These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Dissolver Off-gas Hot Operations Authorization (AFCI CETE Milestone Report)  

SciTech Connect

The head-end processing of the Coupled-End-to-End (CETE) Demonstration includes fuel receipt, fuel disassembly, exposure of fuel (e.g., by segmenting the fuel pins), voloxidation of the fuel to separate tritium, and fuel dissolution. All of these processing steps with the exception of the dissolution step will be accomplished in the Irradiated Fuels Examination Laboratory (IFEL) (Building 3525). The final headend step will be performed in the Radiochemical Engineering Development Center (Building 7920). The primary purpose of the fuel dissolution step is to prepare the solid fuel for subsequent liquid separations steps. This is accomplished by dissolving the fuel solids using nitric acid. During the dissolution process gases are evolved. Oxides of nitrogen are the primary off-gas components generated by the reactions of nitric acid and the fuel oxides however, during the dissolution and sparging of the resulting solution, iodine, C-14 as carbon dioxide, xenon, and krypton gasses are also released to the off-gas stream. The Dissolver Off-gas treatment rack provides a means of trapping these volatile fission products and other gases via various trapping media. Specifically the rack will recover iodine on a solid sorbent bed, scrub NOx in a water/acid column, scrub CO{sub 2} in a caustic scrubber column, remove moisture with solid sorbent drier beds and recover Xe and Kr using solid absorbent beds. The primary purpose of this experimental rack and the off-gas rack associated with the voloxidation equipment located at IFEL is to close the material balances around the volatile gases and to provide an understanding of the impacts of specific processing conditions on the fractions of the volatile components released from the various head-end processing steps.

Jubin, Robert Thomas [ORNL

2009-06-01

2

Off-gas Adsorption Model and Simulation - OSPREY  

SciTech Connect

The absence of industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other countries. Thus, it is essential to model complex series of unit operations to simulate, understand, and predict inherent transient behavior. A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes is expected to provide substantial cost savings and many technical benefits. To support this capability, a modeling effort focused on the off-gas treatment system of a used nuclear fuel recycling facility is in progress. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed within Multi-physics Object Oriented Simulation Environment (MOOSE) developed at the Idaho National Laboratory (INL). Off-gas Separation and REcoverY (OSPREY) models the adsorption of offgas constituents for dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions. Inputs to the model include gas composition, sorbent and column properties, equilibrium and kinetic data, and inlet conditions. The simulation outputs component concentrations along the column length as a function of time from which breakthrough data can be obtained. The breakthrough data can be used to determine bed capacity, which in turn can be used to size columns. In addition to concentration data, the model predicts temperature along the column length as a function of time and pressure drop along the column length. A description of the OSPREY model, results from krypton adsorption modeling and plans for modeling the behavior of iodine, xenon, and tritium will be discussed.

Veronica J Rutledge

2013-10-01

3

Off-gas adsorption model and simulation - OSPREY  

SciTech Connect

A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes is expected to provide substantial cost savings and many technical benefits. To support this capability, a modeling effort focused on the off-gas treatment system of a used nuclear fuel recycling facility is in progress. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed within Multi-physics Object Oriented Simulation Environment (MOOSE) developed at the Idaho National Laboratory (INL). Off-gas Separation and Recovery (OSPREY) models the adsorption of offgas constituents for dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions. Inputs to the model include gas composition, sorbent and column properties, equilibrium and kinetic data, and inlet conditions. The simulation outputs component concentrations along the column length as a function of time from which breakthrough data can be obtained. The breakthrough data can be used to determine bed capacity, which in turn can be used to size columns. In addition to concentration data, the model predicts temperature along the column length as a function of time and pressure drop along the column length. A description of the OSPREY model, results from krypton adsorption modeling and plans for modeling the behavior of iodine, xenon, and tritium will be discussed. (author)

Rutledge, V.J. [Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID (United States)

2013-07-01

4

Numerical Simulation of CO and NO Emissions during Converter Off-Gas Combustion in the Cooling Stack  

Microsoft Academic Search

Oxygen converter steelmaking produces a large amount of high temperature off-gas. During pre- and post-combustion of converter off-gas in the cooling stack, CO concentration at outlet is always over emission standard, and NO emission is still paid little attention. In the paper, CO and NO emissions are investigated during converter off-gas combustion by CFD. The simulation results indicate that CO

Sen Li; Xiaolin Wei

2012-01-01

5

Cracking of simulated oil refinery off-gas over a coal char, petroleum coke, and quartz  

Microsoft Academic Search

The cracking of oil refinery off-gas, simulated with a gas mixture containing methane (51%), ethylene (21.4%), ethane (21.1%), and propane (6.5%), over a coal char, petroleum coke, and quartz, respectively, has been studied in a fixed bed reactor. The experiments were performed at temperatures between 850 and 1000{sup o}C and at atmospheric pressure. The results show that the conversions of

Yuan Zhang; Jin-hu Wu; Dong-ke Zhang

2008-01-01

6

Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant  

SciTech Connect

The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter (chloride, fluoride, sulfur), will have high ammonia, and will contain carryover particulates of glass-former chemicals. These species have potential to cause corrosion of tanks and equipment, precipitation of solids, release of ammonia gas vapors, and scale in the tank farm evaporator. Routing this stream to the tank farms does not permanently divert it from recycling into the WTP, only temporarily stores it prior to reprocessing. Testing is normally performed to demonstrate acceptable conditions and limits for these compounds in wastes sent to the tank farms. The primary parameter of this phase of the test program was measuring the formation of solids during evaporation in order to assess the compatibility of the stream with the evaporator and transfer and storage equipment. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW facility melter offgas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and, thus, the composition will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. This report discusses results of evaporation testing of the simulant. Two conditions were tested, one with the simulant at near neutral pH, and a second at alkaline pH. The neutral pH test is comparable to the conditions in the Hanford Effluent Treatment Facility (ETF) evaporator, although that evaporator operates at near atmospheric pressure and tests were done under vacuum. For the alkaline test, the target pH was based on the tank farm corrosion control program requirements, and the test protocol and equipment was comparable to that used for routine evaluation of feed compatibility studies for the 242-A evaporator. One of the

Adamson, Duane J.; Nash, Charles A.; McCabe, Daniel J.; Crawford, Charles L.; Wilmarth, William R.

2014-01-27

7

LABORATORY OPTIMIZATION TESTS OF TECHNETIUM DECONTAMINATION OF HANFORD WASTE TREATMENT PLANT LOW ACTIVITY WASTE OFF-GAS CONDENSATE SIMULANT  

SciTech Connect

The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also compatible with longterm tank storage and immobilization methods. For this new application, testing is needed to demonstrate acceptable treatment sorbents and precipitating agents and measure decontamination factors for additional radionuclides in this unique waste stream. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet and will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. One of the radionuclides that is volatile and expected to be in greatest abundance in this LAW Off-Gas Condensate stream is Technetium-99 ({sup 99}Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are low but are also expected to be in measurable concentration in the LAW Off-Gas Condensate are {sup 129}I, {sup 90}Sr, {sup 137}Cs, {sup 241}Pu, and {sup 241}Am. These are present due to their partial volatility and some entrainment in the off-gas system. This report discusses results of optimized {sup 99}Tc decontamination testing of the simulant. Testing examined use of inorganic reducing agents for {sup 99}Tc. Testing focused on minimizing the quantity of sorbents/reactants added, and minimizing mixing time to reach the decontamination targets in this simulant formulation. Stannous chloride and ferrous sulfate were tested as reducing agents to determine the minimum needed to convert soluble pertechnetate to the insoluble technetium dioxide. The reducing agents were tried with and without sorbents.

Taylor-Pashow, K.; Nash, C.; McCabe, D.

2014-09-29

8

Laboratory Scoping Tests Of Decontamination Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant  

SciTech Connect

The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task seeks to examine the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also compatible with longterm tank storage and immobilization methods. For this new application, testing is needed to demonstrate acceptable treatment sorbents and precipitating agents and measure decontamination factors for additional radionuclides in this unique waste stream. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet and will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. One of the radionuclides that is volatile and expected to be in high concentration in this LAW Off-Gas Condensate stream is Technetium-99 ({sup 99}Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are also expected to be in appreciable concentration in the LAW Off-Gas Condensate are {sup 129}I, {sup 90}Sr, {sup 137}Cs, and {sup 241}Am. This report discusses results of preliminary radionuclide decontamination testing of the simulant. Testing examined use of Monosodium Titanate (MST) to remove {sup 90}Sr and actinides, inorganic reducing agents for {sup 99}Tc, and zeolites for {sup 137}Cs. Test results indicate that excellent removal of {sup 99}Tc was achieved using Sn(II)Cl{sub 2} as a reductant, coupled with sorption onto hydroxyapatite, even in the presence of air and at room temperature. This process was very effective at neutral pH, with a Decontamination Factor (DF) >577 in two hours. It was less effective at alkaline pH. Conversely, removal of the cesium was more effective at alka

Taylor-Pashow, Kathryn M.; Nash, Charles A.; Crawford, Charles L.; McCabe, Daniel J.; Wilmarth, William R.

2014-01-21

9

Performance of a large-scale melter off-gas system utilizing simulated SRP DWPF waste  

SciTech Connect

The Department of Energy and the DuPont Company have begun construction of a Defense Waste Processing Facility to immobilize radioactive waste now stored as liquids at the Department of Energy's Savannah River Plant. The immobilization process solidifies waste sludge by vitrification into a leach-resistant borosilicate glass. Development of the process has been the responsibility of the Savannah River Laboratory. As part of the development, two large-scale glass melter systems have been designed and operated with simulated waste. Experimental data from these operations show that process requirements will be met. 6 references, 8 figures, 4 tables.

Kessler, J L; Randall, C T

1984-03-01

10

Adsorption Model for Off-Gas Separation  

SciTech Connect

The absence of industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other countries. Thus, it is essential to model complex series of unit operations to simulate, understand, and predict inherent transient behavior and feedback loops. A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes will provide substantial cost savings and many technical benefits. The specific fuel cycle separation process discussed in this report is the off-gas treatment system. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed in gPROMS software. Inputs include gas stream constituents, sorbent, and column properties, equilibrium and kinetic data, and inlet conditions. It models dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions for a multiple component gas stream. The simulation outputs component concentrations along the column length as a function of time from which the breakthrough data is obtained. It also outputs temperature along the column length as a function of time and pressure drop along the column length. Experimental data will be input into the adsorption model to develop a model specific for iodine adsorption on silver mordenite as well as model(s) specific for krypton and xenon adsorption. The model will be validated with experimental breakthrough curves. Another future off-gas modeling goal is to develop a model for the unit operation absorption. The off-gas models will be made available via the server or web for evaluation by customers.

Veronica J. Rutledge

2011-03-01

11

Glass melter off-gas system  

DOEpatents

Apparatus and method for melting glass in a glass melter in such a way as to reduce deposition of particulates in the off-gas duct. Deposit accumulation is reduced by achieving an off-gas velocity above approximately 15 meters/second and an off-gas temperature as close as possible to, but not higher than, the glass softening point. Because the deposits are largely water-soluble, those that do form on the interior surface of the duct can be readily removed by injecting water or steam directly into the off-gas duct from its entrance or exit.

Jantzen, Carol M. (Aiken, SC)

1997-01-01

12

Off-gas treatment and krypton disposal in HTGR-fuel element reprocessing  

Microsoft Academic Search

Krypton, tritium and iodine are separated from burner off-gas by CO-liquification and rectification at room tempearture. Krypton is concentrated in the lower boiling fraction, while tritium and iodine are concentrated in the higher boiling fraction (AKUT-process). The dissolver off-gas is decontaminated by a cryogenic process. Based on safety and economy, the disposal of compressed krypton confined in steel cylinders by

M. Laser; H. Beaujean; J. Bohnenstingl; P. Filss; M. Heidendael; S. Mastera; E. Merz; H. Vygen

1972-01-01

13

Method for treating a nuclear process off-gas stream  

DOEpatents

Disclosed is a method for selectively removing and recovering the noble gas and other gaseous components typically emitted during nuclear process operations. The method is adaptable and useful for treating dissolver off-gas effluents released during reprocessing of spent nuclear fuels whereby to permit radioactive contaminant recovery prior to releasing the remaining off-gases to the atmosphere. Briefly, the method sequentially comprises treating the off-gas stream to preliminarily remove NO.sub.x, hydrogen and carbon-containing organic compounds, and semivolatile fission product metal oxide components therefrom; adsorbing iodine components on silver-exchanged mordenite; removing water vapor carried by said stream by means of a molecular sieve; selectively removing the carbon dioxide components of said off-gas stream by means of a molecular sieve; selectively removing xenon in gas phase by passing said stream through a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from oxygen by means of a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from the bulk nitrogen stream using a molecular sieve comprising silver-exchanged mordenite cooled to about -140.degree. to -160.degree. C.; concentrating the desorbed krypton upon a molecular sieve comprising silver-exchange mordenite cooled to about -140.degree. to -160.degree. C.; and further cryogenically concentrating, and the recovering for storage, the desorbed krypton.

Pence, Dallas T. (San Diego, CA); Chou, Chun-Chao (San Diego, CA)

1984-01-01

14

MATHEMATICAL SIMULATION TOOLS FOR DEVELOPING DISSOLVED OXYGEN TMDLS  

Technology Transfer Automated Retrieval System (TEKTRAN)

This paper presents an extended abstract of a research paper describing four commonly used dissolved oxygen (DO) simulation models. The concentration of DO in surface waters is one of the most commonly used indicators of river and stream health. Regulators and other professionals are increasingly r...

15

FINAL REPORT REGULATORY OFF GAS EMISSIONS TESTING ON THE DM1200 MELTER SYSTEM USING HLW AND LAW SIMULANTS VSL-05R5830-1 REV 0 10\\/31\\/05  

Microsoft Academic Search

The operational requirements for the River Protection Project - Waste Treatment Plant (RPP-WTP) Low Activity Waste (LAW) and High Level Waste (HLW) melter systems, together with the feed constituents, impose a number of challenges to the off-gas treatment system. The system must be robust from the standpoints of operational reliability and minimization of maintenance. The system must effectively control and

KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; DANGELO NA; BRANDYS M; KOT WK; PEGG IL

2011-01-01

16

Simulation of hydrodynamics, temperature, and dissolved oxygen in Bull Shoals Lake, Arkansas, 1994-1995  

USGS Publications Warehouse

and dissolved-oxygen concentration through time. However, results from both scenarios for water temperature and dissolved-oxygen concentration were within the boundaries of the error between measured and simulated water column profile values.

Galloway, Joel M.; Green, W. Reed

2003-01-01

17

Treatment of nitrous off-gas from dissolution of sludges  

SciTech Connect

Several configurations have been reviewed for the NO{sub x} removal of dissolver off-gas. A predesign has been performed and operating conditions have been optimized. Simple absorption columns seems to be sufficient. NHC is in charge of the treatment of sludges containing mainly uranium dioxide and metallic uranium. The process is based on the following processing steps a dissolution step to oxidize the pyrophoric materials and to dissolve radionuclides (uranium, plutonium, americium and fission products), a solid/liquid separation to get rid of the insoluble solids (to be disposed at ERDF), an adjustment of the acid liquor with neutronic poisons, and neutralization of the acid liquor with caustic soda. The dissolution step generates a flow of nitrous fumes which was evaluated in a previous study. This NO{sub x} flow has to be treated. The purpose of this report is to study the treatment process of the nitrous vapors and to 0482 perform a preliminary design. Several treatment configurations are studied and the most effective process option with respect to the authorized level of discharge into atmosphere is discussed. As a conclusion, recommendations concerning the unit preliminary design are given.

Flament, T.A.

1998-08-25

18

Method and apparatus for off-gas composition sensing  

DOEpatents

An apparatus and method for non-intrusive collection of off-gas data in a steelmaking furnace includes structure and steps for transmitting a laser beam through the off-gas produced by a steelmaking furnace, for controlling the transmitting to repeatedly scan the laser beam through a plurality of wavelengths in its tuning range, and for detecting the laser beam transmitted through the off-gas and converting the detected laser beam to an electrical signal. The electrical signal is processed to determine characteristics of the off-gas that are used to analyze and/or control the steelmaking process.

Ottesen, David Keith (Livermore, CA); Allendorf, Sarah Williams (Fremont, CA); Hubbard, Gary Lee (Richmond, CA); Rosenberg, David Ezechiel (Columbia, MD)

1999-01-01

19

Iodine Pathways and Off-Gas Stream Characteristics for Aqueous Reprocessing Plants – A Literature Survey and Assessment  

SciTech Connect

Used nuclear fuel is currently being reprocessed in only a few countries, notably France, England, Japan, and Russia. The need to control emissions of the gaseous radionuclides to the air during nuclear fuel reprocessing has already been reported for the entire plant. But since the gaseous radionuclides can partition to various different reprocessing off-gas streams, for example, from the head end, dissolver, vessel, cell, and melter, an understanding of each of these streams is critical. These off-gas streams have different flow rates and compositions and could have different gaseous radionuclide control requirements, depending on how the gaseous radionuclides partition. This report reviews the available literature to summarize specific engineering data on the flow rates, forms of the volatile radionuclides in off-gas streams, distributions of these radionuclides in these streams, and temperatures of these streams. This document contains an extensive bibliography of the information contained in the open literature.

R. T. Jubin; D. M. Strachan; N. R. Soelberg

2013-09-01

20

Simulation Analysis for HB-Line Dissolver Mixing  

SciTech Connect

In support of the HB-Line Engineering agitator mixing project, flow pattern calculations have been made for a 90{sup o} apart and helical pitch agitator submerged in a flat tank containing dissolver baskets. The work is intended to determine maximum agitator speed to keep the dissolver baskets from contacting the agitator for the nominal tank liquid level. The analysis model was based on one dissolver basket located on the bottom surface of the flat tank for a conservative estimate. The modeling results will help determine acceptable agitator speeds and tank liquid levels to ensure that the dissolver basket is kept from contacting the agitator blade during HB-Line dissolver tank operations. The numerical modeling and calculations have been performed using a computational fluid dynamics approach. Three-dimensional steady-state momentum and continuity equations were used as the basic equations to estimate fluid motion driven by an agitator with four 90{sup o} pitched blades or three flat blades. Hydraulic conditions were fully turbulent (Reynolds number about 1 x 10{sup 5}). A standard two-equation turbulence model ({kappa},{var_epsilon}), was used to capture turbulent eddy motion. The commercial finite volume code, Fluent [5], was used to create a prototypic geometry file with a non-orthogonal mesh. Hybrid meshing was used to fill the computational region between the round-edged tank bottom and agitator regions. The nominal calculations and a series of sensitivity runs were made to investigate the impact of flow patterns on the lifting behavior of the dissolver basket. At high rotational speeds and low tank levels, local turbulent flow reaches the critical condition for the dissolver basket to be picked up from the tank floor and to touch the agitator blades during the tank mixing operations. This is not desirable in terms of mixing performance. The modeling results demonstrate that the flow patterns driven by the agitators considered here are not strong enough to lift up the dissolver basket for the agitator speeds up to 2500 rpm. The results also show that local velocity magnitudes for the three-blade flat plate agitator are at maximum three times smaller than the helical fourblade one. Table 5 and Table 6 summarize the results.

Lee, S

2006-03-22

21

MATHEMATICAL SIMULATION TOOLS FOR DEVELOPING DISSOLVED OXYGEN TMDLS  

Technology Transfer Automated Retrieval System (TEKTRAN)

The amount of dissolved oxygen (DO) in water is one of the most commonly used indicators of river and stream health. In most fresh water systems, aquatic fauna become stressed as DO drops below 4 or 5 mg L-1. Under extended hypoxic (low DO) or anoxic (no DO) conditions, most higher forms of life are...

22

SIMULATION OF DISSOLVED OXYGEN PROFILES IN A TRANSPARENT, DIMICTIC LAKE  

EPA Science Inventory

Thrush Lake is a small, highly transparent lake in northeastern Minnesota. rom 1986 to 1991, vertical profiles of water temperature, dissolved oxygen, chlorophyll a concentration, underwater light irradiance, and Secchi depths were measured at monthly intervals during the ice-fre...

23

Numerical Simulation of Salinity and Dissolved Oxygen at Perdido Bay and Adjacent Coastal Ocean  

EPA Science Inventory

Environmental Fluid Dynamic Code (EFDC), a numerical estuarine and coastal ocean circulation hydrodynamic model, was used to simulate the distribution of the salinity, temperature, nutrients and dissolved oxygen (DO) in Perdido Bay and adjacent Gulf of Mexico. External forcing fa...

24

Carbon dioxide-krypton separation and radon removal from nuclear-fuel-reprocessing off-gas streams  

SciTech Connect

General Atomic Company (GA) is conducting pilot-plant-scale tests that simulate the treatment of radioactive and other noxious volatile and gaseous constituents of off-gas streams from nuclear reprocessing plants. This paper reports the results of engineering-scale tests performed on the CO/sub 2//krypton separation and radon holdup/decay subsystems of the GA integrated off-gas treatment system. Separation of CO/sub 2/ from krypton-containing gas streams is necessary to facilitate subsequent waste processing and krypton storage. Molecular sieve 5A achieved this separation in dissolver off-gas streams containing relatively low krypton and CO/sub 2/ concentrations and in krypton-rich product streams from processes such as the krypton absorption in liquid carbon dioxide (KALC) process. The CO/sub 2//krypton separation unit is a 30.5-cm-diameter x 1.8-m-long column containing molecular sieve 5A. The loading capacity for CO/sub 2/ was determined for gas mixtures containing 250 ppM to 2.2% CO/sub 2/ and 170 to 750 ppM krypton in either N/sub 2/ or air. Gas streams rich in CO/sub 2/ were diluted with N/sub 2/ to reduce the temperature rise from the heat of adsorption, which would otherwise affect loading capacity. The effluent CO/sub 2/ concentration prior to breakthrough was less than 10 ppM, and the adsorption capacity for krypton was negligible. Krypton was monitored on-line with a time-of-flight mass spectrometer and its concentration determined quantitatively by a method of continuous analysis, i.e., selected-ion monitoring. Radon-220 was treated by holdup and decay on a column of synthetic H-mordenite. The Rn-220 concentration was monitored on-line with flow-through diffused-junction alpha detectors. Single-channel analyzers were utilized to isolate the 6.287-MeV alpha energy band characteristic of Rn-220 decay from energy bands due to daughter products.

Hirsch, P.M.; Higuchi, K.Y.; Abraham, L.

1982-07-01

25

Determination of process conditions for the spray nozzle for the DWPF melter off-gas HEME  

SciTech Connect

The DWPF melter off-gas systems have High Efficiency Mist Eliminators (HEME) upstream of the High Efficiency Particulates Air filters (HEPA) to remove fine mist and particulates from the off-gas. To have an acceptable filter life and an efficient HEME operation, air atomized water is sprayed into the melter off-gas and onto the HEME surface. The water spray keeps the HEME wet, which dissolves the soluble particulates and enhances the HEME efficiency. DWPF Technical requested SRL to determine the conditions for the DWPF nozzle which will give complete atomization of water so that the HEME will operate efficiently. Since the air pressure and flow rate to generate the desired spray are not known before hand, an experiment was performed in two stages. The first stage involved preliminary tests which mapped out a general operating region for producing the desired spray pattern. Afterward, all the gages and meters were changed to suitable ranges for the conditions which generated an acceptable spray. This report summarizes the results and the conclusions of the second stage experiment.

Lee, L.

1991-12-15

26

Degradation of off-gas toluene in continuous pyrite Fenton system.  

PubMed

Degradation of off-gas toluene from a toluene reservoir and a soil vapor extraction (SVE) process was investigated in a continuous pyrite Fenton system. The removal of off-gas toluene from the toluene reservoir was >95% by 8h in the pyrite Fenton system, while it was ?97 % by 3h in classic Fenton system and then rapidly decreased to initial level by 8h. Continuous consumption of low Fe(II) concentration dissolved from pyrite surface (0.05-0.11 mM) was observed in the pyrite Fenton system, which can lead to the effective and successful removal of the gas-phase toluene due to stable production of OH radical (OH). Inhibitor and spectroscopic test results showed that OH was a dominant radical that degraded gas-phase toluene during the reaction. Off-gas toluene from the SVE process was removed by 96% in the pyrite Fenton system, and remnant toluene from rebounding effect was treated by 99%. Main transformation products from toluene oxidation were benzoic acid (31.4%) and CO2 (38.8%) at 4h, while traces of benzyl alcohol (1.3%) and benzaldehyde (0.7%) were observed. Maximum operation time of continuous pyrite Fenton system was estimated to be 56-61 d and its optimal operation time achieving emission standard was 28.9 d. PMID:25125037

Choi, Kyunghoon; Bae, Sungjun; Lee, Woojin

2014-09-15

27

Simulation of hydrodynamics, temperature, and dissolved oxygen in Beaver Lake, Arkansas, 1994-1995  

USGS Publications Warehouse

The tailwaters of Beaver Lake and other White River reservoirs support a cold-water trout fishery of significant economic yield in northwestern Arkansas. The Arkansas Game and Fish Commission has requested an increase in existing minimum flows through the Beaver Lake dam to increase the amount of fishable waters downstream. Information is needed to assess the impact of additional minimum flows on temperature and dissolved-oxygen qualities of reservoir water above the dam and the release water. A two-dimensional, laterally averaged hydrodynamic, thermal and dissolved-oxygen model was developed and calibrated for Beaver Lake, Arkansas. The model simulates surface-water elevation, currents, heat transport and dissolved-oxygen dynamics. The model was developed to assess the impacts of proposed increases in minimum flows from 1.76 cubic meters per second (the existing minimum flow) to 3.85 cubic meters per second (the additional minimum flow). Simulations included assessing (1) the impact of additional minimum flows on tailwater temperature and dissolved-oxygen quality and (2) increasing initial water-surface elevation 0.5 meter and assessing the impact of additional minimum flow on tailwater temperatures and dissolved-oxygen concentrations. The additional minimum flow simulation (without increasing initial pool elevation) appeared to increase the water temperature (<0.9 degrees Celsius) and decrease dissolved oxygen concentration (<2.2 milligrams per liter) in the outflow discharge. Conversely, the additional minimum flow plus initial increase in pool elevation (0.5 meter) simulation appeared to decrease outflow water temperature (0.5 degrees Celsius) and increase dissolved oxygen concentration (<1.2 milligrams per liter) through time. However, results from both minimum flow scenarios for both water temperature and dissolved oxygen concentration were within the boundaries or similar to the error between measured and simulated water column profile values.

Haggard, Brian; Green, W. Reed

2002-01-01

28

COUPLED FREE AND DISSOLVED PHASE TRANSPORT: NEW SIMULATION CAPABILITIES AND PARAMETER INVERSION  

EPA Science Inventory

The vadose zone free-phase simulation capabilities of the US EPA Hydrocarbon Spill Screening Model (HSSM) (Weaver et al., 1994) have been linked with the 3-D multi-species dissolved-phase contaminant transport simulator MT3DMS (Zheng and Wang, 1999; Zheng, 2005). The linkage pro...

29

Simulation of hydrodynamics, temperature, and dissolved oxygen in Norfork Lake, Arkansas, 1994-1995  

USGS Publications Warehouse

Outflow from Norfork Lake and other White River reservoirs support a cold-water trout fishery of significant economic yield in north-central Arkansas and south-central Missouri. The Arkansas Game and Fish Commission has requested an increase in existing minimum flows through the Norfork Lake dam to increase the amount of fishable waters downstream. Information is needed to assess the impact of increased minimum flows on temperature and dissolved-oxygen concentrations of reservoir water and the outflow. A two-dimensional, laterally averaged, hydrodynamic, temperature, and dissolved-oxygen model was developed and calibrated for Norfork Lake, located on the Arkansas-Missouri State line. The model simulates water-surface elevation, heat transport, and dissolved-oxygen dynamics. The model was developed to assess the impacts of proposed increases in minimum flow from 1.6 cubic meter per second (the existing minimum flow) to 8.5 cubic meters per second (the increased minimum flow). Simulations included assessing the impact of (1) increased minimum flows and (2) increased minimum flows with increased water-surface elevation of 1.1 meter in Norfork Lake on outflow temperatures and dissolved-oxygen concentrations. The increased minimum flow simulation (without increasing initial water-surface elevation) appeared to increase the water temperature and decrease dissolved-oxygen concentration in the outflow. Conversely, the increased minimum flow and initial increase in water-surface elevation (1.1 meter) simulation appeared to decrease outflow water temperature and increase dissolved-oxygen concentration through time. However, results from both scenarios for water temperature and dissolved-oxygen concentration were within the boundaries or similar to the error between measured and simulated water column profile values.

Galloway, Joel M.; Green, W. Reed

2002-01-01

30

CHARACTERIZATION OF DWPF MELTER OFF-GAS QUENCHER SAMPLE  

SciTech Connect

The Savannah River National Laboratory (SRNL) recently received a deposit sample from the Melter Primary Off Gas System (POG) of the Defense Waste Processing Facility (DWPF). This sample was composed of material that had been collected while the quencher was in operation January 27, 2011 through March 31, 2011. DWPF requested, through a technical assistance request, characterization of the melter off-gas deposits by x-ray diffraction (XRD), scanning electron microscopy (SEM), and chemical analysis. The purpose of the Melter Off-Gas System is to reduce the amount of radioactive particles and mercury in the gases vented to the atmosphere. Gases emitted from the melter pass through the primary film cooler, quencher, Off-Gas Condensate Tank (OGCT), Steam Atomized Scrubbers (SAS), a condenser, a high efficiency mist eliminator, and a high efficiency particulate air filter, before being vented to the Process Vessel Vent System. The film coolers cool the gases leaving the melter vapor space from {approx}750 C to {approx}375 C, by introducing air and steam to the flow. In the next step, the quencher cools the gas to about 60 C by bringing the condensate from the OGCT in contact with the effluent (Figure 1). Most of the steam in the effluent is then condensed and the melter vapor space pressure is reduced. The purpose of the OGCT is to collect and store the condensate formed during the melter operation. Condensate from the OGCT is circulated to the SAS and atomized with steam. This atomized condensate is mixed with the off-gas to wet and join the particulate which is then removed in the cyclone. The next stage incorporates a chilled water condenser which separates the vapors and elemental mercury from the off-gas steam. Primary off-gas deposit samples from the DWPF melter have previously been analyzed. In 2003, samples from just past the film cooler, from the inlet of the quencher and inside the quencher were analyzed at SRNL. It was determined that the samples were a mixture of sludge and glass frit. The major component was Si along with Fe, Al, and other elements in the radioactive waste being processed. The deposits analyzed also contained U-235 fission products and actinide elements. Prior to that, deposits in the off-gas system in the DWPF nonradioactive half scale melter and the one-tenth scale integrated DWPF melter system were analyzed and determined to be mixtures of alkali rich chlorides, sulfates, borates, and fluorides entrained with iron oxides, spinels and frit particles formed by vapor-phase transport and condensation. Additional work was performed in 2007 in which researchers similarly found the deposits to be a combination of sludge and frit particles.

Newell, J.

2011-11-14

31

High-level waste vitrification off-gas cleanup technology  

SciTech Connect

This brief overview is intended to be a basis for discussion of needs and problems existing in the off-gas clean-up technology. A variety of types of waste form and processes are being developed in the United States and abroad. A description of many of the processes can be found in the Technical Alternative Documents (TAD). Concurrently, off-gas processing systems are being developed with most of the processes. An extensive review of methodology as well as decontamination factors can be found in the literature. Since it is generally agreed that the most advanced solidification process is vitrification, discussion here centers about the off-gas problems related to vitrification. With a number of waste soldification facilities around the world in operation, it can be shown that present technology can satisfy the present requirement for off-gas control. However, a number of areas within the technology base show potential for improvement. Fundamental as well as verification studies are needed to obtain the improvements.

Hanson, M.S.

1980-01-01

32

ART CCIM Phase II-A Off-Gas System Evaluation Test Plan  

SciTech Connect

This test plan defines testing to be performed using the Idaho National Laboratory (INL) engineering-scale cold crucible induction melter (CCIM) test system for Phase II-A of the Advanced Remediation Technologies (ART) CCIM Project. The multi-phase ART-CCIM Project is developing a conceptual design for replacing the joule-heated melter (JHM) used to treat high level waste (HLW) in the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) with a cold crucible induction melter. The INL CCIM test system includes all feed, melter off-gas control, and process control subsystems needed for fully integrated operation and testing. Testing will include operation of the melter system while feeding a non-radioactive slurry mixture prepared to simulate the same type of waste feed presently being processed in the DWPF. Process monitoring and sample collection and analysis will be used to characterize the off-gas composition and properties, and to show the fate of feed constituents, to provide data that shows how the CCIM retrofit conceptual design can operate with the existing DWPF off-gas control system.

Nick Soelberg; Jay Roach

2009-01-01

33

Hanford Low-Activity Waste Processing: Demonstration of the Off-Gas Recycle Flowsheet - 13443  

SciTech Connect

Vitrification of Hanford Low-Activity Waste (LAW) is nominally the thermal conversion and incorporation of sodium salts and radionuclides into borosilicate glass. One key radionuclide present in LAW is technetium-99. Technetium-99 is a low energy, long-lived beta emitting radionuclide present in the waste feed in concentrations on the order of 1-10 ppm. The long half-life combined with a high solubility in groundwater results in technetium-99 having considerable impact on performance modeling (as potential release to the environment) of both the waste glass and associated secondary waste products. The current Hanford Tank Waste Treatment and Immobilization Plant (WTP) process flowsheet calls for the recycle of vitrification process off-gas condensates to maximize the portion of technetium ultimately immobilized in the waste glass. This is required as technetium acts as a semi-volatile specie, i.e. considerable loss of the radionuclide to the process off-gas stream can occur during the vitrification process. To test the process flowsheet assumptions, a prototypic off-gas system with recycle capability was added to a laboratory melter (on the order of 1/200 scale) and testing performed. Key test goals included determination of the process mass balance for technetium, a non-radioactive surrogate (rhenium), and other soluble species (sulfate, halides, etc.) which are concentrated by recycling off-gas condensates. The studies performed are the initial demonstrations of process recycle for this type of liquid-fed melter system. This paper describes the process recycle system, the waste feeds processed, and experimental results. Comparisons between data gathered using process recycle and previous single pass melter testing as well as mathematical modeling simulations are also provided. (authors)

Ramsey, William G.; Esparza, Brian P. [Washington River Protection Solutions, LLC, Richland, WA 99532 (United States)] [Washington River Protection Solutions, LLC, Richland, WA 99532 (United States)

2013-07-01

34

MODEL SIMULATIONS OF DISSOLVED OXYGEN CHARACTERISTICS OF MINNESOTA LAKES: PAST AND FUTURE  

EPA Science Inventory

A deterministic, one-dimensional, unsteady numerical model has been developed, tested, and applied to simulate mean daily dissolved oxygen (DO) characteristics in 27 lake classes in the state of Minnesota. eaeration and photosynthesis are the oxygen sources, while respiration, se...

35

Simulation of hydrodynamics, temperature, and dissolved oxygen in Table Rock Lake, Missouri, 1996-1997  

USGS Publications Warehouse

Outflow from Table Rock Lake and other White River reservoirs support a cold-water trout fishery of substantial economic yield in south-central Missouri and north-central Arkansas. The Missouri Department of Conservation has requested an increase in existing minimum flows through the Table Rock Lake Dam from the U.S. Army Corps of Engineers to increase the quality of fishable waters downstream in Lake Taneycomo. Information is needed to assess the effect of increased minimum flows on temperature and dissolved- oxygen concentrations of reservoir water and the outflow. A two-dimensional, laterally averaged, hydrodynamic, temperature, and dissolved-oxygen model, CE-QUAL-W2, was developed and calibrated for Table Rock Lake, located in Missouri, north of the Arkansas-Missouri State line. The model simulates water-surface elevation, heat transport, and dissolved-oxygen dynamics. The model was developed to assess the effects of proposed increases in minimum flow from about 4.4 cubic meters per second (the existing minimum flow) to 11.3 cubic meters per second (the increased minimum flow). Simulations included assessing the effect of (1) increased minimum flows and (2) increased minimum flows with increased water-surface elevations in Table Rock Lake, on outflow temperatures and dissolved-oxygen concentrations. In both minimum flow scenarios, water temperature appeared to stay the same or increase slightly (less than 0.37 ?C) and dissolved oxygen appeared to decrease slightly (less than 0.78 mg/L) in the outflow during the thermal stratification season. However, differences between the minimum flow scenarios for water temperature and dissolved- oxygen concentration and the calibrated model were similar to the differences between measured and simulated water-column profile values.

Green, W. Reed; Galloway, Joel M.; Richards, Joseph M.; Wesolowski, Edwin A.

2003-01-01

36

Simulations of underwater plumes of dissolved oil in the Gulf of Mexico  

NASA Astrophysics Data System (ADS)

A simple model of the temperature-dependent biological decay of dissolved oil is embedded in an ocean-climate model and used to simulate underwater plumes of dissolved and suspended oil originating from a point source in the northern Gulf of Mexico, with an upper-bound supply rate estimated from the contemporary analysis of the Deepwater Horizon blowout. The behavior of plumes at different depths is found to be determined by the combination of sheared current strength and the vertical profile of decay rate. For all plume scenarios, toxic levels of dissolved oil remain confined to the northern Gulf of Mexico, and abate within weeks after the spill stops. An estimate of oxygen consumption due to microbial oxidation of hydrocarbons suggests that a deep plume of hydrocarbons could lead to localized regions of prolonged hypoxia near the source, but only when oxidation of methane is included.

Adcroft, Alistair; Hallberg, Robert; Dunne, John P.; Samuels, Bonita L.; Galt, J. A.; Barker, Christopher H.; Payton, Debra

2010-09-01

37

Dissolved methane transport in the Arctic water: observed data and simulation  

NASA Astrophysics Data System (ADS)

As part of the global carbon cycle, enormous quantities of methane occur in marine sediments. The extensive Arctic shelves may play an important role in methane cycling because of their large area. Based on observed data, an attempt was made to identify the main sources of dissolved methane in the Arctic Ocean. One of the mechanisms to release methane to the ocean is through submarine mud volcanism, hydrocarbon seeps and vents. Other sources of methane include methane gas hydrates. Siberian rivers are also a strong source of dissolved surface methane that comes from the wetlands. A 3D mathematical model of the dissolved gas transport by the ocean currents is used to assess the amount of a possible methane flux from the submarine sources. The ocean model has been constructed at the Institute of Computational Mathematics and Mathematical Geophysics SB RAS, for the North Atlantic and Arctic basins. For modeling Arctic methane fluxes, the three above-mentioned methane sources were taken into account. The results of the numerical simulation show that the propagation of dissolved methane into the Arctic basin is realized by two ways according to the atmospheric regimes and is associated with the North Atlantic/Arctic Oscillations. In the cyclonic circulation mode a high concentration of methane is formed in the region of Taimyr. In the anticyclonic mode, the dissolved methane is concentrated in the central Arctic.

Kuzin, Victor I.; Malakhova, Valentina V.; Golubeva, Elena N.

2010-05-01

38

FY-2001 Accomplishments in Off-gas Treatment Technology Development  

SciTech Connect

This report summarizes the efforts funded by the Tank Focus Area to investigate nitrogen oxide (NOx) destruction (a.k.a. deNOx) technologies and off-gas scrubber system designs. The primary deNOx technologies that were considered are staged combustion (a.k.a. NOx reburning), selective catalytic reduction, selective non-catalytic reduction, and steam reformation. After engineering studies and a team evaluation were completed, selective catalytic reduction and staged combustion were considered the most likely candidate technologies to be deployed in a sodium-bearing waste vitrification facility. The outcome of the team evaluation factored heavily in the establishing a baseline configuration for off-gas and secondary waste treatment systems.

Marshall, Douglas William

2001-09-01

39

Microwave off-gas treatment apparatus and process  

DOEpatents

The invention discloses a microwave off-gas system in which microwave energy is used to treat gaseous waste. A treatment chamber is used to remediate off-gases from an emission source by passing the off-gases through a susceptor matrix, the matrix being exposed to microwave radiation. The microwave radiation and elevated temperatures within the combustion chamber provide for significant reductions in the qualitative and quantitative emissions of the gas waste stream.

Schulz, Rebecca L. (Aiken, SC); Clark, David E. (Gainesville, FL); Wicks, George G. (North Aiken, SC)

2003-01-01

40

Simulated effects of surface coal mining and agriculture on dissolved solids in the Redwater River, east-central Montana  

USGS Publications Warehouse

Dissolved solids concentrations in five reaches of the Redwater River in east-central Montana were simulated to evaluate the effects of surface coal mining and agriculture. A mass-balance model of streamflow and dissolved solids load developed for the Tongue River in southeastern Montana was modified and applied to the Redwater River. Mined acreages, dissolved solids concentrations in mined spoils, and irrigated acreage can be varied in the model to study relative changes in the dissolved solids concentration in consecutive reaches of the river. Because of extreme variability and a limited amount of data, the model was not consecutively validated. Simulated mean and median monthly mean streamflows and consistently larger than those calculated from streamflow records. Simulated mean and median monthly mean dissolved solids loads also are consistently larger than regression-derived values. These discrepancies probably result from extremely variable streamflow, overestimates of streamflow from ungaged tributaries, and weak correlations between streamflow and dissolved solids concentrations. The largest increases in simulated dissolved solids concentrations from mining and agriculture occur from September through January because of smaller streamflows and dissolved solids loads. Different combinations of agriculture and mining under mean flow conditions resulted in cumulative percentage increases of dissolved solids concentrations of less than 5% for mining and less than 2% for agriculture. (USGS)

Ferreira, R.F.; Lambing, J.H.

1985-01-01

41

Cesium determination for the DWPF off-gas system performance test  

Microsoft Academic Search

In an effort to determine the cesium decontamination factors (DF`s) of the Defense Waste Processing Facility (DWPF) melter off-gas system at the Savannah River Site, the system was verified during an off-gas performance test. The off-gas performance test occurred during the DWPF waste Qualification Campaigns, WP-16 and WP-17. The verification of the off-gas system, which eliminated the need for a

M. K. Andrews; H. H. Elder; W. T. Boyce

1996-01-01

42

A Review of Public Domain Water Quality Models for Simulating Dissolved Oxygen in Rivers and Streams  

Microsoft Academic Search

The review discusses six major public domain water quality models currently available for rivers and streams. These major\\u000a models, which differ greatly in terms of processes they represent, data inputs requirements, assumptions, modeling capability,\\u000a their strengths and weaknesses, could yield useful results if appropriately selected for the desired purposes. The public\\u000a domain models, which are most suitable for simulating dissolved

Prakash R. Kannel; Sushil R. Kanel; Seockheon Lee; Young-Soo Lee; Thian Y. Gan

2011-01-01

43

Humic substances may control dissolved iron distributions in the global ocean: Implications from numerical simulations  

NASA Astrophysics Data System (ADS)

study used an ocean general circulation model to simulate the marine iron cycle in an investigation of how simulated distributions of weak iron-binding ligands would be expected to control dissolved iron concentrations in the ocean, with a particular focus on deep ocean waters. The distribution of apparent oxygen utilization was used as a proxy for humic substances that have recently been hypothesized to account for the bulk of weak iron-binding ligands in seawater. Compared to simulations using a conventional approach with homogeneous ligand distributions, the simulations that incorporated spatially variable ligand concentrations exhibited substantial improvement in the simulation of global dissolved iron distributions as revealed by comparisons with available field data. The improved skill of the simulations resulted largely because the spatially variable ligand distributions led to a more reasonable basin-scale variation of the residence time of iron when present at high concentrations. The model results, in conjunction with evidence from recent field studies, suggest that humic substances play an important role in the iron cycle in the ocean.

Misumi, Kazuhiro; Lindsay, Keith; Moore, J. Keith; Doney, Scott C.; Tsumune, Daisuke; Yoshida, Yoshikatsu

2013-04-01

44

Removal of dissolved organic carbon and nitrogen during simulated soil aquifer treatment.  

PubMed

Soil aquifer treatment was simulated in 1 m laboratory soil columns containing silica sand under saturated and unsaturated soil conditions to examine the effect of travel length through the unsaturated zone on the removal of wastewater organic matter, the effect of soil type on dissolved organic carbon removal and also the type of microorganisms involved in the removal process. Dissolved organic carbon removal and nitrification did enhance when the wastewater travelled a longer length through the unsaturated zone. A similar consortium of microorganisms was found to exist in both saturated and unsaturated columns. Microbial concentrations however were lowest in the soil column containing silt and clay in addition to silica sand. The presence of silt and clay was detrimental to DOC removal efficiency under saturated soil conditions due to their negative effect on the hydraulic performance of the soil column and microbial growth. PMID:23726692

Essandoh, H M K; Tizaoui, C; Mohamed, M H A

2013-07-01

45

Numerical simulation of the transport and diffusion of dissolved pollutants in the changjiang (Yangtze) river estuary  

NASA Astrophysics Data System (ADS)

Based on a coupled hydrodynamic-ecological model for regional and shelf seas (COHERENS), a three-dimensional baroclinic model for the Changjiang (Yangtze) River estuary and the adjacent sea area was established using the sigma-coordinate in the vertical direction and spherical coordinate in the horizontal direction. In the study, changing-grid technology and the “dry-wet” method were designed to deal with the moving boundary. The minimum water depth limit condition was introduced for numerical simulation stability and to avoid producing negative depths in the shallow water areas. Using the Eulerian transport approaches included in COHERENS for the advection and dispersion of dissolved pollutants, numerical simulation of dissolved pollutant transport and diffusion in the Changjiang River estuary were carried out. The mass centre track of dissolved pollutants released from outlets in the south branch of the Changjiang River estuary water course has the characteristic of reverse current motion in the inner water course and clockwise motion offshore. In the transition area, water transport is a combination of the two types of motion. In a sewage-discharge numerical experiment, it is found that there are mainly two kinds of pollution distribution forms: one is a single nuclear structure and the other is a double nuclear (dinuclear) structure in the turbid zone of the Changjiang River estuary. The rate of expansion of the dissolved pollutant distribution decreased gradually. The results of the numerical experiment indicate that the maximum turbid zone of the Changjiang River estuary is also the zone enriched with pollutants. Backward pollutant flow occurs in the north branch of the estuary, which is similar to the backward salt water flow, and the backward flow of pollutants released upstream is more obvious.

Wu, De'an; Yan, Yixin

2010-05-01

46

One-dimensional simulation of stratification and dissolved oxygen in McCook Reservoir, Illinois  

USGS Publications Warehouse

As part of the Chicagoland Underflow Plan/Tunnel and Reservoir Plan, the U.S. Army Corps of Engineers, Chicago District, plans to build McCook Reservoir.a flood-control reservoir to store combined stormwater and raw sewage (combined sewage). To prevent the combined sewage in the reservoir from becoming anoxic and producing hydrogen sulfide gas, a coarse-bubble aeration system will be designed and installed on the basis of results from CUP 0-D, a zero-dimensional model, and MAC3D, a three-dimensional model. Two inherent assumptions in the application of MAC3D are that density stratification in the simulated water body is minimal or not present and that surface heat transfers are unimportant and, therefore, may be neglected. To test these assumptions, the previously tested, one-dimensional Dynamic Lake Model (DLM) was used to simulate changes in temperature and dissolved oxygen in the reservoir after a 1-in-100-year event. Results from model simulations indicate that the assumptions made in MAC3D application are valid as long as the aeration system, with an air-flow rate of 1.2 cubic meters per second or more, is operated while the combined sewage is stored in the reservoir. Results also indicate that the high biochemical oxygen demand of the combined sewage will quickly consume the dissolved oxygen stored in the reservoir and the dissolved oxygen transferred through the surface of the reservoir; therefore, oxygen must be supplied by either the rising bubbles of the aeration system (a process not incorporated in DLM) or some other technique to prevent anoxia.

Robertson, Dale M.

2000-01-01

47

Glass melter off-gas system pluggages: Cause, significance, and remediation  

SciTech Connect

Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. The glass will be produced in the Defense Waste Processing Facility (DWPF) where the glass will be poured into stainless steel canisters for eventual disposal in a geologic repository. Experimental glass melters used to develop the vitrification process for immobilization of the waste have experienced problems with pluggage of the off-gas line with solid deposits. Off-gas deposits from the DWPF 1/2 Scale Glass Melter (SGM) and the 1/10th scale Integrated DWPF Melter System (IDMS) were determined to be mixtures of alkali rich chlorides, sulfates, borates, and fluorides with entrained Fe{sub 2}O{sub 3}, spinel, and frit particles. The distribution and location of the alkali deposits throughout the off-gas system indicate that the deposits form by vapor-phase transport and condensation. Condensation of the alkali-rich phases cement the entrained particulates causing off-gas system pluggages. The identification of vapor phase transport as the operational mechanism causing off-gas system pluggage indicates that deposition can be effectively eliminated by increasing the off-gas velocity. Scale glass melter operating experience indicates that a velocity of >50 fps is necessary in order to transport the volatile species to the quencher to prevent having condensation occur in the off-gas line. Hotter off-gas line temperatures would retain the alkali compounds as vapors so that they would remain volatile until they reach the quencher. However, hotter off-gas temperatures can only be achieved by using less air/steam flow at the off-gas entrance, e.g. at the off-gas film cooler (OGFC). This would result in lower off-gas velocities. Maintaining a high velocity is, therefore, considered to be a more important criterion for controlling off-gas pluggage than temperature control. 40 refs., 16 figs., 5 tabs.

Jantzen, C.M.

1991-03-01

48

ART CCIM PHASE II-A OFF-GAS SYSTEM EVALUATION TEST REPORT  

SciTech Connect

AREVA Federal Services (AFS) is performing a multi-year, multi-phase Advanced Remediation Technologies (ART) project, sponsored by the U.S. Department of Energy (DOE), to evaluate the feasibility and benefits of replacing the existing joule-heated melter (JHM) used to treat high level waste (HLW) in the Defense Waste Processing Facility (DWPF) at the Savannah River Site with a cold crucible induction melter (CCIM). The AFS ART CCIM project includes several collaborators from AREVA subsidiaries, French companies, and DOE national laboratories. The Savannah River National Laboratory and the Commissariat a l’Energie Atomique (CEA) have performed laboratory-scale studies and testing to determine a suitable, high-waste-loading glass matrix. The Idaho National Laboratory (INL) and CEA are performing CCIM demonstrations at two different pilot scales to assess CCIM design and operation for treating SRS sludge wastes that are currently being treated in the DWPF. SGN is performing engineering studies to validate the feasibility of retrofitting CCIM technology into the DWPF Melter Cell. The long-term project plan includes more lab-testing, pilot- and large-scale demonstrations, and engineering activities to be performed during subsequent project phases. A simulant of the DWPF SB4 feed was successfully fed and melted in a small pilot-scale CCIM system during two test series. The OGSE tests provide initial results that (a) provide melter operating conditions while feeding a DWPF SB4 simulant feed, (b) determine the fate of feed organic and metal feed constituents and metals partitioning, and (c) characterize the melter off-gas source term to a downstream off-gas system. The INL CCIM test system was operated continuously for about 30 hours during the parametric test series, and for about 58 hours during the OGSE test. As the DWPF simulant feed was continuously fed to the melter, the glass level gradually increased until a portion of the molten glass was drained from the melter. The glass drain was operated periodically on-demand. A cold cap of unmelted feed was controlled by adjusting the feedrate and melter power levels to obtain the target molten glass temperatures with varying cold cap levels. Three test conditions were performed per the test plan, during which the melter was operated with a target melt temperature of either 1,250oC or 1,300oC, and with either a partial or complete cold cap of unmelted feed on top of the molten glass. Samples of all input and output streams including the starting glass, the simulant feed, the off-gas particulate matter, product glass, and deposits removed from the crucible and off-gas pipe after the test were collected for analysis.

Nick Soelberg

2009-04-01

49

Discrete-element model for simulating hydrodynamic conditions and absorbed and dissolved radioisotope concentrations in estuaries  

SciTech Connect

A model has been developed to simulate one-dimensional model for simulating hydrodynamic and thermal conditions and dissolved radionuclide concentrations in tidal estuaries was merged with an improved version of the SEDTRN model, a multisediment-size class model of bedload and suspended sediment transport. The improved SEDTRN model, which employs a velocity-based rather than an energy-based sediment transport rate calculation and accounts for nonzero channel bed slope, is given credibility by comparing its results in stand-alone form to those obtained using the parent model. Results of the latter model have been shown to compare favorably to field measurements. The combined model is called HOTSED. The HOTSED model has been applied to the Hudson River under tidal-transient conditions and the transport of tagged or radioisotope-bearing sediment simulated. The code is designed specifically for applications with dominant tidal cycling. It requires, for a 76-element channel system, 270 thousand bytes of storage, and for a simulation of 25 hours, has an execution time of approximately five minutes on an IBM System 360/91 computer. 10 references, 7 figures.

Fields, D.E.

1984-01-01

50

Assessment of the impact of the next generation solvent on DWPF melter off-gas flammability  

SciTech Connect

An assessment has been made to evaluate the impact on the DWPF melter off-gas flammability of replacing the current solvent used in the Modular Caustic-Side Solvent Extraction Process Unit (MCU) process with the Next Generation Solvent (NGS-MCU) and blended solvent. The results of this study showed that the concentrations of nonvolatile carbon and hydrogen of the current solvent in the Slurry Mix Evaporator (SME) product would both be about 29% higher than their counterparts of the NGS-MCU and blended solvent in the absence of guanidine partitioning. When 6 ppm of guanidine (TiDG) was added to the effluent transfer to DWPF to simulate partitioning for the NGS-MCU and blended solvent cases and the concentration of Isopar{reg_sign} L in the effluent transfer was controlled below 87 ppm, the concentrations of nonvolatile carbon and hydrogen of the NGS-MCU and blended solvent were still about 12% and 4% lower, respectively, than those of the current solvent. It is, therefore, concluded that as long as the volume of MCU effluent transfer to DWPF is limited to 15,000 gallons per Sludge Receipt and Adjustment Tank (SRAT)/SME cycle and the concentration of Isopar{reg_sign} L in the effluent transfer is controlled below 87 ppm, using the current solvent assumption of 105 ppm Isopar{reg_sign} L or 150 ppm solvent in lieu of NGS-MCU or blended solvent in the DWPF melter off-gas flammability assessment is conservative for up to an additional 6 ppm of TiDG in the effluent due to guanidine partitioning. This report documents the calculations performed to reach this conclusion.

Daniel, W. E.

2013-02-13

51

Numerical simulations of aquaculture dissolved waste transport in a coastal embayment  

NASA Astrophysics Data System (ADS)

The present study focuses on understanding the transport and fate of dissolved wastes from aquaculture pens in near-coastal environments using the hydrodynamics code SUNTANS (Stanford Unstructured Nonhydrostatic Terrain-following Adaptive Navier- Stokes Simulator), which employs unstructured grids to compute flows in the coastal ocean at very high resolution. Simulations of a pollutant concentration field (in time and space) as a function of the local environment (bathymetry, rotation), flow conditions (tides, wind-induced currents and wind stress), and the location of the pens were performed to study their effects on the evolution of the waste plume. The presence of the fish farm pens causes partial blockage of the flow, leading to the deceleration of the approaching flow and formation of downstream wakes. Results of both the near-field area (area within 10 to 20 pen diameters of the fish-pen site) as well as far-field behavior of the pollutant field are presented. These results highlight for the first time the importance of the wake vortex dynamics on the evolution of the near-field plume as well as the rotation of the earth on the far-field plume. The results provide an understanding of the impact of aquaculture fish-pens on coastal water quality.

Venayagamoorthy, Subhas; Fringer, Oliver; Koseff, Jeffrey; Naylor, Rosamond

2008-11-01

52

Granular and Dissolved Polyacrylamide Effects on Erosion and Runoff under Simulated Rainfall.  

PubMed

Polyacrylamide (PAM) has been demonstrated to reduce erosion under many conditions, but less is known about the effects of its application method on erosion and concentrations in the runoff water. A rainfall simulation study was conducted to evaluate the performance of an excelsior erosion control blanket (cover) and two PAM application methods. The treatments were (i) no cover + no PAM (control), (ii) cover + no PAM, (iii) cover + granular PAM (GPAM), and (iv) cover + dissolved PAM (DPAM) applied to soil packed in wooden runoff boxes. The GPAM or DPAM (500 mg L) was surface-applied at a rate of 30 kg ha 1 d before rainfall simulation. Rainfall was applied at 83 mm h for 50 min and then repeated for another 20 min after a 30-min rest period. Runoff samples were analyzed for volume, turbidity in nephelometric turbidity units (NTU), total suspended solids (TSS), sediment particle size distribution, and PAM concentration. The cover alone reduced turbidity and TSS in runoff by >60% compared with the control (2315 NTU, 2777 mg TSS L). The PAM further reduced turbidity and TSS by >30% regardless of the application method. The median particle diameter of eroded sediments for PAM treatments was seven to nine times that of the control (12.4 ?m). Loss of applied PAM in the runoff water (not sediment) was 19% for the GPAM treatment but only 2% for the DPAM treatment. Both GPAM and DPAM were effective at improving groundcover performance, but DPAM resulted in much less PAM loss. PMID:25602214

Kang, Jihoon; Amoozegar, Aziz; Heitman, Joshua L; McLaughlin, Richard A

2014-11-01

53

Remediation on off-gas system deposits in a radioactive waste glass melter  

SciTech Connect

Since the early 1980's, research glass melters have been used at the Savannah River Laboratory (SRL) to develop the reference vitrification process for immobilization of high level radioactive waste. One of the operating concerns for these melters has been the pluggage of the off-gas system with solid deposits. Samples of these deposits were analyzed to be mixture of alkali-rich chlorides, sulfates, borates, and fluorides with entrained Fe{sub 2}O{sub 3} spinel, and frit particles. The spatial distribution of these deposits throughout the off-gas system indicates that they form by vapor-phase transport and subsequently condensation. Condensation of the alkali-rich phases cements entrained particulates causing the off-gas line to plug. It is concluded that off-gas system pluggage can be effectively controlled by maintaining the off-gas velocity above 16 m/s, while maintaining the off-gas temperature as high as practical below the glass softening point. This paper summarizes the results of chemical and physical analyses of off-gas deposit samples from various melters at SRL. Recent design changes made to the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) to alleviate the pluggage problem are also discussed.

