Sample records for simulated dissolver off-gas

  1. Design, Fabrication, and Shakeout Testing of ATALANTE Dissolver Off-Gas Sorbent-Based Capture System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Jr, Joseph Franklin; Jubin, Robert Thomas; Jordan, Jacob A.

    A sorbent-based capture system designed for integration into the existing dissolver off-gas (DOG) treatment system at the ATelier Alpha et Laboratoires pour ANalyses, Transuraniens et Etudes de retraitement (ATALANTE) facility has been successfully designed and fabricated and has undergone shakeout testing. Discussions with personnel from the ATALANTE facility provided guidance that was used for the design. All components for this system were specified, procured, and received on site at Oak Ridge National Laboratory (ORNL). The system was then fabricated and tested at ORNL to verify operation. Shakeout testing resulted in a simplified system. This system should be easily installed intomore » the existing facility and should be straightforward to operate during future experimental testing. All parts were selected to be compatible with ATALANTE power supplies, space requirements, and the existing DOG treatment system. Additionally, the system was demonstrated to meet all of four design requirements. These include (1) a dissolver off-gas flow rate of ≤100 L/h (1.67 L/min), (2) an external temperature of ≤50°C for all system components placed in the hot cell, (3) a sorbent bed temperature of ~150°C, and (4) a gas temperature of ~150°C upon entry into the sorbent bed. The system will be ready for shipment and installation in the existing DOG treatment system at ATALANTE in FY 2016.« less

  2. Modeling and Simulation of the Off-gas in an Electric Arc Furnace

    NASA Astrophysics Data System (ADS)

    Meier, Thomas; Gandt, Karima; Echterhof, Thomas; Pfeifer, Herbert

    2017-12-01

    The following paper describes an approach to process modeling and simulation of the gas phase in an electric arc furnace (EAF). The work presented represents the continuation of research by Logar, Dovžan, and Škrjanc on modeling the heat and mass transfer and the thermochemistry in an EAF. Due to the lack of off-gas measurements, Logar et al. modeled a simplified gas phase under consideration of five gas components and simplified chemical reactions. The off-gas is one of the main continuously measurable EAF process values and the off-gas flow represents a heat loss up to 30 pct of the entire EAF energy input. Therefore, gas phase modeling offers further development opportunities for future EAF optimization. This paper presents the enhancement of the previous EAF gas phase modeling by the consideration of additional gas components and a more detailed heat and mass transfer modeling. In order to avoid the increase of simulation time due to more complex modeling, the EAF model has been newly implemented to use an efficient numerical solver for ordinary differential equations. Compared to the original model, the chemical components H2, H2O, and CH4 are included in the gas phase and equilibrium reactions are implemented. The results show high levels of similarity between the measured operational data from an industrial scale EAF and the theoretical data from the simulation within a reasonable simulation time. In the future, the dynamic EAF model will be applicable for on- and offline optimizations, e.g., to analyze alternative input materials and mode of operations.

  3. Novel Apparatus for the Real-Time Quantification of Dissolved Gas Concentrations and Isotope Ratios

    NASA Astrophysics Data System (ADS)

    Gupta, M.; Leen, J.; Baer, D. S.; Owano, T. G.; Liem, J.

    2013-12-01

    Measurements of dissolved gases and their isotopic composition are critical in studying a variety of phenomena, including underwater greenhouse gas generation, air-surface exchange, and pollution migration. These studies typically involve obtaining water samples from streams, lakes, or ocean water and transporting them to a laboratory, where they are degased. The gases obtained are then generally measured using gas chromatography and isotope ratio mass spectrometry for concentrations and isotope ratios, respectively. This conventional, off-line methodology is time consuming, significantly limits the number of the samples that can be measured and thus severely inhibits detailed spatial and temporal mapping of gas concentrations and isotope ratios. In this work, we describe the development of a new membrane-based degassing device that interfaces directly to Los Gatos Research (cavity enhanced laser absorption or Off-Axis ICOS) gas analyzers (cavity enhanced laser absorption or Off-Axis ICOS analyzers) to create an autonomous system that can continuously and quickly measure concentrations and isotope ratios of dissolved gases in real time in the field. By accurately controlling the water flow rate through the membrane degasser, gas pressure on the outside of the membrane, and water pressure on the inside of the membrane, the system is able to generate precise and highly reproducible results. Moreover, by accurately measuring the gas flow rates in and out of the degasser, the gas-phase concentrations (ppm) could be converted into dissolved gas concentrations (nM). We will present detailed laboratory test data that quantifies the linearity, precision, and dynamic range of the system for the concentrations and isotope ratios of dissolved methane, carbon dioxide, and nitrous oxide. By interfacing the degassing device to a novel cavity-enhanced spectrometer (developed by LGR), preliminary data will also be presented for dissolved volatile organics (VOC) and other

