matched the experimental results very well. This paper presents the FPC RF and thermal design, multipacting simulations and conditioning of the BNL gun FPCs.

  14. Sustained effect of simulation-based ultrasound training on clinical performance: a randomized trial

    PubMed Central

    Tolsgaard, M G; Ringsted, C; Dreisler, E; Nørgaard, L N; Petersen, J H; Madsen, M E; Freiesleben, N L C; Sørensen, J L; Tabor, A

    2015-01-01

    Objective To study the effect of initial simulation-based transvaginal sonography (TVS) training compared with clinical training only, on the clinical performance of residents in obstetrics and gynecology (Ob-Gyn), assessed 2 months into their residency. Methods In a randomized study, new Ob-Gyn residents (n = 33) with no prior ultrasound experience were recruited from three teaching hospitals. Participants were allocated to either simulation-based training followed by clinical training (intervention group; n = 18) or clinical training only (control group; n = 15). The simulation-based training was performed using a virtual-reality TVS simulator until an expert performance level was attained, and was followed by training on a pelvic mannequin. After 2 months of clinical training, one TVS examination was recorded for assessment of each resident's clinical performance (n = 26). Two ultrasound experts blinded to group allocation rated the scans using the Objective Structured Assessment of Ultrasound Skills (OSAUS) scale. Results During the 2 months of clinical training, participants in the intervention and control groups completed an average ± SD of 58 ± 41 and 63 ± 47 scans, respectively (P = 0.67). In the subsequent clinical performance test, the intervention group achieved higher OSAUS scores than did the control group (mean score, 59.1% vs 37.6%, respectively; P < 0.001). A greater proportion of the intervention group passed a pre-established pass/fail level than did controls (85.7% vs 8.3%, respectively; P < 0.001). Conclusion Simulation-based ultrasound training leads to substantial improvement in clinical performance that is sustained after 2 months of clinical training. © 2015 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of the International Society of Ultrasound in Obstetrics and Gynecology. PMID:25580809

  15. Self-consistently simulation of RF sheath boundary condition in BOUT + + framework

    NASA Astrophysics Data System (ADS)

    Gui, Bin; Xu, Xueqiao; Xia, Tianyang

    2015-11-01

    The effect of the RF sheath boundary condition on the edge-localized modes and the turbulent transport is simulated in this work. The work includes two parts. The first part is to calculate the equilibrium radial electric field with RF sheath boundary condition. It is known the thermal sheath or the rectified RF sheath will modify the potential in the SOL region. The modified potential induces addition shear flow in SOL. In this part, the equilibrium radial electric field across the separatrix is calculated by solving the 2D current continuity equation with sheath boundary condition, drifts and viscosity. The second part is applying the sheath boundary condition on the perturbed variables of the six-field two fluid model in BOUT + + framework. The six-field two-fluid model simulates the ELMs and turbulent transport. The sheath boundary condition is applied in this model and it aims to simulate effect of sheath boundary condition on the turbulent transport. It is found the sheath boundary plays as a sink in the plasma and suppresses the local perturbation. Based on this two work, the effect of RF sheath boundary condition on the ELMs and turbulent transport could be self-consistently simulated. Prepared by LLNL under Contract DE-AC52-07NA27344.

  16. Simulation-Based Dysphagia Training: Teaching Interprofessional Clinical Reasoning in a Hospital Environment.

    PubMed

    Miles, Anna; Friary, Philippa; Jackson, Bianca; Sekula, Julia; Braakhuis, Andrea

    2016-06-01

    This study evaluated hospital readiness and interprofessional clinical reasoning in speech-language pathology and dietetics students following a simulation-based teaching package. Thirty-one students participated in two half-day simulation workshops. The training included orientation to the hospital setting, part-task skill learning and immersive simulated cases. Students completed workshop evaluation forms. They filled in a 10-question survey regarding confidence, knowledge and preparedness for working in a hospital environment before and immediately after the workshops. Students completed written 15-min clinical vignettes at 1 month prior to training, immediately prior to training and immediately after training. A marking rubric was devised to evaluate the responses to the clinical vignettes within a framework of interprofessional education. The simulation workshops were well received by all students. There was a significant increase in students' self-ratings of confidence, preparedness and knowledge following the study day (p < .001). There was a significant increase in student overall scores in clinical vignettes after training with the greatest increase in clinical reasoning (p < .001). Interprofessional simulation-based training has benefits in developing hospital readiness and clinical reasoning in allied health students. PMID:26803776

  17. Simulation Study of Flap Effects on a Commercial Transport Airplane in Upset Conditions

    NASA Technical Reports Server (NTRS)

    Cunningham, Kevin; Foster, John V.; Shah, Gautam H.; Stewart, Eric C.; Ventura, Robin N.; Rivers, Robert A.; Wilborn, James E.; Gato, William

    2005-01-01

    As part of NASA's Aviation Safety and Security Program, a simulation study of a twinjet transport airplane crew training simulation was conducted to address fidelity for upset or loss of control conditions and to study the effect of flap configuration in those regimes. Piloted and desktop simulations were used to compare the baseline crew training simulation model with an enhanced aerodynamic model that was developed for high-angle-of-attack conditions. These studies were conducted with various flap configurations and addressed the approach-to-stall, stall, and post-stall flight regimes. The enhanced simulation model showed that flap configuration had a significant effect on the character of departures that occurred during post-stall flight. Preliminary comparisons with flight test data indicate that the enhanced model is a significant improvement over the baseline. Some of the unrepresentative characteristics that are predicted by the baseline crew training simulation for flight in the post-stall regime have been identified. This paper presents preliminary results of this simulation study and discusses key issues regarding predicted flight dynamics characteristics during extreme upset and loss-of-control flight conditions with different flap configurations.

  18. Assessment of student competency in a simulated speech-language pathology clinical placement.

    PubMed

    Hill, Anne E; Davidson, Bronwyn J; McAllister, Sue; Wright, Judith; Theodoros, Deborah G

    2014-10-01

    Clinical education programs in speech-language pathology enable the transition of students' knowledge and skills from the classroom to the workplace. Simulated clinical learning experiences provide an opportunity to address the competency development of novice students. This study reports on the validation of an assessment tool designed to evaluate speech-language pathology students' performance in a simulated clinical placement. The Assessment of Foundation Clinical Skills (AFCS) was designed to link to concepts and content of COMPASS(®): Competency Assessment in Speech Pathology, a validated assessment of performance in the workplace. It incorporates units and elements of competency relevant to the placement. The validity of the AFCS was statistically investigated using Rasch analysis. Participants were 18 clinical educators and 130 speech-language pathology students undertaking the placement. Preliminary results support the validity of the AFCS as an assessment of foundation clinical skills of students in this simulated clinical placement. All units of competency and the majority of elements were relevant and representative of these skills. The use of a visual analogue scale which included a pre-Novice level to rate students' performance on units of competency was supported. This research provides guidance for development of quality assessments of performance in simulated placements. PMID:23992225

  19. Shifted periodic boundary conditions for large-eddy simulation of wind farms

    NASA Astrophysics Data System (ADS)

    Munters, Wim; Meneveau, Charles; Meyers, Johan

    2015-11-01

    In wall-bounded turbulent flow simulations, periodic boundary conditions combined with insufficiently long domains lead to persistent spanwise locking of large-scale turbulent structures. In the context of wind-farm large-eddy simulations, this effect induces artificial spanwise inhomogeneities in the time-averaged local wind conditions as seen by the wind turbines, leading to spurious differences in power prediction between otherwise equivalent columns of wind turbines in a wind farm (a column is defined here as a set of turbines parallel to the mean flow direction). We propose a shifted periodic boundary condition that eliminates this effect without the need for excessive streamwise domain lengths. Instead of straightforwardly reintroducing the velocity from the outlet plane back at the inlet, as in classic periodic boundary conditions, this plane is first shifted in the spanwise direction by a predefined and constant distance. The method is tested based on a set of direct numerical simulations of a turbulent channel flow, and large-eddy simulations of a high Reynolds number rough-wall half-channel flow. Finally, we apply the method in a precursor simulation, generating inlet conditions for a spatially developing wind-farm boundary layer. WM and JM are supported by the ERC (ActiveWindFarms, grant no: 306471). CM acknowledges support by the NSF (grant IIA-1243482, the WINDINSPIRE project).

  20. Hereditary and acquired polyneuropathy conditions of the peripheral nerves: clinical considerations and MR neurography imaging.

    PubMed

    Trivedi, Jaya R; Phillips, Lauren; Chhabra, Avneesh

    2015-04-01

    Polyneuropathies can be classified as either primarily demyelinating or axonal, and further as hereditary or acquired. It is important to recognize acquired neuropathies because some are amenable to treatment. Clinical findings and electrophysiology are used in the routine diagnosis of these conditions. Magnetic resonance neurography (MRN) is a helpful supplementary diagnostic tool. This article discusses the typical clinical findings, electrophysiology findings, and MRN appearances of common hereditary or acquired neuropathies such as chronic inflammatory demyelinating neuropathy, multifocal motor neuropathy, diabetic neuropathy, chemotherapy-induced neuropathy, and postsurgical neuropathy. PMID:25764237

  1. The influence of simulator input conditions on the wear of total knee replacements: An experimental and computational study.

    PubMed

    Brockett, Claire L; Abdelgaied, Abdellatif; Haythornthwaite, Tony; Hardaker, Catherine; Fisher, John; Jennings, Louise M

    2016-05-01

    Advancements in knee replacement design, material and sterilisation processes have provided improved clinical results. However, surface wear of the polyethylene leading to osteolysis is still considered the longer-term risk factor. Experimental wear simulation is an established method for evaluating the wear performance of total joint replacements. The aim of this study was to investigate the influence of simulation input conditions, specifically input kinematic magnitudes, waveforms and directions of motion and position of the femoral centre of rotation, on the wear performance of a fixed-bearing total knee replacement through a combined experimental and computational approach. Studies were completed using conventional and moderately cross-linked polyethylene to determine whether the influence of these simulation input conditions varied with material. The position of the femoral centre of rotation and the input kinematics were shown to have a significant influence on the wear rates. Similar trends were shown for both the conventional and moderately cross-linked polyethylene materials, although lower wear rates were found for the moderately cross-linked polyethylene due to the higher level of cross-linking. The most important factor influencing the wear was the position of the relative contact point at the femoral component and tibial insert interface. This was dependent on the combination of input displacement magnitudes, waveforms, direction of motion and femoral centre of rotation. This study provides further evidence that in order to study variables such as design and material in total knee replacement, it is important to carefully control knee simulation conditions. This can be more effectively achieved through the use of displacement control simulation. PMID:27160561

  2. The influence of simulator input conditions on the wear of total knee replacements: An experimental and computational study

    PubMed Central

    Brockett, Claire L; Abdelgaied, Abdellatif; Haythornthwaite, Tony; Hardaker, Catherine; Fisher, John; Jennings, Louise M

    2016-01-01

    Advancements in knee replacement design, material and sterilisation processes have provided improved clinical results. However, surface wear of the polyethylene leading to osteolysis is still considered the longer-term risk factor. Experimental wear simulation is an established method for evaluating the wear performance of total joint replacements. The aim of this study was to investigate the influence of simulation input conditions, specifically input kinematic magnitudes, waveforms and directions of motion and position of the femoral centre of rotation, on the wear performance of a fixed-bearing total knee replacement through a combined experimental and computational approach. Studies were completed using conventional and moderately cross-linked polyethylene to determine whether the influence of these simulation input conditions varied with material. The position of the femoral centre of rotation and the input kinematics were shown to have a significant influence on the wear rates. Similar trends were shown for both the conventional and moderately cross-linked polyethylene materials, although lower wear rates were found for the moderately cross-linked polyethylene due to the higher level of cross-linking. The most important factor influencing the wear was the position of the relative contact point at the femoral component and tibial insert interface. This was dependent on the combination of input displacement magnitudes, waveforms, direction of motion and femoral centre of rotation. This study provides further evidence that in order to study variables such as design and material in total knee replacement, it is important to carefully control knee simulation conditions. This can be more effectively achieved through the use of displacement control simulation. PMID:27160561

  3. Exploring a New Simulation Approach to Improve Clinical Reasoning Teaching and Assessment: Randomized Trial Protocol

    PubMed Central

    Moussa, Ahmed; Loye, Nathalie; Charlin, Bernard; Audétat, Marie-Claude

    2016-01-01

    Background Helping trainees develop appropriate clinical reasoning abilities is a challenging goal in an environment where clinical situations are marked by high levels of complexity and unpredictability. The benefit of simulation-based education to assess clinical reasoning skills has rarely been reported. More specifically, it is unclear if clinical reasoning is better acquired if the instructor's input occurs entirely after or is integrated during the scenario. Based on educational principles of the dual-process theory of clinical reasoning, a new simulation approach called simulation with iterative discussions (SID) is introduced. The instructor interrupts the flow of the scenario at three key moments of the reasoning process (data gathering, integration, and confirmation). After each stop, the scenario is continued where it was interrupted. Finally, a brief general debriefing ends the session. System-1 process of clinical reasoning is assessed by verbalization during management of the case, and System-2 during the iterative discussions without providing feedback. Objective The aim of this study is to evaluate the effectiveness of Simulation with Iterative Discussions versus the classical approach of simulation in developing reasoning skills of General Pediatrics and Neonatal-Perinatal Medicine residents. Methods This will be a prospective exploratory, randomized study conducted at Sainte-Justine hospital in Montreal, Qc, between January and March 2016. All post-graduate year (PGY) 1 to 6 residents will be invited to complete one SID or classical simulation 30 minutes audio video-recorded complex high-fidelity simulations covering a similar neonatology topic. Pre- and post-simulation questionnaires will be completed and a semistructured interview will be conducted after each simulation. Data analyses will use SPSS and NVivo softwares. Results This study is in its preliminary stages and the results are expected to be made available by April, 2016. Conclusions

  4. Biomechanical Analysis of Simulated Clinical Testing and Reconstruction of the Anterolateral Ligament of the Knee

    PubMed Central

    Spencer, Luke; Burkhart, Timothy A.; Tran, Michael N.; Rezansoff, Alex James; Deo, Shaneel; Caterine, Scott; Getgood, Alan M

    2016-01-01

    Background: Anatomic anterolateral ligament (ALL) reconstruction has been proposed to assist anterior cruciate ligament (ACL) reconstruction in controlling anterolateral rotational laxity of the knee. However, the biomechanical effects have not been reported. Purpose: (1) To investigate the effect of ALL transection on rotational knee kinematics and (2) to determine the effect on knee biomechanics of ALL reconstruction procedures compared with lateral extra-articular tenodesis (LET). Study Design: Controlled laboratory study. Methods: A total of 12 cadaveric knee specimens were tested in the following sequence: (1) ACLintact, (2) anteromedial bundle of ACL sectioned (ACLamb), (3) complete ACL sectioned (ACLfull), (4) ALL sectioned (ALLsec), (5) anatomic ALL reconstruction (ALLanat), and (6) LET. Biomechanical anterior drawer and Lachman tests were performed in which a 90-N load was applied to the posterior tibia, and anterior translation was measured. A combined load to simulate the early phase of the pivot-shift test was executed in which a 5-N·m internal rotation moment was applied to a fully extended knee; anterior translation and internal rotation were measured. Results: Anterior translation increased across conditions for the biomechanical tests. Internal rotation during the simulated early-phase pivot-shift test was significantly different between ACLfull and ALLsec. Anatomic ALL reconstruction did not significantly reduce internal rotation or anterior translation during the simulated early-phase pivot-shift test. After LET, a significant decrease in anterior translation was found. There was no evidence of over-constraint of the knee with either anatomic ALL reconstruction or LET. Conclusion: The ALL demonstrated a role in controlling anterolateral laxity. LET had a composite effect in governing both anterior and rotational laxity. Anatomic ALL reconstruction did not reduce anterolateral rotational laxity. Clinical Relevance: Profiling the biomechanical

  5. Incorporating Standardized Colleague Simulations in a Clinical Assessment Course and Evaluating the Impact on Interprofessional Communication

    PubMed Central

    Dunn, Brianne; Blake, Elizabeth; Phillips, Cynthia

    2015-01-01

    Objective. To determine the impact of incorporating standardized colleague simulations on pharmacy students’ confidence and interprofessional communication skills. Design. Four simulations using standardized colleagues portraying attending physicians in inpatient and outpatient settings were integrated into a required course. Pharmacy students interacted with the standardized colleagues using the Situation, Background, Assessment, Request/Recommendation (SBAR) communication technique and were evaluated on providing recommendations while on simulated inpatient rounds and in an outpatient clinic. Additionally, changes in student attitudes and confidence toward interprofessional communication were assessed with a survey before and after the standardized colleague simulations. Assessment. One hundred seventy-one pharmacy students participated in the simulations. Student interprofessional communication skills improved after each simulation. Student confidence with interprofessional communication in both inpatient and outpatient settings significantly improved. Conclusion. Incorporation of simulations using standardized colleagues improves interprofessional communication skills and self-confidence of pharmacy students. PMID:26089566

  6. Simulating the forecasting of meteorological and oceanic conditions as a part of the planning cycle in simulated command and control

    SciTech Connect

    Hummel, J.R.

    1998-07-01

    Weather can be a decisive factor in military operations. Numerous examples can be found in history when weather conditions played a critical role in determining the outcome of a battle. The impact of weather must, therefore, be considered in the planning of missions as well as in its execution. For example, in planning air missions, the ewather conditions during all phases of the mission (launch, over target, and recovery) need to be considered including weather factors during the real world planning process is done as a normal part of the situations awareness process. Including weather factors in simulated planning processes, should, and can be done as a normal part. In this Paper, the authors discuss how the forecasting of meteorological and oceanic can be incorporated into the planning process of analytical simulations.

  7. Numerical simulations of the cavitation phenomena in a Francis turbine at deep part load conditions

    NASA Astrophysics Data System (ADS)

    Wack, J.; Riedelbauch, S.

    2015-12-01

    In recent years, the operating range of hydraulic machines has been more and more extended. As a consequence, the turbines are facing off-design conditions with highly complex flow phenomena like cavitation. In the present study, the occurrences of cavitating inter blade vortices at deep part load conditions in a Francis turbine are investigated using two-phase flow simulations. The numerical simulations require small time steps and fine meshes to reproduce the required flow characteristics and resolve the minimum pressure in the vortex core. Furthermore, the treatment of the outlet boundary condition is important, as this operating point is facing severe backflow in one diffusor channel in the draft tube. The simulation results indicate that the inter blade vortices can be reproduced.

  8. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, P. G.

    1986-01-01

    After long arduous work with the simulator, measurements of the refractivity and absorptivity of nitrogen under conditions similar to those for Titan were completed. The most significant measurements, however, were those of the microwave absorption from gaseous ammonia under simulated conditions for the Jovian atmospheres over wavelengths from 1.3 to 22 cm. The results of these measurements are critical in that they confirm the theoretical calculation of the ammonia opacity using the Ben-Reuven lineshape. The application of both these results, and results obtained previously, to planetary observations at microwave frequencies were especially rewarding. Applications of the results for ammonia to radio astronomical observations of Jupiter in the 1.3 to 20 cm wavelength range and the application of results for gaseous H2SO4 under simulated Venus conditions are discussed.

  9. Simulation-based education for building clinical teams

    PubMed Central

    Marshall, Stuart D; Flanagan, Brendan

    2010-01-01

    Failure to work as an effective team is commonly cited as a cause of adverse events and errors in emergency medicine. Until recently, individual knowledge and skills in managing emergencies were taught, without reference to the additional skills required to work as part of a team. Team training courses are now becoming commonplace, however their strategies and modes of delivery are varied. Just as different delivery methods of traditional education can result in different levels of retention and transfer to the real world, the same is true in team training of the material in different ways in traditional forms of education may lead to different levels of retention and transfer to the real world, the same is true in team training. As team training becomes more widespread, the effectiveness of different modes of delivery including the role of simulation-based education needs to be clearly understood. This review examines the basis of team working in emergency medicine, and the components of an effective emergency medical team. Lessons from other domains with more experience in team training are discussed, as well as the variations from these settings that can be observed in medical contexts. Methods and strategies for team training are listed, and experiences in other health care settings as well as emergency medicine are assessed. Finally, best practice guidelines for the development of team training programs in emergency medicine are presented. PMID:21063559

  10. Preclinical and clinical examinations of Salvia miltiorrhiza and its tanshinones in ischemic conditions

    PubMed Central

    Adams, James David; Wang, Rubin; Yang, Jun; Lien, Eric Jungchi

    2006-01-01

    Salvia miltiorrhiza (Labiatae, Laminaceae), danshen, is an annual sage mainly found in China and neighboring countries. The crude drug (dried root) and its preparations are currently used in China to treat patients suffering from heart attack, angina pectoris, stroke and some other conditions. The use of S. miltiorrhiza has been increasing in the management of stroke. Pharmacological examinations showed that the plant and its active ingredients, tanshinones and salvianolic acids, have anticoagulant, vasodilatory, increased blood flow, anti-inflammatory, free radical scavenging, mitochondrial protective and other activities. This review discusses the pharmacology, medicinal chemistry and clinical studies published, especially in China, for danshen and tanshinone preparations. Clinical examinations are evaluated in terms of S. miltiorrhiza preparation, dose, double blinding, control, clinical assessments of outcomes and other parameters. Meta-analyses of S. miltiorrhiza are also discussed. PMID:17302964

  11. Conditions at the downstream boundary for simulations of viscous incompressible flow

    NASA Technical Reports Server (NTRS)

    Hagstrom, Thomas

    1990-01-01

    The proper specification of boundary conditions at artificial boundaries for the simulation of time-dependent fluid flows has long been a matter of controversy. A general theory of asymptotic boundary conditions for dissipative waves is applied to the design of simple, accurate conditions at downstream boundary for incompressible flows. For Reynolds numbers far enough below the critical value for linear stability, a scaling is introduced which greatly simplifies the construction of the asymptotic conditions. Numerical experiments with the nonlinear dynamics of vortical disturbances to plane Poiseuille flow are presented which illustrate the accuracy of our approach. The consequences of directly applying the scalings to the equations are also considered.

  12. Lessons Learned From Nocebo Effects in Clinical Trials for Pain Conditions and Neurodegenerative Disorders.

    PubMed

    Amanzio, Martina; Palermo, Sara; Skyt, Ina; Vase, Lene

    2016-10-01

    It has been demonstrated that patients in the placebo arm of a clinical trial may experience adverse events (AEs), which may lead to nonadherence and dropout. However, so far, it is unknown to which extent this phenomenon is observed consistently across different diseases such as pain and neurodegenerative disorders.The current review shows for the first time that different diseases share a common risk for patients in terms of a negative outcome: a large percentage of placebo-treated patients experience AEs in pain conditions (up to 59%) and neurodegenerative disorders (up to 66%). In addition, the rate of patients who discontinue because of AEs is up to 10% and 11% in pain conditions and neurodegenerative disorders, respectively.We highlight methodological shortcomings with the aim of suggesting how the detection and reporting of AEs can be improved in future trials. The insights from the current review should be taken into consideration when designing clinical trials to tailor individualized treatments. PMID:27580494

  13. Perfectly Matched Layers versus discrete transparent boundary conditions in quantum device simulations

    SciTech Connect

    Mennemann, Jan-Frederik Jüngel, Ansgar

    2014-10-15

    Discrete transparent boundary conditions (DTBC) and the Perfectly Matched Layers (PML) method for the realization of open boundary conditions in quantum device simulations are compared, based on the stationary and time-dependent Schrödinger equation. The comparison includes scattering state, wave packet, and transient scattering state simulations in one and two space dimensions. The Schrödinger equation is discretized by a second-order Crank–Nicolson method in case of DTBC. For the discretization with PML, symmetric second-, fourth-, and sixth-order spatial approximations as well as Crank–Nicolson and classical Runge–Kutta time-integration methods are employed. In two space dimensions, a ring-shaped quantum waveguide device is simulated in the stationary and transient regime. As an application, a simulation of the Aharonov–Bohm effect in this device is performed, showing the excitation of bound states localized in the ring region. The numerical experiments show that the results obtained from PML are comparable to those obtained using DTBC, while keeping the high numerical efficiency and flexibility as well as the ease of implementation of the former method. -- Highlights: •In-depth comparison between discrete transparent boundary conditions (DTBC) and PML. •First 2-D transient scattering state simulations using DTBC. •First 2-D transient scattering state simulations of the Aharonov–Bohm effect.

  14. Instrumentation for Ground-Based Testing in Simulated Space and Planetary Conditions

    NASA Astrophysics Data System (ADS)

    Kleiman, Jacob; Horodetsky, Sergey; Issoupov, Vitali

    This paper is an overview of instrumentation developed and created by ITL Inc. for simulated testing and performance evaluation of spacecraft materials, structures, mechanisms, assemblies and components in different space and planetary environments. The LEO Space Environment Simulator allows simulation of the synergistic effect of ultra-high vacuum conditions, 5 eV neutral atomic oxygen beams, Vacuum-Ultraviolet (VUV) and Near-Ultraviolet (NUV) radiation, and temperature conditions. The simulated space environmental conditions can be controlled in-situ using a quadruple mass-spectrometer, Time-of-Flight technique, as well as Quartz Crystal Microbalance sensors. The new NUV System is capable of delivering an NUV power intensity of up to 10 Equivalent Suns. The design of the system uses horizontal orientation of the 5 kW Mercury lamp, focusing of NUV radiation is achieved due to a parabolic reflector. To address the Lunar/Martian surface environments, the Planetary Environmental Simulator/Test Facility has been developed and built to allow for physical evaluation of the effects of the Lunar/Martian dust environments in conjunction with other factors (ultra-high vacuum or planetary atmospheric conditions, VUV/NUV radiation, thermal cycling, and darkness). The ASTM E 595/ASTM E 1559 Outgassing Test Facility provides the means for the outgassing test of materials with the objective to select materials with low outgassing properties for spacecraft use and allows to determine the following outgassing parameters: Total Mass Loss, Collected Volatile Condensable Materials, and Water Vapor Regained.

  15. Web-Based Immersive Virtual Patient Simulators: Positive Effect on Clinical Reasoning in Medical Education

    PubMed Central

    Heiermann, Nadine; Plum, Patrick Sven; Wahba, Roger; Chang, De-Hua; Maus, Martin; Chon, Seung-Hun; Hoelscher, Arnulf H; Stippel, Dirk Ludger

    2015-01-01

    Background Clinical reasoning is based on the declarative and procedural knowledge of workflows in clinical medicine. Educational approaches such as problem-based learning or mannequin simulators support learning of procedural knowledge. Immersive patient simulators (IPSs) go one step further as they allow an illusionary immersion into a synthetic world. Students can freely navigate an avatar through a three-dimensional environment, interact with the virtual surroundings, and treat virtual patients. By playful learning with IPS, medical workflows can be repetitively trained and internalized. As there are only a few university-driven IPS with a profound amount of medical knowledge available, we developed a university-based IPS framework. Our simulator is free to use and combines a high degree of immersion with in-depth medical content. By adding disease-specific content modules, the simulator framework can be expanded depending on the curricular demands. However, these new educational tools compete with the traditional teaching Objective It was our aim to develop an educational content module that teaches clinical and therapeutic workflows in surgical oncology. Furthermore, we wanted to examine how the use of this module affects student performance. Methods The new module was based on the declarative and procedural learning targets of the official German medical examination regulations. The module was added to our custom-made IPS named ALICE (Artificial Learning Interface for Clinical Education). ALICE was evaluated on 62 third-year students. Results Students showed a high degree of motivation when using the simulator as most of them had fun using it. ALICE showed positive impact on clinical reasoning as there was a significant improvement in determining the correct therapy after using the simulator. ALICE positively impacted the rise in declarative knowledge as there was improvement in answering multiple-choice questions before and after simulator use. Conclusions

  16. New Automotive Air Conditioning System Simulation Tool Developed in MATLAB/Simulink

    SciTech Connect

    Kiss, T.; Chaney, L.; Meyer, J.

    2013-07-01

    Further improvements in vehicle fuel efficiency require accurate evaluation of the vehicle's transient total power requirement. When operated, the air conditioning (A/C) system is the largest auxiliary load on a vehicle; therefore, accurate evaluation of the load it places on the vehicle's engine and/or energy storage system is especially important. Vehicle simulation software, such as 'Autonomie,' has been used by OEMs to evaluate vehicles' energy performance. A transient A/C simulation tool incorporated into vehicle simulation models would also provide a tool for developing more efficient A/C systems through a thorough consideration of the transient A/C system performance. The dynamic system simulation software Matlab/Simulink was used to develop new and more efficient vehicle energy system controls. The various modeling methods used for the new simulation tool are described in detail. Comparison with measured data is provided to demonstrate the validity of the model.

  17. Pilot Program Using Medical Simulation in Clinical Decision-Making Training for Internal Medicine Interns

    PubMed Central

    Miloslavsky, Eli M.; Hayden, Emily M.; Currier, Paul F.; Mathai, Susan K.; Contreras-Valdes, Fernando; Gordon, James A.

    2012-01-01

    Background The use of high-fidelity medical simulation in cognitive skills training within internal medicine residency programs remains largely unexplored. Objective To design a pilot study to introduce clinical decision-making training using simulation into a large internal medicine residency program, explore the practicability of using junior and senior residents as facilitators, and examine the feasibility of using the program to improve interns' clinical skills. Methods Interns on outpatient rotations participated in a simulation curriculum on a voluntary basis. The curriculum consisted of 8 cases focusing on acute clinical scenarios encountered on the wards. One-hour sessions were offered twice monthly from August 2010 to February 2011. Internal medicine residents and simulation faculty served as facilitators. Results A total of 36 of 75 total interns volunteered to participate in the program, with 42% attending multiple sessions. Of all participants, 88% rated the sessions as “excellent,” 97% felt that the program improved their ability to function as an intern and generate a plan, and 81% reported improvement in differential diagnosis skills. Conclusions Simulation training was well received by the learners and improved self-reported clinical skills. Using residents as facilitators, supervised by faculty, was well received by the learners and enabled the implementation of the curriculum in a large training program. Simulation can provide opportunities for deliberate practice, and learners perceive this modality to be effective. PMID:24294427

  18. Activity and stability of a complex bacterial soil community under simulated Martian conditions

    NASA Astrophysics Data System (ADS)

    Hansen, Aviaja Anna; Merrison, Jonathan; Nørnberg, Per; Aagaard Lomstein, Bente; Finster, Kai

    2005-04-01

    A simulation experiment with a complex bacterial soil community in a Mars simulation chamber was performed to determine the effect of Martian conditions on community activity, stability and survival. At three different depths in the soil core short-term effects of Martian conditions with and without ultraviolet (UV) exposure corresponding to 8 Martian Sol were compared. Community metabolic activities and functional diversity, measured as glucose respiration and versatility in substrate utilization, respectively, decreased after UV exposure, whereas they remained unaffected by Martian conditions without UV exposure. In contrast, the numbers of culturable bacteria and the genetic diversity were unaffected by the simulated Martian conditions both with and without UV exposure. The genetic diversity of the soil community and of the colonies grown on agar plates were evaluated by denaturant gradient gel electrophoresis (DGGE) on DNA extracts. Desiccation of the soil prior to experimentation affected the functional diversity by decreasing the versatility in substrate utilization. The natural dominance of endospores and Gram-positive bacteria in the investigated Mars-analogue soil may explain the limited effect of the Mars incubations on the survival and community structure. Our results suggest that UV radiation and desiccation are major selecting factors on bacterial functional diversity in terrestrial bacterial communities incubated under simulated Martian conditions. Furthermore, these results suggest that forward contamination of Mars is a matter of great concern in future space missions.

  19. Exhaust emission survey of an F100 afterburning turbofan engine at simulated altitude flight conditions

    NASA Technical Reports Server (NTRS)

    Moss, J. E.; Cullom, R. R.

    1981-01-01

    Emissions of carbon monoxide, total oxides of nitrogen, unburned hydrocarbons, and carbon dioxide from an F100, afterburning, two spool turbofan engine at simulated flight conditions are reported. For each flight condition emission measurements were made for two or three power levels from intermediate power (nonafterburning) through maximum afterburning. The data showed that emissions vary with flight speed, altitude, power level, and radial position across the nozzle. Carbon monoxide emissions were low for intermediate power (nonafterburning) and partial afterburning, but regions of high carbon monoxide were present downstream of the flame holder at maximum afterburning. Unburned hydrocarbon emissions were low for most of the simulated flight conditions. The local NOX concentrations and their variability with power level increased with increasing flight Mach number at constant altitude, and decreased with increasing altitude at constant Mach number. Carbon dioxide emissions were proportional to local fuel air ratio for all conditions.

  20. Protein patterns of black fungi under simulated Mars-like conditions

    PubMed Central

    Zakharova, Kristina; Marzban, Gorji; de Vera, Jean-Pierre; Lorek, Andreas; Sterflinger, Katja

    2014-01-01

    Two species of microcolonial fungi – Cryomyces antarcticus and Knufia perforans - and a species of black yeasts–Exophiala jeanselmei - were exposed to thermo-physical Mars-like conditions in the simulation chamber of the German Aerospace Center. In this study the alterations at the protein expression level from various fungi species under Mars-like conditions were analyzed for the first time using 2D gel electrophoresis. Despite of the expectations, the fungi did not express any additional proteins under Mars simulation that could be interpreted as stress induced HSPs. However, up-regulation of some proteins and significant decreasing of protein number were detected within the first 24 hours of the treatment. After 4 and 7 days of the experiment protein spot number was increased again and the protein patterns resemble the protein patterns of biomass from normal conditions. It indicates the recovery of the metabolic activity under Martian environmental conditions after one week of exposure. PMID:24870977

  1. Protein patterns of black fungi under simulated Mars-like conditions.

    PubMed

    Zakharova, Kristina; Marzban, Gorji; de Vera, Jean-Pierre; Lorek, Andreas; Sterflinger, Katja

    2014-01-01

    Two species of microcolonial fungi - Cryomyces antarcticus and Knufia perforans - and a species of black yeasts-Exophiala jeanselmei - were exposed to thermo-physical Mars-like conditions in the simulation chamber of the German Aerospace Center. In this study the alterations at the protein expression level from various fungi species under Mars-like conditions were analyzed for the first time using 2D gel electrophoresis. Despite of the expectations, the fungi did not express any additional proteins under Mars simulation that could be interpreted as stress induced HSPs. However, up-regulation of some proteins and significant decreasing of protein number were detected within the first 24 hours of the treatment. After 4 and 7 days of the experiment protein spot number was increased again and the protein patterns resemble the protein patterns of biomass from normal conditions. It indicates the recovery of the metabolic activity under Martian environmental conditions after one week of exposure. PMID:24870977

  2. The clinical and occupational effectiveness of condition management for Incapacity Benefit recipients.

    PubMed

    Kellett, Stephen; Bickerstaffe, Darren; Purdie, Fiona; Dyke, Andrew; Filer, Sarah; Lomax, Victoria; Tomlinson, Hayley

    2011-06-01

    OBJECTIVES. The aim of the Condition Management Programme (CMP) is to help Incapacity Benefit recipients manage their health conditions more effectively and return to work. This paper seeks to examine the clinical and employment outcomes from a group-based and mixed-condition CMP. DESIGN. In a prospective cohort design, measures of employment status and psychological well-being were taken at three time points; pre-CMP, post-CMP, and at 3-month follow-up. METHOD. Participants (N= 2,064) with a variety of physical and mental health conditions voluntarily attended a seven session cognitive-behaviourally informed psychoeducational group intervention. The psychological measures used were the Clinical Outcomes in Routine Evaluation - Outcome Measure, Work and Social Adjustment Scale, Self-Efficacy Scale, and the Intrinsic Motivation Scale. The employment status of participants was also measured at the three time points of the evaluation. RESULTS. Following CMP, 50% of participants experienced a reliable improvement in psychological well-being and 26% had either taken some steps towards work or returned to work at follow-up. Participants with a mental health condition were more likely to experience a reliable improvement in psychological well-being compared to those with physical health conditions. CONCLUSIONS. The results suggest that participation in CMP may be helpful in facilitating more effective self-management of the health conditions contributing to unemployment. The results have implications for whether formal employment assistance should be available in mental health services. PMID:21545449

  3. A convective-like energy-stable open boundary condition for simulations of incompressible flows

    NASA Astrophysics Data System (ADS)

    Dong, S.

    2015-12-01

    We present a new energy-stable open boundary condition, and an associated numerical algorithm, for simulating incompressible flows with outflow/open boundaries. This open boundary condition ensures the energy stability of the system, even when strong vortices or backflows occur at the outflow boundary. Under certain situations it can be reduced to a form that can be analogized to the usual convective boundary condition. One prominent feature of this boundary condition is that it provides a control over the velocity on the outflow/open boundary. This is not available with the other energy-stable open boundary conditions from previous works. Our numerical algorithm treats the proposed open boundary condition based on a rotational velocity-correction type strategy. It gives rise to a Robin-type condition for the discrete pressure and a Robin-type condition for the discrete velocity on the outflow/open boundary, respectively at the pressure and the velocity sub-steps. We present extensive numerical experiments on a canonical wake flow and a jet flow in open domain to test the effectiveness and performance of the method developed herein. Simulation results are compared with the experimental data as well as with other previous simulations to demonstrate the accuracy of the current method. Long-time simulations are performed for a range of Reynolds numbers, at which strong vortices and backflows occur at the outflow/open boundaries. The results show that our method is effective in overcoming the backflow instability, and that it allows for the vortices to discharge from the domain in a fairly natural fashion even at high Reynolds numbers.

  4. A digital computer simulation and study of a direct-energy-transfer power-conditioning system

    NASA Technical Reports Server (NTRS)

    Burns, W. W., III; Owen, H. A., Jr.; Wilson, T. G.; Rodriguez, G. E.; Paulkovich, J.

    1974-01-01

    A digital computer simulation technique, which can be used to study such composite power-conditioning systems, was applied to a spacecraft direct-energy-transfer power-processing system. The results obtained duplicate actual system performance with considerable accuracy. The validity of the approach and its usefulness in studying various aspects of system performance such as steady-state characteristics and transient responses to severely varying operating conditions are demonstrated experimentally.

  5. Blocking Moving Window algorithm: Conditioning multiple-point simulations to hydrogeological data

    NASA Astrophysics Data System (ADS)

    Alcolea, Andres; Renard, Philippe

    2010-08-01

    Connectivity constraints and measurements of state variables contain valuable information on aquifer architecture. Multiple-point (MP) geostatistics allow one to simulate aquifer architectures, presenting a predefined degree of global connectivity. In this context, connectivity data are often disregarded. The conditioning to state variables is usually carried out by minimizing a suitable objective function (i.e., solving an inverse problem). However, the discontinuous nature of lithofacies distributions and of the corresponding objective function discourages the use of traditional sensitivity-based inversion techniques. This work presents the Blocking Moving Window algorithm (BMW), aimed at overcoming these limitations by conditioning MP simulations to hydrogeological data such as connectivity and heads. The BMW evolves iteratively until convergence: (1) MP simulation of lithofacies from geological/geophysical data and connectivity constraints, where only a random portion of the domain is simulated at every iteration (i.e., the blocking moving window, whose size is user-defined); (2) population of hydraulic properties at the intrafacies; (3) simulation of state variables; and (4) acceptance or rejection of the MP simulation depending on the quality of the fit of measured state variables. The outcome is a stack of MP simulations that (1) resemble a prior geological model depicted by a training image, (2) honor lithological data and connectivity constraints, (3) correlate with geophysical data, and (4) fit available measurements of state variables well. We analyze the performance of the algorithm on a 2-D synthetic example. Results show that (1) the size of the blocking moving window controls the behavior of the BMW, (2) conditioning to state variable data enhances dramatically the initial simulation (which accounts for geological/geophysical data only), and (3) connectivity constraints speed up the convergence but do not enhance the stack if the number of iterations

  6. Application of national testing standards to simulation-based assessments of clinical palpation skills.

    PubMed

    Pugh, Carla M

    2013-10-01

    With the advent of simulation technology, several types of data acquisition methods have been used to capture hands-on clinical performance. Motion sensors, pressure sensors, and tool-tip interaction software are a few of the broad categories of approaches that have been used in simulation-based assessments. The purpose of this article is to present a focused review of 3 sensor-enabled simulations that are currently being used for patient-centered assessments of clinical palpation skills. The first part of this article provides a review of technology components, capabilities, and metrics. The second part provides a detailed discussion regarding validity evidence and implications using the Standards for Educational and Psychological Testing as an organizational and evaluative framework. Special considerations are given to content domain and creation of clinical scenarios from a developer's perspective. The broader relationship of this work to the science of touch is also considered. PMID:24084306

  7. High-fidelity simulation and the development of clinical judgment: students' experiences.

    PubMed

    Lasater, Kathie

    2007-06-01

    Nursing education programs across the country are making major capital investments in alternative learning strategies, such as human patient simulators; yet, little research exists to affirm this new innovation. At the same time, nursing programs must become even more effective in the development of students' clinical judgment to better prepare graduates to take on increasingly complex care management. This qualitative study examined the experiences of students in one nursing program's first term of using high-fidelity simulation as part of its regular curriculum. On the basis of these experiences, it seems that high-fidelity simulation has potential to support and affect the development of clinical judgment in nursing students and to serve as a value-added adjunct to their clinical practica. PMID:17580739

  8. Boundary conditions for simulations of oscillating bubbles using the non-linear acoustic approximation

    NASA Astrophysics Data System (ADS)

    King, J. R. C.; Ziolkowski, A. M.; Ruffert, M.