Jantzen, C.M.; Choi, A.S.; Randall, C.T.

1991-01-01

54

Effect of soil erosion on dissolved organic carbon redistribution in subtropical red soil under rainfall simulation  

NASA Astrophysics Data System (ADS)

Water erosion governs soil carbon reserves and distribution across the watershed or ecosystem. The dynamics of dissolved organic carbon (DOC) under water erosion in red agricultural soil is not clear. To determine the effect of tillage management and water erosion on vertical and lateral transportation of soil organic carbon (SOC) and DOC production under distinct rainfall intensities in the hilly red soil region of southern China, a chisel tillage plot with low rainfall intensity (CT-L) and two no-tillage plots with high (NT-H) and low rainfall intensity (NT-L) studies were conducted. Soil samples were collected from 0-5, 5-10, 10-20, and 20-40 cm soil layers from triplicate soil blocks pre- and post-rainfall for determining concentration of SOC and DOC. Runoff samples were collected at every 6 min for determining concentration of DOC and sediments during rainfall simulations on runoff plots (2 m × 5 m) with various intensities. No fertilizer was applied in any plots. Results clearly show that runoff volumes, sediments and SOC entrained with sediment, and laterally mobilized DOC were significantly larger on NT-H compared to other plots, coinciding with changes in rainfall intensity; and the extent of roughness of the plot surface (CT vs. NT) was the variation in runoff DOC concentration. During the simulated rainfall events, DOC exports average 0.76, 0.64, and 0.27 g C m- 2 h- 1; SOC exports average 3.52, 1.08, and 0.07 g m- 2 h- 1 in the NT-H, NT-L, and CT-L soils, respectively. The maximum export of DOC was obtained under a high intensity rainfall plot, which lagged behind maximum runoff volumes, sediments, and SOC losses with sediment. Export of DOC was proportional to SOC content of soil loss. The least DOC losses in surface runoff and SOC losses with sediment were observed in CT-L plots. Vertical DOC mobilization achieved its maximum with low intensity rainfall under CT treatment. The DOC did not accumulate at the soil surface and was distributed mainly in the second and third soil horizons. The distribution of DOC content down the soil profile increased compared to pre-rainfall, except for subplots E at NT-H and NT-L. Results indicate that rainfall significantly increased DOC content in experimental plots. The SOC content of sediment leaving the erosion zone was significantly correlated with overland flow volume and soil loss. These observations lead to the conclusion that soil erosion is an important factor controlling the export of dissolved organic carbon.

Ma, Wenming; Li, Zhongwu; Ding, Keyi; Huang, Jinquan; Nie, Xiaodong; Zeng, Guangming; Wang, Shuguang; Liu, Guiping

2014-12-01

55

Development of off-gas emission kinetics for stored wood pellets.  

PubMed

A lumped three-reaction kinetic model for off-gas emissions of stored wood pellets in sealed containers has been developed accounting for the formation of CO and CO(2) and the depletion of O(2). Off-gas emission data at different conditions were used to extract kinetic model parameters by numerically fitting the proposed model equations. The fitted kinetic model parameters for different cases showed consistency with one another. With properly estimated model parameters, the current kinetic model can be used to predict off-gas emissions, oxygen depletion, and the buildup of toxic air pollutants in wood pellet storage containers/vessels. PMID:22826538

Fan, Chuigang; Bi, Xiaotao T

2013-01-01

56

Effect of dissolved oxygen content on stress corrosion cracking of a cold worked 316L stainless steel in simulated pressurized water reactor primary water environment  

NASA Astrophysics Data System (ADS)

Stress corrosion crack growth tests of a cold worked nuclear grade 316L stainless steel were conducted in simulated pressurized water reactor (PWR) primary water environment containing various dissolved oxygen (DO) contents but no dissolved hydrogen. The crack growth rate (CGR) increased with increasing DO content in the simulated PWR primary water. The fracture surface exhibited typical intergranular stress corrosion cracking (IGSCC) characteristics.

Zhang, Litao; Wang, Jianqiu

2014-03-01

57

Simulation of Temperature, Nutrients, Biochemical Oxygen Demand, and Dissolved Oxygen in the Catawba River, South Carolina, 1996-97  

USGS Publications Warehouse

Time-series plots of dissolved-oxygen concentrations were determined for various simulated hydrologic and point-source loading conditions along a free-flowing section of the Catawba River from Lake Wylie Dam to the headwaters of Fishing Creek Reservoir in South Carolina. The U.S. Geological Survey one-dimensional dynamic-flow model, BRANCH, was used to simulate hydrodynamic data for the Branched Lagrangian Transport Model. Waterquality data were used to calibrate the Branched Lagrangian Transport Model and included concentrations of nutrients, chlorophyll a, and biochemical oxygen demand in water samples collected during two synoptic sampling surveys at 10 sites along the main stem of the Catawba River and at 3 tributaries; and continuous water temperature and dissolved-oxygen concentrations measured at 5 locations along the main stem of the Catawba River. A sensitivity analysis of the simulated dissolved-oxygen concentrations to model coefficients and data inputs indicated that the simulated dissolved-oxygen concentrations were most sensitive to watertemperature boundary data due to the effect of temperature on reaction kinetics and the solubility of dissolved oxygen. Of the model coefficients, the simulated dissolved-oxygen concentration was most sensitive to the biological oxidation rate of nitrite to nitrate. To demonstrate the utility of the Branched Lagrangian Transport Model for the Catawba River, the model was used to simulate several water-quality scenarios to evaluate the effect on the 24-hour mean dissolved-oxygen concentrations at selected sites for August 24, 1996, as simulated during the model calibration period of August 23 27, 1996. The first scenario included three loading conditions of the major effluent discharges along the main stem of the Catawba River (1) current load (as sampled in August 1996); (2) no load (all point-source loads were removed from the main stem of the Catawba River; loads from the main tributaries were not removed); and (3) fully loaded (in accordance with South Carolina Department of Health and Environmental Control National Discharge Elimination System permits). Results indicate that the 24-hour mean and minimum dissolved-oxygen concentrations for August 24, 1996, changed from the no-load condition within a range of - 0.33 to 0.02 milligram per liter and - 0.48 to 0.00 milligram per liter, respectively. Fully permitted loading conditions changed the 24-hour mean and minimum dissolved-oxygen concentrations from - 0.88 to 0.04 milligram per liter and - 1.04 to 0.00 milligram per liter, respectively. A second scenario included the addition of a point-source discharge of 25 million gallons per day to the August 1996 calibration conditions. The discharge was added at S.C. Highway 5 or at a location near Culp Island (about 4 miles downstream from S.C. Highway 5) and had no significant effect on the daily mean and minimum dissolved-oxygen concentration. A third scenario evaluated the phosphorus loading into Fishing Creek Reservoir; four loading conditions of phosphorus into Catawba River were simulated. The four conditions included fully permitted and actual loading conditions, removal of all point sources from the Catawba River, and removal of all point and nonpoint sources from Sugar Creek. Removing the point-source inputs on the Catawba River and the point and nonpoint sources in Sugar Creek reduced the organic phosphorus and orthophosphate loadings to Fishing Creek Reservoir by 78 and 85 percent, respectively.

Feaster, Toby D.; Conrads, Paul A.; Guimaraes, Wladmir B.; Sanders, Curtis L., Jr.; Bales, Jerad D.

2003-01-01

58

Anode shroud for off-gas capture and removal from electrolytic oxide reduction system  

DOEpatents

An electrolytic oxide reduction system according to a non-limiting embodiment of the present invention may include a plurality of anode assemblies and an anode shroud for each of the anode assemblies. The anode shroud may be used to dilute, cool, and/or remove off-gas from the electrolytic oxide reduction system. The anode shroud may include a body portion having a tapered upper section that includes an apex. The body portion may have an inner wall that defines an off-gas collection cavity. A chimney structure may extend from the apex of the upper section and be connected to the off-gas collection cavity of the body portion. The chimney structure may include an inner tube within an outer tube. Accordingly, a sweep gas/cooling gas may be supplied down the annular space between the inner and outer tubes, while the off-gas may be removed through an exit path defined by the inner tube.

Bailey, James L.; Barnes, Laurel A.; Wiedmeyer, Stanley G.; Williamson, Mark A.; Willit, James L.

2014-07-08

59

Defining Dissolving  

NSDL National Science Digital Library

In this introductory activity, learners discover that sugar and food coloring dissolve in water but neither dissolves in oil. Based on their observations, learners can conclude that both solids and liquids can dissolve, but they don't necessarily dissolve in all liquids. Through this activity, learners will refine their definition of dissolve.

Kessler, James H.; Galvan, Patricia M.

2007-01-01

60

Development And Initial Testing Of Off-Gas Recycle Liquid From The WTP Low Activity Waste Vitrification Process - 14333  

SciTech Connect

The Waste Treatment and Immobilization Plant (WTP) process flow was designed to pre-treat feed from the Hanford tank farms, separate it into a High Level Waste (HLW) and Low Activity Waste (LAW) fraction and vitrify each fraction in separate facilities. Vitrification of the waste generates an aqueous condensate stream from the off-gas processes. This stream originates from two off-gas treatment unit operations, the Submerged Bed Scrubber (SBS) and the Wet Electrospray Precipitator (WESP). Currently, the baseline plan for disposition of the stream from the LAW melter is to recycle it to the Pretreatment facility where it gets evaporated and processed into the LAW melter again. If the Pretreatment facility is not available, the baseline disposition pathway is not viable. Additionally, some components in the stream are volatile at melter temperatures, thereby accumulating to high concentrations in the scrubbed stream. It would be highly beneficial to divert this stream to an alternate disposition path to alleviate the close-coupled operation of the LAW vitrification and Pretreatment facilities, and to improve long-term throughput and efficiency of the WTP system. In order to determine an alternate disposition path for the LAW SBS/WESP Recycle stream, a range of options are being studied. A simulant of the LAW Off-Gas Condensate was developed, based on the projected composition of this stream, and comparison with pilot-scale testing. The primary radionuclide that vaporizes and accumulates in the stream is Tc-99, but small amounts of several other radionuclides are also projected to be present in this stream. The processes being investigated for managing this stream includes evaporation and radionuclide removal via precipitation and adsorption. During evaporation, it is of interest to investigate the formation of insoluble solids to avoid scaling and plugging of equipment. Key parameters for radionuclide removal include identifying effective precipitation or ion adsorption chemicals, solid-liquid separation methods, and achievable decontamination factors. Results of the radionuclide removal testing indicate that the radionuclides, including Tc-99, can be removed with inorganic sorbents and precipitating agents. Evaporation test results indicate that the simulant can be evaporated to fairly high concentration prior to formation of appreciable solids, but corrosion has not yet been examined.

McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.; Taylor-Pashow, Kathryn M.; Adamson, Duane J.; Crawford, Charles L.; Morse, Megan M.

2014-01-07

61

HOTSED: a discrete element model for simulating hydrodynamic conditions and adsorbed and dissolved radioisotope concentrations in estuaries  

SciTech Connect

A model has been developed to study the feasibility of simulating one-dimensional transport of radioisotope-tagged sediment in tidal-dominated estuaries. A preliminary one-dimensional model for simulating hydrodynamic, thermal, and dissolved radionuclide concentrations in tidal estuaries was merged with an improved version of the SEDTRN model, a multi-sediment-size class model of bedload and suspended sediment transport. The improved SEDTRN model, which employs a velocity-based rather than an energy-based sediment transport rate calculation and accounts for nonzero channel bed slope, is given credence by comparing its results in stand-alone form to those obtained using the parent model. Results of the latter model have been shown to compare favorably to field measurements. The combined preliminary model is called HOTSED. Details of model modifications, the addition of printer plot output capability, and a discussion of input and output structures are included. The HOTSED model is applied to the Hudson River under tidal-transient conditions and the transport ''tagged'' or radioisotope-bearing sediment is simulated. The code is designed specifically for applications with dominant tidal cycling. It requires, for a 76-element channel system, 270 thousand bytes of storage and, for a simulation of 25 hours, has an execution time of approximately five minutes on the IBM System 360/91 computer.

Fields, D.E.; Hetrick, D.M.

1978-12-01

62

Effects of Headspace and Oxygen Level on Off-gas Emissions from Wood Pellets in Storage  

SciTech Connect

Few papers have been published in the open literature on the emissions from biomass fuels, including wood pellets, during the storage and transportation and their potential health impacts. The purpose of this study is to provide data on the concentrations, emission factors, and emission rate factors of CO2, CO, and CH4 from wood pellets stored with different headspace to container volume ratios with different initial oxygen levels, in order to develop methods to reduce the toxic off-gas emissions and accumulation in storage spaces. Metal containers (45 l, 305 mm diameter by 610 mm long) were used to study the effect of headspace and oxygen levels on the off-gas emissions from wood pellets. Concentrations of CO2, CO, and CH4 in the headspace were measured using a gas chromatograph as a function of storage time. The results showed that the ratio of the headspace ratios and initial oxygen levels in the storage space significantly affected the off-gas emissions from wood pellets stored in a sealed container. Higher peak emission factors and higher emission rates are associated with higher headspace ratios. Lower emissions of CO2 and CO were generated at room temperature under lower oxygen levels, whereas CH4 emission is insensitive to the oxygen level. Replacing oxygen with inert gases in the storage space is thus a potentially effective method to reduce the biomass degradation and toxic off-gas emissions. The proper ventilation of the storage space can also be used to maintain a high oxygen level and low concentrations of toxic off-gassing compounds in the storage space, which is especially useful during the loading and unloading operations to control the hazards associated with the storage and transportation of wood pellets.

Sokhansanj, Shahabaddine [ORNL; Kuang, Xingya [University of British Columbia, Vancouver; Shankar, T.S. [University of British Columbia, Vancouver; Lim, C. Jim [University of British Columbia, Vancouver; Bi, X.T. [University of British Columbia, Vancouver; Melin, Staffan [University of British Columbia, Vancouver

2009-10-01

63

Recovery Act: Molecular Simulation of Dissolved Inorganic Carbons for Underground Brine CO2 Sequestration  

SciTech Connect

To further our understanding and develop the method for measuring the DICs under geological sequestration conditions, we studied the infrared spectra of DICs under high pressure and temperature conditions. First principles simulations of DICs in brine conditions were performed using a highly optimized ReaxFF-DIC forcefield. The thermodynamics stability of each species were determined using the 2PT method, and shown to be consistent with the Reax simulations. More importantly, we have presented the IR spectra of DIC in real brine conditions as a function of temperature and pressure. At near earth conditions, we find a breaking of the O-C-O bending modes into asymmetric and symmetric modes, separated by 100cm{sup -1} at 400K and 5 GPa. These results can now be used to calibrate FTIR laser measurements.

Goddard, William

2012-11-30

64

Mechanical biological treatment of organic fraction of MSW affected dissolved organic matter evolution in simulated landfill.  

PubMed

The aim of this paper was to study the evolution of DOM during 1 year of observation in simulated landfill, of aerobically treated vs. untreated organic fraction of MSW. Results obtained indicated that aerobic treatment of organic fraction of MSW permitted getting good biological stability so that, successive incubation under anaerobic condition in landfill allowed biological process to continue getting a strong reduction of soluble organic matter (DOM) that showed, also, an aromatic character. Incubation of untreated waste gave similar trend, but in this case DOM decreasing was only apparent as inhibition of biological process in landfill did not allow replacing degraded/leached DOM with new material coming from hydrolysis of fresh OM. PMID:23743423

Salati, Silvia; Scaglia, Barbara; di Gregorio, Alessandra; Carrera, Alberto; Adani, Fabrizio

2013-08-01

65

Demonstration of a steam jet scrubber off-gas system and the burner efficiency of a mixed waste incinerator facility  

Microsoft Academic Search

A full-scale incinerator system, the Consolidated Incineration Facility (CIF), is being designed to process solid and liquid low-level radioactive, mixed, and RCRA hazardous waste. This facility will consist of a rotary kiln, secondary combustion chamber (SCC), and a wet off-gas system. A prototype steam jet scrubber off-gas system has been tested to verify design assumptions for the CIF. The scrubber

H. Holmes; D. L. Charlesworth

1988-01-01

66

Risk ranking of bioaccessible metals from fly ash dissolved in simulated lung and gut fluids  

SciTech Connect

Power plant fly ash from two fuels, coal and a mixture of coal and shredded tires were evaluated for trace metal solubility in simulated human lung and gut fluids (SLF and SGF, respectively) to estimate bioaccessibility. The proportion of bioaccessible to total metal ranged from zero (V) to 80% (Zn) for coal-derived ash in SLF and from 2 (Th) to 100% (Cu) for tire-derived fly ash in SGF. The tire-derived ash contained much more Zn. However, Zn ranked only 5th of the various toxic metals in SGF compared with international regulations for ingestion. On the basis of total concentrations, the metals closest to exceeding limits based on international regulations for inhalation were Cr, Pb, and Al. On dissolution in SLF, the most limiting metals were Pb, Cu, and Zn. For metals exposed to SGF there was no relative change in the top metal, Al, before and after dissolution but the second-ranked metal shifted from Pb to Ni. In most cases only a proportion of the total metal concentrations in either fly ash was soluble, and hence bioaccessible, in either biofluid. When considering the regulatory limits for inhalation of particulates, none of the metal concentrations measured were as hazardous as the fly ash particulates themselves. However, on the basis of the international ingestion regulations for Al, the maximum mass of fly ash that could be ingested is only 1 mg per day (10 mg based on bioaccessibility). It is possible that such a small mass could be consumed by exposed individuals or groups. 39 refs., 1 fig., 3 tabs.

John Twining; Peter McGlinn; Elaine Loi; Kath Smith; Reto Giere [Australian Nuclear Science and Technology Organisation, Menai, NSW (Australia)

2005-10-01

67

FY-12 INL KR CAPTURE ACTIVITIES SUPPORTING THE OFF-GAS SIGMA TEAM  

SciTech Connect

Tasks performed this year by INL Kr capture off-gas team members can be segregated into three separate task sub-sections which include: 1) The development and testing of a new engineered form sorbent, 2) An initial NDA gamma scan effort performed on the drum containing the Legacy Kr-85 sample materials, and 3) Collaborative research efforts with PNNL involving the testing of the Ni-DOBDC MOF and an initial attempt to make powdered chalcogel material into an engineered form using our binding process. This document describes the routes to success for the three task sub-sections.

Troy G. Garn; Mitchell R. Greenhalgh; Jack D Law

2012-08-01

68

The Use of Metal Hydrides for Hydrogen Recovery from Industrial Off-Gas Streams  

E-print Network

the development of a concept to utilize metal hydrides to recover hydrogen from industrial off-gas streams. The activity included a survey of industrial waste streams a selection of metallic hydriding alloys, testing of alloys for poison tolerance and life..., a conceptual design and an economic analysis. Of the nine alloys tested, only the lanthanium-nickel-aluminum type proved to have the durability to be used in this concept. A' fixed bed reactor system, using LaNi?. 2sAlo.7s in pelletized form...

Rebello, W. J.; Guerrero, P. S.; Goodell, P. D.

69

Critique of Hanford Waste Vitrification Plant off-gas sampling requirements  

SciTech Connect

Off-gas sampling and monitoring activities needed to support operations safety, process control, waste form qualification, and environmental protection requirements of the Hanford Waste Vitrification Plant (HWVP) have been evaluated. The locations of necessary sampling sites have been identified on the basis of plant requirements, and the applicability of Defense Waste Processing Facility (DWPF) reference sampling equipment to these HWVP requirements has been assessed for all sampling sites. Equipment deficiencies, if present, have been described and the bases for modifications and/or alternative approaches have been developed.

Goles, R.W.

1996-03-01

70

CHARACTERIZATION OF DWPF MELTER OFF-GAS QUENCHER AND STEAM ATOMIZED SCRUBBER DEPOSIT SAMPLES  

SciTech Connect

This report summarizes the results from the characterization of deposits from the inlets of the primary off-gas Quencher and Steam Atomized Scrubber (SAS) in the Defense Waste Processing Facility (DWPF), as requested by a technical assistance request. DWPF requested elemental analysis and compound identification to help determine the potential causes for the substance formation. This information will be fed into Savannah River National Laboratory modeling programs to determine if there is a way to decrease the formation of the deposits. The general approach to the characterization of these samples included x-ray diffraction (XRD), scanning electron microscopy (SEM), and chemical analysis. The following conclusions are drawn from the analytical results found in this report: (1) The deposits are not high level waste glass from the DWPF melt pool based on comparison of the compositions of deposits to the composition of a sample of glass taken from the pour stream of the melter during processing of Sludge Batch 3. (2) Chemical composition results suggest that the deposits are probably a combination of sludge and frit particles entrained in the off-gas. (3) Gamma emitters, such as Co-60, Cs-137, Eu-154, Am-241, and Am-243 were detected in both the Quencher and SAS samples with Cs-137 having the highest concentration of the gamma emitters. (4) No evidence existed for accumulation of fissile material (U-233, U-235, and Pu-239) relative to Fe in either deposit. (5) XRD results indicated both samples were primarily amorphorous and contained some crystals of the iron oxides, hematite and magnetite (Fe{sub 2}O{sub 3} and Fe(Fe{sub 2}O{sub 4})), along with sodium nitrate (NaNO{sub 3}). The other main crystalline compound in the SAS deposit was mercurous chloride. The main crystalline compound in the Quencher deposit was a uranium oxide compound. These are all sludge components. (6) SEM analysis of the Quencher deposit revealed crystalline uranium compounds within the sample. SEM analysis of the SAS sample could not be performed due to the presence of a significant concentration of Hg in the sample. (7) Essentially all the Na and the S in the off-gas samples were soluble in water. (8) The main soluble anion was NO{sub 3}{sup -} with SO{sub 4}{sup 2-} being second. (9) In contrast to the results for the off-gas deposits analyzed in 2003, soluble compounds of fluoride and chloride were detected; however, their concentrations in the Quencher and SAS deposits were less than one weight percent. (10) The results suggest that the S is primarily in the deposits as the sulfate anion.

Zeigler, K; Ned Bibler, N

2007-06-06

71

Simulated climate change impact on summer dissolved organic carbon release from peat and surface vegetation: Implications for drinking water treatment.  

PubMed

Uncertainty regarding changes in dissolved organic carbon (DOC) quantity and quality has created interest in managing peatlands for their ecosystem services such as drinking water provision. The evidence base for such interventions is, however, sometimes contradictory. We performed a laboratory climate manipulation using a factorial design on two dominant peatland vegetation types (Calluna vulgaris and Sphagnum Spp.) and a peat soil collected from a drinking water catchment in Exmoor National Park, UK. Temperature and rainfall were set to represent baseline and future conditions under the UKCP09 2080s high emissions scenario for July and August. DOC leachate then underwent standard water treatment of coagulation/flocculation before chlorination. C. vulgaris leached more DOC than Sphagnum Spp. (7.17 versus 3.00 mg g(-1)) with higher specific ultraviolet (SUVA) values and a greater sensitivity to climate, leaching more DOC under simulated future conditions. The peat soil leached less DOC (0.37 mg g(-1)) than the vegetation and was less sensitive to climate. Differences in coagulation removal efficiency between the DOC sources appears to be driven by relative solubilisation of protein-like DOC, observed through the fluorescence peak C/T. Post-coagulation only differences between vegetation types were detected for the regulated disinfection by-products (DBPs), suggesting climate change influence at this scale can be removed via coagulation. Our results suggest current biodiversity restoration programmes to encourage Sphagnum Spp. will result in lower DOC concentrations and SUVA values, particularly with warmer and drier summers. PMID:25262551

Ritson, Jonathan P; Bell, Michael; Graham, Nigel J D; Templeton, Michael R; Brazier, Richard E; Verhoef, Anne; Freeman, Chris; Clark, Joanna M

2014-12-15

72

Cr(VI) Generation During Flaring of CO-Rich Off-Gas from Closed Ferrochromium Submerged Arc Furnaces  

NASA Astrophysics Data System (ADS)

Ferrochromium (FeCr) is the only source of new Cr units used in stainless steel production, which is a vital modern day alloy, making FeCr equally important. Small amounts of Cr(VI) are unintentionally formed during several FeCr production steps. One such production step is the flaring of CO-rich off-gas from closed submerged arc furnaces (SAF), for which Cr(VI) formation is currently not quantified. In this study, the influence of flaring temperature, size of the particles passing through the flare, and retention time within the flame were investigated by simulating the process on laboratory scale with a vertical tube furnace. Multiple linear regression (MLR) analysis was conducted on the overall dataset obtained, which indicated that retention time had the greatest impact on pct Cr(VI) conversion, followed by particle size and temperature. The MLR analysis also yielded an optimum mathematical solution, which could be used to determine the overall impact of these parameters on pct Cr(VI) conversion. This equation was used to determine realistic and unrealistic worst-case scenario pct Cr(VI) conversions for actual FeCr SAFs, which yielded 2.7 × 10-2 and 3.5 × 10-1 pct, respectively. These values are significantly lower than the current unsubstantiated pct Cr(VI) conversion used in environmental impact assessments for FeCr smelters, i.e., 0.8 to 1 pct.

du Preez, S. P.; Beukes, J. P.; van Zyl, P. G.

2014-11-01

73

ASSESSMENT OF THE IMPACT OF TOA PARTITIONING ON DWPF MELTER OFF-GAS FLAMMABILITY  

SciTech Connect

An assessment has been made to evaluate the impact on the DWPF melter off-gas flammability of increasing the amount of TOA in the current solvent used in the Modular Caustic-Side Solvent Extraction Process Unit (MCU) process. The results of this study showed that the concentrations of nonvolatile carbon of the current solvent limit (150 ppm) in the Slurry Mix Evaporator (SME) product would be about 7% higher and the nonvolatile hydrogen would be 2% higher than the actual current solvent (126 ppm) with an addition of up to 3 ppm of TOA when the concentration of Isopar? L in the effluent transfer is controlled below 87 ppm and the volume of MCU effluent transfer to DWPF is limited to 15,000 gallons per Sludge Receipt and Adjustment Tank (SRAT)/SME cycle. Therefore, the DWPF melter off-gas flammability assessment is conservative for up to an additional 3 ppm of TOA in the effluent based on these assumptions. This report documents the calculations performed to reach this conclusion.

Daniel, G.

2013-06-18

74

Selection among aqueous and off-gas treatment technologies for synthetic organic chemicals  

SciTech Connect

A methodology for selecting the least-cost treatment technology for waters contaminated by organic wastes was developed using performance and cost models. This methodology simplifies the selection of the least expensive treatment process(es) for a given set of conditions. Two aqueous-phase treatment options were considered: air stripping and liquid-phase adsorption (granular activated carbon). When the off-gases from air stripping must be treated, four off-gas treatment options were considered: gas-phase adsorption (with both on- and off-site regeneration of the granular activated carbon), thermal incineration, and catalytic oxidation. Methodologies were developed for rapidly selecting the least-cost off-gas treatment option [for volatile organic compound (VOC) sources such as an air stripping tower], for selecting the least-cost overall (liquid and gas phase treatment) system, and for selecting the least-cost overall system for a multicomponent mixture. The comparison methodology is based on physical parameters of the target chemical: Henry`s constant and the solute distribution parameter. The results are a set of diagrams and heuristics for rapid identification of cases for which one treatment option is significantly less expensive than the other.

Dvorak, B.I. [Univ. of Nebraska, Lincoln, NE (United States). Dept. of Civil Engineering; Herbeck, C.J. [County Sanitation District of Los Angeles County, Whittier, CA (United States); Meurer, C.P. [Bee County Coll., Beeville, TX (United States); Lawler, D.F.; Speitel, G.E. Jr. [Univ. of Texas, Austin, TX (United States). Dept. of Civil Engineering

1996-07-01

75

Modelling of dissolved oxygen in the Danube River using artificial neural networks and Monte Carlo Simulation uncertainty analysis  

NASA Astrophysics Data System (ADS)

This paper describes the training, validation, testing and uncertainty analysis of general regression neural network (GRNN) models for the forecasting of dissolved oxygen (DO) in the Danube River. The main objectives of this work were to determine the optimum data normalization and input selection techniques, the determination of the relative importance of uncertainty in different input variables, as well as the uncertainty analysis of model results using the Monte Carlo Simulation (MCS) technique. Min-max, median, z-score, sigmoid and tanh were validated as normalization techniques, whilst the variance inflation factor, correlation analysis and genetic algorithm were tested as input selection techniques. As inputs, the GRNN models used 19 water quality variables, measured in the river water each month at 17 different sites over a period of 9 years. The best results were obtained using min-max normalized data and the input selection based on the correlation between DO and dependent variables, which provided the most accurate GRNN model, and in combination the smallest number of inputs: Temperature, pH, HCO3-, SO42-, NO3-N, Hardness, Na, Cl-, Conductivity and Alkalinity. The results show that the correlation coefficient between measured and predicted DO values is 0.85. The inputs with the greatest effect on the GRNN model (arranged in descending order) were T, pH, HCO3-, SO42- and NO3-N. Of all inputs, variability of temperature had the greatest influence on the variability of DO content in river body, with the DO decreasing at a rate similar to the theoretical DO decreasing rate relating to temperature. The uncertainty analysis of the model results demonstrate that the GRNN can effectively forecast the DO content, since the distribution of model results are very similar to the corresponding distribution of real data.

Antanasijevi?, Davor; Pocajt, Viktor; Peri?-Gruji?, Aleksandra; Risti?, Mirjana

2014-11-01

76

MELTER OFF-GAS FLAMMABILITY ASSESSMENT FOR DWPF ALTERNATE REDUCTANT FLOWSHEET OPTIONS  

SciTech Connect

Glycolic acid and sugar are being considered as potential candidates to substitute for much of the formic acid currently being added to the Defense Waste Processing Facility (DWPF) melter feed as a reductant. A series of small-scale melter tests were conducted at the Vitreous State Laboratory (VSL) in January 2011 to collect necessary data for the assessment of the impact of these alternate reductants on the melter off-gas flammability. The DM10 melter with a 0.021 m{sup 2} melt surface area was run with three different feeds which were prepared at SRNL based on; (1) the baseline formic/nitric acid flowsheet, (2) glycolic/formic/nitric acid flowsheet, and (3) sugar/formic/nitric acid flowsheet - these feeds will be called the baseline, glycolic, and sugar flowsheet feeds, respectively, hereafter. The actual addition of sugar to the sugar flowsheet feed was made at VSL before it was fed to the melter. For each feed, the DM10 was run under both bubbled (with argon) and non-bubbled conditions at varying melter vapor space temperatures. The goal was to lower its vapor space temperature from nominal 500 C to less than 300 C at 50 C increments and maintain steady state at each temperature at least for one hour, preferentially for two hours, while collecting off-gas data including CO, CO{sub 2}, and H{sub 2} concentrations. Just a few hours into the first test with the baseline feed, it was discovered that the DM10 vapor space temperature would not readily fall below 350 C simply by ramping up the feed rate as the test plan called for. To overcome this, ambient air was introduced directly into the vapor space through a dilution air damper in addition to the natural air inleakage occurring at the operating melter pressure of -1 inch H{sub 2}O. A detailed description of the DM10 run along with all the data taken is given in the report issued by VSL. The SRNL personnel have analyzed the DM10 data and identified 25 steady state periods lasting from 32 to 92 minutes for all six melter runs (bubbled and non-bubbled runs for each of the three feeds). The steady state selection was made by limiting the standard deviation of the average vapor space temperature readings from two bare thermocouples (TT-03 and TT-05) to less than 5 C in most cases at a constant feed rate. The steady state data thus selected were mass and heat balanced and the off-gas data were re-baselined to assess the flammability potential of each feed under the DWPF melter operating conditions. Efforts were made to extract as much information out of the data as possible necessary to extend the applicability of the existing baseline cold cap and off-gas combustion models to the glycolic and sugar flowsheet feeds. This report details the outcome of these activities.

Choi, A.

2011-07-08

77

Simulation of carbon cycling, including dissolved organic carbon transport, in forest soil locally enriched with 14C  

SciTech Connect

The DyDOC model was used to simulate organic matter decomposition and dissolved organic matter (DOM) transport in deciduous forest soils at the Oak Ridge Reservation (ORR) in Tennessee, USA. The model application relied on extensive data from the Enriched Background Isotope study (EBIS), which made use of a local atmospheric enrichment of radiocarbon to establish a large-scale manipulation experiment with different inputs of 14C from both above-ground and below-ground litter. The aim of the modelling was to test if the processes that constitute DyDOC can explain the available observations for C dynamics in the ORR. More specifically we used the model to investigate the origins of DOM, its dynamics within the soil profile, and how it contributes to the formation of stable carbon in the mineral soil. The model was first configured to account for water transport through the soil, then observed pools and fluxes of carbon and 14C data were used to fit the model parameters that describe the rates of the metabolic transformations. The soils were described by a thin O-horizon, a 15 cm thick A-horizon and a 45-cm thick B-horizon. Within the thin O-horizon, litter is either converted to CO2 or to a second organic matter pool, which is converted to CO2 at a different rate, both pools being able to produce DOM. The best model performance was obtained by assuming that adsorption of downwardly transported DOM in horizons A and B, followed by further conversion to stable forms, produces mineral-associated carbon pools, while root litter is the source of non-mineral associated carbon, with relatively short residence times. In the simulated steady-state, most carbon entering the O-horizon leaves quickly as CO2, but 17% (46 gC m-2 a-1) is lost as DOC in percolating water. The DOM comprises mainly hydrophobic material, 40% being derived from litter and 60% from older organic matter pools (residence time ~ 10 years). Most of the DOM is converted to CO2 in the mineral soil, over timescales of 1 to 15 years, but there is a conversion of 11 gC m-2 a-1 into stabilised forms that turnover on a timescale of 100-200 years. The small flux of DOC leaving the B-horizon (1.2 gC m-2 a-1) is mainly hydrophilic material, some of which can penetrate to depth quickly after formation. Considering the soil profile as single entity, the simulated soil carbon pools at ORR have mean residence times in the range 1-200 years, most of the carbon being in the slow pools, most of the turnover associated with the faster ones.

Tipping, Ed [Lancaster Environment Center; Chamberlain, Paul M. [Lancaster Environment Center; Froberg, Mats J. [Sveriges Lantbruksuniversitet; Hanson, Paul J [ORNL; Jardine, Philip M [ORNL

2012-01-01

78

Comparison of a fuel-driven and steam-driven ejector in solid oxide fuel cell systems with anode off-gas recirculation: Part-load behavior  

NASA Astrophysics Data System (ADS)

This paper investigates the use of ejectors for recirculating anode off-gas in an SOFC system, focusing on the part-load capability of two different systems. In the first system, recirculation was enabled by a fuel-driven ejector. The part-load threshold of this system was determined by carbon formation and was 77.8% assuming a fuel utilization of 70% and suitable ejector geometry. The second system was based on a steam-driven ejector. The simulation results for this system showed an improved part-load capability of 37.8% as well as a slightly improved electrical efficiency. Here, the minimal part load was determined by the condensation temperature of the condenser used in the system.

Engelbracht, Maximilian; Peters, Roland; Blum, Ludger; Stolten, Detlef

2015-03-01

79

Final Report on Testing of Off-Gas Treatment Technologies for Abatement of Atmospheric Emissions of Chlorinated Volatile Organic Compounds  

SciTech Connect

The purpose of this report is to summarize the results of the program for off-gas treatment of atmospheric emissions of chlorinated volatile organic compounds (CVOCs), in particular trichloroethylene (TCE) and perchloroethylene (PCE). This program was funded through the Department of Energy Office of Technology Development`s VOC`s in Non-Arid Soils Integrated Demonstration (VNID). The off-gas treatment program was initiated after testing of in-situ air stripping with horizontal wells was completed (Looney et al., 1991). That successful test expectedly produced atmospheric emissions of CVOCs that were unabated. It was decided after that test that an off-gas treatment is an integral portion of remediation of CVOC contamination in groundwater and soil but also because several technologies were being developed across the United States to mitigate CVOC emissions. A single platform for testing off-gas treatment technologies would facilitate cost effective evaluation of the emerging technologies. Another motivation for the program is that many CVOCs will be regulated under the Clean Air Act Amendments of 1990 and are already regulated by many state regulatory programs. Additionally, compounds such as TCE and PCE are pervasive subsurface environmental contaminants, and, as a result, a small improvement in terms of abatement efficiency or cost will significantly reduce CVOC discharges to the environment as well as costs to United States government and industry.

Jarosch, T.R.; Haselow, J.S.; Rossabi, J.; Burdick, S.A.; Raymond, R.; Young, J.E.; Lombard, K.H.

1995-01-23

80

MODELING THE IMPACT OF ELEVATED MERCURY IN DEFENSE WASTE PROCESSING FACILITY MELTER FEED ON THE MELTER OFF-GAS SYSTEM - PRELIMINARY REPORT  

SciTech Connect

The Defense Waste Processing Facility (DWPF) is currently evaluating an alternative Chemical Process Cell (CPC) flowsheet to increase throughput. It includes removal of the steam-stripping step, which would significantly reduce the CPC processing time and lessen the sampling needs. However, its downside would be to send 100% of the mercury that come in with the sludge straight to the melter. For example, the new mercury content in the Sludge Batch 5 (SB5) melter feed is projected to be 25 times higher than that in the SB4 with nominal steam stripping of mercury. This task was initiated to study the impact of the worst-case scenario of zero-mercury-removal in the CPC on the DWPF melter off-gas system. It is stressed that this study is intended to be scoping in nature, so the results presented in this report are preliminary. In order to study the impact of elevated mercury levels in the feed, it is necessary to be able to predict how mercury would speciate in the melter exhaust under varying melter operating conditions. A homogeneous gas-phase oxidation model of mercury by chloride was developed to do just that. The model contains two critical parameters pertaining to the partitioning of chloride among HCl, Cl, Cl{sub 2}, and chloride salts in the melter vapor space. The values for these parameters were determined at two different melter vapor space temperatures by matching the calculated molar ratio of HgCl (or Hg{sub 2}Cl{sub 2}) to HgCl{sub 2} with those measured during the Experimental-Scale Ceramic Melter (ESCM) tests run at the Pacific Northwest National Laboratory (PNNL). The calibrated model was then applied to the SB5 simulant used in the earlier flowsheet study with an assumed mercury stripping efficiency of zero; the molar ratio of Cl-to-Hg in the resulting melter feed was only 0.4, compared to 12 for the ESCM feeds. The results of the model run at the indicated melter vapor space temperature of 650 C (TI4085D) showed that due to excessive shortage of chloride, only 6% of the mercury fed is expected to get oxidized, mostly as HgCl, while the remaining mercury would exist either as elemental mercury vapor (90%) or HgO (4%). Noting that the measured chloride level in the SB5 qualification sample was an order of magnitude lower than that used in the SB5 simulant, the degree of chloride shortage will be even greater. As a result, the projected level of HgCl in the actual SB5 melter exhaust will be even lower than 6% of the total mercury fed, while that of elemental mercury is likely to be greater than 90%. The homogeneous oxidation of mercury in the off-gas was deemed to be of primary importance based on the postulation that mercury and other volatile salts form submicron sized aerosols upon condensation and thus remain largely in the gas stream downstream of the quencher where they can deposit in the off-gas lines, Steam-Atomized Scrubbers (SAS), and High-Efficiency Mist Eliminator (HEME). Formation of these submicron semi-volatile salts in the condensate liquid is considered to be unlikely, so the liquid phase reactions were considered to be less important. However, subsequent oxidation of mercury in the liquid phase in the off-gas system was examined in a simplified model of the off-gas condensate. It was found that the condensate chemistry was consistent with further oxidation of elemental mercury to Hg{sub 2}Cl{sub 2} and conversion of HgO to chlorides. The results were consistent with the available experimental data. It should also be noted that the model predictions presented in this report do not include any physically entrained solids, which typically account for much of the off-gas carryover on a mass basis. The high elemental mercury vapor content predicted at the DWPF Quencher inlet means that physically entrained solids could provide the necessary surface onto which elemental mercury vapor could condense, thereby coating the solids as well as the internal surfaces of the off-gas system with mercury. Clearly, there are many process benefits to be gained by removing the steam-stripping step from the CPC c

Zamecnik, J.; Choi, A.

2009-03-25

81

Calibration and use of an interactive-accounting model to simulate dissolved solids, streamflow, and water-supply operations in the Arkansas River basin, Colorado  

USGS Publications Warehouse

An interactive-accounting model was used to simulate dissolved solids, streamflow, and water supply operations in the Arkansas River basin, Colorado. Model calibration of specific conductance to streamflow relations at three sites enabled computation of dissolved-solids loads throughout the basin. To simulate streamflow only, all water supply operations were incorporated in the regression relations for streamflow. Calibration for 1940-85 resulted in coefficients of determination that ranged from 0.89 to 0.58, and values in excess of 0.80 were determined for 16 of 20 nodes. The model then incorporated 74 water users and 11 reservoirs to simulate the water supply operations for two periods, 1943-74 and 1975-85. For the 1943-74 calibration, coefficients of determination for streamflow ranged from 0.87 to 0.02. Calibration of the water supply operations resulted in coefficients of determination that ranged from 0.87 to negative for simulated irrigation diversions of 37 selected water users. Calibration for 1975-85 was not evaluated statistically, but average values and plots of reservoir contents indicated reasonableness of the simulation. To demonstrate the utility of the model, six specific alternatives were simulated to consider effects of potential enlargement of Pueblo Reservoir. Three general major alternatives were simulated: the 1975-85 calibrated model data, the calibrated model data with an addition of 30 cu ft/sec in Fountain Creek flows, and the calibrated model data plus additional municipal water in storage. These three major alternatives considered the options of reservoir enlargement or no enlargement. A 40,000-acre-foot reservoir enlargement resulted in average increases of 2,500 acre-ft in transmountain diversions, of 800 acre-ft in storage diversions, and of 100 acre-ft in winter-water storage. (USGS)

Burns, A.W.

1989-01-01

82

Numerical Simulations of Bubble Dynamics and Heat Transfer in Pool Boiling---Including the Effects of Conjugate Conduction, Level of Gravity, and Noncondensable Gas Dissolved in the Liquid  

NASA Astrophysics Data System (ADS)

Due to the complex nature of the subprocesses involved in nucleate boiling, it has not been possible to develop comprehensive models or correlations despite decades of accumulated data and analysis. Complications such as the presence of dissolved gas in the liquid further confound attempts at modeling nucleate boiling. Moreover, existing empirical correlations may not be suitable for new applications, especially with regards to varying gravity level. More recently, numerical simulations of the boiling process have proven to be capable of reliably predicting bubble dynamics and associated heat transfer by showing excellent agreement with experimental data. However, most simulations decouple the solid substrate by assuming constant wall temperature. In the present study complete numerical simulations of the boiling process are performed---including conjugate transient conduction in the solid substrate and the effects of dissolved gas in the liquid at different levels of gravity. Finite difference schemes are used to discretize the governing equations in the liquid, vapor, and solid phases. The interface between liquid and vapor phases is tracked by a level set method. An iterative procedure is used at the interface between the solid and fluid phases. Near the three-phase contact line, temperatures in the solid are observed to fluctuate significantly over short periods. The results show good agreement with the data available in the literature. The results also show that waiting and growth periods can be related directly to wall superheat. The functional relationship between waiting period and wall superheat is found to agree well with empirical correlations reported in the literature. For the case of a single bubble in subcooled nucleate boiling, the presence of dissolved gas in the liquid is found to cause noncondensables to accumulate at the top of the bubble where most condensation occurs. This results in reduced local saturation temperature and condensation rates. The numerical predictions show reasonable agreement with the results from experiments performed at microgravity. For nucleate boiling at microgravity the simulations predict a drastic change in vapor removal pattern when compared to Earth normal gravity. The predictions match well with experimental results. However, simulated heat transfer rates were significantly under-predicted.

Aktinol, Eduardo

83

MODELING THE IMPACT OF ELEVATED MERCURY IN DEFENSE WASTE PROCESSING FACILITY MELTER FEED ON THE MELTER OFF-GAS SYSTEM-PRELIMINARY REPORT  

SciTech Connect

The Defense Waste Processing Facility (DWPF) is currently evaluating an alternative Chemical Process Cell (CPC) flowsheet to increase throughput. It includes removal of the steam-stripping step, which would significantly reduce the CPC processing time and lessen the sampling needs. However, its downside would be to send 100% of the mercury that comes in with the sludge straight to the melter. For example, the new mercury content in the Sludge Batch 5 (SB5) melter feed is projected to be 25 times higher than that in the SB4 with nominal steam stripping of mercury. This task was initiated to study the impact of the worst-case scenario of zero-mercury-removal in the CPC on the DWPF melter offgas system. It is stressed that this study is intended to be scoping in nature, so the results presented in this report are preliminary. In order to study the impact of elevated mercury levels in the feed, it is necessary to be able to predict how mercury would speciate in the melter exhaust under varying melter operating conditions. A homogeneous gas-phase oxidation model of mercury by chloride was developed to do just that. The model contains two critical parameters pertaining to the partitioning of chloride among HCl, Cl, Cl{sub 2}, and chloride salts in the melter vapor space. The values for these parameters were determined at two different melter vapor space temperatures by matching the calculated molar ratio of HgCl (or Hg{sub 2}Cl{sub 2}) to HgCl{sub 2} with those measured during the Experimental-Scale Ceramic Melter (ESCM) tests run at the Pacific Northwest National Laboratory (PNNL). The calibrated model was then applied to the SB5 simulant used in the earlier flowsheet study with an assumed mercury stripping efficiency of zero; the molar ratio of Cl-to-Hg in the resulting melter feed was only 0.4, compared to 12 for the ESCM feeds. The results of the model run at the indicated melter vapor space temperature of 650 C (TI4085D) showed that due to excessive shortage of chloride, only 6% of the mercury fed is expected to get oxidized, mostly as HgCl, while the remaining mercury would exist either as elemental mercury vapor (90%) or HgO (4%). Noting that the measured chloride level in the SB5 qualification sample was an order of magnitude lower than that used in the SB5 simulant, the degree of chloride shortage will be even greater. As a result, the projected level of HgCl in the actual SB5 melter exhaust will be even lower than 6% of the total mercury fed, while that of elemental mercury is likely to be greater than 90%. The homogeneous oxidation of mercury in the off-gas was deemed to be of primary importance based on the postulation that mercury and other volatile salts form submicron sized aerosols upon condensation and thus remain largely in the gas stream downstream of the quencher where they can deposit in the off-gas lines, Steam-Atomized Scrubbers (SAS), and High-Efficiency Mist Eliminator (HEME). Formation of these submicron semi-volatile salts in the condensate liquid is considered to be unlikely, so the liquid phase reactions were considered to be less important. However, subsequent oxidation of mercury in the liquid phase in the off-gas system was examined in a simplified model of the off-gas condensate. It was found that the condensate chemistry was consistent with further oxidation of elemental mercury to Hg{sub 2}Cl{sub 2} and conversion of HgO to chlorides. The results were consistent with the available experimental data. It should also be noted that the model predictions presented in this report do not include any physically entrained solids, which typically account for much of the off-gas carryover on a mass basis. The high elemental mercury vapor content predicted at the DWPF Quencher inlet means that physically entrained solids could provide the necessary surface onto which elemental mercury vapor could condense, thereby coating the solids as well as the internal surfaces of the off-gas system with mercury. Clearly, there are many process benefits to be gained by removing the steam-stripping step from the CPC c

Zamecnik, J.; Choi, A.

2010-08-18

84

FLOWSHEET EVALUATION FOR THE DISSOLVING AND NEUTRALIZATION OF SODIUM REACTOR EXPERIMENT USED NUCLEAR FUEL  

SciTech Connect

This report includes the literature review, hydrogen off-gas calculations, and hydrogen generation tests to determine that H-Canyon can safely dissolve the Sodium Reactor Experiment (SRE; thorium fuel), Ford Nuclear Reactor (FNR; aluminum alloy fuel), and Denmark Reactor (DR-3; silicide fuel, aluminum alloy fuel, and aluminum oxide fuel) assemblies in the L-Bundles with respect to the hydrogen levels in the projected peak off-gas rates. This is provided that the number of L-Bundles charged to the dissolver is controlled. Examination of SRE dissolution for potential issues has aided in predicting the optimal batching scenario. The calculations detailed in this report demonstrate that the FNR, SRE, and DR-3 used nuclear fuel (UNF) are bounded by MURR UNF and may be charged using the controls outlined for MURR dissolution in a prior report.

Daniel, W. E.; Hansen, E. K.; Shehee, T. C.

2012-10-30

85

Structure-property relationship of metal-organic frameworks (MOFs) and physisorbed off-gas radionuclides.  

SciTech Connect

We report on the host-guest interactions between metal-organic frameworks (MOFs) with various profiles and highly polarizable molecules (iodine), with emphasis on identifying preferential sorption sites in these systems. Radioactive iodine 129I, along with other volatile radionuclides (3H, 14C, Xe and Kr), represents a relevant component in the off-gas resulted during nuclear fuel reprocessing. Due to its very long half-life, 15.7 x 106 years, and potential health risks in humans, its efficient capture and long-term storage is of great importance. The leading iodine capture technology to date is based on trapping iodine in silver-exchanged mordenite. Our interests are directed towards improving existent capturing technologies, along with developing novel materials and alternative waste forms. Herein we report the first study that systematically monitors iodine loading onto MOFs, an emerging new class of porous solid-state materials. In this context, MOFs are of particular interest as: (i) they serve as ideal high capacity storage media, (ii) they hold potential for the selective adsorption from complex streams, due to their high versatility and tunability. This work highlights studies on both newly developed in our lab, and known highly porous MOFs that all possess distinct characteristics (specific surface area, pore volume, pore size, and dimension of the window access to the pore). The materials were loaded to saturation, where elemental iodine was introduced from solution, as well as from vapor phase. Uptakes in the range of {approx}125-150 wt% I2 sorbed were achieved, indicating that these materials outperform all other solid adsorbents to date in terms of overall capacity. Additionally, the loaded materials can be efficiently encapsulated in stable waste forms, including as low temperature sintering glasses. Ongoing studies are focused on gathering qualitative information with respect to localizing the physisorbed iodine molecules within the frameworks: X-ray single-crystal analyses, in conjunction with high pressure differential pair distribution function (d-PDF) studies aimed to identify preferential sites in the pores, and improve MOFs robustness. Furthermore, durability studies on the iodine loaded MOFs and subsequent waste forms include thermal analyses, SEM/EDS elemental mapping, and leach-durability testing. We anticipate for this in-depth analysis to further aid the design of advanced materials, capable to address major hallmarks: safe capture, stability and durability over extended timeframes.

Nenoff, Tina Maria; Chupas, Peter J. (Argonne National Laboratory); Garino, Terry J.; Rodriguez, Mark Andrew; Chapman, Karena W. (Argonne National Laboratory); Sava, Dorina Florentina

2010-11-01

86

Wormhole formation in dissolving fractures  

Microsoft Academic Search

We investigate the dissolution of artificial fractures with three-dimensional, pore-scale numerical simulations. The fluid velocity in the fracture space was determined from a lattice Boltzmann method, and a stochastic solver was used for the transport of dissolved species. Numerical simulations were used to study conditions under which long conduits (wormholes) form in an initially rough but spatially homogeneous fracture. The

P. Szymczak; A. J. C. Ladd

2009-01-01

87

Distributions of 14 elements on 60 selected absorbers from two simulant solutions (acid-dissolved sludge and alkaline supernate) for Hanford HLW Tank 102-SY  

SciTech Connect

Sixty commercially available or experimental absorber materials were evaluated for partitioning high-level radioactive waste. These absorbers included cation and anion exchange resins, inorganic exchangers, composite absorbers, and a series of liquid extractants sorbed on porous support-beads. The distributions of 14 elements onto each absorber were measured from simulated solutions that represent acid-dissolved sludge and alkaline supernate solutions from Hanford high-level waste (HLW) Tank 102-SY. The selected elements, which represent fission products (Ce, Cs, Sr, Tc, and Y); actinides (U, Pu, and Am); and matrix elements (Cr, Co, Fe, Mn, Zn, and Zr), were traced by radionuclides and assayed by gamma spectrometry. Distribution coefficients for each of the 1680 element/absorber/solution combinations were measured for dynamic contact periods of 30 min, 2 h, and 6 h to provide sorption kinetics information for the specified elements from these complex media. More than 5000 measured distribution coefficients are tabulated.

Marsh, S.F.; Svitra, Z.V.; Bowen, S.M.

1993-10-01

88

Simulating unsteady transport of nitrogen, biochemical oxygen demand, and dissolved oxygen in the Chattahoochee River downstream from Atlanta, Georgia  

USGS Publications Warehouse

As part of an intensive water-quality assessment of the Chattahoochee River, repetitive water-quality measurements were made at 12 sites along a 69-kilometer reach of the river downstream of Atlanta, Georgia. Concentrations of seven constituents (temperature, dissolved oxygen, ultimate carbonaceous biochemical oxygen demand (BOD), organic nitrogen, ammonia, nitrite, and nitrate) were obtained during two periods of 36 hours, one starting on August 30, 1976, and the other starting on May 31, 1977. The study reach contains one large and several small sewage outfalls and receives the cooling water from two large powerplants. An unsteady water-quality model of the Lagrangian type was calibrated using the 1977 data and verified using the 1976 data. The model provided a good means of interpreting these data even though both the flow and the pollution loading rates were highly unsteady. A kinetic model of the cascade type accurately described the physical and biochemical processes occurring in the river. All rate coefficients, except reaeration coefficients and those describing the resuspension of BOD, were fitted to the 1977 data and verified using the 1976 data. The study showed that, at steady low flow, about 38 percent of the BOD settled without exerting an oxygen demand. At high flow, this settled BOD was resuspended and exerted an immediate oxygen demand. About 70 percent of the ammonia extracted from the water column was converted to nitrite, but the fate of the remaining 30 percent is unknown. Photosynthetic production was not an important factor in the oxygen balance during either run.

Jobson, Harvey E.

1985-01-01

89

Process system evaluation-consolidated letters. Volume 1. Alternatives for the off-gas treatment system for the low-level waste vitrification process  

SciTech Connect

This report provides an evaluation of alternatives for treating off-gas from the low-level waste (LLW) melter. The study used expertise obtained from the commercial nonradioactive off-gas treatment industry. It was assumed that contact maintenance is possible, although the subsequent risk to maintenance personnel was qualitatively considered in selecting equipment. Some adaptations to the alternatives described may be required, depending on the extent of contact maintenance that can be achieved. This evaluation identified key issues for the off-gas system design. To provide background information, technology reviews were assembled for various classifications of off-gas treatment equipment, including off-gas cooling, particulate control, acid gas control, mist elimination, NO{sub x} reduction, and SO{sub 2} removal. An order-of-magnitude cost estimate for one of the off-gas systems considered is provided using both the off-gas characteristics associated with the Joule-heated and combustion-fired melters. The key issues identified and a description of the preferred off-gas system options are provided below. Five candidate treatment systems were evaluated. All of the systems are appropriate for the different melting/feed preparations currently being considered. The lowest technical risk is achieved using option 1, which is similar to designs for high-level waste (HLW) vitrification in the Hanford Waste Vitrification Project (HWVP) and the West Valley. Demonstration Project. Option 1 uses a film cooler, submerged bed scrubber (SBS), and high-efficiency mist eliminator (HEME) prior to NO{sub x} reduction and high-efficiency particulate air (HEPA) filtration. However, several advantages were identified for option 2, which uses high-temperature filtration. Based on the evaluation, option 2 was identified as the preferred alternative. The characteristics of this option are described below.

Peurrung, L.M.; Deforest, T.J; Richards, J.R.