  4. Regulatory off-gas analysis from the evaporation of Hanford simulated waste spiked with organic compounds.

    PubMed

    Saito, Hiroshi H; Calloway, T Bond; Ferrara, Daro M; Choi, Alexander S; White, Thomas L; Gibson, Luther V; Burdette, Mark A

    2004-10-01

    After strontium/transuranics removal by precipitation followed by cesium/technetium removal by ion exchange, the remaining low-activity waste in the Hanford River Protection Project Waste Treatment Plant is to be concentrated by evaporation before being mixed with glass formers and vitrified. To provide a technical basis to permit the waste treatment facility, a relatively organic-rich Hanford Tank 241-AN-107 waste simulant was spiked with 14 target volatile, semi-volatile, and pesticide compounds and evaporated under vacuum in a bench-scale natural circulation evaporator fitted with an industrial stack off-gas sampler at the Savannah River National Laboratory. An evaporator material balance for the target organics was calculated by combining liquid stream mass and analytical data with off-gas emissions estimates obtained using U.S. Environmental Protection Agency (EPA) SW-846 Methods. Volatile and light semi-volatile organic compounds (<220 degrees C BP, >1 mm Hg vapor pressure) in the waste simulant were found to largely exit through the condenser vent, while heavier semi-volatiles and pesticides generally remain in the evaporator concentrate. An OLI Environmental Simulation Program (licensed by OLI Systems, Inc.) evaporator model successfully predicted operating conditions and the experimental distribution of the fed target organics exiting in the concentrate, condensate, and off-gas streams, with the exception of a few semi-volatile and pesticide compounds. Comparison with Henry's Law predictions suggests the OLI Environmental Simulation Program model is constrained by available literature data.

  5. Method for treating a nuclear process off-gas stream

    DOEpatents

    Pence, Dallas T.; Chou, Chun-Chao

    1984-01-01

    Disclosed is a method for selectively removing and recovering the noble gas and other gaseous components typically emitted during nuclear process operations. The method is adaptable and useful for treating dissolver off-gas effluents released during reprocessing of spent nuclear fuels whereby to permit radioactive contaminant recovery prior to releasing the remaining off-gases to the atmosphere. Briefly, the method sequentially comprises treating the off-gas stream to preliminarily remove NO.sub.x, hydrogen and carbon-containing organic compounds, and semivolatile fission product metal oxide components therefrom; adsorbing iodine components on silver-exchanged mordenite; removing water vapor carried by said stream by means of a molecular sieve; selectively removing the carbon dioxide components of said off-gas stream by means of a molecular sieve; selectively removing xenon in gas phase by passing said stream through a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from oxygen by means of a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from the bulk nitrogen stream using a molecular sieve comprising silver-exchanged mordenite cooled to about -140.degree. to -160.degree. C.; concentrating the desorbed krypton upon a molecular sieve comprising silver-exchange mordenite cooled to about -140.degree. to -160.degree. C.; and further cryogenically concentrating, and the recovering for storage, the desorbed krypton.

  6. Online dissolved methane and total dissolved sulfide measurement in sewers.

    PubMed

    Liu, Yiwen; Sharma, Keshab R; Fluggen, Markus; O'Halloran, Kelly; Murthy, Sudhir; Yuan, Zhiguo

    2015-01-01

    Recent studies using short-term manual sampling of sewage followed by off-line laboratory gas chromatography (GC) measurement have shown that a substantial amount of dissolved methane is produced in sewer systems. However, only limited data has been acquired to date due to the low frequency and short span of this method, which cannot capture the dynamic variations of in-sewer dissolved methane concentrations. In this study, a newly developed online measuring device was used to monitor dissolved methane concentrations at the end of a rising main sewer network, over two periods of three weeks each, in summer and early winter, respectively. This device uses an online gas-phase methane sensor to measure methane under equilibrium conditions after being stripped from the sewage. The data are then converted to liquid-phase methane concentrations according to Henry's Law. The detection limit and range are suitable for sewer application and can be adjusted by varying the ratio of liquid-to-gas phase volume settings. The measurement presented good linearity (R² > 0.95) during field application, when compared to off-line measurements. The overall data set showed a wide variation in dissolved methane concentration of 5-15 mg/L in summer and 3.5-12 mg/L in winter, resulting in a significant average daily production of 24.6 and 19.0 kg-CH₄/d, respectively, from the network with a daily average sewage flow of 2840 m³/day. The dissolved methane concentration demonstrated a clear diurnal pattern coinciding with flow and sulfide fluctuation, implying a relationship with the wastewater hydraulic retention time (HRT). The total dissolved sulfide (TDS) concentration in sewers can be determined simultaneously with the same principle.