    2015-03-01

    We have developed a new boundary condition for finite volume simulations of oscillating bubbles. Our method uses an approximation to the motion outside the domain, based on the solution at the domain boundary. We then use this approximation to apply boundary conditions by defining incoming characteristic waves at the domain boundary. Our boundary condition is applicable in regions where the motion is close to spherically symmetric. We have tested our method on a range of one- and two-dimensional test cases. Results show good agreement with previous studies. The method allows simulations of oscillating bubbles for long run times (5 ×105 time steps with a CFL number of 0.8) on highly truncated domains, in which the boundary condition may be applied within 0.1% of the maximum bubble radius. Conservation errors due to the boundary conditions are found to be of the order of 0.1% after 105 time steps. The method significantly reduces the computational cost of fixed grid finite volume simulations of oscillating bubbles. Two-dimensional results demonstrate that highly asymmetric bubble features, such as surface instabilities and the formation of jets, may be captured on a small domain using this boundary condition.

  9. The integration of simulation into a clinical foundations of nursing course: student and faculty perspectives.

    PubMed

    Kardong-Edgren, Suzan E; Starkweather, Angela Renee; Ward, Linda D

    2008-01-01

    Taking the initial steps to integrate simulation into a nursing program can appear overwhelming to faculty and supportive personnel. This paper will describe an approach taken by one undergraduate nursing program in the United States that focused on integrating simulation into a clinical foundations nursing course. Current research was used to guide the design and implementation of simulation. Several key points from the literature were applied to the process; linking scenarios with didactic information, the importance of debriefing, and the need for repetitive practice. Using these concepts, simulation scenarios were constructed following the Nursing Education Simulation Framework. Three scenarios were subsequently implemented during the course, with data from students and faculty collected after each scenario. The results indicate the students perceived the design and implementation to be very agreeable, while faculty reactions to simulation remain mixed. However, there was universal support concerning the use of repetitive practice of foundational skills to enhance learning outcomes. PMID:18673294

  10. Use of Simulation to Study Nurses' Acceptance and Nonacceptance of Clinical Decision Support Suggestions.

    PubMed

    Sousa, Vanessa E C; Lopez, Karen Dunn; Febretti, Alessandro; Stifter, Janet; Yao, Yingwei; Johnson, Andrew; Wilkie, Diana J; Keenan, Gail M

    2015-10-01

    Our long-term goal was to ensure nurse clinical decision support works as intended before full deployment in clinical practice. As part of a broader effort, this pilot project explored factors influencing acceptance/nonacceptance of eight clinical decision support suggestions displayed in an electronic health record-based nursing plan of care software prototype. A diverse sample of 21 nurses participated in this high-fidelity clinical simulation experience and completed a questionnaire to assess reasons for accepting/not accepting the clinical decision support suggestions. Of 168 total suggestions displayed during the experiment (eight for each of the 21 nurses), 123 (73.2%) were accepted, and 45 (26.8%) were not accepted. The mode number of acceptances by nurses was seven of eight, with only two of 21 nurses accepting all. The main reason for clinical decision support acceptance was the nurse's belief that the suggestions were good for the patient (100%), with other features providing secondary reinforcement. Reasons for nonacceptance were less clear, with fewer than half of the subjects indicating low confidence in the evidence. This study provides preliminary evidence that high-quality simulation and targeted questionnaires about specific clinical decision support selections offer a cost-effective means for testing before full deployment in clinical practice. PMID:26361268

  11. [Main manifestations of the phenomenon of remote post-conditioning of the heart. Clinical application of post-conditioning].

    PubMed

    Maslov, L N

    2016-01-01

    It was determined that remote post-conditioning (RP) exerts infarction-limiting and antiapoptotic effects. The infarction-limiting effect of RP is associated with enhancement of autophagia of cardiomyocytes. It was determined that RP may be an effective method of preventing reperfusion contractile dysfunction of the heart. The problem of whether RP exerts an antiarrhythmic effect in cardiac ischaemia-reperfusion remains unsolved as yet. Limitation of leukocytic invasion may have direct relation to the cardioprotector effect of RP. Decreasing the level of anti-inflammatory cytokines and MCP-1 chemokine may contribute to limitation of leukocytic infiltration into the reperfusion zone. It was determined that RP provides a decrease in intensity of lipid peroxidation. Remote postconditioning prevents reperfusion damage to cardiomyocytes both in children and adults, but RP does not improve the clinical course of the postoperative period in patients with coronary bypass grafting. In children, RP improves the course of the postoperative period. What is the reason of such difference between children and adults remains unknown. It was shown that RP exerts an infarction-limiting effect in transcutaneous coronary interventions in patients with ST elevation myocardial infarction. PMID:27626245

  12. Evaluation of a clinical simulation-based assessment method for EHR-platforms.

    PubMed

    Jensen, Sanne; Rasmussen, Stine Loft; Lyng, Karen Marie

    2014-01-01

    In a procurement process assessment of issues like human factors and interaction between technology and end-users can be challenging. In a large public procurement of an Electronic health record-platform (EHR-platform) in Denmark a clinical simulation-based method for assessing and comparing human factor issues was developed and evaluated. This paper describes the evaluation of the method, its advantages and disadvantages. Our findings showed that clinical simulation is beneficial for assessing user satisfaction, usefulness and patient safety, all though it is resource demanding. The method made it possible to assess qualitative topics during the procurement and it provides an excellent ground for user involvement. PMID:25160323

  13. Use of the human patient simulator to teach clinical judgment skills in a baccalaureate nursing program.

    PubMed

    Rhodes, Mattie L; Curran, Cynthia

    2005-01-01

    Nurse educators are finding it increasingly more challenging to prepare undergraduate students for the ever-changing and more acute clinical environment. As an answer to this dilemma, the human patient simulator can provide students with the opportunity to enhance knowledge, to facilitate skill acquisition, to decrease anxiety, and to promote clinical judgment in a safe environment. These experiences assist the novice nursing student to progress to the advanced beginner stage of practice. This article describes how faculty used the human patient simulator in creating a case scenario that enhanced critical thinking in senior nursing students. PMID:16166827

  14. Molecular Dynamic Simulation of Sodium in 7-Pin LMFBR Bundle Under Hypothetical Accident Conditions

    SciTech Connect

    Bottoni, Maurizio; Bottoni, Claudio; Scanu, John

    2006-07-01

    In the frame of safety analysis of liquid metal fast breeder reactors (LMFBRs) under hypothetical Unprotected Loss of Flow (ULOF) conditions two-phase flow of sodium is simulated in a 7-pin bundle, with hexagonal lattice. Molecular dynamics, with the application of the Direct Simulation Monte Carlo (DSMC) method, and a macroscopic model describing rewetting sequences due to the flow of a sodium liquid film along the pin surfaces, are applied to simulate the coolant in the bundle. The pin surfaces and the inner surface of the hexagonal canning are treated in the Monte Carlo simulation as diffusively reflecting surfaces. Collisions of sodium molecules are computed with the 'hard-sphere' model. With respect to previous work the following improvements of the computational code were made: i) The full bundle is simulated, thus allowing for asymmetries, like a skewed power distribution, to be accounted for; ii) A pin model calculates detailed temperature distributions in the pins, so that temperature boundary conditions are computed and not imposed; iii) Post processing visualisation of computed results was developed. An out of pile sodium boiling experiment run at the Nuclear Research Center of Karlsruhe, Germany, is simulated and conclusions are drawn about the applicability of the methodology in computer codes dedicated to breeder reactors safety analysis. (authors)

  15. An Alternative Frictional Boundary Condition for Computational Fluid Dynamics Simulation of Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Chen, Gaoqiang; Feng, Zhili; Zhu, Yucan; Shi, Qingyu

    2016-07-01

    For better application of numerical simulation in optimization and design of friction stir welding (FSW), this paper presents a new frictional boundary condition at the tool/workpiece interface for computational fluid dynamics (CFD) modeling of FSW. The proposed boundary condition is based on an implementation of the Coulomb friction model. Using the new boundary condition, the CFD simulation yields non-uniform distribution of contact state over the tool/workpiece interface, as validated by the experimental weld macrostructure. It is found that interfacial sticking state is present over large area at the tool-workpiece interface, while significant interfacial sliding occurs at the shoulder periphery, the lower part of pin side, and the periphery of pin bottom. Due to the interfacial sticking, a rotating flow zone is found under the shoulder, in which fast circular motion occurs. The diameter of the rotating flow zone is smaller than the shoulder diameter, which is attributed to the presence of the interfacial sliding at the shoulder periphery. For the simulated welding condition, the heat generation due to friction and plastic deformation makes up 54.4 and 45.6% of the total heat generation rate, respectively. The simulated temperature field is validated by the good agreement to the experimental measurements.

  16. SIMULATION OF ECOLOGICALLY CONSCIOUS CHEMICAL PROCESSES: FUGITIVE EMISSIONS VERSUS OPERATING CONDITIONS: JOURNAL ARTICLE

    EPA Science Inventory

    NRMRL-CIN-1531A Mata, T.M., Smith*, R.L., Young*, D., and Costa, C.A.V. "Simulation of Ecologically Conscious Chemical Processes: Fugitive Emissions versus Operating Conditions." Paper published in: CHEMPOR' 2001, 8th International Chemical Engineering Conference, Aveiro, Portu...

  17. Gambling on a Simulated Slot Machine under Conditions of Repeated Play

    ERIC Educational Resources Information Center

    Brandt, Andrew E.; Pietras, Cynthia J.

    2008-01-01

    A single-subject design was used in 2 experiments about the effects of percentage payback (winnings in proportion to total amount bet) on gambling on a slot-machine simulation in 8 adult humans. In Experiment 1, percentage payback was varied across a wide range of values, and participants were exposed extensively to percentage-payback conditions.…

  18. The Impact of Preparation: Conditions for Developing Professional Knowledge through Simulations

    ERIC Educational Resources Information Center

    Sjöberg, David; Karp, Staffan; Söderström, Tor

    2015-01-01

    This article examines simulations of critical incidents in police education by investigating how activities in the preparation phase influence participants' actions and thus the conditions for learning professional knowledge. The study is based on interviews in two stages (traditional and stimulated recall interviews) with six selected students…

  19. STUDY OF SPECIATION OF MERCURY UNDER SIMULATED SCR NOX EMISSION CONTROL CONDITIONS

    EPA Science Inventory

    The paper focuses on the impact of SCR on elemental mercury (Hg0) oxidation. It describes the results of bench-scale experiments conducted to investigate Hg0 oxidation in the presence of simulated coal combustion flue gases and under SCR reaction conditions. Flue gas mixtures wit...

  20. Defining boundary conditions for RANS predictions of urban flows using mesoscale simulations

    NASA Astrophysics Data System (ADS)

    Garcia Sanchez, Clara; Gorle, Catherine; van Beeck, Jeroen

    2015-11-01

    Pollutant dispersion and wind flows in urban canopies are major concerns for human health and energy, and the complex nature of the flow and transport processes remains a challenge when using Computational Fluid Dynamics (CFD) to predict wind flows. The definition of the inflow boundary condition in Reynolds-Averaged Navier-Stokes simulations (RANS) is one of the uncertainties that will strongly influence the prediction of the flow field, and thus, the dispersion pattern. The goal of the work presented is to define a methodology that improves the level of realism in the inflow condition for RANS simulations by accounting for larger mesoscale effects. The Weather Research and Forecasting model (WRF) is used to forecast mesoscale flow patterns, and two different approaches are used to define inflow conditions for the RANS simulations performed with OpenFOAM: 1) WRF variables such as local velocity magnitude, ABL height and friction velocity are directly interpolated onto the boundaries of the CFD domain; 2) WRF predictions for the geostrophic wind and friction velocity are applied as a forcing boundary condition. Simulations of the Joint Urban 2003 experimental campaign in Oklahoma City have been performed using both approaches and a comparison of the results will be presented.

  1. The Effect of Nursing Faculty Presence on Students' Level of Anxiety, Self-Confidence, and Clinical Performance during a Clinical Simulation Experience

    ERIC Educational Resources Information Center

    Horsley, Trisha Leann

    2012-01-01

    Nursing schools design their clinical simulation labs based upon faculty's perception of the optimal environment to meet the students' learning needs, other programs' success with integrating high-tech clinical simulation, and the funds available. No research has been conducted on nursing faculty presence during a summative…

  2. Monte Carlo Simulations of the Dissolution of Borosilicate Glasses in Near-Equilibrium Conditions

    SciTech Connect

    Kerisit, Sebastien; Pierce, Eric M

    2012-01-01

    Monte Carlo simulations were performed to investigate the mechanisms of glass dissolution as equilibrium conditions are approached in both static and flow-through conditions. The glasses studied are borosilicate glasses in the compositional range (80 x)% SiO2 (10 + x / 2)% B2O3 (10 + x / 2)% Na2O, where 5 < x < 30%. In static conditions, dissolution/condensation reactions lead to the formation, for all compositions studied, of a blocking layer composed of polymerized Si sites with principally 4 connections to nearest Si sites. This layer forms atop the altered glass layer and shows similar composition and density for all glass compositions considered. In flow-through conditions, three main dissolution regimes are observed: at high flow rates, the dissolving glass exhibits a thin alteration layer and congruent dissolution; at low flow rates, a blocking layer is formed as in static conditions but the simulations show that water can occasionally break through the blocking layer causing the corrosion process to resume; and, at intermediate flow rates, the glasses dissolve incongruently with an increasingly deepening altered layer. The simulation results suggest that, in geological disposal environments, small perturbations or slow flows could be enough to prevent the formation of a permanent blocking layer. Finally, a comparison between predictions of the linear rate law and the Monte Carlo simulation results indicates that, in flow-through conditions, the linear rate law is applicable at high flow rates and deviations from the linear rate law occur under low flow rates (e.g., at near-saturated conditions with respect to amorphous silica). This effect is associated with the complex dynamics of Si dissolution/condensation processes at the glass water interface.

  3. 42 CFR 410.165 - Payment for rural health clinic services and ambulatory surgical center services: Conditions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Payment for rural health clinic services and... (SMI) BENEFITS Payment of SMI Benefits § 410.165 Payment for rural health clinic services and ambulatory surgical center services: Conditions. (a) Medicare Part B pays for covered rural health clinic...

  4. 42 CFR 410.165 - Payment for rural health clinic services and ambulatory surgical center services: Conditions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 2 2011-10-01 2011-10-01 false Payment for rural health clinic services and... (SMI) BENEFITS Payment of SMI Benefits § 410.165 Payment for rural health clinic services and ambulatory surgical center services: Conditions. (a) Medicare Part B pays for covered rural health clinic...

  5. A web-based simulation of a longitudinal clinic used in a 4-week ambulatory rotation: a cohort study

    PubMed Central

    Wong, Rene WG; Lochnan, Heather A

    2009-01-01

    Background Residency training takes place primarily on inpatient wards. In the absence of a resident continuity clinic, internal medicine residents rely on block rotations to learn about continuity of care. Alternate methods to introduce continuity of care are needed. Methods A web-based tool, Continuity of Care Online Simulations (COCOS), was designed for use in a one-month, postgraduate clinical rotation in endocrinology. It is an interactive tool that simulates the continuing care of any patient with a chronic endocrine disease. Twenty-three residents in internal medicine participated in a study to investigate the effects of using COCOS during a clinical rotation in endocrinology on pre-post knowledge test scores and self-assessment of confidence. Results Compared to residents who did the rotation alone, residents who used COCOS during the rotation had significantly higher improvements in test scores (% increase in pre-post test scores +21.6 [standard deviation, SD, 8.0] vs. +5.9 [SD 6.8]; p < .001). Test score improvements were most pronounced for less commonly seen conditions. There were no significant differences in changes in confidence. Residents rated COCOS very highly, recommending its use as a standard part of the rotation and throughout residency. Conclusion A stand-alone web-based tool can be incorporated into an existing clinical rotation to help residents learn about continuity of care. It has the most potential to teach residents about topics that are less commonly seen during a clinical rotation. The adaptable, web-based format allows the creation of cases for most chronic medical conditions. PMID:19187554

  6. Influence of changes in initial conditions for the simulation of dynamic systems

    SciTech Connect

    Kotyrba, Martin

    2015-03-10

    Chaos theory is a field of study in mathematics, with applications in several disciplines including meteorology, sociology, physics, engineering, economics, biology, and philosophy. Chaos theory studies the behavior of dynamical systems that are highly sensitive to initial conditions—a paradigm popularly referred to as the butterfly effect. Small differences in initial conditions field widely diverging outcomes for such dynamical systems, rendering long-term prediction impossible in general. This happens even though these systems are deterministic, meaning that their future behavior is fully determined by their initial conditions, with no random elements involved. In this paperinfluence of changes in initial conditions will be presented for the simulation of Lorenz system.

  7. Simulation Analysis of Certain Hydraulic Lifting Appliance under Different Working Conditions

    NASA Astrophysics Data System (ADS)

    Lei, Huang; Genfu, Yuan; Xuehui, Chen

    Being typical of mechanical and electronic hydraulics appliance, hydraulic lifting appliance has many working conditions due to its particularities. Properties of hydraulic system decide high efficiency, security as well as stability under different working conditions. Beginning with simulation analysis on hydraulic system of hydraulic lifting appliance under different working conditions, the essay analyzes a certain hydraulic system through which design references can be offered for optimizing hydraulic system properties via hydraulic system force and changes of torque. And then properties of hydraulic system can be improved and a hydraulic system with stable performance can be obtained.

  8. Clinical compliance of viewing conditions in radiology reporting environments against current guidelines and standards

    NASA Astrophysics Data System (ADS)

    Daly, S.; Rainford, L.; Butler, M. L.

    2014-03-01

    Several studies have demonstrated the importance of environmental conditions in the radiology reporting environment, with many indicating that incorrect parameters could lead to error and misinterpretation. Literature is available with recommendations as to the levels that should be achieved in clinical practice, but evidence of adherence to these guidelines in radiology reporting environments is absent. This study audited the reporting environments of four teleradiologist and eight hospital based radiology reporting areas. This audit aimed to quantify adherence to guidelines and identify differences in the locations with respect to layout and design, monitor distance and angle as well as the ambient factors of the reporting environments. In line with international recommendations, an audit tool was designed to enquire in relation to the layout and design of reporting environments, monitor angle and distances used by radiologists when reporting, as well as the ambient factors such as noise, light and temperature. The review of conditions were carried out by the same independent auditor for consistency. The results obtained were compared against international standards and current research. Each radiology environment was given an overall compliance score to establish whether or not their environments were in line with recommended guidelines. Poor compliance to international recommendations and standards among radiology reporting environments was identified. Teleradiology reporting environments demonstrated greater compliance than hospital environments. The findings of this study identified a need for greater awareness of environmental and perceptual issues in the clinical setting. Further work involving a larger number of clinical centres is recommended.

  9. Tracer dispersion simulation in low wind speed conditions with a new 2D Langevin equation system

    NASA Astrophysics Data System (ADS)

    Anfossi, D.; Alessandrini, S.; Trini Castelli, S.; Ferrero, E.; Oettl, D.; Degrazia, G.

    The simulation of atmospheric dispersion in low wind speed conditions (LW) is still recognised as a challenge for modellers. Recently, a new system of two coupled Langevin equations that explicitly accounts for meandering has been proposed. It is based on the study of turbulence and dispersion properties in LW. The new system was implemented in the Lagrangian stochastic particle models LAMBDA and GRAL. In this paper we present simulations with this new approach applying it to the tracer experiments carried out in LW by Idaho National Engineering Laboratory (INEL, USA) in 1974 and by the Graz University of Technology and CNR-Torino near Graz in 2003. To assess the improvement obtained with the present model with respect to previous models not taking into account the meandering effect, the simulations for the INEL experiments were also performed with the old version of LAMBDA. The results of the comparisons clearly indicate that the new approach improves the simulation results.

  10. Large-eddy simulation of flow over the Great Plains under stable atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Zhou, B.; Chow, F. K.

    2010-12-01

    The Great Plains in the central part of North America hosts enormous wind resources. One of the key meteorological features over the Great Plains is the frequent occurrence of nocturnal low-level jets under stably-stratified conditions. The flow speed up due to the formation of the low-level jets represents great wind power potential. In this study, large-eddy simulations (LES) will be performed over the site where the Cooperative Atmospheric-surface Exchange Study (CASES-99) field experiment took place. Atmospheric boundary layer (ABL) simulations driven by both strongly and weakly forced synoptic flows under stable atmospheric conditions will be investigated. While continuous turbulence is expected under strongly forced conditions, the weakly forced scenario is likely intermittent in nature, with occasional elevated turbulent bursts. The focus of this study includes vertical wind shear profiles, as well as turbulent statistics under stable conditions over the relatively flat, yet complex terrain. We will use an explicit filtering and reconstruction turbulence modeling LES approach. This approach has been proven advantageous in our previous work in terms of turbulence representation and agreement with similarity theory in neutral and stable atmospheric boundary layer flow over flat terrain. The dynamic reconstruction turbulence closure is capable of handling strong atmospheric stability, and predicting intermittent turbulence burst events in previous idealized simulations. This LES study ill provide detailed flow features under stable conditions over the Great Plains that can be valuable to the wind energy industry.

  11. Monte Carlo Simulations of the Dissolution of Borosilicate Glasses in Near-Equilibrium Conditions

    SciTech Connect

    Kerisit, Sebastien N.; Pierce, Eric M.

    2012-05-15

    Monte Carlo simulations were performed to investigate the mechanisms of glass dissolution as equilibrium conditions are approached in both static and flow-through conditions. The glasses studied are borosilicate glasses in the compositional range (80-x)% SiO2 (10+x/2)% B2O3 (10+x/2)% Na2O, where 5 < x < 30%. In static conditions, dissolution/condensation reactions lead to the formation, for all compositions studied, of a blocking layer composed of polymerized Si sites with principally 4 connections to nearest Si sites. This layer forms atop the altered glass layer and shows similar composition and density for all glass compositions considered. In flow-through conditions, three main dissolution regimes are observed: at high flow rates, the dissolving glass exhibits a thin alteration layer and congruent dissolution; at low flow rates, a blocking layer is formed as in static conditions but the simulations show that water can occasionally break through the blocking layer causing the corrosion process to resume; and, at intermediate flow rates, the glasses dissolve incongruently with an increasingly deepening altered layer. The simulation results suggest that, in geological disposal environments, small perturbations or slow flows could be enough to prevent the formation of a permanent blocking layer.

  12. Method using a Monte Carlo simulation database for optimizing x-ray fluoroscopic conditions

    NASA Astrophysics Data System (ADS)

    Ueki, Hironori; Okajima, Kenichi

    2001-06-01

    To improve image quality (IQ) and reduce dose in x-ray fluoroscopy, we have developed a new method for optimizing x-ray conditions such as x-ray tube voltage, tube current, and gain of the detector. This method uses a Monte Carlo (MC)-simulation database for analyzing the relations between IQ, x-ray dose, and x-ray conditions. The optimization consists of three steps. First, a permissible dose limit for each object thickness is preset. Then, the MC database is used to calculate the IQ of x-ray projections under all the available conditions that satisfy this presetting. Finally, the optimum conditions are determined as the ones that provide the highest IQ. The MC database contains projections of an estimation phantom simulated under emissions of single-energy photons with various energies. By composing these single-energy projections according to the bremsstrahlung energy distributions, the IQs under any x-ray conditions can be calculated in a very short time. These calculations show that the optimum conditions are determined by the relation between quantum noise and scattering. Moreover, the heat-capacity limit of the x-ray tube can also determine the optimum conditions. It is concluded that the developed optimization method can reduce the time and cost of designing x-ray fluoroscopic systems.

  13. Sheath and boundary conditions for plasma simulations of a Hall thruster discharge with magnetic lenses

    SciTech Connect

    Keidar, Michael; Beilis, Isak I.

    2009-05-11

    The effect of magnetic lens configuration on sheath in a Hall thruster discharge channels is considered. A model of the plasma-wall transition is developed in the case of large magnetic field incidence angle with respect to the wall. Peculiarity of such case consists in that the potential drop across the magnetic field is set externally. In this case, standard boundary conditions at the sheath edge for plasma simulations fail and a new formulation for those boundary conditions is proposed. The results obtained demonstrate importance of the effect of the magnetic field incidence angle on the sheath boundary conditions for plasma simulations as well as on the energy balance in the Hall thruster discharge.

  14. Numerical simulation of pressure fluctuation in 1000MW Francis turbine under small opening condition

    NASA Astrophysics Data System (ADS)

    Gong, R. Z.; Wang, H. G.; Yao, Y.; Shu, L. F.; Huang, Y. J.

    2012-11-01

    In order to study the cause of abnormal vibration in large Francis turbine under small opening condition, CFD method was adopted to analyze the flow filed and pressure fluctuation. Numerical simulation was performed on the commercial CFD code Ansys FLUENT 12, using DES method. After an effective validation of the computation result, the flow behaviour of internal flow field under small opening condition is analyzed. Pressure fluctuation in different working mode is obtained by unsteady CFD simulation, and results is compared to study its change. Radial force fluctuation is also analyzed. The result shows that the unstable flow under small opening condition leads to an increase of turbine instability in reverse pump mode, and is one possible reason of the abnormal oscillation.

  15. Adaptive Conditioning of Multiple-Point Geostatistical Facies Simulation to Flow Data with Facies Probability Maps

    NASA Astrophysics Data System (ADS)

    Khodabakhshi, M.; Jafarpour, B.

    2013-12-01

    Characterization of complex geologic patterns that create preferential flow paths in certain reservoir systems requires higher-order geostatistical modeling techniques. Multipoint statistics (MPS) provides a flexible grid-based approach for simulating such complex geologic patterns from a conceptual prior model known as a training image (TI). In this approach, a stationary TI that encodes the higher-order spatial statistics of the expected geologic patterns is used to represent the shape and connectivity of the underlying lithofacies. While MPS is quite powerful for describing complex geologic facies connectivity, the nonlinear and complex relation between the flow data and facies distribution makes flow data conditioning quite challenging. We propose an adaptive technique for conditioning facies simulation from a prior TI to nonlinear flow data. Non-adaptive strategies for conditioning facies simulation to flow data can involves many forward flow model solutions that can be computationally very demanding. To improve the conditioning efficiency, we develop an adaptive sampling approach through a data feedback mechanism based on the sampling history. In this approach, after a short period of sampling burn-in time where unconditional samples are generated and passed through an acceptance/rejection test, an ensemble of accepted samples is identified and used to generate a facies probability map. This facies probability map contains the common features of the accepted samples and provides conditioning information about facies occurrence in each grid block, which is used to guide the conditional facies simulation process. As the sampling progresses, the initial probability map is updated according to the collective information about the facies distribution in the chain of accepted samples to increase the acceptance rate and efficiency of the conditioning. This conditioning process can be viewed as an optimization approach where each new sample is proposed based on the

  16. Feather conditions and clinical scores as indicators of broilers welfare at the slaughterhouse.

    PubMed

    Saraiva, S; Saraiva, C; Stilwell, G

    2016-08-01

    The objective of this study was to evaluate the welfare of 64 different broiler farms on the basis of feather conditions and clinical scores measures collected at the slaughterhouse. A 3-point scale (0, 1 or 2) was used to classify dirty feathers, footpad dermatitis and hock burns measures, and a 2-point scale (present or absent) was used to classify breast burns, breast blisters and breast ulcer measures. Flocks were allocated into three body weight (BW) classes (A, B, C): class A (light) ≥1.43 and ≤1.68kg, class B (medium) ≥1.69 and ≤1.93kg; class C (heavy) ≥1.94 and ≤2.41kg. The absence of hock burns was more common in class A, while mild hock burns was more common in class B flocks. Breast ulcer was observed in class C flocks. The association observed for mild hock burns, breast burns and severe footpad dermatitis can indicate a simultaneous occurrence of these painful lesions. Very dirty feathers and severe footpad dermatitis relationship suggest litter humidity to be the common underlying cause. In conclusion, it was shown that clinical indicators can be used at the slaughterhouse to identify welfare problems. In the studied flocks, footpad dermatitis, feather conditions and hock burns were the main restrictions for good welfare and should be considered significant welfare indicators of the on-farm rearing conditions. PMID:27473978

  17. Absorbing boundary conditions for simulation of gravitational waves with spectral methods in spherical coordinates

    NASA Astrophysics Data System (ADS)

    Novak, Jérôme; Bonazzola, Silvano

    2004-06-01

    We present a new formulation of the multipolar expansion of an exact boundary condition for the wave equation, which is truncated at the quadrupolar order. Using an auxiliary function, that is the solution of a wave equation on the sphere defining the outer boundary of the numerical grid, the absorbing boundary condition is simply written as a perturbation of the usual Sommerfeld radiation boundary condition. It is very easily implemented using spectral methods in spherical coordinates. Numerical tests of the method show that very good accuracy can be achieved and that this boundary condition has the same efficiency for dipolar and quadrupolar waves as the usual Sommerfeld boundary condition for monopolar ones. This is of particular importance for the simulation of gravitational waves, which have dominant quadrupolar terms, in General Relativity.

  18. Blood-retinal barrier in hypoxic ischaemic conditions: basic concepts, clinical features and management.

    PubMed

    Kaur, C; Foulds, W S; Ling, E A

    2008-11-01

    The blood-retinal barrier (BRB) plays an important role in the homeostatic regulation of the microenvironment in the retina. It consists of inner and outer components, the inner BRB (iBRB) being formed by the tight junctions between neighbouring retinal capillary endothelial cells and the outer barrier (oBRB) by tight junctions between retinal pigment epithelial cells. Astrocytes, Müller cells and pericytes contribute to the proper functioning of the iBRB. In many clinically important conditions including diabetic retinopathy, ischaemic central retinal vein occlusion, and some respiratory diseases, retinal hypoxia results in a breakdown of the iBRB. Disruption of the iBRB associated with increased vascular permeability, results in vasogenic oedema and tissue damage, with consequent adverse effects upon vision. Factors such as enhanced production of vascular endothelial growth factor (VEGF), NO, oxidative stress and inflammation underlie the increased permeability of the iBRB and inhibition of these factors is beneficial. Experimental studies in our laboratory have shown melatonin to be a protective agent for the iBRB in hypoxic conditions. Although oBRB breakdown can occur in conditions such as accelerated hypertension and the toxaemia of pregnancy, both of which are associated with choroidal ischaemia and in age-related macular degeneration (ARMD), and is a feature of exudative (serous) retinal detachment, our studies have shown that the oBRB remains intact in hypoxic/ischaemic conditions. Clinically, anti-VEGF therapy has been shown to improve vision in diabetic maculopathy and in neovascular ARMD. The visual benefit in both conditions appears to arise from the restoration of BRB integrity with a reduction of retinal oedema. PMID:18940262

  19. Clinical audit of genetic testing and referral patterns for fragile X and associated conditions.

    PubMed

    Cotter, Megan; Archibald, Alison D; McClaren, Belinda J; Burgess, Trent; Francis, David; Hills, Louise; Martyn, Melissa; Oertel, Ralph; Slater, Howard; Cohen, Jonathan; Metcalfe, Sylvia A

    2016-06-01

    An audit was conducted of laboratory/clinical databases of genetic tests performed between January 2003 and December 2009, and for 2014, as well as referrals to the clinical service and a specialist multidisciplinary clinic, to determine genetic testing request patterns for fragile X syndrome and associated conditions and referrals for genetic counseling/multidisciplinary management in Victoria, Australia. An expanded allele (full mutation, premutation or intermediate) was found in 3.7% of tests. Pediatricians requested ∼70% of test samples, although fewer general practitioners and more obstetricians/gynecologists ordered tests in 2014. Median age at testing for individuals with a full mutation seeking a diagnosis without a fragile X family history was 4.3 years (males) and 9.4 years (females); these ages were lower when pediatricians ordered the tests (2.1 years and 6.1 years, respectively). Individuals with a premutation were generally tested at a later age (median age: males, 33.2 years; females, 36.4 years). Logistic regression showed that a family history of ID (OR 3.28 P = 0.005, CI 1.77-5.98) was the only indication to independently increase the likelihood of a test-positive (FM or PM) result. Following testing, ∼25% of full mutation or premutation individuals may not have attended clinical services providing genetic counseling or multidisciplinary management for these families. The apparent delay in fragile X syndrome diagnosis and lack of appropriate referrals for some may result in less than optimal management for these families. These findings suggest continued need for awareness and education of health professionals around diagnosis and familial implications of fragile X syndrome and associated conditions. © 2016 Wiley Periodicals, Inc. PMID:26892444

  20. Numerical simulation and experimental study of a two-stage reciprocating compressor for condition monitoring

    NASA Astrophysics Data System (ADS)

    Elhaj, M.; Gu, F.; Ball, A. D.; Albarbar, A.; Al-Qattan, M.; Naid, A.

    2008-02-01

    A numerical simulation of a two-stage reciprocating compressor has replicated the operations of the compressor under various conditions for the development of diagnostic features for predictive condition monitoring. The simulation involves the development of a mathematical model of five different physical processes: speed-torque characteristics of an induction motor, cylinder pressure variation, crankshaft rotational motion, flow characteristics through valves and vibration of the valve plates. Modelling both valve leakage and valve spring deterioration has also been achieved. The simulation was implemented in a MATLAB environment for an efficient numerical solution and ease of result presentation. For normal operating conditions, the simulated results are in good agreement with the test results for cylinder pressure waveforms and crankshaft instantaneous angular speed (IAS). It has been found that both the IAS fluctuation and pressure waveform are sensitive detection features for compressor faults such as valve leakage and valve spring deterioration. However, IAS is preferred because of its non-intrusive measurement nature. Further studies using the model and experiments are being undertaken in order to develop fault detection features for compressor driving motors and transmission systems.

  1. Role of Hfq in an animal-microbe symbiosis under simulated microgravity conditions

    NASA Astrophysics Data System (ADS)

    Grant, Kyle C.; Khodadad, Christina L. M.; Foster, Jamie S.

    2014-01-01

    Microgravity has a profound impact on the physiology of pathogenic microbes; however, its effects on mutualistic microbes are relatively unknown. To examine the effects of microgravity on those beneficial microbes that associate with animal tissues, we used the symbiosis between the bobtail squid Euprymna scolopes and a motile, luminescent bacterium, Vibrio fischeri as a model system. Specifically, we examined the role of Hfq, an RNA-binding protein known to be an important global regulator under space flight conditions, in the squid-vibrio symbiosis under simulated microgravity. To mimic a reduced gravity environment, the symbiotic partners were co-incubated in high-aspect-ratio rotating wall vessel bioreactors and examined at various stages of development. Results indicated that under simulated microgravity, hfq expression was down-regulated in V. fischeri. A mutant strain defective in hfq showed no colonization phenotype, indicating that Hfq was not required to initiate the symbiosis with the host squid. However, the hfq mutant showed attenuated levels of apoptotic cell death, a key symbiosis phenotype, within the host light organ suggesting that Hfq does contribute to normal light organ morphogenesis. Results also indicated that simulated microgravity conditions accelerated the onset of cell death in wild-type cells but not in the hfq mutant strains. These data suggest that Hfq plays an important role in the mutualism between V. fischeri and its animal host and that its expression can be negatively impacted by simulated microgravity conditions.

  2. Conditioned Media from Microvascular Endothelial Cells Cultured in Simulated Microgravity Inhibit Osteoblast Activity

    PubMed Central

    Cazzaniga, Alessandra; Castiglioni, Sara; Maier, Jeanette A. M.

    2014-01-01

    Background and Aims. Gravity contributes to the maintenance of bone integrity. Accordingly, weightlessness conditions during space flight accelerate bone loss and experimental models in real and simulated microgravity show decreased osteoblastic and increased osteoclastic activities. It is well known that the endothelium and bone cells cross-talk and this intercellular communication is vital to regulate bone homeostasis. Because microgravity promotes microvascular endothelial dysfunction, we anticipated that the molecular cross-talk between endothelial cells exposed to simulated microgravity and osteoblasts might be altered. Results. We cultured human microvascular endothelial cells in simulated microgravity using the rotating wall vessel device developed by NASA. Endothelial cells in microgravity show growth inhibition and release higher amounts of matrix metalloproteases type 2 and interleukin-6 than controls. Conditioned media collected from microvascular endothelial cells in simulated microgravity were used to culture human osteoblasts and were shown to retard osteoblast proliferation and inhibit their activity. Discussion. Microvascular endothelial cells in microgravity are growth retarded and release high amounts of matrix metalloproteases type 2 and interleukin-6, which might play a role in retarding the growth of osteoblasts and impairing their osteogenic activity. Conclusions. We demonstrate that since simulated microgravity modulates microvascular endothelial cell function, it indirectly impairs osteoblastic function. PMID:25210716

  3. Sensitivity of Pliocene climate simulations in MRI-CGCM2.3 to respective boundary conditions

    NASA Astrophysics Data System (ADS)

    Kamae, Youichi; Yoshida, Kohei; Ueda, Hiroaki

    2016-08-01

    Accumulations of global proxy data are essential steps for improving reliability of climate model simulations for the Pliocene warming climate. In the Pliocene Model Intercomparison Project phase 2 (PlioMIP2), a part project of the Paleoclimate Modelling Intercomparison Project phase 4, boundary forcing data have been updated from the PlioMIP phase 1 due to recent advances in understanding of oceanic, terrestrial and cryospheric aspects of the Pliocene palaeoenvironment. In this study, sensitivities of Pliocene climate simulations to the newly archived boundary conditions are evaluated by a set of simulations using an atmosphere-ocean coupled general circulation model, MRI-CGCM2.3. The simulated Pliocene climate is warmer than pre-industrial conditions for 2.4 °C in global mean, corresponding to 0.6 °C warmer than the PlioMIP1 simulation by the identical climate model. Revised orography, lakes, and shrunk ice sheets compared with the PlioMIP1 lead to local and remote influences including snow and sea ice albedo feedback, and poleward heat transport due to the atmosphere and ocean that result in additional warming over middle and high latitudes. The amplified higher-latitude warming is supported qualitatively by the proxy evidences, but is still underestimated quantitatively. Physical processes responsible for the global and regional climate changes should be further addressed in future studies under systematic intermodel and data-model comparison frameworks.

  4. The Blocking Moving Window Sampler. Conditioning Stochastic Multiple Point Simulations to non-local Hydrogeological Data.

    NASA Astrophysics Data System (ADS)

    Alcolea, A.; Renard, P.

    2008-12-01

    Geological scenarios often present well connected lithofacies distributions. Multiple Point statistical techniques have been traditionally used to delineate connectivity patterns from local lithofacies data in such scenarios. Yet, little attention has been paid to the conditioning to non-local connectivity data and dependent state variables (e.g., heads). These data sets contain valuable information on the connectivity patterns and must be accounted for in meaningful models. This work is a step in that direction. A novel direct iterative sampler, termed Blocking Moving Window (BMW) is presented. The BMW algorithm couples an MP simulator with a fast groundwater flow simulator. First, an MP simulation of lithofacies is delineated from training images, local lithofacies from available well logs and non-local connectivity data sets. Only a random portion of the domain (the Moving Window) is simulated at a given iteration. This makes the search less random and therefore, more efficient. Second, values of hydraulic properties at the intrafacies are assigned. Next, state variables are simulated. The MP simulation is rejected if the fit of measured state variables is poor. We analyze the performance of the BMW algorithm on a 2D toy example mimicking the groundwater flow to a well in a channel-type geological setting. We explore the sensitivity to the size of the Moving Window and the role of the state variable and non-local connectivity data sets. Results show that, (1) the size of the Moving Window must be optimum; (2) conditioning to state variables enhances dramatically the initial MP characterization (i.e., conditioned to raw geological data only) and (3) the use of non-local connectivity data increases the reliability of the characterization and speeds up the convergence of the algorithm.

  5. A Comprehensive, Simulation-Based Approach to Teaching Clinical Skills: The Medical Students’ Perspective

    PubMed Central

    Evans, Leigh V.; Crimmins, Ashley C.; Bonz, James W.; Gusberg, Richard J.; Tsyrulnik, Alina; Dziura, James D.; Dodge, Kelly L.