1996-03-01

90

Suspended sediments in river ecosystems: Photochemical sources of dissolved organic carbon, dissolved organic nitrogen, and adsorptive removal of dissolved iron  

NASA Astrophysics Data System (ADS)

We generated suspended sediment solutions using river sediments and river water at concentrations similar to those observed during 1.5 year floods (Q1.5) and a dam removal (˜325 mg L-1) on the Deep River, North Carolina. Suspended sediment solutions were exposed to simulated solar radiation, equivalent to one clear, summer day at the study site (35°N). Concentrations of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), total dissolved nitrogen (TDN), dissolved inorganic nitrogen (DIN), dissolved organic nitrogen (DON), soluble reactive phosphorus (SRP) and total dissolved iron (Fed) were measured before and after exposure. Total dissolved carbon (TDC) budgets for each experiment were produced using DOC and DIC data. Sediment suspensions in the presence of simulated solar radiation were significant sources of dissolved C (119 ± 11 ?mol C L-1 d-1; ± values indicate 1 standard error) and DON (1.7 ± 0.5 ?mol N L-1 d-1) but not DIN or SRP. Extrapolations through the Deep River water column suggest that suspended sediments in the presence of light represent dissolved organic matter fluxes of 3.92 mmol C m-2 d-1 and 40 ?mol N m-2 d-1. Additionally, sediment suspensions lowered river water Fed concentrations immediately (˜24%) and progressively (˜40-90%) in both light and dark treatments. Our research suggests suspended sediments in river ecosystems are potential sources of dissolved organic C and dissolved organic N while effectively removing Fed from the water column.

Riggsbee, J. Adam; Orr, Cailin H.; Leech, Dina M.; Doyle, Martin W.; Wetzel, Robert G.

2008-09-01

91

Novel synthesis of bismuth-based adsorbents for the removal of 129I in off-gas  

NASA Astrophysics Data System (ADS)

New adsorbents based on bismuth were investigated for the capture of iodine-129 (129I) in off-gas produced from spent fuel reprocessing. Porous bulky materials were synthesized with polyvinyl alcohol (PVA) as a sacrificial template. Our findings showed that the iodine trapping capacity of as-synthesized samples could reach 1.9-fold that of commercial silver-exchanged zeolite (AgX). The thermodynamic stability of the reaction products explains the high removal efficiency of iodine. We also found that the pore volume of each sample was closely related to the ratio of the reaction products.

Yang, Jae Hwan; Shin, Jin Myeong; Park, Jang Jin; Park, Geun Il; Yim, Man Sung

2015-02-01

92

Development of mathematical model for simulating biosorption of dissolved metals on Bacillus drentensis immobilized in biocarrier beads  

NASA Astrophysics Data System (ADS)

Biocarrier beads with dead biomass, Bacillus drentensis, immobilized in polymer polysulfone were synthesized to remove heavy metals from wastewater. To identify the sorption mechanisms and theoretical nature of underlying processes, a series of batch experiments were carried out and a mathematical model was developed to quantify the biosorption of Pb(II) and Cu(II) by the biocarrier beads. A series of mass balance equations for representing mass transfer of metal sorbents in a biocarrier beads and surrounding solution were established and solved using a finite difference method. Major model parameters such as external mass transfer coefficient and maximum sorption capacity, etc. were determined from pseudo-first and second-order kinetic models and Langmuir isotherm model based on kinetic and equilibrium experimental measurements. The model simulation displays reasonable representations of experimental data and implied that the proposed model can be applied to quantitative analysis on biosorption mechanisms by porous granular beads. The simulation results also confirms that the biosorption of heavy metal by the biocarrier beads largely depended on surface adsorption.

Nam, J.; Wang, S.; Lee, M.

2012-12-01

93

Dissolved Oxygen Protocol  

NSDL National Science Digital Library

The purpose of this resource is to measure the amount of oxygen dissolved in water. Students use a dissolved oxygen kit or meter to measure the dissolved oxygen in the water at their hydrology site. The exact procedure depends on the instructions in the dissolved oxygen kit or meter used. The meter requires calibration before use.

The GLOBE Program, UCAR (University Corporation for Atmospheric Research)

2003-08-01

94

DEVELOPMENT OF A HYDROGEN MORDENITE SORBENT FOR THE CAPTURE OF KRYPTON FROM USED NUCLEAR FUEL REPROCESSING OFF-GAS STREAMS  

SciTech Connect

A novel new sorbent for the separation of krypton from off-gas streams resulting from the reprocessing of used nuclear fuel has been developed and evaluated. A hydrogen mordenite powder was successfully incorporated into a macroporous polymer binder and formed into spherical beads. The engineered form sorbent retained the characteristic surface area and microporosity indicative of mordenite powder. The sorbent was evaluated for krypton adsorption capacities utilizing thermal swing operations achieving capacities of 100 mmol of krypton per kilogram of sorbent at a temperature of 191 K. A krypton adsorption isotherm was also obtained at 191 K with varying krypton feed gas concentrations. Adsorption/desorption cycling effects were also evaluated with results indicating that the sorbent experienced no decrease in krypton capacity throughout testing.

Mitchell Greenhalgh; Troy G. Garn; Jack D. Law

2014-04-01

95

Isolation of the toluene degrading bacteria and application to the biotrickling filtration system of off-gas treatment  

SciTech Connect

The period of acclimation in biotrickling filtration system was studied using toluene degrading bacteria. Toluene degrading bacteria were isolated from the test biotrickling filtration apparatus used for the degradation of toluene off-gas. Five colonies found in an agar culture medium were identified to be toluene degrading bacteria; one was classified Acinetobacter genospecies 10 and the other four were Rhodococcus erythropolis. The count of the toluene degrading bacteria was 5.6 x 10 to the power 8th Colony Forming Units/ml-packing space. The toluene elimination activity was found to be 7.4 and 2.0 mg-toluene/g-dry cell/min for colony {number{underscore}sign}1 and colony {number{underscore}sign}2, respectively, using batch vial system. They were higher than that obtained when the original sludge in the test biotrickling filtration apparatus was applied to the same system. The performance of colony {number{underscore}sign}1 was also tested by the test biotrickling filtration system. Urethane foam, which constituted a lattice-like structure internally, was used as the microbial carrier. The artificial off-gas of 100ppm toluene/air was prepared with reagent grade chemical. The space velocity (versus the packed bed) was 100/h. Immediately after the start-up, the removal percentages of toluene was 39%, and it became 84% after two days continuous treatment. This result indicates that addition of colony {number{underscore}sign}1 was thus shown to be an effective means of shortening the acclimation period of a trickle bed biofilter.

Yamashita, Shigeki

1999-07-01

96

Method for dissolving clay  

Microsoft Academic Search

A method is described for dissolving clay which comprises contacting the clay alternately with separate slugs of a hydrogen ion-containing chemical and a fluoride ion-containing chemical. The hydrogen ions and fluoride ions react on the surface of the clay to produce hydrofluoric acid to dissolve the clay. The method is particularly valuable in dissolving the clay in a mixture of

Hall

1977-01-01

97

Hot Corrosion of Inconel 625 Overlay Weld Cladding in Smelting Off-Gas Environment  

NASA Astrophysics Data System (ADS)

Degradation mechanisms and hot corrosion behavior of weld overlay alloy 625 were studied. Phase structure, morphology, thermal behavior, and chemical composition of deposited salt mixture on the weld overlay were characterized utilizing XRD, SEM/EDX, DTA, and ICP/OES, respectively. Dilution level of Fe in the weldment, dendritic structure, and degradation mechanisms of the weld were investigated. A molten phase formed on the weld layer at the operating temperature range of the boiler, which led to the hot corrosion attack in the water wall and the ultimate failure. Open circuit potential and weight-loss measurements and potentiodynamic polarization were carried out to study the hot corrosion behavior of the weld in the simulated molten salt medium at 873 K, 973 K, and 1073 K (600 °C, 700 °C, and 800 °C). Internal oxidation and sulfidation plus pitting corrosion were identified as the main hot corrosion mechanisms in the weld and boiler tubes. The presence of a significant amount of Fe made the dendritic structure of the weld susceptible to preferential corrosion. Preferentially corroded (Mo, Nb)-depleted dendrite cores acted as potential sites for crack initiation from the surface layer. The penetration of the molten phase into the cracks accelerated the cracks' propagation mainly through the dendrite cores and further crack branching/widening.

Mohammadi Zahrani, E.; Alfantazi, A. M.

2013-10-01

98

Novel sorbent development and evaluation for the capture of krypton and xenon from nuclear fuel reprocessing off-gas stream  

SciTech Connect

The release of volatile radionuclides generated during Used Nuclear Fuel reprocessing in the US will most certainly need to be controlled to meet US regulatory emission limits. A US DOE sponsored Off-Gas Sigma Team has been tasked with a multi-lab collaborative research and development effort to investigate and evaluate emissions and immobilization control technologies for the volatile radioactive species generated from commercial Used Nuclear Fuel (UNF) Reprocessing. Physical Adsorption technology is a simpler and potential economical alternative to cryogenic distillation processes that can be used for the capture of krypton and xenon and has resulted in a novel composite sorbent development procedure using synthesized mordenite as the active material. Utilizing the sorbent development procedure, Idaho National Laboratory sigma team members have developed two composite sorbents that have been evaluated for krypton and xenon capacities at ambient and 191 K temperature using numerous test gas compositions. Adsorption isotherms have been generated to predict equilibration and maximum capacities enabling modeling to support process equipment scale-up. (authors)

Garn, T.G.; Greenhalgh, M.R.; Law, J.D. [Idaho National Laboratory, 1625 N. Fremont Ave., Idaho Falls, ID 83415 (United States)

2013-07-01

99

TREATMENT TANK OFF-GAS TESTING FOR THE ENHANCED CHEMICAL CLEANING PROCESS  

SciTech Connect

The purpose of this activity was to provide a bounding estimate of the volume of hydrogen gas generated during Enhanced Chemical Cleaning (ECC) of residual sludge remaining in a Type I or Type II treatment tank as well as to provide results independent of the sludge volume in the waste tank to be cleaned. Previous testing to support Chemical Cleaning was based on a 20:1 oxalic acid to sludge ratio. Hydrogen gas evolution is the primary safety concern. Sealed vessel coupon tests were performed to estimate the hydrogen generation rate due to corrosion of carbon steel by 2.5 wt.% oxalic acid. These tests determined the maximum instantaneous hydrogen generation rate, the rate at which the generation rate decays, and the total hydrogen generated. These values were quantified based on a small scale methodology similar to the one described in WSRC-STI-2007-00209, Rev. 0. The measured rates support identified Safety Class functions. The tests were performed with ASTM A285 Grade C carbon steel coupons. Bounding conditions were determined for the solution environment. The oxalic acid concentration was 2.5 wt.% and the test temperature was 75 C. The test solution was agitated and contained no sludge simulant. Duplicate tests were performed and showed excellent reproducibility for the hydrogen generation rate and total hydrogen generated. The results showed that the hydrogen generation rate was initially high, but decayed rapidly within a couple of days. A statistical model was developed to predict the instantaneous hydrogen generation rate as a function of exposure time by combining both sets of data. An upper bound on the maximum hydrogen generation rate was determined from the upper 95% confidence limit. The upper bound confidence limit for the hydrogen generation rate is represented by the following equation. ln (G{sub v}) = -8.22-0.0584 t + 0.0002 t{sup 2}. This equation should be utilized to estimate the instantaneous hydrogen generation rate per unit surface area, G{sub v}, at a given time, t. The units for G{sub v} and t are ft{sup 3}/ft{sup 2}/min and hours, respectively. The total volume of hydrogen gas generated during the test was calculated from the model equation. An upper bound on the total gas generated was determined from the upper 95% confidence limit. The upper bound limit on the total hydrogen generated during the 163 hour test was 0.332 ft{sup 3}/ft{sup 2}. The maximum instantaneous hydrogen generation rate for this scenario is greater than that previously measured in the 8 wt.% oxalic acid tests due to both the absence of sludge in the test (i.e., greater than 20:1 ratio of acid to sludge) and the use of polished coupons (vs. mill scale coupons). However, due to passivation of the carbon steel surface, the corrosion rate decays by an order of magnitude within the first three days of exposure such that the instantaneous hydrogen generation rates are less than that previously measure in the 8 wt.% oxalic acid tests. While the results of these tests are bounding, the conditions used in this study may not be representative of the ECC flowsheet, and the applicability of these results to the flowsheet should be evaluated for the following reasons: (1) The absence of sludge results in higher instantaneous hydrogen generation rates than when the sludge is present; and (2) Polished coupons do not represent the condition of the carbon steel interior of the tank, which are covered with mill scale. Based on lower instantaneous corrosion rates measured on mill scale coupons exposed to oxalic acid, lower instantaneous hydrogen generation rates are expected for the tank interior than measured on the polished coupons. Corrosion rates were determined from the coupon tests and also calculated from the measured hydrogen generation rates. Excellent agreement was achieved between the time averaged corrosion rate calculated from the hydrogen generation rates and the corrosion rates determined from the coupon tests. The corrosion rates were on the order of 18 to 28 mpy. Good agreement was also observed between the maximum instantaneo

Wiersma, B.

2011-08-29

100

The development of an industrial-scale fed-batch fermentation simulation.  

PubMed

This paper describes a simulation of an industrial-scale fed-batch fermentation that can be used as a benchmark in process systems analysis and control studies. The simulation was developed using a mechanistic model and validated using historical data collected from an industrial-scale penicillin fermentation process. Each batch was carried out in a 100,000L bioreactor that used an industrial strain of Penicillium chrysogenum. The manipulated variables recorded during each batch were used as inputs to the simulator and the predicted outputs were then compared with the on-line and off-line measurements recorded in the real process. The simulator adapted a previously published structured model to describe the penicillin fermentation and extended it to include the main environmental effects of dissolved oxygen, viscosity, temperature, pH and dissolved carbon dioxide. In addition the effects of nitrogen and phenylacetic acid concentrations on the biomass and penicillin production rates were also included. The simulated model predictions of all the on-line and off-line process measurements, including the off-gas analysis, were in good agreement with the batch records. The simulator and industrial process data are available to download at www.industrialpenicillinsimulation.com and can be used to evaluate, study and improve on the current control strategy implemented on this facility. PMID:25449107

Goldrick, Stephen; ?tefan, Andrei; Lovett, David; Montague, Gary; Lennox, Barry

2015-01-10

101

Impact of circulation on export production, dissolved organic matter, and dissolved oxygen in the ocean: Results from Phase II of the Ocean  

E-print Network

Impact of circulation on export production, dissolved organic matter, and dissolved oxygen) and dissolved oxygen simulated by 12 global ocean models participating in the second phase of the Ocean Carbon matter, and dissolved oxygen in the ocean: Results from Phase II of the Ocean Carbon-cycle Model

Follows, Mick

102

Field demonstration for bioremediation treatment: Technology demonstration of soil vapor extraction off-gas at McClellan Air Force Base. Final report November 1997--April 1998  

SciTech Connect

McClellan Air Force Base (AFB) is a National Test Location designated through the Strategic Environmental Research and Development Program (SERDP), and was selected as the candidate test site for a demonstration of soil vapor extraction (SVE) off-gas treatment technology. A two-stage reactor system was employed for the treatment of the off-gas. The biological treatment was conducted at Operable Unit (OU) D Site S, located approximately 400 ft southwest of Building 1093. The SVE system at this area normally operates at a nominal volumetric flowrate of approximately 500 to 600 standard cubic feet per minute (scfm). The contaminated air stream from the SVE system that was fed to the reactor system operated at a flowrate of 5 to 10 scfm. The two-stage reactor system consisted of a fixed-film biofilter followed by a completely mixed (by continuous stirring), suspended-growth biological reactor. This reactor configuration was based on a review of the literature, on characterization of the off-gas from the SVE system being operated at McClellan AFB, and on the results of the laboratory study conducted by Battelle and Envirogen for this study.

Magar, V.S.; Tonga, P.; Webster, T.; Drescher, E.

1999-01-12

103

Use of a cryogenic sampler to measure radioactive gas concentrations in the main off-gas system at a high-flux isotope reactor  

SciTech Connect

A method for measuring gamma-emitting radioactive gases in air has been developed at Oak Ridge National Laboratory (ORNL). This method combines a cryogenic air-sample collector with a high-purity germanium (HPGe) gamma spectroscopy system. This methodology was developed to overcome the inherently difficult collection and detection of radioactive noble gases. The cryogenic air-sampling system and associated HPGe detector has been used to measure the concentration of radioactive gases in the primary coolant main off-gas system at ONRL's High-Flux Isotope Reactor (HFIR). This paper provides: (1) a description of the cryogenic sampler, the radionuclide detection technique, and a discussion of the effectiveness of sampling and detection of gamma-emitting noble gases; (2) a brief description of HFIR and its associated closed high off-gas system; and (3) quantification of gamma-emitting gases present in the off-gas of the HFIR primary core coolant (e.g. radioisotopes of argon, xenon, and krypton).

Berven, B.A.; Perdue, P.T.; Kark, J.B.; Gibson, M.O.

1982-01-01

104

AFCI Coupled End-to-End Research,Development and Demonstration Project: Integrated Off-gas Treatment System Design and Initial Performance - 9226  

SciTech Connect

Oak Ridge National Laboratory is conducting a complete, coupled end-to-end (CETE) demonstration of advanced nuclear fuel reprocessing to support the Advanced Fuel Cycle Initiative. This small-scale reprocessing operation provides a unique opportunity to test integrated off-gas treatment systems designed to recover the primary volatile fission and activation products (H-3, C-14, Kr-85, and I-139) released from the spent nuclear fuel (SNF). The CETE project will demonstrate an advanced head-end process, referred to as voloxidation, designed to condition the SNF, separate the SNF from the cladding, and release tritium contained in the fuel matrix. The off-gas from the dry voloxidation process as well as from the more traditional fuel dissolution process will be treated separately and the volatile components recovered. This paper provides descriptions of the off-gas treatment systems for both the voloxidation process and for the fuel dissolution process and provides preliminary results from the initial CETE processing runs. Impacts of processing parameters on the relative quantities of volatile components released and recovery efficiencies are evaluated.

Jubin, Robert Thomas [ORNL] [ORNL; Patton, Bradley D [ORNL] [ORNL; Ramey, Dan W [ORNL] [ORNL; Spencer, Barry B [ORNL] [ORNL

2009-01-01

105

Pill Dissolving Demo  

NSDL National Science Digital Library

In a class demonstration, the teacher places different pill types ("chalk" pill, gel pill, and gel tablet) into separate glass beakers of vinegar, representing human stomach acid. After 20-30 minutes, the pills dissolve. Students observe which dissolve the fastest, and discuss the remnants of the various pills. What they learn contributes to their ongoing objective to answer the challenge question presented in lesson 1 of this unit.

Vu Bioengineering Ret Program

106

Simulation of dissolved oxygen and biochemical oxygen demand, Plantation Canal, Broward County, Florida with an evaluation of the QUAL-I model for use in south Florida  

USGS Publications Warehouse

A mathematical model; QUAL-I, developed by the Texas Water Development Board, was evaluated as a management tool in predicting the spatial and temporal distribution of dissolved oxygen and biochemical oxygen demand in Plantation Canal. Predictions based on the QUAL-I model, which was verified only against midday summer-flow conditions, showed that improvement of quality of inflows from sewage treatment plants and use of at least 130 cubic feet per second of dilution water would improve water quality in the canal significantly. The model was not fully amenable to use on Plantation Canal because: (1) it did not consider photosynthetic production, nitrification, and benthic oxygen demand as sources and sinks of oxygen; (2) the model assumptions of complete mixing, transport, and steady state were not met; and (3) the data base was inadequate because it consisted of only one set of data for each case. However, it was felt that meaningful results could be obtained for some sets of conditions. (Woodard-USGS)

Russo, Thomas N.; McQuivey, Raul S.

1975-01-01

107

Rate and peak concentrations of off-gas emissions in stored wood pellets--sensitivities to temperature, relative humidity, and headspace volume.  

PubMed

Wood pellets emit CO, CO(2), CH(4), and other volatiles during storage. Increased concentration of these gases in a sealed storage causes depletion of concentration of oxygen. The storage environment becomes toxic to those who operate in and around these storages. The objective of this study was to investigate the effects of temperature, moisture, and the relative size of storage headspace on emissions from wood pellets in an enclosed space. Twelve 10-l plastic containers were used to study the effects of headspace ratio (25, 50, and 75% of container volume) and temperatures (10-50 degrees C). Another eight containers were set in uncontrolled storage relative humidity (RH) and temperature. Concentrations of CO(2), CO, and CH(4) were measured by gas chromatography (GC). The results showed that emissions of CO(2), CO, and CH(4) from stored wood pellets are more sensitive to storage temperature than to RH and the relative volume of headspace. Higher peak emission factors are associated with higher temperatures. Increased headspace volume ratio increases peak off-gas emissions because of the availability of oxygen associated with pellet decomposition. Increased RH in the enclosed container increases the rate of off-gas emissions of CO(2), CO, and CH(4) and oxygen depletion. PMID:19656803

Kuang, Xingya; Shankar, Tumuluru Jaya; Bi, Xiaotao T; Lim, C Jim; Sokhansanj, Shahab; Melin, Staffan

2009-11-01

108

A Dissolving Challenge  

NSDL National Science Digital Library

In this activity, learners add objects and substances to carbonated water to discover that added objects increase the rate at which dissolved gas comes out of solution. Learners are then challenged to make a lemon soda that retains as much carbonation as possible, by using carbonated water, sugar, and lemon juice. Learners identify the difficulty in making a fizzy lemon soda, develop a better method, and then test it.

Kessler, James H.; Galvan, Patricia M.

2007-01-01

109

ADDING REALISM TO NUCLEAR MATERIAL DISSOLVING ANALYSIS  

SciTech Connect

Two new criticality modeling approaches have greatly increased the efficiency of dissolver operations in H-Canyon. The first new approach takes credit for the linear, physical distribution of the mass throughout the entire length of the fuel assembly. This distribution of mass is referred to as the linear density. Crediting the linear density of the fuel bundles results in using lower fissile concentrations, which allows higher masses to be charged to the dissolver. Also, this approach takes credit for the fact that only part of the fissile mass is wetted at a time. There are multiple assemblies stacked on top of each other in a bundle. On average, only 50-75% of the mass (the bottom two or three assemblies) is wetted at a time. This means that only 50-75% (depending on operating level) of the mass is moderated and is contributing to the reactivity of the system. The second new approach takes credit for the progression of the dissolving process. Previously, dissolving analysis looked at a snapshot in time where the same fissile material existed both in the wells and in the bulk solution at the same time. The second new approach models multiple consecutive phases that simulate the fissile material moving from a high concentration in the wells to a low concentration in the bulk solution. This approach is more realistic and allows higher fissile masses to be charged to the dissolver.

Williamson, B.

2011-08-15

110

Dissolving Different Liquids in Water  

NSDL National Science Digital Library

In this activity, learners add different liquids to water and apply their working definition of “dissolving” to their observations. After observing isopropyl rubbing alcohol, vegetable oil, and corn syrup in water, learners can conclude that while some liquids may dissolve in water, different liquids dissolve in water to different extents. Adult supervision recommended.

James H. Kessler

2007-01-01

111

[Reponses of soil total organic carbon and dissolved organic carbon to simulated nitrogen deposition in temperate typical steppe in Inner Mongolia, China].  

PubMed

Based on a field manipulative nitrogen (N) addition experiment, the effects of atmospheric N deposition level change on the contents, inter-annual variation and profile distribution of soil total organic carbon (TOC) and dissolved organic carbon (DOC) were investigated from May, 2008 to October, 2011 in a temperate typical steppe in Inner Mongolia of China, and the relationship between TOC and DOC was also discussed. The treatments in the manipulative experiment included N additions at rates of 0, 5, 10, and 20 g x (m2 x a)(-1), representing the control (CK), low N (LN), medium N (MN), and high N (HN) treatment, respectively. The results indicated that the concentrations of soil TOC and DOC decreased progressively with soil depth in all cases except for the DOC at 10-20 cm depth in individual years. The increase of N input in typical steppe did not change the vertical distribution of soil TOC and DOC, but reduced the vertical variation of TOC and increased the vertical variation of DOC in the surface soil horizon. In addition, the contents of soil TOC and DOC at 0- 10 cm and 10- 20 cm soil layers changed insignificantly after the continuous increase in anthropogenic N input for four years. The soil organic C density of 0-20 cm soil layer for different N treatment levels varied between 3.9 kg x m(-2) and 5.6 kg x m(-2), and the soil organic C densities of fertilized treatments in the first two years were similar to or slightly lower than those of CK, while in the following two years, the increase in N deposition gradually played a positive role in increasing soil organic C density, but the differences in soil TOC and DOC contents between CK and fertilized plots were not significant (P > 0.05). The ratio of soil DOC to TOC (DOC/TOC) varied from 0.32% to 1.09%. The increase in N deposition generally lowered the proportion of DOC in soil TOC, which was conducive to the accumulation of soil organic C. The change of soil DOC was positively correlated with that of TOC (P < 0.01). The temporal variations of soil DOC in different N treatments were all far greater than those of TOC, and the soil DOC was the important sensitive indicator for predicting and evaluating the response of soil C pool to the change in atmospheric N deposition in the temperate grassland ecosystem. PMID:25338382

Qi, Yu-Chun; Peng, Qin; Dong, Yun-She; Xiao, Sheng-Sheng; Sun, Liang-Jie; Liu, Xin-Chao; He, Ya-Ting; Jia, Jun-Qiang; Cao, Cong-Cong

2014-08-01

112

Influence of pH, inorganic anions, and dissolved organic matter on the photolysis of antimicrobial triclocarban in aqueous systems under simulated sunlight irradiation.  

PubMed

The photolysis of the antimicrobial triclocarban (TCC) in aqueous systems under simulated sunlight irradiation was studied. The effects of several abiotic parameters, including solution pH, initial TCC concentration, presence of natural organic matter, and most common inorganic anions in surface waters, were investigated. The results show that the photolysis of TCC followed pseudo-first-order kinetics. The TCC photolysis rate constant increased with increasing solution pH and decreasing the initial TCC concentration. Compared with the TCC photolysis in pure water, the presence of aqueous bicarbonate, nitrate, humic acids, and its sodium salt decreased the TCC photolysis rate, but fulvic acid increased the TCC photolysis rate. The electron spin resonance and reactive oxygen species scavenging experiments indicated that TCC may undergo two different types of phototransformation reactions: direct photolysis and energy transfer to generate (1)O2. The main degradation products were tentatively identified by gas chromatography interfaced with mass spectrometry (GC-MS), and a possible degradation pathway was also proposed. PMID:25354431

Ding, Shi-Ling; Wang, Xi-Kui; Jiang, Wen-Qiang; Zhao, Ru-Song; Shen, Ting-Ting; Wang, Chen; Wang, Xia

2014-10-30

113

How to Measure Dissolved Oxygen  

NSDL National Science Digital Library

This web page, hosted by the Washington State Department of Ecology, offers a general overview of dissolved oxygen and how it is measured. It includes protocols for measuring dissolved oxygen in turbulent waters as well as using the Winkler titration method. The site also features links to measuring other water quality parameters such as pH, nutrients, and turbidity.

Washington State University Department of Ecology

114

Development and Testing of the Advanced CHP System Utilizing the Off-Gas from the Innovative Green Coke Calcining Process in Fluidized Bed  

SciTech Connect

Green petroleum coke (GPC) is an oil refining byproduct that can be used directly as a solid fuel or as a feedstock for the production of calcined petroleum coke. GPC contains a high amount of volatiles and sulfur. During the calcination process, the GPC is heated to remove the volatiles and sulfur to produce purified calcined coke, which is used in the production of graphite, electrodes, metal carburizers, and other carbon products. Currently, more than 80% of calcined coke is produced in rotary kilns or rotary hearth furnaces. These technologies provide partial heat utilization of the calcined coke to increase efficiency of the calcination process, but they also share some operating disadvantages. However, coke calcination in an electrothermal fluidized bed (EFB) opens up a number of potential benefits for the production enhancement, while reducing the capital and operating costs. The increased usage of heavy crude oil in recent years has resulted in higher sulfur content in green coke produced by oil refinery process, which requires a significant increase in the calcinations temperature and in residence time. The calorific value of the process off-gas is quite substantial and can be effectively utilized as an “opportunity fuel” for combined heat and power (CHP) production to complement the energy demand. Heat recovered from the product cooling can also contribute to the overall economics of the calcination process. Preliminary estimates indicated the decrease in energy consumption by 35-50% as well as a proportional decrease in greenhouse gas emissions. As such, the efficiency improvement of the coke calcinations systems is attracting close attention of the researchers and engineers throughout the world. The developed technology is intended to accomplish the following objectives: - Reduce the energy and carbon intensity of the calcined coke production process. - Increase utilization of opportunity fuels such as industrial waste off-gas from the novel petroleum coke calcination process. - Increase the opportunity of heat (chemical and physical) utilization from process off-gases and solid product. - Develop a design of advanced CHP system utilizing off-gases as an “opportunity fuel” for petroleum coke calcinations and sensible heat of calcined coke. A successful accomplishment of the aforementioned objectives will contribute toward the following U.S. DOE programmatic goals: - Drive a 25% reduction in U. S. industrial energy intensity by 2017 in support of EPAct 2005; - Contribute to an 18% reduction in U.S. carbon intensity by 2012 as established by the Administration’s “National Goal to Reduce Emissions Intensity.” 8

Chudnovsky, Yaroslav; Kozlov, Aleksandr

2013-08-15

115

DEVELOPMENT OF AN ANTIFOAM TRACKING SYSTEM AS AN OPTION TO SUPPORT THE MELTER OFF-GAS FLAMMABILITY CONTROL STRATEGY AT THE DWPF  

SciTech Connect

The Savannah River National Laboratory (SRNL) has been working with the Savannah River Remediation (SRR) Defense Waste Processing Facility (DWPF) in the development and implementation of an additional strategy for confidently satisfying the flammability controls for DWPF’s melter operation. An initial strategy for implementing the operational constraints associated with flammability control in DWPF was based upon an analytically determined carbon concentration from antifoam. Due to the conservative error structure associated with the analytical approach, its implementation has significantly reduced the operating window for processing and has led to recurrent Slurry Mix Evaporator (SME) and Melter Feed Tank (MFT) remediation. To address the adverse operating impact of the current implementation strategy, SRR issued a Technical Task Request (TTR) to SRNL requesting the development and documentation of an alternate strategy for evaluating the carbon contribution from antifoam. The proposed strategy presented in this report was developed under the guidance of a Task Technical and Quality Assurance Plan (TTQAP) and involves calculating the carbon concentration from antifoam based upon the actual mass of antifoam added to the process assuming 100% retention. The mass of antifoam in the Additive Mix Feed Tank (AMFT), in the Sludge Receipt and Adjustment Tank (SRAT), and in the SME is tracked by mass balance as part of this strategy. As these quantities are monitored, the random and bias uncertainties affecting their values are also maintained and accounted for. This report documents: 1) the development of an alternate implementation strategy and associated equations describing the carbon concentration from antifoam in each SME batch derived from the actual amount of antifoam introduced into the AMFT, SRAT, and SME during the processing of the batch. 2) the equations and error structure for incorporating the proposed strategy into melter off-gas flammability assessments. Sample calculations of the system are also included in this report. Please note that the system developed and documented in this report is intended as an alternative to the current, analytically-driven system being utilized by DWPF; the proposed system is not intended to eliminate the current system. Also note that the system developed in this report to track antifoam mass in the AMFT, SRAT, and SME will be applicable beyond just Sludge Batch 8. While the model used to determine acceptability of the SME product with respect to melter off-gas flammability controls must be reassessed for each change in sludge batch, the antifoam mass tracking methodology is independent of sludge batch composition and as such will be transferable to future sludge batches.

Edwards, T.; Lambert, D.

2014-08-27

116

The Measurement of Dissolved Oxygen  

ERIC Educational Resources Information Center

Describes an experiment in environmental chemistry which serves to determine the dissolved oxygen concentration in both fresh and saline water. Applications of the method at the undergraduate and secondary school levels are recommended. (CC)

Thistlethwayte, D.; And Others

1974-01-01

117

Off gas film cooler cleaner  

DOEpatents

An apparatus for cleaning depositions of particulate matter from the inside of tubular piping while the piping is in use. The apparatus is remote controlled in order to operate in hazardous environments. A housing containing brush and shaft assemblies is mounted on top of the tubular piping. Pneumatic cylinders provide linear motion. A roller nut bearing provides rotary motion. The combined motion causes the brush assembly to rotate as it travels along the tube dislodging particulate matter.

Dhingra, Hardip S. (Williamsville, NY); Koch, William C. (Gowanda, NY); Burns, David C. (Trafford, PA)

1997-01-01

118

Production and export of dissolved C in arctic tundra mesocosms: the roles of vegetation and water flow  

Microsoft Academic Search

To better understand carbon (C) cycling in arctic tundra we measured dissolved C production and export rates in mesocosms of three tundra vegetation types: tussock, inter-tussock and wet sedge. Three flushing frequencies were used to simulate storm events and determine potential mass export of dissolved C under increased soil water flow scenarios. Dissolved C production and export rates differed between

KRISTIN E. JUDD; GEORGE W. KLING

2002-01-01

119

Reducing emissions from uranium dissolving  

SciTech Connect

This study was designed to assess the feasibility of decreasing NO{sub x} emissions from the current uranium alloy scrap tray dissolving facility. In the current process, uranium scrap is dissolved in boiling nitric acid in shallow stainless-steel trays. As scrap dissolves, more metal and more nitric acid are added to the tray by operating personnel. Safe geometry is assured by keeping liquid level at or below 5 cm, the depth of a safe infinite slab. The accountability batch control system provides additional protection against criticality. Both uranium and uranium alloys are dissolved. Nitric acid is recovered from the vapors for reuse. Metal nitrates are sent to uranium recovery. Brown NO{sub x} fumes evolved during dissolving have occasionally resulted in a visible plume from the trays. The fuming is most noticeable during startup and after addition of fresh acid to a tray. Present environmental regulations are expected to require control of brown NO{sub x} emissions. A detailed review of the literature, indicated the feasibility of slightly altering process chemistry to favor the production of NO{sub 2} which can be scrubbed and recycled as nitric acid. Methods for controlling the process to manage offgas product distribution and to minimize chemical reaction hazards were also considered.

Griffith, W.L.; Compere, A.L.; Huxtable, W.P.; Googin, J.M.

1992-10-01

120

Reducing emissions from uranium dissolving  

SciTech Connect

This study was designed to assess the feasibility of decreasing NO[sub x] emissions from the current uranium alloy scrap tray dissolving facility. In the current process, uranium scrap is dissolved in boiling nitric acid in shallow stainless-steel trays. As scrap dissolves, more metal and more nitric acid are added to the tray by operating personnel. Safe geometry is assured by keeping liquid level at or below 5 cm, the depth of a safe infinite slab. The accountability batch control system provides additional protection against criticality. Both uranium and uranium alloys are dissolved. Nitric acid is recovered from the vapors for reuse. Metal nitrates are sent to uranium recovery. Brown NO[sub x] fumes evolved during dissolving have occasionally resulted in a visible plume from the trays. The fuming is most noticeable during startup and after addition of fresh acid to a tray. Present environmental regulations are expected to require control of brown NO[sub x] emissions. A detailed review of the literature, indicated the feasibility of slightly altering process chemistry to favor the production of NO[sub 2] which can be scrubbed and recycled as nitric acid. Methods for controlling the process to manage offgas product distribution and to minimize chemical reaction hazards were also considered.

Griffith, W.L.; Compere, A.L.; Huxtable, W.P.; Googin, J.M.

1992-10-01

121

Vitrification of Simulated LILW Using Induction Cold Crucible Melter Technology  

Microsoft Academic Search

Vitrification destroys hazardous organics, and immobilizes heavy metals and radioactive elements to form a chemically durable and highly leach-resistant vitrified form. The vitrification process provides exceptional volume reduction and is attractive for minimizing disposal volume. A pilot plant test using an induction Cold Crucible Melter (CCM) fitted with an off-gas treatment system (OGTS) has been conducted to vitrify a simulated

C. W. Kim; J. K. Park; S. W. Shin; T. W. Hwang; J. H. Ha; M. J. Song

2006-01-01

122

Dissolving a Substance in Different Liquids  

NSDL National Science Digital Library

In this activity, learners make colored sugar and add it to water, alcohol, and oil to discover some interesting differences in dissolving. The sugar will dissolve to a different extent in each liquid, and the color may or may not dissolve depending on the liquid. Learners also have an opportunity to refine their definition of the term dissolve. Adult supervision recommended.

James H. Kessler

2007-01-01

123

Behavior of mercury and iodine during vitrification of simulated alkaline Purex waste  

SciTech Connect

Current plans indicate that the high-level wastes stored at the Savannah River Plant will be solidified by vitrification. The behavior of mercury and iodine during the vitrification process is of concern because: mercury is present in the waste in high concentrations (0.1 to 2.8 wt%); mercury will react with iodine and the other halogens present in the waste during vitrification and; the mercury compounds formed will be volatilized from the vitrification process placing a high particulate load in the vitrification system off-gas. Twelve experiments were completed to study the behavior of mercury during vitrification of simulated SRP Purex waste. The mercury was completely volatized from the vitrification system in all experiments. The mercury reacted with iodine, chlorine and oxygen to form a fine particulate solid. Quantitative recovery of mercury compounds formed in the vitrification system off-gas was not possible due to high (37 to 90%) deposition of solids in the off-gas piping. The behavior of mercury and iodine was most strongly influenced by the vitrification system atmosphere. During experiments performed in which the oxygen content of the vitrification system atmosphere was low (< 1 vol%); iodine retention in the glass product was 27 to 55%, the mercury composition of the solids recovered from the off-gas scrub solutions was 75 to 85 wt%, and a small quantity of metallic mercury was recovered from the off-gas scrub solution. During experiments performed in which the oxygen content of the vitrification system atmosphere was high (20 vol%), iodide retention in the glass product was 3 to 15%, the mercury composition of the solids recovered from the off-gas scrub solutions was 60 to 80 wt%, and very little metallic mercury was recovered from the off-gas scrub solution.

Holton, L.K.

1981-09-01

124

DISSOLVED OXYGEN DIURNAL FLUX STUDY  

EPA Science Inventory

Stream monitoring study of a 24 Western Corn Belt Plains streams designed to assess any correlation of nutrient loads and the level of dissolved oxygen in wadeable streams and any subsequent affect on aquatic life. Study currently being conducted under a cooperative agreement be...

125

Dissolved oxygen and fish behavior  

Microsoft Academic Search

Synopsis This essay reviews the behavioral responses of fish to reduced levels of dissolved oxygen from the perspective of optimization theory as used in contemporary behavioral ecology. A consideration of oxygen as a resource suggests that net oxygen gain per unit of energy expenditure will be the most useful currency for ecological models of breathing. In the process of oxygen

Donald L. Kramer

1987-01-01

126

Phase fluorometric dissolved oxygen sensor  

Microsoft Academic Search

The design and performance of a ruggedised dissolved oxygen (DO) probe, which is based on phase fluorometric detection of the quenched fluorescence of an oxygen-sensitive ruthenium complex, is reported. The complex is entrapped in a porous hydrophobic sol–gel matrix that has been optimised for this application. The LED excitation and photodiode detection are employed in a dipstick probe configuration, with

C. McDonagh; C. Kolle; A. K. McEvoy; D. L. Dowling; A. A. Cafolla; S. J. Cullen; B. D. MacCraith

2001-01-01

127

Dissolving pulp from jute stick.  

PubMed

Jute stick is woody portion of jute plant, which remain as leftover after extracting bast fibre. Presently, it is being used for fencing in the rural area. In this investigation, biorefinery concept was initiated in producing dissolving pulp from jute stick by pre-hydrolysis kraft process. At 170°C for 1h of pre-hydrolysis, 70% of hemicelluloses was dissolved with negligible loss of ?-cellulose. At this condition, 75% of dissolved sugars in the pre-hydrolysis liquor were in the oligomeric form. The pre-hydrolysed jute stick was subsequently pulped by kraft process with the variation of active alkali. The pulp yield was 36.2% with kappa number 18.5 at the conditions of 16% active alkali for 2h of cooking at 170°C. Final pulp was produced with 92% ?-cellulose and 89% brightness after D0EpD1EpD1 bleaching. The produced dissolving pulp can be used in rayon production. PMID:25439866

Matin, Mhafuza; Rahaman, M Mostafizur; Nayeem, Jannatun; Sarkar, Mamon; Jahan, M Sarwar

2015-01-22

128

Release of biodegradable dissolved organic matter from ancient sedimentary rocks  

Microsoft Academic Search

Sedimentary rocks contain the largest mass of organic carbon on Earth, yet these reservoirs are not well integrated into modern carbon budgets. Here we describe the release of dissolved organic matter (DOM) from OM-rich sedimentary rocks under simulated weathering conditions. Results from column experiments demonstrate slow, sustained release of DOM from ancient sedimentary rocks under simulated weathering conditions. 1H-NMR analysis

Sarah Schillawski; Steven Petsch

2008-01-01

129

Dissolved Oxygen and Biochemical Oxygen Demand  

NSDL National Science Digital Library

This EPA website provides general information about dissolved oxygen, including what it is, sampling and equipment considerations, and sampling and analysis protocols. The site also features a chart of dissolved oxygen solubility as a function of temperature.

Agency, U. S.

130

EFFECT OF DISSOLVED ORGANIC SUBSTANCES ON OYSTERS  

E-print Network

_____________________________________________________ 168 Effects of filtering and centrifuging'______________________________ 168 Variations______________________________________ 183 Description of sampling device ~ ______________________________ 183 #12;EFFECT OF DISSOLVED

131

Photochemical and microbial consumption of dissolved organic carbon and dissolved oxygen in the Amazon River system  

Microsoft Academic Search

Bacterial and photochemical mineralization of dissolved organic matter were investigated in the Amazon River system. Dissolved oxygen, dissolved organic carbon (DOC), and bacterial growth were measured during incubations conducted under natural sunlight and in the dark. Substrate addition experiments indicated that the relatively low rates of bacterial activity in Amazon River water were caused by C limitation. Experiments to determine

R. M. W. Amon; R. Benner

1996-01-01

132

Investigating Students' Understanding of the Dissolving Process  

ERIC Educational Resources Information Center

In a previous study, the authors identified several student misconceptions regarding the process of dissolving ionic compounds in water. The present study used multiple-choice questions whose distractors were derived from these misconceptions to assess students' understanding of the dissolving process at the symbolic and particulate levels. The…

Naah, Basil M.; Sanger, Michael J.

2013-01-01

133

Dissolved Oxygen Data for Coos Estuary (Oregon)  

EPA Science Inventory

The purpose of this product is the transmittal of dissolved oxygen data collected in the Coos Estuary, Oregon to Ms. Molly O'Neill (University of Oregon), for use in her studies on the factors influencing spatial and temporal patterns in dissolved oxygen in this estuary. These d...

134

Influence of dissolved organic materials on turbid water optical properties and remote-sensing reflectance  

NASA Technical Reports Server (NTRS)

The effects of dissolved organic materials on turbid-water optical properties are assessed, by means of field measurements and laboratory simulations in which upwelled reflectance, attenuation, absorption, and backscatter spectral properties at wavelengths from 450 to 800 nm are examined in relation to water chemistry. The data show that dissolved organic materials decrease upwelled reflectance from turbid waters, and that the decrease in reflectance is a nonlinear function of concentration with the largest gradients at low carbon concentrations, depending on wavelength. Upwelled reflectance is found to be highly correlated with two backscatter-absorption parameters used in some optical models, which are nonlinear with dissolved organic material concentration change.

Witte, W. G.; Whitlock, C. H.; Harriss, R. C.; Usry, J. W.; Poole, L. R.; Houghton, W. M.; Morris, W. D.; Gurganus, E. A.

1982-01-01

135

Fast dissolving paracetamol/caffeine nanofibers prepared by electrospinning.  

PubMed

A series of polyvinylpyrrolidone fibers loaded with paracetamol (PCM) and caffeine (CAF) was fabricated by electrospinning and explored as potential oral fast-dissolving films. The fibers take the form of uniform cylinders with smooth surfaces, and contain the drugs in the amorphous form. Drug-polymer intermolecular interactions were evidenced by infrared spectroscopy and molecular modeling. The properties of the fiber mats were found to be highly appropriate for the preparation of oral fast dissolving films: their thickness is around 120-130 ?m, and the pH after dissolution in deionized water lies in the range of 6.7-7.2. Except at the highest drug loading, the folding endurance of the fibers was found to be >20 times. A flavoring agent can easily be incorporated into the formulation. The fiber mats are all seen to disintegrate completely within 0.5s when added to simulated saliva solution. They release their drug cargo within around 150s in a dissolution test, and to undergo much more rapid dissolution than is seen for the pure drugs. The data reported herein clearly demonstrate that electrospun PCM/CAF fibers comprise excellent candidates for oral fast-dissolving films, which could be particularly useful for children and patients with swallowing difficulties. PMID:25455779

Illangakoon, U Eranka; Gill, Hardyal; Shearman, Gemma C; Parhizkar, Maryam; Mahalingam, Sunthar; Chatterton, Nicholas P; Williams, Gareth R

2014-12-30

136

Photochemical flocculation of terrestrial dissolved organic matter and iron  

NASA Astrophysics Data System (ADS)

Dissolved organic matter (DOM) rich water samples (Great Dismal Swamp, Virginia) were 0.1-?m filtered and UV-irradiated in a solar simulator for 30 days. During the irradiation, pH increased, particulate organic matter (POM) and particulate iron formed. After 30 days, 7% of the dissolved organic carbon (DOC) was converted to POC while 75% was remineralized. Approximately 87% of the iron was removed from the dissolved phase after 30 days, but iron did not flocculate until a major fraction of DOM was removed by photochemical degradation and flocculation (>10 days); thus, during the initial 10 days, there were sufficient organic ligands present or the pH was low enough to keep iron in solution. Nuclear magnetic resonance and Fourier transform infrared spectroscopies indicated that photochemically flocculated POM was more aliphatic than the residual non-flocculated DOM. Photochemically flocculated POM was also enriched in amide functionality, while carbohydrate-like material was resistant to both photochemical degradation and flocculation. Abiotic photochemical flocculation likely removes a significant fraction of terrestrial DOM from the upper water column between headwaters and the ocean, but has previously been ignored. Preliminary evidence suggests that this process may significantly impact the transport of DOM and POM in ocean margin environments including estuaries.

Helms, John R.; Mao, Jingdong; Schmidt-Rohr, Klaus; Abdulla, Hussain; Mopper, Kenneth

2013-11-01

137

Dissolved Fe(II) in a river-estuary system rich in dissolved organic matter  

NASA Astrophysics Data System (ADS)

Reduced iron, Fe(II), accounts for a significant fraction of dissolved Fe across many natural surface waters despite its rapid oxidation under oxic conditions. Here we investigate the temporal and spatial variation in dissolved Fe redox state in a high dissolved organic matter (DOM) estuarine system, the River Beaulieu. We couple manual sample collection with the deployment of an autonomous in situ analyser, designed to simultaneously measure dissolved Fe(II) and total dissolved Fe, in order to investigate processes operating on the diurnal timescale and to evaluate the performance of the analyser in a high DOM environment. Concentrations of dissolved Fe available to the ligand ferrozine are elevated throughout the estuary (up to 21 ?M in freshwater) and notably higher than those previously reported likely due to seasonal variation. Fe(II) is observed to account for a large, varying fraction of the dissolved Fe available to ferrozine (25.5 ± 12.5%) and this fraction decreases with increasing salinity. We demonstrate that the very high DOM concentration in this environment and association of this DOM with dissolved Fe, prevents the accurate measurement of dissolved Fe concentrations in situ using a sensor reliant on rapid competitive ligand exchange.

Hopwood, Mark J.; Statham, Peter J.; Milani, Ambra

2014-12-01

138

Design/installation and structural integrity assessment of Bethel Valley low-level waste collection and transfer system upgrade for Building 3092 (Central Off-Gas Scrubber Facility) at Oak Ridge National Laboratory  

SciTech Connect

This document describes and assesses planned modifications to be made to the Building 3092 Central Off-Gas Scrubber Facility of the Oak Ridge National Laboratory, Oak Ridge, Tennessee. The modifications are made in responsible to the requirements of 40CFR264 Subpart J, relating to environmental protection requirements for buried tank systems. The modifications include the provision of a new scrubber recirculation tank in a new, below ground, lines concrete vault, replacing and existing recirculation sump that does not provide double containment. A new buried, double contained pipeline is provided to permit discharge of spent scrubber recirculation fluid to the Central Waste Collection Header. The new vault, tank, and discharge line are provided with leak detection and provisions to remove accumulated liquid. New scrubber recirculation pumps, piping, and accessories are also provided. This assessment concludes that the planned modifications comply with applicable requirements of 40CFR264 Subpart J, as set forth in Appendix F to the Federal Facility Agreement, Docket No. 89-04-FF, covering the Oak Ridge Reservation.

NONE

1995-01-01

139

Process for coal liquefaction in staged dissolvers  

DOEpatents

There is described an improved liquefaction process by which coal is converted to a low ash and low sulfur carbonaceous material that can be used as a fuel in an environmentally acceptable manner without costly gas scrubbing equipment. In the process, coal is slurried with a pasting oil, passed through a preheater and at least two dissolvers in series in the presence of hydrogen-rich gases at elevated temperatures and pressures. Solids, including mineral ash and unconverted coal macerals, are separated from the condensed reactor effluent. In accordance with the improved process, the first dissolver is operated at a higher temperature than the second dissolver. This temperature sequence produces improved product selectivity and permits the incorporation of sufficient hydrogen in the solvent for adequate recycle operations.

Roberts, George W. (Emmaus, PA); Givens, Edwin N. (Bethlehem, PA); Skinner, Ronald W. (Allentown, PA)

1983-01-01

140

A Quantitative Evaluation of Dissolved Oxygen Instrumentation  

NASA Technical Reports Server (NTRS)

The implications of the presence of dissolved oxygen in water are discussed in terms of its deleterious or beneficial effects, depending on the functional consequences to those affected, e.g., the industrialist, the oceanographer, and the ecologist. The paper is devoted primarily to an examination of the performance of five commercially available dissolved oxygen meters. The design of each is briefly reviewed and ease or difficulty of use in the field described. Specifically, the evaluation program treated a number of parameters and user considerations including an initial check and trial calibration for each instrument and a discussion of the measurement methodology employed. Detailed test results are given relating to the effects of primary power variation, water-flow sensitivity, response time, relative accuracy of dissolved-oxygen readout, temperature accuracy (for those instruments which included this feature), error and repeatability, stability, pressure and other environmental effects, and test results obtained in the field. Overall instrument performance is summarized comparatively by chart.

Pijanowski, Barbara S.

1971-01-01

141

Influence of Dissolved Organic Materials on Turbid Water Optical Properties and Remote-Sensing Reflectance  

Microsoft Academic Search

Results from both field measurements and laboratory simulations are used to assess the effects of dis- solved organic materials on turbid-water optical properties. Upwelled reflectance, attenuation, absorp- tion, and bckscatter spectral properties at wavelengths from 450 to 800 nm are examined in relation to water chemistry. From these data it is clear that dissolved organic materials decrease upwelled reflect- ance

W. G. Witte; C. H. Whitlock; R. C. Harriss; J. W. Usry; L. R. Poole; W. M. Houghton; W. D. Morris; E. A. Gurganus

1982-01-01

142

TRANSPORT OF DISSOLVED ORGANICS FROM DILUTE AQUEOUS SOLUTIONS THROUGH FLEXIBLE MEMBRANE LINERS  

EPA Science Inventory

This paper presents the results of experiments relating to the partitioning of dissolved organics from dilute aqueous solutions to polymeric flexihle memhrane liner (FMLs) and their permeation through these liners. n order to simulate partitioning and the transport of waste const...

143

REMOVING DISSOLVED INORGANIC CONTAMINANTS FROM WATER  

EPA Science Inventory

Dissolved inorganic contaminants in water can be cationic, anionic, or neutral forms of ions, atoms, or molecules of any element in the periodic table. The article describes the physicochemical treatment processes typically used to remove the more common inorganic contaminants fr...

144

DISSOLVED OXYGEN IMPACT FROM URBAN STORM RUNOFF  

EPA Science Inventory

The primary objective of the research reported here is to determine if on a national basis a correlation exists between strength of dissolved oxygen (DO) deficits and the presence of rainfall and/or storm runoff downstream of urban areas. A secondary objective is to estimate the ...

145

Fractionation of Dissolved Solutes and Chromophoric Dissolved Organic Matter During Experimental Sea Ice Formation.  

E-print Network

In the past decade there has been an overall decrease in Arctic Ocean sea ice cover. Changes to the ice cover have important consequences for organic carbon cycling, especially over the continental shelves. When sea ice is formed, dissolved organic...

Smith, Stephanie 1990-

2012-04-16

146

Production and export of dissolved C in arctic tundra mesocosms: the roles of vegetation and water flow  

Microsoft Academic Search

To better understand carbon (C) cycling in arctic tundra we measureddissolved C production and export rates in mesocosms of three tundra vegetationtypes: tussock, inter-tussock and wet sedge. Three flushing frequencies wereused to simulate storm events and determine potential mass export of dissolved Cunder increased soil water flow scenarios. Dissolved C production and exportrates differed between vegetation types (inter-tussock -1day-1). Soil

Kristin E. Judd; George W. Kling

2002-01-01

147

The relationship of dissolved Pb to some dissolved trace metals (Al, Cr, Mn, and Zn) and to dissolved nitrate and phosphate in a freshwater aquatic system in Mauritius.  

PubMed

The relationship of some dissolved trace metals (Al, Cr, Mn, Zn, and Pb) with one another and to dissolved phosphate and nitrate in a freshwater aquatic system at Flic en Flac and Grand River North West (GRNW) in Mauritius (1850 km2, 20 degrees S and 57 degrees E, Western Indian ocean) is reported following trace metal determination using inductively coupled plasma mass spectrometry (ICP-MS). Dissolved Al (<200 ng ml(-1)), Cr (<50 ng ml(-1)), Mn (<50 ng ml(-1)), Zn (< 100 ng ml(-1)), and Pb (<50 ng ml(-1)) upstream, downstream GRNW and in the marshes and rivulet at Flic en Flac were found to be below the recommended EEC maximum admissible concentrations and within the ambient drinking water quality standards in Mauritius. Dissolved Pb was significantly positively correlated to both dissolved Cr and Zn suggesting that the cycling for dissolved Pb is linked to the cycling of both dissolved Cr and Zn along GRNW. The common influential cycling of Pb and Zn was further reinforced as both dissolved Pb and Zn were significantly positively correlated to dissolved phosphate, which suggested a biological role in the cycling of Zn and Pb. The role of biological activity or adsorption to biological systems in Pb cycling along GRNW is further suggested as dissolved Pb was significantly correlated to dissolved nitrate. The apparent absence of the dissolved Al, Cr, and Mn with dissolved nitrate and phosphate could be attributed to factors such as the lower sensitivity of the GRNW to metal uptake during biological activity during the time frame considered. The cycling of dissolved Al and Mn was also not linked to the cycling of Cr, Zn, and Pb as no significant correlation was found along GRNW. PMID:11341289

Ramessur, R T; Parry, S J; Ramjeawon, T

2001-04-01

148

Predicting dissolved organic nitrogen export from a drained loblolly pine plantation  

NASA Astrophysics Data System (ADS)

Dissolved organic nitrogen (DON) export from terrestrial ecosystems influences the ecology of receiving surface waters. The soil carbon (C) and nitrogen (N) model, DRAINMOD-N II, was modified to simulate key processes associated with DON transformations and transport in the soil profile. DON production is modeled by tracking dynamic C:N ratios of dissolved organic matter originating from various organic matter pools. The Langmuir isotherm was used to quantify the assumed instantaneous equilibrium between potentially soluble organic N in solid and aqueous phases. DON transport with soil water was simulated using a numerical solution to the advection-dispersion reaction equation. The modified model was used for simulating temporal variations of DON export from three loblolly pine (Pinus taeda L.) plantations located in eastern North Carolina. Results showed that the model can accurately predict DON export dynamics during storm events with Nash-Sutcliffe efficiency (E) of 0.5, seasonal DON losses with E above 0.6, and annual DON losses with E above 0.7. In addition to the well-recognized role of hydrological processes, reasonable quantifications of the seasonal changes in the potentially soluble soil organic matter, the DON sorption to soil particles, and the dynamic C:N ratios of dissolved organic matter were found to be essential for mechanistic representation of DON export dynamics. Specifically, adapting the dynamic C:N ratios enabled the model to reasonably describe the temporal variations of correlations between DON and dissolved organic carbon in drainage water.

Tian, Shiying; Youssef, Mohamed A.; Skaggs, R. Wayne; Chescheir, G. M.; Amatya, Devendra M.