  7. Glass melter off-gas system

    DOEpatents

    Jantzen, Carol M.

    1997-01-01

    Apparatus and method for melting glass in a glass melter in such a way as to reduce deposition of particulates in the off-gas duct. Deposit accumulation is reduced by achieving an off-gas velocity above approximately 15 meters/second and an off-gas temperature as close as possible to, but not higher than, the glass softening point. Because the deposits are largely water-soluble, those that do form on the interior surface of the duct can be readily removed by injecting water or steam directly into the off-gas duct from its entrance or exit.

  8. Preliminary Study: Application of Off-Axis ICOS to Determine Stable Carbon Isotope in Dissolved Inorganic Carbon

    NASA Astrophysics Data System (ADS)

    Kim, Y. T.; Lee, J. M.; Hwang, J. H.; Piao, J.; Woo, N. C.

    2015-12-01

    CO2 is one of the major causes for global climate change. Because stable carbon isotope ratio is used to trace carbon source, several analytical techniques likes IRMS (Isotope Ratio Mass Spectrometry) and LAS (Laser Absorption Spectrometry) were extensively used. Off-axis ICOS, a kind of LAS, has merits on long-term stability and field application, therefore it is widely being used in CCS (Carbon Capture and Storage) field. The aim of this study is to extend the application scope of OA-ICOS to determine dissolved inorganic carbon (DIC). Because OA-ICOS showed dependence of δ13C on CO2 concentration, data processing is required. We tested CO2 Carbon Isotope Analyzer (CCIA-36-EP, Los Gatos Research) with both reference gas (δ13C= -28.28‰) and aqueous solutions prepared by dissolving sodium bicarbonate standards (δ13C= -12.26‰ and +3.96‰). The differences of δ13C between reference and measurement values are plotted by CO2 concentrations, then compared. At first, we checked the similarity between our curve pattern for reference gas and Guillon's research (δ13C= -43.99‰) by other Analyzer. To analyze aqueous samples, more errors can be caused than gas analysis. The carbon isotope fractionation occurs during dissolving standard reagents and extracting DIC as CO2 gas form. This effect is mixed with CO2 concentration dependence effect, therefore the curve patterns are different with that for reference gas. Our experiments are done for various δ13C values. It could be an important point to use OA-ICOS to analyze DIC, too.

  9. Measurements and simulation of liquid films during drainage displacements and snap-off in constricted capillary tubes.

    PubMed

    Roman, Sophie; Abu-Al-Saud, Moataz O; Tokunaga, Tetsu; Wan, Jiamin; Kovscek, Anthony R; Tchelepi, Hamdi A

    2017-12-01

    When a wetting liquid is displaced by air in a capillary tube, a wetting film develops between the tube wall and the air that is responsible for the snap-off mechanism of the gas phase. By dissolving a dye in the wetting phase it is possible to relate a measure of the absorbance in the capillary to the thickness of liquid films. These data could be used to compare with cutting edge numerical simulations of the dynamics of snap-off for which experimental and numerical data are lacking. Drainage experiments in constricted capillary tubes were performed where a dyed wetting liquid is displaced by air for varying flow rates. We developed an optical method to measure liquid film thicknesses that range from 3 to 1000μm. The optical measures are validated by comparison with both theory and direct numerical simulations. In a constricted capillary tube we observed, both experimentally and numerically, a phenomenon of snap-off coalescence events in the vicinity of the constriction that bring new insights into our understanding and modeling of two-phase flows. In addition, the good agreement between experiments and numerical simulations gives confidence to use the numerical method for more complex geometries in the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. X-ray fluorescence measurements of dissolved gas and cavitation

    DOE PAGES

    Duke, Daniel J.; Kastengren, Alan L.; Swantek, Andrew B.; ...