    2014-01-01

    The purpose of this study was to determine if third-year medical students participating in a mandatory 12-week simulation course perceived improvement in decision-making, communication, and teamwork skills. Students participated in or observed 24 acute emergency scenarios. At 4-week intervals, students completed 0-10 point Likert scale questionnaires evaluating the curriculum and role of team leader. Linear contrasts were used to examine changes in outcomes. P-values were Bonferroni-corrected for multiple pairwise comparisons. Student evaluations (n = 96) demonstrated increases from week 4 to 12 in educational value (p = 0.006), decision-making (p < 0.001), communication (p = 0.02), teamwork (p = 0.01), confidence in management (p < 0.001), and translation to clinical experience (p < 0.001). Regarding the team leader role, students reported a decrease in stress (p = 0.001) and increase in ability to facilitate team function (p < 0.001) and awareness of team building (p = <0.001). Ratings demonstrate a positive impact of simulation on both clinical management skills and team leadership skills. A simulation curriculum can enhance the ability to manage acute clinical problems and translates well to the clinical experience. These positive perceptions increase as the exposure to simulation increases. PMID:25506290

  6. Assessment of the Impact of Integrated Simulation on Critical Thinking and Clinical Judgment in Nursing Instruction

    ERIC Educational Resources Information Center

    Meyer, Rita Allen

    2012-01-01

    The purpose of this study was to explore the effects of using simulation and didactic instruction on critical thinking and clinical judgment with student nurses enrolled in a fall semester medical-surgical class. Specifically, it was of interest to compare the performance of these fall semester nursing students with the performance of nursing…

  7. Instant Experience in Clinical Trials: A Computer-Aided Simulation Technique

    ERIC Educational Resources Information Center

    Simpson, Michael A.

    1976-01-01

    Describes "Instant Experience," a simulation and game method in which students are given information about a promising new drug and asked to design a protocol for a clinical trial of the drug. Evaluation of a trial workshop showed positive response to the method. Educational goals to be achieved through its use are noted. (JT)

  8. Human Patient Simulations: Evaluation of Self-Efficacy and Anxiety in Clinical Skills Performance

    ERIC Educational Resources Information Center

    Onovo, Grace N.

    2013-01-01

    The relationship between self-efficacy (self-confidence) and anxiety levels, and the use of Human Patient Simulations (HPS) as a teaching-learning strategy, has not been sufficiently studied in the area of clinical nursing education. Despite the evidence in the literature indicating that HPS increases self-efficacy/self-confidence and decreases…

  9. Two Dimensional Numerical Simulations of the Turbulence Characteristics Over Rattlesnake Mountain during Stable and Unstable Conditions

    NASA Astrophysics Data System (ADS)

    Heilman, Warren Emanuel

    A two-dimensional second-order turbulence-closure model based on level three of the Mellor-Yamada turbulence hierarchy has been developed and used to examine the nocturnal and early morning turbulence characteristics over Rattlesnake Mountain in Washington. The model includes radiation, soil, canopy, and slope parameterizations for calculating mean and turbulence variables over two-dimensional terrain features. Simulations of mean horizontal velocities and potential temperatures show good agreement with data obtained over Rattlesnake Mountain during nocturnal drainage-flow conditions. Qualitative analysis of simulated turbulence fields during these conditions indicates significant variations over the windward and leeward slopes. Turbulence anisotropy develops in the drainage-flow region where vertical wind shears and atmospheric stability are large. The buoyant portion of the turbulent heat flux enhances the vertical component of turbulent kinetic energy, especially over the leeward slope. Derived turbulent diffusivities reflect the developed anisotropic turbulence conditions. Simulations of the atmospheric conditions over Rattlesnake Mountain during the early morning hours indicate significant growth of the convective boundary layer when the initial stability over the entire depth of the modeled region is very weak. Upslope flow develops when no ambient wind is present. The buoyancy-generated turbulence inhibits the formation of large upslope velocity maxima when ambient winds are present. Spatial variations in the turbulent kinetic energy develop over the mountain, but they are less than the variations during nocturnal drainage-flow conditions. Turbulence anisotropy is significant in the convective boundary layer. However, the developed anisotropy plays a minor role in affecting turbulent diffusivity magnitudes. The transition from nocturnal drainage-flow conditions to convective conditions is characterized by a redistribution of energy among the turbulent

  10. The mathematical simulation of the temperature fields of building envelopes under permanent frozen soil conditions

    NASA Astrophysics Data System (ADS)

    Anisimov, M. V.; Babuta, M. N.; Kuznetsova, U. N.; Safonova, E. V.; Minaeva, O. M.

    2016-04-01

    The physical-mathematical model of the thermal state of the aired technical underground taking into account the air exchange and design features of construction under permanent frozen soil conditions has been suggested. The computational scheme of the temperature fields prediction of building envelopes of projected buildings and soil under and nearby buildings has been developed. The numerical simulation of the temperature fields of building envelopes changes was conducted during a year. The results of the numerical simulation showed that the heat coming from the technical undergrounds and through the walls does not influence the temperature field of the soil neither under a building nor at a distance from it.

  11. Simulation Evaluation of Controller-Managed Spacing Tools under Realistic Operational Conditions

    NASA Technical Reports Server (NTRS)

    Callantine, Todd J.; Hunt, Sarah M.; Prevot, Thomas

    2014-01-01

    Controller-Managed Spacing (CMS) tools have been developed to aid air traffic controllers in managing high volumes of arriving aircraft according to a schedule while enabling them to fly efficient descent profiles. The CMS tools are undergoing refinement in preparation for field demonstration as part of NASA's Air Traffic Management (ATM) Technology Demonstration-1 (ATD-1). System-level ATD-1 simulations have been conducted to quantify expected efficiency and capacity gains under realistic operational conditions. This paper presents simulation results with a focus on CMS-tool human factors. The results suggest experienced controllers new to the tools find them acceptable and can use them effectively in ATD-1 operations.

  12. Simulation of pulmonary air flow with a subject-specific boundary condition

    PubMed Central

    Yin, Youbing; Choi, Jiwoong; Hoffman, Eric A.; Tawhai, Merryn H.; Lin, Ching-Long

    2011-01-01

    We present a novel image-based technique to estimate a subject-specific boundary condition (BC) for computational fluid dynamics (CFD) simulation of pulmonary air flow. The information of regional ventilation for an individual is derived by registering two computed tomography (CT) lung datasets and then passed to the CT-resolved airways as the flow BC. The CFD simulations show that the proposed method predicts lobar volume changes consistent with direct image-measured metrics, whereas the other two traditional BCs (uniform velocity or uniform pressure) yield lobar volume changes and regional pressure differences inconsistent with observed physiology. PMID:20483412

  13. Mathematic simulation of soil-vegetation condition and land use structure applying basin approach

    NASA Astrophysics Data System (ADS)

    Mishchenko, Natalia; Shirkin, Leonid; Krasnoshchekov, Alexey

    2016-04-01

    Ecosystems anthropogenic transformation is basically connected to the changes of land use structure and human impact on soil fertility. The Research objective is to simulate the stationary state of river basins ecosystems. Materials and Methods. Basin approach has been applied in the research. Small rivers basins of the Klyazma river have been chosen as our research objects. They are situated in the central part of the Russian plain. The analysis is carried out applying integrated characteristics of ecosystems functioning and mathematic simulation methods. To design mathematic simulator functional simulation methods and principles on the basis of regression, correlation and factor analysis have been applied in the research. Results. Mathematic simulation resulted in defining possible permanent conditions of "phytocenosis-soil" system in coordinates of phytomass, phytoproductivity, humus percentage in soil. Ecosystem productivity is determined not only by vegetation photosynthesis activity but also by the area ratio of forest and meadow phytocenosis. Local maximums attached to certain phytomass areas and humus content in soil have been defined on the basin phytoproductivity distribution diagram. We explain the local maximum by synergetic effect. It appears with the definite ratio of forest and meadow phytocenosis. In this case, utmost values of phytomass for the whole area are higher than just a sum of utmost values of phytomass for the forest and meadow phytocenosis. Efficient correlation of natural forest and meadow phytocenosis has been defined for the Klyazma river. Conclusion. Mathematic simulation methods assist in forecasting the ecosystem conditions under various changes of land use structure. Nowadays overgrowing of the abandoned agricultural lands is very actual for the Russian Federation. Simulation results demonstrate that natural ratio of forest and meadow phytocenosis for the area will restore during agricultural overgrowing.

  14. Age-related declines in car following performance under simulated fog conditions

    PubMed Central

    Ni, Rui; Kang, Julie J.; Andersen, George J.

    2010-01-01

    The present study examined age-related differences in car following performance when contrast of the driving scene was reduced by simulated fog. Older (mean age of 72.6) and younger (mean age of 21.1) drivers were presented with a car following scenario in a simulator in which a lead vehicle (LV) varied speed according to a sum of three sine wave functions. Drivers were shown an initial following distance of 18m and were asked to maintain headway distance by controlling speed to match changes in LV speed. Five simulated fog conditions were examined ranging from a no fog condition (contrast of 0.55) to a high fog condition (contrast of 0.03). Average LV speed varied across trials (40, 60, or 80 km/h). The results indicated age-related declines in car following performance for both headway distance and RMS (root mean square) error in matching speed. The greatest decline occurred at moderate speeds under the highest fog density condition, with older drivers maintaining a headway distance that was 21% closer than younger drivers. At higher speeds older drivers maintained a greater headway distance than younger drivers. These results suggest that older drivers may be at greater risk for a collision under high fog density and moderate speeds. PMID:20380908

  15. A Kinetic 13-Moment Boundary Conditions Method for Particle Simulations of Viscous Rarefied Flows

    NASA Astrophysics Data System (ADS)

    Averkin, Sergey; Gatsonis, Nikolaos

    2015-11-01

    The kinetic 13-moment (Navier-Stokes-Fourrier) boundary condition method is developed for direct simulation Monte Carlo (DSMC) simulations of rarefied gas flows. The particles are injected into the computational domain from the inlet and outlet following the first-order Chapman-Enskog distribution function. The unknown parameters of the Chapman-Enskog distribution function are reconstructed from the full 13-moment (Navier-Stokes-Fourier) equations discretized on the boundaries with the wave amplitudes calculated by the local one dimensional inviscid (LODI) formulation used in compressible (continuous) flow computations. The kinetic-moment boundary conditions are implemented in an unstructured 3D DSMC (U3DSMC) code and are supplemented with a neighboring-cell sampling approach and a time-average smoothing techniques to speed up convergence and reduce fluctuations. Simulations of a pressure-driven viscous subsonic flow in a circular tube are used for verification and validation of the boundary conditions. In addition, the present method is compared to the previously developed kinetic-moment boundary conditions derived from the five-moment (Euler) equations. AFOSR-FA9550-14-1-0366 Computational Mathematics Program.

  16. Developing clinical competency in crisis event management: an integrated simulation problem-based learning activity.

    PubMed

    Liaw, S Y; Chen, F G; Klainin, P; Brammer, J; O'Brien, A; Samarasekera, D D

    2010-08-01

    This study aimed to evaluate the integration of a simulation based learning activity on nursing students' clinical crisis management performance in a problem-based learning (PBL) curriculum. It was hypothesized that the clinical performance of first year nursing students who participated in a simulated learning activity during the PBL session would be superior to those who completed the conventional problem-based session. The students were allocated into either simulation with problem-based discussion (SPBD) or problem-based discussion (PBD) for scenarios on respiratory and cardiac distress. Following completion of each scenario, students from both groups were invited to sit an optional individual test involving a systematic assessment and immediate management of a simulated patient facing a crisis event. A total of thirty students participated in the first post test related to a respiratory scenario and thirty-three participated in the second post test related to a cardiac scenario. Their clinical performances were scored using a checklist. Mean test scores for students completing the SPBD were significantly higher than those who completing the PBD for both the first post test (SPBD 20.08, PBD 18.19) and second post test (SPBD 27.56, PBD 23.07). Incorporation of simulation learning activities into problem-based discussion appeared to be an effective educational strategy for teaching nursing students to assess and manage crisis events. PMID:19916052

  17. Sequencing of Simulation and Clinic Experiences in an Introductory Pharmacy Practice Experience

    PubMed Central

    Hajjar, Emily; DeSevo Bellottie, Gina

    2015-01-01

    Objective. To examine how the intrasemester sequencing of a simulation component, delivered during an ambulatory care introductory pharmacy practice experience (IPPE), affects student performance on a series of 3 assessments delivered during the second professional (P2) year. Design. At the Jefferson College of Pharmacy (JCP), P2 student pharmacists were randomly assigned to 6 weeks of simulation activities, followed by 6 weeks on site at an ambulatory care clinic or vice versa during either the fall or spring semesters. At the end of each semester, these students completed 3 skills-based assessments: answering a series of drug information (DI) questions; conducting medication adherence counseling; and conducting a medication history. The 2 groups’ raw scores on assessment rubrics were compared. Assessment. During academic years 2011-2012 and 2012-2013, 180 P2 student pharmacists participated in the required ambulatory care IPPE. Ninety experienced simulation first, while the other 90 experienced the clinic first. Students assessed over a 2-year time span performed similarly on each of 3 skills-based assessments, regardless of how simulation experiences were sequenced within the IPPE. Conclusion. The lack of significant difference in student performance suggests that schools of pharmacy may have flexibility with regard to how they choose to incorporate simulation into clinical ambulatory care IPPEs. PMID:26688585

  18. Trophic interactions between viruses, bacteria and nanoflagellates under various nutrient conditions and simulated climate change.

    PubMed

    Bouvy, M; Bettarel, Y; Bouvier, C; Domaizon, I; Jacquet, S; Le Floc'h, E; Montanié, H; Mostajir, B; Sime-Ngando, T; Torréton, J P; Vidussi, F; Bouvier, T

    2011-07-01

    Population dynamics in the microbial food web are influenced by resource availability and predator/parasitism activities. Climatic changes, such as an increase in temperature and/or UV radiation, can also modify ecological systems in many ways. A series of enclosure experiments was conducted using natural microbial communities from a Mediterranean lagoon to assess the response of microbial communities to top-down control [grazing by heterotrophic nanoflagellates (HNF), viral lysis] and bottom-up control (nutrients) under various simulated climatic conditions (temperature and UV-B radiations). Different biological assemblages were obtained by separating bacteria and viruses from HNF by size fractionation which were then incubated in whirl-Pak bags exposed to an increase of 3°C and 20% UV-B above the control conditions for 96 h. The assemblages were also provided with an inorganic and organic nutrient supply. The data show (i) a clear nutrient limitation of bacterial growth under all simulated climatic conditions in the absence of HNF, (ii) a great impact of HNF grazing on bacteria irrespective of the nutrient conditions and the simulated climatic conditions, (iii) a significant decrease in burst size (BS) (number of intracellular lytic viruses per bacterium) and a significant increase of VBR (virus to bacterium ratio) in the presence of HNF, and (iv) a much larger temperature effect than UV-B radiation effect on the bacterial dynamics. These results show that top-down factors, essentially HNF grazing, control the dynamics of the lagoon bacterioplankton assemblage and that short-term simulated climate changes are only a secondary effect controlling microbial processes. PMID:21605305

  19. Clinical study and numerical simulation of brain cancer dynamics under radiotherapy

    NASA Astrophysics Data System (ADS)

    Nawrocki, S.; Zubik-Kowal, B.

    2015-05-01

    We perform a clinical and numerical study of the progression of brain cancer tumor growth dynamics coupled with the effects of radiotherapy. We obtained clinical data from a sample of brain cancer patients undergoing radiotherapy and compare it to our numerical simulations to a mathematical model of brain tumor cell population growth influenced by radiation treatment. We model how the body biologically receives a physically delivered dose of radiation to the affected tumorous area in the form of a generalized LQ model, modified to account for the conversion process of sublethal lesions into lethal lesions at high radiation doses. We obtain good agreement between our clinical data and our numerical simulations of brain cancer progression given by the mathematical model, which couples tumor growth dynamics and the effect of irradiation. The correlation, spanning a wide dataset, demonstrates the potential of the mathematical model to describe the dynamics of brain tumor growth influenced by radiotherapy.

  20. River basin soil-vegetation condition assessment applying mathematic simulation methods

    NASA Astrophysics Data System (ADS)

    Mishchenko, Natalia; Trifonova, Tatiana; Shirkin, Leonid

    2013-04-01

    Meticulous attention paid nowadays to the problem of vegetation cover productivity changes is connected also to climate global transformation. At the same time ecosystems anthropogenic transformation, basically connected to the changes of land use structure and human impact on soil fertility, is developing to a great extent independently from climatic processes and can seriously influence vegetation cover productivity not only at the local and regional levels but also globally. Analysis results of land use structure and soil cover condition influence on river basin ecosystems productive potential is presented in the research. The analysis is carried out applying integrated characteristics of ecosystems functioning, space images processing results and mathematic simulation methods. The possibility of making permanent functional simulator defining connection between macroparameters of "phytocenosis-soil" system condition on the basis of basin approach is shown. Ecosystems of river catchment basins of various degrees located in European part of Russia were chosen as research objects. For the integrated assessment of ecosystems soil and vegetation conditions the following characteristics have been applied: 1. Soil-productional potential, characterizing the ability of natural and natural-anthropogenic ecosystem in certain soil-bioclimatic conditions for long term reproduction. This indicator allows for specific phytomass characteristics and ecosystem produce, humus content in soil and bioclimatic parameters. 2. Normalized difference vegetation index (NDVI) has been applied as an efficient, remotely defined, monitoring indicator characterizing spatio-temporal unsteadiness of soil-productional potential. To design mathematic simulator functional simulation methods and principles on the basis of regression, correlation and factor analysis have been applied in the research. Coefficients values defining in the designed static model of phytoproductivity distribution has been

  1. Efficacy of ozonized olive oil in the management of oral lesions and conditions: A clinical trial

    PubMed Central

    Kumar, Tarun; Arora, Neha; Puri, Gagan; Aravinda, Konidena; Dixit, Avani; Jatti, Deepa

    2016-01-01

    The oral cavity is an open ecosystem that shows a dynamic balance between the entrance of microorganisms (bacterial, viral or fungal), colonization modalities, nutritional balance, and host defenses against their removal. The oral lesions including aphthous ulcerations, herpes labialis, oral candidiasis, oral lichen planus, and angular cheilitis some of the common entities encountered in the clinical practice. A variety of treatment options is available in the literature for all of these lesions and conditions. Topical ozone therapy is a minimally invasive technique that can be used for these conditions without any side effects. Aim and Objectives: To evaluate the efficacy of ozonized olive oil in the treatment of oral lesions and conditions. Materials and Methods: A longitudinal study was carried out on 50 patients (aphthous ulcerations, herpes labialis, oral candidiasis, oral lichen planus, and angular cheilitis). The ozonized olive oil was applied twice daily until the lesion regresses for a maximum of 6 months. Results: All the lesions regress in patients with aphthous ulcerations, herpes labialis, oral candidiasis and angular cheilitis or showed improvement in the signs and symptoms in oral lichen planus patients. No toxicity or side effect was observed in any of the patients. Conclusion: Ozone therapy though requires a gaseous form to be more effective, but topical form can also bring out the positive results without any toxicity or side effect. Hence, it can be considered as a minimally invasive therapy for the oral infective and immunological conditions. PMID:27041901

  2. Simulation of clinical fractures for three different all-ceramic crowns.

    PubMed

    Oilo, Marit; Kvam, Ketil; Gjerdet, Nils R

    2014-06-01

    Comparison of fracture strength and fracture modes of different all-ceramic crown systems is not straightforward. Established methods for reliable testing of all-ceramic crowns are not currently available. Published in-vitro tests rarely simulate clinical failure modes and are therefore unsuited to distinguish between the materials. The in-vivo trials usually lack assessment of failure modes. Fractographic analyses show that clinical crowns usually fail from cracks initiating in the cervical margins, whereas in-vitro specimens fail from contact damage at the occlusal loading point. The aim of this study was to compare three all-ceramic systems using a clinically relevant test method that is able to simulate clinical failure modes. Ten incisor crowns of three types of all-ceramic systems were exposed to soft loading until fracture. The initiation and propagation of cracks in these crowns were compared with those of a reference group of crowns that failed during clinical use. All crowns fractured in a manner similar to fracture of the clinical reference crowns. The zirconia crowns fractured at statistically significantly higher loads than alumina and glass-ceramic crowns. Fracture initiation was in the core material, cervically in the approximal areas. PMID:24698209

  3. Simulation of clinical fractures for three different all-ceramic crowns

    PubMed Central

    Øilo, Marit; Kvam, Ketil; Gjerdet, Nils R

    2014-01-01

    Comparison of fracture strength and fracture modes of different all-ceramic crown systems is not straightforward. Established methods for reliable testing of all-ceramic crowns are not currently available. Published in-vitro tests rarely simulate clinical failure modes and are therefore unsuited to distinguish between the materials. The in-vivo trials usually lack assessment of failure modes. Fractographic analyses show that clinical crowns usually fail from cracks initiating in the cervical margins, whereas in-vitro specimens fail from contact damage at the occlusal loading point. The aim of this study was to compare three all-ceramic systems using a clinically relevant test method that is able to simulate clinical failure modes. Ten incisor crowns of three types of all-ceramic systems were exposed to soft loading until fracture. The initiation and propagation of cracks in these crowns were compared with those of a reference group of crowns that failed during clinical use. All crowns fractured in a manner similar to fracture of the clinical reference crowns. The zirconia crowns fractured at statistically significantly higher loads than alumina and glass-ceramic crowns. Fracture initiation was in the core material, cervically in the approximal areas. PMID:24698209

  4. Groundwater recharge simulation under the steady-state and transient climate conditions

    NASA Astrophysics Data System (ADS)

    Pozdniakov, S.; Lykhina, N.

    2010-03-01

    Groundwater recharge simulation under the steady-state and transient climate conditions Diffusive groundwater recharge is a vertical water flux through the water table, i.e. through the boundary between the unsaturated and saturated zones. This flux features temporal and spatial changes due to variations in the climatic conditions, landscape the state of vegetation, and the spatial variability of vadoze zone characteristics. In a changing climate the non-steady state series of climatic characteristics will affect on the groundwater recharge.. A well-tested approach to calculating water flux through the vadoze zone is the application of Richard’s equations for a heterogeneous one-domain porosity continuum with specially formulated atmospheric boundary conditions at the ground surface. In this approach the climatic parameters are reflected in upper boundary conditions, while the recharge series is the flux through the low boundary. In this work developed by authors code Surfbal that simulates water cycle at surface of topsoil to take into account the various condition of precipitation transformation at the surface in different seasons under different vegetation cover including snow accumulation in winter and melting in spring is used to generate upper boundary condition at surface of topsoil for world-wide known Hydrus-1D code (Simunek et al, 2008). To estimate the proposal climate change effect we performed Surfbal and Hydrus simulation using the steady state climatic condition and transient condition due to global warming on example of Moscow region, Russia. The following scenario of climate change in 21 century in Moscow region was selected: the annual temperature will increase on 4C during 100 year and annual precipitation will increase on 10% (Solomon et al, 2007). Within the year the maximum increasing of temperature and precipitation falls on winter time, while in middle of summer temperature will remain almost the same as observed now and monthly

  5. The Sleep Condition Indicator: a clinical screening tool to evaluate insomnia disorder

    PubMed Central

    Espie, Colin A; Kyle, Simon D; Hames, Peter; Gardani, Maria; Fleming, Leanne; Cape, John

    2014-01-01

    Objective Describe the development and psychometric validation of a brief scale (the Sleep Condition Indicator (SCI)) to evaluate insomnia disorder in everyday clinical practice. Design The SCI was evaluated across five study samples. Content validity, internal consistency and concurrent validity were investigated. Participants 30 941 individuals (71% female) completed the SCI along with other descriptive demographic and clinical information. Setting Data acquired on dedicated websites. Results The eight-item SCI (concerns about getting to sleep, remaining asleep, sleep quality, daytime personal functioning, daytime performance, duration of sleep problem, nights per week having a sleep problem and extent troubled by poor sleep) had robust internal consistency (α≥0.86) and showed convergent validity with the Pittsburgh Sleep Quality Index and Insomnia Severity Index. A two-item short-form (SCI-02: nights per week having a sleep problem, extent troubled by poor sleep), derived using linear regression modelling, correlated strongly with the SCI total score (r=0.90). Conclusions The SCI has potential as a clinical screening tool for appraising insomnia symptoms against Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) criteria. PMID:24643168

  6. Evaluation of wall boundary condition parameters for gas-solids fluidized bed simulations

    SciTech Connect

    Li, Tingwen; Benyahia, Sofiane

    2013-10-01

    Wall boundary conditions for the solids phase have significant effects on numerical predictions of various gas-solids fluidized beds. Several models for the granular flow wall boundary condition are available in the open literature for numerical modeling of gas-solids flow. In this study, a model for specularity coefficient used in Johnson and Jackson boundary conditions by Li and Benyahia (AIChE Journal, 2012, 58, 2058-2068) is implemented in the open-source CFD code-MFIX. The variable specularity coefficient model provides a physical way to calculate the specularity coefficient needed by the partial-slip boundary conditions for the solids phase. Through a series of 2-D numerical simulations of bubbling fluidized bed and circulating fluidized bed riser, the model predicts qualitatively consistent trends to the previous studies. Furthermore, a quantitative comparison is conducted between numerical results of variable and constant specularity coefficients to investigate the effect of spatial and temporal variations in specularity coefficient.

  7. Breath alkanes as a marker of oxidative stress in different clinical conditions.

    PubMed

    Aghdassi, E; Allard, J P

    2000-03-15

    We assessed oxidative stress in three different clinical conditions: smoking, human immunodeficiency virus (HIV) infection, and inflammatory bowel disease, using breath alkane output and other lipid peroxidation parameters such as plasma lipid peroxides (LPO) and malondialdehyde (MDA). Antioxidant micronutrients such as selenium, vitamin E, C, beta-carotene and carotenoids were also measured. Lipid peroxidation was significantly higher and antioxidant vitamins significantly lower in smokers compared to nonsmokers. Beta-carotene or vitamin E supplementation significantly reduced lipid peroxidation in that population. However, vitamin C supplementation had no effect. In HIV-infected subjects, lipid peroxidation parameters were also elevated and antioxidant vitamins reduced compared to seronegative controls. Vitamin E and C supplementation resulted in a significant decrease in lipid peroxidation with a trend toward a reduction in viral load. In patients with inflammatory bowel disease, breath alkane output was also significantly elevated when compared to healthy controls. A trial with vitamin E and C is underway. In conclusion, breath alkane output, plasma LPO and MDA are elevated in certain clinical conditions such as smoking, HIV infection, and inflammatory bowel disease. This is associated with lower levels of antioxidant micronutrients. Supplementation with antioxidant vitamins significantly reduced these lipid peroxidation parameters. The results suggest that these measures are good markers for lipid peroxidation. PMID:10802218

  8. The relation between type D personality and the clinical condition of patients suffering from psoriasis

    PubMed Central

    Woźniewicz, Agnieszka

    2013-01-01

    Introduction Type D personality is the last distinguished specific type of personality that is characterised by two dimensions: a tendency for feeling negative emotions – depression, anxiety, anger or hostility, and a tendency for withdrawal from the society. The latest research shows the significant role played by type D personality in the aetiology and course of a variety of diseases. Aim The article discusses the problem of the occurrence of type D personality in the group of patients suffering from psoriasis. Diversities in the clinical condition of psoriasis patients due to increasing type D personality traits are specified. Material and methods Ninety psoriasis patients and 86 healthy subjects participated in the research. In the research questionnaires, the scale for assessing increasing psoriasis complaints and the DS-14 scale to assess type D personality were applied. Results Research results made it possible to corroborate more frequent occurrence of type D personality among psoriasis patients. Moreover, it was found that with increasing negative affectivity – one of type D personality components – complaints increase as far as the clinical condition of psoriasis patients is concerned. Conclusions Monitoring of psychological well-being of psoriasis patients, especially within type D personality, seems to be a vital element, irrespective of purely medical treatment. PMID:24494001

  9. Driver steering dynamics measured in car simulator under a range of visibility and roadmaking conditions

    NASA Technical Reports Server (NTRS)

    Allen, R. W.; Mcruer, D. T.

    1977-01-01

    A simulation experiment was conducted to determine the effect of reduced visibility on driver lateral (steering) control. The simulator included a real car cab and a single lane road image projected on a screen six feet in front of the driver. Simulated equations of motion controlled apparent car lane position in response to driver steering actions, wind gusts, and road curvature. Six drivers experienced a range of visibility conditions at various speeds with assorted roadmaking configurations (mark and gap lengths). Driver describing functions were measured and detailed parametric model fits were determined. A pursuit model employing a road curvature feedforward was very effective in explaining driver behavior in following randomly curving roads. Sampled-data concepts were also effective in explaining the combined effects of reduced visibility and intermittent road markings on the driver's dynamic time delay. The results indicate the relative importance of various perceptual variables as the visual input to the driver's steering control process is changed.

  10. Simulation of conditions for the maximal efficiency of decimeter-wave klystrons

    NASA Astrophysics Data System (ADS)

    Baikov, A. Yu.; Grushina, O. A.; Strikhanov, M. N.

    2014-03-01

    Using the mathematical model of electron beam transformation in a narrow tube developed by the authors and the KlypWin program suite, conditions for the maximal efficiency of decimeter-wave klystrons having from three to six amplification stages are simulated. Simulation is based on a real electron-optical system and real parameters of the cavities. It is shown that the maximal efficiency (across the load) is 83% for a four-cavity klystron, 86% for a five-cavity klystron, 88% for a six-cavity klystron, and 90% for a seven-cavity one. The electronic efficiency of the simulated seven-cavity klystron equals 94%, which implies the achievement of a global extremum.

  11. Importance of inlet boundary conditions for numerical simulation of combustor flows

    NASA Technical Reports Server (NTRS)

    Sturgess, G. J.; Syed, S. A.; Mcmanus, K. R.

    1983-01-01

    Fluid dynamic computer codes for the mathematical simulation of problems in gas turbine engine combustion systems are required as design and diagnostic tools. To eventually achieve a performance standard with these codes of more than qualitative accuracy it is desirable to use benchmark experiments for validation studies. Typical of the fluid dynamic computer codes being developed for combustor simulations is the TEACH (Teaching Elliptic Axisymmetric Characteristics Heuristically) solution procedure. It is difficult to find suitable experiments which satisfy the present definition of benchmark quality. For the majority of the available experiments there is a lack of information concerning the boundary conditions. A standard TEACH-type numerical technique is applied to a number of test-case experiments. It is found that numerical simulations of gas turbine combustor-relevant flows can be sensitive to the plane at which the calculations start and the spatial distributions of inlet quantities for swirling flows.

  12. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, P. G.

    1986-01-01

    The recognition of the need to make laboratory measurements of simulated planetary atmospheres over a range of temperatures and pressure which correspond to the altitudes probed by radio occultation experiments, and over a range of frequencies which correspond to both radio occultation experiments and radio astronomical observations, has led to the development of a facility at Georgia Tech which is capable of making such measurements. Construction was completed of the outer planets simulator and measurements were conducted of the microwave absorption and refraction from nitrogen under simulated Titan conditions. The results of these and previous laboratory measurements were applied to a wide range of microwave opacity measurements, in order to derive constituent densities and distributions in planetary atmospheres such as Venus.

  13. Launch Condition Deviations of Reusable Launch Vehicle Simulations in Exo-Atmospheric Zoom Climbs

    NASA Technical Reports Server (NTRS)

    Urschel, Peter H.; Cox, Timothy H.

    2003-01-01

    The Defense Advanced Research Projects Agency has proposed a two-stage system to deliver a small payload to orbit. The proposal calls for an airplane to perform an exo-atmospheric zoom climb maneuver, from which a second-stage rocket is launched carrying the payload into orbit. The NASA Dryden Flight Research Center has conducted an in-house generic simulation study to determine how accurately a human-piloted airplane can deliver a second-stage rocket to a desired exo-atmospheric launch condition. A high-performance, fighter-type, fixed-base, real-time, pilot-in-the-loop airplane simulation has been modified to perform exo-atmospheric zoom climb maneuvers. Four research pilots tracked a reference trajectory in the presence of winds, initial offsets, and degraded engine thrust to a second-stage launch condition. These launch conditions have been compared to the reference launch condition to characterize the expected deviation. At each launch condition, a speed change was applied to the second-stage rocket to insert the payload onto a transfer orbit to the desired operational orbit. The most sensitive of the test cases was the degraded thrust case, yielding second-stage launch energies that were too low to achieve the radius of the desired operational orbit. The handling qualities of the airplane, as a first-stage vehicle, have also been investigated.

  14. Effects of baseline conditions on the simulated hydrologic response to projected climate change

    USGS Publications Warehouse

    Koczot, Kathryn M.; Markstrom, Steven L.; Hay, Lauren E.

    2011-01-01

    Changes in temperature and precipitation projected from five general circulation models, using one late-twentieth-century and three twenty-first-century emission scenarios, were downscaled to three different baseline conditions. Baseline conditions are periods of measured temperature and precipitation data selected to represent twentieth-century climate. The hydrologic effects of the climate projections are evaluated using the Precipitation-Runoff Modeling System (PRMS), which is a watershed hydrology simulation model. The Almanor Catchment in the North Fork of the Feather River basin, California, is used as a case study. Differences and similarities between PRMS simulations of hydrologic components (i.e., snowpack formation and melt, evapotranspiration, and streamflow) are examined, and results indicate that the selection of a specific time period used for baseline conditions has a substantial effect on some, but not all, hydrologic variables. This effect seems to be amplified in hydrologic variables, which accumulate over time, such as soil-moisture content. Results also indicate that uncertainty related to the selection of baseline conditions should be evaluated using a range of different baseline conditions. This is particularly important for studies in basins with highly variable climate, such as the Almanor Catchment.

  15. A new package for simulating periodic boundary conditions in MODFLOW and SEAWAT

    NASA Astrophysics Data System (ADS)

    Post, V. E. A.

    2011-11-01

    Modeling of coastal groundwater systems is a challenging problem due to their highly dynamic boundary conditions and the coupling between the equations for groundwater flow and solute transport. A growing number of publications on aquifers subject to tides have demonstrated various modeling approaches, ranging from analytical solutions to comprehensive numerical models. The United States Geological Survey code SEAWAT has been a popular choice in studies of this type. Although SEAWAT allows the incorporation of time-variant boundary conditions, the implementation of tidal boundaries is not straightforward, especially when a seepage face develops during falling tide. Here, a new package is presented, called the periodic boundary condition (PBC) package, that can be incorporated into MODFLOW and SEAWAT to overcome the difficulties encountered with tidal boundaries. It dynamically updates the boundary conditions for head and concentration during the simulation depending on a user-defined tidal signal and allows for the development of a seepage face. The package has been verified by comparing it to four different published models of tidally influenced groundwater systems of varying complexity. Excellent agreement was obtained in all cases. The new package is an important extension to the existing capabilities of MODFLOW and SEAWAT with respect to simulating periodic boundary conditions.

  16. [Drugs from the classes of tricyclic antidepressives and antiepileptics, nitrosatable under simulated human gastric conditions].

    PubMed

    Ziebarth, D; Schramm, T; Töppel, A

    1989-01-01

    The nitrosatability of Pryleugan (imipramine), Herphonal (trimipramine), and Finlepsin (carbamazepine) was investigated under simulated human gastric conditions using a colorimetric measuring method. All of them proved to be nitrosatable even at very low nitrite concentrations. In the presence of ascorbic acid, the formation of N-nitroso compounds under model conditions was inhibited markedly. N-nitroso-dihydrodibenzazepine and N-nitroso-dibenzazepine could be identified by thin layer chromatography as main products. The biological effects of these N-nitroso compounds are not known up to now. PMID:2802933

  17. Gaseous exhaust emissions from a J-58 engine at simulated supersonic flight conditions

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.

    1974-01-01

    Emissions of total oxides of nitrogen, unburned hydrocarbons, carbon monoxide, and carbon dioxide from a J-58 engine at simulated flight conditions of Mach 2.0, 2.4, and 2.8 at 19.8 km altitude are reported. For each flight condition, measurements were made for four engine power levels from maximum power without afterburning through maximum afterburning. These measurements were made 7 cm downstream of the engine primary nozzle using a single point traversing gas sample probe. Results show that emissions vary with flight speed, engine power level, and with radial position across the exhaust.

  18. Emission calibration of a J-58 afterburning turbojet engine at simulated supersonic stratospheric flight conditions

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.

    1974-01-01

    Emissions of total oxides of nitrogen, unburned hydrocarbons, and carbon monoxide from a J-58 engine at simulated flight conditions of Mach 2.0, 2.4, and 2.8 at 19.8 km altitude are reported. For each flight condition, measurements were made for four engine power levels from maximum power without afterburning through maximum afterburning. These measurements were made 7 cm downstream of the engine primary nozzle using a single point traversing gas sample probe. Results show that emissions vary with flight speed, engine power level, and with radial position across the exhaust.

  19. Study on extreme turbulence wind conditions of multibody dynamics simulation for MW-class wind turbine

    NASA Astrophysics Data System (ADS)

    Wu, P.; Li, C.; Ye, Z.

    2013-12-01

    Parametric modeling of NREL 5MW wind turbine was set up for multi-body dynamics simulation by the TurbSim, AeroDyn, FAST (fatigue, aerodynamics, structures, and turbulence) software respectively. According to the analysis of the characteristics of wind in the space discrete point, using TurbSim to establish the steady-state wind and random changes with time and space wind. Based on the AeroDyn software, which can coupled to FAST, we calculated the aerodynamic load. Loading the aerodynamic data which has been calculated, FAST can establish a fully parameterized simulation model. Making a comparison of the results obtained by FAST in 3 different wind conditions, the different of dynamic responses of the structure were obtained. The results obtained by FAST have some meaning in the study of wind turbine under extreme turbulence wind conditions.

  20. Modelling and numerical simulation of the human aortic arch under in vivo conditions.

    PubMed

    García-Herrera, Claudio M; Celentano, Diego J

    2013-11-01

    This work presents the modelling and simulation of the mechanical behaviour of the human aortic arch under in vivo conditions with pressure levels within the normal and hypertension physiological range. The cases studied correspond to young and aged arteries without cardiovascular pathologies. First, the tissue of these two groups is characterised via in vitro tensile test measurements that make it possible to derive the material parameters of a hyperelastic isotropic constitutive model. Then, these material parameters are used in the simulation of young and aged aortic arches subjected to in vivo normal and hypertension conditions. Overall, the numerical results were found not only to provide a realistic description of the mechanical behaviour of the vessel but also to be useful data that allow the adequate definition of stress/stretch-based criteria to predict its failure. PMID:23371524

  1. Molecular dynamics simulation of UO2 nanocrystals melting under isolated and periodic boundary conditions

    NASA Astrophysics Data System (ADS)

    Boyarchenkov, A. S.; Potashnikov, S. I.; Nekrasov, K. A.; Kupryazhkin, A. Ya.

    2012-08-01

    Melting of uranium dioxide (UO2) nanocrystals has been studied by molecular dynamics (MD) simulation. Ten recent and widely used sets of pair potentials were assessed in the rigid ion approximation. Both isolated (in vacuum) and periodic boundary conditions (PBC) were explored. Using barostat under PBC the pressure dependences of melting point were obtained. These curves intersected zero near -20 GPa, saturated near 25 GPa and increased nonlinearly in between. Using simulation of surface under isolated boundary conditions (IBC) recommended melting temperature and density jump were successfully reproduced. However, the heat of fusion is still underestimated. These melting characteristics were calculated for nanocrystals of cubic shape in the range of 768-49 152 particles (volume range of 10-1000 nm3). The obtained reciprocal size dependences decreased nonlinearly. Linear and parabolic extrapolations to macroscopic values are considered. The parabolic one is found to be better suited for analysis of the data on temperature and heat of melting.

  2. Comparison of Heat Transfer from Airfoil in Natural and Simulated Icing Conditions

    NASA Technical Reports Server (NTRS)

    Gelder, Thomas F.; Lewis, James P.

    1951-01-01

    An investigation of the heat transfer from an airfoil in clear air and in simulated icing conditions was conducted in the NACA Lewis 6- by 9-foot icing-research tunnel in order to determine the validity of heat-transfer data as obtained in the tunnel. This investiation was made on the same model NACA 65,2-016 airfoil section used in a previous flight study, under similar heating, icing, and operating conditions. The effect of tunnel turbulence, in clear air and in icingwas indicated by the forward movement of transition from laminar to turbulent heat transfer. An analysis of the flight results showed the convective heat transfer in icing to be considerably different from that measured in clear air and. only slightly different from that obtained in the icing-research tunnel during simulated icing.