2013-04-01

149

Evaluation and Testing of IONSIV IE-911 for the Removal of Cesium-137 from INEEL Tank Waste and Dissolved Calcines  

SciTech Connect

Development of waste treatment processes for the remediation of radioactive wastes is currently underway. A number of experiments were performed at the Idaho Nuclear Technology and Environmental Center (INTEC) located at the Idaho National Engineering and Environmental Laboratory (INEEL) with the commercially available sorbent material, IONSIV IE-911, crystalline silicotitanate (CST), manufactured by UOP LLC. The purpose of this work was to evaluate the removal efficiency, sorbent capacity and selectivity of CST for removing Cs-137 from actual and simulated acidic tank waste in addition to dissolved pilot-plant calcine solutions. The scope of this work included batch contact tests performed with non-radioactive dissolved Al and Run-64 pilot plant calcines in addition to simulants representing the average composition of tank waste. Small-scale column tests were performed with actual INEEL tank WM-183 waste, tank waste simulant, dissolved Al and Run-64 pilot plant calcine solutions. Small-scale column experiments using actual WM-183 tank waste resulted in fifty-percent Cs-137 breakthrough at approximately 589 bed volumes. Small-scale column experiments using the tank waste simulant displayed fifty-percent Cs-137 breakthrough at approximately 700 bed volumes. Small-scale column experiments using dissolved Al calcine simulant displayed fifty-percent Cs-137 breakthrough at approximately 795 bed volumes. Column experiments with dissolved Run-64, pilot plant calcine did not reach fifty-percent breakthrough throughout the test.

N. R. Mann; T. A. Todd; K. N. Brewer; D. J. Wood; T. J. Tranter; P. A. Tullock

1999-04-01

150

Dissolving Polymer Microneedle Patches for Influenza Vaccination  

PubMed Central

Influenza prophylaxis would benefit from a vaccination method enabling simplified logistics and improved immunogenicity without the dangers posed by hypodermic needles. Here, we introduce dissolving microneedle patches for influenza vaccination using a simple patch-based system that targets delivery to skin’s antigen-presenting cells. Microneedles were fabricated using a biocompatible polymer encapsulating inactivated influenza virus vaccine for insertion and dissolution in the skin within minutes. Microneedle vaccination generated robust antibody and cellular immune responses in mice that provided complete protection against lethal challenge. Compared to conventional intramuscular injection, microneedle vaccination resulted in more efficient lung virus clearance and enhanced cellular recall responses after challenge. These results suggest that dissolving microneedle patches can provide a novel technology for simpler and safer vaccination with improved immunogenicity that could facilitate increased vaccination coverage. PMID:20639891

Sullivan, Sean P.; Koutsonanos, Dimitrios G.; Martin, Maria del Pilar; Lee, Jeong-Woo; Zarnitsyn, Vladimir; Murthy, Niren; Compans, Richard W.; Skountzou, Ioanna; Prausnitz, Mark R.

2010-01-01

151

An Introduction to Chemistry: Dissolving Sodium Chloride  

NSDL National Science Digital Library

What happens at the molecular level when a compound dissolves in water? This interactive animation explores how negative and positive ions in sodium chloride (table salt) collide with water molecules and become separated from each other to become a solution. The model does an effective job of depicting how the water molecules disrupt the attraction between the positive sodium ions and the negative chloride ions, and then become stabilized by attractions to the atoms in the water molecule.

Bishop, Mark

2011-05-02

152

Dissolved aluminum in the Gulf of Mexico  

E-print Network

and unswerving Rickness, IMAX. Vl TABLE OF CONTENTS Page ABSTRACT ACKNOWLEDGEMENTS TABLE OF CONTENTS Vi LIST OF TABLES V1. 1. LIST OF FIGURES INTRODUCTION THE NORTHWESTERN GULF OF MEXICO PRECIPITATION AND DISSOLUTION OF ALUMINUM THE CONCENTRATION... and residence time estimates 4) Mississippi River flux and residence time estimates V I I I LIST OF FIGURES Figure Page 1) Location map, Northwestern Gulf of Mexico 2) Aluminum hydroxide pH diagram 3) Clay dissolution in sea water 4) Dissolved aluminum...

Myre, Peggy Lynne

2012-06-07

153

Partial nitrification under limited dissolved oxygen conditions  

Microsoft Academic Search

Partial nitrification to nitrite is technically feasible and economically favourable, especially when wastewaters contained high ammonium concentrations or low C\\/N ratios. Partial nitrification can be obtained by selectively inhibiting nitrite-oxidizing bacteria (NOB) through appropriate regulation of the pH, temperature and dissolved oxygen (DO) concentrations. The effect of pH, DO levels and temperature on ammonia oxidation rate and nitrite accumulation was

Wang Jianlong; Yang Ning

2004-01-01

154

Enzymatic removal of hemicellulose from dissolving pulps  

Microsoft Academic Search

Hemicellulases and an endoglucanase from seven different fungi were assessed for their potential to solubilze mannan and xylan\\u000a from softwood sulfite dissolving pulps. A xylanase from Thermomyces lanuginosus and a mannanase from Sclerotium rolfsii acted\\u000a synergistically on the pulp solubilizing 50% more mannan and 11% more xylan than did the individual enzymes. The addition\\u000a of an endoglucanase further increased both

G. M Gübitz; T. Lischnig; D. Stebbing; J. N. Saddler

1997-01-01

155

Dissolved organic nitrogen measurement using dialysis pretreatment.  

PubMed

Dissolved organic nitrogen (DON) is important for ecological and engineering researches. Quantification of low DON concentrations in waters with elevated dissolved inorganic nitrogen (DIN) using existing methods is inaccurate. In this study, a dialysis-based pretreatment technique was optimized and adopted to reduce the interference from DIN to the quantification of DON in natural water. A cellulose ester dialysis tube (nominal molecular weight cutoff = 100 Da) was used in batch and continuous-flow dialysis steps with model compounds, natural organic matter isolates, and bulk waters to develop a dialysis pretreatment approach that selectively reduces DIN from solutions containing DON. By reducing DIN concentrations, propagation of analytical variance in total dissolved nitrogen (TDN) and DIN species concentrations allows more accurate determination of DON (DON = TDN - NO3 - NO2- - NH3/NH4+). Dialysis for 24 h against continuously flowing distilled water reduced DIN species by 70%. With dialysis pretreatment, DON recoveries of more than 95% were obtained for surface water and finished drinking water, but wastewater experienced a slight loss (approximately 10%) of DON possibly due to the adsorption of organics onto the dialysis membrane, permeation of low molecular weight fractions, or biodegradation. Dialysis experiments using surface water spiked with different DIN/TDN ratios concluded that dialysis pretreatment leads to more accurate DON determination than no dialysis when DIN/TDN ratios exceed 0.6 mg of N/mg of N. PMID:15757353

Lee, Wontae; Westerhoff, Paul

2005-02-01

156

Superhydrophobic porous surfaces: dissolved oxygen sensing.  

PubMed

Porous polymer films are necessary for dissolved gas sensor applications that combine high sensitivity with selectivity. This report describes a greatly enhanced dissolved oxygen sensor system consisting of amphiphilic acrylamide-based polymers: poly(N-(1H, 1H-pentadecafluorooctyl)-methacrylamide) (pC7F15MAA) and poly(N-dodecylacrylamide-co-5- [4-(2-methacryloyloxyethoxy-carbonyl)phenyl]-10,15,20-triphenylporphinato platinum(II)) (p(DDA/PtTPP)). The nanoparticle formation capability ensures both superhydrophobicity with a water contact angle greater than 160° and gas permeability so that molecular oxygen enters the film from water. The film was prepared by casting a mixed solution of pC7F15MAA and p(DDA/PtTPP) with AK-225 and acetic acid onto a solid substrate. The film has a porous structure comprising nanoparticle assemblies with diameters of several hundred nanometers. The film shows exceptional performance as the oxygen sensitivity reaches 126: the intensity ratio at two oxygen concentrations (I0/I40) respectively corresponding to dissolved oxygen concentration 0 and 40 (mg L(-1)). Understanding and controlling porous nanostructures are expected to provide opportunities for making selective penetration/separation of molecules occurring at the superhydrophobic surface. PMID:25659178

Gao, Yu; Chen, Tao; Yamamoto, Shunsuke; Miyashita, Tokuji; Mitsuishi, Masaya

2015-02-18

157

27 CFR 19.455 - Dissolving of denaturants.  

Code of Federal Regulations, 2010 CFR

...BUREAU, DEPARTMENT OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Denaturing Operations and Manufacture of Articles Denaturation § 19.455 Dissolving of denaturants. Denaturants which are difficult to dissolve in spirits at usual...

2010-04-01

158

SUSPENDED AND DISSOLVED SOLIDS EFFECTS ON FRESHWATER BIOTA: A REVIEW  

EPA Science Inventory

It is widely recognized that suspended and dissolved solids in lakes, rivers, streams, and reservoirs affect water quality. In this report the research needs appropriate to setting freshwater quality criteria or standards for suspended solids (not including bedload) and dissolved...

159

Determination of Dissolved Oxygen in the Cryosphere: A Comprehensive  

E-print Network

Determination of Dissolved Oxygen in the Cryosphere: A Comprehensive Laboratory and Field communities, whose function and dynamics are often controlled by the concentrations of dissolved oxygen (DO tests and superior to traditional methods. Introduction Dissolved oxygen (DO) is a key parameter

Fountain, Andrew G.

160

VARIATIONS IN THE DISSOLVED OXYGEN CONTENT OF INTRAGRAVEL WATER IN  

E-print Network

^402: VARIATIONS IN THE DISSOLVED OXYGEN CONTENT OF INTRAGRAVEL WATER IN FOUR SPAWNING STREAMS IN THE DISSOLVED OXYGEN CONTENT OF INTRAGRAVEL WATER IN FOUR SPAWNING STREAMS OF SOUTHEASTERN ALASKA by William J Introduction 1 Sampling intragravel water for dissolved oxygen content 2 Obtaining water samples from

161

Impacts of individual fish movement patterns on estimates of mortality due to dissolved gas supersaturation in the Columbia River Basin.  

SciTech Connect

Spatial and temporal distributions of dissolved gases in the Columbia and Snake rivers vary due to many factors including river channel and dam geometries, operational decisions, and natural variations in flow rates. As a result, the dissolved gas exposure histories experienced by migrating juvenile salmonids can vary significantly among individual fish. A discrete, particle-based model of individual fish movements and dissolved gas exposure history has been developed and applied to examine the effects of such variability on estimates of fish mortality. The model, called the Fish Individual-based Numerical Simulator or FINS, is linked to a two-dimensional (vertically-averaged) hydrodynamic simulator that quantifies local water velocity, temperature, and dissolved gas levels as a function of river flow rates and dam operations. Simulated gas exposure histories are then input to biological mortality models to predict the effects of various river configurations on fish injury and mortality due to dissolved gas supersaturation. This model framework provides a critical linkage between hydrodynamic models of the river system and models of biological effects. FINS model parameters were estimated and validated based on observations of individual fish movements collected using radiotelemetry methods during 1997 and 1998. The model was then used to simulate exposure histories under selected operational scenarios. We compare mortality rates estimated using the FINS model approach (incorporating individual behavior and spatial and temporal variability) to those estimated using average exposure times and levels as is done in traditional lumped-parameter model approaches.

Scheibe, Timothy D.; Richmond, Marshall C.; Fidler, Larry E.

2002-12-31

162

Decreased structure on dissolving methane in water  

NASA Astrophysics Data System (ADS)

There is a widely held view that hydrophobic entities such as alkanes and alkyl head groups enhance the local structure of water (greater tetrahedrality) when dissolved in it. The idea stems from an early paper by Frank and Evans who speak about ice-like structures forming around hydrophobic entities in solution. Here, we probe directly for the first time the structure of water in a methane-water solution using neutron diffraction with hydrogen isotope substitution. We find no evidence for enhanced water structure. If anything the structure is marginally less tetrahedral than in pure water at the same temperature and pressure.

Buchanan, P.; Aldiwan, N.; Soper, A. K.; Creek, J. L.; Koh, C. A.

2005-10-01

163

Radiothermoluminescence sensitisation by dissolved oxygen in fluoropolymers  

NASA Astrophysics Data System (ADS)

The intensity of radiothermoluminescence (RTL) flashes in polytetrafluoroethylene (PTFE) and tetrafluoroethylene/hexafluoropropylene copolymer (trademark FEP) depending on the oxygen pressure in the outer atmosphere (from 10 -4 to 720 Torr) shows that dissolved oxygen plays an important role in the RTL phenomenon in fluoropolymers. On the basis of the established "pressure" dependence, it is proposed that physically adsorbed oxygen molecules can accumulate in defect regions of the polymer matrix and further interact with active centers that have escaped from the traps during heating of the polymer samples, resulting in RTL flashes. It is concluded that RTL in fluoropolymers may be oxygen-induced chemiluminescence.

Smolyanskii, A. S.; Shelukhov, I. P.; Podsoblyaev, A. P.; Tupikov, V. I.

2001-01-01

164

Dissolved organic matter in the Baltic Sea  

NASA Astrophysics Data System (ADS)

Several factors highlight the importance of dissolved organic matter (DOM) in coastal ecosystems such as the Baltic Sea: 1) DOM is the main energy source for heterotrophic bacteria in surface waters, thus contributing to the productivity and trophic state of bodies of water. 2) DOM functions as a nutrient source: in the Baltic Sea, more than one-fourth of the bioavailable nutrients can occur in the dissolved organic form in riverine inputs and in surface water during summer. Thus, DOM also supports primary production, both directly (osmotrophy) and indirectly (via remineralization). 3) Flocculation and subsequent deposition of terrestrial DOM within river estuaries may contribute to production and oxygen consumption in coastal sediments. 4) Chromophoric DOM, which is one of the major absorbers of light entering the Baltic Sea, contributes highly to water color, thus affecting the photosynthetic depth as well as recreational value of the Baltic Sea. Despite its large-scale importance to the Baltic Sea ecosystem, DOM has been of minor interest compared with inorganic nutrient loadings. Information on the concentrations and dynamics of DOM in the Baltic Sea has accumulated since the late 1990s, but it is still sporadic. This review provides a coherent view of the current understanding of DOM dynamics in the Baltic Sea.

Hoikkala, L.; Kortelainen, P.; Soinne, H.; Kuosa, H.

2015-02-01

165

Novel approach of aceclofenac fast dissolving tablet.  

PubMed

Fast disintegrating tablets (FDTs) have received ever increasing demand during the last decade, and the ?eld has become a hastily growing area in the pharmaceutical industry. Upon introduction into the mouth, these tablets dissolve or disintegrate in the mouth in the absence of additional water for easy administration of active pharmaceutical ingredients. Aceclofenac, an NSAID, has been recommended orally for the treatment of bone and connective tissue disorder and thus the formulation of the same resulted in development of several FDT technologies. The present aim is to formulate a tablet which disintegrate and dissolve rapidly and give its rapid onset of action: analgesic, antipyretic and anti-inflammatory action. Besides, the conventional tablets also show poor patient compliance an attempt had been made to formulate for FDT of aceclofenac by using various super disintegrants like sodium starch glycolate, croscarmellose sodium and crosspovidone (polyplasdone XL) and PEG 6000 followed by novel technique. The tablets were evaluated for friability, hardness, weight variation, disintegration time, wetting time, in vitro dissolution studies and drug content studies. It was concluded that the batch which was prepared by using combination of crosspovidone and sodium starch glycolate as a super disintegrant shows excellent disintegration time, enhance dissolution rate, taste masking and hence lead to improve efficacy and bioavailability of drug. PMID:25553683

Dave, Vivek; Yadav, Sachdev; Sharma, Swapnil; Vishwakarma, Pushpendra; Ali, Nasir

2015-01-01

166

DISSOLVED CONCENTRATION LIMITS OF RADIOACTIVE ELEMENTS  

SciTech Connect

The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments. The scope of this modeling activity is to predict dissolved concentrations or solubility limits for 14 elements with radioactive isotopes (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium) important to calculated dose. Model outputs for uranium, plutonium, neptunium, thorium, americium, and protactinium are in the form of tabulated functions with pH and log (line integral) CO{sub 2} as independent variables, plus one or more uncertainty terms. The solubility limits for the remaining elements are either in the form of distributions or single values. The output data from this report are fundamental inputs for Total System Performance Assessment for the License Application (TSPA-LA) to determine the estimated release of these elements from waste packages and the engineered barrier system. Consistent modeling approaches and environmental conditions were used to develop solubility models for all of the actinides. These models cover broad ranges of environmental conditions so that they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, and activity coefficients have been quantified or otherwise addressed.

NA

2004-11-22

167

Net methylation of mercury in estuarine sediment microcosms amended with dissolved, nanoparticulate, and microparticulate mercuric sulfides.  

PubMed

The production of methylmercury (MeHg) by anaerobic microorganisms depends in part on the speciation and bioavailability of inorganic mercury to these organisms. Our previous work with pure cultures of methylating bacteria has demonstrated that the methylation potential of mercury decreased during the aging of mercuric sulfides (from dissolved to nanoparticulate and microcrystalline HgS). The objective of this study was to understand the relationship between mercury sulfide speciation and methylation potential in experiments that more closely simulate the complexity of sediment settings. The study involved sediment slurry microcosms that represented a spectrum of salinities in an estuary and were each amended with different forms of mercuric sulfides: dissolved Hg and sulfide, nanoparticulate HgS (3-4 nm in diameter), and microparticulate HgS (>500 nm). The results indicated that net MeHg production was influenced by both the activity of sulfate-reducing microorganisms (roughly represented by the rate of sulfate loss) and the bioavailability of mercury. In the presence of abundant sulfate and carbon sources (supporting relatively high microbial activity), net MeHg production in the slurries amended with dissolved Hg was greater than in slurries amended with nano-HgS, similar to previous experiments with pure bacterial cultures. In microcosms with minimal microbial activity (indicated by low rates of sulfate loss), the addition of either dissolved Hg or nano-HgS resulted in similar amounts of net MeHg production. For all slurries receiving micro-HgS, MeHg production did not exceed abiotic controls. In slurries amended with dissolved and nano-HgS, mercury was mainly partitioned to bulk-scale mineral particles and colloids, indicating that Hg bioavailability was not simply related to dissolved Hg concentration or speciation. Overall, the results suggest that models for mercury methylation potential in the environment will need to balance the relative contributions of mercury speciation and activity of methylating microorganisms. PMID:25007388

Zhang, Tong; Kucharzyk, Katarzyna H; Kim, Bojeong; Deshusses, Marc A; Hsu-Kim, Heileen

2014-08-19

168

Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean  

Microsoft Academic Search

Changes in oxygen concentrations at the sediment-water interface play a major role in controlling benthic foraminiferal assemblages and morphologic characteristics; such changes are reflected in size, wall thickness, porosity, and also taxa (genera and species) of foraminifera present. These morphologic and taxonomic differences have been quantified as a dissolved-oxygen index. This paper demonstrates that the foraminiferal oxygen index derived from

Kunio Kaiho

1994-01-01

169

Spawning Success of the Black Crappie, Pomoxis nigromaculatus, at Reduced Dissolved Oxygen Concentrations  

Microsoft Academic Search

Mature black crappies (Pomoxis nigromaculatus) were exposed to constant dissolved oxygen (DO) concentrations near or at 2.5, 3.5, 5.0, or 6.5 mg\\/liter, and near air saturation (control) to determine the effects of reduced DO on spawning success. The fish spawned successfully 39 times in laboratory tanks under a simulated natural temperature and light regime at all DO concentrations tested. Fish

Richard E. Siefert; Lawrence J. Herman

1977-01-01

170

Completion of the ORNL Fuel Cycle Research and Development (FCR&D) Level 4 Milestone – Sigma Team – Off-Gas – ORNL – FT-14OR031202, MS# M4FT-14OR0312027, “Support to PNNL Kr-85 Preliminary Optimization Study”, due May 30, 2014  

SciTech Connect

This letter and attached emails document the completion of the FCR&D Level 4 milestone for the Sigma Team – Off-Gas – ORNL work package (FT-14OR031202), “Support to PNNL Kr-85 Preliminary Optimization Study” (M4FT-14OR0312027), due May 30, 2014. Support to this effort included providing a literature search and providing a significant number of reference documents covering more than 30 years of past work on Kr recovery, recovery system designs, and past cost analyses. In addition, ORNL provided support on several conference calls to establish an analysis approach for the current study and to review progress.

Jubin, Robert T. [ORNL] [ORNL

2014-05-30

171

FINAL REPORT INTEGRATED DM1200 MELTER TESTING USING AZ 102 AND C 106/AY-102 HLW SIMULANTS: HLW SIMULANT VERIFICATION VSL-05R5800-1 REV 0 6/27/05  

SciTech Connect

The principal objectives of the DM1200 melter tests were to determine the effects of feed rheology, feed solid content, and bubbler configuration on glass production rate and off-gas system performance while processing the HLW AZ-101 and C-106/AY-102 feed compositions; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components, as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and perform pre- and post test inspections of system components. The specific objectives (including test success criteria) of this testing, along with how each objective was met, are outlined in a table. The data provided in this Final Report address the impacts of HLW melter feed rheology on melter throughput and validation of the simulated HLW melter feeds. The primary purpose of this testing is to further validate/verify the HLW melter simulants that have been used for previous melter testing and to support their continued use in developing melter and off-gas related processing information for the Project. The primary simulant property in question is rheology. Simulants and melter feeds used in all previous melter tests were produced by direct addition of chemicals; these feed tend to be less viscous than rheological the upper-bound feeds made from actual wastes. Data provided here compare melter processing for the melter feed used in all previous DM100 and DM1200 tests (nominal melter feed) with feed adjusted by the feed vendor (NOAH Technologies) to be more viscous, thereby simulating more closely the upperbounding feed produced from actual waste. This report provides results of tests that are described in the Test Plan for this work. The Test Plan is responsive to one of several test objectives covered in the WTP Test Specification for this work; consequently, only part of the scope described in the Test Specification was addressed in this particular Test Plan. For the purpose of comparison, the tests reported here were performed with AZ-102 and C-106/AY-102 HLW simulants and glass compositions that are essentially the same as those used for recent DM1200 tests. One exception was the use of an alternate, higher-waste-loading C-106/AY-102 glass composition that was used in previous DM100 tests to further evaluate the performance of the optimized bubbler configuration.

KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; D'ANGELO NA; BRANDYS M; KOT WK; PEGG IL

2011-12-29

172

Scattering measurements from a dissolving bubble.  

PubMed

A laboratory-scale study on acoustic scattering from a single bubble undergoing dissolution in undersaturated fresh water is presented. Several experiments are performed with the acoustic source driven with five-cycle tone bursts, center frequency of 120 kHz, to insonify a single bubble located on axis of the combined beam of the set of transducers. The bubble is placed on a fine nylon thread located in the far field of the transducer set, arranged in bistatic configuration, in a tank filled with undersaturated water. Backscattered waveforms from the bubble target are acquired every few seconds for several hours until the bubble has completely dissolved, and detailed dissolution curves are produced from the acoustic data. The rate of bubble dissolution is calculated using the solution developed by Epstein and Plesset [J. Chem. Phys. 18, 1505-1509 (1950)]. The results of the experiments performed are in agreement with the calculations. PMID:22712899

Kapodistrias, George; Dahl, Peter H

2012-06-01

173

Method for dissolving delta-phase plutonium  

DOEpatents

A process for dissolving plutonium, and in particular, delta-phase plutonium. The process includes heating a mixture of nitric acid, hydroxylammonium nitrate (HAN) and potassium fluoride to a temperature between 40.degree. and 70.degree. C., then immersing the metal in the mixture. Preferably, the nitric acid has a concentration of not more than 2M, the HAN approximately 0.66M, and the potassium fluoride 0.1M. Additionally, a small amount of sulfamic acid, such as 0.1M can be added to assure stability of the HAN in the presence of nitric acid. The oxide layer that forms on plutonium metal may be removed with a non-oxidizing acid as a pre-treatment step.

Karraker, David G. (1600 Sherwood Pl., SE., Aiken, SC 29801)

1992-01-01

174

Method for dissolving delta-phase plutonium  

SciTech Connect

A process for dissolving plutonium, and in particular, delta-phase plutonium. The process includes heating a mixture of nitric acid, hydroxylammonium nitrate and potassium fluoride (HAN) to a temperature between 40 and 70 C, then immersing the metal in the mixture. Preferably, the nitric acid has a concentration of not ore than 2M, the HAN approximately 0.66M, and the potassium fluoride 1M. Additionally, a small amount of sulfamic acid, such as 0.1M can be added to assure stability of the HAN in the presence of nitric acid. The oxide layer that forms on plutonium metal may be removed with a non-oxidizing acid as a pre-treatment step.

Karraker, D.G.

1992-12-31

175

Removal of dissolved metals by plant tissue  

SciTech Connect

Various types of microbial biomass have been shown to adsorb metals dissolved in aqueous media. It has now been demonstrated that certain plant tissues are also effective for this type of adsorption process. In particular, tomato and tobacco roots harvested from field-grown plants were shown to adsorb Sr from an aqueous solution of SrCl[sub 2]. Distribution coefficients in excess of 550 were measured and the adsorption isotherms at 25 C could be fitted to Langmuir-type expressions. The bioadsorbent could be regenerated and metals recovered by either a reduction in the pH to less than 2.0 or by use of a concentrated chloride salt solution.

Scott, C.D. (Oak Ridge National Lab., TN (United States))

1992-04-25

176

Treatment of SRS Tank 48H Simulants Using Fenton's Reagent  

SciTech Connect

High-level-waste Tank 48H at the Savannah River Site (SRS) contains about 50,000 lb of tetraphenylborate (TPB), which must be destroyed to return the tank to active service. Laboratory-scale tests were conducted to evaluate the use of Fenton's Reagent (hydrogen peroxide and a metal catalyst) to treat simulants of the Tank 48H waste. Samples of the treated slurry and the off-gas were analyzed to determine the reaction products. Process parameters developed earlier by AEA Technology were used for these tests; namely (for 500 mL of waste simulant), reduce pH to 7.5 with nitric acid, heat to boiling, add hydrogen peroxide at 1 mL/min for 1 h, reduce pH to 3.5, and add the remaining peroxide at 2 mL/min. These parameters were developed to minimize the formation of tarry materials during the early part of the reaction and to minimize the concentration of total organic carbon in the final treated slurry. The treated samples contained low concentrations of total organic carbon (TOC) and no detectable TPB. Tests using a mixture of iron and copper salts as the Fenton's catalyst had a lower TOC concentration in the final treated slurry than did tests that used a copper-only catalyst. TPB is known to hydrolyze to benzene, particularly at high temperature and low pH, and copper is known to increase the rate of hydrolysis. Significant amounts of benzene were present in the off-gas from the tests, especially during the early portion of the treatment, indicating that the hydrolysis reaction was occurring in parallel with the oxidation of the TPB by Fenton's reagent. For the reaction conditions used in these tests, approximately equal fractions of the TPB were converted to benzene and carbon dioxide. Minimizing the formation of benzene is important to SRS personnel; however, this consideration was not addressed in the AEA-recommended parameters, since they did not analyze for benzene in the off-gas. Smaller amounts of carbon monoxide and other organics were also produced. One test used a simulant with much lower concentrations of salts, representing washed sludge, and this test produced much smaller amounts of benzene. The nitrite ions in the simulant were oxidized to nitrate, which would increase the amount of peroxide required to oxidize all of the organic carbon. Oxygen is the primary constituent of the off-gas produced from treatment of the samples.

Taylor, PA

2003-11-18

177

Key results from SB8 simulant flowsheet studies  

SciTech Connect

Key technically reviewed results are presented here in support of the Defense Waste Processing Facility (DWPF) acceptance of Sludge Batch 8 (SB8). This report summarizes results from simulant flowsheet studies of the DWPF Chemical Process Cell (CPC). Results include: Hydrogen generation rate for the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles of the CPC on a 6,000 gallon basis; Volume percent of nitrous oxide, N2O, produced during the SRAT cycle; Ammonium ion concentrations recovered from the SRAT and SME off-gas; and, Dried weight percent solids (insoluble, soluble, and total) measurements and density.

Koopman, D. C.

2013-04-26

178

DISSOLVED CONCENTRATION LIMITS OF RADIOACTIVE ELEMENTS  

SciTech Connect

The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments. The scope of this activity is to predict dissolved concentrations or solubility limits for elements with radioactive isotopes (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium) relevant to calculated dose. Model outputs for uranium, plutonium, neptunium, thorium, americium, and protactinium are provided in the form of tabulated functions with pH and log fCO{sub 2} as independent variables, plus one or more uncertainty terms. The solubility limits for the remaining elements are either in the form of distributions or single values. Even though selection of an appropriate set of radionuclides documented in Radionuclide Screening (BSC 2002 [DIRS 160059]) includes actinium, transport of Ac is not modeled in the total system performance assessment for the license application (TSPA-LA) model because of its extremely short half-life. Actinium dose is calculated in the TSPA-LA by assuming secular equilibrium with {sup 231}Pa (Section 6.10); therefore, Ac is not analyzed in this report. The output data from this report are fundamental inputs for TSPA-LA used to determine the estimated release of these elements from waste packages and the engineered barrier system. Consistent modeling approaches and environmental conditions were used to develop solubility models for the actinides discussed in this report. These models cover broad ranges of environmental conditions so they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, and activity coefficients have been quantified or otherwise addressed.

P. Bernot

2005-07-13

179

Method to Estimate the Dissolved Air Content in Hydraulic Fluid  

NASA Technical Reports Server (NTRS)

In order to verify the air content in hydraulic fluid, an instrument was needed to measure the dissolved air content before the fluid was loaded into the system. The instrument also needed to measure the dissolved air content in situ and in real time during the de-aeration process. The current methods used to measure the dissolved air content require the fluid to be drawn from the hydraulic system, and additional offline laboratory processing time is involved. During laboratory processing, there is a potential for contamination to occur, especially when subsaturated fluid is to be analyzed. A new method measures the amount of dissolved air in hydraulic fluid through the use of a dissolved oxygen meter. The device measures the dissolved air content through an in situ, real-time process that requires no additional offline laboratory processing time. The method utilizes an instrument that measures the partial pressure of oxygen in the hydraulic fluid. By using a standardized calculation procedure that relates the oxygen partial pressure to the volume of dissolved air in solution, the dissolved air content is estimated. The technique employs luminescent quenching technology to determine the partial pressure of oxygen in the hydraulic fluid. An estimated Henry s law coefficient for oxygen and nitrogen in hydraulic fluid is calculated using a standard method to estimate the solubility of gases in lubricants. The amount of dissolved oxygen in the hydraulic fluid is estimated using the Henry s solubility coefficient and the measured partial pressure of oxygen in solution. The amount of dissolved nitrogen that is in solution is estimated by assuming that the ratio of dissolved nitrogen to dissolved oxygen is equal to the ratio of the gas solubility of nitrogen to oxygen at atmospheric pressure and temperature. The technique was performed at atmospheric pressure and room temperature. The technique could be theoretically carried out at higher pressures and elevated temperatures.

Hauser, Daniel M.

2011-01-01

180

Numerical modeling of dissolved oxygen in an ultra-urban best management practice.  

PubMed

Stormvault (Jensen Precast, Sparks, Nevada) is a retention-type ultra-urban best management practice, which has been tested extensively for pollutant reduction. As the first step to understand the internal water quality change during a dry-weather condition, dissolved oxygen was monitored in a Stormvault system. A diffusion-reaction model was developed to diagnose the contributions of organic materials floating on the water surface, in the water column, and in the sediment, to dissolved oxygen decrease. The mathematical model was calibrated using the observed dissolved oxygen data recorded at a 0.15-m interval along the water column depth. Three scenarios were simulated, and the results confirmed that sediment oxygen demand (SOD) is the governing factor controlling a dissolved oxygen decrease in the system. The SOD rate reaches 0.8 g m(-2) d(-1) at 20 degrees C, with an average sediment accumulation depth of 0.05 m, which is lower than the recommended cleanup depth of 0.15 m. PMID:19445326

Bai, Sen

2009-04-01

181

Neural network approach to separate the non-algal absorption coefficient into dissolved and particulate  

NASA Astrophysics Data System (ADS)

We present a method for the separation of the non-algal absorption coefficient into its independent components of dissolved species and non-algal particulate absorptions from remote sensing reflectance (Rrs) measurements in the visible part of the spectrum. This separation is problematic due to the similar absorption spectra of these substances. Due to this complication, we approach the problem by constructing a neural network which relates the remote sensing reflectance at the available MODIS visible wavelengths (412, 443, 488, 531, 547 and 667nm) with the ratio of the absorption coefficient of non-algal particulates to the absorption coefficient of dissolved species, thereby permitting analytical separation of the total non-algal absorption into particulate and dissolved components. The resulting synthetically trained algorithm is tested on simulated data as well as independently on the NASA Bio-Optical Marine Algorithm Data set (NOMAD). Very good agreement is obtained, with R2 values of 87% and 78% for the non-algal particulate and dissolved absorption components, respectively for the NOMAD. Finally, we apply the algorithm to MODIS data and present global distributions for these parameters.

Ioannou, Ioannis; Foster, Robert; Gilerson, Alex; Ahmed, Sam

2013-08-01

182

Dissolved inorganic phosphorus, dissolved iron, and Trichodesmium in the oligotrophic South China Sea  

Microsoft Academic Search

Dissolved inorganic phosphorus (DIP) concentrations in the oligotrophic surface waters of the South China Sea decrease from ~20 nM in March 2000 to ~5 nM in July 2000, in response to seasonal water column stratification. These minimum DIP concentrations are one order of magnitude higher than those in the P-limited, iron-replete stratified surface waters of the western North Atlantic, suggesting

Jingfeng Wu; Shi-Wei Chung; Liang-Saw Wen; Kon-Kee Liu; Yuh-ling Lee Chen; Houng-Yung Chen; David M. Karl

2003-01-01

183

EFFECTS OF SUNLIGHT ON CARBOXYL CONTENT OF DISSOLVED ORGANIC MATTER IN THE SATILLA RIVER OF GEORGIA, UNITED STATES  

EPA Science Inventory

A study examined the effect of sunlight-initiated photo-degradation of dissolved organic matter (DOM) on its carboxyl content, and the role of oxygen and iron in this process. Solar-simulated irradiations were performed on 0.2-mm filtered water samples collected from the highly c...

184

EFFECT OF LONG-TERM REDUCTION AND DIEL FLUCTUATIONS IN DISSOLVED OXYGEN ON SPAWNING OF BLACK CRAPPIE, 'POMOXIS NIGROMACULATUS'  

EPA Science Inventory

Mature black crappies were exposed over winter in the laboratory to constant dissolved oxygen concentrations near 2.5, 4.0, 5.5, and 7.0 mg/liter. Starting on 26 April during a simulated spring-to-summer rise in water temperature, some were continued at the original oxygen concen...

185

Dissolved aluminium in the Southern Ocean  

NASA Astrophysics Data System (ADS)

Dissolved aluminium (Al) occurs in a wide range of concentrations in the world oceans. The concentrations of Al in the Southern Ocean are among the lowest ever observed. An all-titanium CTD sampling system makes it possible to study complete deep ocean sections of Al and other trace elements with the same high vertical resolution of 24 depths as normal for traditional CTD/Rosette sampling. Overall, 470 new data points of Al are reported for 22 full depth stations and 24 surface sampling positions along one transect. This transect consisted of 18 stations on the zero meridian proper from 51°57' S until 69°24'S, and 4 stations somewhat to the northeast towards Cape Town from 42°20'S, 09°E to 50°17'S, 01°27'E. The actual concentrations of Al in the Southern Ocean were lower than previously reported. The concentration of Al in the upper 25 m was relatively elevated with an average concentration of 0.71 nM ( n=22; S.D.=0.43 nM), most likely due to atmospheric input by a suggested combination of direct atmospheric (wet and dry) input and indirect atmospheric input via melting sea ice. Below the surface waters there was a distinct Al minimum with an average concentration of 0.33 nM ( n=22; S.D.=0.13 nM) at an average depth of 120 m. In the deep southernmost Weddell Basin the concentration of Al increased with depth to ˜0.8 nM at 4000 m, and a higher concentration of ˜1.5 nM in the ˜4500-5200 m deep Weddell Sea Bottom Water. Over the Bouvet triple junction region, where three deep ocean ridges meet, the concentration of Al increased to ˜1.4 nM at about 2000 m depth over the ridge crest. In the deep basin north of the Bouvet region the concentration of Al increased to higher deep values of 4-6 nM due to influence of North Atlantic Deep Water. In general the intermediate and deep distribution of Al results from the mixing of water masses with different origins, the formation of deep water and additional input from sedimentary sources at sea floor elevations. No significant correlation between Al and silicate (Si) was observed. This is in contrast to some other ocean regions. In the Southern Ocean the supply of Al is extremely low and any signal from Al uptake and dissolution with biogenic silica is undetectable against the high dissolved Si and low dissolved Al concentrations. Here the Al-Si relation in the deep ocean is uncoupled. This is due to the scavenging and subsequent loss of the water column of Al, whereas the concentration of Si increases in the deep ocean due to its input from deep dissolution of biogenic diatom frustules settling from the surface layer.

Middag, R.; van Slooten, C.; de Baar, H. J. W.; Laan, P.

2011-12-01

186

Black Carbon in Estuarine and Coastal Ocean Dissolved Organic Matter  

NASA Technical Reports Server (NTRS)

Analysis of high-molecular-weight dissolved organic matter (DOM) from two estuaries in the northwest Atlantic Ocean reveals that black carbon (BC) is a significant component of previously uncharacterized DOM, suggesting that river-estuary systems are important exporters of recalcitrant dissolved organic carbon to the ocean.

Mannino, Antonio; Harvey, H. Rodger

2003-01-01

187

What controls dissolved iron concentrations in the world ocean?  

Microsoft Academic Search

Dissolved (< 0.4 ?m) iron has been measured in 354 samples at 30 stations in the North and South Pacific, Southern Ocean and North Atlantic by the Trace Metals Laboratory at Moss Landing Marine Laboratories. These stations are all more than 50 km from a continental margin. The global distribution of dissolved iron, which is derived from these profiles, is

Kenneth S. Johnson; R. Michael Gordon; Kenneth H. Coale

1997-01-01

188

Free Zinc Ion and Dissolved Orthophosphate Effects on  

E-print Network

Free Zinc Ion and Dissolved Orthophosphate Effects on Phytoplankton from Coeur d'Alene Lake, Idaho. This phosphorus-limited lake has been subjected to decades of mining (primarily for zinc and silver) and other of free (uncomplexed) zinc ion and dissolved- orthophosphate concentrations on phytoplankton that were

189

Dissolved humic substances of the Amazon River system1  

Microsoft Academic Search

Aquatic humic and fulvic acids from nine mainstem and seven major tributary sites in the Amazon River Basin are characterized by their elemental and lignin phenol compositions. Com- bined humic substances represent 60% of the riverine dissolved organic carbon (DOC), with fulvic to humic acid (FA : HA) ratios in the mainstem averaging 4.7 -t 1 .O. All dissolved humic

John R. Ertel; John I. Hedges; Allan H. Devol; Jefrey E. Richey

1986-01-01

190

Enhanced Dissolution of Cinnabar (Mercuric Sulfide) by Dissolved  

E-print Network

(HgS), a solid with limited solubility. Hydrophobic (a mixture of both humic and fulvic) acids dissolved more mercury than hydrophilic acids and other nonacid fractions of dissolved organic matter (DOM of various inorganic (chloride, sulfate, or sulfide) and organic ligands (salicylic acid, acetic acid, EDTA

Ryan, Joe

191

Dissolved-Oxygen Requirements of Three Species of Fish  

Microsoft Academic Search

Critical dissolved-oxygen levels and standard metabolic rates were determined for the bluegill, Lepomis macrochirus; largemouth bass, Micropterus salmoides; and the channel catfish, Ictalurus punctatus, at 25° C., 30° C., and 35° C. Two types of experiments were conducted: shock tests in which the dissolved oxygen was dropped rapidly from near saturation to a critically low point; and acclimation tests in

D. D. Moss; D. C. Scott

1961-01-01

192

Decomposition of dissolved organic matter from the continental margin  

Microsoft Academic Search

Decomposition of dissolved organic carbon, nitrogen and phosphorus (DOC, DON, DOP) was measured for surface and bottom waters of the middle Atlantic bight (MAB) and deep slope water adjacent to the MAB on two occasions in March and August 1996. We used standard bottle incubation techniques to measure the decrease in dissolved organic matter (DOM) concentrations over a 180-day interval.

Charles S. Hopkinson Jr; Joseph J. Vallino; Amy Nolin

2002-01-01

193

A Novel Acoustic Dissolved Oxygen Transmitter for Fish Telemetry  

Microsoft Academic Search

The multiple responses of fishes to changes in dissolved oxygen saturations have been studied widely in the laboratory. In contrast, only a few studies have included field observa- tions. The objective of the present study was to evaluate the performance of a novel acoustic dissolved oxygen transmitter for field biotelemetry. The results demonstrated that the output of the transmitter was

Jon C. Svendsen; Kim Aarestrup; John F. Steffensen; Jannik Herskin

2006-01-01

194

Dissolved P in streams in dry years and wet years  

Technology Transfer Automated Retrieval System (TEKTRAN)

Dissolved phosphorus (P) has often been identified as the nutrient of concern in lakes, reservoirs, and streams especially where there is evidence of eutrophication. We analyzed contiguous-spatial and temporal variability of dissolved P [soluble reactive P (SRP)] stream concentrations during times ...

195

Artificial neural network modeling of dissolved oxygen in reservoir.  

PubMed

The water quality of reservoirs is one of the key factors in the operation and water quality management of reservoirs. Dissolved oxygen (DO) in water column is essential for microorganisms and a significant indicator of the state of aquatic ecosystems. In this study, two artificial neural network (ANN) models including back propagation neural network (BPNN) and adaptive neural-based fuzzy inference system (ANFIS) approaches and multilinear regression (MLR) model were developed to estimate the DO concentration in the Feitsui Reservoir of northern Taiwan. The input variables of the neural network are determined as water temperature, pH, conductivity, turbidity, suspended solids, total hardness, total alkalinity, and ammonium nitrogen. The performance of the ANN models and MLR model was assessed through the mean absolute error, root mean square error, and correlation coefficient computed from the measured and model-simulated DO values. The results reveal that ANN estimation performances were superior to those of MLR. Comparing to the BPNN and ANFIS models through the performance criteria, the ANFIS model is better than the BPNN model for predicting the DO values. Study results show that the neural network particularly using ANFIS model is able to predict the DO concentrations with reasonable accuracy, suggesting that the neural network is a valuable tool for reservoir management in Taiwan. PMID:24078053

Chen, Wei-Bo; Liu, Wen-Cheng

2014-02-01

196

Determination of dissolved aluminum in water samples  

USGS Publications Warehouse

A technique has been modified for determination of a wide range of concentrations of dissolved aluminum (Al) in water and has been tested. In this technique, aluminum is complexed with 8-hydroxyquinoline at pH 8.3 to minimize interferences, then extracted with methyl isobutyl ketone (MIBK). The extract is analyzed colorimetrically at 395 nm. This technique is used to analyze two forms of monomeric Al, nonlabile (organic complexes) and labile (free, Al, Al sulfate, fluoride and hydroxide complexes). A detection limit 2 ug/L is possible with 25-ml samples and 10-ml extracts. The detection limit can be decreased by increasing the volume of the sample and (or) decreasing the volume of the methyl isobutyl ketone extract. The analytical uncertainty of this method is approximately + or - 5 percent. The standard addition technique provides a recovery test for this technique and ensures precision in samples of low Al concentrations. The average percentage recovery of the added Al plus the amount originally present was 99 percent. Data obtained from analyses of filtered standard solutions indicated that Al is adsorbed on various types of filters. However, the relationship between Al concentrations and adsorption remains linear. A test on standard solutions also indicated that Al is not adsorbed on nitric acid-washed polyethylene and polypropylene bottle wells. (USGS)

Afifi, A.A.

1983-01-01

197

Dissolved Humic Matter in Arctic Estuaries  

NASA Astrophysics Data System (ADS)

As part of the German-Russian bilateral SIRRO(Siberian River Runoff)-project we studied the distribution of dissolved humic matter isolated by XAD-8 in the estuarine waters of the Ob and Yenisei rivers. The relative contributions of humic matter carbon to total DOC decreased from 61-77 percent in the river freshwater endmember to 35-40 percent in the marine waters of the open Kara Sea at salinities 33 psu. Humic carbon mixed conservatively in the Yenisei and non-conservatively in the Ob, where partial removal was indicated in the low salinity range. Changes in the relative contribution of humic matter to different molecular weight classes of DOM (ultrafiltration cutoffs 150 KDa, 450 KDa, 800 KDa) were studied along the salinity gradient in the Yenisei. High molecular weight DOM is relatively enriched in humics in fresh-water compared to sea-water HMW-DOM. Low molecular weight DOM is realtively enriched in humics in sea-water compared to fresh-water LMW-DOM. Throughout the estuary humic matter is depleted in 13C and nitrogen compared to total DOM, reflecting a dominant soil source. We estimate an annual input of 5 Tg humic matter carbon by the two rivers into the Kara Sea.

Spitzy, A.; Koehler, H.; Ertl, S.

2002-12-01

198

Fast dissolving films made of maltodextrins.  

PubMed

This work aimed to study maltodextrins (MDX) with a low dextrose equivalent as film forming material and their application in the design of oral fast-dissolving films. The suitable plasticizer and its concentration were selected on the basis of flexibility, tensile strength and stickiness of MDX films, and the MDX/plasticizer interactions were investigated by ATR-FTIR spectroscopy. Flexible films were obtained by using 16-20% w/w glycerin (GLY). This basic formulation was adapted to the main production technologies, casting and solvent evaporation (Series C) or hot-melt extrusion (Series E), by adding sorbitan monoleate (SO) or cellulose microcrystalline (MCC), respectively. MCC decreased the film ductility and significantly affected the film disintegration time both in vitro and in vivo (Series C<10s; Series E approximately 1min). To assess the film loading capacity, piroxicam (PRX), a water insoluble drug, was selected. The loading of a drug as a powder decreased the film ductility, but the formulation maintained satisfactory flexibility and resistance to elongation for production and packaging procedures. The films present a high loading capacity, up to 25mg for a surface of 6cm(2). The PRX dissolution rate significantly improved in Series C films independently of the PRX/MDX ratio. PMID:18667164

Cilurzo, Francesco; Cupone, Irma E; Minghetti, Paola; Selmin, Francesca; Montanari, Luisa

2008-11-01

199

Composition of dissolved organic matter in groundwater  

NASA Astrophysics Data System (ADS)

Groundwater constitutes a globally important source of freshwater for drinking water and other agricultural and industrial purposes, and is a prominent source of freshwater flowing into the coastal ocean. Therefore, understanding the chemical components of groundwater is relevant to both coastal and inland communities. We used electrospray ionization coupled with Fourier-transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) to examine dissolved organic compounds in groundwater prior to and after passage through a sediment-filled column containing microorganisms. The data revealed that an unexpectedly high proportion of organic compounds contained nitrogen and sulfur, possibly due to transport of surface waters from septic systems and rain events. We matched 292 chemical features, based on measured mass:charge ( m/z) values, to compounds stored in the Kyoto Encyclopedia of Genes and Genomes (KEGG). A subset of these compounds (88) had only one structural isomer in KEGG, thus supporting tentative identification. Most identified elemental formulas were linked with metabolic pathways that produce polyketides or with secondary metabolites produced by plants. The presence of polyketides in groundwater is notable because of their anti-bacterial and anti-cancer properties. However, their relative abundance must be quantified with appropriate analyses to assess any implications for public health.

Longnecker, Krista; Kujawinski, Elizabeth B.

2011-05-01

200

Dissolved silica budget for the Baltic Sea  

NASA Astrophysics Data System (ADS)

A budget model covering the Baltic Sea was developed for the time period 1980-2000 to estimate water and dissolved silica (DSi) fluxes as well as internal DSi sinks/sources. The Baltic Sea was resolved by eight basins, where the largest basin — the Baltic Proper — was divided laterally into north/west and southern/east parts as well as vertically to take into account the existence of the permanent halocline. The basins demonstrated rather different patterns with regard to silica cycling. The Gulfs of Finland and Riga together with the northernmost basins, Bothnian Bay and Bothnian Sea, are distinguished by substantial specific rates of silica removal accounting for 1.6-4.9 g Si m - 2 yr - 1 . Bearing in mind the large total primary production, the basins comprising the Baltic Proper with the specific removal rates 0.2 and 1.2 g Si m - 2 yr - 1 , do not appear as regions with a high silica accumulation. The Arkona and the Kattegat mainly behave as regions of rapid through-flows. These results point out the northernmost Gulf of Bothnia, the Gulfs of Riga and Finland as areas with a larger share of biogenic silica accumulation than in the Baltic Proper. It is attributed to hydrographic and hydrochemical features. An estimate of diatom export production was made for the Baltic Proper showing that the diatom contribution accounts for 19-44% of the net export production.

Papush, L.; Danielsson, Å.; Rahm, L.

2009-06-01

201

Methanex, Hoechst Celanese dissolve methanol partnership  

SciTech Connect

One of the many joint venture alliances recently announced in the petrochemical sector is ending in divorce. Hoechst Celanese Chemical (Dallas) and Methanex Corp. (Vancouver) are in the process of dissolving the partnership they had formed to restart Hoechst Celanese's methanol plant at Clear Lake, TX. Hoechst Celanese says it is actively seeking replacement partners and has several likely prospects, while Methanex is concentrating on its other ventures. Those include its just-completed acquisition of Fletcher Challenge's (Auckland, NZ) methanol business and a joint venture with American Cyanamid to convert an ammonia plant at Fortier, LA to methanol. Methanex will still be the world's largest producer of methanol. Officially, the negotiations between Methanex and Hoechst Celanese just broke down over the last month or so,' says Steve Yurich, operations manager for the Clear Lake plant. Market sources, however, say that Methanex found itself with too many irons in the fire' and pulled out before it ran into financial or perhaps even antitrust difficulties.

Morris, G.D.L.

1993-03-31

202

Corrosion of irradiated MOX fuel in presence of dissolved H 2  

NASA Astrophysics Data System (ADS)

The corrosion behaviour of irradiated MOX fuel (47 GWd/tHM) has been studied in an autoclave experiment simulating repository conditions. Fuel fragments were corroded at room temperature in a 10 mM NaCl/2 mM NaHCO 3 solution in presence of dissolved H 2 for 2100 days. The results show that dissolved H 2 in concentration 1 mM and higher inhibits oxidation and dissolution of the fragments. Stable U and Pu concentrations were measured at 7 × 10 -10 and 5 × 10 -11 M, respectively. Caesium was only released during the first two years of the experiment. The results indicate that the UO 2 matrix of a spent MOX fuel is the main contributor to the measured dissolution, while the corrosion of the high burn-up Pu-rich islands appears negligible.

Carbol, P.; Fors, P.; Van Winckel, S.; Spahiu, K.

2009-07-01

203

Hydrography and budget of dissolved total nitrogen and dissolved oxygen in the stratified season in Mikawa Bay, Japan  

Microsoft Academic Search

Distributions of salinity, dissolved total nitrogen (DTN) and dissolved oxygen (DO) were observed once a month throughout a year in Mikawa Bay, one of the most eutrophic bays in Japan. Supply of freshwater, DTN and DO from the land and precipitation was estimated. Hydrography, circulation and transformation of DTN and DO during the stratified period were investigated simultaneously by a

Teruaki Suzukit; Yasuo Matsukawa

1987-01-01

204

Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA  

USGS Publications Warehouse

Dissolved organic carbon (DOC) concentration and chromophoric dissolved organic matter (CDOM) parameters were measured over a range of discharge in 30 U.S. rivers, covering a diverse assortment of fluvial ecosystems in terms of watershed size and landscape drained. Relationships between CDOM absorption at a range of wavelengths (a254, a350, a440) and DOC in the 30 watersheds were found to correlate strongly and positively for the majority of U.S. rivers. However, four rivers (Colorado, Colombia, Rio Grande and St. Lawrence) exhibited statistically weak relationships between CDOM absorption and DOC. These four rivers are atypical, as they either drain from the Great Lakes or experience significant impoundment of water within their watersheds, and they exhibited values for dissolved organic matter (DOM) parameters indicative of autochthonous or anthropogenic sources or photochemically degraded allochthonous DOM and thus a decoupling between CDOM and DOC. CDOM quality parameters in the 30 rivers were found to be strongly correlated to DOM compositional metrics derived via XAD fractionation, highlighting the potential for examining DOM biochemical quality from CDOM measurements. This study establishes the ability to derive DOC concentration from CDOM absorption for the majority of U.S. rivers, describes characteristics of riverine systems where such an approach is not valid, and emphasizes the possibility of examining DOM composition and thus biogeochemical function via CDOM parameters. Therefore, the usefulness of CDOM measurements, both laboratory-based analyses and in situ instrumentation, for improving spatial and temporal resolution of DOC fluxes and DOM dynamics in future studies is considerable in a range of biogeochemical studies.

Spencer, Robert G.M.; Butler, Kenna D.; Aiken, George R.

2012-01-01

205

Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA  

NASA Astrophysics Data System (ADS)

Dissolved organic carbon (DOC) concentration and chromophoric dissolved organic matter (CDOM) parameters were measured over a range of discharge in 30 U.S. rivers, covering a diverse assortment of fluvial ecosystems in terms of watershed size and landscape drained. Relationships between CDOM absorption at a range of wavelengths (a254, a350, a440) and DOC in the 30 watersheds were found to correlate strongly and positively for the majority of U.S. rivers. However, four rivers (Colorado, Colombia, Rio Grande and St. Lawrence) exhibited statistically weak relationships between CDOM absorption and DOC. These four rivers are atypical, as they either drain from the Great Lakes or experience significant impoundment of water within their watersheds, and they exhibited values for dissolved organic matter (DOM) parameters indicative of autochthonous or anthropogenic sources or photochemically degraded allochthonous DOM and thus a decoupling between CDOM and DOC. CDOM quality parameters in the 30 rivers were found to be strongly correlated to DOM compositional metrics derived via XAD fractionation, highlighting the potential for examining DOM biochemical quality from CDOM measurements. This study establishes the ability to derive DOC concentration from CDOM absorption for the majority of U.S. rivers, describes characteristics of riverine systems where such an approach is not valid, and emphasizes the possibility of examining DOM composition and thus biogeochemical function via CDOM parameters. Therefore, the usefulness of CDOM measurements, both laboratory-based analyses and in situ instrumentation, for improving spatial and temporal resolution of DOC fluxes and DOM dynamics in future studies is considerable in a range of biogeochemical studies.

Spencer, Robert G. M.; Butler, Kenna D.; Aiken, George R.

2012-09-01

206

Bioavailability and characterization of dissolved organic nitrogen and dissolved organic phosphorus in wastewater effluents.  

PubMed

There is still a great knowledge gap in the understanding of characteristics and bioavailability of dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP) in wastewater effluents, which surmise implications related to both discharge regulation and treatment practice. In this study, we simultaneously investigated the characteristics and bioavailability of both DON and DOP, with separated hydrophilic versus hydrophobic fractions, in highly-treated wastewater effluents for the first time. The tertiary effluents from two wastewater treatment plants were separated into two fractions by XAD-8 resin coupled with anion exchange resin based on the hydrophobicity. Results showed that the majority of DON was present in hydrophilic forms while more DOP existed in hydrophobic forms. Hydrophilic DON contributed to 64.0%-72.2% of whole DON, while hydrophobic DOP accounted for 61.4%-80.7% of total DOP for the two plants evaluated. The effluents and their fractions were then subject to bioavailability assay based on 14-day algae growth. The results indicated that majority (~73-75%) of the effluent DOP, particularly the hydrophobic fraction with lower C/P ratio was more likely to be bioavailable for algal growth. The bioavailable fraction of DON varied widely (28%-61%) for the two plants studied and the hydrophilic fraction with lower C/N ratio seemed to exhibit higher bioavailability than the hydrophobic portion. The differences in bioavailable DON and DOP distributions of effluents from those two plants could be attributed to different receiving effluent compositions and wastewater treatment processes. In addition, fluorescence excitation-emission matrices (EEMs) combined with parallel factor analysis (PARAFAC) were used to characterize the dissolved organic matter (DOM) in wastewater effluent, which provided insights into the nature of organic matter in wastewater samples with different characteristics and originating sources. PMID:25527968

Qin, Chao; Liu, Haizhou; Liu, Lei; Smith, Scott; Sedlak, David L; Gu, April Z

2015-04-01

207

Fish embryos are damaged by dissolved PAHs, not oil particles.  