    2016-09-28

    The dynamics of dissolved gas and cavitation are strongly coupled, yet these phenomena are difficult to measure in-situ. Both create voids in the fluid that can be difficult to distinguish. In this paper, we present an application of X-ray fluorescence in which liquid density and total noncondensible gas concentration (both dissolved and nucleated) are simultaneously measured. The liquid phase is doped with 400 ppm of a bromine tracer, and dissolved air is removed and substituted with krypton. Fluorescent emission at X-ray wavelengths is simultaneously excited from the Br and Kr with a focused monochromatic X-ray beam from a synchrotron source.more » We measure the flow in a cavitating nozzle 0.5 mm in diameter. From Br fluorescence, total displacement of the liquid is measured. From Kr fluorescence, the mass fraction of both dissolved and nucleated gas is measured. Volumetric displacement of liquid due to both cavitation and gas precipitation can be separated through estimation of the local equilibrium dissolved mass fraction. The uncertainty in the line of sight projected densities of the liquid and gas phases is 4–6 %. The high fluorescence yields and energies of Br and Kr allow small mass fractions of gas to be measured, down to 10 -5, with an uncertainty of 8 %. Finally, these quantitative measurements complement existing optical diagnostic techniques and provide new insight into the diffusion of gas into cavitation bubbles, which can increase their internal density, pressure and lifetimes by orders of magnitude.« less

  11. Suitability of selected free-gas and dissolved-gas sampling containers for carbon isotopic analysis.

    PubMed

    Eby, P; Gibson, J J; Yi, Y

    2015-07-15

    Storage trials were conducted for 2 to 3 months using a hydrocarbon and carbon dioxide gas mixture with known carbon isotopic composition to simulate typical hold times for gas samples prior to isotopic analysis. A range of containers (both pierced and unpierced) was periodically sampled to test for δ(13)C isotopic fractionation. Seventeen containers were tested for free-gas storage (20°C, 1 atm pressure) and 7 containers were tested for dissolved-gas storage, the latter prepared by bubbling free gas through tap water until saturated (20°C, 1 atm) and then preserved to avoid biological activity by acidifying to pH 2 with phosphoric acid and stored in the dark at 5°C. Samples were extracted using valves or by piercing septa, and then introduced into an isotope ratio mass spectrometer for compound-specific δ(13)C measurements. For free gas, stainless steel canisters and crimp-top glass serum bottles with butyl septa were most effective at preventing isotopic fractionation (pierced and unpierced), whereas silicone and PTFE-butyl septa allowed significant isotopic fractionation. FlexFoil and Tedlar bags were found to be effective only for storage of up to 1 month. For dissolved gas, crimp-top glass serum bottles with butyl septa were again effective, whereas silicone and PTFE-butyl were not. FlexFoil bags were reliable for up to 2 months. Our results suggest a range of preferred containers as well as several that did not perform very well for isotopic analysis. Overall, the results help establish better QA/QC procedures to avoid isotopic fractionation when storing environmental gas samples. Recommended containers for air transportation include steel canisters and glass serum bottles with butyl septa (pierced and unpierced). Copyright © 2015 John Wiley & Sons, Ltd.

  12. Laser Calorimetry Spectroscopy for ppm-level Dissolved Gas Detection and Analysis

    PubMed Central

    K. S., Nagapriya; Sinha, Shashank; R., Prashanth; Poonacha, Samhitha; Chaudhry, Gunaranjan; Bhattacharya, Anandaroop; Choudhury, Niloy; Mahalik, Saroj; Maity, Sandip

    2017-01-01

    In this paper we report a newly developed technique – laser calorimetry spectroscopy (LCS), which is a combination of laser absorption spectroscopy and calorimetry - for the detection of gases dissolved in liquids. The technique involves determination of concentration of a dissolved gas by irradiating the liquid with light of a wavelength where the gas absorbs, and measuring the temperature change caused by the absorbance. Conventionally, detection of dissolved gases with sufficient sensitivity and specificity was done by first extracting the gases from the liquid and then analyzing the gases using techniques such as gas chromatography. Using LCS, we have been able to detect ppm levels of dissolved gases without extracting them from the liquid. In this paper, we show the detection of dissolved acetylene in transformer oil in the mid infrared (MIR) wavelength (3021 nm) region. PMID:28218304

  13. Laser Calorimetry Spectroscopy for ppm-level Dissolved Gas Detection and Analysis.

    PubMed

    K S, Nagapriya; Sinha, Shashank; R, Prashanth; Poonacha, Samhitha; Chaudhry, Gunaranjan; Bhattacharya, Anandaroop; Choudhury, Niloy; Mahalik, Saroj; Maity, Sandip

    2017-02-20

    In this paper we report a newly developed technique - laser calorimetry spectroscopy (LCS), which is a combination of laser absorption spectroscopy and calorimetry - for the detection of gases dissolved in liquids. The technique involves determination of concentration of a dissolved gas by irradiating the liquid with light of a wavelength where the gas absorbs, and measuring the temperature change caused by the absorbance. Conventionally, detection of dissolved gases with sufficient sensitivity and specificity was done by first extracting the gases from the liquid and then analyzing the gases using techniques such as gas chromatography. Using LCS, we have been able to detect ppm levels of dissolved gases without extracting them from the liquid. In this paper, we show the detection of dissolved acetylene in transformer oil in the mid infrared (MIR) wavelength (3021 nm) region.