  3. Forty years experience in developing and using rainfall simulators under tropical and Mediterranean conditions

    NASA Astrophysics Data System (ADS)

    Pla-Sentís, Ildefonso; Nacci, Silvana

    2010-05-01

    Rainfall simulation has been used as a practical tool for evaluating the interaction of falling water drops on the soil surface, to measure both stability of soil aggregates to drop impact and water infiltration rates. In both cases it is tried to simulate the effects of natural rainfall, which usually occurs at very different, variable and erratic rates and intensities. One of the main arguments against the use of rainfall simulators is the difficulty to reproduce the size, final velocity and kinetic energy of the drops in natural rainfall. Since the early 70´s we have been developing and using different kinds of rainfall simulators, both at laboratory and field levels, and under tropical and Mediterranean soil and climate conditions, in flat and sloping lands. They have been mainly used to evaluate the relative effects of different land use and management, including different cropping systems, tillage practices, surface soil conditioning, surface covers, etc. on soil water infiltration, on runoff and on erosion. Our experience is that in any case it is impossible to reproduce the variable size distribution and terminal velocity of raindrops, and the variable changes in intensity of natural storms, under a particular climate condition. In spite of this, with the use of rainfall simulators it is possible to obtain very good information, which if it is properly interpreted in relation to each particular condition (land and crop management, rainfall characteristics, measurement conditions, etc.) may be used as one of the parameters for deducing and modelling soil water balance and soil moisture regime under different land use and management and variable climate conditions. Due to the possibility for a better control of the intensity of simulated rainfall and of the size of water drops, and the possibility to make more repeated measurements under very variable soil and land conditions, both in the laboratory and specially in the field, the better results have been

  4. Quantification of discreteness effects in cosmological N-body simulations: Initial conditions

    SciTech Connect

    Joyce, M.; Marcos, B.

    2007-03-15

    The relation between the results of cosmological N-body simulations, and the continuum theoretical models they simulate, is currently not understood in a way which allows a quantification of N dependent effects. In this first of a series of papers on this issue, we consider the quantification of such effects in the initial conditions of such simulations. A general formalism developed in [A. Gabrielli, Phys. Rev. E 70, 066131 (2004).] allows us to write down an exact expression for the power spectrum of the point distributions generated by the standard algorithm for generating such initial conditions. Expanded perturbatively in the amplitude of the input (i.e. theoretical, continuum) power spectrum, we obtain at linear order the input power spectrum, plus two terms which arise from discreteness and contribute at large wave numbers. For cosmological type power spectra, one obtains as expected, the input spectrum for wave numbers k smaller than that characteristic of the discreteness. The comparison of real space correlation properties is more subtle because the discreteness corrections are not as strongly localized in real space. For cosmological type spectra the theoretical mass variance in spheres and two-point correlation function are well approximated above a finite distance. For typical initial amplitudes this distance is a few times the interparticle distance, but it diverges as this amplitude (or, equivalently, the initial redshift of the cosmological simulation) goes to zero, at fixed particle density. We discuss briefly the physical significance of these discreteness terms in the initial conditions, in particular, with respect to the definition of the continuum limit of N-body simulations.

  5. Mapping and Simulating Systematics Due to Spatially-Varying Observing Conditions in DES Science Verification Data

    SciTech Connect

    Leistedt, B.

    2015-07-20

    Spatially-varying depth and characteristics of observing conditions, such as seeing, airmass, or sky background, are major sources of systematic uncertainties in modern galaxy survey analyses, in particular in deep multi-epoch surveys. We present a framework to extract and project these sources of systematics onto the sky, and apply it to the Dark Energy Survey (DES) to map the observing conditions of the Science Verification (SV) data. The resulting distributions and maps of sources of systematics are used in several analyses of DES SV to perform detailed null tests with the data, and also to incorporate systematics in survey simulations. We illustrate the complementarity of these two approaches by comparing the SV data with the BCC-UFig, a synthetic sky catalogue generated by forward-modelling of the DES SV images. We then analyse the BCC-UFig simulation to construct galaxy samples mimicking those used in SV galaxy clustering studies. We show that the spatially-varying survey depth imprinted in the observed galaxy densities and the redshift distributions of the SV data are successfully reproduced by the simulation and well-captured by the maps of observing conditions. The combined use of the maps, the SV data and the BCC-UFig simulation allows us to quantify the impact of spatial systematics on N(z), the redshift distributions inferred using photometric redshifts. We conclude that spatial systematics in the SV data are mainly due to seeing fluctuations and are under control in current clustering and weak lensing analyses. However, they will need to be carefully characterised in upcoming phases of DES in order to avoid biasing the inferred cosmological results. The framework presented is relevant to all multi-epoch surveys, and will be essential for exploiting future surveys such as the Large Synoptic Survey Telescope, which will require detailed null-tests and realistic end-to-end image simulations to correctly interpret the deep, high-cadence observations of the

  6. Laser spectroscopic real time measurements of methanogenic activity under simulated Martian subsurface analog conditions

    NASA Astrophysics Data System (ADS)

    Schirmack, Janosch; Böhm, Michael; Brauer, Chris; Löhmannsröben, Hans-Gerd; de Vera, Jean-Pierre; Möhlmann, Diedrich; Wagner, Dirk

    2014-08-01

    On Earth, chemolithoautothrophic and anaerobic microorganisms such as methanogenic archaea are regarded as model organisms for possible subsurface life on Mars. For this reason, the methanogenic strain Methanosarcina soligelidi (formerly called Methanosarcina spec. SMA-21), isolated from permafrost-affected soil in northeast Siberia, has been tested under Martian thermo-physical conditions. In previous studies under simulated Martian conditions, high survival rates of these microorganisms were observed. In our study we present a method to measure methane production as a first attempt to study metabolic activity of methanogenic archaea during simulated conditions approaching conditions of Mars-like environments. To determine methanogenic activity, a measurement technique which is capable to measure the produced methane concentration with high precision and with high temporal resolution is needed. Although there are several methods to detect methane, only a few fulfill all the needed requirements to work within simulated extraterrestrial environments. We have chosen laser spectroscopy, which is a non-destructive technique that measures the methane concentration without sample taking and also can be run continuously. In our simulation, we detected methane production at temperatures down to -5 °C, which would be found on Mars either temporarily in the shallow subsurface or continually in the deep subsurface. The pressure of 50 kPa which we used in our experiments, corresponds to the expected pressure in the Martian near subsurface. Our new device proved to be fully functional and the results indicate that the possible existence of methanogenic archaea in Martian subsurface habitats cannot be ruled out.

  7. Drilling fluid/formation interaction at simulated in situ geothermal conditions. Final report

    SciTech Connect

    Enniss, D.O.; Bergosh, J.L.; Butters, S.W.; Jones, A.H.

    1980-07-01

    Interaction of drilling fluids with a geothermal reservoir formation can result in significant permeability impairment and therefore reduced well productivity. This interaction is studied under simulated in situ geothermal conditions of overburden stress, pore fluid pressure, temperature, and pore fluid chemistry. Permeability impairment of an East Mesa KGRA reservoir material is evaluated as a function of stagnation time, drilling fluid, and temperature. Results indicate that all of these parameters contribute significantly to the magnitude and the reversibility of the impairment.

  8. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, P. G.

    1985-01-01

    Radio absorptivity data for the Venus middle atmosphere (1 to 6 atm, temperatures from 500 to 575K) obtained from spacecraft radio occultation experiments (at 3.6 to 13.4 cm wavelengths) and earth-based radio astronomical observations (1 to 3 cm wavelength range) are compared to laboratory observations at the latter wavelength range under simulated Venus conditions to infer abundances of microwave-absorbing atmospheric constituents, i.e. H2SO4 in a CO2 atmosphere.

  9. Simulated conditions of microgravity suppress progesterone production by luteal cells of the pregnant rat

    NASA Technical Reports Server (NTRS)

    Bhat, G. K.; Yang, H.; Sridaran, R.

    2001-01-01

    The purpose of this study was to assess whether simulated conditions of microgravity induce changes in the production of progesterone by luteal cells of the pregnant rat ovary using an in vitro model system. The microgravity environment was simulated using either a high aspect ratio vessel (HARV) bioreactor with free fall or a clinostat without free fall of cells. A mixed population of luteal cells isolated from the corpora lutea of day 8 pregnant rats was attached to cytodex microcarrier beads (cytodex 3). These anchorage dependent cells were placed in equal numbers in the HARV or a spinner flask control vessel in culture conditions. It was found that HARV significantly reduced the daily production of progesterone from day 1 through day 8 compared to controls. Scanning electron microscopy showed that cells attached to the microcarrier beads throughout the duration of the experiment in both types of culture vessels. Cells cultured in chamber slide flasks and placed in a clinostat yielded similar results when compared to those in the HARV. Also, when they were stained by Oil Red-O for lipid droplets, the clinostat flasks showed a larger number of stained cells compared to control flasks at 48 h. Further, the relative amount of Oil Red-O staining per milligram of protein was found to be higher in the clinostat than in the control cells at 48 h. It is speculated that the increase in the level of lipid content in cells subjected to simulated conditions of microgravity may be due to a disruption in cholesterol transport and/or lesions in the steroidogenic pathway leading to a fall in the synthesis of progesterone. Additionally, the fall in progesterone in simulated conditions of microgravity could be due to apoptosis of luteal cells.

  10. CFD simulation of pressure and discharge surge in Francis turbine at off-design conditions

    NASA Astrophysics Data System (ADS)

    Chirkov, D.; Avdyushenko, A.; Panov, L.; Bannikov, D.; Cherny, S.; Skorospelov, V.; Pylev, I.

    2012-11-01

    A hybrid 1D-3D CFD model is developed for the numerical simulation of pressure and discharge surge in hydraulic power plants. The most essential part - the turbine itself - is simulated directly using 3D unsteady equations of turbulent motion of fluid-vapor mixture, while the rest of the hydraulic system is simulated in frames of 1D hydro-acoustic model. Thus the model accounts for the main factors responsible for excitation and propagation of pressure and discharge waves in hydraulic power plant. Boundary conditions at penstock inlet and draft tube outlet are discussed in detail. Then simulations of dynamic behavior at part load and full load operating points are performed. It is shown that the numerical model is able to capture self-excited oscillations in full load conditions. The influence of penstock length and flow structure behind the runner are investigated. The presented approach seems to be a promising tool for prediction and investigation the dynamic behavior in hydraulic power plants.

  11. N-body simulations with generic non-Gaussian initial conditions II: halo bias

    NASA Astrophysics Data System (ADS)

    Wagner, Christian; Verde, Licia

    2012-03-01

    We present N-body simulations for generic non-Gaussian initial conditions with the aim of exploring and modelling the scale-dependent halo bias. This effect is evident on very large scales requiring large simulation boxes. In addition, the previously available prescription to implement generic non-Gaussian initial conditions has been improved to keep under control higher-order terms which were spoiling the power spectrum on large scales. We pay particular attention to the differences between physical, inflation-motivated primordial bispectra and their factorizable templates, and to the operational definition of the non-Gaussian halo bias (which has both a scale-dependent and an approximately scale-independent contributions). We find that analytic predictions for both the non-Gaussian halo mass function and halo bias work well once a fudge factor (which was introduced before but still lacks convincing physical explanation) is calibrated on simulations. The halo bias remains therefore an extremely promising tool to probe primordial non-Gaussianity and thus to give insights into the physical mechanism that generated the primordial perturbations. The simulation outputs and tables of the analytic predictions will be made publicly available via the non-Gaussian comparison project web site http://icc.ub.edu/~liciaverde/NGSCP.html.

  12. Properties of Lactobacillus reuteri chitosan-calcium-alginate encapsulation under simulated gastrointestinal conditions.

    PubMed

    Huang, Hui-Ying; Tang, Yi-Ju; King, V An-Erl; Chou, Jen-Wei; Tsen, Jen-Horng

    2015-03-01

    The protective effects of encapsulation on the survival of Lactobacillus reuteri and the retention of the bacterium's probiotic properties under simulated gastrointestinal conditions were investigated. Viable counts and the remaining probiotic properties of calcium (Ca)-alginate encapsulated (A group), chitosan-Ca-alginate encapsulated (CA group), and unencapsulated, free L. reuteri (F group) were determined. Encapsulation improved the survival of L. reuteri subjected to simulated gastrointestinal conditions, with the greatest protective effect achieved in the CA group. The degree of cell membrane injury increased with increasing bile salt concentrations at constant pH, but the extent of injury was less in the encapsulated than in the free cells. Adherence rates were, in descending order: CA (0.524%)>A (0.360%)>F (0.275%). Lactobacillus reuteri cells retained their antagonistic activity toward Listeria monocytogenes even after incubation of the lactobacilli under simulated gastrointestinal conditions. Displacement of the pathogen by cells released from either of the encapsulation matrices was higher than that by free cells. The safety of L. reuteri was demonstrated in an in vitro invasion assay. PMID:26415668

  13. Numerical simulation of electrocardiograms for full cardiac cycles in healthy and pathological conditions.

    PubMed

    Schenone, Elisa; Collin, Annabelle; Gerbeau, Jean-Frédéric

    2016-05-01

    This work is dedicated to the simulation of full cycles of the electrical activity of the heart and the corresponding body surface potential. The model is based on a realistic torso and heart anatomy, including ventricles and atria. One of the specificities of our approach is to model the atria as a surface, which is the kind of data typically provided by medical imaging for thin volumes. The bidomain equations are considered in their usual formulation in the ventricles, and in a surface formulation on the atria. Two ionic models are used: the Courtemanche-Ramirez-Nattel model on the atria and the 'minimal model for human ventricular action potentials' by Bueno-Orovio, Cherry, and Fenton in the ventricles. The heart is weakly coupled to the torso by a Robin boundary condition based on a resistor-capacitor transmission condition. Various electrocardiograms (ECGs) are simulated in healthy and pathological conditions (left and right bundle branch blocks, Bachmann's bundle block, and Wolff-Parkinson-White syndrome). To assess the numerical ECGs, we use several qualitative and quantitative criteria found in the medical literature. Our simulator can also be used to generate the signals measured by a vest of electrodes. This capability is illustrated at the end of the article. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26249327

  14. Direct numerical simulation of turbulent flows over superhydrophobic surfaces with gas pockets using linearized boundary conditions

    NASA Astrophysics Data System (ADS)

    Seo, Jongmin; Bose, Sanjeeb; Garcia-Mayoral, Ricardo; Mani, Ali

    2012-11-01

    Superhydrophobic surfaces are shown to be effective for surface drag reduction under laminar regime by both experiments and simulations (see for example, Ou and Rothstein, Phys. Fluids 17:103606, 2005). However, such drag reduction for fully developed turbulent flow maintaining the Cassie-Baxter state remains an open problem due to high shear rates and flow unsteadiness of turbulent boundary layer. Our work aims to develop an understanding of mechanisms leading to interface breaking and loss of gas pockets due to interactions with turbulent boundary layers. We take advantage of direct numerical simulation of turbulence with slip and no-slip patterned boundary conditions mimicking the superhydrophobic surface. In addition, we capture the dynamics of gas-water interface, by deriving a proper linearized boundary condition taking into account the surface tension of the interface and kinematic matching of interface deformation and normal velocity conditions on the wall. We will show results from our simulations predicting the dynamical behavior of gas pocket interfaces over a wide range of dimensionless surface tensions. Supported by the Office of Naval Research and the Kwanjeong Educational Scholarship Foundation.

  15. Transient thermal behaviour of a compressor rotor with ventilation: Test results under simulated engine conditions

    NASA Astrophysics Data System (ADS)

    Reile, E.; Radons, U.; Hennecke, D. K.

    1985-09-01

    The development of advanced compressors for modern aero-engines requires detailed knowledge of the transient thermal behavior of the rotor disks to enable accurate prediction of rotor life and, additionally, of the thermal growth of the rotor for the evaluation of tip clearances. In the quest for longer life and higher reliability of the parts as well as reduced clearances even at transient conditions, the designer has to be able to influence the thermal behavior of the rotor. A very effective way is to vent small amounts of air through the rotor cavities. The design of such a vented rotor is presented. The main emphasis is placed on a detailed description of a test rig specially built for this purpose. The testing was carried out under simulated engine conditions for a wide range of parameters. The results are compared with those obtained with a theoretical model derived from fundamental tests at the University of Sussex, where heat transfer in rotating cavities is investigated. Good agreement is observed. Some final tests were done in an engine. The results also exhibit good agreement with the rig results under simulated conditions, when the proper dimensionless parameters are considered, providing the validity of the simulation.

  16. Clinical studies with disposable diapers containing absorbent gelling materials: evaluation of effects on infant skin condition.

    PubMed

    Campbell, R L; Seymour, J L; Stone, L C; Milligan, M C

    1987-12-01

    Disposable infant diapers with absorbent gelling material (cross-linked sodium polyacrylates) incorporated into the core were clinically evaluated for their effect on infant skin condition. Absorbent gelling materials tightly hold water and provide pH control by a buffering capacity as well as by helping to segregate urine apart from feces. Four clinical studies were conducted with each following a rigid protocol that controlled for variables of diet and age in addition to the diaper material that may influence the development of diaper dermatitis and helped to control for any inherent bias in the study. This allowed for the controlled assessment of skin condition with respect to diaper type. Absorbent gelling material-containing disposable, conventional (100% cellulose core) disposable, and home-laundered cloth diapers were test products. In these studies 1614 infants were initially enrolled with 522 of them assigned to absorbent gelling material disposable, 738 to conventional disposable, and 354 to home-laundered cloth diapers. Objective measurements of skin wetness (transepidermal water loss) and skin pH, as well as double-blind grading of diaper dermatitis, were the measures of skin condition. Absorbent gelling material disposable diapers were associated with significantly reduced skin wetness, closer to normal skin pH, and lower degrees of diaper dermatitis when compared to conventional disposable or home-laundered cloth diapers. The results are consistent with the hypothesis that better control in the diaper area of skin wetness, skin pH, and the prevention of the mixing of urine and feces produces a better diaper environment. PMID:3323274

  17. On boundary conditions for the diffusion equation in room-acoustic prediction: Theory, simulations, and experiments.

    PubMed

    Jing, Yun; Xiang, Ning

    2008-01-01

    This paper proposes a modified boundary condition to improve the room-acoustic prediction accuracy of a diffusion equation model. Previous boundary conditions for the diffusion equation model have certain limitations which restrict its application to a certain number of room types. The boundary condition employing the Sabine absorption coefficient [V. Valeau et al., J. Acoust. Soc. Am. 119, 1504-1513 (2006)] cannot predict the sound field well when the absorption coefficient is high, while the boundary condition employing the Eyring absorption coefficient [Y. Jing and N. Xiang, J. Acoust. Soc. Am. 121, 3284-3287 (2007); A. Billon et al., Appl. Acoust. 69, (2008)] has a singularity whenever any surface material has an absorption coefficient of 1.0. The modified boundary condition is derived based on an analogy between sound propagation and light propagation. Simulated and experimental data are compared to verify the modified boundary condition in terms of room-acoustic parameter prediction. The results of this comparison suggest that the modified boundary condition is valid for a range of absorption coefficient values and successfully eliminates the singularity problem. PMID:18177146

  18. Anterior Cruciate Ligament Biomechanics During Robotic and Mechanical Simulations of Physiologic and Clinical Motion Tasks: A Systematic Review and Meta-Analysis

    PubMed Central

    Bates, Nathaniel A.; Myer, Gregory D.; Shearn, Jason T.; Hewett, Timothy E.

    2014-01-01

    Investigators use in vitro joint simulations to invasively study the biomechanical behaviors of the anterior cruciate ligament. The aims of these simulations are to replicate physiologic conditions, but multiple mechanisms can be used to drive in vitro motions, which may influence biomechanical outcomes. The objective of this review was to examine, summarize, and compare biomechanical evidence related to anterior cruciate ligament function from in vitro simulations of knee motion. A systematic review was conducted (2004 to 2013) in Scopus, PubMed/Medline, and SPORTDiscus to identify peer-reviewed studies that reported kinematic and kinetic outcomes from in vitro simulations of physiologic or clinical tasks at the knee. Inclusion criteria for relevant studies were articles published in English that reported on whole-ligament anterior cruciate ligament mechanics during the in vitro simulation of physiologic or clinical motions on cadaveric knees that were unaltered outside of the anterior-cruciate-ligament-intact, -deficient, and -reconstructed conditions. A meta-analysis was performed to synthesize biomechanical differences between the anterior-cruciate-ligament-intact and reconstructed conditions. 77 studies met our inclusion/exclusion criteria and were reviewed. Combined joint rotations have the greatest impact on anterior cruciate ligament loads, but the magnitude by which individual kinematic degrees of freedom contribute to ligament loading during in vitro simulations is technique-dependent. Biomechanical data collected in prospective, longitudinal studies corresponds better with robotic-manipulator simulations than mechanical-impact simulations. Robotic simulation indicated that the ability to restore intact anterior cruciate ligament mechanics with anterior cruciate ligament reconstructions was dependent on loading condition and degree of freedom examined. PMID:25547070

  19. Anterior cruciate ligament biomechanics during robotic and mechanical simulations of physiologic and clinical motion tasks: a systematic review and meta-analysis.

    PubMed

    Bates, Nathaniel A; Myer, Gregory D; Shearn, Jason T; Hewett, Timothy E

    2015-01-01

    Investigators use in vitro joint simulations to invasively study the biomechanical behaviors of the anterior cruciate ligament. The aims of these simulations are to replicate physiologic conditions, but multiple mechanisms can be used to drive in vitro motions, which may influence biomechanical outcomes. The objective of this review was to examine, summarize, and compare biomechanical evidence related to anterior cruciate ligament function from in vitro simulations of knee motion. A systematic review was conducted (2004 to 2013) in Scopus, PubMed/Medline, and SPORTDiscus to identify peer-reviewed studies that reported kinematic and kinetic outcomes from in vitro simulations of physiologic or clinical tasks at the knee. Inclusion criteria for relevant studies were articles published in English that reported on whole-ligament anterior cruciate ligament mechanics during the in vitro simulation of physiologic or clinical motions on cadaveric knees that were unaltered outside of the anterior-cruciate-ligament-intact, -deficient, and -reconstructed conditions. A meta-analysis was performed to synthesize biomechanical differences between the anterior-cruciate-ligament-intact and reconstructed conditions. 77 studies met our inclusion/exclusion criteria and were reviewed. Combined joint rotations have the greatest impact on anterior cruciate ligament loads, but the magnitude by which individual kinematic degrees of freedom contribute to ligament loading during in vitro simulations is technique-dependent. Biomechanical data collected in prospective, longitudinal studies corresponds better with robotic-manipulator simulations than mechanical-impact simulations. Robotic simulation indicated that the ability to restore intact anterior cruciate ligament mechanics with anterior cruciate ligament reconstructions was dependent on loading condition and degree of freedom examined. PMID:25547070

  20. Initial condition effects on large scale structure in numerical simulations of plane mixing layers

    NASA Astrophysics Data System (ADS)

    McMullan, W. A.; Garrett, S. J.

    2016-01-01

    In this paper, Large Eddy Simulations are performed on the spatially developing plane turbulent mixing layer. The simulated mixing layers originate from initially laminar conditions. The focus of this research is on the effect of the nature of the imposed fluctuations on the large-scale spanwise and streamwise structures in the flow. Two simulations are performed; one with low-level three-dimensional inflow fluctuations obtained from pseudo-random numbers, the other with physically correlated fluctuations of the same magnitude obtained from an inflow generation technique. Where white-noise fluctuations provide the inflow disturbances, no spatially stationary streamwise vortex structure is observed, and the large-scale spanwise turbulent vortical structures grow continuously and linearly. These structures are observed to have a three-dimensional internal geometry with branches and dislocations. Where physically correlated provide the inflow disturbances a "streaky" streamwise structure that is spatially stationary is observed, with the large-scale turbulent vortical structures growing with the square-root of time. These large-scale structures are quasi-two-dimensional, on top of which the secondary structure rides. The simulation results are discussed in the context of the varying interpretations of mixing layer growth that have been postulated. Recommendations are made concerning the data required from experiments in order to produce accurate numerical simulation recreations of real flows.

  1. Time Accurate Unsteady Pressure Loads Simulated for the Space Launch System at a Wind Tunnel Condition

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.; Brauckmann, Gregory J.; Kleb, Bil; Streett, Craig L; Glass, Christopher E.; Schuster, David M.

    2015-01-01

    Using the Fully Unstructured Three-Dimensional (FUN3D) computational fluid dynamics code, an unsteady, time-accurate flow field about a Space Launch System configuration was simulated at a transonic wind tunnel condition (Mach = 0.9). Delayed detached eddy simulation combined with Reynolds Averaged Naiver-Stokes and a Spallart-Almaras turbulence model were employed for the simulation. Second order accurate time evolution scheme was used to simulate the flow field, with a minimum of 0.2 seconds of simulated time to as much as 1.4 seconds. Data was collected at 480 pressure taps at locations, 139 of which matched a 3% wind tunnel model, tested in the Transonic Dynamic Tunnel (TDT) facility at NASA Langley Research Center. Comparisons between computation and experiment showed agreement within 5% in terms of location for peak RMS levels, and 20% for frequency and magnitude of power spectral densities. Grid resolution and time step sensitivity studies were performed to identify methods for improved accuracy comparisons to wind tunnel data. With limited computational resources, accurate trends for reduced vibratory loads on the vehicle were observed. Exploratory methods such as determining minimized computed errors based on CFL number and sub-iterations, as well as evaluating frequency content of the unsteady pressures and evaluation of oscillatory shock structures were used in this study to enhance computational efficiency and solution accuracy. These techniques enabled development of a set of best practices, for the evaluation of future flight vehicle designs in terms of vibratory loads.

  2. Impact of Uncertainty of Boundary Conditions on Simulations of the Last Millennium

    NASA Astrophysics Data System (ADS)

    LeGrande, A. N.; Tsigaridis, K.

    2014-12-01

    Goddard Institute for Space Studies (GISS)-E2-R sampled the broadest range of boundary conditions for simulations of the last millennium, with a dozen different experiments sampling three different volcanic forcing scenarios, three anthropogenic land use change scenarios, and three different solar (TSI) scenarios. This suite of experiment yields 15,000 years of simulations for the last millennium. Here the forcings of these experiments are distilled down into basic fingerprints of each type of change - volcanic, solar, and, anthropogenic land use - to test whether it is feasible to detect these climate changes in various proxy archives. I will illustrate the difficulty in the detection of any of these changes in individual proxy archives, and establish the minimum critieria (given a perfect simulation) to identify solar minima, volcanic eruptions, and large changes in land use. Further, preliminary new results to illustrate the impact of various degrees of sophistication in applying volcanic forcing on the resultant climate signal will be presented. We will also study the impact of atmospheric composition on climate, by presenting results from atmosphere-only model simulations with the GISS-E2 model, which includes interactive gas-phase chemistry and aerosols at decadal-scale time slices, driven by the millennial-length coupled atmosphere-ocean simulations.

  3. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    SciTech Connect

    Turner, J.P.; Hasfurther, V.

    1992-05-04

    The scope of the research program and the continuation is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 [times] 3.0 [times] 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by Rio Blanco Oil Shale Co., Inc. (RBOSC) through a separate cooperative agreement with the University of Wyoming (UW) to carry out this study. Three of the lysimeters were established at the RBOSC Tract C-a in the Piceance Basin of Colorado. Two lysimeters were established in the Environmental Simulation Laboratory (ESL) at UW. The ESL was specifically designed and constructed so that a large range of climatic conditions could be physically applied to the processed oil shale which was filled in the lysimeter cells.

  4. Formation of Complex Amino Acid Precursors in Simulated Primitive Atmosphere and Their Alteration under Simulated Submarine Hydrothermal Conditions

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kensei; Kurihara, Hironari; Hirako, Tomoaki; Obayashi, Yumiko; Kaneko, Takeo; Takano, Yoshinori; Yoshimura, Yoshitaka

    Since late 1970's a great number of submarine hydrothermal systems (SHSs) has been dis-covered, and they are considered possible sites of chemical evolution and generation of life on the Earth since their discovery in late 1970s. A number of experiments simulating the con-ditions of SHSs were conducted, and abiotic production and polymerization of amino acids were reported. Free amino acids were frequently used as starting materials to examine possible organic reactions in the simulation experiments. In our early studies, not free amino acids but complex amino acids precursors with large molecular weights were formed abiotically from simulated primitive Earth atmosphere (a mixture of CO, N2 and H2 O) (Takano et al., 2004). Such complex organics (hereafter referred as to CNWs) should have been delivered to SHSs in Primitive Ocean, where they were subjected to further alteration. We examined possible alteration of the complex organics in high-temperature high-pressure environments by the su-percritical water flow reactor (SCWFR) (Islam et al.. 2003) and an autoclave. CNWs were quite hydrophilic compounds whose molecular weights were ca. 3000. After heating 573 K for 2 min in the SCWFR, aggregates of organics were formed, which were separated from aque-ous solution with a Nucleopore filter (pore size: 200 nm). We propose the following scenario of chemical evolution: (1) Complex organics including amino acid precursors were formed in primitive atmosphere and/or extraterrestrial environments, (ii) they were delivered to primor-dial SHSs, (iii) hydrothermal alteration occurred in SHSs to give organic aggregates, (iv) quite primitive molecular systems with subtle biological functions were generated in the competition among such aggregates. References: Islam, Md. N., Kaneko, T., and Kobayashi, K (2003). Reactions of Amino Acids with a Newly ConstructedSupercritical Water Flow Reactor Simulating Submarine Hydrothermal Systems. Bull. Chem. Soc. Jpn., 76, 1171. Takano, Y

  5. General continuum boundary conditions for miscible binary fluids from molecular dynamics simulations.

    PubMed

    Denniston, Colin; Robbins, Mark O

    2006-12-01

    Molecular dynamics simulations are used to explore the flow behavior and diffusion of miscible fluids near solid surfaces. The solid produces deviations from bulk fluid behavior that decay over a distance of the order of the fluid correlation length. Atomistic results are mapped onto two types of continuum model: Mesoscopic models that follow this decay and conventional sharp interface boundary conditions for the stress and velocity. The atomistic results, and mesoscopic models derived from them, are consistent with the conventional Marangoni stress boundary condition. However, there are deviations from the conventional Navier boundary condition that states that the slip velocity between wall and fluid is proportional to the strain rate. A general slip boundary condition is derived from the mesoscopic model that contains additional terms associated with the Marangoni stress and diffusion, and is shown to describe the atomistic simulations. The additional terms lead to strong flows when there is a concentration gradient. The potential for using this effect to make a nanomotor or pump is evaluated. PMID:17166010

  6. Organics on Mars: Laboratory studies of organic material under simulated martian conditions

    NASA Astrophysics Data System (ADS)

    ten Kate, Inge Loes

    2006-01-01

    The search for organic molecules and traces of life on Mars has been a major topic in planetary science for several decades, and is the future perspective of several missions to Mars. In order to determine where and what those missions should be looking for, laboratory experiments under simulated Mars conditions have been performed. This thesis describes the effects of simulated martian surface conditions on organic material (amino acids) and living organisms (halophilic archaea). Experiments have been performed to study the stability of thin films of glycine and alanine against UV irradiation under different conditions. Thin films of glycine and alanine have a half-life of 22 ± 5 hours and 3 ± 1 hours, respectively, when extrapolated to Mars-like UV flux levels in vacuum. The presence of a 7 mbar CO2 atmosphere does not affect these destruction rates. Cooling the thin films to 210 K (average Mars temperature) lowers the destruction rate by a factor of 7. The intrinsic amino acid composition of two martian soil analogues, JSC Mars-1 and Salten Skov, has been investigated. The results demonstrated that these analogues are inappropriate for a life-science study in their raw state. Besides amino acids, the response of the halophilic archaea Natronorubrum sp. strain HG-1 to Mars-like conditions, such as low pressure, UV radiation and low temperatures, has been studied. From the results we concluded that this strain would not be a good model organism to survive on the surface of Mars.

  7. Improved Gauge Conditions and Evolution Techniques for Puncture Black Hole Simulations

    NASA Astrophysics Data System (ADS)

    Etienne, Zachariah; Baker, John; Paschalidis, Vasileios; Shapiro, Stuart; Kelly, Bernard

    2014-03-01

    Robust spacetime gauge conditions are critically important to the stability and accuracy of numerical relativity (NR) simulations involving puncture black holes. Most of the NR community continues to use the highly-robust--though nearly decade-old--``moving-puncture gauge conditions'' for such simulations. We present improved gauge conditions and evolution techniques that reduce constraint violations by more than an order of magnitude on adaptive-mesh refinement (AMR) grids. It has been found that high-frequency waves propagating away from puncture black holes (e.g., in binary systems) cross progressively lower levels of refinement until they become under-resolved and reflect off an AMR boundary, leading to noisy gravitational waveforms. Such noise does not converge away cleanly with increasing resolution, effectively setting a hard upper limit on waveform accuracy using puncture techniques at computationally feasible resolutions. We demonstrate that our improved puncture gauge conditions reduce this noise by nearly an order of magnitude, and point to possible directions for future improvements.

  8. Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions.

    PubMed

    Bakir, Adil; Rowland, Steven J; Thompson, Richard C

    2014-02-01

    Microplastics have the potential to uptake and release persistent organic pollutants (POPs); however, subsequent transfer to marine organisms is poorly understood. Some models estimating transfer of sorbed contaminants to organisms neglect the role of gut surfactants under differing physiological conditions in the gut (varying pH and temperature), examined here. We investigated the potential for polyvinylchloride (PVC) and polyethylene (PE) to sorb and desorb (14)C-DDT, (14)C-phenanthrene (Phe), (14)C-perfluorooctanoic acid (PFOA) and (14)C-di-2-ethylhexyl phthalate (DEHP). Desorption rates of POPs were quantified in seawater and under simulated gut conditions. Influence of pH and temperature was examined in order to represent cold and warm blooded organisms. Desorption rates were faster with gut surfactant, with a further substantial increase under conditions simulating warm blooded organisms. Desorption under gut conditions could be up to 30 times greater than in seawater alone. Of the POP/plastic combinations examined Phe with PE gave the highest potential for transport to organisms. PMID:24212067

  9. 3-D simulations to investigate initial condition effects on the growth of Rayleigh-Taylor mixing

    SciTech Connect

    Andrews, Malcolm J

    2008-01-01

    The effect of initial conditions on the growth rate of turbulent Rayleigh-Taylor (RT) mixing has been studied using carefully formulated numerical simulations. An integrated large-eddy simulation (ILES) that uses a finite-volume technique was employed to solve the three-dimensional incompressible Euler equations with numerical dissipation. The initial conditions were chosen to test the dependence of the RT growth parameters ({alpha}{sub b}, {alpha}{sub s}) on variations in (a) the spectral bandwidth, (b) the spectral shape, and (c) discrete banded spectra. Our findings support the notion that the overall growth of the RT mixing is strongly dependent on initial conditions. Variation in spectral shapes and bandwidths are found to have a complex effect of the late time development of the RT mixing layer, and raise the question of whether we can design RT transition and turbulence based on our choice of initial conditions. In addition, our results provide a useful database for the initialization and development of closures describing RT transition and turbulence.

  10. Gaseous exhaust emissions from a JT8D-109 turbofan engine at simulated cruise flight conditions

    NASA Technical Reports Server (NTRS)

    Diehl, L. A.; Holdeman, J. D.

    1975-01-01

    Gaseous emissions from a JT8D-109 turbofan engine were measured in an altitude facility at four simulated cruise flight conditions: Mach 0.8 at altitudes of 9.1, 10, 7, and 12.2 km and Mach 0.9 at 10.7 km. Engine inlet air temperature was held constant at 283 K for all tests. Emissions measurements were made at nominally 6 cm intervals across the horizontal diameter of the engine exhaust nozzle with a single-point traversing gas sample probe. Measured emissions of decreased with increasing altitude from an emission index of 10.4 to one of 8.3, while carbon monoxide increased with increasing altitude from an emission index of 1.6 to one of 4.4. Unburned hydrocarbon emissions were essentially negligible for all flight conditions. Since the engine inlet air temperatures were not correctly simulated, the NOx emission indices were corrected to true altitude conditions by using correlating parameters for changes in combustor inlet temperature, pressure, and temperature rise. The correction was small at the lowest altitude. At the 10.7 and 12.2 km, Mach 0.8 test conditions the correction decreased the measured values by 1 emission index.

  11. Development and implementation of a clinical pathway approach to simulation-based training for foregut surgery

    PubMed Central

    Miyasaka, Kiyoyuki W; Buchholz, Joseph; LaMarra, Denise; Karakousis, Giorgos C; Aggarwal, Rajesh

    2015-01-01

    Introduction Contemporary demands on resident education call for integration of simulation. We designed and implemented a simulation-based curriculum for PGY1 surgery residents to teach technical and non-technical skills within a clinical pathway approach for a foregut surgical patient, from outpatient visit through surgery and post-op follow-up. Methods The three-day curriculum for groups of six residents comprises a combination of standardized patient (SP) encounters, didactic sessions, and hands-on training. The curriculum is underpinned by a summative simulation “pathway” repeated on days 1 and 3. The “pathway” is a series of simulated pre-op, intra-op, and post-op encounters following a single patient through a disease process. The resident sees an SP in clinic presenting with distal gastric cancer, then enters an operating room to perform a gastro-jejunostomy on a porcine tissue model. Finally, the resident engages in a simulated post-operative visit. All encounters are rated by faculty members and the residents themselves, using standardized assessment forms endorsed by the American Board of Surgery. Results 18 first-year residents underwent this curriculum. Faculty ratings of overall operative performance significantly improved following the three-day module. Ratings of preoperative and postoperative performance were not significantly changed in three days. Resident self-ratings significantly improved for all encounters assessed, as did reported confidence in meeting defined learning objectives. Conclusions Conventional surgical simulation training focuses on technical skills in isolation. Our novel “pathway” curriculum targets an important gap in training methodologies by placing both technical and non-technical skills in their clinical context as part of managing a surgical patient. Results indicate consistent improvements in assessments of performance as well as confidence and support its continued usage to educate surgery residents in

  12. A simulation framework for mapping risks in clinical processes: the case of in-patient transfers

    PubMed Central

    Ong, Mei-Sing; Westbrook, Johanna I; Magrabi, Farah; Coiera, Enrico; Wobcke, Wayne

    2011-01-01

    Objective To model how individual violations in routine clinical processes cumulatively contribute to the risk of adverse events in hospital using an agent-based simulation framework. Design An agent-based simulation was designed to model the cascade of common violations that contribute to the risk of adverse events in routine clinical processes. Clinicians and the information systems that support them were represented as a group of interacting agents using data from direct observations. The model was calibrated using data from 101 patient transfers observed in a hospital and results were validated for one of two scenarios (a misidentification scenario and an infection control scenario). Repeated simulations using the calibrated model were undertaken to create a distribution of possible process outcomes. The likelihood of end-of-chain risk is the main outcome measure, reported for each of the two scenarios. Results The simulations demonstrate end-of-chain risks of 8% and 24% for the misidentification and infection control scenarios, respectively. Over 95% of the simulations in both scenarios are unique, indicating that the in-patient transfer process diverges from prescribed work practices in a variety of ways. Conclusions The simulation allowed us to model the risk of adverse events in a clinical process, by generating the variety of possible work subject to violations, a novel prospective risk analysis method. The in-patient transfer process has a high proportion of unique trajectories, implying that risk mitigation may benefit from focusing on reducing complexity rather than augmenting the process with further rule-based protocols. PMID:21486883

  13. A systems engineering approach to validation of a pulmonary physiology simulator for clinical applications

    PubMed Central

    Das, A.; Gao, Z.; Menon, P. P.; Hardman, J. G.; Bates, D. G.

    2011-01-01

    Physiological simulators which are intended for use in clinical environments face harsh expectations from medical practitioners; they must cope with significant levels of uncertainty arising from non-measurable parameters, population heterogeneity and disease heterogeneity, and their validation must provide watertight proof of their applicability and reliability in the clinical arena. This paper describes a systems engineering framework for the validation of an in silico simulation model of pulmonary physiology. We combine explicit modelling of uncertainty/variability with advanced global optimization methods to demonstrate that the model predictions never deviate from physiologically plausible values for realistic levels of parametric uncertainty. The simulation model considered here has been designed to represent a dynamic in vivo cardiopulmonary state iterating through a mass-conserving set of equations based on established physiological principles and has been developed for a direct clinical application in an intensive-care environment. The approach to uncertainty modelling is adapted from the current best practice in the field of systems and control engineering, and a range of advanced optimization methods are employed to check the robustness of the model, including sequential quadratic programming, mesh-adaptive direct search and genetic algorithms. An overview of these methods and a comparison of their reliability and computational efficiency in comparison to statistical approaches such as Monte Carlo simulation are provided. The results of our study indicate that the simulator provides robust predictions of arterial gas pressures for all realistic ranges of model parameters, and also demonstrate the general applicability of the proposed approach to model validation for physiological simulation. PMID:20538754

  14. Conditional simulation of Thwaites Glacier bed topography for flow models: Incorporating inhomogeneous statistics and channelized morphology

    NASA Astrophysics Data System (ADS)

    Goff, J. A.; Powell, E.; Young, D. A.; Blankenship, D. D.