PubMed

To distinguish the toxicity of whole oil droplets from compounds dissolved in water, responses of zebrafish embryos exposed to particulate-laden, mechanically dispersed Alaska North Slope crude oil (mechanically dispersed oil (MDO)) were compared to those of embryos protected from direct oil droplet contact by an agarose matrix. Most polycyclic aromatic hydrocarbons (PAHs) in MDO were contained in oil droplets; about 16% were dissolved. The agarose precluded embryo contact with particulate oil but allowed diffusive passage of dissolved PAHs. The incidence of edema, hemorrhaging, and cardiac abnormalities in embryos was dose-dependent in both MDO and agarose and the biological effects in these compartments were identical in character. Although mean total PAH (TPAH) concentrations in MDO were about 5-9 times greater than in agarose, dissolved PAH concentrations were similar in the two compartments. Furthermore, mean differences in paired embryo responses between compartments were relatively small (14-23%, grand mean 17%), typically with a larger response in embryos exposed to MDO. Therefore, the embryos reacted only to dissolved PAHs and the response difference between compartments is explained by diffusion. Averaged over 48 h, the estimated mean TPAH concentration in agarose was about 16% less than the dissolved TPAH concentration in MDO. Thus, PAHs dissolved from oil are toxic and physical contact with oil droplets is not necessary for embryotoxicity. PMID:18479765

Carls, Mark G; Holland, Larry; Larsen, Marie; Collier, Tracy K; Scholz, Nathaniel L; Incardona, John P

2008-06-23

208

Application of MODIS on monitoring dissolved inorganic nitrogen and dissolved inorganic phosphorus in Haizhou Gulf  

NASA Astrophysics Data System (ADS)

Red tides have been increasingly observed in the gulf of Haizhou and considered a serious environmental problem from the beginning of the new century. Eutrophication of water is an important reason of red tide occurrence. This paper used the observation data of the concentration of dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus (DIP) in Haizhou Gulf from 2004 to 2006 and selected synchronous MODIS Terra 1B data with 500m spatial resolution in this period of time. We established factors with single band and multi-bands, and then calculated the correlation of each factor with DIN concentration, DIP concentration, and their logarithm respectively. The factors with stronger correlation were used to establish regression models of DIN and DIP's concentration. After comparing these models, we chose the linear model of DIN concentration established by factor ) 4, 3 ( 11 F and inverse model of the logarithm of DIP concentration established by factor ) 5, 6 ( 7 F as their final regression model. The relative accuracy of DIN concentration model achieved about 70%; the retrieving results of DIN concentration were consistent well with real conditions. The relative accuracy of the logarithm of DIP concentration achieved about 90%. The results prove the feasibility of monitoring DIN concentration and the exponential order of DIP concentration in offshore of Jiangsu Province.

Xu, Yong; Zhang, Ying; Zhang, Dong; Liu, Jitang

2008-10-01

209

Population differentiation of the African cyprinid Barbus neumayeri across dissolved oxygen regimes  

E-print Network

Population differentiation of the African cyprinid Barbus neumayeri across dissolved oxygen regimes structure was associated with (i) dissolved oxygen regime (hypoxia or normoxia), (ii) geographical distance, or (iii) a combination of dissolved oxygen regime and geographical distance. Our results indicate

Chapman, Lauren J.

210

40 CFR 430.10 - Applicability; description of the dissolving kraft subcategory.  

Code of Federal Regulations, 2010 CFR

...Applicability; description of the dissolving kraft subcategory. 430.10 Section 430...PAPERBOARD POINT SOURCE CATEGORY Dissolving Kraft Subcategory § 430.10 Applicability; description of the dissolving kraft subcategory. The provisions of...

2010-07-01

211

FIELD MEASUREMENT OF DISSOLVED OXYGEN: A COMPARISON OF TECHNIQUES  

EPA Science Inventory

The measurement and interpretation of geochemical redox parameters are key components of ground water remedial investigations. Dissolved oxygen (DO) is perhaps the most robust geochemical parameter in redox characterization; however, recent work has indicated a need for proper da...

212

EFFECTS OF TEMPERATURE VARIATION ON CRITICAL STREAM DISSOLVED OXYGEN  

EPA Science Inventory

The classical assumption that the lowest dissolved oxygen (DO) occurs at the highest temperature may not always hold. The DO saturation concentration decreases monotonically with increasing temperature, lowering the DO, but the reaeration coefficient increases monotonically with ...

213

The effect of membrane filtration on dissolved trace element concentrations  

USGS Publications Warehouse

The almost universally accepted operational definition for dissolved constituents is based on processing whole-water samples through a 0.45-??m membrane filter. Results from field and laboratory experiments indicate that a number of factors associated with filtration, other than just pore size (e.g., diameter, manufacturer, volume of sample processed, amount of suspended sediment in the sample), can produce substantial variations in the 'dissolved' concentrations of such elements as Fe, Al, Cu, Zn, Pb, Co, and Ni. These variations result from the inclusion/exclusion of colloidally- associated trace elements. Thus, 'dissolved' concentrations quantitated by analyzing filtrates generated by processing whole-water through similar pore- sized membrane filters may not be equal/comparable. As such, simple filtration through a 0.45-??m membrane filter may no longer represent an acceptable operational definition for dissolved chemical constituents. This conclusion may have important implications for environmental studies and regulatory agencies.

Horowitz, A.J.; Lum, K.R.; Garbarino, J.R.; Hall, G.E.M.; Lemieux, C.; Demas, C.R.

1996-01-01

214

DISSOLVED OXYGEN, TEMPERATURE, SURVIVAL OF YOUNG AT FISH SPAWNING SITES  

EPA Science Inventory

Fluctuations of dissolved oxygen concentrations and water temperatures in their natural spawning sites were measured during embryo through larva stages of northern pike (Esox lucius), and during embryo and sac larva stages of bluegills (Lepomis macrochirus) and pumpkinseeds (Lepo...

215

DISSOLVED AIR FLOTATION TREATMENT OF GULF SHRIMP CANNERY WASTEWATER  

EPA Science Inventory

This study reports on the operation of a plant scale dissolved air flotation system installed to define and evaluate attainable shrimp cannery wastewater treatment levels. The system was operated in all three modes of DAF pressurization. Destabilizing coagulants investigation inc...

216

Characterization of a novel dissolved CO2 sensor for utilization in environmental monitoring and aquaculture industry  

NASA Astrophysics Data System (ADS)

A novel optical fiber sensor is presented for measuring dissolved CO2 for water quality monitoring applications, where the optical signal is based either on refractive index changes or on color change. The sensing chemistry is based on the acid-basic equilibrium of 4-nitrophenol, that is converted into the anionic form by addition quaternary ammonium hydroxide. The CO2 sensitive layer was characterized and tested by using simple absorbance/reflectance measurement setups where the sensor was connected to a fiber optic CCD spectrometer. A prototype simulating a real shallow raceway aquaculture system was developed and its hydraulic behavior characterized. A commercially available partial-pressure- NDIR sensor was used as a reference for dissolved CO2 tests with the new optical fiber sensor under development. Preliminary tests allowed verifying the suitability of the new optical sensor for accurately tracking the dissolved carbon dioxide concentration in a suitable operation range. Direct comparison of the new sensor and the reference sensor system allowed to demonstrate the suitability of the new technology but also to identify some fragilities there are presently being addressed.

Balogh, K.; Jesus, João. M.; Gouveia, C.; Domingues, Jorge O.; Markovics, A.; Baptista, J. M.; Kovacs, B.; Pereira, Carlos M.; Borges, Maria-Teresa; Jorge, P. A. S.

2013-11-01

217

High-pressure injection of dissolved oxygen for hydrocarbon remediation in a fractured dolostone aquifer.  

PubMed

A field experiment was completed at a fractured dolomite aquifer in southwestern Ontario, Canada, to assess the delivery of supersaturated dissolved oxygen (supersaturated with respect to ambient conditions) for enhanced bioremediation of petroleum hydrocarbons in groundwater. The injection lasted for 1.5h using iTi's gPro® oxygen injection technology at pressures of up to 450 kPa and at concentrations of up to 34 mg O?/L. A three-dimensional numerical model for advective-dispersive transport of dissolved oxygen within a discretely-fractured porous medium was calibrated to the observed field conditions under a conservative (no-consumption) scenario. The simulation demonstrated that oxygen rapidly filled the local intersecting fractures as well as the porous matrix surrounding the injection well. Following injection, the local fractures were rapidly flushed by the natural groundwater flow system but slow back-diffusion ensured a relatively longer residence time in the matrix. A sensitivity analysis showed significant changes in behaviour with varying fracture apertures and hydraulic gradients. Applying the calibrated model to a 7-day continuous injection scenario showed oxygen residence times (at the 3mg/L limit), within a radius of 2-4m from the injection well, of up to 100 days. This study has demonstrated that supersaturated dissolved oxygen can be effectively delivered to this type of a fractured and porous bedrock system at concentrations and residence times potentially sufficient for enhanced aerobic biodegradation. PMID:20727615

Greer, K D; Molson, J W; Barker, J F; Thomson, N R; Donaldson, C R

2010-10-21

218

Loading and utilization of dissolved organic carbon from emergent macrophytes  

Microsoft Academic Search

The very high productivity of emergent macrophytes can provide major sources of dissolved organic matter to recipient aquatic ecosystems. Leachate was collected from live and senescent tissues of Juncus effusus L. and Typha latifolia L. and analyzed for dissolved organic carbon (DOC; mg C 1?1 cm?2 surface area) and its availability to wetland bacteria. Leachate DOC ranged from 1.9 to

Carroll J. Mann; Robert G. Wetzel

1996-01-01

219

Microbial uptake of dissolved organic matter in Mcmurdo Sound, Antarctica  

Microsoft Academic Search

The distribution and activity of bacterioplankton, and the turnover of dissolved organic matter (DOM) were examined in McMurdo Sound, Antarctica. On the eastern side of the Sound, bacteria averaged 6.5×108 l-1, and turnover rates of dissolved adenosine triphosphate, D-glucose and l-leucine averaged 16, 116 and 124 h, respecitvely. These molecules as well as thymidine were taken up maximally from 0°

R. E. Hodson; F. Azam; A. F. Carlucci; J. A. Fuhrman; D. M. Karl; O. Holm-Hansen

1981-01-01

220

Colored dissolved organic matter in Tampa Bay, Florida  

Microsoft Academic Search

Absorption and fluorescence of colored dissolved organic matter (CDOM) and concentrations of dissolved organic carbon (DOC), chlorophyll and total suspended solids in Tampa Bay and its adjacent rivers were examined in June and October of 2004. Except in Old Tampa Bay (OTB), the spatial distribution of CDOM showed a conservative relationship with salinity in June, 2004 (aCDOM(400)=?0.19×salinity+6.78, R2=0.98, n=17, salinity

Zhiqiang Chen; Chuanmin Hu; Robyn N. Conmy; Frank Muller-Karger; Peter Swarzenski

2007-01-01

221

Bacterial utilization of different size classes of dissolved organic matter  

Microsoft Academic Search

Bacterial utilization of high-molecular-weight (HMW; > 1 kDa) and low-molecular-weight (LMW; < 1 kDa) dissolved organic C (DOC) was investigated in freshwater and marine systems by measuring dissolved oxygen consumption, bacterial abundance, and bacterial production in size-fractionated samples. Tangential- flow ultrafiltration was used to separate HMW and LMW DOC. More than 80% of the DOC in Amazon River samples was

Rainer M. W. Arnon; Ronald Benner

1996-01-01

222

Voltammetric determination of dissolved iron and its speciation in freshwater  

Microsoft Academic Search

Analytical methods were developed to determine the concentration of total dissolved iron and its chemical speciation in freshwater using cathodic stripping voltammetry (CSV) with 1-nitroso-2-naphthol (NN) at pH 8.1. The concentrations of total dissolved iron in river water that iron concentration was certified and in natural water samples from Lake Kasumigaura were determined successfully. The natural iron ligand concentration and

Takashi Nagai; Akio Imai; Kazuo Matsushige; Kunihiko Yokoi; Takehiko Fukushima

2004-01-01

223

Oxygen isotope fractionation in dissolved oxygen in the deep sea  

Microsoft Academic Search

18O variations in dissolved oxygen have been measured at five stations from the eastern equatorial Pacific, at the GEOSECS-I and -II intercalibration stations in the North Pacific and North Atlantic, and along an Antarctic-South Pacific section from MONSOON expedition. Relative to atmospheric oxygen, dissolved oxygen in the ocean is enriched in 18O up to a maximum of 140\\/00, the extreme

P. Kroopnick; H. Craig

1976-01-01

224

Characterisation of dissolved combined amino acids in marine waters.  

PubMed

Dissolved combined amino acids (DCAA) are important constituents of the dissolved organic nitrogen (DON) pool in marine environments, although little is known about their sources, dynamics and sinks. The DCAA pool consists of various compounds including proteins and peptides, proteins linked to sugars and amino acids adsorbed to humic and fulvic acids, clays and other materials. The proportions of each of these components and the extent to which they are used by microplankton living within the photic zone are not known. An investigation was carried out, using (15)N isotope dilution techniques, to determine the concentration and composition of dissolved amino acid pools in the marine environment. A near-shore seawater sample was collected and split into fractions to determine the concentrations of dissolved free amino acids (DFAA), DCAA and a <3 kDa dissolved peptide fraction (DPEP; obtained by ultrafiltration). DCAA and DPEP fractions were hydrolysed to yield free amino acids and all samples were analysed by gas chromatography/mass spectrometry (GC/MS) as isobutyloxycarbonyl/tert-butyldimethylsilyl derivatives. The DFAA was the smallest fraction representing approximately 1% of total dissolved amino acids. The majority of DCAA was contained in the low molecular weight DPEP fraction (90%) and was probably as a result of release from phytoplankton and degradation by heterotrophic bacteria. PMID:11466786

Sommerville, K; Preston, T

2001-01-01

225

Characterization of urban runoff pollution between dissolved and particulate phases.  

PubMed

To develop urban stormwater management effectively, characterization of urban runoff pollution between dissolved and particulate phases was studied by 12 rainfall events monitored for five typical urban catchments. The average event mean concentration (AEMC) of runoff pollutants in different phases was evaluated. The AEMC values of runoff pollutants in different phases from urban roads were higher than the ones from urban roofs. The proportions of total dissolved solids, total dissolved nitrogen, and total dissolved phosphorus in total ones for all the catchments were 26.19%-30.91%, 83.29%-90.51%, and 61.54-68.09%, respectively. During rainfall events, the pollutant concentration at the initial stage of rainfall was high and then sharply decreased to a low value. Affected by catchments characterization and rainfall distribution, the highest concentration of road pollutants might appear in the later period of rainfall. Strong correlations were also found among runoffs pollutants in different phases. Total suspended solid could be considered as a surrogate for particulate matters in both road and roof runoff, while dissolved chemical oxygen demand could be regarded as a surrogate for dissolved matters in roof runoff. PMID:23935444

Wei, Zhang; Simin, Li; Fengbing, Tang

2013-01-01

226

Puget Sound Dissolved Oxygen Modeling Study: Development of an Intermediate-Scale Hydrodynamic Model  

SciTech Connect

The Washington State Department of Ecology contracted with Pacific Northwest National Laboratory to develop an intermediate-scale hydrodynamic and water quality model to study dissolved oxygen and nutrient dynamics in Puget Sound and to help define potential Puget Sound-wide nutrient management strategies and decisions. Specifically, the project is expected to help determine 1) if current and potential future nitrogen loadings from point and non-point sources are significantly impairing water quality at a large scale and 2) what level of nutrient reductions are necessary to reduce or dominate human impacts to dissolved oxygen levels in the sensitive areas. In this study, an intermediate-scale hydrodynamic model of Puget Sound was developed to simulate the hydrodynamics of Puget Sound and the Northwest Straits for the year 2006. The model was constructed using the unstructured Finite Volume Coastal Ocean Model. The overall model grid resolution within Puget Sound in its present configuration is about 880 m. The model was driven by tides, river inflows, and meteorological forcing (wind and net heat flux) and simulated tidal circulations, temperature, and salinity distributions in Puget Sound. The model was validated against observed data of water surface elevation, velocity, temperature, and salinity at various stations within the study domain. Model validation indicated that the model simulates tidal elevations and currents in Puget Sound well and reproduces the general patterns of the temperature and salinity distributions.

Yang, Zhaoqing; Khangaonkar, Tarang; Labiosa, Rochelle G.; Kim, Taeyun

2010-11-30

227

Seasonal Changes in Arctic Dissolved Organic Matter  

NASA Astrophysics Data System (ADS)

The Arctic is a landscape in flux. Temperatures are shifting upward and plant communities are transitioning from tussock to shrub tundra in some regions. Decomposition processes sensitive to temperature, moisture, and plant inputs are controls on the source/sink dynamics of the Arctic C pool. The response of decomposition to warming will, in part, determine if the Arctic C pool feeds back positively or negatively to climate change. The portion of the C pool immediately available to decomposers is dissolved organic matter (DOM). The aim of this is study is to examine the molecular composition of DOM to determine which components vary seasonally in soil pore water among three vegetation types at Toolik Field Station in Alaska. Vegetation types include wet sedge (Carex aquatilis and Eriophorum angustifolium), moist acidic tussock (E. vaginatum) and shrub tundra (Betula nana and Salix sp.). These sites were sampled during winter/summer transitions in 2010 in order to capture both growing season and winter dynamics. We expected the chemical composition of DOM in pore water to be distinct among plant communities due to differences in root exudates, litter chemistry and microbial community; and vary seasonally due to shifting temperature and water availability and their impacts on decomposition of DOM. Soil pore water was isolated through centrifugation and is being characterized with ultra high performance liquid chromatography (UPLC) in line with a quadrupole time of flight mass spectrometer (QTOF-MS) as well as with specific UV absorbance at 254 nm (SUVA), and excitation emission matrices (EEMs) generated by fluorescence spectroscopy. The DOM concentrations across vegetation types show consistent seasonal patterns, spiking at thaw, and declining through late summer. As soils freeze these patterns diverge-in tussock soils DOM concentration decreases slightly, while in shrub and wet sedge sites it increases. SUVA values (indicator of aromaticity) were consistent among vegetation types across seasons; starting low in late winter and at thaw, increasing over the course of the summer and decreasing at the summer to winter transition. Metabolite profiles generated with UPLC-MS were evaluated using principle component analysis. Sampling date explained the most variation in this dataset, with metabolite profiles of the DOM most different in the summer to winter transition. Over 6000 mass features were detected in the metabolite profiles and at least 1500 of these features were significantly different between late summer and early winter. Fluorescence EEMs have been collected for the complete dataset and analysis is underway. Overall, these data suggest the composition of DOM varies more due to season than vegetation type, with changes in quantity, aromaticity, and shifts in the metabolite profiles occurring at seasonal transitions. Efforts are continuing to identify some of the most variable components with MS and EEMs data. By understanding which chemical components of DOM shift seasonally, we can anticipate what portions of the DOM are most subject to change in a warming arctic; and how the gain/loss of those components will play into the sink/source C dynamics under future climate scenarios.

Boot, C. M.; Wallenstein, M. D.; Schimel, J.

2011-12-01

228

Suspended sediment, dissolved organic carbon, and dissolved nitrogen export during the dam removal process  

NASA Astrophysics Data System (ADS)

Total suspended solids (TSS), dissolved organic carbon (DOC), and total dissolved nitrogen (TDN) loads were calculated for all stages of the dam removal process (dewatering, breaching, and removal) at various points upstream, within, and downstream of Lowell Mill Impoundment on the Little River, North Carolina. The impoundment dewatering exported loads of TSS, DOC, and TDN which were all 1-2 orders of magnitude less than loads associated with historic floods. Conversely, floods exiting the former impoundment following dam removal produced TSS, DOC, and TDN loads comparable to, but slightly greater (1.2-1.75 times) than historic floods. Exported loads were greatest following the complete removal of the dam, most likely because of increased channel gradient. We assert that the disturbances (i.e., concentrations and loads) associated with dam removal should be compared to those generated by floods within the same system rather than comparing the impacts of dam removal with base flow conditions. During the dewatering, impounded floodplain wetlands were found to contribute the following percentages to total impoundment loads: 44% of stored water, 12.6 % of TSS, 49% of DOC, and 33% of TDN. Moreover, the dewatering flood wave was sampled at various points along a 19.2-km reach below the dam to characterize the routing of TSS, DOC, and TDN. TSS released by the impoundment was retained within 10 km of the dam, while TDN and DOC loads increased slightly. Finally, we used our results with those from other removals to provide insight into regional and morphologic controls on exports of impounded materials following dam removal.

Riggsbee, J. Adam; Julian, Jason P.; Doyle, Martin W.; Wetzel, Robert G.

2007-09-01

229

Photochemical degradation of dissolved organic matter and dissolved lignin phenols from the Congo River  

NASA Astrophysics Data System (ADS)

Photochemical degradation of Congo River dissolved organic matter (DOM) was investigated to examine the fate of terrigenous DOM derived from tropical ecosystems. Tropical riverine DOM receives greater exposure to solar radiation, particularly in large river plumes discharging directly into the open ocean. Initial Congo River DOM exhibited dissolved organic carbon (DOC) concentration and compositional characteristics typical of organic rich blackwater systems. During a 57 day irradiation experiment, Congo River DOM was shown to be highly photoreactive with a decrease in DOC, chromophoric DOM (CDOM), lignin phenol concentrations (?8) and carbon-normalized yields (?8), equivalent to losses of ˜45, 85-95, >95 and >95% of initial values, respectively, and a +3.1 ‰ enrichment of the ?13C-DOC signature. The loss of ?8 and enrichment of ?13C-DOC during irradiation was strongly correlated (r = 0.99, p < 0.01) indicating tight coupling between these biomarkers. Furthermore, the loss of CDOM absorbance was correlated to the loss of ?8 (e.g., a355 versus ?8; r = 0.98, p < 0.01) and ?13C-DOC (e.g., a355 versus ?13C; r = 0.97, p < 0.01), highlighting the potential of CDOM absorbance measurements for delineating the photochemical degradation of lignin and thus terrigenous DOM. It is apparent that these commonly used measurements for examination of terrigenous DOM in the oceans have a higher rate of photochemical decay than the bulk DOC pool. Further process-based studies are required to determine the selective removal rates of these biomarkers for advancement of our understanding of the fate of this material in the ocean.

Spencer, Robert G. M.; Stubbins, Aron; Hernes, Peter J.; Baker, Andy; Mopper, Kenneth; Aufdenkampe, Anthony K.; Dyda, Rachael Y.; Mwamba, Vincent L.; Mangangu, Arthur M.; Wabakanghanzi, Jose N.; Six, Johan

2009-09-01

230

Microfluidic dissolved oxygen gradient generator biochip as a useful tool in bacterial biofilm studies.  

PubMed

A microfluidic chip for generation of gradients of dissolved oxygen was designed, fabricated and tested. The novel way of active oxygen depletion through a gas permeable membrane was applied. Numerical simulations for generation of O(2) gradients were correlated with measured oxygen concentrations. The developed microsystem was used to study growth patterns of the bacterium Pseudomonas aeruginosa in medium with different oxygen concentrations. The results showed that attachment of Pseudomonas aeruginosa to the substrate changed with oxygen concentration. This demonstrates that the device can be used for studies requiring controlled oxygen levels and for future studies of microaerobic and anaerobic conditions. PMID:20571689

Skolimowski, Maciej; Nielsen, Martin Weiss; Emnéus, Jenny; Molin, Søren; Taboryski, Rafael; Sternberg, Claus; Dufva, Martin; Geschke, Oliver

2010-08-21

231

Relative effect of temperature and pH on diel cycling of dissolved trace elements in prickly pear creek, Montana  

USGS Publications Warehouse

Diel (24 hr) cycles in dissolved metal and As concentrations have been documented in many northern Rocky Mountain streams in the U.S.A. The cause(s) of the cycles are unknown, although temperature- and pH-dependent sorption reactions have been cited as likely causes. A light/dark experiment was conducted to isolate temperature and pH as variables affecting diel metal cycles in Prickly Pear Creek, Montana. Light and dark chambers containing sediment and a strand of macrophyte were placed in the stream to simulate instream temperature oscillations. Photosynthesis-induced pH changes were allowed to proceed in the light chambers while photosynthesis was prevented in the dark chambers. Water samples were collected periodically for 22 hr in late July 2001 from all chambers and the stream. In the stream, dissolved Zn concentrations increased by 300% from late afternoon to early morning, while dissolved As concentrations exhibited the opposite pattern, increasing 33% between early morning and late afternoon. Zn and As concentrations in the light chambers showed similar, though less pronounced, diel variations. Conversely, Zn and As concentrations in the dark chambers had no obvious diel variation, indicating that light, or light-induced reactions, caused the variation. Temperature oscillations were nearly identical between light and dark chambers, strongly suggesting that temperature was not controlling the diel variations. As expected, pH was negatively correlated (P < 0.01) with dissolved Zn concentrations and positively correlated with dissolved As concentrations in both the light and dark chambers. From these experiments, photosynthesis-induced pH changes were determined to be the major cause of the diel dissolved Zn and As cycles in Prickly Pear Creek. Further research is necessary in other streams to verify that this finding is consistent among streams having large differences in trace-element concentrations and mineralogy of channel substrate. ?? 2004 Kluwer Academic Publishers.

Jones, C.A.; Nimick, D.A.; McCleskey, R.B.

2004-01-01

232

Dissolved Oxygen in Allen CreekDissolved Oxygen in Allen Creek Dissolved oxygen (DO) enters the water by diffusion from air, as a by-product of photosynthesis and  

E-print Network

Dissolved Oxygen in Allen CreekDissolved Oxygen in Allen Creek Dissolved oxygen (DO) enters and rapids. There is an inverse relationship between temperature and DO, i.e. colder water holds more oxygen it supplies oxygen to aquatic organisms. Higher DO levels also give the water a better taste. Figure 2. During

Tyler, Christy

233

Seasonal variability of dissolved organic carbon and total dissolved nitrogen in Arctic streams and rivers  

NASA Astrophysics Data System (ADS)

Changes in the quantity, seasonality, and flow paths of water through catchments have been documented throughout much of the Arctic, with further changes projected to occur over the coming century due to increasing temperatures and altered precipitation regimes. These changes in hydrology are expected to have a significant impact on biogeochemical cycles in Arctic watersheds. An improved understanding of the controls that impact water chemistry in Arctic rivers under varying hydrologic conditions will help to better project how these systems may respond to anticipated climate change. During 2009 and 2010, we collected surface waters from six streams on the North Slope of Alaska from mid-May through mid-October. The catchments of all six streams are underlain by continuous permafrost and range in size from 1.6 km2 to 610 km2. Three of the catchments drain predominantly tussock tundra while the other three are located in more mountainous terrain with exposed bedrock and less tundra coverage. This presentation will focus on the seasonality of dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) in these streams. As observed in previous studies, DOC concentrations are highest during the spring snowmelt period and decline as the summer progresses. Concentrations of TDN show similar patterns to those of DOC during the spring and early summer. However, the pattern for TDN diverges from that of DOC later in the summer, with a substantial increase at some locations that is primarily attributed to the nitrate fraction. While the seasonal patterns are qualitatively similar in the tundra and mountain streams, DOC concentrations are much higher in the tundra streams and nitrate concentrations are much higher in the mountain streams. Our study places particular emphasis on dynamics during the spring and fall. Historically, these are times of the year that Arctic streams and rivers have been understudied. However, these are also times when the anticipated responses to warming in the Alaskan Arctic are most likely to be manifest: an earlier spring melt transition from winter to summer and the downward movement of the seasonally thawed “active” layer. During the spring, frozen ground largely constrains water flow to the organic-rich soil surface, whereas maximum thaw depths (active layer) in the fall facilitate water flow thorough deeper soil layers.

Khosh, M. S.; McClelland, J. W.; Douglas, T. A.; Jacobson, A. D.; Lehn, G. O.; Barker, A.

2010-12-01

234

Ocean metabolism and dissolved organic matter: How do small dissolved molecules persist in the ocean?  

NASA Astrophysics Data System (ADS)

The ocean reservoir of dissolved organic matter (DOM) is among the largest global reservoirs (~700 Pg C) of reactive organic carbon. Marine primary production (~50 Pg C/yr) by photosynthetic microalgae and cyanobacteria is the major source of organic matter to the ocean and the principal substrate supporting marine food webs. The direct release of DOM from phytoplankton and other organisms as well as a variety of other processes, such as predation and viral lysis, contribute to the ocean DOM reservoir. Continental runoff and atmospheric deposition are relatively minor sources of DOM to the ocean, but some components of this material appear to be resistant to decomposition and to have a long residence time in the ocean. Concentrations of DOM are highest in surface waters and decrease with depth, a pattern that reflects the sources and diagenesis of DOM in the upper ocean. Most (70-80%) marine DOM exists as small molecules of low molecular weight (<1 kDalton). Surprisingly, high-molecular-weight (>1 kDalton) DOM is relatively enriched in major biochemicals, such as combined neutral sugars and amino acids, and is more bioavailable than low-molecular-weight DOM. The observed relationships among the size, composition, and reactivity of DOM have led to the size-reactivity continuum model, which postulates that diagenetic processes lead to the production of smaller molecules that are structurally altered and resistant to microbial degradation. The radiocarbon content of these small dissolved molecules also indicates these are the most highly aged components of DOM. Chemical signatures of bacteria are abundant in DOM and increase during diagenesis, indicating bacteria are an important source of slowly cycling biochemicals. Recent analyses of DOM isolates by ultrahigh-resolution mass spectrometry have revealed an incredibly diverse mixture of molecules. Carboxyl-rich alicyclic molecules are abundant in DOM, and they appear to be derived from diagenetically-altered terpenoids, such as sterols and hopanoids. Thermally-altered molecules, including black carbon, also appear to be important components of DOM, but their origins are unclear. We are rapidly acquiring novel information about the composition and molecular identity of DOM, and novel insights about the origins, transformations and fates this vast reservoir of DOM are emerging. This presentation will review and synthesize this information for comparison with non-living organic matter in other systems.

Benner, Ronald

2010-05-01

235

Variable C : N : P stoichiometry of dissolved organic matter cycling in the Community Earth System Model  

NASA Astrophysics Data System (ADS)

Dissolved organic matter (DOM) plays an important role in the ocean's biological carbon pump by providing an advective/mixing pathway for ~ 20% of export production. DOM is known to have a stoichiometry depleted in nitrogen (N) and phosphorus (P) compared to the particulate organic matter pool, a fact that is often omitted from biogeochemical ocean general circulation models. However the variable C : N : P stoichiometry of DOM becomes important when quantifying carbon export from the upper ocean and linking the nutrient cycles of N and P with that of carbon. Here we utilize recent advances in DOM observational data coverage and offline tracer-modeling techniques to objectively constrain the variable production and remineralization rates of the DOM C : N : P pools in a simple biogeochemical-ocean model of DOM cycling. The optimized DOM cycling parameters are then incorporated within the Biogeochemical Elemental Cycling (BEC) component of the Community Earth System Model (CESM) and validated against the compilation of marine DOM observations. The optimized BEC simulation including variable DOM C : N : P cycling was found to better reproduce the observed DOM spatial gradients than simulations that used the canonical Redfield ratio. Global annual average export of dissolved organic C, N, and P below 100 m was found to be 2.28 Pg C yr-1 (143 Tmol C yr-1, 16.4 Tmol N yr-1, and 1 Tmol P yr-1, respectively, with an average export C : N : P stoichiometry of 225 : 19 : 1 for the semilabile (degradable) DOM pool. Dissolved organic carbon (DOC) export contributed ~ 25% of the combined organic C export to depths greater than 100 m.

Letscher, R. T.; Moore, J. K.; Teng, Y.-C.; Primeau, F.

2015-01-01

236

Quantification of dissolved iron sources to the North Atlantic Ocean  

NASA Astrophysics Data System (ADS)

Dissolved iron is an essential micronutrient for marine phytoplankton, and its availability controls patterns of primary productivity and carbon cycling throughout the oceans. The relative importance of different sources of iron to the oceans is not well known, however, and flux estimates from atmospheric dust, hydrothermal vents and oceanic sediments vary by orders of magnitude. Here we present a high-resolution transect of dissolved stable iron isotope ratios (?56Fe) and iron concentrations ([Fe]) along a section of the North Atlantic Ocean. The different iron sources can be identified by their unique ?56Fe signatures, which persist throughout the water column. This allows us to calculate the relative contribution from dust, hydrothermal venting and reductive and non-reductive sedimentary release to the dissolved phase. We find that Saharan dust aerosol is the dominant source of dissolved iron along the section, contributing 71-87 per cent of dissolved iron. Additional sources of iron are non-reductive release from oxygenated sediments on the North American margin (10-19 per cent), reductive sedimentary dissolution on the African margin (1-4 per cent) and hydrothermal venting at the Mid-Atlantic Ridge (2-6 per cent). Our data also indicate that hydrothermal vents in the North Atlantic are a source of isotopically light iron, which travels thousands of kilometres from vent sites, potentially influencing surface productivity. Changes in the relative importance of the different iron sources through time may affect interactions between the carbon cycle and climate.

Conway, Tim M.; John, Seth G.

2014-07-01

237

The diffusion of dissolved silica in dilute aqueous solution  

NASA Astrophysics Data System (ADS)

The diffusion coefficient of dissolved silica at 25.5 ± .5° C was determined as a function of concentration using a non-steady-state method whereby agar-gelled solutions containing dissolved silica from 0.09 to 1.50 mM ( pH = 5.5) were placed in contact with distilled water in glass cells. Diffusion coefficients were obtained by measuring the dissolved silica content of the distilled water after a given length of time. The measured diffusion coefficients decreased as a function of increasing dissolved silica concentration, which is thought to reflect an increase in dimeric silica according to the equilibrium: 2 Si( OH) 4 = Si2O( OH) 6 + H2O. The tracer diffusion coefficients for Si(OH) 4 and Si 2O(OH) 6 and an association constant for the above reaction were determined by fitting the following equation to the experimental data: Dobs = ?Dmonomer + (1 - ?) Ddimer where ? is the fraction of total dissolved silica which is Si(OH) 4. The best fit yielded tracer D's for Si(OH) 4 and Si 2O(OH) 6 of 2.2 and 1.0 (in units of 10 -5 cm 2 sec -1), respectively, and an association constant of 330.

Applin, Kenneth R.

1987-08-01

238

Scavenging rates of dissolved manganese in a hydrothermal vent plume  

NASA Astrophysics Data System (ADS)

The biogeochemical scavenging of dissolved manganese (Mn) from hydrothermal plumes was investigated using radiotracer ( 54Mn) techniques. The measured scavenging rate constant, k 1, was lowest in the buoyant plume (<0.2 y -1), increasing to ˜2 y -1 in the non-buoyant plume at distances of 20 km from the ridge valley axis. The direct biological contribution to the dissolved Mn scavenging rate (i.e the fraction suppressed by the addition of a metabolic poison) also increased over the same distances, being minor or absent at plume depths in the proximal plume, yet the major component at distal plume stations. These and other data suggest that the capacity for scavenging dissolved Mn onto particles evolves with increasing age of the plume, suggestive of a microbial response to changing conditions within the plume. Estimated maximum scavenging rates of dissolved Mn onto particles ( RDMn = k 1 [DMn])were noted at plume depths for all stations, a function of very high dissolved Mn concentrations in the case of the buoyant plume and proximal non-buoyant plume. RDMn values, integrated over plume depths, ranged from 3.4 to 1.7 mM m -2 y -1 for the non-buoyant plume at on-axis and off-axis stations, respectively. The application of the data to the dispersal of hydrothermal constituents and to plume aging is discussed.

Cowen, James P.; Massoth, Gary J.; Feely, Richard A.

1990-10-01

239

Effect of membrane filtration artifacts on dissolved trace element concentrations  

USGS Publications Warehouse

Among environment scientists, the current and almost universally accepted definition of dissolved constituents is an operational one; only those materials which pass through a 0.45-??m membrane filter are considered to be dissolved. Detailed laboratory and field studies on Fe and Al indicate that a number of factors associated with filtration, other than just pore size, can substantially alter 'dissolved' trace element concentrations; these include: filter type, filter diameter, filtration method, volume of sample processed, suspended sediment concentration, suspended sediment grain-size distribution, concentration of colloids and colloidally associated trace elements and concentration of organic matter. As such, reported filtered-water concentrations employing the same pore size filter may not be equal. Filtration artifacts may lead to the production of chemical data that indicate seasonal or annual 'dissolved' chemical trends which do not reflect actual environmental conditions. Further, the development of worldwide averages for various dissolved chemical constituents, the quantification of geochemical cycles, and the determination of short- or long-term environmental chemical trends may be subject to substantial errors, due to filtration artifacts, when data from the same or multiple sources are combined. Finally, filtration effects could have a substantial impact on various regulatory requirements.

Horowitz, Arthur J.; Elrick, Kent A.; Colberg, Mark R.

1992-01-01

240

Effect of Long-term Reduction and Diel Fluctuation in Dissolved Oxygen on Spawning of Black Crappie, Pomoxis nigromaculatus  

Microsoft Academic Search

Mature black crappies were exposed over winter in the laboratory to constant dissolved oxygen concentrations near 2.5, 4.0, 5.5, and 7.0 mg\\/liter. Starting on 26 April during a simulated spring-to-summer rise in water temperature, some were continued at the original oxygen concentrations while others were subjected to mean diel fluctuations ranging from 0.8 to 1.9 mg O2\\/liter above and below

Anthony R. Carlson; Lawrence J. Herman

1978-01-01

241

Seasonal ice and hydrologic controls on dissolved organic carbon and nitrogen concentrations in a borealrich fen  

E-print Network

Seasonal ice and hydrologic controls on dissolved organic carbon and nitrogen concentrations and hydrologic controls on dissolved organic carbon and nitrogen concentrations in a borealrich fen, J. Geophys of dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) across an experimental manipulation

Turetsky, Merritt

242

Iron traps terrestrially derived dissolved organic matter at redox interfaces  

PubMed Central

Reactive iron and organic carbon are intimately associated in soils and sediments. However, to date, the organic compounds involved are uncharacterized on the molecular level. At redox interfaces in peatlands, where the biogeochemical cycles of iron and dissolved organic matter (DOM) are coupled, this issue can readily be studied. We found that precipitation of iron hydroxides at the oxic surface layer of two rewetted fens removed a large fraction of DOM via coagulation. On aeration of anoxic fen pore waters, >90% of dissolved iron and 27 ± 7% (mean ± SD) of dissolved organic carbon were rapidly (within 24 h) removed. Using ultra-high-resolution MS, we show that vascular plant-derived aromatic and pyrogenic compounds were preferentially retained, whereas the majority of carboxyl-rich aliphatic acids remained in solution. We propose that redox interfaces, which are ubiquitous in marine and terrestrial settings, are selective yet intermediate barriers that limit the flux of land-derived DOM to oceanic waters. PMID:23733946

Riedel, Thomas; Zak, Dominik; Biester, Harald; Dittmar, Thorsten

2013-01-01

243

Dissolved mercury behaviour in the Saint Lawrence estuary  

NASA Astrophysics Data System (ADS)

Dissolved mercury concentrations have been measured in the waters of the St Lawrence estuary. The typical concentration of the riverine end-member is 12·0±3·0 p M; the oceanic end-member samples exhibit a mean mercury concentration of 2·4 p M. The graphical pattern of the relationship between mercury concentration and salinity shows a departure from a dilution line. We suggest that a removal of mercury from the dissolved phase during the estuarine mixing is responsible for this observation. Based on the results, the actual input of dissolved mercury from the St Lawrence River to the Gulf is evaluated to be approximately 0·52 T a -1.

Cossa, Daniel; Gobeil, Charles; Courau, Philippe

1988-02-01

244

Effects of dissolved organic matter from a eutrophic lake on the freely dissolved concentrations of emerging organic contaminants.  

PubMed

The authors studied the effects of dissolved organic matter (DOM) on the bioavailability of bisphenol A (BPA) and chloramphenicol by measuring the freely dissolved concentrations of the contaminants in solutions containing DOM that had been isolated from a mesocosm in a eutrophic lake. The abundance and aromaticity of the chromophoric DOM increased over the 25-d mesocosm experiment. The BPA freely dissolved concentration was 72.3% lower and the chloramphenicol freely dissolved concentration was 56.2% lower using DOM collected on day 25 than using DOM collected on day 1 of the mesocosm experiment. The freely dissolved concentrations negatively correlated with the ultraviolent absorption coefficient at 254 nm and positively correlated with the spectral slope of chromophoric DOM, suggesting that the bioavailability of these emerging organic contaminants depends on the characteristics of the DOM present. The DOM-water partition coefficients (log KOC ) for the emerging organic contaminants positively correlated with the aromaticity of the DOM, measured as humic acid-like fluorescent components C1 (excitation/emission=250[313]/412 nm) and C2 (excitation/emission=268[379]/456 nm). The authors conclude that the bioavailability of emerging organic contaminants in eutrophic lakes can be affected by changes in the DOM. PMID:24839192

Xiao, Yi-Hua; Huang, Qing-Hui; Vähätalo, Anssi V; Li, Fei-Peng; Chen, Ling

2014-08-01

245

Dissolved gas concentrations of the geothermal fluids in Taiwan  

NASA Astrophysics Data System (ADS)

Taiwan, a geologically active island, is located on the boundary of the Philippine Sea Plate and the Eurasian Plate. High heat flow and geothermal gradient generated by the complex collision and orogeny, warm up the meteoric water and/or the ground water. The heated water becomes geothermal fluids. In previous studies, researchers tried to categorize hot springs based on the appearance, chemical compositions and lithological areas. Because of the chemical inertness, the concentrations and isotopic composition of dissolved noble gases are good indicators of the mantle degassing, geothermal conditions, and so on. In this study, 55 hot springs were collected from different tectonic units. It is the first time to systematically study the hot springs in Taiwan in terms of dissolved gases. Hot spring water is sampled and stored in pre-evacuated glass bottles for analyzing gas compositions. The abundances of noble gases were determined by a quadrupole mass spectrometer based on the isotope dilution technique. Samples with glass vials are introduced to RAD 7 and GC for dissolved Rn and major dissolved gases analyses. Furthermore, helium isotopic ratios and helium-neon ratios are measured on a conventional noble gas mass spectrometer. For hydrochemistry analysis, water samples are analyzed by IC, ICP-MS and titration. We can classify the hot springs samples into three major groups from main anion concentration data; and then, subdivide them into nine minor groups by cation concentration data. Moreover, according to major dissolved gases compositions, three major gas components: CH4, N2 and CO2, are identified. Dissolved noble gases provided more detailed clues about hot springs sources in Taiwan, such as the degree of mixing between meteoric water and deep-source water, which will be further discussed in this study.

Chen, Ai-Ti; Yang, Tsanyao Frank

2010-05-01

246

Dissolved, Exsolved and Re-dissolved H2O in Volcanology: Rheology, Glass Transition, and Thermodynamics  

NASA Astrophysics Data System (ADS)

All natural magmas originate with dissolved H2O. All such magmas degas during transport and eruption. The presence, abundance, and state of H2O in magmas control phase relations and the transport properties of melts and magmas. For example, dissolved H2O lowers viscosity, lowers glass transition temperatures (Tg), and controls the temperature and nature of crystallization. The effects of exsolved water are also substantial in terms of modifying the bulk transport properties of the magma, facilitating egress of volatiles and, thus, promoting crystallization. Of great interest is the coupling this component (H2O) creates between the thermodynamic processes (i.e. cooling, crystallization, vesiculation) and the properties (i.e. density, viscosity) controlling the mechanical behaviour (i.e. flow and fracture) of magma during transport and eruption. The coupling allows for strong feedbacks between system variables. The component H2O also has a retrograde solubility in silicate melts wherein H2O solubility in the melt increases with decreasing T. Here, we explore some of the consequences of retrograde solubility of H2O for volcanic systems using a new preliminary experimental dataset. These data establish the 1-atmosphere solubility limits of H2O in silicic melt at volcanic temperatures and are complementary to the growing literature on the low pressure (<50 MPa) solubility of volatiles in silicate melts (e.g., Behrens et al. 2009; DiMatteo et al. 2004; Liu et al. 2005; Zhang 1999). We specifically look at the implications of these data, especially the retrograde solubility limits, for welding of pyroclastic deposits (e.g. ignimbrites, conduit fill, fall out). The cessation of welding and compaction processes in pyroclastic deposits is reached when deposits cool below Tg. However, the fact that H2O has a retrograde solubility means that inter- and intraclast water will be resorbed by vitric pyroclasts as the deposit cools (regardless of load). This has the immediate consequence of reducing the viscosity of the pyroclasts and, more importantly, reducing Tg. The reduction in pyroclast viscosity facilitates sintering, welding and compaction processes. The reduced Tg, due to resorbed H2O, extends the T-time window for porosity reduction via viscous flow. Variations in welding intensity can, therefore, be an expression of the competition between cooling of the deposit and the re-hydration of vitric pyroclasts during cooling driven by retrograde solubility of H2O. In essence, the temperature of the cooling deposit chases a descending Tg; once the deposit temperature catches and drops below Tg, viscous deformation processes are quenched. This allows for the H2O contents of vitric pyroclasts to preserve higher water contents that they had at the time they erupted. The analysis of the relationships between eruptive, emplacement and glass transition temperatures are discussed further. References Cited: Behrens H. et al. 2009: Am Min 94, 105-120. Di Matteo V. et al. 2004: Chemical Geology 213, 187-196. Liu Y et al. 2005: . J Volc Geotherm Res 143, 219-235. Zhang Y 1999: Rev Geophys 37, 493-516.

Russell, K.; kennedy, B.; Giordano, D.; Friedlander, E. A.

2012-12-01

247

Effects of Dissolved Carbonate on Arsenate Adsorption and Surface  

E-print Network

, University of Delaware, Newark, Delaware 19717 Effects of dissolved carbonate on arsenate [As(V)] reactivity kinetics, pseudo-equilibrium adsorption/titration experiments, extended X-ray absorption fine structure,andtheresultsareconsistent with the formation of nonprotonated bidentate surface species at the hematite surfaces. The results also suggest

Sparks, Donald L.

248

RESPONSE OF LEAD SOLUBILITY TO DISSOLVED CARBONATE IN DRINKING WATER  

EPA Science Inventory

A model is presented showing the detailed response of the theoretical solubility curves for lead to changes in dissolved inorganic carbonate concentration (TIC) and pH at 25 C. Aqueous Pb(II) ion, lead carbonate complexes, lead hydroxide monomers and polymers, and the solids lead...

249

Effects of elevated total dissolved solids on bivalves  

EPA Science Inventory

A series of experiments were performed to assess the toxicity of different dominant salt recipes of excess total dissolved solids (TDS) to organisms in mesocosms. Multiple endpoints were measured across trophic levels. We report here the effects of four different TDS recipes on b...

250

CONDUCTOMETRIC CHARACTERIZATION OF DISSOLVED HUMIC MATERIALS. (R828158)  

EPA Science Inventory

Conductometric replacement titrations of humic and fulvic acids dissolved in a slight excess of hydroxide were carried out with standard acid. The slope of the titration curve corresponding to the protonation of humate/fulvate was related to the electrophoretic mobility of the...

251

Dissolved organic matter and nutrients in two Eastern Mediterranean rivers  

Microsoft Academic Search

The role of both inorganic and organic riverine nutrient fluxes in regulating the autotrophy vs eterotrophy in coastal seas is well recognized. Eastern Mediterranean rivers have been studied for the most part, for their inorganic nutrient fluxes, whereas little information is available for their organic nutrient content. This study presents new data on dissolved organic matter composition for two permanent

Elli Pitta; Christina Zeri; Maria Tzortziou; Elias Dimitriou; Elias Moussoulis; Vassiliki Paraskevopoulou; Emanouil Dassenakis

2010-01-01

252

PHOTOCHEMICAL TRANSFORMATIONS OF DISSOLVED ORGANIC MATTER IN A BLACKWATER RIVER  

EPA Science Inventory

We examined photochemical alterations of dissolved organic matter (DOM) from the Satilla River, a high DOC (10-40 mg/liter) blackwater river of southeast Georgia. Water samples were filtered to remove most organisms, placed in quartz tubes, and incubated under natural sunlight a...

253

DISSOLVED OXYGEN AND OXIDATION-REDUCTION POTENTIALS IN GROUND WATER  

EPA Science Inventory

Water samples were collected from various depths in a pristine sand and gravel water table aquifer at monthly intervals over a period of one year. Dissolved oxygen concentrations were near saturation 9 feet below the water table and decreased to nearly zero at 78 feet below the w...

254

Investigating Factors that Affect Dissolved Oxygen Concentration in Water  

ERIC Educational Resources Information Center

Describes activities that demonstrate the effects of factors such as wind velocity, water temperature, convection currents, intensity of light, rate of photosynthesis, atmospheric pressure, humidity, numbers of decomposers, presence of oxidizable ions, and respiration by plants and animals on the dissolved oxygen concentration in water. (MA)

Jantzen, Paul G.

1978-01-01

255

Dissolving Carboxylic Acids and Primary Amines on the Overhead Projector  

ERIC Educational Resources Information Center

Liquid carboxylic acids (or primary amines) with limited solubility in water are dissolved by addition of aqueous sodium hydroxide (or hydrochloric acid) on the stage of an overhead projector using simple glassware and very small quantities of chemicals. This effective and colorful demonstration can be used to accompany discussions of the…

Solomon, Sally D.; Rutkowsky, Susan A.

2010-01-01

256

ESTIMATING DISSOLVED ORGANIC CARBON PARTITION COEFFICIENTS FOR NONIONIC ORGANIC CHEMICALS  

EPA Science Inventory

A literature search was performed for dissolved organic carbon/water partition coefficients for nonionic chemicals (Kdoc) and Kdoc data was taken from more than sixty references. The Kdoc data were evaluated as a function of the n-octanol/water partition coefficients (Kow). A pre...

257

FIELD MEASUREMENT OF DISSOLVED OXYGEN: A COMPARISON OF METHODS  

EPA Science Inventory

The ability to confidently measure the concentration of dissolved oxygen (D.O.) in ground water is a key aspect of remedial selection and assessment. Presented here is a comparison of the commonly practiced methods for determining D.O. concentrations in ground water, including c...

258

Biological Uptake of Dissolved Silica in the Amazon River Estuary  

Microsoft Academic Search

Approximately 25 percent of the dissolved silica carried by the Amazon River is depleted through diatom production in the inner estuary. Annual production of opaline frustules is estimated to be 15 million tons. However, few diatoms accumulate in modern shelf sediments and chemical recycling appears to be slight. Instead, many frustules apparently are transported landward into the river system, where

John D. Milliman; Edward Boyle

1975-01-01

259

Transformer Fault Diagnosis by Dissolved-Gas Analysis  

Microsoft Academic Search

The great majority of incipient faults occurring in power transformers gives evidence of their presence early in their developmental stages. Oil and oil-impregnated electrical insulating materials can decompose under the influence of thermal and electrical stresses generating gaseous decomposition products which dissolve in the mineral oil. The nature and the amount of the individual component gases extracted from the oil

Joseph J. Kelly

1980-01-01

260

Interactions of Arsenic and the Dissolved Substances Derived from  

E-print Network

Interactions of Arsenic and the Dissolved Substances Derived from Turf Soils Z H A N G R O N G C H for the control of weeds in turf grasses at golf courses in Florida. There are concerns about arsenic (As) contamination of local shallow groundwater from the application of MSMA. The distinction between "free

Florida, University of

261

TOTAL DISSOLVED AND BIOAVAILABLE METALS AT LAKE TEXOMA MARINAS  

EPA Science Inventory

Dissolved metals in water and total metals in sediments have been measured at marina areas in Lake Texoma during June 1999 to October 2001, and October 2001, respectively. The metals most often found in the highest concentrations in marina water were Na and Ca, followed by Mg an...

262

Atmospheric inputs and river transport of dissolved substances  

Microsoft Academic Search

Several different types of behaviour can be observed for elements between atmospheric input and river transport including very limited chemical or biological reactivity (CI-, in most cases), change of speciation (C, N, P), recycling to atmosphere (C, N, S, K), increase of dissolved contents through weathering (Si, Ca, Mg, Na), and build-up in soil or vegetation (C, N, P, Ca,

MICHEL MEYBECK

1983-01-01

263

The Uptake of Dissolved Organic Matter by Juvenile Nematostella vectensis  

Microsoft Academic Search

Among marine invertebrates, nutrients can be acquired by consumption of particulate forms of food and through the absorption of organic molecules in seawater. We evaluated the ability of juvenile sea anemones (Nematostella vectensis) to take up dissolved organic matter (DOM) from seawater. ' As a cnidarian, the starlet sea anemone is diploblastic, composed of an endoderm, ectoderm, and an intervening

Yesensky Jessie; Hebron Allison

2008-01-01

264

MICRO GASOMETRIC DETERMINATION OF DISSOLVED OXYGEN AND NITROGEN  

Microsoft Academic Search

For polluted water and many biological fluids the Winkler method for the de termination of dissolved oxygen may easily become unreliable, or inapplicable. This difficulty can be avoided by using gasometnic methods. We describe below such a method for the determination of oxygen (and nitrogen) in one cubic centimeter of water. It has been used extensively under field conditions to

P. F. SCHOLANDER; L. VAN DAM; C. LLOYD CLAFF; J. W. KANWISHER

265

Dissolved oxygen concentration profiles in a production-scale bioreactor  

Microsoft Academic Search

A five-compartment model for the liquid flow and the oxygen transfer into the liquid phase of a large-scale bioreactor is presented. The aim of the model is to predict the following reactor operating variables: 1) the overall oxygen transfer capacity of the reactor; 2) the local liquid dissolved oxygen concentrations, for estimation of bad aerated zones which can introduce negative

N. M. G. Oosterhuis; N. W. F. Kossen

1984-01-01

266

Production of Dissolved and Particulate Hydrogen Sulfide by Marine Phytoplankton  

NASA Astrophysics Data System (ADS)

Hydrogen sulfide is a reactive gas that in its dissolved form can be found as dissociated ions and meta-sulfide complexes, or in the particulate state as insoluble metal-sulfides. In oxygenated surface seawater the source of this hydrogen sulfide is the hydrolysis of dissolved carbonyl sulfide, but also emissions from marine phytoplankton. In this way, the phytoplankton production of hydrogen sulfide can affect the cycling of dissolved trace metals such as zinc, copper, and mercury. To examine phytoplankton production of hydrogen sulfide, four different phytoplankton species were grown in batch cultures and the concentrations of dissolved (<0.4 um) and particulate sulfide (>0.4 um) monitored over time. The chlorophyte Dunaliella produced the most hydrogen sulfide (diss>part), followed by the diatom Skeletonema (part>diss), the chryptophyte Rhodomonas (diss>part), and finally the prymnesiophyte E. huxleyi. (part>diss). Thus, all of the phytoplankton cultured emitted hydrogen sulfide, and the fact that particulate sulfide was present demonstrated that it reacts with metals to form insoluble metal sulfides, thus affecting metal cycling.

Grace, C.; Davis, J. A.; Cutter, G. A.

2002-12-01

267

Laser remote sensing of dissolved organic matter in natural water  

Microsoft Academic Search

Fluorescent methods using Raman scattering signal as an internal standard are widely applied for environment remote control of dissolved organic matter (DOM) in water. In this paper temperature variations, ultraviolet irradiation influence on exitation and emission spectra of water samples have been investigated. Photochemical processes in DOM under laser excitation and the effect of fluorescence saturation have been studied

V. V. Chubarov; V. V. Fadeev; E. M. Filippova

1993-01-01

268

Isotope fractionation during oxidation of tetravalent uranium by dissolved oxygen  

NASA Astrophysics Data System (ADS)

We conducted laboratory experiments to investigate isotopic fractionations during oxidation of tetravalent uranium, U(IV), by dissolved oxygen. In hydrochloric acid media with the U(IV) dissolved, the ?238U value of the remaining U(IV) increased as the extent of oxidation increased. The ?238U value of the product U(VI) paralleled, but was offset to 1.1 ± 0.2‰ lower than the remaining U(IV). In contrast, oxidation of solid U(IV) by dissolved oxygen in 20 mM NaHCO3 solution at pH = 9.4 caused only a weak fractionation (?0.1‰ to 0.3‰), with ?238U being higher in the dissolved U(VI) relative to the solid U(IV). We suggest that isotope fractionation during oxidation of solid U(IV) is inhibited by a "rind effect", where the surface layer of the solid U(IV) must be completely oxidized before the next layer is exposed to oxidant. The necessity of complete conversion of each layer results in minimal isotopic effect. The weak shift in ?238U of U(VI) is attributed to adsorption of part of the product U(VI) to the solid U(IV) surfaces.

Wang, Xiangli; Johnson, Thomas M.; Lundstrom, Craig C.

2015-02-01

269

Flux of dissolved organic carbon from U.K. rivers  

Microsoft Academic Search

The rise in dissolved organic carbon (DOC) concentrations in the Northern Hemisphere in recent decades has been taken as indicative of increased turnover of terrestrial carbon and in particular in the vital reserve of peat. Hypotheses for this rise have been hotly debated in the literature. This study proposes that, although trends in concentration have been the main focus of

F. Worrall; T. P. Burt

2007-01-01

270

Photochemical Flocculation of Terrestrial Dissolved Organic Matter (tDOM) and Iron: Mechanisms and Geochemical Implications  

NASA Astrophysics Data System (ADS)

Photoflocculation of DOM has received relatively little attention. No previous studies have examined the chemical composition of the flocs nor investigated the coagulation mechanisms. We observed that, after 30 days of simulated solar UV irradiation of 0.1-um filtered Great Dismal Swamp (Virginia) water, 7.1% of the DOC was converted to POC while 75% was remineralized. Approximately 87% of the iron was removed from the dissolved phase after 30 days, but iron did not flocculate until a major fraction of DOM was removed by photochemical degradation and flocculation (>10 days); thus, during the initial 10 days, there were sufficient organic ligands present and/or the pH was low enough to keep iron in solution. Although photoflocculation of iron did eventually occur, it is not clear if iron is required for the initial flocculation of DOM. Using NMR and FT-IR techniques, we found that photochemically flocculated POM was enriched in aliphatics and amide functionality relative to the residual non-flocculated DOM, while carbohydrate-like material was neither photochemical degraded nor flocculated. Based on this spectroscopic evidence, we propose several mechanisms for the formation of the flocs during irradiation. We also speculate that abiotic photochemical flocculation may remove a significant fraction of tDOM and iron from the upper water column between headwaters and the ocean, including estuaries. Fig. 1. Concentrations of dissolved (gray), particulate (black), and adsorbed (white) material as a function of irradiation time: (a) organic carbon, (b) absorption at 300 nm, (c) total iron by atomic absorption, and (d) total nitrogen. Error bars represent the combined standard deviations of the 'total,' 'dissolved,' and 'adsorbed' terms from which the 'particulate' term was calculated. Total nitrogen was not determined for the 'adsorbed' material

Mopper, K.; Helms, J. R.; Mao, J.; Abdulla, H. A.; Schmidt-Rohr, K.

2013-12-01

271

Dissolved organic carbon and dissolved organic nitrogen export from forested watersheds in Nova Scotia: Identifying controlling factors  

Microsoft Academic Search

Riverine nutrient export represents a transfer of terrestrial nutrients to lakes, estuaries and the near-coastal zone. In this study, we constructed regional predictive models for riverine dissolved organic carbon (DOC) and organic nitrogen (DON) exports. We used a subset of 10 watersheds to construct regional empirical models of DOC and DON export, reserving two watersheds for testing the predictive ability

J. A. Aitkenhead-Peterson; J. E. Alexander; T. A. Clair

2005-01-01

272

DISTRIBUTED HYDROLOGICAL MODELING OF TOTAL DISSOLVED PHOSPHORUS TRANSPORT IN AN AGRICULTURAL LANDSCAPE. PART II: DISSOLVED PHOSPHORUS TRANSPORT  

Technology Transfer Automated Retrieval System (TEKTRAN)

Reducing non-point source phosphorus (P) loss to drinking water reservoirs is a main concern for New York City watershed planners, and modeling of P transport can assist in the evaluation of agricultural effects on nutrient dynamics. A spatially distributed model of total dissolved phosphorus (TDP) ...

273

Seasonal variability of total dissolved fluxes and origin of major dissolved elements within a large tropical river: The Orinoco, Venezuela  

NASA Astrophysics Data System (ADS)

Seasonal variations of total dissolved fluxes of the lower Orinoco River were calculated taking into account four complete hydrological cycles during a five-year period (2005-2010). The modern concentrations of total dissolved solids (TDS) of the Orinoco surface waters were compared with data collected during the second half of the last century published in the literature. This comparison leads to the conclusion that chemical composition did not evolve significantly at least over the last thirty to forty years. Surface waters of the Orinoco at Ciudad Bolivar are between bicarbonated calcic and bicarbonated mixed. In comparison to mean values of concentrations of total dissolved solids (TDS) of world river surface waters (89.2 mg l-1), the Orinoco River at Ciudad Bolivar presents mainly low mineralized surface waters (2005-10: TDS 30 mg l-1). The TDS fluxes passing at this station in direction to the Atlantic Ocean between 2005 and 2010 were estimated at 30 × 106 t yr-1, i.e. 36 t km-2 yr-1. It was observed that the seasonal variations (dry season vs wet season) of total dissolved fluxes (TDS and dissolved organic carbon (DOC)) are mainly controlled by discharge variations. Two groups of elements have been defined from dilution curves and molar ratio diagrams. Ca2+, Mg2+, HCO3-, Cl- and Na+ mainly come from the same geographic and lithologic area, the Andes. K+ and SiO2 essentially come from the Llanos and the Guayana Shield. These findings are important for understanding fundamental geochemical processes within the Orinoco River basin, but also as a baseline study in the perspective of the development of numerous mining activities related with aluminum and steel industries; and the plans of the Venezuelan government to construct new fluvial ports on the lower Orinoco for the transport of hydrocarbons.

Laraque, Alain; Moquet, Jean-Sébastien; Alkattan, Rana; Steiger, Johannes; Mora, Abrahan; Adèle, Georges; Castellanos, Bartolo; Lagane, Christèle; Lopez, José Luis; Perez, Jesus; Rodriguez, Militza; Rosales, Judith

2013-07-01

274

Dissolved oxygen regulation by logarithmic/antilogarithmic control to improve a wastewater treatment process.  

PubMed

This paper presents the automation of a real activated sludge wastewater treatment plant, which is located at San Antonio Ajijic in Jalisco, Mexico. The main objective is to create an on-line automatic supervision system, and to regulate the dissolved oxygen concentration in order to improve the performances of the process treating municipal wastewater. An approximate mathematical model is determined in order to evaluate via simulations different control strategies: proportional integral (PI), fuzzy PI and PI Logarithm/Antilogarithm (PI L/A). The controlled variable is dissolved oxygen and the control input is the injected oxygen. Based on this evaluation, the PI L/A controller is selected to be implemented in the real process. After that, the implementation, testing and fully operation of the plant automation are described. With this system, the considered wastewater treatment plant save energy and improves the effluent quality; also, the process monitoring is done online and it is easily operated by the plant users. PMID:24617069

Flores, Victor R; Sanchez, Edgar N; Béteau, Jean-François; Hernandez, Salvador Carlos

2013-01-01

275

Direct photolysis of carbonyl compounds dissolved in cloud and fog~droplets  

NASA Astrophysics Data System (ADS)

Gas-phase photolysis is an important tropospheric sink for many carbonyl compounds; however the significance of direct photolysis of these compounds dissolved in cloud and fog droplets is uncertain. We develop a theoretical approach to assess the importance of aqueous photolysis for a series of carbonyls that possess carboxyl and hydroxyl functional groups by comparison with rates of other atmospheric processes. We use computationally and experimentally derived effective Henry's law constants, hydration equilibrium parameters, aqueous hydroxyl radical (OH) rate constants, and optical extinction coefficients to identify types of compounds that will (or will not) have competitive aqueous photolysis rates. We also present molecular dynamics simulations designed to estimate gas- and aqueous-phase extinction coefficients of unstudied atmospherically relevant compounds found in d-limonene and isoprene secondary organic aerosol. In addition, experiments designed to measure the photolysis rate of glyceraldehyde, an atmospherically relevant water-soluble organic compound, reveal that aqueous quantum yields are highly molecule-specific and cannot be extrapolated from measurements of structurally similar compounds. We find that only two out of the 92 carbonyl compounds investigated, pyruvic acid and acetoacetic acid, may have aqueous photolysis rates that exceed the rate of oxidation by dissolved OH. For almost all carbonyl compounds lacking ?,?-conjugation that were investigated, atmospheric removal by direct photolysis in cloud and fog droplets can be neglected under typical atmospheric conditions.

Epstein, S. A.; Tapavicza, E.; Furche, F.; Nizkorodov, S. A.

2013-09-01

276

Greenhouse gases dissolved in soil solution - often ignored, but important?  

NASA Astrophysics Data System (ADS)

Flux measurements of climate-relevant trace gases from soils are frequently undertaken in contemporary ecosystem studies and substantially contribute to our understanding of greenhouse gas balances of the biosphere. While the great majority of such investigations builds on closed chamber and eddy covariance measurements, where upward gas fluxes to the atmosphere are measured, fewest concurrently consider greenhouse gas dissolution in the seepage and leaching of dissolved gases via the vadose zone to the groundwater. Here we present annual leaching losses of dissolved N2O and CO2 from arable, grassland, and forest lysimeter soils from three sites differing in altitude and climate. We aim to assess their importance in comparison to direct N2O emission, soil respiration, and further leaching parameters of the C- and N cycle. The lysimeters are part of the Germany-wide lysimeter network initiative TERENO-SoilCan, which investigates feedbacks of climate change to the pedosphere on a long-term scale. Soil water samples were collected weekly from different depths of the profiles by means of suction cups. A laboratory pre-experiment proved that no degassing occurred under those sampling conditions. We applied the headspace equilibration technique to determine dissolved gas concentrations by gas chromatography. The seepage water of all lysimeters was consistently supersaturated with N2O and CO2 compared to water equilibrated ambient air. In terms of N2O, leaching losses increased in the ascending order forest, grassland, and arable soils, respectively. In case of the latter soils, we observed a strong variability of N2O, with dissolved concentrations up to 23 ?g N L-1. However, since seepage discharge of the arable lysimeters was comparatively small and mostly limited to the hydrological winter season, leached N2O appeared to be less important than direct N2O emissions. In terms of dissolved CO2,our measurements revealed considerable leaching losses from the mountainous forest and grassland soils, based on concentrations up to 24 mg C L-1 and high seepage discharge. Such losses turned out to be similarly important like soil respiration, particularly during winter when temperature-dependent soil respiration declined. In conclusion, the results of the first year of our measurements provide evidence that dissolved greenhouse gases should be considered in studies which aim to assess full greenhouse gas balances, particularly in ecosystems where hydrological conditions favour microbial activity and high leaching losses.

Weymann, Daniel; Brueggemann, Nicolas; Puetz, Thomas; Vereecken, Harry

2014-05-01

277

Heat as a tracer to estimate dissolved organic carbon flux from a restored wetland  

USGS Publications Warehouse

Heat was used as a natural tracer to characterize shallow ground water flow beneath a complex wetland system. Hydrogeologic data were combined with measured vertical temperature profiles to constrain a series of two-dimensional, transient simulations of ground water flow and heat transport using the model code SUTRA (Voss 1990). The measured seasonal temperature signal reached depths of 2.7 m beneath the pond. Hydraulic conductivity was varied in each of the layers in the model in a systematic manual calibration of the two-dimensional model to obtain the best fit to the measured temperature and hydraulic head. Results of a series of representative best-fit simulations represent a range in hydraulic conductivity values that had the best agreement between simulated and observed temperatures and that resulted in simulated pond seepage values within 1 order of magnitude of pond seepage estimated from the water budget. Resulting estimates of ground water discharge to an adjacent agricultural drainage ditch were used to estimate potential dissolved organic carbon (DOC) loads resulting from the restored wetland. Estimated DOC loads ranged from 45 to 1340 g C/(m2 year), which is higher than estimated DOC loads from surface water. In spite of the complexity in characterizing ground water flow in peat soils, using heat as a tracer provided a constrained estimate of subsurface flow from the pond to the agricultural drainage ditch. Copyright ?? 2005 National Ground Water Association.

Burow, K.R.; Constantz, J.; Fujii, R.

2005-01-01

278

Solvatochromism and Conformational Changes in Fully Dissolved Poly(3-alkylthiophene)s.  

PubMed

Absorption spectroscopy is commonly utilized to probe optical properties that can be related, among other things, to the conformation of single, isolated conjugated polymer chains in solution. It is frequently suggested that changes in peak positions of optical spectra result from variations in the stiffness of polymer chains in solution because this modifies the conjugation length. In this work we utilize ultraviolet-visible (UV-vis) spectroscopy, small angle neutron scattering (SANS), and all atom molecular dynamic (AA-MD) simulations to closely probe the relationship between the conformation of single-chains of poly(3-alkylthiophene)s (P3ATs) and their optical properties. SANS results show variations in the radius of gyration and Kuhn length as a function of alkyl chain length, and structure, as well as the solvent environment. Furthermore, both SANS and MD simulations show that dissolved P3HT chains are more rigid in solvents where self-assembly and crystallization are possible. Shifts in P3AT optical properties were also observed for different solvent environments. However, these changes were not correlated to the changes in polymer conformation. Furthermore, changes in optical properties could not be perfectly described by generalized solvent-solute interactions. AA-MD simulations provide new insights into specific polymer-solvent interactions not accounted for in generalized solvatochromic theory. This work highlights the need for experiments and molecular simulations that further inform the specific role of solvent molecules on local polymer conformation and on optical properties. PMID:25486225

Newbloom, Gregory M; Hoffmann, Stephanie M; West, Aaron F; Gile, Melissa C; Sista, Prakash; Cheung, Hoi-Ki C; Luscombe, Christine K; Pfaendtner, Jim; Pozzo, Lilo D

2015-01-13

279

Dissolved gas and ultrasonic cavitation--a review.  

PubMed

The physics and chemistry of nonlinearly oscillating acoustic cavitation bubbles are strongly influenced by the dissolved gas in the surrounding liquid. Changing the gas alters among others the luminescence spectrum, and the radical production of the collapsing bubbles. An overview of experiments with various gas types and concentration described in literature is given and is compared to mechanisms that lead to the observed changes in luminescence spectra and radical production. The dissolved gas type changes the bubble adiabatic ratio, thermal conductivity, and the liquid surface tension, and consequently the hot spot temperature. The gas can also participate in chemical reactions, which can enhance radical production or luminescence of a cavitation bubble. With this knowledge, the gas content in cavitation can be tailored to obtain the desired output. PMID:22705074

Rooze, Joost; Rebrov, Evgeny V; Schouten, Jaap C; Keurentjes, Jos T F

2013-01-01

280

Predicting dissolved oxygen in the Chesapeake Bay: applications and implications  

Microsoft Academic Search

Eutrophic depletion of dissolved oxygen (DO) and its consequences for ecosystem dynamics have been a central theme of research,\\u000a assessment and management policies for several decades in the Chesapeake Bay. Ongoing forecast efforts predict the extent\\u000a of the summer hypoxic\\/anoxic area due to nutrient loads from the watershed. However, these models neither predict DO levels\\u000a nor address the intricate interactions

M. Bala Krishna Prasad; Wen Long; Xinsheng Zhang; Robert J. Wood; Raghu Murtugudde

281

Models for dynamically dissolving star clusters (Kruijssen, 2009)  

Microsoft Academic Search

Evolutionary models for dissolving star clusters, computed with SPACEv3.0 (also see http:\\/\\/www.astro.uu.nl\\/~kruijs). The SPACE star cluster models contain evolution data for clusters with seven different metallicities. The set of data provided here contains models for five different dissolution timescales, three sets of remnant kick velocities, and two King profile parameters. Models for a wider range of parameters and for other

J. M. D. Kruijssen

2009-01-01

282

Geochemistry and Reactivity of Exported Congo Riverine Dissolved Organic Matter  

Microsoft Academic Search

The Congo River basin drains the second largest area of rainforest in the world and is also the second largest river in terms of catchment size (3,680,000 km2) and freshwater discharge (42,000 m3 s- 1). Congo riverine dissolved organic carbon (DOC) export is estimated at 12.4 Tg DOC yr -1 or approximately 5 % of global riverine DOC export to

R. G. Spencer; A. P. Stubbins; P. J. Hernes; A. K. Aufdenkampe; P. Gulliver; K. Mopper; A. Baker; R. Y. Dyda; J. W. Six

2008-01-01

283

Water dissolved nitrous oxide from paddy agroecosystem in China  

Microsoft Academic Search

Although nitrous oxide emission from agricultural leaching and runoff is thought to constitute a globally important source of this greenhouse gas, water dissolved N2O in paddy ecosystems is poorly understood and scarcely reported where large amounts of fertilizer nitrogen are applied. This paper gives the results of a study assessing variability of the relationships between N2O and NO3? concentration in

Z. Q. Xiong; G. X. Xing; Z. L. Zhu

2006-01-01

284

Thermal fluorescence quenching properties of dissolved organic matter  

Microsoft Academic Search

The fluorescence excitation–emission matrices of dissolved organic matter (DOM) are investigated between 10 and 45°C for river and waste waters and organic matter standards. With increased temperature, fluorescence intensity is quenched. It is demonstrated that for a range of river and wastewater samples, that tryptophan-like fluorescence exhibits a greater range of quenching (between 20±4% and 35±5%) than fulvic-like fluorescence (19±4

Andy Baker

2005-01-01

285

Variability in dissolved oxygen off Eastern Luzon, Philippines  

NASA Astrophysics Data System (ADS)

The eastern coast and shelf of Luzon is a unique area encompassed by the bifurcation of the western boundary North Equatorial Current (NEC) into the Kuroshio and Mindanao Currents. This region is also productive and has become a rich fishing ground. Of interest is how biogeochemistry in this area is influenced by variability in the bifurcation driven by ENSO events, as well as by production and remineralization processes. Results from 2011 and 2012 oceanographic cruises show changes in dissolved oxygen (DO) off Eastern Luzon in both spatial and temporal scales. Between 2011 and 2012, there was a southern shift of the bifurcation latitude. Water masses from the NEC and the Kuroshio Recirculation Gyre (KRG) east of Luzon have inherent low and higher DO concentrations, respectively. A subsurface oxygen minimum layer was seen at 150-200m. Waters with this low dissolved oxygen signature comes from a 400m-deep sill basin (Lamon Deep) off Eastern Luzon. Apart from low ventilation rates, organic matter decomposition contributes to depletion of DO. Proximity of the basin to the coast is evident in the high particulate organic carbon concentration that is delivered from land through run-off and the nearby river. The low DO water is advected offshore and contributes to the spatial variability of DO in the area. Linear regression of particulate organic carbon, dissolved organic carbon, dissolved inorganic carbon, and nutrients with AOU strongly correlate organic matter remineralization to the change in DO with depth. The variability in DO off Eastern Luzon is analyzed with the large-scale variability offshore of source waters to determine the relative influence of biogeochemical cycling in the area.

San Diego-McGlone, M.; Escobar, M.; Jacinto, G.; Villanoy, C. L.

2013-12-01

286

Determination of total dissolved solids in water analysis  

USGS Publications Warehouse

The figure for total dissolved solids, based on the weight of the residue on evaporation after heating for 1 hour at 180??C., is reasonably close to the sum of the determined constituents for most natural waters. Waters of the carbonate type that are high in magnesium may give residues that weigh less than the sum. Natural waters of the sulfate type usually give residues that are too high on account of incomplete drying.

Howard, C.S.

1933-01-01

287

Dissolved and particulate carbohydrates in contrasting marine sediments  

Microsoft Academic Search

Dissolved and particulate carbohydrates were examined in contrasting Chesapeake Bay (estuarine) and mid-Atlantic shelf\\/slope break (continental margin) sediments. Particulate carbohydrates (PCHOs) represented ?5–9% of the total sediment particulate organic carbon (POC), and PCHO remineralization appeared to be a similar fraction of total sediment carbon oxidation (or Cox). When these results are compared with results from other coastal sediments and a

D. J. BURDIGE; A Skoog; K. GARDNER

2000-01-01

288

Fluorescent dissolved organic matter in marine sediment pore waters  

Microsoft Academic Search

Fluorescent dissolved organic matter (FDOM) in sediment pore waters from contrasting sites in the Chesapeake Bay and along the mid-Atlantic shelf\\/slope break was studied using three-dimensional fluorescence spectroscopy. Benthic fluxes of FDOM were also examined at the Chesapeake Bay sites. The major fluorescence peaks observed in these pore waters corresponded to those observed in the water column. These included peaks

David J. Burdige; Scott W. Kline; Wenhao Chen

2004-01-01

289

THE ROLE OF NITROGEN IN CHROMOPHORIC AND FLUORESCENT DISSOLVED ORGANIC MATTER FORMATION  

EPA Science Inventory

Microbial and photochemical processes affect chromophoric dissolved organic matter (CDOM) dynamics in the ocean. Some evidence suggests that dissolved nitrogen plays a role in CDOM formation, although this has received little systematic attention in marine ecosystems. Coastal sea...

290

Evaporation of iodine-containing off-gas scrubber solution  

DOEpatents

Mercuric nitrate-nitric acid scrub solutions containing radioiodine may be reduced in volume without excessive loss of volatile iodine. The use of concentrated nitric acid during an evaporation process oxidizes the mercury-iodide complex to a less volatile mercuric iodate precipitate.

Partridge, J.A.; Bosuego, G.P.

1980-07-14

291

Variable C : N : P stoichiometry of dissolved organic matter cycling in the Community Earth System Model  

NASA Astrophysics Data System (ADS)

Dissolved organic matter (DOM) plays an important role in the ocean's biological carbon pump by providing an advective/mixing pathway for ~ 20% of export production. DOM is known to have a stoichiometry depleted in nitrogen (N) and phosphorus (P) compared to the particulate organic matter pool, a~fact that is often omitted from biogeochemical-ocean general circulation models. However the variable C : N : P stoichiometry of DOM becomes important when quantifying carbon export from the upper ocean and linking the nutrient cycles of N and P with that of carbon. Here we utilize recent advances in DOM observational data coverage and offline tracer-modeling techniques to objectively constrain the variable production and remineralization rates of the DOM C / N / P pools in a simple biogeochemical-ocean model of DOM cycling. The optimized DOM cycling parameters are then incorporated within the Biogeochemical Elemental Cycling (BEC) component of the Community Earth System Model and validated against the compilation of marine DOM observations. The optimized BEC simulation including variable DOM C : N : P cycling was found to better reproduce the observed DOM spatial gradients than simulations that used the canonical Redfield ratio. Global annual average export of dissolved organic C, N, and P below 100 m was found to be 2.28 Pg C yr-1 (143 Tmol C yr-1), 16.4 Tmol N yr-1, and 1 Tmol P yr-1, respectively with an average export C : N : P stoichiometry of 225 : 19 : 1 for the semilabile (degradable) DOM pool. DOC export contributed ~ 25% of the combined organic C export to depths greater than 100 m.

Letscher, R. T.; Moore, J. K.; Teng, Y.-C.; Primeau, F.

2014-06-01

292

Temporal variations in dissolved selenium in Lake Kinneret (Israel)  

USGS Publications Warehouse

Selenium is an essential micronutrient for the growth of the dinoflagellate Peridinium gatunense that dominates the spring algal bloom in Lake Kinneret (LK). The relationship between the levels of dissolved selenium species and the occurance of algal blooms in this lake was studied. During algal blooms of P. gatunense in spring and of the blue-green Aphanizomenon ovalisporum in fall (in 1994) the concentration of epilimnetic dissolved organic Se (Se(org)) increased whereas that of selenite (SeIV) decreased, to levels below the limit of detection: 5 ng/l. The disappearance of SeIV during these blooms is attributed to algal uptake and it is suggested that the growth of both algae may have depended on Se(org) regeneration. A budget performed for selenate (SeVI) suggests that this species is also consumed by algae but to a lesser extent than SeIV (in 1994 ~40% of the epilimnetic load). During the stratification period the hypolimnion of Lake Kinneret becomes anoxic, with high levels of dissolved sulfide. The affects of this environment on the distribution of Se oxy-anions, selenite (SeIV) and selenate(SeVI), were also studied. At the onset of thermal stratification (March) about 35% of the lake inventory of both Se oxidized species are entrapped in the hypolimnion. During stages of oxygen depletion and H2S accumulation, SeIV is completely and SeVI partially removed from this layer. The removal is attributed to reduction followed by formation of particulate reduced products, such as elemental selenium Se(o). The ratio between SeVI to total dissolved selenium (SE(T)) in water sources to the lake is ~0.84, about twice the corresponding ratio in the lake (~0.44, during holomixis). In the lake about 75% of annual SeVI inflow from external sources undergoes reduction to selenide (Se-II) and Se(o) through epilimnetic algal assimilation and hypolimnetic anoxic reduction, respectively. It is suggested that the latter oxidation of the dissolved organic selenide released from biogenic particles and of Se(o) only to the tetravalent species is the cause for the lower ratio of SeVI/Se(T) in the lake.

Nishri, A.; Brenner, I.B.; Hall, G.E.M.; Taylor, H.E.

1999-01-01

293

Behavioral response of fish larvae to low dissolved oxygen concentrations in a stratified water column  

Microsoft Academic Search

Density stratification and respiration lead to vertical gradients in dissolved oxygen in many aquatic habitats. The behavioral responses of fish larvae to low dissolved oxygen in a stratified water column were examined during 1990–1991 with the goal of understanding how vertical gradients in dissolved oxygen may directly affect the distribution and survival of fish larvae in Chesapeake Bay, USA. In

D. L. Breitburg

1994-01-01

294

Dissolved Oxygen for Fish Production1 Ruth Francis-Floyd2  

E-print Network

FA27 Dissolved Oxygen for Fish Production1 Ruth Francis-Floyd2 1. This document is FA27, one Commissioners Cooperating. Millie Ferrer-Chancy, Interim Dean What Is Dissolved Oxygen? Dissolved oxygen (DO) refers to oxygen gas that is dis- solved in water. Fish "breathe" oxygen just as land animals do. However

Watson, Craig A.

295

Dissolved Oxygen Sensing in a Flow Stream using Molybdenum Chloride Optical Indicators  

E-print Network

Dissolved Oxygen Sensing in a Flow Stream using Molybdenum Chloride Optical Indicators Reza Loloee1@msu.edu Abstract--Dissolved oxygen concentration is considered the most important water quality variable in fish culture. Reliable and continuous (24/7) oxygen monitoring of dissolved oxygen (DO) in the 1 ­ 11 mg

Ghosh, Ruby N.

296

Differences in Dissolved Cadmium and Zinc Uptake among Stream Insects: Mechanistic Explanations  

Microsoft Academic Search

This study examined the extent to which dissolved Cd and Zn uptake rates vary in several aquatic insect taxa commonly used as indicators of ecological health. We further attempted to explain the mechanisms underlying observed differences. By comparing dissolved Cd and Zn uptake rates in several aquatic insect species, we demonstrated that species vary widely in these processes. Dissolved uptake

DAVID B. B UCHWALTER

297

Characterization of dissolved organic matter from source to sea using fluorescence and absorbance spectroscopy  

Microsoft Academic Search

Dissolved organic matter fluorescence, absorbance and dissolved organic carbon were measured from source to sea in the River Tyne catchment, of ?2935 km2 and encompassing areas of contrasting land use. The catchment has three major tributaries: the North Tyne which has good water quality, high dissolved organic carbon concentrations and visible water colour from the high proportion of peat in

Andy Baker; Robert G. M. Spencer

2004-01-01

298

NOAA Technical Memorandum ERL.GLERL-21 TEMPERATURE AND DISSOLVED OXYGEN DATA  

E-print Network

NOAA Technical Memorandum ERL.GLERL-21 TEMPERATURE AND DISSOLVED OXYGEN DATA FOR LAKE ONTARIO, 1972. REFERENCES Appendix'A. STATISTIC& SUMMARY BY CRUISE OF THE TEMPERATURE, DISSOLVED OXYGEN, AND PERCENT SATURATION DATA Appendix B. TEMPERATURE, DISSOLVED OXYGEN, AND PERCENT SATURATION DATA FOR ALL AVAILABLE

299

Abstract Low dissolved oxygen concentrations present numerous challenges for non-air-breathing aquatic or-  

E-print Network

Abstract Low dissolved oxygen concentrations present numerous challenges for non- pact of dissolved oxygen on predator-prey interactions, and suggest that outcomes depend on the respiratory ecology of both predator and prey. Key words Air-breathing · Rana catesbeiana · Dissolved oxygen

McIntyre, Peter

300

Elevated Fe(II) and Dissolved Fe in Hypoxic Shelf Waters off Oregon  

E-print Network

results in subsurface water depleted in dissolved oxygen over the mid and inner shelf as low oxygen water(BBL).Additionalrespiration of the high export production from the overlying productive waters can decrease dissolved oxygen even further by several variables. Model equilibrium calculations indicate that in oxygenated seawater dissolved Fe exists

Hickey, Barbara

301

Effects of applied voltages and dissolved oxygen on sustained power generation by microbial fuel cells  

E-print Network

Effects of applied voltages and dissolved oxygen on sustained power generation by microbial fuel chamber MFCs at the end of a cycle when the substrate is depleted. A slight increase in dissolved oxygen chamber for sustained performance of MFCs. Key words | anode, applied voltage, dissolved oxygen, microbial

302

Freshwater and Saline Loads of Dissolved Inorganic Nitrogen to Hood Canal and Lynch Cove, Washington  

E-print Network

, Washington Prepared in cooperation with the Hood Canal Dissolved Oxygen Program Scientific Investigations, and Theresa D. Olsen Prepared in cooperation with the Hood Canal Dissolved Oxygen Program ScientificFreshwater and Saline Loads of Dissolved Inorganic Nitrogen to Hood Canal and Lynch Cove

303

Stream Monitoring 1. Students learn how researchers test three stream parameters: temperature, dissolved  

E-print Network

: temperature, dissolved oxygen and pH. 2. Formulate a hypothesis and test it. Background Water quality flow, dissolved oxygen, temperature, pH, conductivity, nitrogen, phosphorus, total solids, turbidity, and fecal bacteria. Note: in this activity we are only measuring temperature, pH and dissolved oxygen

Schladow, S. Geoffrey

304

Relationships among Nutrients, Chlorophyll-a, and Dissolved Oxygen in Agricultural Streams in Illinois  

E-print Network

Relationships among Nutrients, Chlorophyll-a, and Dissolved Oxygen in Agricultural Streams understanding of the controls on algae and dissolved O2 in agricultural streams of Illinois is needed to aid abundance, and dissolved O2 in five streams in east-central Illinois from March through November 2004

David, Mark B.

305

UNIVERSITY OF CALIFORNIA, SAN DIEGO Continuous surface ocean measurements of dissolved oxygen isotopes  

E-print Network

UNIVERSITY OF CALIFORNIA, SAN DIEGO Continuous surface ocean measurements of dissolved oxygen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Chapter 2 An equilibrator to measure dissolved oxygen and its isotopes . 14 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 v #12;Chapter 3 Mass spectrometer methods for measuring dissolved oxygen isotopes

Keeling, Ralph

306

Tracing global biogeochemical cycles and meridional overturning circulation using chromophoric dissolved organic matter  

E-print Network

dissolved organic matter (CDOM) are positively correlated (R2 > 0.8) with apparent oxygen utilization (AOU for diagnosing changes in biogeochemistry and the overturning circulation, similar to dissolved oxygen circulation using chromophoric dissolved organic matter Norman B. Nelson,1 David A. Siegel,1,2 Craig A

Siegel, David A.

307

The dual influences of dissolved organic carbon on hypolimnetic metabolism: organic substrate and  

E-print Network

by the depth and magnitude of the deep dissolved oxygen maxima) in the high DOC lakes. In June, the hypolimnia of lakes with dissolved oxygen and no CH4, whileThe dual influences of dissolved organic carbon on hypolimnetic metabolism: organic substrate

Pace, Michael L.

308

Control and effect of dissolved air in water during flow boiling in microchannels  

E-print Network

for the dissolved oxygen content of 8.0 parts per million (ppm) at a pressure of 1 atm with untreated de-ionized water. For the dissolved oxygen contents of 5.4 and 1.8 ppm, nucleation is not observed untilControl and effect of dissolved air in water during flow boiling in microchannels Mark E. Steinke

Kandlikar, Satish

309

Biochemical Oxygen Demand and Dissolved Oxygen. Training Module 5.105.2.77.  

ERIC Educational Resources Information Center

This document is an instructional module package prepared in objective form for use by an instructor familiar with the azide modification of the Winkler dissolved oxygen test and the electronic dissolved oxygen meter test procedures for determining the dissolved oxygen and the biochemical oxygen demand of a wastewater sample. Included are…

Kirkwood Community Coll., Cedar Rapids, IA.

310

A preliminary methods comparison for measurement of dissolved organic nitrogen in seawater  

Microsoft Academic Search

Routine determination of dissolved organic nitrogen (DON) is performed in numerous laboratories around the world using one of three families of methods: UV oxidation (UV), persulfate oxidation (PO), or high temperature combustion (HTC). Essentially all routine methods measure total dissolved nitrogen (TDN) and calculate DON by subtracting the dissolved inorganic nitrogen (DIN). While there is currently no strong suggestion that

Jonathan H. Sharp; Kathrine R. Rinker; Karen B. Savidge; Jeffrey Abell; Jean Yves Benaim; Deborah Bronk; David J. Burdige; Gustave Cauwet; Wenhao Chen; Marylo D. Doval; Dennis Hansell; Charles Hopkinson; Gerhard Kattner; Nancy Kaumeyer; Karen J. McGlathery; Jeffrey Merriam; Nick Morley; Klaus Nagel; Hiroshi Ogawa; Carol Pollard; Mireille Pujo-Pay; Patrick Raimbault; Raymond Sambrotto; Sybil Seitzinger; Georgina Spyres; Frank Tirendi; Ted W. Walsh; C. S. Wong

2002-01-01

311

Dissolved trace elements in the Mississippi River: Seasonal, interannual, and decadal variability  

Microsoft Academic Search

A monthly trace element sampling of the lower Mississippi River, utilizing ultra-clean methods, was conducted from October 1991 to December 1993. Dissolved concentrations were determined for Fe, Mn, Zn, Ph, V, Mo, U, Cu, Ni, Cd, Rb, and Ba. The results show significant seasonal dissolved concentration changes for a number of elements. Specifically, dissolved Mn and Fe are found to

Alan M. Shiller

1997-01-01

312

Measurement of Relative Dissolved Gas Concentrations Using Underwater Mass Spectrometry  

NASA Astrophysics Data System (ADS)

The deployment of underwater mass spectrometer (UMS) systems in marine and lacustrine environments has provided chemical data of exceptional temporal and spatial resolution. UMS instruments operate moored, tethered, remotely, or autonomously, allowing users to customize deployments to suit a wide variety of situations. The ability to collect and analyze real-time data enables prompt, intelligent sampling decisions based on observed analyte distributions. UMS systems can simultaneously detect a wide variety of analytes generated by biological, chemical, physical, geothermal and anthropogenic activities. A polydimethylsiloxane (PDMS) membrane separates the sample-stream from the spectrometer's vacuum chamber. This membrane is selective against water and charged species, yet highly permeable to volatile organic compounds (VOC) and simple gases. Current detection limits for dissolved gases and VOCs are on the order of ppm and ppb respectively. Semi-quantitative proof-of-concept applications have included horizontal mapping of gas gradients, characterization of geothermal vent water, and observation of dissolved gas profiles. Horizontal gradients in dissolved gas concentrations were determined in Lake Maggiore, St Petersburg, Florida. The UMS was positioned on a remotely-guided surface vehicle, and real-time gas concentration data were transmitted to shore via wireless ethernet. Real-time observations allowed intensive sampling of areas with strong gas gradients. Oxygen and CO2 exhibited patchy distributions and their concentrations varied inversely, presumably in response to biological activity. The UMS signal for methane depended on the instrument's proximity to organic rich sediments. Geothermal vent water was characterized while the UMS was deployed in Yellowstone Lake, Wyoming, on a tethered Eastern Oceanics remotely operated vehicle (ROV). Observations of dissolved vent-gas compositions were obtained to depths of 30m. Distinct differences in dissolved vent-gas compositions at different sites point to diverse geothermal conditions beneath the lake. Oxygen concentrations were low at most vents, while hydrogen sulfide, methane and carbon dioxide concentrations were highly variable. Dissolved gas depth profiles were obtained using the UMS system in Saanich Inlet, Canada. Due to degradation of organic material, the inlet's deep water is typically anoxic, and rich in methane, carbon dioxide, and reduced sulfur compounds. Relative gas concentrations were obtained between the surface and 200m. A thermocline was detected as the instrument entered anoxic bottom water at 100m. Below this depth oxygen signal intensity declined sharply to background levels. In contrast, carbon dioxide increased sharply below 100m until a reproducible maximum was observed at 120m. Methane and hydrogen sulfide increased steadily with depth below 100 m, and exhibited no local maxima. Fully quantitative UMS measurements require characterization of the influence of salinity, and especially temperature and pressure, on the performance of the internal PDMS membrane. Temperature exerts a strong influence on gas diffusion across the PDMS membrane and the behavior of residual gases in the vacuum chamber; therefore, precise thermostating methods must be adopted. Other technical issues being examined in the laboratory include variations in UMS response attributable to pressure-induced membrane compression, and variable hydrodynamic conditions at the sample/membrane boundary. Experiments are being developed to address the issue of calibrating the ion signal intensity for dissolved gas concentrations.

Bell, R. J.; Toler, S.; van Amerom, F. H.; Wenner, P.; Hall, M.; Edkins, J.; Gassig, S.; Short, R.; Byrne, R.

2004-12-01

313

Chemical speciation and transformation of dissolved nitrogen in Lake Michigan  

NASA Astrophysics Data System (ADS)

The Great Lakes have experienced significant ecological and environmental changes due to increasing anthropogenic influences and the introduction of invasive species. However, changes in nutrient cycling pathways in Lake Michigan remain elusive. Water samples were collected between December 2012 and July 2013 along a transect from the Milwaukee River to open Lake Michigan for the measurements of dissolved inorganic nitrogen (DIN, including NO3, NO2, and NH4), dissolved organic nitrogen (DON), and colloidal organic nitrogen (CON). Concentrations of DIN in river waters decreased from winter to spring, while in Lake Michigan, DIN increased from spring/summer to winter, showing a general decrease from river to lake waters, but homogeneous or slightly increase from surface to deep water in Lake Michigan. Within the DIN pool, NO3 is the predominant species comprising >84%. Concentrations of DON also decreased from river to open lake waters, but less variable or slightly decreased from surface to deep waters in Lake Michigan. These variation trends highlighted the importance of terrestrial contribution of DIN and DON to the lake and possible production of DIN in bottom waters. While DIN predominated the total dissolved nitrogen (TDN) pool in both river and lake waters during winter, DON became dominant throughout the entire water column during spring/summer. The imbalance between DON production and DIN consumption during summer suggested that DON could also be derived from particulate nitrogen pool in the water column and other sources. Colloidal organic nitrogen contributed up to 22-56% of the DON pool or 12-32% of the TDN pool in river/coastal waters. Similar to DIN and DON, the abundance of CON also decreased from the Milwaukee River to Lake Michigan, indicating short turnover times of the colloidal N pool and increase the proportion of low-molecular-weight DON in lake waters.

Gao, L.; Guo, L.; Zhou, Z.; Cuhel, R. L.; Aguilar, C.

2013-12-01

314

Formulation and evaluation of aceclofenac mouth-dissolving tablet.  

PubMed

Aceclofenac has been shown to have potent analgesic and anti-inflammatory activities similar to indomethacin and diclofenac, and due to its preferential Cox-2 blockade, it has a better safety than conventional Non steroidal anti-inflammatory drug (NSAIDs) with respect to adverse effect on gastrointestinal and cardiovascular systems. Aceclofenac is superior from other NSAIDs as it has selectivity for Cox-2, a beneficial Cox inhibitor is well tolerated, has better Gastrointestinal (GI) tolerability and improved cardiovascular safety when compared with other selective Cox-2 inhibitor. To provide the patient with the most convenient mode of administration, there is need to develop a fast-disintegrating dosage form, particularly one that disintegrates and dissolves/disperses in saliva and can be administered without water, anywhere, any time. Such tablets are also called as "melt in mouth tablet." Direct compression, freeze drying, sublimation, spray drying, tablet molding, disintegrant addition, and use of sugar-based excipients are technologies available for mouth-dissolving tablet. Mouth-dissolving tablets of aceclofenac were prepared with two different techniques, wet granulation and direct compression, in which different formulations were prepared with varying concentration of excipients. These tablets were evaluated for their friability, hardness, wetting time, and disintegration time; the drug release profile was studied in buffer Phosphate buffered Saline (PBS) pH 7.4. Direct compression batch C3 gave far better dissolution than the wet granulation Batch F2, which released only 75.37% drug, and C3, which released 89.69% drug in 90 minutes. PMID:22171305

Solanki, Shailendra Singh; Dahima, Rashmi

2011-04-01

315

Oxidation of nanoscale zero-valent iron under sufficient and limited dissolved oxygen: Influences on aggregation behaviors.  

PubMed

Oxidations of nanoscale zero-valent iron (nZVI) under aerobic (dissolved oxygen?8mgL(-1)) and anaerobic (dissolved oxygen <3mgL(-1)) conditions were simulated, and their influences on aggregation behaviors of nZVI were investigated. The two oxidation products were noted as HO-nZVI (nZVI oxidized in highly oxygenated water) and LO-nZVI (nZVI oxidized in lowly oxygenated water) respectively. The metallic iron of the oxidized nZVI was almost exhausted (Fe(0)?8±5%), thus magnetization mainly depended on magnetite content. Since sufficient dissolved oxygen led to the much less magnetite (?15%) in HO-nZVI than that in LO-nZVI (>90%), HO-nZVI was far less magnetic (Ms=88kAm(-1)) than LO-nZVI (Ms=365kAm(-1)). Consequently, HO-nZVI formed small agglomerates (228±10nm), while LO-nZVI tended to form chain-like aggregations (>1?m) which precipitated rapidly. Based on the EDLVO theory, we suggested that dissolved oxygen level determined aggregation morphologies by controlling the degree of oxidation and the magnitude of magnetization. Then the chain-like alignment of LO-nZVI would promote further aggregation, but the agglomerate morphology of HO-nZVI would eliminate magnetic forces and inhibit the aggregation while HO-nZVI remained magnetic. Our results indicated the fine colloidal stability of HO-nZVI, which might lead to the great mobility in the environment. PMID:25441925

Jiang, Danlie; Hu, Xialin; Wang, Rui; Yin, Daqiang

2015-03-01

316

In vitro determination of aceclofenac Mouth Dissolving Tablets.  

PubMed

In the present study, Mouth Dissolving Tablets (MDTs) of aceclofenac were formulated by direct compression technique. Sodium starch glycolate and crospovidone were employed as superdisintegrants in various concentrations like 2%, 3% and 4% w/w. All prepared tablets were evaluated for weight variation, hardness, drug content, friability, disintegration time, in vitro wetting time and percent drug release. MDTs containing 4% w/w concentration of crospovidone give best results and is therefore considered as the best formula. It has shown 30 s disintegration time, 25 s wetting time and 79.34% in vitro release of drug in 25 min. PMID:24596037

Shobhit, Shobhit; Gupta, Satish Kumar

2013-01-01

317

Obtaining fast dissolving disintegrating tablets with different doses of melatonin.  

PubMed

Fast dissolving disintegrating tablets (FDDTs) containing different dosages of melatonin have been manufactured for administration to a specific target population: pediatric patients, having potential difficulties taking other oral forms. The lower dosages (3 and 5mg) are intended for epileptic children, migraine prevention, neurodevelopmental disability, sleep disorders and blindness. Dosages of 10 and 60 mg are intended for Duchenne muscular dystrophy. Two FDDT groups have been designed, one which has excipients for direct compression and others having direct compression and effervescent excipients. Tablets have been produced having disintegration times of less than 25s and with friability and hardness values that require no special storage or packaging conditions. PMID:24699354

Muñoz, H; Castan, H; Clares, B; Ruiz, M A

2014-06-01

318

Carbon Cycle - CDOM Activity: Chromophoric Dissolved Organic Matter (CDOM)  

NSDL National Science Digital Library

In this laboratory activity, students investigate chromophoric dissolved organic matter (CDOM) through gradual dilution of black, green and chamomile tea. Through this activity, students discover how CDOM can dominate the absorption of sunlight, how sunlight degrades CDOM through photochemical oxidation, and how CDOM levels are related to nutrient status, stratification and mixing of the ocean. Materials needed include coffee mugs, hot water, spoons, and tea. This resource is found in Rising Tides, a journal created for teachers and students reporting on current oceanography research conducted by NASA, NOAA, and university scientists, featuring articles, classroom activities, readings, teacher/student questions, and imagery for student investigation of marine science.

319

Toxicity of dissolved ozone to fish eggs and larvae  

SciTech Connect

To find levels of dissolved residual ozone lethal to fish eggs and larvae during brief exposures, continuous-flow toxicity tests were performed with eggs and larvae of yellow perch (Perca flavescens), and fathead minnow (Pimephales promelas), eggs of white sucker (Catastomus commersoni), and larvae of bluegill sunfish (Lepomis macrochirus). The 50 and 99% lethal concentrations with confidence limits were calculated. Eggs of the species tested were more tolerant than larvae, which were destroyed by very brief exposures (less than 2 minutes) to residuals less than 0.1 mg/1. Because of the sensitivity of the larvae, residual ozone concentrations in natural waters should remain well below 50 ..mu..g/1.

Asbury, C.; Coler, R.

1980-07-01

320

Droplet-born air blowing: novel dissolving microneedle fabrication.  

PubMed

The microneedle-mediated drug delivery system has been developed to provide painless self-administration of drugs in a patient-friendly manner. Current dissolving microneedle fabrication methods, however, require harsh conditions for biological drugs and also have problems standardizing the drug dose. Here, we suggested the droplet-born air blowing (DAB) method, which provides gentle (4-25 °C) and fast (?10min) microneedle fabrication conditions without drug loss. The amount of drug in the microneedle can be controlled by the pressure and time of droplet dispenser and the air blowing shapes this droplet to the microneedle, providing a force sufficient to penetrate skin. Also, the introduction of a base structure of two layered DAB-microneedle could provide complete drug delivery without wasting of drug. The DAB-based insulin loaded microneedle shows similar bioavailability (96.6±2.4%) and down regulation of glucose level compared with subcutaneous injection. We anticipate that DAB described herein will be suitable to design dissolving microneedles for use in biological drug delivery to patients. PMID:23742882

Kim, Jung Dong; Kim, Miroo; Yang, Huisuk; Lee, Kwang; Jung, Hyungil

2013-09-28

321

Groundwater-transported dissolved organic nitrogen exports from coastal watersheds  

USGS Publications Warehouse

We analyzed groundwater-transported nitrogen (N) exports from 41 watershed segments that comprised 10 Cape Cod, Massachusetts watersheds to test the hypotheses that chemical form of N exports is related to land use and to length of flow paths through watersheds. In the absence of human habitation, these glacial outwash-plain watersheds exported largely dissolved organic N (DON) but at relatively low annual rate. Addition of people to watersheds increased rates of both total dissolved N (TDN) and DON export through groundwater. Percent of TDN as DON in groundwater was negatively related to path length of groundwater through aquifers, but %DON was not significantly related to population density on the watersheds. DON was often the dominant form of N exported from the watersheds, even at high population densities. Our results suggest that natural sources are not entirely responsible for organic N exports from watersheds, but, instead, a substantial portion of anthropogenic N introduced to watersheds is exported as DON. This finding is in disagreement with previous results, which suggest that anthropogenic N is exported from watersheds largely as NO 3- and that DON exported from watersheds is from natural sources. ?? 2006, by the American Society of Limnology and Oceanography, Inc.

Kroeger, K.D.; Cole, M.L.; Valiela, I.

2006-01-01

322

Subtidal Variability of Dissolved Oxygen in Western Long Island Sound  

NASA Astrophysics Data System (ADS)

A simple model of the subtidal budget of dissolved oxygen in estuaries is developed and applied to observations in western Long Island Sound. The goal is to analyze the causes of hypoxia and develop a predictive capability for its onset and duration by estimating mixing coefficients and comparing simple models of their temporal variability. A single-segment lower-layer box-model for western Long Island Sound is developed. The lower layer oxygen budget is influenced by a mean advection toward the west, horizontal dispersion, vertical mixing, and pelagic and benthic respiration. Inverse methods and eight years of fortnightly ship surveys of salinity, temperature and dissolved oxygen throughout the water column at seven stations along the axis of western Long Island Sound are used to estimate parameters and evaluate the model performance. We find a subsurface respiration rate of 3.6 mM/m3/day and a vertical mixing rate of 0.23 cm2/s. A forward model is used to test whether the estimated mixing and respiration can be used to predict temporal variation of mean lower layer DO using DO data at one boundary station and temperature data elsewhere. This approach can assist efficient monitoring of estuarine DO levels.

Gay, P. S.; O'Donnell, J.

2008-12-01

323

The effects of dissolved gas supersaturation on white sturgeon larvae  

USGS Publications Warehouse

Spill at dams has caused supersaturation of atmospheric gas in waters of the Columbia and Snake rivers and raised concerns about the effects of dissolved gas supersaturation (DGS) on white sturgeons Acipenser transmontanus. The timing and location of white sturgeon spawning and the dispersal of white sturgeon larvae from incubation areas makes the larval stage potentially vulnerable to the effects of DGS. To assess the effects of DGS on white sturgeon larvae, we exposed larvae to mean total dissolved gas (TDG) levels of 118% and 131% saturation in laboratory bioassay tests. Gas bubble trauma (GBT) was manifested as a gas bubble in the buccal cavity, nares, or both and it first occurred at developmental stages characterized by the formation of the mouth and gills. Exposure times of 15 min were sufficient to elicit these signs in larvae in various stages of development. No mortality was observed in larvae exposed to 118% TDG for 10 d, but 50% mortality occurred after a 13-d exposure to 131% TDG. The signs of GBT we observed resulted in positive buoyancy and alterations in behavior that may affect the dispersal and predation vulnerability of white sturgeon larvae. The exact depth distribution of dispersing white sturgeon larvae in the Columbia River currently is unknown. Thus, our results may represent a worst-case scenario if white sturgeon larvae are dispersed at depths with insufficient hydrostatic pressure to compensate for high TDG levels.

Counihan, T.D.; Miller, A.I.; Mesa, M.G.; Parsley, M.J.

1998-01-01

324

Nicotine fast dissolving films made of maltodextrins: a feasibility study.  

PubMed

This work aimed to develop a fast-dissolving film made of low dextrose equivalent maltodextrins (MDX) containing nicotine hydrogen tartrate salt (NHT). Particular attention was given to the selection of the suitable taste-masking agent (TMA) and the characterisation of the ductility and flexibility under different mechanical stresses. MDX with two different dextrose equivalents (DEs), namely DE 6 and DE 12, were selected in order to evaluate the effect of polymer molecular weight on film tensile properties. The bitterness and astringency intensity of NHT and the suppression effect of several TMA were evaluated by a Taste-Sensing System. The films were characterised in term of NHT content, tensile properties, disintegration time and drug dissolution test. As expected, placebo films made of MDX DE 6 appeared stiffer and less ductile than film prepared using MDX DE 12. The films disintegrated within 10 s. Among the tested TMA, the milk and mint flavours resulted particularly suitable to mask the taste of NHT. The addition of NHT and taste-masking agents affected film tensile properties; however, the effect of the addition of these components can be counterweighted by modulating the glycerine content and/or the MDX molecular weight. The feasibility of NHT loaded fast-dissolving films was demonstrated. PMID:20936440

Cilurzo, Francesco; Cupone, Irma E; Minghetti, Paola; Buratti, Susanna; Selmin, Francesca; Gennari, Chiara G M; Montanari, Luisa

2010-12-01

325

Dissolved organic nitrogen in precipitation: Collection, analysis and atmospheric flux  

SciTech Connect

Recent studies have documented the importance of atmosphere inorganic nitrogen deposition to coastal waters. However, due to the limited number of field measurements and concerns about the reliability of measurement techniques, the aeolian flux of organic N is very uncertain. Coordinated studies have been initiated at Lewes, DE and Charlottesville, VA to evaluate collection and analysis techniques for dissolved organic nitrogen (DON) in precipitation and to provide preliminary estimate of DON wet fluxes. Sampling was conducted both manually and employing an automated wet-only collector (ACM) on a daily basis. A total of 37 events were analyzed from October 1993 through December 1994. Side-by-side comparisons of standard white HDPE buckets and stainless steel and glass collection vessels indicate sampling artifacts associate with plastic buckets. DON in precipitation appears to be highly labile, with significant losses observed in some samples within 12 hours. Analytical methods evaluated include persulfate wet chemical oxidation, UV photo-oxidation and a modified high temperature instrumental (ANTEK 7000) technique. Based on preliminary results, the volume-weighted average concentration of DON in precipitation at the mid-Atlantic coast is 9.1 {micro}moles/1. On an annual basis, DON compromises 23% of the total dissolved nitrogen in precipitation, varying from 0--64% on an event basis. From an ecological perspective, DON wet flux represents a quantitatively important exogenous source of N to coastal waters such as Chesapeake Bay.

Scudlark, J.R.; Church, T.M. [Univ. of Delaware, Lewes, DE (United States). Graduate Coll. of Marine Studies; Russell, K.M. [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Environmental Sciences; [Univ. of Delaware, Lewes, DE (United States). Graduate Coll. of Marine Studies; Montag, J.A.; Maben, J.R.; Keene, W.C.; Galloway, J.N. [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Environmental Sciences

1995-12-31

326

Carbon isotopic characterisation of dissolved organic matter during water treatment.  

PubMed

Water treatment is a series of physio-chemical processes to aid organic matter (OM) removal, which helps to minimise the formation of potentially carcinogenic disinfection by-products and microbial regrowth. Changes in OM character through the treatment processes can provide insight into the treatment efficiency, but radiogenic isotopic characterisation techniques have yet to be applied. Here, we show for the first time that analysis of (13)C and (14)C of dissolved organic carbon (DOC) effectively characterises dissolved OM through a water treatment works. At the sites investigated: post-clarification, DOC becomes isotopically lighter, due to an increased proportion of relatively hydrophilic DOC. Filtration adds 'old' (14)C-DOC from abrasion of the filter media, whilst the use of activated carbon adds 'young' (14)C-DOC, most likely from the presence of biofilms. Overall, carbon isotopes provide clear evidence for the first time that new sources of organic carbon are added within the treatment processes, and that treated water is isotopically lighter and typically younger in (14)C-DOC age than untreated water. We anticipate our findings will precipitate real-time monitoring of treatment performance using stable carbon isotopes, with associated improvements in energy and carbon footprint (e.g. isotopic analysis used as triggers for filter washing and activated carbon regeneration) and public health benefits resulting from improved carbon removal. PMID:24075722

Bridgeman, John; Gulliver, Pauline; Roe, Jessie; Baker, Andy

2014-01-01

327

Computer simulation of sulfur gas removal prior to molten carbonate fuel cells. Final report, October 1, 1979-January 3, 1981. [Hot carbonate computer code diethanolamine computer code  

SciTech Connect

A two-step acid gas treatment system has been selected for removal of sulfur gases from coal gasifier off-gas prior to use in a molten carbonate fuel cell. The system employs an absorber and regenerator for hot potassium carbonate scrubbing, an absorber and regenerator for diethanolamine scrubbing, and an impregnated activated carbon or zinc oxide adsorption column. Fortran computer programs have been developed to simulate the design of the hot potassium carbonate and diethanolamine systems. An example design is presented for a gasifier off-gas with the following characteristics: 22,284 lb moles per hour flow rate, 248/sup 0/F temperature, 214.7 psia pressure, and mole fractional compositions of CO/sub 2/ and H/sub 2/S of 0.1941 and 0.0104, respectively. Off-gas from the diethanolamine absorber has mole fractional compositions of CO/sub 2/ and H/sub 2/S of 0.0040 and 0.00001, respectively. Column dimensions for the hot potassium carbonate system are 9.69 feet in diameter by 87.13 feet in height for the absorber and 17.94 feet in diameter by 61.87 feet in height for the regenerator. Column dimensions for the diethanolamine system are 8.29 feet in diameter by 87.49 feet in height for the absorber and 10.33 feet in diameter by 73.79 feet in height for the regenerator. The dimensions for the carbonate system correspond to columns in two parallel treatment trains, each of which has an absorber and a regenerator, while dimensions for the amine system are for a single treatment train. Optimization of the computer code is recommended in order to further improve the utility of the design simulation.

Walters, R.W.; Mulvihill, J.W.

1981-06-01

328

Dissolved organic nitrogen: an overlooked pathway of nitrogen loss from agricultural systems?  

PubMed

Conventional wisdom postulates that leaching losses of N from agriculture systems are dominated by NO(3)(-). Although the export of dissolved organic nitrogen (DON) into the groundwater has been recognized for more than 100 yr, it is often ignored when total N budgets are constructed. Leaching of DON into stream and drinking water reservoirs leads to eutrophication and acidification, and can pose a potential risk to human health. The main objective of this review was to determine whether DON losses from agricultural systems are significant, and to what extent they pose a risk to human health and the environment. Dissolved organic N losses across agricultural systems varied widely with minimum losses of 0.3 kg DON ha(-1)yr(-1) in a pasture to a maximum loss of 127 kg DON ha(-1)yr(-1) in a grassland following the application of urine. The mean and median values for DON leaching losses were found to be 12.7 and 4.0 kg N ha(-1)yr(-1), respectively. On average, DON losses accounted for 26% of the total soluble N (NO(3)(-) plus DON) losses, with a median value of 19%. With a few exceptions, DON concentrations exceeded the criteria recommendations for drinking water quality. The extent of DON losses increased with increasing precipitation/irrigation, higher total inputs of N, and increasing sand content. It is concluded that DON leaching can be an important N loss pathway from agricultural systems. Models used to simulate and predict N losses from agricultural systems should include DON losses. PMID:19202010

van Kessel, Chris; Clough, Tim; van Groenigen, Jan Willem

2009-01-01

329

Effects of asynchronous snowmelt on flushing of dissolved organic carbon: A mixing model approach  

USGS Publications Warehouse

In many snowmelt-dominated catchments, stream dissolved organic carbon (DOC) levels typically increase rapidly as spring melt commences, peak before maximum discharge, and decrease quickly as melting continues. We present data from Deer Creek (Summit County, CO) that shows this distinctive flushing response of DOC during snowmelt runoff, with DOC stored in landscape soils flushed to the stream in response to infiltrating melt waters. Our prior studies show that asynchronous melting of the snowpack across the landscape causes the spring DOC flush to be initiated at different times throughout the catchment. In this study we quantify characteristics of the asynchronous melt and its effect on DOC flushing. We investigated whether a simple mixing model can be used to capture the essentials of the asynchronous melting of a seasonal snowpack and its controls on DOC transport. We divided the catchment into zones of aspect and elevation, which largely determine spatial and temporal variations in the distribution of snow. TOPMODEL was used to simulate the hydrology in each zone, and the simulated flow paths were routed through a simple DOC mixing model to predict contributions of DOC to the stream. The zonal responses were aggregated to give a predicted response of hydrology and DOC fluxes for the entire catchment. Our results indicate that asynchronous melting-which determines the timing of contributions of discharge and DOC to streamflow from different areas of the landscape-can be quantified using a simple modeling approach. Copyright ?? 2000 John Wiley & Sons, Ltd.