    2012-12-01

    Thwaites Glacier, Antarctica, is a large glacier experiencing rapid change whose mass could, if disgorged into the ocean, lead to global sea level rise on the order of 1 m. Efforts to model flow for Thwaites Glacier are strongly dependent on an accurate topographic model of the ice bed. Airborne radar data collected in 2004/5 provides 35,000 line km of bed topography measurements sampled 20 m along track on a grid survey covering much of the glacier. However, at ~15 km track spacing, this extensive data set nevertheless misses considerable important detail, particularly: (1) resolution of mesoscale channelized morphology that can guide glacier flow; and (2) resolution of small-scale roughness between the track lines that is critical for determining topographic resistance to flow. Both issues are addressed using a hybrid conditional simulation methodology that merges an unconditional stochastic realization surface with a mean surface. Channelized morphology is established in the mean surface using an algorithm developed earlier for interpolating sinuous river channels. This algorithm applies a coordinate transformation to channel picks, where the X-axis is distance along-channel, and the Y-axis is distance across-channel. Interpolation in channel space ensures along-channel continuity where interpolation in Cartesian space would not. Inverse transformation brings the interpolated channel back into Cartesian space, where a spline-in-tension interpolation completes the mean surface for areas not identified as channels. The statistical characteristics of the bed topography are modeled with an isotropic von Kármán spectrum, which specifies rms height, characteristic scale, and fractal dimension. These parameters are estimated from the data using a covariance analysis, and are determined as a function of position across the grid. RMS heights and characteristic scales are well resolved by this estimation, whereas fractal dimension is better constrained through an

  15. Using computer simulations and focus groups for planned change in prenatal clinics.

    PubMed

    Lowry, L W; Callahan, A L; Philippe, T

    2001-01-01

    The Colleges of Nursing and Engineering in a southwest Florida university combined efforts to design a project to use time/motion techniques and focus groups to assess patent flow and effective and efficient use of human resources in public health clinics. Data for 877 observations were entered into a computer simulation program that displayed alternative configurations for health resource management. Information from focus groups was used to plan for ways to use clinic wait time more effectively. This article describes data collection and findings. PMID:11898674

  16. Accuracy of the Frensley inflow boundary condition for Wigner equations in simulating resonant tunneling diodes

    SciTech Connect

    Jiang Haiyan; Cai Wei; Tsu, Raphael

    2011-03-01

    In this paper, the accuracy of the Frensley inflow boundary condition of the Wigner equation is analyzed in computing the I-V characteristics of a resonant tunneling diode (RTD). It is found that the Frensley inflow boundary condition for incoming electrons holds only exactly infinite away from the active device region and its accuracy depends on the length of contacts included in the simulation. For this study, the non-equilibrium Green's function (NEGF) with a Dirichlet to Neumann mapping boundary condition is used for comparison. The I-V characteristics of the RTD are found to agree between self-consistent NEGF and Wigner methods at low bias potentials with sufficiently large GaAs contact lengths. Finally, the relation between the negative differential conductance (NDC) of the RTD and the sizes of contact and buffer in the RTD is investigated using both methods.

  17. Measurement of exhaust emissions from two J-58 engines at simulated supersonic cruise flight conditions

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.

    1976-01-01

    Emissions of total oxides of nitrogen, unburned hydrocarbons, carbon monoxide, and carbon dioxide from two J-58 afterburning turbojet engines at simulated high-altitude flight conditions are reported. Test conditions included flight speeds from Mach 2 to 3 at altitudes from 16 to 23 km. For each flight condition, exhaust measurements were made for four or five power levels from maximum power without afterburning through maximum afterburning. The data show that exhaust emissions vary with flight speed, altitude, power level, and radial position across the exhaust. Oxides of nitrogen (NOX) emissions decreased with increasing altitude, and increased with increasing flight speed. NOX emission indices with afterburning were less than half the value without afterburning. Carbon monoxide and hydrocarbon emissions increased with increasing altitude, and decreased with increasing flight speed. Emissions of these species were substantially higher with afterburning than without.

  18. Measurement of exhaust emissions from two J-58 engines at simulated supersonic cruise flight conditions

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.

    1976-01-01

    Emissions of total oxides of nitrogen, unburned hydrocarbons, carbon monoxide, and carbon dioxide from two J-58 afterburning turbojet engines at simulated high-altitude flight conditions are reported. Test conditions included flight speeds from Mach 2 to 3 at altitudes from 16 to 23 km. For each flight condition, exhaust measurements were made for four or five power levels from maximum power without afterburning through maximum afterburning. The data show that exhaust emissions vary with flight speed, altitude, power level, and radial position across the exhaust. Oxides of nitrogen emissions decreased with increasing altitude and increased with increasing flight speed. NO(x) emission indices with afterburning were less than half the value without afterburning. Carbon monoxide and hydrocarbon emissions increased with increasing altitude and decreased with increasing flight speed. Emissions of these species were substantially higher with afterburning than without.

  19. Pulmonary Hemodynamics Simulations Before Stage 2 Single Ventricle Surgery: Patient-Specific Parameter Identification and Clinical Data Assessment.

    PubMed

    Arbia, Gregory; Corsini, Chiara; Baker, Catriona; Pennati, Giancarlo; Hsia, Tain-Yen; Vignon-Clementel, Irene E

    2015-09-01

    clinical data to define boundary conditions for patient-specific 3D models in pre-stage 2 single ventricle circulations and (2) how simulations can help to check the coherence of clinical data, or provide insights to clinicians that are otherwise difficult to measure, such as in the presence of kinks. Finally, the choice of steady vs. pulsatile tuning, limitations and possible extensions of this work are discussed. PMID:26577360

  20. The salt marsh vegetation spread dynamics simulation and prediction based on conditions optimized CA

    NASA Astrophysics Data System (ADS)

    Guan, Yujuan; Zhang, Liquan

    2006-10-01

    The biodiversity conservation and management of the salt marsh vegetation relies on processing their spatial information. Nowadays, more attentions are focused on their classification surveying and describing qualitatively dynamics based on RS images interpreted, rather than on simulating and predicting their dynamics quantitatively, which is of greater importance for managing and planning the salt marsh vegetation. In this paper, our notion is to make a dynamic model on large-scale and to provide a virtual laboratory in which researchers can run it according requirements. Firstly, the characteristic of the cellular automata was analyzed and a conclusion indicated that it was necessary for a CA model to be extended geographically under varying conditions of space-time circumstance in order to make results matched the facts accurately. Based on the conventional cellular automata model, the author introduced several new conditions to optimize it for simulating the vegetation objectively, such as elevation, growth speed, invading ability, variation and inheriting and so on. Hence the CA cells and remote sensing image pixels, cell neighbors and pixel neighbors, cell rules and nature of the plants were unified respectively. Taking JiuDuanSha as the test site, where holds mainly Phragmites australis (P.australis) community, Scirpus mariqueter (S.mariqueter) community and Spartina alterniflora (S.alterniflora) community. The paper explored the process of making simulation and predictions about these salt marsh vegetable changing with the conditions optimized CA (COCA) model, and examined the links among data, statistical models, and ecological predictions. This study exploited the potential of applying Conditioned Optimized CA model technique to solve this problem.

  1. Late Post-Conditioning with Sevoflurane after Cardiac Surgery - Are Surrogate Markers Associated with Clinical Outcome?

    PubMed Central

    Bonvini, John M.; Beck-Schimmer, Beatrice; Kuhn, Sonja J.; Graber, Sereina M.

    2015-01-01

    Introduction In a recent randomized controlled trial our group has demonstrated in 102 patients that late post-conditioning with sevoflurane performed in the intensive care unit after surgery involving extracorporeal circulation reduced damage to cardiomyocytes exposed to ischemia reperfusion injury. On the first post-operative day the sevoflurane patients presented with lower troponin T values when compared with those undergoing propofol sedation. In order to assess possible clinical relevant long-term implications in patients enrolled in this study, we performed the current retrospective analysis focusing on cardiac and non-cardiac events during the first 6 months after surgery. Methods All patients who had successfully completed the late post-conditioning trial were included into this follow-up. Our primary and secondary endpoints were the proportion of patients experiencing cardiac and non-cardiac events, respectively. Additionally, we were interested in assessing therapeutic interventions such as initiation or change of drug therapy, interventional treatment or surgery. Results Of 102 patients analyzed in the primary study 94 could be included in this follow-up. In the sevoflurane group (with 41 patients) 16 (39%) experienced one or several cardiac events within 6 months after cardiac surgery, in the propofol group (with 53 patients) 19 (36%, p=0.75). Four patients (9%) with sevoflurane vs. 7 (13%) with propofol sedation had non-cardiac events (p=0.61). While a similar percentage of patients suffered from cardiac and/or non-cardiac events, only 12 patients in the sevoflurane group compared to 20 propofol patients needed a therapeutic intervention (OR: 0.24, 95% CI: 0.04-1.43, p=0.12). A similar result was found for hospital admissions: 2 patients in the sevoflurane group had to be re-admitted to the hospital compared to 8 in the propofol group (OR 0.23, 95% CI: 0.04-1.29, p=0.10). Conclusions Sevoflurane does not seem to provide protection with regard to the

  2. The prevalence of refractive conditions in Puerto Rican adults attending an eye clinic system

    PubMed Central

    Rodriguez, Neisha M.; Romero, Angel. F.

    2014-01-01

    Purpose To determine the prevalence of refractive conditions in the adult population that visited primary care optometry clinics in Puerto Rico. Methods A retrospective cross-sectional study of patients examined at the Inter American University of Puerto Rico School of Optometry Eye Institute Clinics between 2004 and 2010. Subjects considered had best corrected visual acuity by standardized subjective refraction of 20/40 or better. The refractive errors were classified by the spherical equivalent (SE): sphere+½ cylinder. Myopia was classified as a SE>−0.50 D, hyperopia as a SE>+0.50  D, and emmetropia as a SE between −0.50 and +0.50, both included. Astigmatism equal or higher than 0.25 D in minus cylinder form was used. Patients with documented history of cataract extraction (pseudophakia or aphakia), amblyopia, refractive surgery or other corneal/ocular surgery were excluded from the study. Results A total of 784 randomly selected subjects older than 40 years of age were selected. The estimated prevalence (95%, confidence interval) among all subjects was hyperopia 51.5% (48.0–55.0), emmetropia 33.8% (30.5–37.2), myopia 14.7% (12.1–17.2) and astigmatism 69.6% (68.8–73.3). Hyperopia was more common in females than males although the difference was not statistically significant. The mean spherical equivalent values was hyperopic until 70 y/o and decreased slightly as the population ages. Conclusion Hyperopia is the most common refractive error and its prevalence and seems to increase among the aging population who visited the clinics. Further programs and studies must be developed to address the refractive errors needs of the adult Puerto Rican population. PMID:25000872

  3. Efficacious and Clinically Relevant Conditioned Medium of Human Adipose-derived Stem Cells for Therapeutic Angiogenesis

    PubMed Central

    Bhang, Suk Ho; Lee, Seahyoung; Shin, Jung-Youn; Lee, Tae-Jin; Jang, Hyeon-Ki; Kim, Byung-Soo

    2014-01-01

    Using stem cell–conditioned medium (CM) might be a viable alternative to stem cell transplantation, which is often hampered by low grafting efficiency and potential tumorigenesis, but the concentrations of angiogenic growth factors in CM are too low for therapeutic use and some components of the medium are not for human use. We used three-dimensional (3D) spheroid culture of human adipose-derived stem cells (ADSCs) with clinically relevant medium composed of amino acids, vitamins, glucose, and human serum to produce clinically relevant CM containing angiogenic and/or antiapoptotic factors such as vascular endothelial cell growth factor, fibroblast growth factor 2, hepatocyte growth factor, and chemokine (C-X-C motif) ligand 12. The concentrations of these factors were 23- to 27-fold higher than that in CM produced by conventional monolayer culture. Compared with injection of either monolayer culture CM or human ADSC, injection of spheroid culture CM to an ischemic region in mice significantly enhanced endothelial cell growth, CD34+/PTPRC− (endothelial progenitor) cell mobilization from bone marrow, and bone marrow cell homing to the ischemic region, resulting in improved blood vessel density, limb salvage, and blood perfusion in a mouse hindlimb ischemia model. The stem cell CM developed in this study will likely be an effective alternative to conventional stem cell transplantation therapy. PMID:24413377

  4. Recurrent Invasive Pneumococcal Disease in Children: Underlying Clinical Conditions, and Immunological and Microbiological Characteristics

    PubMed Central

    Alsina, Laia; Basteiro, Maria G.; de Paz, Hector D.; Iñigo, Melania; de Sevilla, Mariona F.; Triviño, Miriam; Juan, Manel; Muñoz-Almagro, Carmen

    2015-01-01

    Purpose Clinical, immunological and microbiological characteristics of recurrent invasive pneumococcal disease (IPD) in children were evaluated, differentiating relapse from reinfection, in order to identify specific risk factors for both conditions. Methods All patients <18 years-old with recurrent IPD admitted to a tertiary-care pediatric center from January 2004 to December 2011 were evaluated. An episode of IPD was defined as the presence of clinical findings of infection together with isolation and/or pneumococcal DNA detection by Real-Time PCR in any sterile body fluid. Recurrent IPD was defined as 2 or more episodes in the same individual at least 1 month apart. Among recurrent IPD, we differentiated relapse (same pneumococcal isolate) from reinfection. Results 593 patients were diagnosed with IPD and 10 patients died. Among survivors, 23 episodes of recurrent IPD were identified in 10 patients (1.7%). Meningitis was the most frequent form of recurrent IPD (10 episodes/4 children) followed by recurrent empyema (8 episodes/4 children). Three patients with recurrent empyema caused by the same pneumococcal clone ST306 were considered relapses and showed high bacterial load in their first episode. In contrast, all other episodes of recurrent IPD were considered reinfections. Overall, the rate of relapse of IPD was 0.5% and the rate of reinfection 1.2%. Five out of 7 patients with reinfection had an underlying risk factor: cerebrospinal fluid leak (n = 3), chemotherapy treatment (n = 1) and a homozygous mutation in MyD88 gene (n = 1). No predisposing risk factors were found in the remainder. Conclusions recurrent IPD in children is a rare condition associated with an identifiable risk factor in case of reinfection in almost 80% of cases. In contrast, recurrent IPD with pleuropneumonia is usually a relapse of infection. PMID:25738983

  5. Informed conditioning on clinical covariates increases power in case-control association studies.

    PubMed

    Zaitlen, Noah; Lindström, Sara; Pasaniuc, Bogdan; Cornelis, Marilyn; Genovese, Giulio; Pollack, Samuela; Barton, Anne; Bickeböller, Heike; Bowden, Donald W; Eyre, Steve; Freedman, Barry I; Friedman, David J; Field, John K; Groop, Leif; Haugen, Aage; Heinrich, Joachim; Henderson, Brian E; Hicks, Pamela J; Hocking, Lynne J; Kolonel, Laurence N; Landi, Maria Teresa; Langefeld, Carl D; Le Marchand, Loic; Meister, Michael; Morgan, Ann W; Raji, Olaide Y; Risch, Angela; Rosenberger, Albert; Scherf, David; Steer, Sophia; Walshaw, Martin; Waters, Kevin M; Wilson, Anthony G; Wordsworth, Paul; Zienolddiny, Shanbeh; Tchetgen, Eric Tchetgen; Haiman, Christopher; Hunter, David J; Plenge, Robert M; Worthington, Jane; Christiani, David C; Schaumberg, Debra A; Chasman, Daniel I; Altshuler, David; Voight, Benjamin; Kraft, Peter; Patterson, Nick; Price, Alkes L

    2012-01-01

    Genetic case-control association studies often include data on clinical covariates, such as body mass index (BMI), smoking status, or age, that may modify the underlying genetic risk of case or control samples. For example, in type 2 diabetes, odds ratios for established variants estimated from low-BMI cases are larger than those estimated from high-BMI cases. An unanswered question is how to use this information to maximize statistical power in case-control studies that ascertain individuals on the basis of phenotype (case-control ascertainment) or phenotype and clinical covariates (case-control-covariate ascertainment). While current approaches improve power in studies with random ascertainment, they often lose power under case-control ascertainment and fail to capture available power increases under case-control-covariate ascertainment. We show that an informed conditioning approach, based on the liability threshold model with parameters informed by external epidemiological information, fully accounts for disease prevalence and non-random ascertainment of phenotype as well as covariates and provides a substantial increase in power while maintaining a properly controlled false-positive rate. Our method outperforms standard case-control association tests with or without covariates, tests of gene x covariate interaction, and previously proposed tests for dealing with covariates in ascertained data, with especially large improvements in the case of case-control-covariate ascertainment. We investigate empirical case-control studies of type 2 diabetes, prostate cancer, lung cancer, breast cancer, rheumatoid arthritis, age-related macular degeneration, and end-stage kidney disease over a total of 89,726 samples. In these datasets, informed conditioning outperforms logistic regression for 115 of the 157 known associated variants investigated (P-value = 1 × 10(-9)). The improvement varied across diseases with a 16% median increase in χ(2) test statistics and a

  6. Simulation of Deep Water Renewal in Crater Lake, Oregon, USA under Current and Future Climate Conditions

    NASA Astrophysics Data System (ADS)

    Piccolroaz, S.; Wood, T. M.; Wherry, S.; Girdner, S.

    2015-12-01

    We applied a 1-dimensional lake model developed to simulate deep mixing related to thermobaric instabilities in temperate lakes to Crater Lake, a 590-m deep caldera lake in Oregon's Cascade Range known for its stunning deep blue color and extremely clear water, in order to determine the frequency of deep water renewal in future climate conditions. The lake model was calibrated with 6 years of water temperature profiles, and then simulated 10 years of validation data with an RMSE ranging from 0.81°C at 50 m depth to 0.04°C at 350-460 m depth. The simulated time series of heat content in the deep lake accurately captured extreme years characterized by weak and strong deep water renewal. The lake model uses wind speed and lake surface temperature (LST) as boundary conditions. LST projections under six climate scenarios from the CMIP5 intermodel comparison project (2 representative concentration pathways X 3 general circulation models) were evaluated with air2water, a simple lumped model that only requires daily values of downscaled air temperature. air2water was calibrated with data from 1993-2011, resulting in a RMSE between simulated and observed daily LST values of 0.68°C. All future climate scenarios project increased water temperature throughout the water column and a substantive reduction in the frequency of deepwater renewal events. The least extreme scenario (CNRM-CM5, RCP4.5) projects the frequency of deepwater renewal events to decrease from about 1 in 2 years in the present to about 1 in 3 years by 2100. The most extreme scenario (HadGEM2-ES, RCP8.5) projects the frequency of deepwater renewal events to be less than 1 in 7 years by 2100 and lake surface temperatures never cooling to less than 4°C after 2050. In all RCP4.5 simulations the temperature of the entire water column is greater than 4°C for increasing periods of time. In the RCP8.5 simulations, the temperature of the entire water column is greater than 4°C year round by the year 2060 (HadGEM2

  7. Physiological Responses and Performance Analysis Difference between Official and Simulated Karate Combat Conditions

    PubMed Central

    Chaabène, Helmi; Mkaouer, Bessem; Franchini, Emerson; Souissi, Nafaa; Selmi, Mohamed Amine; Nagra, Yassine; Chamari, Karim

    2013-01-01

    Purpose This study aimed to compare physiological responses and time-motion analysis between official and simulated karate combat. Methods Ten high-level karatekas participated in this study, which included official and simulated karate combat. Results Karatekas used more upper-limb attack techniques during official combat compared to simulated ones (6±3 vs 3±1; P=0.05, respectively). For official and simulated karate matches, the numbers of high-intensity actions (i.e. offensive and defensive fighting activity) were 14±6 and 18±5, respectively (P>0.05), lasting from <1s to 5s each. Total fighting activity phase was lower during official compared to simulated matches (21.0±8.2s vs 30.4±9.9s, P<0.01, respectively). Effort (10.0±2.8s) to rest (11.9±2.7s) ratio (E:R) was 1:1 and high-intensity actions (1.6±0.3s) to rest (11.9±2.7s) ratio was higher than 1:7 during simulated combat. During official karate match, the activity and rest duration were 10.0±3.4s and 16.2±4.1s, respectively (E:R ratio 1:1.5), while high-intensity actions were 1.5±0.3s, resulting in an E:R ratio of 1:11. Blood lactate concentration was higher during official (11.14±1.82 mmol.l-1) compared to simulated karate combat (7.80±2.66 mmol.l-1) (P<0.05). Subjective perceived exertion differed significantly between official and simulated combat (14±2 vs. 12±2; P<0.05, respectively). The majority of karatekas’ perceived exertion was higher in the lower limb muscle groups irrespective of the karate combat condition. Conclusion Official and simulated matches differ considerably, therefore coaches should create new strategies during training sessions to achieve the same effort and pause profile of competitive matches and/or that athletes should be submitted to frequent competitions to adapt themselves to the profile of this event. PMID:24868428

  8. Site characterization, visualization, and uncertainty assessment using zonal kriging and conditional simulation

    SciTech Connect

    Wingle, W.L.

    1996-12-31

    When evaluating a site, whether for oil, minerals, or contaminants in ground water, a principle concern is the distribution of material properties. A traditional approach has been to apply geostatistical methods such as kriging or conditional simulation. These approaches are based on the assumption of stationarity (i.e. that the spatial variation of properties is consistent across the site). At many sites, the stationarity assumption is not valid and can lead to inaccurate results. One approach to circumvent this limitation is to divide the area into zones where the stationarity assumptions are reasonable, krige each zone, and manually merge the results together. This approach has three major draw backs, (1) boundaries between zones are abrupt, (2) the merging process is tedious, and (3) there is no way to manage{open_quote}gradational{close_quote} boundaries. An integrated system which allows a modeler to: (1) define multiple, distinct zones within a model; (2) define zonal inter-relationships (e.g. Zone A grades into zone B. Zone C and Zone D have a sharp contact), and model the results using simple or ordinary kriging, or conditional simulation is presented. This technique is integrated into a modeling package which allows users to examine basic site statistics, develop and model semivariograms, krige and simulate material properties, model ground water flow and contaminant transport, assess risk or uncertainty, and visualize results with 2D, 2-1/2D, and 3D tools.

  9. Site characterization, visualization, and uncertainty assessment using zonal kriging and conditional simulation

    SciTech Connect

    Wingle, W.L. )

    1996-01-01

    When evaluating a site, whether for oil, minerals, or contaminants in ground water, a principle concern is the distribution of material properties. A traditional approach has been to apply geostatistical methods such as kriging or conditional simulation. These approaches are based on the assumption of stationarity (i.e. that the spatial variation of properties is consistent across the site). At many sites, the stationarity assumption is not valid and can lead to inaccurate results. One approach to circumvent this limitation is to divide the area into zones where the stationarity assumptions are reasonable, krige each zone, and manually merge the results together. This approach has three major draw backs, (1) boundaries between zones are abrupt, (2) the merging process is tedious, and (3) there is no way to manage[open quote]gradational[close quote] boundaries. An integrated system which allows a modeler to: (1) define multiple, distinct zones within a model; (2) define zonal inter-relationships (e.g. Zone A grades into zone B. Zone C and Zone D have a sharp contact), and model the results using simple or ordinary kriging, or conditional simulation is presented. This technique is integrated into a modeling package which allows users to examine basic site statistics, develop and model semivariograms, krige and simulate material properties, model ground water flow and contaminant transport, assess risk or uncertainty, and visualize results with 2D, 2-1/2D, and 3D tools.

  10. Loads on steam generator tubes during simulated loss-of-coolant accident conditions. Final report. [PWR

    SciTech Connect

    Guerrero, H.N.; Hiestand, J.W.; Rossano, F.V.; Shah, P.K.; Thakkar, J.G.

    1982-11-01

    This report presents the work performed to verify the CEFLASH digital computer code modeling of the hydro-dynamic loads in a steam generator tube during a loss-of-coolant accident (LOCA). The test loop simulated the primary side thermal-hydraulic conditions in an operational nuclear steam generator. The loop consisted of 5 full size double 90/sup 0/ bend tubes and steam generator plena, a pressurizer, a reactor resistance simulator, a heater, a pump, and associated pipes and valves to complete the system. The tubes used were of typical length and the same outside diameter as those used in C-E steam generators. Prototypical supports were provided for the bundle of 5 tubes. Cold leg guillotine breaks were simulated using quick opening valve and rupture disks. Break opening times ranged from less than 1 msec to as much as 67 milliseconds. The loop instrumentation was designed to measure the transient pressure history at various locations and monitor the structural response of the tube to the LOCA hydrodynamic loading. A series of blowdown tests was performed for different operating and boundary conditions. Analytically predicted transient pressure histories and the differential pressure history across the tube span were compared with the experimental data.

  11. Spatial Estimation, Data Assimilation and Stochastic Conditional Simulation using the Counterpropagation Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Besaw, L. E.; Rizzo, D. M.; Boitnoitt, G. N.

    2006-12-01

    Accurate, yet cost effective, sites characterization and analysis of uncertainty are the first steps in remediation efforts at sites with subsurface contamination. From the time of source identification to the monitoring and assessment of a remediation design, the management objectives change, resulting in increased costs and the need for additional data acquisition. Parameter estimation is a key component in reliable site characterization, contaminant flow and transport predictions, plume delineation and many other data management goals. We implement a data-driven parameter estimation technique using a counterpropagation Artificial Neural Network (ANN) that is able to incorporate multiple types of data. This method is applied to estimates of geophysical properties measured on a slab of Berea sandstone and delineation of the leachate plume migrating from a landfill in upstate N.Y. The estimates generated by the ANN have been found to be statistically similar to estimates generated using conventional geostatistical kriging methods. The associated parameter uncertainty in site characterization, due to sparsely distributed samples (spatial or temporal) and incomplete site knowledge, is of major concern in resource mining and environmental engineering. We also illustrate the ability of the ANN method to perform conditional simulation using the spatial structure of parameters identified with semi-variogram analysis. This method allows for the generation of simulations that respect the observed measurement data, as well as the data's underlying spatial structure. The method of conditional simulation is used in a 3-dimensional application to estimate the uncertainty of soil lithology.

  12. Aging and the detection of imminent collisions under simulated fog conditions

    PubMed Central

    Ni, Rui; Bian, Zheng; Guindon, Amy; Andersen, George J.

    2012-01-01

    The present study examined age-related differences in collision detection performance when contrast of the driving scene was reduced by simulated fog. Older and younger drivers were presented with a collision detection scenario in a simulator in which an object moved at a constant speed on a linear trajectory towards the driver. Drivers were shown part of the motion path of an approaching object that would eventually either collide with or pass by the driver and were required to determine whether or not the object would collide with the driver. Driver motion was either stationary or moving along a linear path down the roadway. A no fog condition and three different levels of fog were examined. Detection performance decreased when dense fog was simulated for older but not for younger observers. An age-related decrement was also found with shorter display durations (longer time to contact). When the vehicle was moving decrements in performance were observed for both younger and older drivers. These results suggest that under inclement weather conditions with reduced visibility, such as fog, older drivers may have an increased crash risk due to a decreased ability to detect impending collision events. PMID:23036430

  13. Experimental verification of boundary conditions for numerical simulation of airflow in a benchmark ventilation channel

    NASA Astrophysics Data System (ADS)

    Lizal, Frantisek; Niedoba, Pavel; Seda, Libor; Jedelsky, Jan; Jicha, Miroslav

    2016-03-01

    Correct definition of boundary conditions is crucial for the appropriate simulation of a flow. It is a common practice that simulation of sufficiently long upstream entrance section is performed instead of experimental investigation of the actual conditions at the boundary of the examined area, in the case that the measurement is either impossible or extremely demanding. We focused on the case of a benchmark channel with ventilation outlet, which models a regular automotive ventilation system. At first, measurements of air velocity and turbulence intensity were performed at the boundary of the examined area, i.e. in the rectangular channel 272.5 mm upstream the ventilation outlet. Then, the experimentally acquired results were compared with results obtained by numerical simulation of further upstream entrance section defined according to generally approved theoretical suggestions. The comparison showed that despite the simple geometry and general agreement of average axial velocity, certain difference was found in the shape of the velocity profile. The difference was attributed to the simplifications of the numerical model and the isotropic turbulence assumption of the used turbulence model. The appropriate recommendations were stated for the future work.

  14. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1991-01-01

    Laboratory measurements of microwave and millimeter wave properties of the simulated atmosphere of the outer planets and their satellites has continued. One of the focuses is on the development of a radiative transfer model of the Jovian atmosphere at wavelengths from 1 mm to 10 cm. This modeling effort led to laboratory measurements of the millimeter wave opacity of hydrogen sulfide (H2S) under simulated Jovian conditions. Descriptions of the modeling effort, the Laboratory experiment, and the observations are presented. Correlative studies of measurements with Pioneer-Venus radio occultation measurements with longer wavelength emission measurements have provided new ways for characterizing temporal and spatial variations in the abundance of both gases H2SO4 and SO2, and for modeling their roles in the subcloud atmosphere. Laboratory measurements were conducted on 1.35 cm (and 13 cm) opacity of gaseous SO2 and absorptivity of gaseous SO2 at the 3.2 mm wavelength under simulated Venus conditions. Laboratory measurements were completed on millimeter wave dielectric properties of liquid H2SO4, in order to model the effects of the opacity of the clouds of Venus onto millimeter wave emission spectrum.

  15. Inactivation of enteropathogenic E. coli by solar disinfection (SODIS) under simulated sunlight conditions

    NASA Astrophysics Data System (ADS)

    Ubomba-Jaswa, E.; Boyle, M. A. R.; McGuigan, K. G.

    2008-02-01

    Solar Disinfection (SODIS) is a low cost water treatment method currently used in communities that do not have year round access to safe water. However, there is still reluctance in widespread adoption of this treatment method due to a number of limitations. An important limitation is the lack of SODIS inactivation studies on some waterborne pathogens in the developing world. SODIS inactivation of enteropathogenic E. coli (EPEC), a major cause of infantile diarrhoea is reported for the first time under simulated sunlight conditions and following a natural temperature profile. EPEC was exposed to simulated sunlight (885Wm-2) for periods up to a cumulative time of 4 hours. Inactivation was determined by a log reduction in growth of the organisms. The temperature (°C) of the water was taken at every time point. After 4 hours exposure EPEC was completely inactivated (7 log reduction) by SODIS. Imposing a realistic water temperature profile (min-max) concomitant with irradiation produces a greater kill of EPEC. Maintaining simulated sunlight experiments at a high fixed temperature may result in over --estimation of inactivation. Following a natural water temperature profile will result in more reliable inactivation comparable with those that might be obtained under natural sunlight conditions.

  16. The Rebound Condition of Dust Aggregates Revealed by Numerical Simulation of Their Collisions

    NASA Astrophysics Data System (ADS)

    Wada, Koji; Tanaka, Hidekazu; Suyama, Toru; Kimura, Hiroshi; Yamamoto, Tetsuo

    2011-08-01

    Collisional growth of dust aggregates is a plausible root of planetesimals forming in protoplanetary disks. However, a rebound of colliding dust aggregates prevents dust from growing into planetesimals. In fact, rebounding aggregates are observed in laboratory experiments but not in previous numerical simulations. Therefore, the condition of rebound between dust aggregates should be clarified to better understand the processes of dust growth and planetesimal formation. We have carried out numerical simulations of aggregate collisions for various types of aggregates and succeeded in reproducing a rebound of colliding aggregates under specific conditions. Our finding is that in the rebound process, the key factor of the aggregate structure is the coordination number, namely, the number of particles in contact with a particle. A rebound is governed by the energy dissipation along with restructuring of the aggregates and a large coordination number inhibits the restructuring at collisions. Results of our numerical simulation for various aggregates indicate that they stick to each other when the mean coordination number is less than 6, regardless of their materials and structures, as long as their collision velocity is less than the critical velocity for fragmentation. This criterion of the coordination number would correspond to a filling factor of ~0.3, which is somewhat larger than that reported in laboratory experiments. In protoplanetary disks, dust aggregates are expected to have low bulk densities (<0.1 g cm-3) during their growth, which would prevent dust aggregates from rebounding. This result supports the formation of planetesimals with direct dust growth in protoplanetary disks.

  17. Transferability of SWAT model parameters for flow simulations under changed climatic conditions

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Zhang, X.; Ma, C.; Xu, Y.

    2013-12-01

    Hydrological models are widely employed for climate change impact assessment. Parameters calibration is a step of great importance in using hydrological models to simulate flows. In most studies, parameters estimated from observations are assumed to remain valid for future climate conditions. However, this might not be true due to non-stationarity. In this study, SWAT model is used to evaluate the transferability of parameters for flow simulations under changed climatic conditions. The model is set up in Quzhou catchment, one sub-basin of Qiantang River Basin in East China. After a preliminary sensitivity analysis, ten parameters are selected as sensitive ones and used in the calibration. Based on the aridity index and flows, three sub-periods are selected from the period (1961-2006): wet sub-period (1992-1995), intermediate sub-period (1965-1968) and dry sub-period (2003-2006). These three sub-periods are calibrated separately via SUFI-2 method, which results in three different sets of parameters. A regional climate model PRECIS (Providing REgional Climates for Impacts Studies) is used to downscale the global climate model (HadCM3) outputs. The downscaled precipitation and temperature are put into SWAT model to simulate future flows in the future period (2011-2040). The three sets of parameters are employed separately to simulate future flows. The results show that in the calibration the Nash-Sutcliffe coefficients of 1000 simulations which are larger than 0.6 in wet, intermediate and dry sub-periods are more than 77.3%, 97% and 71.7% respectively. By comparing the ranges of those three sets parameters, it is found that three parameters about soil are very different from each other, which are available water capacity of the soil layer, saturated hydraulic conductivity and soil depth. From the uncertainty range (95PPU) of future flow simulations, it is known that flows simulated by the wet set of parameters are similar to those by the intermediate set of parameters

  18. Perspectives in Medical Applications of Monte Carlo Simulation Software for Clinical Practice in Radiotherapy Treatments

    NASA Astrophysics Data System (ADS)

    Boschini, Matteo; Giani, Simone; Ivanchenko, Vladimir; Rancoita, Pier-Giorgio

    2006-04-01

    We discuss the physics requirements to accurately model radiation dosimetry in the human body as performed for oncological radiotherapy treatment. Recent advancements in computing hardware and software simulation technology allow precise dose calculation in real-life imaging output, with speed suitable for clinical needs. An experimental programme, based on physics published literature, is proposed to demonstrate the actual possibility to improve the precision of radiotherapy treatment planning.

  19. Monte Carlo molecular simulation of the hydration of Na-montmorillonite at reservoir conditions

    NASA Astrophysics Data System (ADS)

    de Pablo, L.; Chávez, M. L.; Sum, A. K.; de Pablo, J. J.

    2004-01-01

    The hydration of Na-saturated Wyoming-type montmorillonite is investigated by Monte Carlo simulations at constant stress in the NPzzT ensemble and at constant chemical potential in the μVT ensemble, at the sedimentary basin temperature of 353 K and pressure of 625 bar, equivalent to 2-4 km depth. The simulations use procedures established in Chávez-Páez et al. [J. Chem. Phys. 114, 1405 (2001)]. At these conditions, simulations predict a single stable form of 1,2-water layer Na-montmorillonite, containing 164.38 mg/g or 53.37 molecules/layer of adsorbed water and having a spacing of 12.72 Å. The corresponding density is 0.32 g/ml. Sodium ions are coordinated with six molecules of water separated 2.30-2.33 Å. Water molecules are closer to the central interlayer plane and the spacing is larger than that at 300 K and 1 bar. The interlayer configuration consists of two symmetrical layers of oriented water molecules 1.038 Å from the central plane, with the hydrogen atoms in two outermost layers, 3.826 Å apart, and the sodium ions on the central plane located between the water layers. The interlayer configuration can be considered to be a stable two-layer intermediate between the one- and two-layer hydrates. Our simulations do not predict formation of other hydrates of Na-montmorillonite at 353 K and 615 bar.

  20. Time-Accurate Unsteady Pressure Loads Simulated for the Space Launch System at Wind Tunnel Conditions

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.; Brauckmann, Gregory J.; Kleb, William L.; Glass, Christopher E.; Streett, Craig L.; Schuster, David M.

    2015-01-01

    A transonic flow field about a Space Launch System (SLS) configuration was simulated with the Fully Unstructured Three-Dimensional (FUN3D) computational fluid dynamics (CFD) code at wind tunnel conditions. Unsteady, time-accurate computations were performed using second-order Delayed Detached Eddy Simulation (DDES) for up to 1.5 physical seconds. The surface pressure time history was collected at 619 locations, 169 of which matched locations on a 2.5 percent wind tunnel model that was tested in the 11 ft. x 11 ft. test section of the NASA Ames Research Center's Unitary Plan Wind Tunnel. Comparisons between computation and experiment showed that the peak surface pressure RMS level occurs behind the forward attach hardware, and good agreement for frequency and power was obtained in this region. Computational domain, grid resolution, and time step sensitivity studies were performed. These included an investigation of pseudo-time sub-iteration convergence. Using these sensitivity studies and experimental data comparisons, a set of best practices to date have been established for FUN3D simulations for SLS launch vehicle analysis. To the author's knowledge, this is the first time DDES has been used in a systematic approach and establish simulation time needed, to analyze unsteady pressure loads on a space launch vehicle such as the NASA SLS.

  1. Jet transport flight operations using cockpit display of traffic information during instrument meteorological conditions: Simulation evaluation

    NASA Technical Reports Server (NTRS)

    Williams, David H.; Wells, Douglas C.

    1986-01-01

    A simulation study was undertaken to evaluate flight operations using cockpit display of traffic information (CDTI) in a conventional jet transport aircraft. Eight two-person airline flight crews participated as test subjects flying simulated terminal area approach and departure operations under instrument meteorological conditions (IMC). A fixed-base cockpit simulator configured with a full complement of conventional electromechanical instrumentation to permit full workload operations was utilized. Traffic information was displayed on a color cathode-ray tube (CRT) mounted above the throttle quadrant in the typical weather radar location. A transparent touchpanel overlay was utilized for pilot interface with the display. Air traffic control (ATC) simulation included an experienced controller and full partyline radio environment for evaluation of pilot-controlled self-separation and traffic situation monitoring tasks. Results of the study revealed the CDTI to be well received by the test subjects as a useful system which could be incorporated into an existing jet transport cockpit. Crew coordination and consistent operating procedures were identified as important considerations in operational implementation of traffic displays. Cockpit workload was increased with active CDTI tasks. However, all test subjects rated the increase to be acceptable.

  2. Using Elearning techniques to support problem based learning within a clinical simulation laboratory.

    PubMed

    Docherty, Charles; Hoy, Derek; Topp, Helena; Trinder, Kathryn

    2004-01-01

    This paper details the results of the first phase of a project that used eLearning to support students' learning within a simulated environment. The locus was a purpose built Clinical Simulation Laboratory (CSL) where the School's newly adopted philosophy of Problem Based Learning (PBL) was challenged through lecturers reverting to traditional teaching methods. The solution, a student-centred, problem-based approach to the acquisition of clinical skills was developed using learning objects embedded within web pages that substituted for lecturers providing instruction and demonstration. This allowed lecturers to retain their facilitator role, and encouraged students to explore, analyse and make decisions within the safety of a clinical simulation. Learning was enhanced through network communications and reflection on video performances of self and others. Evaluations were positive, students demonstrating increased satisfaction with PBL, improved performance in exams, and increased self-efficacy in the performance of nursing activities. These results indicate that an elearning approach can support PBL in delivering a student centred learning experience. PMID:15360935

  3. Nitrosation of Nigerian medicinal plant preparations under 'chemical' and 'simulated' gastric conditions.

    PubMed

    Atawodi, S E; Lamorde, A G; Spiegelhalder, B; Preussmann, R

    1995-01-01

    Preparations of some tropical plants of medicinal importance, collected from the savannah vegetational belt of Nigeria, were nitrosated and analysed for volatile N-nitrosamines formed under chemical and simulated gastric conditions. N-Nitrosamines were determined on a Thermal Energy Analyser following gas chromatographic separation. Mean concentrations of N-nitrosodimethylamine (NDMA) in the range of 7 to 58 ppb and N-nitrosodiethylamine (NDEA) in the range of 23 to 26 ppb were formed in 31 and 7%, respectively, of the preparations using artificial gastric juice (simulated gastric condition). Under chemically optimal conditions, relatively high levels of NDMA (72-2008 ppb), NDEA (23-1528 ppb) and N-nitrosopyrrolidine (20-405 ppb) were formed in 100, 75 and 32% of the preparations, respectively; N-nitrosomethylethylamine, N-nitrosodibutylamine and N-nitrosomorpholine were formed in fewer preparations. These findings suggest that the endogenous formation of N-nitroso compounds from precursors present in medicinal plants might be another source of human exposure to environmental carcinogens in Nigeria and other developing countries. PMID:7821876

  4. SiC/SiC Leading Edge Turbine Airfoil Tested Under Simulated Gas Turbine Conditions

    NASA Technical Reports Server (NTRS)

    Robinson, R. Craig; Hatton, Kenneth S.