Boyer, E.W.; Hornberger, G.M.; Bencala, K.E.; McKnight, D.M.

2000-01-01

330

Agent-based modeling of hyporheic dissolved organic carbon transport and transformation  

NASA Astrophysics Data System (ADS)

Dissolved organic carbon (DOC) is a complex suite of organic compounds present in natural ecosystems, and is particularly studied in river and stream systems. The hyporheic zone (HZ), a region of surface water-shallow groundwater exchange, has been identified as a hotspot of DOC processing and is generally regarded as a net sink of organic matter. More recent studies into stream DOC have shifted to examining DOC quality rather than bulk quantity. DOC quality variability has been linked to hydrologic and climatic variability, both focuses of current climate change research. A new agent-based model in the NetLogo modeling environment couples hydrologic transport with chemical and biological transformation of DOC to simulate changing DOC quality in hyporheic flow. A pore-scale model implements a Lattice Boltzmann fluid dynamic model and surficial interactions to simulate sorption and microbial uptake. Upscaled to a stream meander scale, this model displays spatial variation and evolution of DOC quality. Model output metrics are correlated to field sample analytical results from a hyporheic meander of the East Fork Jemez River, Sandoval Co., NM.

Gabrielsen, P. J.; Wilson, J. L.; Pullin, M.

2011-12-01

331

CLOSE STELLAR ENCOUNTERS IN YOUNG, SUBSTRUCTURED, DISSOLVING STAR CLUSTERS: STATISTICS AND EFFECTS ON PLANETARY SYSTEMS  

SciTech Connect

Both simulations and observations indicate that stars form in filamentary, hierarchically clustered associations, most of which disperse into their galactic field once feedback destroys their parent clouds. However, during their early evolution in these substructured environments, stars can undergo close encounters with one another that might have significant impacts on their protoplanetary disks or young planetary systems. We perform N-body simulations of the early evolution of dissolving, substructured clusters with a wide range of properties, with the aim of quantifying the expected number and orbital element distributions of encounters as a function of cluster properties. We show that the presence of substructure both boosts the encounter rate and modifies the distribution of encounter velocities compared to what would be expected for a dynamically relaxed cluster. However, the boost only lasts for a dynamical time, and as a result the overall number of encounters expected remains low enough that gravitational stripping is unlikely to be a significant effect for the vast majority of star-forming environments in the Galaxy. We briefly discuss the implications of this result for models of the origin of the solar system, and of free-floating planets. We also provide tabulated encounter rates and orbital element distributions suitable for inclusion in population synthesis models of planet formation in a clustered environment.

Craig, Jonathan; Krumholz, Mark R., E-mail: krumholz@ucolick.org [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

2013-06-01

332

Modeling dissolved organic carbon in temperate forest soils: TRIPLEX-DOC model development and validation  

NASA Astrophysics Data System (ADS)

Even though dissolved organic carbon (DOC) is the most active carbon (C) cycling in soil organic carbon (SOC) pools, it receives little attention from the global C budget. DOC fluxes are critical to aquatic ecosystem inputs and contribute to the C balance of terrestrial ecosystems, but few ecosystem models have attempted to integrate DOC dynamics into terrestrial C cycling. This study introduces a new process-based model, TRIPLEX-DOC, that is capable of estimating DOC dynamics in forest soils by incorporating both ecological drivers and biogeochemical processes. TRIPLEX-DOC was developed from Forest-DNDC, a biogeochemical model simulating C and nitrogen (N) dynamics, coupled with a new DOC process module that predicts metabolic transformations, sorption/desorption, and DOC leaching in forest soils. The model was validated against field observations of DOC concentrations and fluxes at white pine forest stands located in southern Ontario, Canada. The model was able to simulate seasonal dynamics of DOC concentrations and the magnitudes observed within different soil layers, as well as DOC leaching in the age sequence of these forests. Additionally, TRIPLEX-DOC estimated the effect of forest harvesting on DOC leaching, with a significant increase following harvesting, illustrating that land use change is of critical importance in regulating DOC leaching in temperate forests as an important source of C input to aquatic ecosystems.

Wu, H.; Peng, C.; Moore, T. R.; Hua, D.; Li, C.; Zhu, Q.; Peichl, M.; Arain, M. A.; Guo, Z.

2014-05-01

333

Modeling dissolved organic carbon in temperate forest soils: TRIPLEX-DOC model development and validation  

NASA Astrophysics Data System (ADS)

Even though dissolved organic carbon (DOC) is the most active carbon (C) cycling that takes place in soil organic carbon (SOC) pools, it is missing from the global C budget. Fluxes in DOC are critical to aquatic ecosystem inputs and contribute to C balances of terrestrial ecosystems. Only a few ecosystem models have attempted to integrate DOC dynamics into terrestrial C cycling. This study introduces a new process-based model, TRIPLEX-DOC that is capable of estimating DOC dynamics in forest soils by incorporating both ecological drivers and biogeochemical processes. TRIPLEX-DOC was developed from Forest-DNDC, a biogeochemical model simulating C and nitrogen (N) dynamics, coupled with a new DOC process module that predicts metabolic transformations, sorption/desorption, and DOC leaching in forest soils. The model was validated against field observations of DOC concentrations and fluxes at white pine forest stands located in southern Ontario, Canada. The model was able to simulate seasonal dynamics of DOC concentrations and the magnitudes observed within different soil layers, as well as DOC leaching in the age-sequence of these forests. Additionally, TRIPLEX-DOC estimated the effect of forest harvesting on DOC leaching, with a significant increase following harvesting, illustrating that change in land use is of critical importance in regulating DOC leaching in temperate forests as an important source of C input to aquatic ecosystems.

Wu, H.; Peng, C.; Moore, T. R.; Hua, D.; Li, C.; Zhu, Q.; Peichl, M.; Arain, M. A.; Guo, Z.

2013-06-01

334

Recycle Waste Collection Tank (RWCT) simulant testing in the PVTD feed preparation system  

SciTech Connect

(This is part of the radwaste vitrification program at Hanford.) RWCT was to routinely receive final canister decontamination sand blast frit and rinse water, Decontamination Waste Treatment Tank bottoms, and melter off-gas Submerged Bed Scrubber filter cake. In order to address the design needs of the RWCT system to meet performance levels, the PNL Vitrification Technology (PVTD) program used the Feed Preparation Test System (FPTS) to evaluate its equipment and performance for a simulant of RWCT slurry. (FPTS is an adaptation of the Defense Waste Processing Facility feed preparation system and represents the initially proposed Hanford Waste Vitrification Plant feed preparation system designed by Fluor-Daniel, Inc.) The following were determined: mixing performance, pump priming, pump performance, simulant flow characterization, evaporator and condenser performance, and ammonia dispersion. The RWCT test had two runs, one with and one without tank baffles.

Abrigo, G.P.; Daume, J.T.; Halstead, S.D.; Myers, R.L.; Beckette, M.R.; Freeman, C.J.; Hatchell, B.K.

1996-03-01

335

Multi-pumping flow system for the determination of dissolved orthophosphate and dissolved organic phosphorus in wastewater samples.  

PubMed

A multi-pumping flow system (MPFS) for the spectrophotometric determination of dissolved orthophosphate and dissolved organic phosphorus in wastewater samples is proposed. The determination of orthophosphate is based on the vanadomolybdate method. In-line ultraviolet photo-oxidation is employed to mineralise organic phosphorus to orthophosphate prior to detection. A solenoid valve allows the deviation of the flow towards the UV-lamp to carry out the determination of organic phosphorus. Calibration was found to be linear up to 20 mg P L(-1), with a detection limit (3s(b)/S) of 0.08 mg P L(-1), an injection throughput of 75 injections h(-1) and a repeatability (R.S.D.) of 0.6% for the direct determination of orthophosphate. On the other hand, calibration graphs were linear up to 40 mg P L(-1), with a detection limit (3s(b)/S) of 0.5 mg P L(-1), an injection throughput of 11 injections h(-1) and a repeatability (R.S.D.) inferior to 2.3% for the procedures involving UV photo-oxidation. PMID:17723472

Pons, Carmen; Tóth, Ildikó V; Rangel, António O S S; Forteza, Rafael; Cerdà, Víctor

2006-07-14

336

The Dissolved Ca Isotope Composition of Himalayan-Tibetan Waters  

NASA Astrophysics Data System (ADS)

Determining the relative proportions of carbonate versus silicate weathering in the Himalaya is important for understanding the long-term atmospheric CO2 budget and the marine Sr isotope record. 87Sr/86Sr is not a straightforward proxy of carbonate to silicate weathering in the Himalaya and up to 50% of the dissolved Ca may be removed by the precipitation of secondary calcite. Ca isotopes have the potential to constrain the relative inputs of carbonates to silicates and incongruent dissolution processes in the weathering environment. Ca is the major cation carried by rivers. Thirty four Himalayan rock and water samples from the Nepal Himalaya and Tibet have been analysed for 44/42Ca and 43/42Ca on a Nu-Instruments Multiple Collector -ICP-MS. Unlike the 44/40Ca ratio the 44/42Ca is not susceptible to excess 40Ca production from the decay of K. All samples lie on a single mass fractionation line. There is a total range of 0.4 \\permil variation in \\delta44Ca with values from 0.63 \\permil - 0.21 \\permil relative to the SRM915a standard. This is comparable to that already reported with \\delta44/40Ca for small catchments and global rivers. Small first order catchments from each of the main lithotectonic units of the Himalaya have been analysed to examine the effect of lithology on dissolved Ca isotopic composition. In agreement with previous studies elsewhere there is little correlation between source rock and dissolved composition for small rivers spanning a range of source rock from limestone to various silicates and covering a vegetation range from temperate semi-desert to jungle. \\delta44Ca is not correlated with 87Sr/86Sr or Na/Ca ratios confirming that source rock composition is not the dominant control on the observed range in \\delta44Ca. A time-series has been examined for the Marsyandi River, central Nepal. In spite of significant systematic variations in major element chemistry including Ca concentration and 87Sr/86Sr the variations in \\delta44Ca are limited to 0.16 \\permil. Either there is only a single isotopic source of Ca or the \\delta44Ca is controlled by incongruent dissolution processes. The most important incongruent process to affect the Ca budget is the precipitation of pedogenic carbonate. Such incongruent processes should be detectable in the Ca-isotope budget.

Tipper, E. T.; Galy, A.; Bickle, M. J.

2004-12-01

337

MCM LTER METADATA FILE TITLE: Temperature and dissolved oxygen profiles in lakes of the McMurdo Dry Valleys  

E-print Network

MCM LTER METADATA FILE TITLE: Temperature and dissolved oxygen profiles in lakes of the McMurdo Dry Valleys ABSTRACT: A YSI dissolved oxygen meter was used to record temperature and dissolved oxygen-1 ), Comments KEYWORDS: Temperature, dissolved oxygen, YSI, lake LOCATION: McMurdo Dry Valleys: East

Priscu, John C.

338

Release of dissolved nitrogen from water during depressurization  

NASA Technical Reports Server (NTRS)

Experiments were run to study depressurization of water containing various concentrations of dissolved nitrogen gas, the primary case being room temperature water saturated with nitrogen at 4 MPa. In a static depressurization experiment, water with very high nitrogen content was depressurized at rates from 0.09 to 0.50 MPa per second and photographed with high speed movies. The pictures showed that the bubble population at a given pressure increased strongly with decreasing depressurization rate. Flow experiments were performed in an axisymmetric converging-diverging nozzle and in a two-dimensional converging nozzle with glass sidewalls. Depressurization gradients were roughly 500 to 1200 MPa per second. Both nozzles exhibited choked flow behavior even at nitrogen concentration levels as low as 4 percent of saturated. The flow rates were independent of concentration level and could be computed as incompressible water flow based on the difference between stagnation and throat pressures; however, the throat pressures were significantly different between the two nozzles.

Simoneau, R. J.

1978-01-01

339

Bacterial biomarkers thermally released from dissolved organic matter  

USGS Publications Warehouse

Hopane biomarker products were detected using microscale sealed vessel (MSSV) pyrolysis gas chromatography-mass spectrometry (GC-MS) analysis of dissolved organic matter from natural aquatic systems colonised by bacterial populations. MSSV pyrolysis can reduce the polyhydroxylated alkyl side chain of bacteriohopanepolyols, yielding saturated hopane products which are more amenable to GC-MS detection than their functionalised precursors. This example demonstrates how the thermal conditions of MSSV pyrolysis can reduce the biologically-inherited structural functionality of naturally occurring organic matter such that additional structural fragments can be detected using GC methods. This approach complements traditional analytical pyrolysis methods by providing additional speciation information useful for establishing the structures and source inputs of recent or extant organic material. ?? 2006.

Greenwood, P.F.; Leenheer, J.A.; McIntyre, C.; Berwick, L.; Franzmann, P.D.

2006-01-01

340

Why dissolved organic matter (DOM) enhances photodegradation of methylmercury  

SciTech Connect

Methylmercury (MeHg) is known to degrade photochemically, but it remains unclear what roles naturally dissolved organic matter (DOM) and complexing organic ligands play in MeHg photodegradation. Here we investigate the rates and mechanisms of MeHg photodegradation using DOM samples with varying oxidation states and origins as well as organic ligands with known molecular structures. All DOM and organic ligands increased MeHg photodegradation under solar irradiation, but the first-order rate constants varied depending on the oxidation state of DOM and the type and concentration of the ligands. Compounds containing both thiols and aromatics (e.g., thiosalicylate and reduced DOM) increased MeHg degradation rates far greater than those containing only aromatic or thiol functional groups (e.g., salicylate or glutathione). Our results suggest that, among other factors, the synergistic effects of thiolate and aromatic moieties in DOM greatly enhance MeHg photodegradation.

Qian, Yun [ORNL; Yin, Xiangping Lisa [ORNL; Brooks, Scott C [ORNL; Liang, Liyuan [ORNL; Gu, Baohua [ORNL

2014-01-01

341

Snowball Earth prevention by dissolved organic carbon remineralization.  

PubMed

The 'snowball Earth' hypothesis posits the occurrence of a sequence of glaciations in the Earth's history sufficiently deep that photosynthetic activity was essentially arrested. Because the time interval during which these events are believed to have occurred immediately preceded the Cambrian explosion of life, the issue as to whether such snowball states actually developed has important implications for our understanding of evolutionary biology. Here we couple an explicit model of the Neoproterozoic carbon cycle to a model of the physical climate system. We show that the drawdown of atmospheric oxygen into the ocean, as surface temperatures decline, operates so as to increase the rate of remineralization of a massive pool of dissolved organic carbon. This leads directly to an increase of atmospheric carbon dioxide, enhanced greenhouse warming of the surface of the Earth, and the prevention of a snowball state. PMID:18064001

Peltier, W Richard; Liu, Yonggang; Crowley, John W

2007-12-01

342

Corals concentrate dissolved inorganic carbon to facilitate calcification.  

PubMed

The sources of dissolved inorganic carbon (DIC) used to produce scleractinian coral skeletons are not understood. Yet this knowledge is essential for understanding coral biomineralization and assessing the potential impacts of ocean acidification on coral reefs. Here we use skeletal boron geochemistry to reconstruct the DIC chemistry of the fluid used for coral calcification. We show that corals concentrate DIC at the calcification site substantially above seawater values and that bicarbonate contributes a significant amount of the DIC pool used to build the skeleton. Corals actively increase the pH of the calcification fluid, decreasing the proportion of DIC present as CO2 and creating a diffusion gradient favouring the transport of molecular CO2 from the overlying coral tissue into the calcification site. Coupling the increases in calcification fluid pH and [DIC] yields high calcification fluid [CO3(2-)] and induces high aragonite saturation states, favourable to the precipitation of the skeleton. PMID:25531981

Allison, Nicola; Cohen, Itay; Finch, Adrian A; Erez, Jonathan; Tudhope, Alexander W

2014-01-01

343

Diverse stoichiometry of dissolved trace metals in the Indian Ocean  

PubMed Central

Trace metals in seawater are essential to organisms and important as tracers of various processes in the ocean. However, we do not have a good understanding of the global distribution and cycling of trace metals, especially in the Indian Ocean. Here we report the first simultaneous, full-depth, and basin-scale section-distribution of dissolved (D) Al, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb in the Indian Ocean. Our data reveal widespread co-limitation for phytoplankton production by DFe and occurrence of redox-related processes. The stoichiometry of the DM/phosphorus ratio agrees within a factor of 5 between deep waters in the Indian and Pacific, whereas it shows variability up to a factor of 300 among water masses within the Indian Ocean. This indicates that a consistent mechanism controls the stoichiometry in the deep waters, which are significantly depleted in Mn, Fe, and Co compared to requirements for phytoplankton.

Thi Dieu Vu, Huong; Sohrin, Yoshiki

2013-01-01

344

Adsorptive fractionation of dissolved organic matter (DOM) by carbon nanotubes.  

PubMed

Dissolved organic matter (DOM) and carbon nanotubes are introduced into aquatic environments. Thus, it is important to elucidate whether their interaction affects DOM amount and composition. In this study, the composition of DOM, before and after interactions with single-walled carbon nanotubes (SWCNTs), was measured and the adsorption affinity of the individual structural fractions of DOM to SWCNTs was investigated. Adsorption of DOM to SWCNTs was dominated by the hydrophobic acid fraction, resulting in relative enhancement of the hydrophilic character of non-adsorbed DOM. The preferential adsorption of the HoA fraction was concentration-dependent, increasing with increasing concentration. Adsorption affinities of bulk DOM calculated as the normalized sum of affinities of the individual structural fractions were similar to the measured affinities, suggesting that the structural fractions of DOM act as independent adsorbates. The altered DOM composition may affect the nature and reactivity of DOM in aquatic environments polluted with carbon nanotubes. PMID:25480440

Engel, Maya; Chefetz, Benny

2014-12-01

345

Chromophoric Dissolved Organic Matter (CDOM): Fluorescence Losses in Frozen Samples  

NASA Astrophysics Data System (ADS)

Significant losses in fluorescence intensity were observed in seawater chromophoric dissolved organic matter (CDOM) samples stored frozen for up to 8 months prior to analysis. Samples (N = 155) were collected from ships' ballast tanks on two cruises in 2003, frozen and shipped to the laboratory. The stability of the fluorometer response over the analysis period was independently tracked using internal and external calibration factors which appear to rule out the fluorometer as the source of the changes. Six independent fluorescent components, consistent with humic/fulvic and protein-like dissolved materials, were first identified using parallel factors analysis (PARAFAC). Changes in their concentrations over time were investigated using random coefficients mixed regression models. Fluorescence by each component decreased apparently exponentially over time, with three humic-like components reduced to half-maximum fluorescence in 5-6 months. Protein-like fluorescent components and a single PAH-like component decreased more quickly, with half lives of 2-3 months. Rates of fluorescence loss by each component were similar regardless of the origin of the samples. Loss of fluorescence in dark-stored frozen samples is previously unreported and has not yet been reproduced under controlled conditions using seawater from other sources. A review of current literature suggests that CDOM samples are frequently assumed to remain stable for several months or longer under a range of storage temperatures. While it appears more usual for samples to remain stable, this research highlights the need to test assumptions regarding the stability of CDOM fluorescence signals from previously unstudied sources.

Murphy, K. R.; Dunsmuir, W. T.; Waite, T. D.; Ruiz, G. M.; Coble, P. G.

2006-12-01

346

Dissolved and particulate carbohydrates in contrasting marine sediments  

NASA Astrophysics Data System (ADS)

Dissolved and particulate carbohydrates were examined in contrasting Chesapeake Bay (estuarine) and mid-Atlantic shelf/slope break (continental margin) sediments. Particulate carbohydrates (PCHOs) represented ˜5-9% of the total sediment particulate organic carbon (POC), and PCHO remineralization appeared to be a similar fraction of total sediment carbon oxidation (or C ox). When these results are compared with results from other coastal sediments and a pelagic turbidite, PCHO remineralization (as a percentage of C ox) did not vary by more than a factor of ˜2-3 over a 3-4 order of magnitude range in C ox values. The causes of this are not well understood, but may be related to specific effects associated with the remineralization of highly altered organic matter mixtures under aerobic conditions. Dissolved carbohydrates (DCHOs) in these sediment pore waters ranged from ˜30 to 400 ?M, increased with depth in a manner similar to total DOC, and represented ˜10 to 55% of pore water DOC. In Chesapeake Bay sediments this percentage decreased with sediment depth, while in these continental margin sediments it was constant (upper 30 cm). Of the DCHOs in these pore waters ˜30 to 50% could be identified as individual aldoses (monomeric neutral sugars), and total aldose yields (individual aldoses as a percentage of total DOC) were higher in these continental margin sediment pore waters (>9%) than they were in the estuarine sediment pore waters (<5%). A comparison of DCHO and PCHO concentrations in these sediments indicates that their concentrations are uncoupled, and that pore water DCHO concentrations are primarily controlled by sediment remineralization processes. Pore water DCHOs appeared to be preferentially found in the high molecular weight (HMW) DOC pool, and likely occur as some of the initial HMW intermediates produced and consumed during sediment POC remineralization. These results also support past suggestions about the differing controls on carbon remineralization processes in continental margin versus estuarine sediments.

Burdige, D. J.; Skoog, A.; Gardner, K.

2000-03-01

347

Modeling impact of storage zones on stream dissolved oxygen  

USGS Publications Warehouse

The Streeter-Phelps dissolved oxygen model is modified to incorporate storage zones. A dimensionless number reflecting enhanced decomposition caused by the increased residence time of the biochemical oxygen demand in the storage zone parameterizes the impact. This result provides a partial explanation for the high decomposition rates observed in shallow streams. An application suggests that the storage zone increases the critical oxygen deficit and moves it closer to the point source. It also indicates that the storage zone should have lower oxygen concentration than the main channel. An analysis of a dimensionless enhancement factor indicates that the biochemical oxygen demand decomposition in small streams could be up to two to three times more than anticipated based on the standard Streeter-Phelps model without storage zones. For larger rivers, enhancements of up to 1.5 could occur.The Streeter-Phelps dissolved oxygen model is modified to incorporate storage zones. A dimensionless number reflecting enhanced decomposition caused by the increased residence time of the biochemical oxygen demand in the storage zone parameterizes the impact. This result provides a partial explanation for the high decomposition rates observed in shallow streams. An application suggests that the storage zone increases the critical oxygen deficit and moves it closer to the point source. It also indicates that the storage zone should have lower oxygen concentration than the main channel. An analysis of a dimensionless enhancement factor indicates that the biochemical oxygen demand decomposition in small streams could be up to two to three times more than anticipated based on the standard Streeter-Phelps model without storage zones. For larger rivers, enhancements of up to 1.5 could occur.

Chapra, S.C.; Runkel, R.L.

1999-01-01

348

Updated determination of particulate and dissolved thorium-234  

NASA Astrophysics Data System (ADS)

The determination of particulate and dissolved 234Th is similar to the procedure of Anderson and Fleer [1982]. Samples are collected using 30 L Niskin bottles with Teflon- or epoxy-coated internal springs. On deck, the sample is pumped with a delrin impeller pump through a 0.45 ?m pore size 147-mm diameter Millipore filter and into a pre-rinsed 6 gallon plastic cubitainer held in a plastic milk crate. An in-line plastic water meter records volumes in gallons. The particulate sample filter is folded twice and stored in a polyethylene sample bag. To the ˜20 L filtered sample is added: 30 mL reagent grade 16 N HNO3; 500 mL 230Th tracer of ˜30 dpm mL-l and 5 mL 50 mg mL-l iron carrier previously cleaned by extraction into isopropyl ether from an 8 M HCl solution and back-extracted into 0.1 M HCl. The acidified sample is allowed to equilibrate for from one day to a maximum of several days. The sample is weighed on a Heathkit digital scale and the pH is adjusted to approximately 8 with about 40 mL 10 M NH4OH to precipitate iron hydroxide, which carries the thorium and uranium from the solution. The precipitate is allowed to settle for 12 to 24 hours. The supernate is drawn off, and the precipitate is spun down in a centrifuge tube to about an 8 mL volume. The precipitate is resuspended in distilled water and spun down again, then dissolved in three times its volume with 12 N HCl to make a 9 N HCl solution. A 1.5 cm×12 cm ion exchange column is filled with AG1×8 100-200 mesh resin and conditioned with 9 N HCl. The sample solution is run slowly through.

Fleer, Alan P.

349

Climate cycles and dissolved oxygen variability off eastern Luzon, Philippines  

NASA Astrophysics Data System (ADS)

We assess the effect of El Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) on the variability of dissolved oxygen off eastern Luzon, Philippines. In this area, bifurcation of the North Equatorial Current (NEC) into the Kuroshio and Mindanao Currents occurs. Hydrographic parameters and sediment cores obtained during the oceanographic cruises in 2011 and 2012, and data from the World Ocean Atlas 2009 (WOA09) were used in the study. Variability in dissolved oxygen (DO) concentration was observed from surface to the thermocline between the neutral (2011) and La Niña (2012) phase. Based on optimum multiparameter analysis, there was a change in the fraction of water masses in the area. Under neutral conditions, waters off eastern Luzon consist mainly of water (NPSW) from the Kuroshio recirculation gyre that contain higher DO. In contrast, during La Niña conditions the North Equatorial Current becomes stronger bringing in water (NPTW) with lower DO. Thus, variability in DO off eastern Luzon is influenced by the change in the source of the water mass arising from the shift in bifurcation latitude that is linked to ENSO. Longer-term variability in DO was examined using a 2.15m sediment core taken in the shelf off eastern Luzon. The sediment record was used to reconstruct the depositional redox environment in the last 1000 years. The elements V, Ni, Cr, Mn and Fe were normalized to Ti and used as chemical proxies to track DO variability. Results show that DO fluctuations have occurred in the past, and these changes are in agreement with DO variability driven by the Pacific Decadal Oscillation.

Escobar, M.; San Diego-McGlone, M.; Jacinto, G.; Siringan, F.; Villanoy, C.; Gordon, A. L.

2013-12-01

350

Dissolved Organic Matter Land-Ocean Linkages in the Arctic  

NASA Astrophysics Data System (ADS)

Rivers draining into the Arctic Ocean exhibit high concentrations of terrigenous dissolved organic carbon (DOC), and recent studies indicate that DOC export is changing due to climatic warming and alteration in permafrost condition. The fate of exported DOC in the Arctic Ocean is important for understanding the regional carbon cycle and remains a point of discussion in the literature. As part of the NSF funded Arctic Great Rivers Observatory (Arctic-GRO) project, samples were collected for DOC, chromophoric and fluorescent dissolved organic matter (CDOM & FDOM) and lignin phenols from the Ob', Yenisey, Lena, Kolyma, Mackenzie and Yukon rivers in 2009 - 2010. DOC and lignin concentrations were elevated during the spring freshet and measurements related to DOC composition indicated an increasing contribution from terrestrial vascular plant sources at this time of year (e.g. lignin carbon-normalized yield, CDOM spectral slope, SUVA254, humic-like fluorescence). CDOM absorption was found to correlate strongly with both DOC (r2=0.83) and lignin concentration (r2=0.92) across the major arctic rivers. Lignin composition was also successfully modeled using FDOM measurements decomposed using PARAFAC analysis. Utilizing these relationships we modeled loads for DOC and lignin export from high-resolution CDOM measurements (daily across the freshet) to derive improved flux estimates, particularly from the dynamic spring discharge maxima period when the majority of DOC and lignin export occurs. The new load estimates for DOC and lignin are higher than previous evaluations, emphasizing that if these are more representative of current arctic riverine export, terrigenous DOC is transiting through the Arctic Ocean at a faster rate than previously thought. It is apparent that higher resolution sampling of arctic rivers is exceptionally valuable with respect to deriving accurate fluxes and we highlight the potential of CDOM in this role for future studies and the applicability of in-situ CDOM sensors.

Mann, P. J.; Spencer, R. M.; Hernes, P. J.; Tank, S. E.; Striegl, R.; Dyda, R. Y.; Peterson, B. J.; McClelland, J. W.; Holmes, R. M.

2012-04-01

351

Possible method for dissolved organic carbon speciation in forest soils  

NASA Astrophysics Data System (ADS)

Dissolved organic carbon (DOC) is a natural part of dissolved organic matter and it plays an important role in the biogeochemistry of soil processes. Low Molecular Mass Organic Acids (LMMOA) are an essential part of DOC. These acids play a key role in chemical processes that affect the entire soil environment. Knowing the amount of DOC and the speciation of LMMOA is required for realistic equilibrium modelling of soil chemical processes and transport mechanisms. There have been a number of proposed methods for the quantitative analysis of DOC and for speciation of LMMOA. The first aim of this contribution is to introduce and test a modified spectroscopic method for the determination of water-extractable organic carbon (WEOC) from forest soils. In general this method is based on the oxidization of WEOC by chromium-sulphuric acid. The presented method can be used as an economical alternative to the classical, more financially demanding elemental analysis. However, the main aim is to test the reliability of the method for LMMOA speciation. Ion exchange chromatography (IC) with hydroxide elution has proven to be a useful tool for the determination of LMMOA in many different water-based samples. However, the influence of multivalent cations (often present in environmental samples) on IC results has not yet been sufficiently studied. In order to assess the influence of Al, Fe, Mn, Mg and Ca on the amount of LMMOA determined by IC, an extensive set of model solutions was prepared and immediately analysed by means of IC. Moreover, the influence of pH on determined amounts of LMMOA in model solutions and representative soil aqueous extracts was investigated. These experimental results were compared to expected values and also to results provided by the chemical equilibrium model - PHREEQC. Based on the above listed research, some modifications to the common IC method for LMMOA speciation are presented.

Drabek, O.; Tejnecký, V.; Ash, C.; Hubova, P.; Boruvka, L.

2013-12-01

352

Dissolved organic carbon (DOC) in Arctic ground ice  

NASA Astrophysics Data System (ADS)

Thermal permafrost degradation and coastal erosion in the Arctic remobilize substantial amounts of organic carbon (OC) and nutrients which have been accumulated in late Pleistocene and Holocene unconsolidated deposits. Their vulnerability to thaw subsidence, collapsing coastlines and irreversible landscape change is largely due to the presence of large amounts of massive ground ice such as ice wedges. However, ground ice has not, until now, been considered to be a source of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC) and other elements, which are important for ecosystems and carbon cycling. Here we show, using geochemical data from a large number of different ice bodies throughout the Arctic, that ice wedges have the greatest potential for DOC storage with a maximum of 28.6 mg L-1 (mean: 9.6 mg L-1). Variation in DOC concentration is positively correlated with and explained by the concentrations and relative amounts of typically terrestrial cations such as Mg2+ and K+. DOC sequestration into ground ice was more effective during the late Pleistocene than during the Holocene, which can be explained by rapid sediment and OC accumulation, the prevalence of more easily degradable vegetation and immediate incorporation into permafrost. We assume that pristine snowmelt is able to leach considerable amounts of well-preserved and highly bioavailable DOC as well as other elements from surface sediments, which are rapidly stored in ground ice, especially in ice wedges, even before further degradation. In the Yedoma region ice wedges represent a significant DOC (45.2 Tg) and DIC (33.6 Tg) pool in permafrost areas and a fresh-water reservoir of 4172 km3. This study underlines the need to discriminate between particulate OC and DOC to assess the availability and vulnerability of the permafrost carbon pool for ecosystems and climate feedback upon mobilization.

Fritz, M.; Opel, T.; Tanski, G.; Herzschuh, U.; Meyer, H.; Eulenburg, A.; Lantuit, H.

2015-01-01

353

Colored dissolved organic matter in Tampa Bay, Florida  

USGS Publications Warehouse

Absorption and fluorescence of colored dissolved organic matter (CDOM) and concentrations of dissolved organic carbon (DOC), chlorophyll and total suspended solids in Tampa Bay and its adjacent rivers were examined in June and October of 2004. Except in Old Tampa Bay (OTB), the spatial distribution of CDOM showed a conservative relationship with salinity in June, 2004 (aCDOM(400) = ? 0.19 × salinity + 6.78, R2 = 0.98, n = 17, salinity range = 1.1–32.5) with little variations in absorption spectral slope and fluorescence efficiency. This indicates that CDOM distribution was dominated by mixing. In October, 2004, CDOM distribution was nonconservative with an average absorption coefficient (aCDOM(400), ? 7.76 m-1) about seven times higher than that in June (? 1.11 m-1). The nonconservative behavior was caused largely by CDOM removal at intermediate salinities (e.g., aCDOM(400) removal > 15% at salinity ? 13.0), which likely resulted from photobleaching due to stronger stratification. The spatial and seasonal distributions of CDOM in Tampa Bay showed that the two largest rivers, the Alafia River (AR) and Hillsborough River (HR) were dominant CDOM sources to most of the bay. In OTB, however, CDOM showed distinctive differences: lower absorption coefficient, higher absorption spectral slopes, and lower ratios of CDOM absorption to DOC and higher fluorescence efficiency. These differences may have stemmed from (1) changes in CDOM composition by more intensive photobleaching due to the longer residence time of water mass in OTB; (2) other sources of CDOM than the HR/AR inputs, such as local creeks, streams, groundwater, and/or bottom re-suspension. Average CDOM absorption in Tampa Bay at 443 nm, aCDOM(443), was about five times higher in June and about ten times higher in October than phytoplankton pigment absorption, aph(443), indicating that blue light attenuation in the water column was dominated by CDOM rather than by phytoplankton absorption throughout the year.

Chen, Z.; Hu, C.; Conmy, R.N.; Muller-Karger, F.; Swarzenski, P.

2007-01-01

354

[Side effects of dissolved and lyophilized cisplatin in the treatment of 133 head and neck tumors].  

PubMed

The authors have studied the side effects of a lyophilized and a dissolved cisplatin preparation in 133 patients with head and neck tumors. After intraarterial treatment (30 mg/24 hours) with dissolved cisplatin no nausea was observed, while treatment with lyophilized cisplatin was followed by nausea in rare cases (33%). Systemic treatment with dissolved cisplatin (50 mg/die) was associated with vomiting far less frequently (37%) than lyophilized cisplatin (90%). Metoclopramide was found to reduce these side effects. PMID:2637081

Szabó, G; Fülöp, E; Jancsó, J

1989-01-01

355

A new pH-ISFET based dissolved oxygen sensor by employing electrolysis of oxygen  

Microsoft Academic Search

A new dissolved oxygen sensor based on a pH-ISFET is discussed. A working electrode surrounding a pH-sensing gate of the pH-ISFET electrolyzes dissolved oxygen, resulting in a corresponding pH change near the pH-sensing gate. The pH-ISFET is expected to determine dissolved oxygen concentration by detecting this pH change. The results suggest that the proposed sensor operated by a combined mechanism

Byung-Ki Sohn; Chang-Soo Kim

1996-01-01

356

Retardation of dissolved oxygen due to a trapped gas phase in porous media  

Microsoft Academic Search

Information on the transport of dissolved gases in ground water is needed to design ways to increase dissolved gas concentrations in ground water for use in in situ bioremediation (e.g., Oâ and CHâ) and to determine if dissolved gases are conservative tracers of ground-water flow (e.g., He). A theoretical model was developed to describe the effect of small quantities of

Virginia A. Fry; Jonathan D. Istok; Lewis Semprini; Kirk T. O'Reilly; Timothy E. Buscheck

1995-01-01

357

A field control release test for assessing plausibility of dissolved CO2 measurements for CO2 leakage detection in a shallow aquifer  

NASA Astrophysics Data System (ADS)

Detecting Co2 leakage signals in the shallow aquifer is one of the most changing issues because of high variability in groundwater chemistry and also interactions among CO2, aquifer materials and groundwater. This study presents a novel technology for detecting CO2 leakage by measuring dissolved CO2 in groundwater using an optical CO2 sensor. The control release test was conducted in the field laboratory, Brackenridge Field Lab where shallow aquifer is unconfined with bedrock at the depth of 6 m below surface. Several groundwater wells were drilled and screened at depths from 3 m to 6 m. Fiber optic distributed sensors for dissolved CO2 monitoring were installed in a well bore and connected to a computer for automatically measuring dissolved CO2 gas in groundwater for every 30 seconds. CO2 gas was bubbled into a well bore for about two hours and then was stopped. In addition, Nabr solution was added to the wellbore and Br was used as a tracer. Groundwater samples were collected periodically from the well for measuring groundwater pH, titrating alkalinity and analyzing DIC and concentrations of major ions. A reactive transport model by considering water-rock-CO2 interactions was used to simulate the control release test. Both field and modeling results show that dissolved CO2 measurements with an optical Co2 sensor can be used for detecting CO2 leakage in groundwater.

Yang, C.; Delgado, J.; Philips, S. B.; Mickler, P. J.; Guzman, N.

2013-12-01

358

Total dissolved gas, barometric pressure, and water temperature data, lower Columbia River, Oregon and Washington, 1996  

USGS Publications Warehouse

Increased levels of total dissolved gas pressure can cause gas-bubble trauma in fish downstream from dams on the Columbia River. In cooperation with the U.S. Army Corps of Engineers, the U.S. Geological Survey collected data on total dissolved gas pressure, barometric pressure, water temperature, and dissolved oxygen pressure at 11 stations on the lower Columbia River from the John Day forebay (river mile 215.6) to Wauna Mill (river mile 41.9) from March to September 1996. Methods of data collection, review, and processing are described in this report. Summaries of daily minimum, maximum, and mean hourly values are presented for total dissolved gas pressure, barometric pressure, and water temperature. Hourly values for these parameters are presented graphically. Dissolved oxygen data are not presented in this report because the quality-control data show that the data have poor precision and high bias. Suggested changes to monitoring procedures for future studies include (1) improved calibration procedures for total dissolved gas and dissolved oxygen to better define accuracy at elevated levels of supersaturation and (2) equipping dissolved oxygen sensors with stirrers because river velocities at the shoreline monitoring stations probably cannot maintain an adequate flow of water across the membrane surface of the dissolved oxygen sensor.

Tanner, Dwight Q.; Harrison, Howard E.; McKenzie, Stuart W.

1996-01-01

359

Dissolved-Solids Transport in Surface Water of the Muddy Creek Basin, Utah  

USGS Publications Warehouse

Muddy Creek is located in the southeastern part of central Utah and is a tributary of the Dirty Devil River, which, in turn, is a tributary of the Colorado River. Dissolved solids transported from the Muddy Creek Basin may be stored in the lower Dirty Devil River Basin, but are eventually discharged to the Colorado River and impact downstream water users. This study used selected dissolved-solids measurements made by various local, State, and Federal agencies from the 1970s through 2006, and additional dissolved-solids data that were collected by the U.S. Geological Survey during April 2004 through November 2006, to compute dissolved-solids loads, determine the distribution of dissolved-solids concentrations, and identify trends in dissolved-solids concentration in surface water of the Muddy Creek Basin. The dissolved-solids concentration values measured in water samples collected from Muddy Creek during April 2004 through October 2006 ranged from 385 milligrams per liter (mg/L) to 5,950 mg/L. The highest dissolved-solids concentration values measured in the study area were in water samples collected at sites in South Salt Wash (27,000 mg/L) and Salt Wash (4,940 to 6,780 mg/L). The mean annual dissolved-solids load in Muddy Creek for the periods October 1976 to September 1980 and October 2005 to September 2006 was smallest at a site near the headwaters (9,670 tons per year [tons/yr]) and largest at a site at the mouth (68,700 tons/yr). For this period, the mean annual yield of dissolved solids from the Muddy Creek Basin was 44 tons per square mile. During October 2005 to September 2006, direct runoff transported as much as 45 percent of the annual dissolved-solids load at the mouth of Muddy Creek. A storm that occurred during October 5?7, 2006 resulted in a peak streamflow at the mouth of Muddy Creek of 7,150 cubic feet per second (ft3/s) and the transport of an estimated 35,000 tons of dissolved solids, which is about 51 percent of the average annual dissolved-solids load at the mouth of Muddy Creek. A significant downward trend in dissolved-solids concentrations from 1973 to 2006 was determined for Muddy Creek at a site just downstream of that portion of the basin containing agricultural land. Dissolved-solids concentrations decreased about 2.1 percent per year; however, the rate of change was a decrease of 1.8 percent per year when dissolved-solids concentrations were adjusted for flow.

Gerner, Steven J.

2008-01-01

360

In-situ measurement of dissolved nitrogen and oxygen in the ocean  

NASA Astrophysics Data System (ADS)

Motivated by the need to separate changes in dissolved gas concentrations due to air-sea fluxes from biological production, a novel method of inferring dissolved nitrogen in the ocean is described. The method requires a local measurement of gas tension, dissolved oxygen, water temperature and salinity. Such instrumentation has been developed and tested at sea. Preliminary open ocean data are presented. The measurements during periods of low wind speed show a clear diurnal dissolved oxygen signal, incorporating biological photosynthetic response, solar heating and nocturnal convective mixing. The diurnal variability of the inferred nitrogen signal is approximately 10% that of the measured oxygen diurnal variability. The nitrogen diurnal variability is attributed to a 10 m separation between the primary measurements of gas tension and dissolved oxygen rather than any intrinsic change in dissolved nitrogen. These results are, however, consistent with the relative insensitivity of dissolved gaseous nitrogen to biological activity compared to that of dissolved oxygen. The open ocean results give good evidence for the integrity of the measurement scheme and indicate the potential for simultaneous measurement of dissolved nitrogen and oxygen in the study of biological cycling as well as gas transfer in the upper ocean.

McNeil, Craig L.; Johnson, Bruce D.; Farmer, David M.

1995-05-01

361

Numerical simulation of the transport and diffusion of dissolved pollutants in the changjiang (Yangtze) river estuary  

Microsoft Academic Search

Based on a coupled hydrodynamic-ecological model for regional and shelf seas (COHERENS), a three-dimensional baroclinic model\\u000a for the Changjiang (Yangtze) River estuary and the adjacent sea area was established using the sigma-coordinate in the vertical\\u000a direction and spherical coordinate in the horizontal direction. In the study, changing-grid technology and the “dry-wet” method\\u000a were designed to deal with the moving boundary.

De’an Wu; Yixin Yan

2010-01-01

362

Modeling brine and nutrient dynamics in Antarctic sea ice: The case of dissolved silica  

NASA Astrophysics Data System (ADS)

Sea ice ecosystems are characterized by microalgae living in brine inclusions. The growth rate of ice algae depends on light and nutrient supply. Here, the interactions between nutrients and brine dynamics under the influence of algae are investigated using a one-dimensional model. The model includes snow and ice thermodynamics with brine physics and an idealized sea ice biological component, characterized by one nutrient, namely, dissolved silica (DSi). In the model, DSi follows brine motion and is consumed by ice algae. Depending on physical ice characteristics, the brine flow is either advective, diffusive, or turbulent. The vertical profiles of ice salinity and DSi concentration are solutions of advection-diffusion equations. The model is configured to simulate the typical thermodynamic regimes of first-year Antarctic pack ice. The simulated vertical profiles of salinity and DSi qualitatively reproduce observations. Analysis of results highlights the role of convection in the lowermost 5-10 cm of ice. Convection mixes saline, nutrient-poor brine with comparatively fresh, nutrient-rich seawater. This implies a rejection of salt to the ocean and a flux of DSi to the ice. In the presence of growing algae, the simulated ocean-to-ice DSi flux increases by 0-115% compared to an abiotic situation. In turn, primary production and brine convection act in synergy to form a nutrient pump. The other important processes are the flooding of the surface by seawater and the percolation of meltwater. The former refills nutrients near the ice surface in spring. The latter, if present, tends to expell nutrients from the ice in summer.

Vancoppenolle, Martin; Goosse, Hugues; de Montety, Anne; Fichefet, Thierry; Tremblay, Bruno; Tison, Jean-Louis

2010-02-01

363

Modeling brine and nutrient dynamics in Antarctic sea ice: the case of dissolved silica  

NASA Astrophysics Data System (ADS)

Sea ice ecosystems are characterized by micro-algae living in brine inclusions. The growth rate of ice algae depends on light and nutrient supply. Here, the interactions between nutrients and brine dynamics under the influence of algae are investigated using a one-dimensional model. The model includes snow and ice thermodynamics with brine physics and an idealized sea ice biological component, characterized by one nutrient, namely dissolved silica (DSi). In the model, DSi follows brine motion and is consumed by ice algae. Depending on physical ice characteristics, the brine flow is either advective, diffusive or turbulent. The vertical profiles of ice salinity and DSi concentration are solutions of advection-diffusion equations. The model is configured to simulate the typical thermodynamic regimes of first-year Antarctic pack ice. The simulated vertical profiles of salinity and DSi qualitatively reproduce observations. Analysis of results highlights the role of convection in the lowermost 5-10 cm of ice. Convection mixes saline, nutrient-poor brine with comparatively fresh, nutrient-rich seawater. This implies a rejection of salt to the ocean and a flux of DSi to the ice. In presence of growing algae, the simulated ocean-to-ice DSi flux increases by 0-115% compared to an abiotic situation. In turn, primary production and brine convection act in synergy to form a nutrient pump. The other important processes are the flooding of the surface by seawater and the percolation of meltwater. The former refills nutrients near the ice surface in spring. The latter, if present, tends to expell nutrients from the ice in summer. Sketch of salt (left) and nutrient (right) exchanges at the ice-ocean interface proposed in this paper.

Vancoppenolle, M.; Goosse, H.; de Montety, A.; Fichefet, T.; Tremblay, B.; Tison, J.

2009-12-01

364

Plant diversity effects on leaching of nitrate, ammonium, and dissolved organic nitrogen from an experimental grassland  

NASA Astrophysics Data System (ADS)

Leaching of nitrogen (N) from soil represents a resource loss and, in particular leaching of nitrate, can threaten drinking water quality. As plant diversity leads to a more exhaustive resource use, we investigated the effects of plant species richness, functional group richness, and the presence of specific functional groups on nitrate, ammonium, dissolved organic N (DON), and total dissolved N (TDN) leaching from an experimental grassland in the first 4 years after conversion from fertilized arable land to unfertilized grassland. The experiment is located in Jena, Germany, and consists of 82 plots with 1, 2, 4, 8, 16, or 60 plant species and 1-4 functional groups (legumes, grasses, non-leguminous tall herbs, non-leguminous small herbs). Nitrate, ammonium, and TDN concentrations in soil solution in the 0-0.3 m soil layer were measured every second week during 4 years on 62 plots and DON concentrations were calculated as difference between TDN and inorganic N. Missing concentrations in soil solution were estimated using a Bayesian statistical model. Downward water fluxes (DF) per plot from the 0-0.3 m soil layer were simulated in weekly resolution with a water balance model in connection with a Bayesian model for simulating missing soil water content measurements. To obtain annual nitrate, ammonium, and DON leaching from the 0-0.3 m soil layer per plot, we multiplied the respective concentrations in soil solution with DF and aggregated the data to annual sums. TDN leaching resulted from summation of nitrate, ammonium, and DON leaching. DON leaching contributed most to TDN leaching, particularly in plots without legumes. Dissolved inorganic N leaching in this grassland was dominated by nitrate. The amount of annual ammonium leaching was small and little influenced by plant diversity. Species richness affected DON leaching only in the fourth and last investigated year, possibly because of a delayed soil biota effect that increased microbial transformation of organic N to inorganic N in species-rich mixtures or because of complementary resource use of amino-acid DON of species-rich mixtures. Nitrate and TDN leaching generally decreased with increasing species richness likely because of more exhaustive resource use of more diverse plant mixtures. Functional group richness did not have a significant effect on nitrate, ammonium, DON, and TDN leaching. Legumes increased and grasses decreased nitrate, DON, and TDN leaching because of their N-fixing ability and their extensive rooting system, respectively. TDN leaching was highest in the first year after conversion from arable to grassland which can be related to former fertilization. Quantitative differences in nitrate leaching between plant diversity treatments were also highest in the first year after conversion. However, the percentage reduction of nitrate leaching by species richness, the presence of grasses, or the presence of small herbs increased with time since land-use change possibly because of a strengthening of diversity effects with time. We conclude that especially shortly after land-use change from fertilized arable land to unfertilized grassland, N leaching, in particular nitrate leaching, can be reduced considerably if highly diverse mixtures without legumes are established.

Leimer, Sophia; Oelmann, Yvonne; Wirth, Christian; Wilcke, Wolfgang

2014-05-01

365

Dissolved Ti in the US GEOTRACES Atlantic Transect  

NASA Astrophysics Data System (ADS)

The concentration of Ti in sediment and settling particles is often used as a lithogenic tracer, based on the assumption that its inventory is dominated by the mineralogically-bound component. Given Ti's overall refractory geochemical nature and that it is the 9th most abundant element in the crust, Ti offers several advantages for such use. However, there are suggestions in various literatures (deep-sea carbonates, coastal/estuarine waters and porewaters, and the few extant open ocean data) that Ti may have a quantitatively significant labile behavior that challenges the assumption of its lithogenic exclusivity. We report on a new technique developed to measure dissolved Ti in open ocean seawater. We will present data from SAFe and GEOTRACES intercalibration standards, as well as from complete depth profiles along the US Atlantic GEOTRACES sections sampled in 2010 and 2011. Following work of Biller et al. (2012, Mar. Chem., 130, 12-), preconcentration in our method is achieved via the NOBIAS-chelate PA1 resin of Sohrin et al. (2008, Anal. Chem., 80, 6267-). We achieve a 12-fold concentration from 60 ml of seawater, and samples are analyzed in triplicate. Samples are UV-oxidized prior to column treatment. We have quantified dissolved Ti both by Isotope Dilution quadrupole ICP-MS (ID-ICP-MS) and also by linear calibrations to Ti-free seawaters spiked with variable Ultra High Purity Ti to mimic natural range of abundances. We achieve a total procedural blank of 10 pM, with a detection limit of 6 pM. Ongoing improvements are oriented towards a smaller initial volume of seawater sample. Our results of intercalibration standards S1, D2, GS, and GD agree well with those generated by Croot (2011, Anal. Chem., 83, 6395-) using cathodic stripping voltammetry. We also have analyzed GSP, D1, and NASS-6. Of particular interest is intercalibration standard GD, taken from 2000 m at the BATS location for which Orians et al. (1990, Nature, 348, 322-) have published the only extant data for dissolved Ti in the open Atlantic. Croot's values and our values both agree well with Orians' original analyses, which not only confirms our respective analytical approaches but also suggests that the GEOTRACES rosette system, small parts of which contain Ti, does not contaminate seawater samples for Ti. We also present data from the 2011 GEOTRACES station taken at BATS in the western Atlantic and at Station 11 from the 2010 GEOTRACES transect in the eastern Atlantic. Our profile to 2000 m (= 213 pM) is similar to that of Orians et al. (1990) to the same depth, but extends deeper to 3597 m. Unlike the deep Pacific profile of Orians et al. (1990) from Station PAPA, which extends to 3860 m and reaches a maximum of 263 pM at that depth, our BATS profile is essentially invariant with depth below 2000 m. We observe a similar deepwater distribution at Station 11, which shows an increase from 60 pM near the surface to a maximum of 180 pM at 700 m, followed perhaps by a slight decrease to 130 pM at 3300 m depth.

Murray, R. W.; Moran, S.; Kelly, R. P.; Kelley, K. A.; Graham, D.

2012-12-01

366

Process performance of the pilot-scale in situ vitrification of a simulated waste disposal site at the Oak Ridge National Laboratory  

SciTech Connect

Process feasibility studies have been successfully performed on three developmental scales to determine the potential for applying in situ vitrification to intermediate-level (low-level) waste placed in seepage pits and trenches at Oak Ridge National Laboratory (ORNL). In the laboratory, testing was performed in crucibles containing a mixture of 50% ORNL soil and 50% limestone. In an engineering-scale test at Pacific Northwest Laboratory a /1/12/-scale simulation of an ORNL waste trench was constructed and vitrified, resulting in a waste product containing soil and limestone concentrations of 68 wt % and 32 wt %, respectively. In the pilot-scale test a /3/8/-scale simulation of the same trench was constructed and vitrified at ORNL, resulting in soil and limestone concentrations of 80% and 20%, respectively, in the waste product. Results of the three scales of testing indicate that the ORNL intermediate-level (low-level) waste sites can be successfully processed by in situ vitrification; the waste form will retain significant quantities of the cesium and strontium. Because cesium-137 and strontium-90 are the major components of the radionuclide inventory in the ORNL seepage pits and trenches, final field process decontamination factors (i.e., losses to the off-gas system relative to the waste inventory) of 1.0 E + 4 are desired to minimize activity buildup in the off-gas system. 17 refs., 34 figs., 13 tabs.

Carter, J.G.; Koegler, S.S.; Bates, S.O.

1988-06-01

367

Dissolved Gases in Seawater and Sediments (Paper 7R0315)  

NASA Astrophysics Data System (ADS)

Certainly the most controversial results derived from the study of any dissolved gas concerned oxygen utilization rates in the North Atlantic. Jenkins (1982) estimated a net oxy-gen utilization rate (OUR) for the Beta triangle region of the North Atlantic (apices 26.5°N x 38.5°W, 32.5°N x 30.0°W, and 22.5°N x 28.5°W) of 5.7 moles of oxygen consumed m-2 yr-1 for the zone below 100m. He assumed that the oxygen distribution below the euphotic zone was stationary and steady state and therfore that the in situ oxygen consumption must be balanced by physical transport of oxygen into the area. His estimates were based on measured distributions of dissolved oxygen and the tracers 3He and 3H and a simple model which assumed lateral advection was small. The derived value or OUR was several times higher that previous estimates based on 14C and 15N incubation techniques. The OUR requires a downward flux of carbon from the photic zone of approximately 50 gCm-2yr-1 , which is again much higher that previous results. Jenkins and Goldman (1985) amplified the arguments in a study of seasonal oxygen cycling and primary production based on a ten year time series of measurements from the Panulirus station near Bermuda. Considering insolation, heat budgets and 3He/3H data they estimated a vertically integrated oxygen production rate of 5 Mm-2yr-1 and a subsequent new production of 50 gCm-2yr-1. The results were supported by calculations based on a second order turbulence closure model (Klein and Coste, 1984). These results have been challenged primarily on the basis of the spatial variability of the phenomenon!. Whatever the final outcome Jenkins has clearly demonstrated that the time has come to take a fresh look at oxygen utilization rates and primary productivity given the tools and modelling capabilities now at hand. The TTO data set will go a long way toward providing the necessary data set for the North Atlantic when the analyses are complete. Other studies have dealt with the photooxidative daylight loss of oxygen from near-surface tropical waters (Gieskes and Kraay, 1982), isotopic fractionation between fresh and seawater and the atmosphere (Benson and Krause, 1984) , edge effects on chemistry in the 02 minimum zone (Mullins et al., 1985), and the relationship between oxygen and other biogeochemical properties (Pak, 1984; Blizard and Pak, 1984; Lewitus and Broenkow, 1985).

Key, R. M.

1987-07-01

368

PII S0016-7037(99)00361-0 Dissolved and particulate carbohydrates in contrasting marine sediments  

E-print Network

PII S0016-7037(99)00361-0 Dissolved and particulate carbohydrates in contrasting marine sediments D) Abstract--Dissolved and particulate carbohydrates were examined in contrasting Chesapeake Bay (estuarine) and mid-Atlantic shelf/slope break (continental margin) sediments. Particulate carbohydrates (PCHOs) rep

Burdige, David

369

Control and effect of dissolved air in water during flow boiling in microchannels  

Microsoft Academic Search

An experimental investigation is performed to study the control of dissolved gases and their effect on heat transfer and pressure drop during the flow of water in a microchannel. An apparatus is developed to deliver water with different levels of dissolved air for use in heat transfer experiments. Six parallel microchannels, each having a hydraulic diameter of 207 ?m, are

Mark E. Steinke; Satish G. Kandlikar

2004-01-01

370

Combining reverse osmosis and electrodialysis for more complete recovery of dissolved organic matter from seawater  

Microsoft Academic Search

Dissolved organic carbon (DOC) in the oceans is one of the largest dynamic carbon reservoirs on earth. The composition and fate of this carbon reservoir is of great interest to earth scientists, atmospheric scientists, and biologists who study global biogeochemical cycles and global warming. Current techniques for the extraction and purification of dissolved organic matter (DOM) from seawater for research

T. A. Vetter; E. M. Perdue; E. Ingall; J.-F. Koprivnjak; P. H. Pfromm

2007-01-01

371

Relationships between Water Flow and Dissolved Solids Discharge in the Major Tributaries of Lake Baikal  

Microsoft Academic Search

Data of long-term observations of water and hydrochemical regimes were used to characterize relationships between water flow and dissolved solids discharge in the three major tributaries of Lake Baikal, which account for about two-thirds of the total water inflow into the lake. The total dissolved solids content (TDS) of these rivers' water and the concentrations of the principal ions are

V. N. Sinyukovich

2003-01-01

372

Behavior of dissolved antimony, arsenic, and selenium in the Atlantic Ocean  

Microsoft Academic Search

Vertical profiles for dissolved antimony, arsenic, and selenium were obtained at four stations in the eastern basins of the North and South Atlantic Ocean, and on a surface-water transect from 24 ° S to 31 ° N. Total dissolved selenium displays surface-water depletion and deep-water enrichment, with organic selenide (selenium in soluble peptides) being the predominant species in surface waters

Gregory A. Cutter; Lynda S. Cutter

1995-01-01

373

EFFECTS OF LOW DISSOLVED OXYGEN ON SURVIVAL AND REPRODUCTION OF DAPHNIA, HYALELLA, AND GAMMARUS  

EPA Science Inventory

Daphnia magna, Daphnia pulex, Hyalella azteca, and Gammarus lacustris were exposed to low dissolved oxygen concentrations in the laboratory. Acute and chronic exposures were conducted to develop data for use in the EPA Water Quality Criteria document for dissolved oxygen. . magna...

374

Total Dissolved Gas Monitoring in Chum Salmon Spawning Gravels Below Bonneville Dam  

Microsoft Academic Search

At the request of the U.S. Army Corps of Engineers (Portland District), Pacific Northwest National Laboratory (PNNL) conducted research to determine whether total dissolved gas concentrations are elevated in chum salmon redds during spring spill operations at Bonneville Dam. The study involved monitoring the total dissolved gas levels at egg pocket depth and in the river at two chum salmon

Evan V. Arntzen; David R. Geist; Jennifer L. Panther; Earl Dawley

2007-01-01

375

The distribution of dissolved and particulate mercury in three Siberian estuaries and adjacent Arctic coastal waters  

Microsoft Academic Search

Dissolved and particulate mercury distributions were determined in the three largest Siberian rivers and in adjacent Arctic coastal waters during two cruises. Water samples were collected in the Lena River and its mixing zone in the Laptev Sea in September 1991, and in the Ob and Yenisei Rivers and the adjacent Kara Sea in September 1993. Average total dissolved Hg

M. Coquery; D. Cossa; J. M. Martin

1995-01-01

376

Wastewater-Derived Dissolved Organic Nitrogen: Analytical Methods, Characterization, and Effects—A Review  

Microsoft Academic Search

Wastewater-derived dissolved organic nitrogen (DON) accounts for up to 80% of dissolved nitrogen in nitrified-denitrified effluent. The sturdiness of DON measurements hindered the characterization of DON, especially in wastewater matrix, leading to an unsatisfying knowledge level. Measurement of DON and DON species is imortant not only as a measure of treatibility of wastewater in treatment plants, but also for the

Elif Pehlivanoglu-Mantas; David L. Sedlak

2006-01-01

377

Student Misconceptions in Writing Balanced Equations for Dissolving Ionic Compounds in Water  

ERIC Educational Resources Information Center

The goal of this study was to identify student misconceptions and difficulties in writing symbolic-level balanced equations for dissolving ionic compounds in water. A sample of 105 college students were asked to provide balanced equations for dissolving four ionic compounds in water. Another 37 college students participated in semi-structured…

Naah, Basil M.; Sanger, Michael J.

2012-01-01

378

The distribution and stabilisation of dissolved Fe in deep-sea hydrothermal plumes  

Microsoft Academic Search

We have conducted a study of hydrothermal plumes overlying the Mid-Atlantic Ridge near 5° S to investigate whether there is a significant export flux of dissolved Fe from hydrothermal venting to the oceans. Our study combined measurements of plume-height Fe concentrations from a series of 6 CTD stations together with studies of dissolved Fe speciation in a subset of those

Sarah A. Bennett; Eric P. Achterberg; Douglas P. Connelly; Peter J. Statham; Gary R. Fones; Christopher R. German

2008-01-01

379

Respiratory and Behavioral Responses of Juvenile Dolphin Fish to Dissolved Oxygen Concentration  

Microsoft Academic Search

Understanding the responses of juvenile dolphins (Coryphaena hippurus) to physical variables may help increase survival during culture. The purposes of this study were to (1) describe the respiratory and gross behavioral responses of juveniles to dissolved oxygen concentration and (2) find the short-term tolerance limit to low levels of dissolved oxygen. Three hundred eight cultured juvenile dolphins (44–70 d old)

Marvin M. F. Lutnesky; James P. Szyper

1990-01-01

380

Dissolved oxygen stratification in two micro-tidal partially-mixed estuaries  

E-print Network

Dissolved oxygen stratification in two micro-tidal partially-mixed estuaries Jing Lin a,*, Lian Xie online 21 August 2006 Abstract The controlling physical factors for vertical oxygen stratification that vertical stratification of dissolved oxygen (DO) concentration can be explained by the extended Hansen

Mallin, Michael

381

Using 232Th to monitor dissolved and total detrital inputs to the ocean  

Microsoft Academic Search

This study uses long lived thorium isotopes as a tracer for both total and dissolved detrital inputs to seawater over time. Th-232 in seawater is derived exclusively from detritus, and its presence in the dissolved phase results from partial dissolution of this material. 230Th is produced in situ at a predictable rate by the decay of uranium, and its subsequent

L. F. Robinson; T. L. Noble; J. F. McManus

2007-01-01

382

Dissolved metal contamination in the East RiverLong Island sound system: potential biological effects  

E-print Network

Dissolved metal contamination in the East River­Long Island sound system: potential biological-5000, USA Abstract A suite of dissolved trace metals (Ag, Cd, Cu and Pb), inorganic nutrients (NO3, PO4 system receives large volumes of treated sewage and industrial effluent as a result of the heavy urbani

Johnsen, Sönke

383

Spectroscopic properties of dissolved humic substances — a reflection of land use history in a fen area  

Microsoft Academic Search

The elemental composition and spectroscopic properties of dissolved fulvic acids isolated from different sampling media (topsoil, ground and surface water) of a natural fen area (high portion of organic soils) were examined to reveal the effects of land use history. These effects need to be known if dissolved humic substances are to be a major factor in identifying the impact

K. Kalbitz; W. Geyer; S. Geyer

1999-01-01

384

Inhibition of hydroxyl radical reaction with aromatics by dissolved natural organic matter  

Microsoft Academic Search

Remediation of hydrophobic pollutants is complicated by sorption of these compounds to hydrophobic sites of dissolved natural organic matter (NOM), suspended particulates, soil, and sediment. This sorption causes the pollutants to be less easily degraded by remediation techniques. Reaction of aromatic compounds with hydroxyl radical is inhibited by dissolved natural organic matter (NOM). The degree of inhibition is significantly greater

Michele E. Lindsey; Matthew A. Tarr

2000-01-01

385

Dissolved cadmium in the Southern Ocean: Distribution, speciation, and relation to phosphate  

E-print Network

Dissolved cadmium in the Southern Ocean: Distribution, speciation, and relation to phosphate Oliver dilution analyses of dissolved cadmium (Cd) and electrochemical Cd speciation mea- surements : P uptake ratios in the trace-nutrient­limited Southern Ocean. Oceanic cadmium and phosphate

Boyer, Edmond

386

STREAM PRODUCTIVITY ANALYSIS WITH DORM (DISSOLVED OXYGEN ROUTING MODEL) - 3: PRODUCTIVITY OF EXPERIMENTAL STREAMS  

EPA Science Inventory

Thirty-two two-station diel dissolved oxygen surveys were made in the experimental streams of the U.S. EPA Monticello Ecological Research Station. The data were analyzed by a numerical Dissolved Oxygen Routing Model (DORM) to determine total community respiratory and photosynthet...

387

AUTOMATIC ANALYSIS OF DISSOLVED METAL POLLUTANTS IN WATER BY ENERGY DISPERSIVE X-RAY SPECTROSCOPY  

EPA Science Inventory

An automated system for the quantitative determination of dissolved metals such as Fe, Cu, Zn, Ca, Co, Ni, Cr, Hg, Se, and Pb in water is described. The system collects a water sample, preconcentrates the dissolved metals with ion-exchange paper automatically in a sample collecti...

388

Dissolved oxygen and pH relationships in northern Australian mangrove waterways  

SciTech Connect

Consistent, highly significant linear correlations (R2 greater than or equal to 0.8) between pH and dissolved oxygen levels have been found in northern Australian mangrove waterways. These properties seem to be influenced by dissolved organic matter, mainly polyphenolic compounds, present in the creeks and tidal channel waters.

Boto, K.G.; Bunt, J.S.

1981-01-01

389

Linkages among the bioreactivity, chemical composition, and diagenetic state of marine dissolved organic matter  

Microsoft Academic Search

Bacterial growth and the chemical composition of dissolved organic matter (DOM) were followed during a 10- d decomposition experiment with fresh, algal-derived DOM from an Arctic ice floe. During the experiment ;30% of the dissolved organic carbon (DOC) was used by bacteria, indicating the highly reactive nature of this fresh DOM. Over half of the DOC consumption was accounted for

Rainer M. W. Amon; Hans-Peter Fitznar; Ronald Benner

2001-01-01

390

Dissolved organic matter dynamic in the Amazon basin: Sorption by mineral surfaces  

Microsoft Academic Search

In aquatic systems, soprtion of organic matter (OM) on environmental surfaces or its preference to remain dissolved is highly important for determining its potential transport and\\/or susceptibility to degradation. In the Amazon and other major rivers of the world, transported OM is either adsorbed to fine minerals or remains dissolved. The fate of autochthonous OM in Amazon floodplains and allochthonous

Marcela A. P. Pérez; Patricia Moreira-Turcq; Hervé Gallard; Thierry Allard; Marc F. Benedetti

2011-01-01

391

Effects of bisphenol a on dissolved organic matter fluorescence characteristics using parallel factor analysis (PARAFAC) modeling  

Microsoft Academic Search

The effects of bisphenol A (BPA) on dissolved organic matter (DOM) fluorescence spectroscope were studied in this paper. Dissolved organic matter was water-extracted from soil and plants near the Beiheng river bank of Chongming Island. The results show that BPA could significantly decrease the DOM fluorescence intensity. Parallel factor analysis (PARAFAC) is a new and sensitive method to decompose the

Yihua Xiao; Qinghui Huang; Ling Chen; Feng Wang; Penghui Li

2011-01-01

392

Relationship between Cavitation Threshold and Dissolved Air in Ultrasound in the MHz Range  

NASA Astrophysics Data System (ADS)

Bioeffects caused by high power ultrasound in medicine must be understood. A significant cause of bioeffects is cavitation. This paper reports on the relationship between cavitation threshold and the amount of dissolved air for ultrasound in the MHz range used mainly in medicine. The cavitation threshold varies according to the amount of dissolved air in water and the frequency of ultrasound.

Naito, Tamotsu; Ohdaira, Etsuzo; Masuzawa, Nobuyoshi; Ide, Masao

1998-05-01

393

Framing Prospective Elementary Teachers' Conceptions of Dissolving as a Ladder of Explanations  

ERIC Educational Resources Information Center

The paper details an exploratory qualitative study that investigated 61 prospective teachers' conceptual understanding of dissolving salt and sugar in water respectively. The study was set within a 15-week elementary science methods course that included a 5E learning cycle lesson on dissolving, the instructional context. Oversby's…

Subramaniam, Karthigeyan; Esprivalo Harrell, Pamela

2013-01-01

394

Analysis of power transformer dissolved gas data using the self-organizing map  

Microsoft Academic Search

Incipient faults in power transformers can degrade the oil and cellulose insulation, leading to the formation of dissolved gases. Even though established approaches that relate these dissolved gas information to the condition of power transformers are already developed, it is discussed in this paper that they still contain some limitations. In view of that, this paper introduces an alternative approach

K. F. Thang; R. K. Aggarwal; A. J. McGrail; D. G. Esp

2003-01-01

395

The potential source of dissolved aluminum from resuspended sediments to the North Atlantic deep water  

SciTech Connect

Laboratory and field studies were conducted to investigate the significance of resuspended sediments as a source of dissolved Al to the deep northwest Atlantic. Sediment resuspension experiments demonstrate the effect on dissolved Al concentration (initially 11 nM) of adding natural suspended sediments (ca. 0.1-10 mg/L) to seawater. The concentration of dissolved Al increased by the resuspension of sediments; for example, addition of 0.15 mg/L sediments caused dissolved Al to increase by 10 nM. Distributions of dissolved and leachable particulate Al off the tail of the Grand Banks, near the high-energy western boundary current, show elevated levels in the near-bottom waters. The authors suggest that resuspended sediments associated with nepheloid layers along the western boundary of the North Atlantic are a source of dissolved Al. Strong western boundary currents provide the energy to resuspend and maintain intense nepheloid layers of sediments. Continued resuspension and deposition of sediments within the nepheloid layer promotes the release of Al from sediments to the overlying water. The Al-rich terrigenous sediments that predominate along the deep boundary of the Denmark Strait, Labrador Sea, Newfoundland and off Nova Scotia constitute a potentially significant source of dissolved Al. Release of Al from resuspended sediments associated with nepheloid layers at a more northern location (e.g., Denmark Strait) may contribute to the near-linear increase in dissolved Al with depth observed in the deep northwest Atlantic.

Moran, S.B.; Moore, R.M. (Dalhousie Univ., Halifax, Nova Scotia (Canada))

1991-10-01

396

Absorption and fluorescence of chromophoric dissolved organic matter in the Pearl River Estuary, South China  

E-print Network

Absorption and fluorescence of chromophoric dissolved organic matter in the Pearl River Estuary of heavy urbanization and industrialization. The Pearl River Estuary receives freshwater from eight major of chromophoric dissolved organic matter (CDOM) in the Pearl River Estuary were studied during November 2002

397

Bioavailable and biodegradable dissolved organic nitrogen in activated sludge and trickling filter wastewater treatment plants  

Technology Transfer Automated Retrieval System (TEKTRAN)

A study was carried out to understand the fate of biodegradable dissolved organic nitrogen (BDON) and bioavailable dissolved organic nitrogen (ABDON) along the treatment trains of a wastewater treatment facility (WWTF) equipped with an activated sludge (AS) system and a WWTF equipped with a two-stag...

398

Impact of high Saharan dust inputs on dissolved iron concentrations in the Mediterranean Sea  

E-print Network

Impact of high Saharan dust inputs on dissolved iron concentrations in the Mediterranean Sea C) in the Mediterranean Sea, dissolved iron concentrations in seawater and iron and aluminium concentrations in aerosols of Saharan origin on the iron cycle in the Mediterranean Sea. INDEX TERMS: 1065 Geochemistry: Trace elements

Guieu, Cécile

399

DISSOLVED ORGANIC CARBON (DOC) CONCENTRATIONS IN SMALL STREAMS OF THE GEORGIA PIEDMONT  

EPA Science Inventory

Dissolved organic matter (DOM) supports microbial activity and contributes to transport of N and P in streams. We have studied the impact of land uses on dissolved organic carbon (DOC) concentrations in 17 Georgia Piedmont headwater streams since January 2001. We classified the w...

400

Hydrological controls on dissolved organic carbon during snowmelt in the Snake River near Montezuma, Colorado  

Microsoft Academic Search

A quantitative understanding of the factors controlling the variation of dissolved organic carbon (DOC) in headwater streams is of scientific concern for at least two reasons. First, quantifying the overall carbon budgets of lotic systems is needed for a fundamental understanding of these systems. Second, DOC interacts strongly with other dissolved substances (heavy metals in particular) and plays an important

G. M. Hornberger; K. E. Bencala; D. M. McKnight

1994-01-01

401

Biogeochemical factors that influence the stable nitrogen isotope ratio of dissolved ammonium in the Delaware Estuary  

NASA Astrophysics Data System (ADS)

The isotopic composition (?15N) of dissolved ammonium (NH4+) in the Delaware Estuary was related to reactions in the nitrogen cycle occurring in different regions of the estuary and at different rates throughout the year. The range of values at any one location (as great as +10 to +40%.) was dependent on either nitrification, algal uptake, and microbial remineralization, or on a combination of these reactions. Specifically, observations of isotopic discrimination during nitrification in the riverine portion of the estuary were similar to those reported in other estuaries. In addition, the first calculation of the isotopic fractionation during algal uptake in the field is reported. Algal assimilation of NH4+ in the estuary had an estimated fractionation factor (?) of -9.1%. This estimated ? for the field data and fractionation factors measured in culture ( - 14 to - 20%.) were compared in a numerical simulation of NH4+ transport and uptake in the estuary. Model results for the period of the spring bloom resembled the field data more closely when the isotopic fractionation estimated with the in situ data was used rather than greater isotopic fractionations measured in culture.

Cifuentes, Luis A.; Fogel, Marilyn L.; Pennock, Jonathan R.; Sharp, Jonathan H.

1989-10-01

402

Granular activated carbon adsorption of MIB in the presence of dissolved organic matter.  

PubMed

Based on the results of over twenty laboratory granular activated carbon (GAC) column runs, models were developed and utilized for the prediction of 2-methylisoborneol (MIB) breakthrough behavior at parts per trillion levels and verified with pilot-scale data. The influent MIB concentration was found not to impact the concentration normalized breakthrough. Increasing influent background dissolved organic matter (DOM) concentration was found to systematically decrease the GAC adsorption capacity for MIB. A series of empirical models were developed that related the throughput in bed volumes for a range of MIB breakthrough targets to the influent DOM concentration. The proportional diffusivity (PD) designed rapid small-scale column test (RSSCT) could be directly used to scale-up MIB breakthrough performance below 15% breakthrough. The empirical model to predict the throughput to 50% breakthrough based on the influent DOM concentration served as input to the pore diffusion model (PDM) and well-predicted the MIB breakthrough performance below a 50% breakthrough. The PDM predictions of throughput to 10% breakthrough well simulated the PD-RSSCT and pilot-scale 10% MIB breakthrough. PMID:23623469

Summers, R Scott; Kim, Soo Myung; Shimabuku, Kyle; Chae, Seon-Ha; Corwin, Christopher J

2013-06-15

403

Interannual variability of primary production and dissolved organic nitrogen storage in the North Pacific Subtropical Gyre  

NASA Astrophysics Data System (ADS)

The upper ocean primary production measurements from the Hawaii Ocean Time series (HOT) at Station ALOHA in the North Pacific Subtropical Gyre showed substantial variability over the last two decades. The annual average primary production varied within a limited range over 1991-1998, significantly increased in 1999-2000 and then gradually decreased afterwards. This variability was investigated using a one-dimensional ecosystem model. The long-term HOT observations were used to constrain the model by prescribing physical forcings and lower boundary conditions and optimizing the model parameters against data using data assimilation. The model reproduced the general interannual pattern in the observed primary production, and mesoscale variability in vertical velocity was identified as a major contributing factor to the interannual variability in the simulation. Several strong upwelling events occurred in 1999, which brought up nitrate at rates several times higher than other years and elevated the model primary production. Our model results suggested a hypothesis for the observed interannual variability pattern of primary production at Station ALOHA: Part of the upwelled nitrate input in 1999 was converted to and accumulated as semilabile dissolved organic nitrogen (DON), and subsequent recycling of this semilabile DON supported enhanced primary productivity for the next several years as the semilabile DON perturbation was gradually removed via export.

Luo, Ya-Wei; Ducklow, Hugh W.; Friedrichs, Marjorie A. M.; Church, Matthew J.; Karl, David M.; Doney, Scott C.

2012-09-01

404

Assessment of the colored dissolved organic matter in coastal waters from ocean color remote sensing.  

PubMed

Knowledge on absorption by colored dissolved organic matter, a(cdom), spatio-temporal variability in coastal areas is of fundamental importance in many field of researches related to biogeochemical cycles studies, coastal areas management, as well as land and water interactions in the coastal domain. A new method, based on the theoretical link between the vertical attenuation coefficient, K(d), and the absorption coefficient, has been developed to assess a(cdom). This method, confirmed from radiative transfer simulations and in situ measurements, and tested on an independent in situ data set (N = 126), allows a(cdom) to be assessed with a Mean Relative Absolute Difference, MRAD, of 33% over two order of magnitude (from 0.01 to 1.16 m(-1)). In the frame of ocean color observation, K(d) is not directly measured but estimated from the remote sensing reflectance, R(rs). Based on 109 satellite (SeaWiFS) and in situ coincident (i.e. match-up) data points a(cdom) is retrieved with a MRAD value of 37%. This simple model generally presents slightly better performances than recently developed empirical or semi-analytical algorithms. PMID:24921507

Loisel, Hubert; Vantrepotte, Vincent; Dessailly, David; Mériaux, Xavier

2014-06-01

405

Photobleaching-induced changes in photosensitizing properties of dissolved organic matter.  

PubMed

Photosensitizing properties of different dissolved organic matter (DOM) were investigated according to their performance in singlet oxygen ((1)O2), triplet state of DOM ((3)DOM*), and hydroxyl radical (·OH) productions. The photobleaching of DOM solutions after irradiation was characterized by fluorescence excitation-emission matrix and UV-Vis spectroscopy. The photosensitizing properties of pre-irradiated DOM solutions were changed in a sunlight simulator. The performance of DOMs in photosensitized degradation of several contaminants was investigated. For a 20 h exposure, the observed degradation rate constant (kobs) of some contaminants decreased as a function of exposure time, and highly depended on the properties of both DOM and contaminant. Degradation of contaminants with lower kobs was more susceptible to DOM photobleaching-induced decrease in kobs. Under the current experimental conditions, the photobleaching-induced decrease of DOM photo-reactivity in contaminant degradation was mainly attributed to indirect phototransformation of DOM caused by the interactions between photo-inductive DOM moieties and photochemically-produced reactive species. Reactive contaminants can inhibit DOM indirect photobleaching by scavenging reactive species, photosensitized degradation of these contaminants exhibited a stable kobs as a result. This is the first study to report DOM photobleaching-induced changes in the simultaneous DOM photosensitized degradation of contaminants and the inhibitory effect of reactive contaminants on DOM photobleaching. PMID:25201337

Niu, Xi-Zhi; Liu, Chao; Gutierrez, Leo; Croué, Jean-Philippe

2014-12-01

406

[Characterizing composition and transformation of dissolved organic matter in subsurface wastewater infiltration system].  

PubMed

In the present study, the soil column with radius of 30 cm and height of 200 cm was used to simulate a subsurface wastewater infiltration system. Under the hydraulic loading of 4 cm x d(-1), composition and transformation of dissolved organic matter (DOM) from different depths were analyzed in a subsurface wastewater infiltration system for treatment of septic tank effluent using three-dimensional excitation emission matrix fluorescence spectroscopy (3D-EEM) with regional integration analysis (FRI). The results indicate that: (1) from different depth, the composition of DOM was also different; influent with the depth of 0.5 m was mainly composed of protein-like substances, and that at other depths was mainly composed of humic- and fulvic-like substances. (2) DOM stability gradually increased and part of the nonbiodegradable organic matter can be removed during organic pollutants degradation process. (3) Not only the organic pollutants concentration was reduced effectively, but also the stability of the DOM improved in subsurface wastewater infiltration system. PMID:24159860

Wang, Li-Jun; Liu, Yu-Zhong; Zhang, Lie-Yu; Xi, Bei-Dou; Xia, Xun-Feng; Liu, Ya-Ru

2013-08-01

407

FINAL REPORT INTEGRATED DM1200 MELTER TESTING OF REDOX EFFECTS USING HLW AZ-101 AND C-106/AY-102 SIMULANTS VSL-04R4800-1 REV 0 5/6/  

SciTech Connect

This report documents melter and off-gas performance results obtained on the DM1200 HLW Pilot Melter during processing of AZ-101 and C-106/AY-102 HLW simulants. The tests reported herein are a subset of three tests from a larger series of tests described in the Test Plan for the work; results from the remaining tests will be reported separately. Three nine day tests, one with AZ-101 and two with C-106/AY-102 feeds were conducted with variable amounts of added sugar to address the effects of redox. The test with AZ-101 included ruthenium spikes to also address the effects of redox on ruthenium volatility. One of tests addressed the effects of increased flow-sheet nitrate levels using C-106/AY-102 feeds. With high nitrate/nitrite feeds (such as WTP LAW feeds), reductants are required to prevent melt foaming and deleterious effects on glass production rates. Sugar is the baseline WTP reductant for this purpose. WTP HLW feeds typically have relatively low nitrate/nitrite content in comparison to the organic carbon content and, therefore, have typically not required sugar additions. However, HLW feed variability, particularly with respect to nitrate levels, may necessitate the use of sugar in some instances. The tests reported here investigate the effects of variable sugar additions to the melter feed as well as elevated nitrate levels in the waste. Variables held constant to the extent possible included melt temperature, bubbling rate, plenum temperature, cold cap coverage, the waste simulant composition, and the target glass composition. The principal objectives of the DM1200 melter testing were to determine the achievable glass production rates for simulated HLW feeds with variable amounts of added sugar and increased nitrate levels; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and perform pre- and post test inspections of system components. The specific objectives (including test success criteria) of this testing, along with how each objective was met, are outlined in a table.

KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; D'ANGELO NA; LUTZE W; BIZOT PM; CALLOW RA; BRANDYS M; KOT WK; PEGG IL

2011-12-29

408

Dissolved organic phosphorus: An indicator of organic matter turnover?  

NASA Astrophysics Data System (ADS)

Seasonal and interannual variations of dissolved organic phosphorus (DOP) are analysed for five stations in the Dutch Wadden Sea (southern Wadden Sea, 1991-2007) and one station in the northern Wadden Sea (List tidal basin near Sylt, 2000-2009). A clear seasonal cycle is observed with low winter DOP values of around 0.1-0.2 ?M and a summer maximum of up to 1.6 ?M. Mean summer DOP concentrations show a decreasing trend in line with a decrease in the eutrophication level of the Wadden Sea. Regional differences exist in the mean summer DOP levels with highest values in the eastern part of the Dutch Wadden Sea and lowest values in the northern Wadden Sea near Sylt. A regional comparison for the years 2000-2007 shows that average summer DOP values are correlated with average summer phytoplankton chlorophyll-a (proxy for biomass) and autumn ammonium concentrations suggesting that highest DOP values are found in those regions where highest phytoplankton production and highest autumn remineralisation occurs. We conclude that the summer DOP values may be used as a useful indicator of regional differences and is worth to further investigate as indicator of interannual trends in organic matter turnover in the Wadden Sea.

van Beusekom, Justus E. E.; de Jonge, Victor N.

2012-08-01

409

Black Carbon in Estuarine and Coastal Ocean Dissolved Organic Matter  

NASA Technical Reports Server (NTRS)

Black carbon (BC) in ultrafiltered high-molecular-weight DOM (UDOM) was measured in surface waters of Delaware Bay, Chesapeake Bay and the adjacent Atlantic Ocean (USA) to ascertain the importance of riverine and estuarine DOM as a source of BC to the ocean. BC comprised 5-72% of UDOM-C (27+/-l7%) and on average 8.9+/-6.5% of dissolved organic carbon (DOC) with higher values in the turbid region of the Delaware Estuary and lower yields in the river and coastal ocean. The spatial and seasonal distributions of BC along the salinity gradient of Delaware Bay suggest that the higher levels of BC in surface water UDOM originated from localized sources, possibly from atmospheric deposition or released from resuspended sediments. Black carbon comprised 4 to 7% of the DOC in the coastal Atlantic Ocean, revealing that river-estuary systems are important exporters of colloidal BC to the ocean. The annual flux of BC from Delaware Bay UDOM to the Atlantic Ocean was estimated at 2.4x10(exp 10) g BC yr(exp -1). The global river flux of BC through DOM to the ocean could be on the order of 5.5x1O(exp 12)g BC yr (exp -1). These results support the hypothesis that the DOC pool is the intermediate reservoir in which BC ages prior to sedimentary deposition.

Mannino, Antonio; Harvey, H. Rodger

2003-01-01

410

The distribution of dissolved iron in the West Atlantic Ocean.  

PubMed

Iron (Fe) is an essential trace element for marine life. Extremely low Fe concentrations limit primary production and nitrogen fixation in large parts of the oceans and consequently influence ocean ecosystem functioning. The importance of Fe for ocean ecosystems makes Fe one of the core chemical trace elements in the international GEOTRACES program. Despite the recognized importance of Fe, our present knowledge of its supply and biogeochemical cycle has been limited by mostly fragmentary datasets. Here, we present highly accurate dissolved Fe (DFe) values measured at an unprecedented high intensity (1407 samples) along the longest full ocean depth transect (17,500 kilometers) covering the entire western Atlantic Ocean. DFe measurements along this transect unveiled details about the supply and cycling of Fe. External sources of Fe identified included off-shelf and river supply, hydrothermal vents and aeolian dust. Nevertheless, vertical processes such as the recycling of Fe resulting from the remineralization of sinking organic matter and the removal of Fe by scavenging still dominated the distribution of DFe. In the northern West Atlantic Ocean, Fe recycling and lateral transport from the eastern tropical North Atlantic Oxygen Minimum Zone (OMZ) dominated the DFe-distribution. Finally, our measurements showed that the North Atlantic Deep Water (NADW), the major driver of the so-called ocean conveyor belt, contains excess DFe relative to phosphate after full biological utilization and is therefore an important source of Fe for biological production in the global ocean. PMID:24978190

Rijkenberg, Micha J A; Middag, Rob; Laan, Patrick; Gerringa, Loes J A; van Aken, Hendrik M; Schoemann, Véronique; de Jong, Jeroen T M; de Baar, Hein J W

2014-01-01

411

Effects of Dissolved Organic Matter Source on Wetland Bacterial Metabolism  

NASA Astrophysics Data System (ADS)

Wetlands are rich environments for organic matter production from a variety of wetland plant types. Investigations of the Talladega Wetland Ecosystem (TWE) in the southeastern U.S. show that bacterioplankton productivity is driven by dissolved organic carbon derived from wetland plants. The TWE is formed from a small coastal plain stream that has been dammed by beaver activity and resides in a forested catchment. In this study, bacterioplankton communities sampled from the wetland were amended with leachate from two different plants common in the TWE, the soft rush, Juncus effusus, and hazel alder, Alnus serrulata, and compared to unamended controls. The bacterioplankton response was examined by measuring bacterial carbon productivity and by an array of fluorescent microscope techniques used to distinguish metabolically active and non-active cells. Both plant leachates elicited rapid and significant increases in productivity and numbers of metabolically active bacterial cells. However, the timeframe of response, the magnitude of response, and the bacterial morphotypes varied depending on the leachate source. This study suggests that wetland bacterial communities contain different sub-component populations that may generally occur in low numbers, but that can adapt and respond rapidly to different sources of organic matter native to the wetland.

Ward, A. K.

2005-05-01

412

Role of dissolved organic matter in ice photochemistry.  

PubMed

In this study, we provide evidence that dissolved organic matter (DOM) plays an important role in indirect photolysis processes in ice, producing reactive oxygen species (ROS) and leading to the efficient photodegradation of a probe hydrophobic organic pollutant, aldrin. Rates of DOM-mediated aldrin loss are between 2 and 56 times faster in ice than in liquid water (depending on DOM source and concentration), likely due to a freeze-concentration effect that occurs when the water freezes, providing a mechanism to concentrate reactive components into smaller, liquid-like regions within or on the ice. Rates of DOM-mediated aldrin loss are also temperature dependent, with higher rates of loss as temperature decreases. This also illustrates the importance of the freeze-concentration effect in altering reaction kinetics for processes occurring in environmental ices. All DOM source types studied were able to mediate aldrin loss, including commercially available fulvic and humic acids and an authentic Arctic snow DOM sample isolated by solid phase extraction, indicating the ubiquity of DOM in indirect photochemistry in environmental ices. PMID:25157605

Grannas, Amanda M; Pagano, Lisa P; Pierce, Brittany C; Bobby, Rachel; Fede, Alexis

2014-09-16

413

Dissolved organic matter reduces algal accumulation of methylmercury  

USGS Publications Warehouse

Dissolved organic matter (DOM) significantly decreased accumulation of methylmercury (MeHg) by the diatom Cyclotella meneghiniana in laboratory experiments. Live diatom cells accumulated two to four times more MeHg than dead cells, indicating that accumulation may be partially an energy-requiring process. Methylmercury enrichment in diatoms relative to ambient water was measured by a volume concentration factor (VCF). Without added DOM, the maximum VCF was 32 x 104, and the average VCF (from 10 to 72 h) over all experiments was 12.6 x 104. At very low (1.5 mg/L) added DOM, VCFs dropped by approximately half. At very high (20 mg/L) added DOM, VCFs dropped 10-fold. Presumably, MeHg was bound to a variety of reduced sulfur sites on the DOM, making it unavailable for uptake. Diatoms accumulated significantly more MeHg when exposed to transphilic DOM extracts than hydrophobic ones. However, algal lysate, a labile type of DOM created by resuspending a marine diatom in freshwater, behaved similarly to a refractory DOM isolate from San Francisco Bay. Addition of 67 ?M L-cysteine resulted in the largest drop in VCFs, to 0.28 x 104. Although the DOM composition influenced the availability of MeHg to some extent, total DOM concentration was the most important factor in determining algal bioaccumulation of MeHg.

Luengen, Allison C.; Fisher, Nicholas S.; Bergamaschi, Brian A.

2012-01-01

414

COLLEGE STUDENTS’ INTEREST IN TRYING DISSOLVABLE TOBACCO PRODUCTS  

PubMed Central

Background Dissolvable tobacco products (DTPs) have been introduced into test markets in the U.S. We sought to gauge level of interest in trying these products and correlates of interest among potential consumers. Methods A web-based survey of freshman at 11 universities in North Carolina (NC) and Virginia (VA) was conducted in fall 2010. Multivariable logistic regression analyses were used to identify correlates of students’ likelihood to try DTPs. Results Weighted prevalence of likelihood to try DTPs was 3.7%. Significant correlates of likelihood to try included male gender, current cigarette smoking, current snus use, sensation seeking, lifetime illicit drug use, and perceived health risk of using DTPs. Among current smokers, current snus use, current use of chewing tobacco, and considering quitting smoking were associated with likelihood to try DTPs. Conclusions While overall interest in trying these products was low, current users of cigarettes and snus were much more likely than others in trying a free sample. Some current smokers may consider DTPs to be an aid to smoking cessation, although the population-level impact of introducing these products is unknown. PMID:24309296

Wolfson, Mark; Pockey, Jessica R.; Reboussin, Beth A.; Sutfin, Erin L.; Egan, Kathleen L.; Wagoner, Kimberly G.; Spangler, John G.

2014-01-01

415

Dissolved organic carbon thresholds affect mercury bioaccumulation in Arctic lakes.  

PubMed

Dissolved organic carbon (DOC) is known to affect the Hg cycle in aquatic environments due to its overriding influence on complexation, photochemical, and microbial processes, but its role as a mediating factor in the bioaccumulation of Hg in aquatic biota has remained enigmatic. Here, we examined 26 tundra lakes in Canada's western Arctic that span a large gradient of DOC concentrations to show that total Hg (HgT) and methyl mercury (MeHg) accumulation by aquatic invertebrates is defined by a threshold response to Hg-DOC binding. Our results showed that DOC promotes HgT and MeHg bioaccumulation in tundra lakes having low DOC (<8.6 - 8.8 mg C L(-1); DOC threshold concentration, TC) whereas DOC inhibits HgT and MeHg bioaccumulation in lakes having high DOC (>DOC TC), consistent with bioaccumulation results in a companion paper (this issue) using a microbial bioreporter. Chemical equilibrium modeling showed that Hg bioaccumulation factors were elevated when Hg was associated mainly to fulvic acids, but became dramatically reduced when DOC was >8.5 mg C L(-1), at which point Hg was associated primarily with strong binding sites on larger, less bioaccessible humic acids. This study demonstrates that the biological uptake of Hg in lakes is determined by binding thresholds on DOC, a water quality variable predicted to change markedly with future environmental change. PMID:24524759

French, Todd D; Houben, Adam J; Desforges, Jean-Pierre W; Kimpe, Linda E; Kokelj, Steven V; Poulain, Alexandre J; Smol, John P; Wang, Xiaowa; Blais, Jules M

2014-03-18

416

"Like Dissolves Like": Unpacking Student Reasoning About Thermodynamic Heuristics  

NSDL National Science Digital Library

In our Introductory Physics for Life Scientists (IPLS) course at the University of Maryland, we are building interdisciplinary bridges that help students better understand thermodynamics. One aspect of this endeavor involves having students grapple with the physical processes underlying heuristic rules that they bring to our course from their biology and chemistry classes. In particular, we have implemented a series of activities and problems intended to unpack the hydrophobicity of oil, a key step in understanding the formation of cell membranes. The spontaneous separation of oil and water is predicted by the common rule of thumb, âlike dissolves like,â but understanding where this comes from requires careful consideration of energetic and entropic effects. The rule must also be reconciled with the seemingly contradictory physical principle that opposite electric charges attract. This paper describes how holding up a heuristic that students have encountered in their biology and chemistry courses alongside physical principles can prompt students to look for interdisciplinary reconciliation among concepts that they previously did not even see as related. We view this as an important step toward a less fragmented experience for science students.

Geller, Benjamin D.; Dreyfus, Benjamin W.; Gouvea, Julia; Sawtelle, Vashti; Turpen, Chandra; Redish, Edward F.

2014-02-01

417

Effects of iron on optical properties of dissolved organic matter.  

PubMed

Iron is a source of interference in the spectroscopic analysis of dissolved organic matter (DOM); however, its effects on commonly employed ultraviolet and visible (UV-vis) light adsorption and fluorescence measurements are poorly defined. Here, we describe the effects of iron(II) and iron(III) on the UV-vis absorption and fluorescence of solutions containing two DOM fractions and two surface water samples. In each case, regardless of DOM composition, UV-vis absorption increased linearly with increasing iron(III). Correction factors were derived using iron(III) absorption coefficients determined at wavelengths commonly used to characterize DOM. Iron(III) addition increased specific UV absorbances (SUVA) and decreased the absorption ratios (E2:E3) and spectral slope ratios (SR) of DOM samples. Both iron(II) and iron(III) quenched DOM fluorescence at pH 6.7. The degree and region of fluorescence quenching varied with the iron:DOC concentration ratio, DOM composition, and pH. Regions of the fluorescence spectra associated with greater DOM conjugation were more susceptible to iron quenching, and DOM fluorescence indices were sensitive to the presence of both forms of iron. Analyses of the excitation-emission matrices using a 7- and 13-component parallel factor analysis (PARAFAC) model showed low PARAFAC sensitivity to iron addition. PMID:25084347

Poulin, Brett A; Ryan, Joseph N; Aiken, George R

2014-09-01

418

The Transfer of Dissolved Cs-137 from Soil to Plants  

SciTech Connect

Rapidly maturing plants were grown simultaneously at the same experimental sites under natural conditions at the Chernobyl Exclusion Zone. Roots of the plants were side by side in the soil. During two seasons we selected samples of the plants and of the soils several times every season. Content of Cs-137 in the plant and in the soil solution extracted from the samples of soils was measured. Results of measurements of the samples show that, for the experimental site, Cs-137 content in the plant varies with date of the sample selection. The plant:soil solution Cs-137 concentration ratio depends strongly on the date of selection and also on the type of soil. After analysis of the data we conclude that Cs-137 plant uptake is approximately proportional to the content of dissolved Cs-137 in the soil per unit of volume, and the plant:soil solution Cs-137 concentration ratio for the soil is approximately proportional to the soil moisture. (authors)

Prorok, V.V.; Melnichenko, L.Yu. [Department of Physics, Taras Shevchenko National University of Kyiv, 2, build. 1 Acad. Glushkov prospect, Kyiv-680 MSP (Ukraine); Mason, C.F.V. [Research Applications Corporation, 148 Piedra Loop, Los Alamos, NM 87544 (United States); Ageyev, V.A.; Ostashko, V.V. [Institute for Nuclear Research, 47 Nauky prospect, Kyiv-680 MSP (Ukraine)

2006-07-01

419

Elevated dissolved organic carbon biodegradability from thawing and collapsing permafrost  

NASA Astrophysics Data System (ADS)

high latitudes warm, a portion of the large organic carbon pool stored in permafrost will become available for transport to aquatic ecosystems as dissolved organic carbon (DOC). If permafrost DOC is biodegradable, much will be mineralized to the atmosphere in freshwater systems before reaching the ocean, accelerating carbon transfer from permafrost to the atmosphere, whereas if recalcitrant, it will reach marine ecosystems where it may persist over long time periods. We measured biodegradable DOC (BDOC) in water flowing from collapsing permafrost (thermokarst) on the North Slope of Alaska and tested the role of DOC chemical composition and nutrient concentration in determining biodegradability. DOC from collapsing permafrost was some of the most biodegradable reported in natural systems. However, elevated BDOC only persisted during active permafrost degradation, with a return to predisturbance levels once thermokarst features stabilized. Biodegradability was correlated with background nutrient concentration, but nutrient addition did not increase overall BDOC, suggesting that chemical composition may be a more important control on DOC processing. Despite its high biodegradability, permafrost DOC showed evidence of substantial previous microbial processing, and we present four hypotheses explaining this incongruity. Because thermokarst features form preferentially on river banks and lake shores and can remain active for decades, thermokarst may be the dominant short-term mechanism delivering sediment, nutrients, and biodegradable organic matter to aquatic systems as the Arctic warms.

Abbott, Benjamin W.; Larouche, Julia R.; Jones, Jeremy B.; Bowden, William B.; Balser, Andrew W.

2014-10-01

420

Designing HPMC matrices with improved resistance to dissolved sugar.  

PubMed

High concentrations of dissolved sugars can accelerate in vitro drug release in certain hydroxypropyl methylcellulose (HPMC) matrices (Williams et al., 2009). This study investigated the potential for common formulation variables to modulate sucrose sensitivity, and explored if more resistant formulations could be designed. In a model matrix containing 30% HPMC (Methocel™ K4M), the inclusion of sugar as a tablet diluent was a key factor. Lactose:microcrystalline cellulose mixtures, dextrose and d-xylose all produced highly swollen, erodible matrices in 0.7M sucrose (37°C), which collapsed and rapidly released remaining drug after 1-4h. This suggests internal and external sugars combine to disrupt the diffusion barrier properties of the gel layer. In contrast, matrices containing microcrystalline cellulose as the sole diluent provided extended release for 10h. Small particle size (<63?m) and high or low viscosity HPMC (Methocel™ K100M or K100LV) also improved sugar resistance. Knowledge of these variables allowed a significantly more resistant HPMC matrix to be designed which provided extended release for >16h in 0.9M sucrose. By judicious selection of excipient properties, the tolerance of HPMC matrices to high sucrose environments can be significantly improved. PMID:20858538

Williams, Hywel D; Ward, Robert; Culy, Anna; Hardy, Ian J; Melia, Colin D

2010-11-30

421

Photoacoustic lifetime imaging of dissolved oxygen using methylene blue.  

PubMed

Measuring distribution of dissolved oxygen in biological tissue is of prime interest for cancer diagnosis, prognosis, and therapy optimization. Tumor hypoxia indicates poor prognosis and resistance to radiotherapy. Despite its major clinical significance, no current imaging modality provides direct imaging of tissue oxygen. We present preliminary results demonstrating the potential of photoacoustic lifetime imaging (PALI) for noninvasive, 3-D imaging of tissue oxygen. The technique is based on photoacoustic probing of the excited state lifetime of methylene blue (MB) dye. MB is an FDA-approved water soluble dye with a peak absorption at 660 nm. A double pulse laser system (pump probe) is used to excite the dye and probe its transient absorption by detecting photoacoustic emission. The relaxation rate of MB depends linearly on oxygen concentration. Our measurements show high photoacoustic signal contrast at a probe wavelength of 810 nm, where the excited state absorption is more than four times higher than the ground state absorption. Imaging of a simple phantom is demonstrated. We conclude by discussing possible implementations of the technique in clinical settings and combining it with photodynamic therapy (PDT) for real-time therapy monitoring. PMID:20799768

Ashkenazi, Shai

2010-01-01

422

Total Dissolved Cobalt and Labile Cobalt in the North Atlantic  

NASA Astrophysics Data System (ADS)

This study presents the total and labile dissolved cobalt distributions from the North Atlantic GEOTRACES Zonal Transect expeditions of the fall of 2010 and 2011. Labile cobalt was detected in much of the water column below the euphotic zone, suggesting that strong cobalt binding ligands were not present in excess of the total cobalt concentration. Near complete complexation of cobalt was observed in surface waters, and linear relationships were observed when both total and labile cobalt were compared to phosphate in surface waters, indicative of a strong biological influence on cobalt cycling. Decoupling of cobalt and macronutrients in the surface waters was observed approaching the North American coast, and a relationship between cobalt and salinity was observed, suggesting that coastal inputs may dominate the distributions of cobalt there. In deep waters, both total and labile cobalt were generally lower in concentration than at intermediate depths, which is evidence of scavenging processes removing cobalt from the water column. Elevated concentrations of labile and total cobalt were observed in samples taken within the TAG hydrothermal plume, and a reverse relationship between cobalt and oxygen was observed in the western basin OMZ.

Saito, M. A.; Noble, A.

2012-12-01

423

Catalytic hydrothermal conversion of dissolved carbon dioxide into methane  

NASA Astrophysics Data System (ADS)

This paper aims to convert NaHCO3 (dissolved carbon dioxide in NaOH solution) into methane via hydrothermal catalytic reaction. The effects of various experimental parameters on the conversion efficiency of NaHCO3, e.g., amount of reactant (Zn) and catalyst (Ni), temperature, reaction time etc, were investigated. The results showed that a maximal 43.6% yield of methane was obtained at the optimal conditions: Zn 0.1 mol, Ni 0.06 mol, temperature of 300° C, reaction time of 120 min, filling rate of 35% and NaHCO3 0.01 mol. In the absence of Ni catalyst, CO2 was mostly converted into formic acid (formic acid yield of 87%) and the corresponding methane yield was zero, while in the presence of Ni, the yield of methane increased to 43.6% and the yield of formic acid was only 3%. Based on these results, it was supposed that Ni played a catalytic role in hydrothermal conversion of CO2 into methane and formic acid was the intermediate product during the formation of methane from CO2 in the hydrothermal processes.

Yan, Peng; Jin, Fangming; Cao, Jianglin; Wu, Bing; Zhang, Guangyi

2010-11-01

424

Liquid contents verification for explosives, chemical agents, and dissolved narcotics  

NASA Astrophysics Data System (ADS)

An increasingly important need today is to guard against terrorist attacks at key locations such as airports and public buildings. Liquid explosives can avoid detection at security checkpoints by being concealed as beverages or other benign liquids. Magnetic resonance (MR) offers a safe, non-invasive technology for probing and classifying the liquid contents inside sealed non-metallic containers or packages. Quantum Magnetics has developed a Liquid Explosives Screening System or `Bottle Scanner' to screen for liquid explosives and flammables, described at an earlier SPIE conference in 1996. Since then, the Bottle Scanner's performance has been significantly improved by the incorporation of neural network-based liquid classification. Recently we have shown that the incorporation of additional discrimination parameters can further enhance liquid classification. In addition to screening for explosives and flammables, the Bottle Scanner can be effective against chemical agents, many of which contain fluorine or phosphorous, both of which have MR signatures. Finally, we have evidence that the Bottle Scanner may also be able to detect narcotics dissolved in beverages, one of the methods used to smuggle narcotics across international borders. The development of the Bottle Scanner has been funded by the Federal Aviation Administration.

Kumar, Sankaran; McMichael, W. Casey; Magnuson, Erik E.; Lee, Young K.; Moeller, Charles R.; Czipott, Peter V.; Rayner, Timothy J.; Newman, David E.; Wroblewski, Dariusz

2001-02-01

425

Characteristics and transformations of dissolved organic nitrogen in municipal biological nitrogen removal wastewater treatment plants  

NASA Astrophysics Data System (ADS)

Dissolved organic nitrogen (DON) represents most of the dissolved nitrogen in the effluent of biological nitrogen removal (BNR) wastewater treatment plants (WWTPs). The characteristics of wastewater-derived DON in two different WWTPs were investigated by several different methods. The major removals of DON and biodegradable dissolved organic nitrogen (BDON) along the treatment train were observed in the anaerobic process. Dissolved combined amino acids (DCAA) and dissolved free amino acids (DFAA) in the effluent accounted approximately for less than 4% and 1% of the effluent DON, respectively. Approximately half of wastewater-derived DON was capable of passing through a 1 kDa ultrafilter, and low MW DON cannot effectively be removed by BNR processes. More than 80% of effluent DON was composed of hydrophilic compounds, which stimulate algal growth. The study provided important information for future upgrading of WWTPs or the selection of DON removal systems to meet more demanding nitrogen discharge limits.

Huo, Shouliang; Xi, Beidou; Yu, Honglei; Qin, Yanwen; Zan, Fengyu; Zhang, Jingtian

2013-12-01

426

Effects of the lampricide 3-trifluoromethyl-4-nitrophenol on dissolved oxygen in aquatic systems  

USGS Publications Warehouse

The effects of the lampricide 3-trifluoromethyl-4-nitrophenol (TFM) on dissolved oxygen and other water- quality characteristics were evaluated in a series of test chambers under selected combinations of water, sediment, TFM, and exposure to sunlight. Concentrations of TFM gradually decreased over time, especially in the presence of sediment and sunlight. The lampricide did not directly cause a reduction in dissolved oxygen concentration, but appeared to inhibit photosynthetic production of oxygen during daylight. Dissolved oxygen concentrations were significantly reduced by the presence of TFM in chambers exposed to sunlight. Concentrations of total ammonia were significantly higher in chambers with sediment than in those without sediment. In chambers that contained river water and were exposed to sunlight, ammonia concentrations were low because of either oxidation by the elevated dissolved oxygen concentrations or the assimilation of nutrients by algae. The observed changes in dissolved oxygen and ammonia because of the presence of TFM were subtle, but statistically significant.

Dawson, V.K.; Johnson, D.A.; Sullivan, J.F.

1992-01-01

427

Dissolved oxygen analysis, TMDL model comparison, and particulate matter shunting—Preliminary results from three model scenarios for the Klamath River upstream of Keno Dam, Oregon  

USGS Publications Warehouse

Efforts are underway to identify actions that would improve water quality in the Link River to Keno Dam reach of the Upper Klamath River in south-central Oregon. To provide further insight into water-quality improvement options, three scenarios were developed, run, and analyzed using previously calibrated CE-QUAL-W2 hydrodynamic and water-quality models. Additional scenarios are under development as part of this ongoing study. Most of these scenarios evaluate changes relative to a "current conditions" model, but in some cases a "natural conditions" model was used that simulated the reach without the effect of point and nonpoint sources and set Upper Klamath Lake at its Total Maximum Daily Load (TMDL) targets. These scenarios were simulated using a model developed by the U.S. Geological Survey (USGS) and Watercourse Engineering, Inc. for the years 2006–09, referred to here as the "USGS model." Another model of the reach was developed by Tetra Tech, Inc. for years 2000 and 2002 to support the Klamath River TMDL process; that model is referred to here as the "TMDL model." The three scenarios described in this report included (1) an analysis of whether this reach of the Upper Klamath River would be in compliance with dissolved oxygen standards if sources met TMDL allocations, (2) an application of more recent datasets to the TMDL model with comparison to results from the USGS model, and (3) an examination of the effect on dissolved oxygen in the Klamath River if particulate material were stopped from entering Klamath Project diversion canals. Updates and modifications to the USGS model are in progress, so in the future these scenarios will be reanalyzed with the updated model and the interim results presented here will be superseded. Significant findings from this phase of the investigation include: * The TMDL analysis used depth-averaged dissolved oxygen concentrations from model output for comparison with dissolved oxygen standards. The Oregon dissolved oxygen standards do not specify whether the numeric criteria are based on depth-averaged dissolved oxygen concentration; this was an interpretation of the standards rule by the Oregon Department of Environmental Quality (ODEQ). In this study, both depth-averaged and volume-averaged dissolved oxygen concentrations were calculated from model output. Results showed that modeled depth-averaged concentrations typically were lower than volume-averaged dissolved oxygen concentrations because depth-averaging gives a higher weight to small volume areas near the channel bottom that often have lower dissolved oxygen concentrations. Results from model scenarios in this study are reported using volume-averaged dissolved oxygen concentrations. * Under all scenarios analyzed, violations of the dissolved oxygen standard occurred most often in summer. Of the three dissolved oxygen criteria that must be met, the 30-day standard was violated most frequently. Under the base case (current conditions), fewer violations occurred in the upstream part of the reach. More violations occurred in the down-stream direction, due in part to oxygen demand from the decay of algae and organic matter from Link River and other inflows. * A condition in which Upper Klamath Lake and its Link River outflow achieved Upper Klamath Lake TMDL water-quality targets was most effective in reducing the number of violations of the dissolved oxygen standard in the Link River to Keno Dam reach of the Klamath River. The condition in which point and nonpoint sources within the Link River to Keno Dam reach met Klamath River TMDL allocations had no effect on dissolved oxygen compliance in some locations and a small effect in others under current conditions. On the other hand, meeting TMDL allocations for nonpoint and point sources was predicted to be important in meeting dissolved oxygen criteria when Upper Klamath Lake and Link River also met Upper Klamath TMDL water-quality targets. * The location of greatest dissolved oxygen improvement from nutrient and organic matter reductions was downstream from point and nonpoint

Sullivan, Annett B.; Rounds, Stewart A.; Deas, Michael L.; Sogutlugil, I. Ertugrul

2012-01-01

428

Production of dissolved DNA, RNA, and protein by microbial populations in a Florida reservoir.  

PubMed

Production of dissolved macromolecules by ambient autotrophic and heterotrophic microbial populations was measured in a eutrophic Florida reservoir by in situ labeling with various radioactive substrates. When [3H]thymidine was used as the precursor, production of labeled dissolved DNA, RNA, and protein was observed. The rate of production of labeled dissolved macromolecules was 3.1% the rate of cellular incorporation of [3H]thymidine, and the production of dissolved DNA represented 2.3% the rate of cellular DNA incorporation. Microautotrophic populations labeled with NaH[14C]CO3 produced dissolved RNA and protein at rates of 0.24 and 0.11 micrograms of C/liter per h, respectively, or 1.8% the total rate of carbon fixation, with no measurable dissolved DNA production. In an attempt to specifically label phytoplankton DNA, samples were incubated with [3H]adenine or 32Pi in the presence and absence of the photosynthetic inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Although DCMU inhibited 14C fixation by approximately 99%, this antimetabolite had only a slight effect on [3H]adenine incorporation and no effect on 32P incorporation into cellular macromolecules. Significant amounts of dissolved DNA were produced in both [3H]adenine and 32Pi incubations, but again DCMU had no effect on the production rates. These results indicate that actively growing populations of both phytoplankton and bacterioplankton produced dissolved RNA and protein, while only active bacterioplankton produced measurable quantities of dissolved DNA. Dead or senescent phytoplankton may have produced dissolved DNA, but would not be measured in the relatively short incubations used. These findings also indicate that [3H]adenine and 32Pi primarily labeled heterotrophic bacterioplankton and not phytoplankton in this environment. PMID:1704697

Paul, J H; Jeffrey, W H; Cannon, J P

1990-10-01

429

Artificial neural network modeling of dissolved oxygen in the Heihe River, Northwestern China.  

PubMed

Identification and quantification of dissolved oxygen (DO) profiles of river is one of the primary concerns for water resources managers. In this research, an artificial neural network (ANN) was developed to simulate the DO concentrations in the Heihe River, Northwestern China. A three-layer back-propagation ANN was used with the Bayesian regularization training algorithm. The input variables of the neural network were pH, electrical conductivity, chloride (Cl(-)), calcium (Ca(2+)), total alkalinity, total hardness, nitrate nitrogen (NO3-N), and ammonical nitrogen (NH4-N). The ANN structure with 14 hidden neurons obtained the best selection. By making comparison between the results of the ANN model and the measured data on the basis of correlation coefficient (r) and root mean square error (RMSE), a good model-fitting DO values indicated the effectiveness of neural network model. It is found that the coefficient of correlation (r) values for the training, validation, and test sets were 0.9654, 0.9841, and 0.9680, respectively, and the respective values of RMSE for the training, validation, and test sets were 0.4272, 0.3667, and 0.4570, respectively. Sensitivity analysis was used to determine the influence of input variables on the dependent variable. The most effective inputs were determined as pH, NO3-N, NH4-N, and Ca(2+). Cl(-) was found to be least effective variables on the proposed model. The identified ANN model can be used to simulate the water quality parameters. PMID:23001527

Wen, Xiaohu; Fang, Jing; Diao, Meina; Zhang, Chuanqi

2013-05-01