    1999-01-01

    Silicon-based ceramics have been proposed as component materials for use in gas turbine engine hot-sections. A high pressure burner rig was used to expose both a baseline metal airfoil and ceramic matrix composite leading edge airfoil to typical gas turbine conditions to comparatively evaluate the material response at high temperatures. To eliminate many of the concerns related to an entirely ceramic, rotating airfoil, this study has focused on equipping a stationary metal airfoil with a ceramic leading edge insert to demonstrate the feasibility and benefits of such a configuration. Here, the idea was to allow the SiC/SiC composite to be integrated as the airfoil's leading edge, operating in a "free-floating" or unrestrained manner. and provide temperature relief to the metal blade underneath. The test included cycling the airfoils between simulated idle, lift, and cruise flight conditions. In addition, the airfoils were air-cooled, uniquely instrumented, and exposed to the same internal and external conditions, which included gas temperatures in excess of 1370 C (2500 F). Results show the leading edge insert remained structurally intact after 200 simulated flight cycles with only a slightly oxidized surface. The instrumentation clearly suggested a significant reduction (approximately 600 F) in internal metal temperatures as a result of the ceramic leading edge. The object of this testing was to validate the design and analysis done by Materials Research and Design of Rosemont, PA and to determine the feasibility of this design for the intended application.

  5. Pose Measurement Performance of the Argon Relative Navigation Sensor Suite in Simulated Flight Conditions

    NASA Technical Reports Server (NTRS)

    Galante, Joseph M.; Eepoel, John Van; Strube, Matt; Gill, Nat; Gonzalez, Marcelo; Hyslop, Andrew; Patrick, Bryan

    2012-01-01

    Argon is a flight-ready sensor suite with two visual cameras, a flash LIDAR, an on- board flight computer, and associated electronics. Argon was designed to provide sensing capabilities for relative navigation during proximity, rendezvous, and docking operations between spacecraft. A rigorous ground test campaign assessed the performance capability of the Argon navigation suite to measure the relative pose of high-fidelity satellite mock-ups during a variety of simulated rendezvous and proximity maneuvers facilitated by robot manipulators in a variety of lighting conditions representative of the orbital environment. A brief description of the Argon suite and test setup are given as well as an analysis of the performance of the system in simulated proximity and rendezvous operations.

  6. Performance simulation of the JPL solar-powered distiller. Part 1: Quasi-steady-state conditions

    NASA Astrophysics Data System (ADS)

    Yung, C. S.; Lansing, F. L.

    1983-02-01

    A 37.85 cu m (10,000 gallons) per year (nominal) passive solar powered water distillation system was installed and is operational in the Venus Deep Space Station. The system replaced an old, electrically powered water distiller. The distilled water produced with its high electrical resistivity is used to cool the sensitive microwave equipment. A detailed thermal model was developed to simulate the performance of the distiller and study its sensitivity under varying environment and load conditions. The quasi-steady state portion of the model is presented together with the formulas for heat and mass transfer coefficients used. Initial results indicated that a daily water evaporation efficiency of 30% can be achieved. A comparison made between a full day performance simulation and the actual field measurements gave good agreement between theory and experiment, which verified the model.

  7. Numerical simulation of tonal fan noise of computers and air conditioning systems

    NASA Astrophysics Data System (ADS)

    Aksenov, A. A.; Gavrilyuk, V. N.; Timushev, S. F.

    2016-07-01

    Current approaches to fan noise simulation are mainly based on the Lighthill equation and socalled aeroacoustic analogy, which are also based on the transformed Lighthill equation, such as the wellknown FW-H equation or the Kirchhoff theorem. A disadvantage of such methods leading to significant modeling errors is associated with incorrect solution of the decomposition problem, i.e., separation of acoustic and vortex (pseudosound) modes in the area of the oscillation source. In this paper, we propose a method for tonal noise simulation based on the mesh solution of the Helmholtz equation for the Fourier transform of pressure perturbation with boundary conditions in the form of the complex impedance. A noise source is placed on the surface surrounding each fan rotor. The acoustic fan power is determined by the acoustic-vortex method, which ensures more accurate decomposition and determination of the pressure pulsation amplitudes in the near field of the fan.

  8. Biological Membranes in Extreme Conditions: Simulations of Anionic Archaeal Tetraether Lipid Membranes

    PubMed Central

    Pineda De Castro, Luis Felipe; Dopson, Mark

    2016-01-01

    In contrast to the majority of organisms that have cells bound by di-ester phospholipids, archaeal membranes consist of di- and tetraether phospholipids. Originating from organisms that withstand harsh conditions (e.g., low pH and a wide range of temperatures) such membranes have physical properties that make them attractive materials for biological research and biotechnological applications. We developed force-field parameters based on the widely used Generalized Amber Force Field (GAFF) to enable the study of anionic tetraether membranes of the model archaean Sulfolobus acidocaldarius by computer simulations. The simulations reveal that the physical properties of these unique membranes depend on the number of cyclopentane rings included in each lipid unit, and on the size of cations that are used to ensure charge neutrality. This suggests that the biophysical properties of Sulfolobus acidocaldarius cells depend not only on the compositions of their membranes but also on the media in which they grow. PMID:27167213

  9. The chemistry of acetone at extreme conditions by density functional molecular dynamics simulations.

    PubMed

    Ferrante, Francesco; Lo Celso, Fabrizio; Triolo, Roberto; Taleyarkhan, Rusi P

    2011-02-14

    Density functional molecular dynamics simulations have been performed in the NVT ensemble (moles (N), volume (V) and temperature (T)) on a system formed by ten acetone molecules at a temperature of 2000 K and density ρ = 1.322 g cm(-3). These conditions resemble closely those realized at the interface of an acetone vapor bubble in the early stages of supercompression experiments and result in an average pressure of 5 GPa. Two relevant reactive events occur during the simulation: the condensation of two acetone molecules to give hexane-2,5-dione and dihydrogen and the isomerization to the enolic propen-2-ol form. The mechanisms of these events are discussed in detail. PMID:21322700

  10. Development and Application of a Computer Simulation Program to Enhance the Clinical Problem-Solving Skills of Students.

    ERIC Educational Resources Information Center

    Boh, Larry E.; And Others

    1987-01-01

    A project to (1) develop and apply a microcomputer simulation program to enhance clinical medication problem solving in preclerkship and clerkship students and (2) perform an initial formative evaluation of the simulation is described. A systematic instructional design approach was used in applying the simulation to the disease state of rheumatoid…

  11. Numerical Simulation of Seepage Field of Tailing Water Channel Under Different Conditions in Operation Period

    NASA Astrophysics Data System (ADS)

    Wang, Feihan; Yan, Guoxin; Chen, Deling

    According to mathematical model of rock and soil, it calculated seepage field of tailing water channel under different conditions. The results showed that under condition of no.1, the seepage discharge from outside to inside of channel is 0.394 m3/h and the discharge under plastic concrete cut-off is 0.358m3/h, and that under condition of no.2, the seepage discharge from outside to inside of channel is 0.249 m3/h and the discharge under plastic concrete cut-off is 0.236m3/h. Under condition of no.1, the outflow of saturation line is at elevation of 411.0m which is under sand and gravel filling layer and near boundary of drift gravel sand layer. Under condition of no.2, the outflow of saturation line is at elevation of 403.0m which is under drift gravel sand layer and near rock foundation. The results showed that numerical simulation can be used to do with seepage problems of tailing water channel.

  12. Microencapsulation of Saccharomyces cerevisiae and its evaluation to protect in simulated gastric conditions

    PubMed Central

    Ghorbani-Choboghlo, Hassan; Zahraei-Salehi, Taghi; Ashrafi-Helan, Javad; Yahyaraeyat, Ramak; Pourjafar, Hadi; Nikaein, Donya; Balal, Asad; Khosravi, Ali-Reza

    2015-01-01

    Background and Objectives: Probiotic yeasts are used in production of functional foods and pharmaceutical products. They play an important role in promoting and maintaining human health. Until now, little work has been published on improving the survival of Saccharomyces in stimulated gastrointestinal condition. Material and Methods: In this study the exposure of the yeast in the capsulate and free forms to artificial gastrointestinal conditions was assessed and the number of viable Saccharomyces cerevisiae cells during 0 to 120 mines in these conditions was evaluated by a pour plate method using sabouraud dextrose agar. Results: Results showed the shape of the beads was generally spherical, sometimes elliptical with a mean diameter of about 50–90 μm. Also count of viable probiotic cells obtained for all the microcapsules were above the recommended levels for a probiotic food. Also decrease of approximately 4 logs was noted in the number of free cells after 2 h of incubation at pH 2 and 8, when compared to decreases of about 2 logs in the all microencapsulated S. cerevisiae under similar conditions. Conclusion: It is concluded that microencapsulation process was significantly able to increase the survival rate of Saccharomyces in a simulated gastrointestinal condition (p<0.05).. PMID:26885335

  13. Experiential learning in nursing consultation education via clinical simulation with actors: action research.

    PubMed

    de Oliveira, Saionara Nunes; do Prado, Marta Lenise; Kempfer, Silvana Silveira; Martini, Jussara Gue; Caravaca-Morera, Jaime Alonso; Bernardi, Mariely Carmelina

    2015-02-01

    This was an action research study conducted during an undergraduate nursing course. The objective was to propose and implement experiential learning for nursing consultation education using clinical simulation with actors. The 4 steps of action research were followed: planning, action, observation and reflection. Three nursing undergraduate students participated in the study. Data were collected in May and July 2013 via participant comments and interviews and were analyzed in accordance with the operative proposal for qualitative data analysis. Planning included constructing and validating the clinical guides, selecting and training the actors, organizing and preparing the scenario and the issuing invitations to the participants. The action was carried out according to Kolb's (1984) 4 stages of learning cycles: Concrete Experience, Reflective Observation, Abstract Conceptualization and Active Experimentation. Clinical simulation involves different subjects' participation in all stages, and action research is a method that enables the clinical stimulation to be implemented. It must be guided by clear learning objectives and by a critical pedagogy that encourages critical thinking in students. Using actors and a real scenario facilitated psychological fidelity, and debriefing was the key moment of the reflective process that facilitated the integral training of students through experiential learning. PMID:25563657

  14. Heme Iron Release from Alginate Beads at In Vitro Simulated Gastrointestinal Conditions.

    PubMed

    Valenzuela, Carolina; Hernández, Valesca; Morales, María Sol; Pizarro, Fernando

    2016-07-01

    Heme iron (Fe) release from alginate beads at in vitro simulated gastrointestinal conditions for potential use as oral heme Fe supplement was studied. Five beads at different ratios of sodium alginate (SA)-to-spray-dried bovine blood cells (SDBC) with weight ratios of 1:1.25, 1:2.5, 1:5, 1:10, and 1:15 (w/w) were prepared. Release characteristics of these beads were investigated at in vitro simulated gastrointestinal conditions. Release media pH strongly influenced the controlled Fe release from the beads. The heme Fe-beads in simulated gastric fluid (pH 2) remained in a shrinkage state and Fe release was low: 25.8, 21.1, 11.6, 12.1, and 12.0 % for 1:1.25, 1:2.5, 1:5, 1:10, and 1:15 ratios, respectively. Proportion and amount of Fe released by 1:1.25 and 1:2.5 ratios was higher than the other ratios. The heme Fe-beads swelled and dissociated in simulated intestinal fluid (pH 6), releasing three-fourths of the Fe in 200 min. The morphology studies showed that Fe release followed formation of pores in the alginate matrix, generating erosion of the beads and complete disintegration after 75 and 200 min of gastric and intestinal incubation, respectively. These results indicate that heme Fe-beads may be useful for oral delivery of heme Fe supplement. PMID:26610684

  15. Repression of retinal microvascular endothelial cells by transthyretin under simulated diabetic retinopathy conditions

    PubMed Central

    Shao, Jun; Yao, Yong

    2016-01-01

    AIM To investigate biological effects of transthyretin (TTR) on the development of neovascularization under simulated diabetic retinopathy (DR) condition associated with high glucose and hypoxia. METHODS Human retinal microvascular endothelial cells (hRECs) were cultured in normal and simulated DR environments with high glucose and hypoxia. The normal serum glucose concentration is approximately 5.5 mmol/L; thus, hyperglycemia was simulated with 25 mmol/L glucose, while hypoxia was induced using 200 µmol/L CoCl2. The influence of TTR on hRECs and human retinal pigment epithelial cells (hRPECs) was determined by incubating the cells with 4 µmol/L TTR in normal and abnormal media. A co-culture system was then employed to evaluate the effects of hRPECs on hRECs. RESULTS Decreased hRECs and hRPECs were observed under abnormal conditions, including high-glucose and hypoxic media. In addition, hRECs were significantly inhibited by 4 µmol/L exogenous TTR during hyperglycemic culture. During co-culture, hRPECs inhibited hRECs in both the normal and abnormal environments. CONCLUSION hREC growth is inhibited by exogenous TTR under simulated DR environments with high-glucose and hypoxic, particularly in the medium containing 25 mmol/L glucose. hRPECs, which manufacture TTR in the eye, also represses hRECs in the same environment. TTR is predicted to inhibit the proliferation of hRECs and neovascularization. PMID:27366679

  16. WINE-1: Special-Purpose Computer forN-Body Simulations with a Periodic Boundary Condition

    NASA Astrophysics Data System (ADS)

    Fukushige, Toshiyuki; Makino, Junichiro; Ito, Tomoyoshi; Okumura, Sachiko K.; Ebisuzaki, Toshikazu; Sugimoto, Daiichiro

    1993-06-01

    We have developed WINE-1 (Wave space INtegrator for Ewald method), a special-purpose computer for N-body simulations with a periodic boundary condition. In N-body simulations with a periodic boundary condition such as cosmological N-body simulations, we use the Ewald method to calculate the gravitational interaction. With the Ewald method, we can calculate the interaction more accurately than a calculation with other methods, such as the PM method, the P(3) M method, or the tree algorithm. In the Ewald method, the total force exerted on a particle is divided into contributions from real space and wave-number space so that the infinite sum can converge exponentially in both spaces. WINE is a special-purpose computer used to calculate the interaction in wave-number space. WINE is connected to a host computer via the VME bus. We have developed the first machine, WINE-1. It is made of one board having a size of 38 cm by 40 cm, on which 31 LSI chips and 46 IC chips are wire-wrapped. The peak speed of WINE-1 is equivalent to 480 Mflops. The summation in real space is calculated using a GRAPE system, another special-purpose computer for the direct calculation of the interparticle force. For example, we can perform a cosmological N-body simulation for N=80,000 (500 steps) within a week if we use GRAPE-2A for the summation in real space and WINE-1 for that in wave-number space.

  17. Agent-based computer simulation and sirs: building a bridge between basic science and clinical trials.

    PubMed

    An, G

    2001-10-01

    The management of Systemic Inflammatory Response Syndrome (SIRS)/Multiple Organ Failure (MOF) remains the greatest challenge in the field of critical care. There has been uniform difficulty in translating the results of basic science research into effective therapeutic regimes. We propose that this is due in part to a failure to account for the complex, nonlinear nature of the inflammatory process of which SIRS/MOF represents a disordered state. Attempts to manipulate this process without an understanding of the dynamics of the system may potentially produce unintended consequences. Agent-Based Computer Simulation (ABCS) provides a means to synthesize the information acquired from the linear analysis of basic science into a model that preserves the complexity of the inflammatory system. We have constructed an abstracted version of the inflammatory process using an ABCS that is based at the cellular level. Despite its abstraction, the simulation produces non-linear behavior and reproduces the dynamic structure of the inflammatory response. Furthermore, adjustment of the simulation to model one of the unsuccessful initial anti-inflammatory trials of the 1990's demonstrates the adverse outcome that was observed in those clinical trials. It must be emphasized that the current model is extremely abstract and simplified. However, it is hoped that future ABCSs of sufficient sophistication eventually may provide an important bridging tool to translate basic science discoveries into clinical applications. Creating these simulations will require a large collaborative effort, and it is hoped that this paper will stimulate interest in this form of analysis. PMID:11580108

  18. Deriving realistic source boundary conditions for a CFD simulation of concentrations in workroom air.

    PubMed

    Feigley, Charles E; Do, Thanh H; Khan, Jamil; Lee, Emily; Schnaufer, Nicholas D; Salzberg, Deborah C

    2011-05-01

    Computational fluid dynamics (CFD) is used increasingly to simulate the distribution of airborne contaminants in enclosed spaces for exposure assessment and control, but the importance of realistic boundary conditions is often not fully appreciated. In a workroom for manufacturing capacitors, full-shift samples for isoamyl acetate (IAA) were collected for 3 days at 16 locations, and velocities were measured at supply grills and at various points near the source. Then, velocity and concentration fields were simulated by 3-dimensional steady-state CFD using 295K tetrahedral cells, the k-ε turbulence model, standard wall function, and convergence criteria of 10(-6) for all scalars. Here, we demonstrate the need to represent boundary conditions accurately, especially emission characteristics at the contaminant source, and to obtain good agreement between observations and CFD results. Emission rates for each day were determined from six concentrations measured in the near field and one upwind using an IAA mass balance. The emission was initially represented as undiluted IAA vapor, but the concentrations estimated using CFD differed greatly from the measured concentrations. A second set of simulations was performed using the same IAA emission rates but a more realistic representation of the source. This yielded good agreement with measured values. Paying particular attention to the region with highest worker exposure potential-within 1.3 m of the source center-the air speed and IAA concentrations estimated by CFD were not significantly different from the measured values (P = 0.92 and P = 0.67, respectively). Thus, careful consideration of source boundary conditions greatly improved agreement with the measured values. PMID:21422277

  19. Climate change reverses the competitive balance of ash and beech seedlings under simulated forest conditions.

    PubMed

    Saxe, H; Kerstiens, G

    2005-07-01

    This study identifies the important role of climate change and photosynthetic photon flux density (PPFD) in the regenerative competence of ash and beech seedlings in 12 inter- and intra-specific competition designs in simulated mixed ash-beech forest gaps under conditions of non-limiting soil volume, water and nutrient supply. The growth conditions simulated natural forest conditions as closely as possible. Simulations were performed by growing interacting seedling canopies for one season in temperature-regulated closed-top chambers (CTCs). Eight CTCs were used in a factorial design with replicate treatments of [CO2] x temperature x PPFD x competition design. [CO2] tracked ambient levels or was 360 micromol mol-1 higher. Temperature tracked ambient levels or was 2.8 degrees C higher. PPFD on two plant tables inside each CTC was 16% and 5% of open-field levels, respectively, representative of typical light flux levels in a natural forest gap. In several of the competition designs, climate change made the ash seedlings grow taller than the beech seedlings and, at the same time, attain a larger leaf area and a larger total biomass. Advantages of this type for ash were found particularly at lower PPFD. There was a positive synergistic interaction of elevated temperature x [CO2] for both species, but more so for ash. There are many uncertainties when a study of chambered seedlings is to be projected to real changes in natural forests. Nevertheless, this study supports a possible future shift towards ash in north European, unmanaged, mixed ash-beech forests in response to the predicted climate change. PMID:16025410

  20. Thermal conductivity measurements of glass beads and regolith simulant under vacuum conditions

    NASA Astrophysics Data System (ADS)

    Sakatani, N.; Ogawa, K.; Iijima, Y.; Tsuda, S.; Honda, R.; Tanaka, S.

    2013-09-01

    Past studies of in-situ and laboratory measurements of lunar regolith thermal conductivity imply that the conductivity would vary with depth due to change of density and self-weighted stress. In this study, we experimentally investigated the effect of the compressional stress on the thermal conductivity of the glass beads and regolith simulant using a new stress controlling system under vacuum conditions. We experimentally confirmed that the thermal conductivity increases with the compressional stress, which indicates that the regolith layer on the airless terrestrial bodies has various thermal conductivities according to the depth and their gravity.

  1. Numerical simulations of the first operational conditions of the negative ion test facility SPIDER

    NASA Astrophysics Data System (ADS)

    Serianni, G.; Agostinetti, P.; Antoni, V.; Baltador, C.; Cavenago, M.; Chitarin, G.; Marconato, N.; Pasqualotto, R.; Sartori, E.; Toigo, V.; Veltri, P.

    2016-02-01

    In view of the realization of the negative ion beam injectors for ITER, a test facility, named SPIDER, is under construction in Padova (Italy) to study and optimize production and extraction of negative ions. The present paper is devoted to the analysis of the expected first operations of SPIDER in terms of single-beamlet and multiple-beamlet simulations of the hydrogen beam optics in various operational conditions. The effectiveness of the methods adopted to compensate for the magnetic deflection of the particles is also assessed. Indications for a sequence of the experimental activities are obtained.

  2. Effects of Simulated Mars Conditions on the Survival and Growth of Escherichia coli and Serratia liquefaciens▿

    PubMed Central

    Berry, Bonnie J.; Jenkins, David G.; Schuerger, Andrew C.

    2010-01-01

    Escherichia coli and Serratia liquefaciens, two bacterial spacecraft contaminants known to replicate under low atmospheric pressures of 2.5 kPa, were tested for growth and survival under simulated Mars conditions. Environmental stresses of high salinity, low temperature, and low pressure were screened alone and in combination for effects on bacterial survival and replication, and then cells were tested in Mars analog soils under simulated Mars conditions. Survival and replication of E. coli and S. liquefaciens cells in liquid medium were evaluated for 7 days under low temperatures (5, 10, 20, or 30°C) with increasing concentrations (0, 5, 10, or 20%) of three salts (MgCl2, MgSO4, NaCl) reported to be present on the surface of Mars. Moderate to high growth rates were observed for E. coli and S. liquefaciens at 30 or 20°C and in solutions with 0 or 5% salts. In contrast, cell densities of both species generally did not increase above initial inoculum levels under the highest salt concentrations (10 and 20%) and the four temperatures tested, with the exception that moderately higher cell densities were observed for both species at 10% MgSO4 maintained at 20 or 30°C. Growth rates of E. coli and S. liquefaciens in low salt concentrations were robust under all pressures (2.5, 10, or 101.3 kPa), exhibiting a general increase of up to 2.5 orders of magnitude above the initial inoculum levels of the assays. Vegetative E. coli cells were maintained in a Mars analog soil for 7 days under simulated Mars conditions that included temperatures between 20 and −50°C for a day/night diurnal period, UVC irradiation (200 to 280 nm) at 3.6 W m−2 for daytime operations (8 h), pressures held at a constant 0.71 kPa, and a gas composition that included the top five gases found in the martian atmosphere. Cell densities of E. coli failed to increase under simulated Mars conditions, and survival was reduced 1 to 2 orders of magnitude by the interactive effects of desiccation, UV

  3. Simulated performance of the superconducting section of the APT linac under various fault and error conditions

    SciTech Connect

    Gray, E.R.; Nath, S.; Wangler, T.P.

    1997-08-01

    The current design for the production of tritium uses both normal-conducting (NC) and superconducting (SC) structures. To evaluate the performance of the superconducting part of the linac which constitutes more than 80% of the accelerator, studies have been made to include the effects of various error and fault conditions. Here, the authors present the simulation results of studies such as effects of rf phase and amplitude errors, cavity/klystron failure, quadrupole misalignment errors, quadrupole gradient error, and beam-input mismatches.

  4. Nonlinear Boundary Conditions in Simulations of Electrochemical Experiments Using the Boundary Element Method.

    NASA Astrophysics Data System (ADS)

    Träuble, Markus; Kirchner, Carolina Nunes; Wittstock, Gunther

    2007-12-01

    The use of the boundary element method (BEM) in simulating steady-state experiments of scanning electrochemical microscopy in feedback mode and in generation-collection mode using complex three dimensional geometries has been shown in previous papers. In the context of generation-collection mode experiments, catalytic reaction mechanisms of immobilized enzymes are of great interest. Due to the catalytic reaction behaviour, which can be described by nonlinear Michaelis-Menten kinetics, the modelling of such systems results in solving a diffusion equation with nonlinear boundary conditions. In this article it is described how such nonlinear reaction mechanisms can be treated with the BEM.

  5. High frequency scattering by a smooth coated cylinder simulated with generalized impedance boundary conditions

    NASA Technical Reports Server (NTRS)

    Syed, Hasnain H.; Volakis, John L.

    1991-01-01

    Rigorous uniform geometrical theory of diffraction (UGTD) diffraction coefficients are presented for a coated convex cylinder simulated with generalized impedance boundary conditions. In particular, ray solutions are obtained which remain valid in the transition region and reduce uniformly to those in the deep lit and shadow regions. These involve new transition functions in place of the usual Fock-type integrals, characteristic to the impedance cylinder. A uniform asymptotic solution is also presented for observations in the close vicinity of the cylinder. As usual, the diffraction coefficients for the convex cylinder are obtained via a generalization of the corresponding ones for the circular cylinder.

  6. Numerical simulations of the first operational conditions of the negative ion test facility SPIDER.

    PubMed

    Serianni, G; Agostinetti, P; Antoni, V; Baltador, C; Cavenago, M; Chitarin, G; Marconato, N; Pasqualotto, R; Sartori, E; Toigo, V; Veltri, P

    2016-02-01

    In view of the realization of the negative ion beam injectors for ITER, a test facility, named SPIDER, is under construction in Padova (Italy) to study and optimize production and extraction of negative ions. The present paper is devoted to the analysis of the expected first operations of SPIDER in terms of single-beamlet and multiple-beamlet simulations of the hydrogen beam optics in various operational conditions. The effectiveness of the methods adopted to compensate for the magnetic deflection of the particles is also assessed. Indications for a sequence of the experimental activities are obtained. PMID:26932099

  7. Development and evaluation of a high-fidelity canine patient simulator for veterinary clinical training.

    PubMed

    Fletcher, Daniel J; Militello, Roberta; Schoeffler, Gretchen L; Rogers, Catherine L

    2012-01-01

    High-fidelity human patient simulators have been used for decades in medical education to provide opportunities for students to practice technical skills, diagnostic and therapeutic planning, and communication skills in a safe environment. A high-fidelity canine patient simulator (CPS) was developed using components from a human patient simulator and a low-fidelity foam core canine mannequin. Ninety-six veterinary students participated in cardiopulmonary arrest scenarios in groups of three to five students. Afterwards, participants were asked to complete an anonymous online survey describing their experiences. A total of 70 students (73%) completed the survey. All of the students (100%) felt that the simulator session expanded their cardiopulmonary resuscitation (CPR) knowledge base, and 97% responded that their skills and abilities had improved. Students also expressed positive opinions about the CPS, with 89% agreeing or strongly agreeing that the CPS was realistic and 73% agreeing or strongly agreeing that the scenarios generated emotions similar to real clinical situations. Most participants (98.5%) agreed or strongly agreed that the simulator was an engaging learning experience. Students commonly commented that the simulations allowed them to practice communication and teamwork skills and were more effective than paper-based, problem-oriented learning opportunities and lecture. Students also commented that they wanted more opportunities to participate in simulation exercises. These results suggest that high-fidelity veterinary simulation is an engaging educational methodology that addresses some limitations of other forms of problem-based learning. More studies are needed to quantitatively determine the effectiveness of this novel veterinary educational technology in comparison with more traditional approaches. PMID:22433738

  8. Numerical simulation of hyperbolic heat conduction with convection boundary conditions and pulse heating effects

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Tamma, Kumar K.; Railkar, Sudhir B.

    1989-01-01

    The paper describes the numerical simulation of hyperbolic heat conduction with convection boundary conditions. The effects of a step heat loading, a sudden pulse heat loading, and an internal heat source are considered in conjunction with convection boundary conditions. Two methods of solution are presened for predicting the transient behavior of the propagating thermal disturbances. In the first method, MacCormack's predictor-corrector method is employed for integrating the hyperbolic system of equations. Next, the transfinite element method, which employs specially tailored elements, is used for accurately representing the transient response of the propagating thermal wave fronts. The agreement between the results of various numerical test cases validate the representative behavior of the thermal wave fronts. Both methods represent hyperbolic heat conduction behavior by effectively modeling the sharp discontinuities of the propagating thermal disturbances.

  9. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1987-01-01

    Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments and Earth-based radio astronomical observations can be used to infer abundances of microwave absorbing atmospheric constituents in those atmospheres, as long as reliable information regarding the microwave absorping properties of potential constituents is available. The use of theoretically derived microwave absorption properties for such atmospheric constituents, or laboratory measurements of such properties under environmental conditions which are significantly different than those of the planetary atmosphere being studied, often leads to significant misinterpretation of available opacity data. Laboratory measurement of the microwave properties of atmospheric gases under simulated conditions for the outer planets were conducted. Results of these measurements are discussed.

  10. Corrosion of iron, aluminum and copper-base alloys in glycols under simulated solar collector conditions

    SciTech Connect

    Beavers, J.A.; Diegle, R.B.

    1981-10-01

    The corrosion behavior of iron, aluminum and copperbase alloys was studied in uninhibited glycol solutions under conditions that simulate those found in non-concentrating solar collectors. It was found that only Type 444 stainless steel exhibited adequate corrosion resistance; there was no evidence of pitting, crevice corrosion, or galvanic attack, and general corrosion rates were low. The general corrosion rate of CDA 122 copper was high (greater than 200 ..mu..m/y) under some test conditions, but copper was resistant to pitting and crevice attack. General corrosion rates of the aluminum alloys (1100, 3003 and 6061) were low, but these alloys were susceptible to pitting and crevice attack. The propensity for pitting was greatest in the presence of chlorides but it also was severe in the absence of chlorides following long exposures. The onset of pitting of the aluminum alloys in chloride-free solutions was attributed to degradation of the glycols.

  11. Validation of a Monte Carlo model used for simulating tube current modulation in computed tomography over a wide range of phantom conditions/challenges

    SciTech Connect

    Bostani, Maryam McMillan, Kyle; Cagnon, Chris H.; McNitt-Gray, Michael F.; DeMarco, John J.

    2014-11-01

    Purpose: Monte Carlo (MC) simulation methods have been widely used in patient dosimetry in computed tomography (CT), including estimating patient organ doses. However, most simulation methods have undergone a limited set of validations, often using homogeneous phantoms with simple geometries. As clinical scanning has become more complex and the use of tube current modulation (TCM) has become pervasive in the clinic, MC simulations should include these techniques in their methodologies and therefore should also be validated using a variety of phantoms with different shapes and material compositions to result in a variety of differently modulated tube current profiles. The purpose of this work is to perform the measurements and simulations to validate a Monte Carlo model under a variety of test conditions where fixed tube current (FTC) and TCM were used. Methods: A previously developed MC model for estimating dose from CT scans that models TCM, built using the platform of MCNPX, was used for CT dose quantification. In order to validate the suitability of this model to accurately simulate patient dose from FTC and TCM CT scan, measurements and simulations were compared over a wide range of conditions. Phantoms used for testing range from simple geometries with homogeneous composition (16 and 32 cm computed tomography dose index phantoms) to more complex phantoms including a rectangular homogeneous water equivalent phantom, an elliptical shaped phantom with three sections (where each section was a homogeneous, but different material), and a heterogeneous, complex geometry anthropomorphic phantom. Each phantom requires varying levels of x-, y- and z-modulation. Each phantom was scanned on a multidetector row CT (Sensation 64) scanner under the conditions of both FTC and TCM. Dose measurements were made at various surface and depth positions within each phantom. Simulations using each phantom were performed for FTC, detailed x–y–z TCM, and z-axis-only TCM to obtain

  12. Expanding concept of clinical conditions and symptoms in multiple system atrophy.

    PubMed

    Watanabe, Hirohisa; Riku, Yuichi; Nakamura, Tomohiko; Hara, Kazuhiro; Ito, Mizuki; Hirayama, Masaaki; Yoshida, Mari; Katsuno, Masahisa; Sobue, Gen

    2016-07-28

    Multiple system atrophy (MSA) is an adult-onset, progressive neurodegenerative disorder. MSA patients show various phenotypes during the course of their illness including parkinsonism, cerebellar ataxia, autonomic failure, and pyramidal signs. MSA is classified into the parkinsonian (MSA-P) or cerebellar (MSA-C) variant depending on the clinical motor phenotype at presentation. MSA-P and MSA-C are predominant in Western countries and Japan, respectively. The mean age at onset is 55 to 60 years. Prognosis ranges from 6 to 10 years, but some cases survive for more than 15 years. Early and severe autonomic failure is a poor prognostic factor. MSA patients sometimes present with isolated autonomic failure or motor symptoms/signs, and the median duration from onset to the concomitant appearance of motor and autonomic symptoms was approximately 2 years in our previous study. As the presence of the combination of motor and autonomic symptoms is essential for the current diagnostic criteria, early diagnosis is difficult when patients present with isolated autonomic failure or motor symptoms/signs. We experienced MSA patients who died before presentation of the motor symptoms/signs diagnostic for MSA (i.e., premotor MSA). Detection of the nature of autonomic failure consistent with MSA and identification of the dysfunctional anatomical sites may increase the probability of a diagnosis of premotor MSA. Dementia is another problem in MSA. Although dementia had been thought to be rare in MSA, frontal lobe dysfunction is observed frequently during the early course of the illness. Magnetic resonance imaging can show progressive cerebral atrophy in longstanding cases. More recently, MSA patients presenting with frontotemporal dementia preceding the presence of motor and autonomic manifestations diagnostic of MSA have been reported. Novel diagnostic criteria based on an expanding concept of the clinical conditions and symptoms of MSA will be needed for the development of disease

  13. Horner Syndrome in Children: A Clinical Condition with Serious Underlying Disease.

    PubMed

    Barrea, Christophe; Vigouroux, Tiphaine; Karam, Joe; Milet, Ariane; Vaessen, Sandrine; Misson, Jean-Paul

    2016-08-01

    Aim Horner syndrome corresponds to the clinical triad of miosis, ptosis, and facial anhidrosis. These symptoms are related to injury of the oculosympathetic chain. In children, Horner syndrome is classified as congenital or acquired. While the diagnosis is made through clinical examination, there is some debate regarding the use of imaging modalities and the extent of anatomical coverage required. Methods Here, we describe two cases of children with acute Horner syndrome. We then review the literature about the different etiology and discuss the interest of some investigations. Results Case 1: An 8-month-old girl without personal or familial history, has presented a right acquired Horner syndrome without additional signs. Frontal chest radiography and ultrasonography of the neck and the abdomen was first achieved and returned normal. The cerebral and cervical magnetic resonance imaging (MRI) with angiographic sequences performed in a second time was also normal. Finally, an enhanced thoracic computed tomography (CT)-scan demonstrated a mass at the right pulmonary apex. Case 2: A 9-year-old boy without personal or familial history has presented an acute headache with loss of consciousness during a basketball competition. Upon waking up, the child has right hemiplegia, aphasia, and left Horner syndrome. The cerebral CT scan realized in the first line was normal. The MRI with angiographic sequences demonstrated M1 left carotid dissection with homolateral white matter infarction. Conclusion Imaging studies seem critical in delineating the nature and extent of any underlying pathology along the oculosympathetic pathway in children presenting a Horner syndrome. In these patients, a history of trauma or surgery may reduce the need for extensive systemic evaluation. Without such anamnesis, a decision to proceed with further evaluation is made with consideration of the relative incidence of tumor, especially neuroblastoma, or other treatable lesions. In this

  14. On simulating lipid bilayers with an applied surface tension: periodic boundary conditions and undulations.

    PubMed Central

    Feller, S E; Pastor, R W

    1996-01-01

    As sketched in Fig. 1, a current molecular dynamics computer simulation of a lipid bilayer fails to capture significant features of the macroscopic system, including long wavelength undulations. Such fluctuations are intrinsically connected to the value of the macroscopic (or thermodynamic) surface tension (cf. Eqs. 1 and 9; for a related treatment, see Brochard et al., 1975, 1976). Consequently, the surface tension that might be evaluated in an MD simulation should not be expected to equal the surface tension obtained from macroscopic measurements. Put another way, the largest of the three simulations presented here contained over 16,000 atoms and required substantial computer time to complete, but modeled a system of only 36 lipids per side. From this perspective it is not surprising that the system is not at the thermodynamic limit. An important practical consequence of this effect is that simulations with fluctuating area should be carried out with a nonzero applied surface tension (gamma 0 of Fig. 2) even when the macroscopic tension is zero, or close to zero. Computer simulations at fixed surface area, which can explicitly determine pressure anisotropy at the molecular level, should ultimately lend insight into the value of gamma 0, including its dependence on lipid composition and other membrane components. As we have noted and will describe further in separate publications (Feller et al., 1996; Feller et al., manuscript in preparation), surface tensions obtained from simulations can be distorted by inadequate initial conditions and convergence, and are sensitive to potential energy functions, force truncation methods, and system size; it is not difficult, in fact, to tune terms in the potential energy function so as to yield surface tensions close to zero. This is why parameters should be tested extensively on simpler systems, for example, monolayers. The estimates of gamma 0 that we have presented here should be regarded as qualitative, and primarily

  15. Atomistic Simulations of Chemical Reactivity of TATB Under Thermal and Shock Conditions

    SciTech Connect

    Manaa, M R; Reed, E J; Fried, L E

    2009-09-23

    The study of chemical transformations that occur at the reactive shock front of energetic materials provides important information for the development of predictive models at the grain-and continuum scales. A major shortcoming of current high explosives models is the lack of chemical kinetics data of the reacting explosive in the high pressure and temperature regimes. In the absence of experimental data, long-time scale atomistic molecular dynamics simulations with reactive chemistry become a viable recourse to provide an insight into the decomposition mechanism of explosives, and to obtain effective reaction rate laws. These rates can then be incorporated into thermo-chemical-hydro codes (such as Cheetah linked to ALE3D) for accurate description of the grain and macro scales dynamics of reacting explosives. In this talk, I will present quantum simulations of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) crystals under thermal decomposition (high density and temperature) and shock compression conditions. This is the first time that condensed phase quantum methods have been used to study the chemistry of insensitive high explosives. We used the quantum-based, self-consistent charge density functional tight binding method (SCC{_}DFTB) to calculate the interatomic forces for reliable predictions of chemical reactions, and to examine electronic properties at detonation conditions for a relatively long time-scale on the order of several hundreds of picoseconds. For thermal decomposition of TATB, we conducted constant volume-temperature simulations, ranging from 0.35 to 2 nanoseconds, at {rho} = 2.87 g/cm{sup 3} at T = 3500, 3000, 2500, and 1500 K, and {rho} = 2.9 g/cm{sup 3} and 2.72 g/cm{sup 3}, at T = 3000 K. We also simulated crystal TATB's reactivity under steady overdriven shock compression using the multi-scale shock technique. We conducted shock simulations with specified shock speeds of 8, 9, and 10 km/s for up to 0.43 ns duration, enabling us to track the

  16. Open Knee: Open Source Modeling & Simulation to Enable Scientific Discovery and Clinical Care in Knee Biomechanics

    PubMed Central

    Erdemir, Ahmet

    2016-01-01

    Virtual representations of the knee joint can provide clinicians, scientists, and engineers the tools to explore mechanical function of the knee and its tissue structures in health and disease. Modeling and simulation approaches such as finite element analysis also provide the possibility to understand the influence of surgical procedures and implants on joint stresses and tissue deformations. A large number of knee joint models are described in the biomechanics literature. However, freely accessible, customizable, and easy-to-use models are scarce. Availability of such models can accelerate clinical translation of simulations, where labor intensive reproduction of model development steps can be avoided. The interested parties can immediately utilize readily available models for scientific discovery and for clinical care. Motivated by this gap, this study aims to describe an open source and freely available finite element representation of the tibiofemoral joint, namely Open Knee, which includes detailed anatomical representation of the joint's major tissue structures, their nonlinear mechanical properties and interactions. Three use cases illustrate customization potential of the model, its predictive capacity, and its scientific and clinical utility: prediction of joint movements during passive flexion, examining the role of meniscectomy on contact mechanics and joint movements, and understanding anterior cruciate ligament mechanics. A summary of scientific and clinically directed studies conducted by other investigators are also provided. The utilization of this open source model by groups other than its developers emphasizes the premise of model sharing as an accelerator of simulation-based medicine. Finally, the imminent need to develop next generation knee models are noted. These are anticipated to incorporate individualized anatomy and tissue properties supported by specimen-specific joint mechanics data for evaluation, all acquired in vitro from varying age

  17. Statistical power of multilevel modelling in dental caries clinical trials: a simulation study.

    PubMed

    Burnside, G; Pine, C M; Williamson, P R

    2014-01-01

    Outcome data from dental caries clinical trials have a naturally hierarchical structure, with surfaces clustered within teeth, clustered within individuals. Data are often aggregated into the DMF index for each individual, losing tooth- and surface-specific information. If these data are to be analysed by tooth or surface, allowing exploration of effects of interventions on different teeth and surfaces, appropriate methods must be used to adjust for the clustered nature of the data. Multilevel modelling allows analysis of clustered data using individual observations without aggregating data, and has been little used in the field of dental caries. A simulation study was conducted to investigate the performance of multilevel modelling methods and standard caries increment analysis. Data sets were simulated from a three-level binomial distribution based on analysis of a caries clinical trial in Scottish adolescents, with varying sample sizes, treatment effects and random tooth level effects based on trials reported in Cochrane reviews of topical fluoride, and analysed to compare the power of multilevel models and traditional analysis. 40,500 data sets were simulated. Analysis showed that estimated power for the traditional caries increment method was similar to that for multilevel modelling, with more variation in smaller data sets. Multilevel modelling may not allow significant reductions in the number of participants required in a caries clinical trial, compared to the use of traditional analyses, but investigators interested in exploring the effect of their intervention in more detail may wish to consider the application of multilevel modelling to their clinical trial data. PMID:24216573

  18. The role of ultrasound simulators in education: an investigation into sonography student experiences and clinical mentor perceptions.

    PubMed

    Gibbs, Vivien

    2015-11-01

    Simulation as an effective pedagogy is gaining momentum at all levels of health care education. Limited research has been undertaken on the role of simulated learning in health care and further evaluation is needed to explore the quality of learning opportunities offered, and their effectiveness in the preparation of students for clinical practice. This study was undertaken to explore ways of integrating simulation-based learning into sonography training to enhance clinical preparation. A qualitative study was undertaken, using interviews to investigate the experiences of a group of sonography students after interacting with an ultrasound simulator. The perceptions of their clinical mentors on the effectiveness of this equipment to support the education and development of sonographers were also explored. The findings confirm that ultrasound simulators provide learning opportunities in an unpressurised environment, which reduces stress for the student and potential harm to patients. Busy clinical departments acknowledge the advantages of opportunities for students to acquire basic psychomotor skills in a classroom setting, thereby avoiding the inevitable reduction in patient throughput which results from clinical training. The limitations of simulation equipment to support the development of the full range of clinical skills required by sonographers were highlighted and suggestions made for more effective integration of simulation into the teaching and learning process. Ultrasound simulators have a role in sonography education, but continued research needs to be undertaken in order to develop appropriate strategies to support students, educators and mentors to effectively integrate this methodology. PMID:27433260

  19. The effect of simulated air conditions on N95 filtering facepiece respirators performance.

    PubMed

    Ramirez, Joel A; O'Shaughnessy, Patrick T

    2016-07-01

    The objective of this study was to determine the effect of several simulated air environmental conditions on the particle penetration and the breathing resistance of two N95 filtering facepiece respirator (FFR) models. The particle penetration and breathing resistance of the respirators were evaluated in a test system developed to mimic inhalation and exhalation breathing while relative humidity and temperature were modified. Breathing resistance was measured over 120 min using a calibrated pressure transducer under four different temperature and relative humidity conditions without aerosol loading. Particle penetration was evaluated before and after the breathing resistance test at room conditions using a sodium chloride aerosol measured with a scanning mobility particle sizer. Results demonstrated that increasing relative humidity and lowering external temperature caused significant increases in breathing resistance (p < 0.001). However, these same conditions did not influence the penetration or most penetrating particle size of the tested FFRs. The increase in breathing resistance varied by FFR model suggesting that some FFR media are less influenced by high relative humidity. PMID:26861653

  20. Simulations of inducers at Low-Flow Off-Design Conditions

    NASA Technical Reports Server (NTRS)

    Hosangadi, Ashvin; Ahuja, Vineet; Ungewitter, Ronald J.

    2005-01-01

    The ability to accurately model details of inlet back flow for inducers operating at low-flow, off-design conditions is evaluated. A sub-scale version of a three- bladed liquid hydrogen inducer tested in water with detailed velocity and pressure measurements is used as a numerical test bed. Under low-flow, off-design conditions the length of the separation zone as well as the swirl velocity magnitude was under predicted with a standard k-E model. When the turbulent viscosity coefficient was reduced good comparison was obtained at all the flow conditions examined with both the magnitude and shape of the profile matching well with the experimental data taken half a diameter upstream of the leading edge. The velocity profiles and incidence angles at the leading edge itself were less sensitive to the back flow length predictions indicating that single-phase performance predictions may be well predicted even if the details of flow separation modeled are incorrect. However, for cavitating flow situations the prediction of the correct swirl in the back flow and the pressure depression in the core becomes critical since it leads to vapor formation. The simulations have been performed using the CRUNCH CFD@ code that has a generalized multi-element unstructured framework and an advanced multi-phase formulation for cryogenic fluids. The framework has been validated rigorously for predictions of temperature and pressure depression in cryogenic fluid cavities and has also been shown to predict the cavitation breakdown point for inducers at design conditions.

  1. Simulation of VSPT Experimental Cascade Under High and Low Free-Stream Turbulence Conditions

    NASA Technical Reports Server (NTRS)

    Ameri, Ali A.; Giel, Paul W.; Flegel, Ashlie B.

    2014-01-01

    Variable-Speed Power Turbines (VSPT) for rotorcraft applications operate at low Reynolds number and over a wide range in incidence associated with shaft speed change. A comprehensive linear cascade data set obtained includes the effects of Reynolds number, free-stream turbulence and incidence is available and this paper concerns itself with the presentation and numerical simulation of conditions resulting in a selected set of those data. As such, post-dictions of blade pressure loading, total-pressure loss and exit flow angles under conditions of high and low turbulence intensity for a single Reynolds number are presented. Analyses are performed with the three-equation turbulence models of Walters-Leylek and Walters and Cokljat. Transition, loading, total-pressure loss and exit angle variations are presented and comparisons are made with experimental data as available. It is concluded that at the low freestream turbulence conditions the Walters-Cokljat model is better suited to predictions while for high freestream conditions the two models generate similar predications that are generally satisfactory.

  2. Simulation of VSPT Experimental Cascade Under High and Low Free-Stream Turbulence Conditions

    NASA Technical Reports Server (NTRS)

    Ameri, Ali A.; Giel, Paul W.; Flegel, Ashlie B.

    2015-01-01

    Variable-Speed Power Turbines (VSPT) for rotorcraft applications operate at low Reynolds number and over a wide range in incidence associated with shaft speed change. A comprehensive linear cascade data set obtained includes the effects of Reynolds number, free-stream turbulence and incidence is available and this paper concerns itself with the presentation and numerical simulation of conditions resulting in a selected set of those data. As such, post-dictions of blade pressure loading, total-pressure loss and exit flow angles under conditions of high and low turbulence intensity for a single Reynolds number are presented. Analyses are performed with the three-equation turbulence models of Walters- Leylek and Walters and Cokljat. Transition, loading, total-pressure loss and exit angle variations are presented and comparisons are made with experimental data as available. It is concluded that at the low freestream turbulence conditions the Walters-Cokljat model is better suited to predictions while for high freestream conditions the two models generate similar predications that are generally satisfactory.

  3. A method for implementing Dirichlet and third-type boundary conditions in PTRW simulations

    NASA Astrophysics Data System (ADS)

    Koch, J.; Nowak, W.

    2014-02-01

    We present an efficient and accurate numerical method for implementing Dirichlet boundary conditions in particle tracking random walk (PTRW) simulations of advective-dispersive transport. This is a challenge, because defining concentrations for Dirichlet boundary conditions requires invoking control volumes of some kind, which are not natural to the Lagrangian-based PTRW concept. Our method performs a Galerkin projection of PTRW-based particle densities onto control volumes that discretize the boundary. Thus, we obtain concentration values at the boundary condition and can control the particle release rates such that the prescribed boundary values are met. This allows for complex-shaped internal and external boundaries, where concentration values are fixed to prescribed values. Third-type boundary conditions can be addressed as well. We test and illustrate the properties and behavior of our method in a series of test cases. The results are benchmarked against the conceptually related semianalytical method MASST (multiple analytical source superposition technique) and to those of a finite element method (FEM). While MASST is restricted to uniform velocity fields due to the underlying analytical solutions, FEM is limited in heterogeneous velocity fields at large Péclet numbers by numerical dispersion in the feasible discretization range. The results demonstrate that our proposed method performs better than the other methods in both regimes.

  4. Numerical Simulation of Time-Dependent Wave Propagation Using Nonreflective Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Ionescu, D.; Muehlhaus, H.

    2003-12-01

    Solving numerically the wave equation for modelling wave propagation on an unbounded domain with complex geometry requires a truncation of the domain, to fit the infinite region on a finite computer. Minimizing the amount of spurious reflections requires in many cases the introduction of an artificial boundary and of associated nonreflecting boundary conditions. Here, a question arises, namely which boundary condition guarantees that the solution of the time dependent problem inside the artificial boundary coincides with the solution of the original problem in the infinite region. Recent investigations have shown that the accuracy and performance of numerical algorithms and the interpretation of the results critically depend on the proper treatment of external boundaries. Despite the computational speed of finite difference schemes and the robustness of finite elements in handling complex geometries the resulting numerical error consists of two independent contributions: the discretization error of the numerical method used and the spurious reflection generated at the artificial boundary. This spurious contribution travels back and substantially degrades the accuracy of the solution everywhere in the computational domain. Unless both error components are reduced systematically, the numerical solution does not converge to the solution of the original problem in the infinite region. In the present study we present and discuss absorbing boundary condition techniques for the time-dependent scalar wave equation in three spatial dimensions. In particular, exact conditions that annihilate wave harmonics on a spherical artificial boundary up to a given order are obtained and subsequently applied in numerical simulations by employing a finite differences implementation.

  5. Spinal muscle activity in simulated rugby union scrummaging is affected by different engagement conditions.

    PubMed

    Cazzola, D; Stone, B; Holsgrove, T P; Trewartha, G; Preatoni, E

    2016-04-01

    Biomechanical studies of rugby union scrummaging have focused on kinetic and kinematic analyses, while muscle activation strategies employed by front-row players during scrummaging are still unknown. The aim of the current study was to investigate the activity of spinal muscles during machine and live scrums. Nine male front-row forwards scrummaged as individuals against a scrum machine under "crouch-touch-set" and "crouch-bind-set" conditions, and against a two-player opposition in a simulated live condition. Muscle activities of the sternocleidomastoid, upper trapezius, and erector spinae were measured over the pre-engagement, engagement, and sustained-push phases. The "crouch-bind-set" condition increased muscle activity of the upper trapezius and sternocleidomastoid before and during the engagement phase in machine scrummaging. During the sustained-push phase, live scrummaging generated higher activities of the erector spinae than either machine conditions. These results suggest that the pre-bind, prior to engagement, may effectively prepare the cervical spine by stiffening joints before the impact phase. Additionally, machine scrummaging does not replicate the muscular demands of live scrummaging for the erector spinae, and for this reason, we advise rugby union forwards to ensure scrummaging is practiced in live situations to improve the specificity of their neuromuscular activation strategies in relation to resisting external loads. PMID:25818526

  6. DSMC Simulation of Separated Flows About Flared Bodies at Hypersonic Conditions

    NASA Technical Reports Server (NTRS)

    Moss, James N.

    2000-01-01

    This paper describes the results of a numerical study of interacting hypersonic flows at conditions that can be produced in ground-based test facilities. The computations are made with the direct simulation Monte Carlo (DSMC) method of Bird. The focus is on Mach 10 flows about flared axisymmetric configurations, both hollow cylinder flares and double cones. The flow conditions are those for which experiments have been or will be performed in the ONERA R5Ch low-density wind tunnel and the Calspan-University of Buffalo Research Center (CUBRC) Large Energy National Shock (LENS) tunnel. The range of flow conditions, model configurations, and model sizes provides a significant range of shock/shock and shock/boundary layer interactions at low Reynolds number conditions. Results presented will highlight the sensitivity of the calculations to grid resolution, contrast the differences in flow structure for hypersonic cold flows and those of more energetic but still low enthalpy flows, and compare the present results with experimental measurements for surface heating, pressure, and extent of separation.

  7. Effect of shadowing on survival of bacteria under conditions simulating the Martian atmosphere and UV radiation.

    PubMed

    Osman, Shariff; Peeters, Zan; La Duc, Myron T; Mancinelli, Rocco; Ehrenfreund, Pascale; Venkateswaran, Kasthuri

    2008-02-01

    Spacecraft-associated spores and four non-spore-forming bacterial isolates were prepared in Atacama Desert soil suspensions and tested both in solution and in a desiccated state to elucidate the shadowing effect of soil particulates on bacterial survival under simulated Martian atmospheric and UV irradiation conditions. All non-spore-forming cells that were prepared in nutrient-depleted, 0.2-microm-filtered desert soil (DSE) microcosms and desiccated for 75 days on aluminum died, whereas cells prepared similarly in 60-microm-filtered desert soil (DS) microcosms survived such conditions. Among the bacterial cells tested, Microbacterium schleiferi and Arthrobacter sp. exhibited elevated resistance to 254-nm UV irradiation (low-pressure Hg lamp), and their survival indices were comparable to those of DS- and DSE-associated Bacillus pumilus spores. Desiccated DSE-associated spores survived exposure to full Martian UV irradiation (200 to 400 nm) for 5 min and were only slightly affected by Martian atmospheric conditions in the absence of UV irradiation. Although prolonged UV irradiation (5 min to 12 h) killed substantial portions of the spores in DSE microcosms (approximately 5- to 6-log reduction with Martian UV irradiation), dramatic survival of spores was apparent in DS-spore microcosms. The survival of soil-associated wild-type spores under Martian conditions could have repercussions for forward contamination of extraterrestrial environments, especially Mars. PMID:18083857

  8. Developing an Evaluation Tool for Assessing Clinical Ethics Consultation Skills in Simulation Based Education: The ACES Project.

    PubMed

    Wasson, Katherine; Parsi, Kayhan; McCarthy, Michael; Siddall, Viva Jo; Kuczewski, Mark

    2016-06-01

    The American Society for Bioethics and Humanities has created a quality attestation (QA) process for clinical ethics consultants; the pilot phase of reviewing portfolios has begun. One aspect of the QA process which is particularly challenging is assessing the interpersonal skills of individual clinical ethics consultants. We propose that using case simulation to evaluate clinical ethics consultants is an approach that can meet this need provided clear standards for assessment are identified. To this end, we developed the Assessing Clinical Ethics Skills (ACES) tool, which identifies and specifies specific behaviors that a clinical ethics consultant should demonstrate in an ethics case simulation. The aim is for the clinical ethics consultant or student to use a videotaped case simulation, along with the ACES tool scored by a trained rater, to demonstrate their competence as part of their QA portfolio. The development and piloting of the tool is described. PMID:25794891

  9. Measuring Water Content and Desorption Isotherms in Soil Simulants Under Martian Conditions

    NASA Astrophysics Data System (ADS)

    Hudson, T.; Aharonson, O.; Schorghofer, N.; Hecht, M. H.; Bridges, N.; Green, J. R.

    2003-12-01

    Theoretical predictions as well as recent spacecraft observations indicate that large quantities of ice is present in the high latitudes upper decimeters to meters of the Martian regolith. At shallower depths and warmer locations small amounts of H2O, either adsorbed or free, may be present transiently. We seek to simulate Mars surface conditions and to observe the effects of temperature cycling (diurnal and seasonal scale) on the water content profiles of several soil simulants. To model the upper Martian regolith, we begin by using crushed JSC Mars-1 palagonite with particles in the 50 micron to sub-micron size range. Spheres of pure silica in the 10 to 40 mm range may also be used to study the effects of grain surface morphology and composition. Simulants with various water contents are brought to Mars pressures and monitored. A line source heat-pulse probe is being prepared to monitor water content profiles in real-time and to be calibrated against water content samples measured with thermogravimetric (TG) analysis. Initial experiments will allow us to monitor water content; more refined investigations will permit the determination of desorption isotherms.

  10. Rarefied hypersonic flow simulations using the Navier-Stokes equations with non-equilibrium boundary conditions

    NASA Astrophysics Data System (ADS)

    Greenshields, Christopher J.; Reese, Jason M.

    2012-07-01

    This paper investigates the use of Navier-Stokes-Fourier equations with non-equilibrium boundary conditions (BCs) for simulation of rarefied hypersonic flows. It revisits a largely forgotten derivation of velocity slip and temperature jump by Patterson, based on Grad's moment method. Mach 10 flow around a cylinder and Mach 12.7 flow over a flat plate are simulated using both computational fluid dynamics using the temperature jump BCs of Patterson and Smoluchowski and the direct simulation Monte-Carlo (DSMC) method. These flows exhibit such strongly non-equilibrium behaviour that, following Patterson's analysis, they are strictly beyond the range of applicability of the BCs. Nevertheless, the results using Patterson's temperature jump BC compare quite well with the DSMC and are consistently better than those using the standard Smoluchowski temperature jump BC. One explanation for this better performance is that an assumption made by Patterson, based on the flow being only slightly non-equilibrium, introduces an additional constraint to the resulting BC model in the case of highly non-equilibrium flows.

  11. 3-D simulation of gases transport under condition of inert gas injection into goaf

    NASA Astrophysics Data System (ADS)

    Liu, Mao-Xi; Shi, Guo-Qing; Guo, Zhixiong; Wang, Yan-Ming; Ma, Li-Yang

    2016-02-01

    To prevent coal spontaneous combustion in mines, it is paramount to understand O2 gas distribution under condition of inert gas injection into goaf. In this study, the goaf was modeled as a 3-D porous medium based on stress distribution. The variation of O2 distribution influenced by CO2 or N2 injection was simulated based on the multi-component gases transport and the Navier-Stokes equations using Fluent. The numerical results without inert gas injection were compared with field measurements to validate the simulation model. Simulations with inert gas injection show that CO2 gas mainly accumulates at the goaf floor level; however, a notable portion of N2 gas moves upward. The evolution of the spontaneous combustion risky zone with continuous inert gas injection can be classified into three phases: slow inerting phase, rapid accelerating inerting phase, and stable inerting phase. The asphyxia zone with CO2 injection is about 1.25-2.4 times larger than that with N2 injection. The efficacy of preventing and putting out mine fires is strongly related with the inert gas injecting position. Ideal injections are located in the oxidation zone or the transitional zone between oxidation zone and heat dissipation zone.

  12. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1988-01-01

    In the first half of this grant year, laboratory measurements were conducted on the millimeter-wave properties of atmospheric gases under simulated conditions for the outer planet. Significant improvements in the current system have made it possible to accurately characterize the opacity from gaseous NH3 at longer millimeter wavelengths (7 to 10 mm) under simulated Jovian conditions. In the second half of the grant year, it is hoped to extend such measurements to even shorter millimeter-wavelengths. Further analysis and application of the laboratory results to microwave and millimeter-wave absorption data for the outer planets, such as results from Voyager Radio Occultation experiments and earth-based radio astronomical observations will be continued. The analysis of available multispectral microwave opacity data from Venus, including data from the most recent radio astronomical ovservations in the 1.3 to 3.6 cm wavelength range and newly obtained Pioneer-Venus Radio Occulatation measurements at 13 cm, using the laboratory measurements as an interpretative tool will be pursued.

  13. The Fuel Accident Condition Simulator (FACS) furnace system for high temperature performance testing of VHTR fuel

    SciTech Connect

    Paul A. Demkowicz; David V. Laug; Dawn M. Scates; Edward L. Reber; Lyle G. Roybal; John B. Walter; Jason M. Harp; Robert N. Morris

    2012-10-01

    The AGR-1 irradiation of TRISO-coated particle fuel specimens was recently completed and represents the most successful such irradiation in US history, reaching peak burnups of greater than 19% FIMA with zero failures out of 300,000 particles. An extensive post-irradiation examination (PIE) campaign will be conducted on the AGR-1 fuel in order to characterize the irradiated fuel properties, assess the in-pile fuel performance in terms of coating integrity and fission metals release, and determine the fission product retention behavior during high temperature safety testing. A new furnace system has been designed, built, and tested to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000 degrees C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, and Eu), iodine, and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator furnace system and the associated fission gas monitoring system, as well as preliminary system calibration results.

  14. Fuel Accident Condition Simulator (FACS) Furnace for Post-Irradiation Heating Tests of VHTR Fuel Compacts

    SciTech Connect

    Paul A Demkowicz; Paul Demkowicz; David V Laug

    2010-10-01

    Abstract –Fuel irradiation testing and post-irradiation examination are currently in progress as part of the Next Generation Nuclear Plant Fuels Development and Qualification Program. The PIE campaign will include extensive accident testing of irradiated very high temperature reactor fuel compacts to verify fission product retention characteristics at high temperatures. This work will be carried out at both the Idaho National Laboratory (INL) and the Oak Ridge National Laboratory, beginning with accident tests on irradiated fuel from the AGR-1 experiment in 2010. A new furnace system has been designed, built, and tested at INL to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000°C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, Eu, and I) and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator (FACS) furnace system, as well as preliminary system calibration results.

  15. Physico-chemical characterization of steel slag. Study of its behavior under simulated environmental conditions.

    PubMed

    Navarro, Carla; Díaz, Mario; Villa-García, María A

    2010-07-15

    The chemical and mineralogical composition of steel slag produced in two ArcelorMittal steel plants located in the North of Spain, as well as the study of the influence of simulated environmental conditions on the properties of the slag stored in disposal areas, was carried out by elemental chemical analysis, XRF, X-ray diffraction, thermal analysis, and scanning electron microscopy with EDS analyzer. Spectroscopic characterization of the slag was also performed by using FTIR spectroscopy. Due to the potential uses of the slag as low cost adsorbent for water treatment and pollutants removal, its detailed textural characterization was carried out by nitrogen adsorption-desorption at 77 K and mercury intrusion porosimetry. The results show that the slag is a crystalline heterogeneous material whose main components are iron oxides, calcium (magnesium) compounds (hydroxide, oxide, silicates, and carbonate), elemental iron, and quartz. The slags are porous materials with specific surface area of 11 m(2)g(-1), containing both mesopores and macropores. Slag exposure to simulated environmental conditions lead to the formation of carbonate phases. Carbonation reduces the leaching of alkaline earth elements as well as the release of the harmful trace elements Cr (VI) and V. Steel slags with high contents of portlandite and calcium silicates are potential raw materials for CO(2) long-term storage. PMID:20568743

  16. Laboratory Evaluation and Application of Microwave Absorption Properties Under Simulated Conditions for Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1997-01-01

    Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments and earth-based radio astronomical observations can be used to infer abundances of microwave absorbing constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. The use of theoretically-derived microwave absorption properties for such atmospheric constituents, or using laboratory measurements of such properties under environmental conditions which are significantly different than those of the planetary atmosphere being studied, often leads to significant misinterpretation of available opacity data. Laboratory measurements completed under this grant (NAGW-533), have shown that the opacity from, SO2 under simulated Venus conditions is best described by a different lineshape than was previously used in theoretical predictions. The recognition of the need to make such laboratory measurements of simulated planetary atmospheres over a range of temperatures and pressures which correspond to the altitudes probed by both radio occultation experiments and radio astronomical observations, and over a range of frequencies which correspond to those used in both radio occultation experiments and radio astronomical observations, has led to the development of a facility at Georgia Tech which is capable of making such measurements. It has been the goal of this investigation to conduct such measurements and to apply the results to a wide range of planetary observations, both spacecraft and earth-based, in order to determine the identity and abundance profiles of constituents in those planetary atmospheres.

  17. Structural analysis of rat bone explants kept in vitro in simulated microgravity conditions.

    PubMed

    Cosmi, F; Steimberg, N; Dreossi, D; Mazzoleni, G

    2009-04-01

    Skeletal abnormalities reported in humans and laboratory animals after spaceflight, include cancellous osteopenia, decreased cortical and cancellous bone formation, aberrant matrix ultrastructure, decreased mineralization and reduced bone strength. Although considerable effort has been made up to now to understand the skeletal effects of spaceflight, in order to estimate health risk, our knowledge in this area is still largely incomplete. It is widely accepted that the mechanical strength of cancellous bone is related not only to the mineral content, but also to the trabecular micro-architecture arrangement. Three-dimensional numerical analysis of bone volumes has been shown to be an important tool in this field. The Cell Method, a recently introduced numerical method, has been applied to static analysis of structures obtained from 3D reconstruction of micro-computed tomography scans performed at the Elettra Synchrotron facility (Trieste, Italy) in order to quantify changes in trabecular bone architecture. In the present study, the Cell Method model is used to compare the micro-tomographed structure of fragments of rats bone explants (tibial proximal epiphyses) harvested after 3 days and after 1, 2, 3 and 4 weeks of culture in the RCCS bioreactor, which represents the unique existing bioreactor, operating on the Earth's surface, capable of successfully reproducing, in vitro, optimal conditions in order to simulate a microgravity environment. Although preliminary, our results seem to suggest that the exposure of tibial bone explants to simulated microgravity conditions obtained by the RCCS bioreactor, are consistent with skeletal changes observed after spaceflight. PMID:19627820

  18. Raman spectroscopy of murine bone in response to simulated spaceflight conditions

    NASA Astrophysics Data System (ADS)

    Mandair, Gurjit S.; Bateman, Ted A.; Morris, Michael D.

    2009-02-01

    Astronauts exposed to spaceflight conditions can lose 1-2% of their bone mineral density per month from the weight-bearing portions of the skeletal system. Low bone mineral density, termed osteopenia, is the result of decreased bone formation and/or increased bone resorption. In this study, Raman spectroscopy is used to examine if the physicochemical composition of murine femurs is altered in response to simulated spaceflight conditions (hindlimb suspension). Female C57BL/6J mice, aged 53 days, were divided into ground control and simulated spaceflight groups for a period of 12 days, modeling the experiment profile of mice flown on Space Shuttle flight STS-108. After the study, the mice were sacrificed and femur specimens harvested. Mid-diaphysis sections were probed using near-infrared Raman microscopy. Spectra were collected at various anatomical sites (anterior, lateral, medial, and posterior quadrants) and/or cortical locations (periosteal, midosteal, and endosteal). Chemometric recovery of spectra was employed to reduce signal contributions from the epoxy embedding agent. Mean values for mineralization, carbonation, crystallinity, and other parameters associated with the matrix were estimated. Correlations between mineralization and carbonation were observed, despite the small absolute changes between the two groups. We present more detailed analysis of this data and comment on the prospects for Raman spectroscopic evaluation of bone quality in hindlimb suspended (HLS) specimens.

  19. Effects of wearing compression garments on thermoregulation during simulated team sport activity in temperate environmental conditions.

    PubMed

    Houghton, Laurence A; Dawson, Brian; Maloney, Shane K

    2009-03-01

    Anecdotal evidence suggests compression garments (CGs) are being worn underneath normal playing attire during team sports. Wearing CGs as a baselayer could possibly increase heat storage, and so this field study investigated the effects of wearing CGs, comprising knee-length shorts and short-sleeved top underneath normal match-day attire (COMP), versus normal match-day attire alone (NORM) on thermoregulation during simulated team sport activity. Ten match-fit field hockey players twice performed 4x15min exercise bouts consisting of repeated cycles of intermittent, varied-intensity 20m shuttle running (Loughborough intermittent shuttle test), once in COMP and once in NORM. Testing was conducted in an indoor gymnasium (ambient conditions: approximately 17 degrees C, approximately 60% relative humidity). Participants acted as their own controls. Heart rate (HR), 15m sprint time, ratings of perceived exertion (RPE), blood lactate concentration, sweat rate and body core temperature (T(core)) were similar between trials (p>0.05). Mean skin temperature (T(skin)) was significantly higher in COMP than NORM (p<0.05). Overall, CGs worn as a baselayer during simulated team sport exercise in temperate ambient conditions had no thermoregulatory benefits nor any detrimental effects on T(core), physiological performance or dehydration. However, the higher T(skin) may affect individual preference for wearing CGs as an undergarment during team sports. PMID:18078787

  20. Thermal resistance of attic loose-fill insulations decreases under simulated winter conditions

    SciTech Connect

    Graves, R.S.; Wilkes, K.E.; McElroy, D.L.

    1994-05-01

    Two absolute techniques were used to measure the thermal resistance of attic loose-fill insulations: the Large Scale Climate Simulator (LSCS) and the Unguarded Thin-Heater Apparatus (UTHA). Two types of attic loose-fill insulations (unbonded and bonded/cubed) were tested under simulated winter conditions. To simulate winter conditions for an attic insulation, the specimens were tested with heat flow up, large temperature differences, and an air gap. The specimens were tested either with a constant mean temperature (30 or 21{degrees}C) and an increasing temperature difference or with a constant base temperature (21{degrees}C) and an increasing temperature difference (i.e., a decreasing mean temperature). The UTHA test specimens had a nominal thickness of 0.2 m of loose-fill insulation. The LSCS test specimens had a nominal thickness of 0.3 m of loose-fill insulation contained in a 4.2 by 5 m attic test module with a gypsum board base. The module had a gabled attic with a 5 in 12 slope roof. The tests yielded the surface-to-surface thermal resistance, R, which includes the thermal resistance due to gypsum, insulation, and any wood joists. Tests with and without an air gap were conducted in the UTHA. Surface-to-surface thermal resistance results from the LSCS and the UTHA show similar trends for these two types of loose-fill insulation when tested under simulated winter conditions. Tests with no air gap gave values of R that agreed with the bag label R-value for the insulations; R increased with lower mean temperatures. These no-gap values of R were 2 to 5% greater than the values of R obtained with an air gap for temperature differences of less than 22{degrees}C. For larger temperature differences R decreased, and at temperature differences of over 40{degrees}C, the R values were 50% less than those at small temperature differences.

  1. Large eddy simulation of the influence of CCN and thermodynamic conditions on marine stratocumulus cloud development

    NASA Astrophysics Data System (ADS)

    Song, K.; Yum, S. S.

    2009-09-01

    The marine stratocumulus topped boundary layer, which prevails in the subtropical oceanic regions where the subsidence inversion associated with the descending branch of the Hadley-Walker cell dominates, is thought to be an important component of the climate system. High albedo (30-40%) of stratocumulus clouds compared to the ocean background (10%) gives rise to large deficits in the absorbed solar radiation flux. Since cloud radiative properties are highly dependent on cloud microphysical properties, which are in turn dependent on the cloud condensation nuclei (CCN) distribution, understanding the influence of anthropogenic CCN on cloud microphysics and dynamics is a key to accurately assess the climatic impact of marine stratocumulus clouds. A large eddy simulation (LES) model is good for studying stratocumulus clouds in the boundary layer because it explicitly resolves turbulent scale eddies and can provide information on detailed microphysical structure that is difficult to be measured over the ocean. We employ the CIMMS (Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma) 3D LES model with explicit bin microphysics. We examine the microphysical and dynamical evolution of stratocumulus clouds under different CCN loadings for four different thermodynamic conditions (the key differences are in moisture content and temperature inversion height). Contrasting results of daytime and nocturnal simulations are also examined. Three different measured CCN spectra that represent maritime, continental, and polluted air masses are used as input CCN spectra for the model; the concentrations at 1% supersaturation are 163, 1023, and 5292 cm-3, respectively. The grid spacing is 75 m in the horizontal and 25 m in the vertical, to make the total domain size of 3×3×1.25 km. Total simulation time is 6 hrs. The large-scale subsidence is prescribed by w= -Dz, where the large-scale divergence D = 5×10-6 s-1 is assumed. For the clouds formed under

  2. Is bias correction of Regional Climate Model (RCM) simulations possible for non-stationary conditions?

    NASA Astrophysics Data System (ADS)

    Teutschbein, Claudia; Seibert, Jan

    2014-05-01

    Regional Climate Models (RCMs) are commonly used in climate-change impact studies to transfer large-scale Global Climate Model (GCM) values to smaller scales and to provide more detailed regional information. There is, however, the problem that RCM simulations often show considerable deviations from local observations due to systematic and random model errors. This issue has caused the development of several correction approaches, that can be classified according to their degree of complexity and include simple-to-apply methods such as linear transformations but also more advanced methods such as distribution mapping. Most of these common correction approaches are based on the assumption that RCM errors do not change over time. It is in principle not possible to test whether this underlying assumption of error stationarity is actually fulfilled for future climate conditions. In this contribution, however, we show that it is possible to evaluate how well correction methods perform for conditions different from those that they were calibrated to. This can be done with the relatively simple differential split-sample test, originally proposed by Klemeš ["Operational testing of hydrological simulation models", Hydrological Sciences Journal 31, no. 1 (1986): 13-24]. For five Swedish catchments, precipitation and temperature time series from 15 different ERA40-driven RCM simulations were corrected with different commonly-used bias correction methods. We then performed differential split-sample tests by dividing the data series into cold and warm respective dry and wet years. This enabled us to cross-evaluate the performance of different correction procedures under systematically varying climate conditions. The differential split-sample test identified major differences in the ability of the applied correction methods to reduce model errors and to cope with non-stationary biases. More advanced correction methods performed better, whereas large deviations remained for

  3. Mechanical Behavior of Tissue Simulants and Soft Tissues Under Extreme Loading Conditions

    NASA Astrophysics Data System (ADS)

    Kalcioglu, Zeynep Ilke

    Recent developments in computer-integrated surgery and in tissue-engineered constructs necessitate advances in experimental and analytical techniques in characterizing properties of mechanically compliant materials such as gels and soft tissues, particularly for small sample volumes. One goal of such developments is to quantitatively predict and mimic tissue deformation due to high rate impact events typical of industrial accidents and ballistic insults. This aim requires advances in mechanical characterization to establish tools and design principles for tissue simulant materials that can recapitulate the mechanical responses of hydrated soft tissues under dynamic contact-loading conditions. Given this motivation, this thesis studies the mechanical properties of compliant synthetic materials developed for tissue scaffold applications and of soft tissues, via modifying an established contact based technique for accurate, small scale characterization under fully hydrated conditions, and addresses some of the challenges in the implementation of this method. Two different engineered material systems composed of physically associating block copolymer gels, and chemically crosslinked networks including a solvent are presented as potential tissue simulants for ballistic applications, and compared directly to soft tissues from murine heart and liver. In addition to conventional quasistatic and dynamic bulk mechanical techniques that study macroscale elastic and viscoelastic properties, new methodologies are developed to study the small scale mechanical response of the aforementioned material systems to concentrated impact loading. The resistance to penetration and the energy dissipative constants are quantified in order to compare the deformation of soft tissues and mechanically optimized simulants, and to identify the underlying mechanisms by which the mechanical response of these tissue simulant candidates are modulated. Finally, given that soft tissues are biphasic in

  4. Molecular Dynamics Simulation and Analysis of Interfacial Water at Selected Sulfide Mineral Surfaces under Anaerobic Conditions

    SciTech Connect

    Jin, Jiaqi; Miller, Jan D.; Dang, Liem X.

    2014-04-10

    In this paper, we report on a molecular dynamics simulation (MDS) study of the behavior of interfacial water at selected sulfide mineral surfaces under anaerobic conditions. The study revealed the interfacial water structure and wetting characteristics of the pyrite (100) surface, galena (100) surface, chalcopyrite (012) surface, sphalerite (110) surface, and molybdenite surfaces (i.e., the face, armchair-edge, and zigzag-edge surfaces), including simulated contact angles, relative number density profiles, water dipole orientations, hydrogen-bonding, and residence times. For force fields of the metal and sulfur atoms in selected sulfide minerals used in the MDS, we used the universal force field (UFF) and another set of force fields optimized by quantum chemical calculations for interactions with interfacial water molecules at selected sulfide mineral surfaces. Simulation results for the structural and dynamic properties of interfacial water molecules indicate the natural hydrophobic character for the selected sulfide mineral surfaces under anaerobic conditions as well as the relatively weak hydrophobicity for the sphalerite (110) surface and two molybdenite edge surfaces. Part of the financial support for this study was provided by the U.S. Department of Energy (DOE) under Basic Science Grant No. DE-FG-03-93ER14315. The Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences (BES), of the DOE, funded work performed by Liem X. Dang. Battelle operates Pacific Northwest National Laboratory for DOE. The calculations were carried out using computer resources provided by BES. The authors are grateful to Professor Tsun-Mei Chang for valuable discussions.

  5. A cloud model simulation of space shuttle exhaust clouds in different atmospheric conditions

    NASA Technical Reports Server (NTRS)

    Chen, C.; Zak, J. A.

    1989-01-01

    A three-dimensional cloud model was used to characterize the dominant influence of the environment on the Space Shuttle exhaust cloud. The model was modified to accept the actual heat and moisture from rocket exhausts and deluge water as initial conditions. An upper-air sounding determined the ambient atmosphere in which the cloud could grow. The model was validated by comparing simulated clouds with observed clouds from four actual Shuttle launches. The model successfully produced clouds with dimensions, rise, decay, liquid water contents and vertical motion fields very similar to observed clouds whose dimensions were calculated from 16 mm film frames. Once validated, the model was used in a number of different atmospheric conditions ranging from very unstable to very stable. In moist, unstable atmospheres simulated clouds rose to about 3.5 km in the first 4 to 8 minutes then decayed. Liquid water contents ranged from 0.3 to 1.0 g kg-1 mixing ratios and vertical motions were from 2 to 10 ms-1. An inversion served both to reduce entrainment (and erosion) at the top and to prevent continued cloud rise. Even in the most unstable atmospheres, the ground cloud did not rise beyond 4 km and in stable atmospheres with strong low level inversions the cloud could be trapped below 500 m. Wind shear strongly affected the appearance of both the ground cloud and vertical column cloud. The ambient low-level atmospheric moisture governed the amount of cloud water in model clouds. Some dry atmospheres produced little or no cloud water. One case of a simulated TITAN rocket explosion is also discussed.

  6. Survivability of Psychrobacter cryohalolentis K5 Under Simulated Martian Surface Conditions

    NASA Technical Reports Server (NTRS)

    Smith, David J.; Schuerger, Andrew C.; Davidson, Mark M.; Pacala, Stephen W.; Bakermans, Corien; Onstott, Tullis

    2008-01-01

    Spacecraft launched to Mars can retain viable terrestrial microorganisms on board that may survive the interplanetary transit. Such biota might compromise the search for life beyond Earth if capable of propagating on Mars. The current study explored the survivability of Psychrobacter cryohalolentis K5, a psychrotolerant microorganism obtained from a Siberian permafrost cryopeg, under simulated martian surface conditions of high ultraviolet irradiation, high desiccation, low temperature, and low atmospheric pressure. First, a desiccation experiment compared the survival of P. cryohalolentis cells embedded, or not embedded, within a medium/salt matrix (MSM) maintained at 25 degrees C for 24 hr within a laminar flow hood. Results indicate that the presence of the MSM enhanced survival of the bacterial cells by 1 to 3 orders of magnitude. Second, tests were conducted in a Mars Simulation Chamber to determine the UV tolerance of the microorganism. No viable vegetative cells of P. cryohalolentis were detected after 8 hr of exposure to Mars-normal conditions of 4.55 W/m(2) UVC irradiation (200-280 nm), -12.5 degrees C, 7.1 mbar, and a Mars gas mix composed of CO2 (95.3%), N2 (2.7%), Ar (1.6%), O2 (0.2%), and H(2)O (0.03%). Third, an experiment was conducted within the Mars chamber in which total atmospheric opacities were simulated at tau = 0.1 (dust-free CO2 atmosphere at 7.1 mbar), 0.5 (normal clear sky with 0.4 = dust opacity and 0.1 = CO2-only opacity), and 3.5 (global dust storm) to determine the survivability of P. cryohalolentis to partially shielded UVC radiation. The survivability of the bacterium increased with the level of UVC attenuation, though population levels still declined several orders of magnitude compared to UVC-absent controls over an 8 hr exposure period.

  7. Survivability of Psychrobacter cryohalolentis K5 Under Simulated Martian Surface Conditions

    NASA Astrophysics Data System (ADS)

    Smith, David J.; Schuerger, Andrew C.; Davidson, Mark M.; Pacala, Stephen W.; Bakermans, Corien; Onstott, Tullis C.

    2009-03-01

    Spacecraft launched to Mars can retain viable terrestrial microorganisms on board that may survive the interplanetary transit. Such biota might compromise the search for life beyond Earth if capable of propagating on Mars. The current study explored the survivability of Psychrobacter cryohalolentis K5, a psychrotolerant microorganism obtained from a Siberian permafrost cryopeg, under simulated martian surface conditions of high ultraviolet irradiation, high desiccation, low temperature, and low atmospheric pressure. First, a desiccation experiment compared the survival of P. cryohalolentis cells embedded, or not embedded, within a medium/salt matrix (MSM) maintained at 25°C for 24 h within a laminar flow hood. Results indicate that the presence of the MSM enhanced survival of the bacterial cells by 1 to 3 orders of magnitude. Second, tests were conducted in a Mars Simulation Chamber to determine the UV tolerance of the microorganism. No viable vegetative cells of P. cryohalolentis were detected after 8 h of exposure to Mars-normal conditions of 4.55 W/m2 UVC irradiation (200-280 nm), -12.5°C, 7.1 mbar, and a Mars gas mix composed of CO2 (95.3%), N2 (2.7%), Ar (1.6%), O2 (0.2%), and H2O (0.03%). Third, an experiment was conducted within the Mars chamber in which total atmospheric opacities were simulated at τ = 0.1 (dust-free CO2 atmosphere at 7.1 mbar), 0.5 (normal clear sky with 0.4 = dust opacity and 0.1 = CO2-only opacity), and 3.5 (global dust storm) to determine the survivability of P. cryohalolentis to partially shielded UVC radiation. The survivability of the bacterium increased with the level of UVC attenuation, though population levels still declined several orders of magnitude compared to UVC-absent controls over an 8 h exposure period.

  8. Simulating crop growth with Expert-N-GECROS under different site conditions in Southwest Germany

    NASA Astrophysics Data System (ADS)

    Poyda, Arne; Ingwersen, Joachim; Demyan, Scott; Gayler, Sebastian; Streck, Thilo

    2016-04-01

    When feedbacks between the land surface and the atmosphere are investigated by Atmosphere-Land surface-Crop-Models (ALCM) it is fundamental to accurately simulate crop growth dynamics as plants directly influence the energy partitioning at the plant-atmosphere interface. To study both the response and the effect of intensive agricultural crop production systems on regional climate change in Southwest Germany, the crop growth model GECROS (YIN & VAN LAAR, 2005) was calibrated based on multi-year field data from typical crop rotations in the Kraichgau and Swabian Alb regions. Additionally, the SOC (soil organic carbon) model DAISY (MÜLLER et al., 1998) was implemented in the Expert-N model tool (ENGEL & PRIESACK, 1993) and combined with GECROS. The model was calibrated based on a set of plant (BBCH, LAI, plant height, aboveground biomass, N content of biomass) and weather data for the years 2010 - 2013 and validated with the data of 2014. As GECROS adjusts the root-shoot partitioning in response to external conditions (water, nitrogen, CO2), it is suitable to simulate crop growth dynamics under changing climate conditions and potentially more frequent stress situations. As C and N pools and turnover rates in soil as well as preceding crop effects were expected to considerably influence crop growth, the model was run in a multi-year, dynamic way. Crop residues and soil mineral N (nitrate, ammonium) available for the subsequent crop were accounted for. The model simulates growth dynamics of winter wheat, winter rape, silage maize and summer barley at the Kraichgau and Swabian Alb sites well. The Expert-N-GECROS model is currently parameterized for crops with potentially increasing shares in future crop rotations. First results will be shown.

  9. An NMR Study of the Bortezomib Degradation under Clinical Use Conditions.

    PubMed

    Bolognese, Adele; Esposito, Anna; Manfra, Michele; Catalano, Lucio; Petruzziello, Fara; Martorelli, Maria Carmen; Pagliuca, Raffaella; Mazzarelli, Vittoria; Ottiero, Maria; Scalfaro, Melania; Rotoli, Bruno

    2009-01-01

    The (R)-3-methyl-1-((S)-3-phenyl-2-(pyrazine-2-carboxamido)propanamido)butyl-boronic acid, bortezomib (BTZ), which binds the 20S proteasome subunit and causes a large inhibition of its activity, is a peptidomimetic boronic drug mainly used for the treatment of multiple myeloma. Commercial BTZ, stabilized as mannitol derivative, has been investigated under the common conditions of the clinical use because it is suspected to be easily degradable in the region of its boronic moiety. Commercial BTZ samples, reconstituted according to the reported commercial instructions and stored at 4 degrees C, were analyzed by high-field nuclear magnetic resonance spectroscopy in comparison with identical samples bubbled with air and argon, respectively. All the samples remained unchanged for a week. After a month, the air filled samples showed the presence of two main degradation products (6% of starting material), the N-(1-(1-hydroxy-3-methylbutylamino)-1-oxo-3-phenylpropan-2-yl) pyrazine-2-carboxamide (BTZ1; 5%, determined from NMR integration) and the (S)-N-(1-(3-methylbutanamido)-1-oxo-3-phenylpropan-2-yl)pyrazine-2-carboxamide (BTZ2; 1%, determined from NMR integration), identified on the basis of their chemical and spectroscopic properties. The BTZ1 and BTZ2 finding suggests that, under the common condition of use and at 4 degrees C, commercial BTZ-mannitol is stable for a week, and that, in time, it undergoes slow oxidative deboronation which partially inactivates the product. Low temperature and scarce contact with air decrease the degradation process. PMID:19960052

  10. An NMR Study of the Bortezomib Degradation under Clinical Use Conditions

    PubMed Central

    Bolognese, Adele; Esposito, Anna; Manfra, Michele; Catalano, Lucio; Petruzziello, Fara; Martorelli, Maria Carmen; Pagliuca, Raffaella; Mazzarelli, Vittoria; Ottiero, Maria; Scalfaro, Melania; Rotoli, Bruno

    2009-01-01

    The (R)-3-methyl-1-((S)-3-phenyl-2-(pyrazine-2-carboxamido)propanamido)butyl-boronic acid, bortezomib (BTZ), which binds the 20S proteasome subunit and causes a large inhibition of its activity, is a peptidomimetic boronic drug mainly used for the treatment of multiple myeloma. Commercial BTZ, stabilized as mannitol derivative, has been investigated under the common conditions of the clinical use because it is suspected to be easily degradable in the region of its boronic moiety. Commercial BTZ samples, reconstituted according to the reported commercial instructions and stored at 4°C, were analyzed by high-field nuclear magnetic resonance spectroscopy in comparison with identical samples bubbled with air and argon, respectively. All the samples remained unchanged for a week. After a month, the air filled samples showed the presence of two main degradation products (6% of starting material), the N-(1-(1-hydroxy-3-methylbutylamino)-1-oxo-3-phenylpropan-2-yl) pyrazine-2-carboxamide (BTZ1; 5%, determined from NMR integration) and the (S)-N-(1-(3-methylbutanamido)-1-oxo-3-phenylpropan-2-yl)pyrazine-2-carboxamide (BTZ2; 1%, determined from NMR integration), identified on the basis of their chemical and spectroscopic properties. The BTZ1 and BTZ2 finding suggests that, under the common condition of use and at 4°C, commercial BTZ-mannitol is stable for a week, and that, in time, it undergoes slow oxidative deboronation which partially inactivates the product. Low temperature and scarce contact with air decrease the degradation process. PMID:19960052

  11. A Double Blind Randomized Clinical Trial of Remote Ischemic Conditioning in Live Donor Renal Transplantation

    PubMed Central

    Nicholson, Michael L.; Pattenden, Clare J.; Barlow, Adam D.; Hunter, James P.; Lee, Gwyn; Hosgood, Sarah A.

    2015-01-01

    Abstract Ischemic conditioning involves the delivery of short cycles of reversible ischemic injury in order to induce protection against subsequent more prolonged ischemia. This randomized controlled trial was designed to determine the safety and efficacy of remote ischemic conditioning (RC) in live donor kidney transplantation. This prospective randomized clinical trial, 80 patients undergoing live donor kidney transplantation were randomly assigned in a 1:1 ratio to either RC or to a control group. RC consisted of cycles of lower limb ischemia induced by an arterial tourniquet cuff placed around the patient's thigh. In the RC treatment group, the cuff was inflated to 200 mm Hg or systolic pressure +25 mm Hg for 4 cycles of 5 min ischemia followed by 5 min reperfusion. In the control group, the blood pressure cuff was inflated to 25 mm Hg. Patients and medical staff were blinded to treatment allocation. The primary end-point was renal function measured by estimated glomerular filtration rate (eGFR) at 1 and 3 months posttransplant. Donor and recipient demographics were similar in both groups (P < 0.05). There were no significant differences in eGFR at 1 month (control 52 ± 14 vs RC 54 ± 17 mL/min; P = 0.686) or 3 months (control 50 ± 14 vs RC 49 ± 18 mL/min; P = 0.678) between the control and RC treatment groups. The RC technique did not cause any serious adverse effects. RC, using the protocol described here, did not improve renal function after live donor kidney transplantation. PMID:26252316

  12. Clinical trial simulation to evaluate population pharmacokinetics and food effect: capturing abiraterone and nilotinib exposures.

    PubMed

    Li, Claire H; Sherer, Eric A; Lewis, Lionel D; Bies, Robert R

    2015-05-01

    The objectives of this study were to determine (1) the accuracy with which individual patient level exposure can be determined and (2) whether a known food effect can be identified in a trial simulation of a typical population pharmacokinetic trial. Clinical trial simulations were undertaken using NONMEM VII to assess a typical oncology pharmacokinetic trial design. Nine virtual trials for each compound were performed for combinations of different levels of between-occasion variability, number of patients in the trial, and magnitude of a food covariate on oral clearance. Less than 5% and 20% bias and precision were obtained in individual clearance estimated for both abiraterone and nilotinib using this design. This design resulted in biased and imprecise population clearance estimates for abiraterone. The between-occasion variability in most trials was captured with less than 30% of percent bias and precision. The food effect was detectable as a statistically significant covariate on oral clearance for abiraterone and nilotinib with percent bias and precision of the food covariate less than 20%. These results demonstrate that clinical trial simulation can be used to explore the ability of specific trial designs to evaluate the power to identify individual and population level exposures, covariate, and variability effects. PMID:25511575

  13. Clinical Trial Simulation to Evaluate Population Pharmacokinetics and Food Effect: Capturing Abiraterone and Nilotinib Exposures

    PubMed Central

    Sherer, Eric A.; Lewis, Lionel D.; Bies, Robert R.

    2015-01-01

    The objectives of this study were to determine (1) the accuracy with which individual patient level exposure can be determined and (2) whether a known food effect can be identified in a trial simulation of a typical population pharmacokinetic trial. Clinical trial simulations were undertaken using NONMEM VII to assess a typical oncology pharmacokinetic trial design. Nine virtual trials for each compound were performed for combinations of different level of between-occasion variability, number of patients in the trial and magnitude of a food covariate on oral clearance. Less than 5% and 20% bias and precision were obtained in individual clearance estimated for both abiraterone and nilotinib using this design. This design resulted biased and imprecise population clearance estimates for abiraterone. The between-occasion variability in most trials was captured with less than 30% of percent bias and precision. The food effect was detectable as a statistically significant covariate on oral clearance for abiraterone and nilotinib with percent bias and precision of the food covariate less than 20%. These results demonstrate that clinical trial simulation can be used to explore the ability of specific trial designs to evaluate the power to identify individual and population level exposures,covariate and variability effects. PMID:25511575

  14. Optimality and dynamic equilibrium conditions in a simulated hillslope under periodic, arid atmospheric forcing

    NASA Astrophysics Data System (ADS)

    Kollet, S. J.

    2014-12-01

    Theories of optimality and self-organization are appealing when dealing with non-linear systems, because based on first principles of thermodynamic these theories may lead to an intuitive interpretation and prediction of absolute values, directions, and interactions of gradients and fluxes, and universal inference laws for effective conductances. In this context, for example, the maximum entropy production principle received attention, because of its foundation in non-equilibrium thermodynamics, which appears to be useful in e.g., eco-hydrologic and atmospheric applications. A number of studies successfully applied this principle in the optimization of conductances in simplified and well-mixed open systems with external (periodic) forcing. In support-scale simulations of a variably saturated hillslope, the study presented here relaxes major simplifying assumptions by applying a realistic, arid atmospheric time series in spinup simulations to create a dynamic equilibrium utilizing the integrated hydrologic model ParFlow-CLM. The simulated hillslope exhibits time-varying internal circulation patterns due to the periodic atmospheric forcing, topography, and also heterogeneity by utilizing and optimizing all degrees of freedom provided by the soil-water retention relationship and free-moving water table. Because of the extreme non-linearity of variably saturated flow under arid climate conditions, the system is never well mixed and optimality principles relying on time-integrated gradients and fluxes do not appear to be applicable in the currently available theoretical framework. Here, integrated support-scale simulations may be useful in deriving novel theories for the application to real systems in future.

  15. Calibrated simulations of Z opacity experiments that reproduce the experimentally measured plasma conditions

    DOE PAGESBeta

    Nagayama, T.; Bailey, J. E.; Loisel, G.; Rochau, G. A.; MacFarlane, J. J.; Golovkin, I.

    2016-02-05

    Recently, frequency-resolved iron opacity measurements at electron temperatures of 170–200 eV and electron densities of (0.7 – 4.0) × 1022 cm–3 revealed a 30–400% disagreement with the calculated opacities [J. E. Bailey et al., Nature (London) 517, 56 (2015)]. The discrepancies have a high impact on astrophysics, atomic physics, and high-energy density physics, and it is important to verify our understanding of the experimental platform with simulations. Reliable simulations are challenging because the temporal and spatial evolution of the source radiation and of the sample plasma are both complex and incompletely diagnosed. In this article, we describe simulations that reproducemore » the measured temperature and density in recent iron opacity experiments performed at the Sandia National Laboratories Z facility. The time-dependent spectral irradiance at the sample is estimated using the measured time- and space-dependent source radiation distribution, in situ source-to-sample distance measurements, and a three-dimensional (3D) view-factor code. The inferred spectral irradiance is used to drive 1D sample radiation hydrodynamics simulations. The images recorded by slit-imaged space-resolved spectrometers are modeled by solving radiation transport of the source radiation through the sample. We find that the same drive radiation time history successfully reproduces the measured plasma conditions for eight different opacity experiments. These results provide a quantitative physical explanation for the observed dependence of both temperature and density on the sample configuration. Simulated spectral images for the experiments without the FeMg sample show quantitative agreement with the measured spectral images. The agreement in spectral profile, spatial profile, and brightness provides further confidence in our understanding of the backlight-radiation time history and image formation. Furthermore, these simulations bridge the static-uniform picture of the

  16. Calibrated simulations of Z opacity experiments that reproduce the experimentally measured plasma conditions

    NASA Astrophysics Data System (ADS)

    Nagayama, T.; Bailey, J. E.; Loisel, G.; Rochau, G. A.; MacFarlane, J. J.; Golovkin, I.

    2016-02-01

    Recently, frequency-resolved iron opacity measurements at electron temperatures of 170-200 eV and electron densities of (0.7 - 4.0 )× 1022cm-3 revealed a 30 - 400 % disagreement with the calculated opacities [J. E. Bailey et al., Nature (London) 517, 56 (2015), 10.1038/nature14048]. The discrepancies have a high impact on astrophysics, atomic physics, and high-energy density physics, and it is important to verify our understanding of the experimental platform with simulations. Reliable simulations are challenging because the temporal and spatial evolution of the source radiation and of the sample plasma are both complex and incompletely diagnosed. In this article, we describe simulations that reproduce the measured temperature and density in recent iron opacity experiments performed at the Sandia National Laboratories Z facility. The time-dependent spectral irradiance at the sample is estimated using the measured time- and space-dependent source radiation distribution, in situ source-to-sample distance measurements, and a three-dimensional (3D) view-factor code. The inferred spectral irradiance is used to drive 1D sample radiation hydrodynamics simulations. The images recorded by slit-imaged space-resolved spectrometers are modeled by solving radiation transport of the source radiation through the sample. We find that the same drive radiation time history successfully reproduces the measured plasma conditions for eight different opacity experiments. These results provide a quantitative physical explanation for the observed dependence of both temperature and density on the sample configuration. Simulated spectral images for the experiments without the FeMg sample show quantitative agreement with the measured spectral images. The agreement in spectral profile, spatial profile, and brightness provides further confidence in our understanding of the backlight-radiation time history and image formation. These simulations bridge the static-uniform picture of the data

  17. Calibrated simulations of Z opacity experiments that reproduce the experimentally measured plasma conditions.

    PubMed

    Nagayama, T; Bailey, J E; Loisel, G; Rochau, G A; MacFarlane, J J; Golovkin, I

    2016-02-01

    Recently, frequency-resolved iron opacity measurements at electron temperatures of 170-200 eV and electron densities of (0.7-4.0)×10(22)cm(-3) revealed a 30-400% disagreement with the calculated opacities [J. E. Bailey et al., Nature (London) 517, 56 (2015)]. The discrepancies have a high impact on astrophysics, atomic physics, and high-energy density physics, and it is important to verify our understanding of the experimental platform with simulations. Reliable simulations are challenging because the temporal and spatial evolution of the source radiation and of the sample plasma are both complex and incompletely diagnosed. In this article, we describe simulations that reproduce the measured temperature and density in recent iron opacity experiments performed at the Sandia National Laboratories Z facility. The time-dependent spectral irradiance at the sample is estimated using the measured time- and space-dependent source radiation distribution, in situ source-to-sample distance measurements, and a three-dimensional (3D) view-factor code. The inferred spectral irradiance is used to drive 1D sample radiation hydrodynamics simulations. The images recorded by slit-imaged space-resolved spectrometers are modeled by solving radiation transport of the source radiation through the sample. We find that the same drive radiation time history successfully reproduces the measured plasma conditions for eight different opacity experiments. These results provide a quantitative physical explanation for the observed dependence of both temperature and density on the sample configuration. Simulated spectral images for the experiments without the FeMg sample show quantitative agreement with the measured spectral images. The agreement in spectral profile, spatial profile, and brightness provides further confidence in our understanding of the backlight-radiation time history and image formation. These simulations bridge the static-uniform picture of the data interpretation and the

  18. Early Controversies over Athetosis: I. Clinical Features, Differentiation from other Movement Disorders, Associated Conditions, and Pathology

    PubMed Central

    Lanska, Douglas J.

    2013-01-01

    Background Since the description of athetosis in 1871 by American neurologist William Alexander Hammond (1828–1900) the disorder has been a source of controversy, as were many aspects of Hammond’s career. Methods Primary sources have been used to review controversies in the 50-year period since the initial description of athetosis, in particular those concerning clinical features, differentiation from other movement disorders, associated conditions, and pathology. Controversies concerning treatment will be addressed in a subsequent article. Results Hammond struggled to establish athetosis as a distinct clinical–pathological entity, and had successfully predicted the striatal pathology in his initial case (albeit somewhat serendipitously). Athetosis was, nevertheless, considered by many neurologists to be a form of post-hemiplegic chorea or part of a continuum between chorea and dystonia. European neurologists, and particularly the French, initially ignored or discounted the concept. Additional controversies arose over whether the movements persisted during sleep, whether athetosis was, or could be, associated with imbecility or insanity, and how it should be treated. Discussion Some controversies concerning athetosis served to identify areas where knowledge was insufficient to make accurate statements, despite prior self-assured or even dogmatic statements to the contrary. Other controversies illustrated established prejudices, even if these biases were often only apparent with the greater detachment of hindsight. PMID:23450262

  19. Preventative and Therapeutic Probiotic Use in Allergic Skin Conditions: Experimental and Clinical Findings

    PubMed Central

    Özdemir, Öner; Göksu Erol, Azize Yasemin

    2013-01-01

    Probiotics are ingested live microbes that can modify intestinal microbial populations in a way that benefits the host. The interest in probiotic preventative/therapeutic potential in allergic diseases stemmed from the fact that probiotics have been shown to improve intestinal dysbiosis and permeability and to reduce inflammatory cytokines in human and murine experimental models. Enhanced presence of probiotic bacteria in the intestinal microbiota is found to correlate with protection against allergy. Therefore, many studies have been recently designed to examine the efficacy of probiotics, but the literature on the allergic skin disorders is still very scarce. Here, our objective is to summarize and evaluate the available knowledge from randomized or nonrandomized controlled trials of probiotic use in allergic skin conditions. Clinical improvement especially in IgE-sensitized eczema and experimental models such as atopic dermatitis-like lesions (trinitrochlorobenzene and picryl chloride sensitizations) and allergic contact dermatitis (dinitrofluorobenzene sensitization) has been reported. Although there is a very promising evidence to recommend the addition of probiotics into foods, probiotics do not have a proven role in the prevention or the therapy of allergic skin disorders. Thus, being aware of possible measures, such as probiotics use, to prevent/heal atopic diseases is essential for the practicing allergy specialist. PMID:24078929

  20. Occlusal changes secondary to temporomandibular joint conditions: a critical review and implications for clinical practice

    PubMed Central

    CALDAS, Waleska; CONTI, Ana Cláudia de Castro Ferreira; JANSON, Guilherme; Paulo César Rodrigues, CONTI

    2016-01-01

    ABSTRACT The relationship between Temporomandibular Disorders (TMD) and malocclusion is an extremely critical issue in dentistry. Contrary to the old concept that malocclusion causes TMD, occlusal changes, especially those observed as sudden, may be secondary and reflect joint or muscle disorders due to the obvious connection between these structures and the dental occlusion. Objectives The aim of this article is to present the most commonly occlusal changes secondary to TMD. Methods The clinical presentation of these conditions is discussed. Details regarding diagnosis, treatment, and follow-up of patients presenting TMD prior or during treatment are also presented. Conclusions All plans for irreversible therapy should be preceded by a meticulous analysis of TMD signs and symptoms in such a way that patients are not submitted to irreversible treatment, based on an untrue occlusal relationship, secondary to articular and/or muscular disorders. When present, TMD symptoms must always be controlled to reestablish a “normal” occlusion and allow proper treatment strategy. PMID:27556214

  1. Evaluation of an Electrochromic Device for Variable Emittance in Simulated Space Conditions

    NASA Astrophysics Data System (ADS)

    Puterbaugh, Rebekah L.; Mychkovsky, Alexander G.; Ponnappan, Rengasamy; Kislov, Nikolai

    2005-02-01

    Unprotected skin and external surfaces of a spacecraft in earth orbit may experience temperature variations from -50°C to +100°C during exposure to cold space or sun. As a result, thermal management of spacecraft becomes extremely important. One latest trend is to provide flexibility and control in the thermal design that involves variable emittance surfaces consisting of electrochromic (EC) coatings. For investigational purposes, a sample electrochromic device is evaluated for variable emittance in simulated space conditions. A vacuum chamber with a liquid nitrogen circulated blackbody shroud is employed to simulate space conditions. The 63.5 × 63.5 mm test sample supplied by a small business research firm is mounted on an aluminum plate heated by an electrical resistance heater. The sample is thermally insulated by a heat shield from all surroundings excluding the active front surface facing the shroud. The heat shield is uniformly maintained at the sample temperature using an independent circuit of resistance heaters and temperature controllers. A steady state energy balance is applied to the test sample to determine the emittance as a function of temperature and DC bias voltage applied across the anode and cathode. Tests were performed to verify the switchability from high to low emittance states and vice versa. The difference between the high and low emittance values (Δɛ) obtained in the present calorimetric measurement is compared with the data obtained from FTIR measurements performed by the supplier of the EC sample. Results obtained in the present experiments compare closely with supplier data and prove the effectiveness of the variable emittance sample in space conditions. The validity of the calorimetric experiment is confirmed by testing materials with known emittances, such as black paint and polished metals. Error analysis of the system predicts an emittance accuracy of ±5% at sample temperatures in the range of -50°C to 100°C.

  2. Growth and development in higher plants under simulated microgravity conditions on a 3-dimensional clinostat

    NASA Astrophysics Data System (ADS)

    Shimazu, T.; Yuda, T.; Miyamoto, K.; Yamashita, M.; Ueda, J.

    Growth and development of etiolated pea (Pisum sativum L. cv. Alaska) and maize (Zea mays L. cv. Golden Cross Bantam) seedlings grown under simulated microgravity conditions were intensively studied using a 3-dimensional clinostat as a simulator of weightlessness. Epicotyls of etiolated pea seedlings grown on the clinostat were the most oriented toward the direction far from cotyledons. Mesocotyls of etiolated maize seedlings grew at random and coleoptiles curved slightly during clinostat rotation. Clinostat rotation promoted the emergence of the 3rd internodes in etiolated pea seedlings, while it significantly inhibited the growth of the 1st internodes. In maize seedlings, the growth of coleoptiles was little affected by clinostat rotation, but that of mesocotyls was suppressed, and therefore, the emergence of the leaf out of coleoptile was promoted. Clinostat rotation reduced the osmotic concentration in the 1st internodes of pea seedlings, although it has little effect on the 2nd and the 3rd internodes. Clinostat rotation also reduced the osmotic concentrations in both coleoptiles and mesocotyls of maize seedlings. Cell-wall extensibilities of the 1st and the 3rd internodes of pea seedlings grown on the clinostat were significantly lower and higher as compared with those on 1 g conditions, respectively. Cell-wall extensibility of mesocotyls in seedlings grown on the clinostat also decreased. Changes in cell wall properties seem to be well correlated to the growth of each organ in pea and maize seedlings. These results suggest that the growth and development of plants is controlled under gravity on earth, and that the growth responses of higher plants to microgravity conditions are regulated by both cell-wall mechanical properties and osmotic properties of stem cells.

  3. Monte-Carlo simulations of clinically realistic respiratory gated (18)F-FDG PET: application to lesion detectability and volume measurements.

    PubMed

    Vauclin, S; Michel, C; Buvat, I; Doyeux, K; Edet-Sanson, A; Vera, P; Gardin, I; Hapdey, S

    2015-01-01

    In PET/CT thoracic imaging, respiratory motion reduces image quality. A solution consists in performing respiratory gated PET acquisitions. The aim of this study was to generate clinically realistic Monte-Carlo respiratory PET data, obtained using the 4D-NCAT numerical phantom and the GATE simulation tool, to assess the impact of respiratory motion and respiratory-motion compensation in PET on lesion detection and volume measurement. To obtain reconstructed images as close as possible to those obtained in clinical conditions, a particular attention was paid to apply to the simulated data the same correction and reconstruction processes as those applied to real clinical data. The simulations required 140,000h (CPU) generating 1.5 To of data (98 respiratory gated and 49 ungated scans). Calibration phantom and patient reconstructed images from the simulated data were visually and quantitatively very similar to those obtained in clinical studies. The lesion detectability was higher when the better trade-off between lesion movement limitation (compared to ungated acquisitions) and image statistic preservation is considered (respiratory cycle sampling in 3 frames). We then compared the lesion volumes measured on conventional PET acquisitions versus respiratory gated acquisitions, using an automatic segmentation method and a 40%-threshold approach. A time consuming initial manual exclusion of noisy structures needed with the 40%-threshold was not necessary when the automatic method was used. The lesion detectability along with the accuracy of tumor volume estimates was largely improved with the gated compared to ungated PET images. PMID:25459525

  4. Predicting New Target Conditions for Drug Retesting Using Temporal Patterns in Clinical Trials: A Proof of Concept.

    PubMed

    He, Zhe; Weng, Chunhua

    2015-01-01

    Drug discovery is costly and time-consuming. Efficient drug repurposing promises to accelerate drug discovery with reduced cost. However, most successful repurposing cases so far have been achieved by serendipity. There is a need for more efficient computational methods for predicting new indications for existing drugs. This paper conducts a retrospective analysis of the temporal patterns of drug intervention trials for every drug in a pair of different conditions in ClinicalTrials.gov, including 550 drugs used for 451 conditions between 2003 and 2013. We found that drugs are often targeted towards conditions that are related by similar or identical eligibility criteria. We demonstrated the preliminary feasibility of predicting new target conditions for drug retesting among conditions with similar aggregated clinical trial eligibility criteria and confirmed this hypothesis using evidence from the literature. PMID:26306283

  5. Predicting New Target Conditions for Drug Retesting Using Temporal Patterns in Clinical Trials: A Proof of Concept

    PubMed Central

    He, Zhe; Weng, Chunhua

    2015-01-01

    Drug discovery is costly and time-consuming. Efficient drug repurposing promises to accelerate drug discovery with reduced cost. However, most successful repurposing cases so far have been achieved by serendipity. There is a need for more efficient computational methods for predicting new indications for existing drugs. This paper conducts a retrospective analysis of the temporal patterns of drug intervention trials for every drug in a pair of different conditions in ClinicalTrials.gov, including 550 drugs used for 451 conditions between 2003 and 2013. We found that drugs are often targeted towards conditions that are related by similar or identical eligibility criteria. We demonstrated the preliminary feasibility of predicting new target conditions for drug retesting among conditions with similar aggregated clinical trial eligibility criteria and confirmed this hypothesis using evidence from the literature. PMID:26306283

  6. Factors limiting endurance of armor, artillery, and infantry units under simulated NBC conditions

    SciTech Connect

    Rauch, T.M.; Tharion, W.J.; Banderet, L.E.; Lussier, A.R.

    1986-03-13

    The war of the future will require 72-hour operations in environments contaminated with nuclear/biological/chemical (NBC) agents. The 1985 P2NBC2 (Physiological and Psychological Effects of NBC and Extended Operations on Combined Arms Crews) Program assessed soldier endurance and performance under simulated NBC conditions. A total of 175 soldiers were observed during four tests differing in design, site, climatic conditions, and performance demands. In all but one of the iterations where the full chemical-protective ensemble (MOPP 4) was used without cooling, soldier endurance fell far short of the projected requirement. Psychological data were analyzed to determine which factors were associated with the incidence of casualties. The findings showed that perceived intensity of symptoms resembling the hyperventilation syndrome was significantly greater in soldiers classified as Casualties. Five of these symptoms (painful breathing, difficulty breathing, shortness of breath, headache, and nausea) showed Casualty-Survivor differences in all tests. Symptom intensity was attributed to two factors. (1) External conditions. Thermal stress exacerbated the five basic symptoms, induced others (tetany and paresthesia), and decreased endurance. Periodic relief from respirator use attenuated these symptoms and enhanced endurance. (2) Individual differences. Significant Casualty-Survivor differences in anxiety, depression, and cognitive strategy scores indicated that perception of hyperventilation symptoms and endurance were related to personality variables. Hyperventilation symptoms could incapacitate the soldier or induce removal of the protective mask under actual chemical attack.

  7. Abiotic synthesis of acylglycerols under simulated hydrothermal conditions and micelle formation

    NASA Astrophysics Data System (ADS)

    Simoneit, B.; Rushdi, A.; Deamer, D.

    Abiotic formation of aliphatic lipid compounds i e fatty acids alcohols and acylglycerols has been reported to occur at elevated temperatures and pressures under simulated hydrothermal conditions McCollom et al 1999 Rushdi and Simoneit 2001 2006 Although abiotic chemistry may occur at these conditions the prebiotic self-assembly of micelles to bilayer to vesicles protocells may have occurred elsewhere Amphipathic compounds such as fatty acids and acylglycerols are important candidates for micelle bilayer vesicle formation Thus it is of interest to demonstrate that abiotic lipids amphiphiles precursor compounds for abiotic cellular membranes Deamer 1997 can be synthesized under hydrothermal conditions Hydrothermal experiments were conducted to study condensation reactions of model lipid precursors in aqueous media to form acylglycerols glyceryl alkanoates at elevated temperatures under confining pressures Stainless steel vessels 316SS Sno-Trik high pressure couplings with internal capacities of 286 underline 2 mu l were used for the condensation reactions using a mixture of 0 14 mM glycerol and 0 35 mM of n-alkanoic acid Nine different alkanoic acids ranging from C 7 to C 16 except C 8 were used in these experiments The condensation products were two isomers each of monoacylglycerols and diacylglycerols as well as the corresponding triacylglycerol The product yields were 13-28 for monoacylglycerols 6-13 for diacylglycerols and 1-4 for triacylglycerols The results indicated that 1

  8. Plasma ionization under simulated ambient Mars conditions for quantification of methane by mass spectrometry.

    PubMed

    Taghioskoui, Mazdak; Zaghloul, Mona

    2016-04-01

    Ambient ionization techniques enable ion production in the native sample environment for mass spectrometry, without a need for sample preparation or separation. These techniques provide superior advantages over conventional ionization methods and are well developed and investigated for various analytical applications. However, employing ambient ionization techniques for in situ extra-terrestrial chemical analysis requires these techniques to be designed and developed according to the ambient conditions of extra-terrestrial environments, which substantially differ from the ambient conditions of Earth. Here, we report a plasma ionization source produced under simulated ambient Mars conditions for mass spectrometry. The plasma ionization source was coupled to a quadrupole mass spectrometer, and quantitative and qualitative analyses of trace amounts of methane, as an analyte of interest in Mars discovery missions, were demonstrated. The miniature plasma source was operational at a net power as low as ∼1.7 W in the pressure range of 4-16 Torr. A detection limit as low as ∼0.15 ppm (v/v) at 16 Torr for methane was demonstrated. PMID:26947458

  9. Water retention of selected microorganisms and Martian soil simulants under close to Martian environmental conditions

    NASA Astrophysics Data System (ADS)

    Jänchen, J.; Bauermeister, A.; Feyh, N.; de Vera, J.-P.; Rettberg, P.; Flemming, H.-C.; Szewzyk, U.

    2014-08-01

    Based on the latest knowledge about microorganisms resistant towards extreme conditions on Earth and results of new complex models on the development of the Martian atmosphere we quantitatively examined the water-bearing properties of selected extremophiles and simulated Martian regolith components and their interaction with water vapor under close to Martian environmental conditions. Three different species of microorganisms have been chosen and prepared for our study: Deinococcus geothermalis, Leptothrix sp. OT_B_406, and Xanthoria elegans. Further, two mineral mixtures representing the early and the late Martian surface as well as montmorillonite as a single component of phyllosilicatic minerals, typical for the Noachian period on Mars, were selected. The thermal mass loss of the minerals and bacteria-samples was measured by thermoanalysis. The hydration and dehydration properties were determined under close to Martian environmental conditions by sorption isotherm measurements using a McBain-Bakr quartz spring balance. It was possible to determine the total water content of the materials as well as the reversibly bound water fraction as function of the atmospheres humidity by means of these methods. Our results are important for the evaluation of future space mission outcomes including astrobiological aspects and can support the modeling of the atmosphere/surface interaction by showing the influence on the water inventory of the upper most layer of the Martian surface.

  10. Simulated water fluxes during the growing season in semiarid grassland ecosystems under severe drought conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Na; Liu, Chengyu

    2014-05-01

    To help improve understanding of how changes in climate and land cover affect water fluxes, water budgets, and the structure and function of regional grassland ecosystems, the Grassland Landscape Productivity Model (GLPM) was used to simulate spatiotemporal variation in primary water fluxes. The study area was a semiarid region in Inner Mongolia, China, in 2002, when severe drought was experienced. For Stipa grandis steppe, Leymus chinensis steppe, shrubland, and croplands, the modeled total, daily and monthly averaged, and maximum evapotranspiration during the growing season and the modeled water deficits were similar to those measured in Inner Mongolia under similar precipitation conditions. The modeled temporal variations in daily evaporation rate, transpiration rate, and evapotranspiration rate for the typical steppes also agreed reasonably well with measured trends. The results demonstrate that water fluxes varied in response to spatiotemporal variations in environmental factors and associated changes in the phenological and physiological characteristics of plants. It was also found that transpiration and evapotranspiration (rather than precipitation) were the primary factors controlling differences in water deficit among land cover types. The results also demonstrate that specific phenomena occur under severe drought conditions; these phenomena are considerably different to those occurring under normal or well-watered conditions. The findings of the present study will be useful for evaluating day-scale water fluxes and their relationships with climate change, hydrology, land cover, and vegetation dynamics.

  11. Mercury Conditions for the MESSENGER Mission Simulated in High- Solar-Radiation Vacuum Tests

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.

    2003-01-01

    The MESSENGER (Mercury Surface, Space Environment, Geochemistry, and Ranging) spacecraft, planned for launch in March 2004, will perform two flybys of Mercury before entering a year-long orbit of the planet in September 2009. The mission will provide opportunities for detailed characterization of the surface, interior, atmosphere, and magnetosphere of the closest planet to the Sun. The NASA Glenn Research Center and the MESSENGER spacecraft integrator, the Johns Hopkins University Applied Physics Laboratory, have partnered under a Space Act Agreement to characterize a variety of critical components and materials under simulated conditions expected near Mercury. Glenn's Vacuum Facility 6, which is equipped with a solar simulator, can simulate the vacuum and high solar radiation anticipated in Mercury orbit. The MESSENGER test hardware includes a variety of materials and components that are being characterized during the Tank 6 vacuum tests, where the hardware will be exposed to up to 11 suns insolation, simulating conditions expected in Mercury orbit. In 2002, ten solar vacuum tests were conducted, including beginning of life, end of life, backside exposure, and solar panel thermal shock cycling tests. Components tested include candidate solar array panels, sensors, thermal shielding materials, and communication devices. As an example, for the solar panel thermal shock cycling test, two candidate solar array panels were suspended on a lift mechanism that lowered the panels into a liquid-nitrogen-cooled box. After reaching -140 C, the panels were then lifted out of the box and exposed to the equivalent of 6 suns (8.1 kilowatts per square meters). After five cold soak/heating cycles were completed successfully, there was no apparent degradation in panel performance. An anticipated 100-hr thermal shield life test is planned for autumn, followed by solar panel flight qualification tests in winter. Glenn's ongoing support to the MESSENGER program has been instrumental in

  12. High-fidelity simulation: Assessment of student nurses' team achievements of clinical judgment.

    PubMed

    Hallin, Karin; Bäckström, Britt; Häggström, Marie; Kristiansen, Lisbeth

    2016-07-01

    Nursing educators have the challenge of preparing nursing students to handle complex patient care situations in real life, but much remains unknown about the ability to make clinical judgments. In this study, high-fidelity simulation (HFS) was used at a Swedish university to find answers about pre-licensure nursing students' success in clinical judgment in terms of team ability and relationships with theoretical achievements, and personal and scenario circumstances. The matrix Lasater Clinical Judgment Rubric (LCJR) was used to analyze and score the students' ability in teams to notice, interpret and respond to complex care situations. Overall, the results showed the student teams in their first meeting with HFS in a complex care situation achieved low clinical judgment points; most teams were in the stages of Beginning and Developing. For attaining high team achievements the majority of the students in the team should theoretically be "high performance". Being observers and having HFS experience before nursing education was significant too. However, age, health care experience, and assistant nurse degrees were of secondary importance. Further research at universities regionally, nationally, and internationally is needed. PMID:27428686

  13. Application of conditional probability analysis to the clinical diagnosis of coronary artery disease.

    PubMed Central

    Diamond, G A; Forrester, J S; Hirsch, M; Staniloff, H M; Vas, R; Berman, D S; Swan, H J

    1980-01-01

    Analysis of multiple noninvasive tests offers the promise of more accurate diagnosis of coronary artery disease, but discordant test responses can occur frequently and, when observed, result in diagnostic uncertainty. Accordingly, 43 patients undergoing diagnostic coronary angiography were evaluated by noninvasive testing and the results subjected to analysis using Bayes' theorem of conditional probability. The procedures used included electrocardiographic stress testing for detection of exercise-induced ST segment depression, cardiokymographic stress testing for detection of exercise-induced precordial dyskinesis, myocardial perfusion scintigraphy for detection of exercise-induced relative regional hypoperfusion, and cardiac fluoroscopy for detection of coronary artery calcification. The probability for coronary artery disease was estimated by Bayes' theorem from each patient's age, sex, and symptom classification, and from the observed test responses. This analysis revealed a significant linear correlation between the predicted probability for coronary artery disease and the observed prevalence of angiographic disease over the entire range of probability from 0 to 100% (P less than 0.001 by linear regression). The 12 patients without angiographic disease had a mean posttest likelihood of only 7.0 +/- 2.6% despite the fact that 13 of the 60 historical and test responses were falsely "positive." In contrast, the mean posttest likelihood was 94.1 +/- 2.8% in the 31 patients with angiographic coronary artery disease, although 45 of the 155 historical and test responses were falsely "negative." In 8 of the 12 normal patients, the final posttest likelihood was under 10% and in 26 of the 31 coronary artery disease patients, it was over 90%. These estimates also correlated well with the pooled clinical judgment of five experienced cardiologists (P less than 0.001 by linear regression). The observed change in probability for disease for each of the 15 different test

  14. Driving simulation in the clinic: testing visual exploratory behavior in daily life activities in patients with visual field defects.

    PubMed

    Hamel, Johanna; Kraft, Antje; Ohl, Sven; De Beukelaer, Sophie; Audebert, Heinrich J; Brandt, Stephan A

    2012-01-01

    Patients suffering from homonymous hemianopia after infarction of the posterior cerebral artery (PCA) report different degrees of constraint in daily life, despite similar visual deficits. We assume this could be due to variable development of compensatory strategies such as altered visual scanning behavior. Scanning compensatory therapy (SCT) is studied as part of the visual training after infarction next to vision restoration therapy. SCT consists of learning to make larger eye movements into the blind field enlarging the visual field of search, which has been proven to be the most useful strategy(1), not only in natural search tasks but also in mastering daily life activities(2). Nevertheless, in clinical routine it is difficult to identify individual levels and training effects of compensatory behavior, since it requires measurement of eye movements in a head unrestrained condition. Studies demonstrated that unrestrained head movements alter the visual exploratory behavior compared to a head-restrained laboratory condition(3). Martin et al.(4) and Hayhoe et al.(5) showed that behavior demonstrated in a laboratory setting cannot be assigned easily to a natural condition. Hence, our goal was to develop a study set-up which uncovers different compensatory oculomotor strategies quickly in a realistic testing situation: Patients are tested in the clinical environment in a driving simulator. SILAB software (Wuerzburg Institute for Traffic Sciences GmbH (WIVW)) was used to program driving scenarios of varying complexity and recording the driver's performance. The software was combined with a head mounted infrared video pupil tracker, recording head- and eye-movements (EyeSeeCam, University of Munich Hospital, Clinical Neurosciences). The positioning of the patient in the driving simulator and the positioning, adjustment and calibration of the camera is demonstrated. Typical performances of a patient with and without compensatory strategy and a healthy control are

  15. Driving Simulation in the Clinic: Testing Visual Exploratory Behavior in Daily Life Activities in Patients with Visual Field Defects

    Pub