  14. Investigating ebullition in a sand column using dissolved gas analysis and reactive transport modeling

    USGS Publications Warehouse

    Amos, Richard T.; Mayer, K. Ulrich

    2006-01-01

    Ebullition of gas bubbles through saturated sediments can enhance the migration of gases through the subsurface, affect the rate of biogeochemical processes, and potentially enhance the emission of important greenhouse gases to the atmosphere. To better understand the parameters controlling ebullition, methanogenic conditions were produced in a column experiment and ebullition through the column was monitored and quantified through dissolved gas analysis and reactive transport modeling. Dissolved gas analysis showed rapid transport of CH4 vertically through the column at rates several times faster than the bromide tracer and the more soluble gas CO2, indicating that ebullition was the main transport mechanism for CH4. An empirically derived formulation describing ebullition was integrated into the reactive transport code MIN3P allowing this process to be investigated on the REV scale in a complex geochemical framework. The simulations provided insights into the parameters controlling ebullition and show that, over the duration of the experiment, 36% of the CH4 and 19% of the CO2 produced were transported to the top of the column through ebullition.

  15. LABORATORY OPTIMIZATION TESTS OF TECHNETIUM DECONTAMINATION OF HANFORD WASTE TREATMENT PLANT LOW ACTIVITY WASTE OFF-GAS CONDENSATE SIMULANT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-Pashow, K.; Nash, C.; McCabe, D.

    2014-09-29

    compatible with longterm tank storage and immobilization methods. For this new application, testing is needed to demonstrate acceptable treatment sorbents and precipitating agents and measure decontamination factors for additional radionuclides in this unique waste stream. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet and will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. One of the radionuclides that is volatile and expected to be in greatest abundance in this LAW Off-Gas Condensate stream is Technetium-99 ({sup 99}Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are low but are also expected to be in measurable concentration in the LAW Off-Gas Condensate are {sup 129}I, {sup 90}Sr, {sup 137}Cs, {sup 241}Pu, and {sup 241}Am. These are present due to their partial volatility and some entrainment in the off-gas system. This report discusses results of optimized {sup 99}Tc decontamination testing of the simulant. Testing examined use of inorganic reducing agents for {sup 99}Tc. Testing focused on minimizing the quantity of sorbents/reactants added, and minimizing mixing time to reach the decontamination targets in this simulant formulation. Stannous chloride and ferrous sulfate were tested as reducing agents to determine the minimum needed to convert soluble pertechnetate

  16. Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamson, Duane J.; Nash, Charles A.; McCabe, Daniel J.

    2014-01-01

    melter (chloride, fluoride, sulfur), will have high ammonia, and will contain carryover particulates of glass-former chemicals. These species have potential to cause corrosion of tanks and equipment, precipitation of solids, release of ammonia gas vapors, and scale in the tank farm evaporator. Routing this stream to the tank farms does not permanently divert it from recycling into the WTP, only temporarily stores it prior to reprocessing. Testing is normally performed to demonstrate acceptable conditions and limits for these compounds in wastes sent to the tank farms. The primary parameter of this phase of the test program was measuring the formation of solids during evaporation in order to assess the compatibility of the stream with the evaporator and transfer and storage equipment. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW facility melter offgas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and, thus, the composition will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. This report discusses results of evaporation testing of the simulant. Two conditions were tested, one with the simulant at near neutral pH, and a second at alkaline pH. The neutral pH test is comparable to the conditions in the Hanford Effluent Treatment Facility (ETF) evaporator, although that evaporator operates at near atmospheric pressure and tests were done under vacuum. For the alkaline test, the target pH was based on the tank farm corrosion control program requirements, and the test protocol and equipment was comparable

  17. Using dissolved gas analysis to investigate the performance of an organic carbon permeable reactive barrier for the treatment of mine drainage

    USGS Publications Warehouse

    Williams, R.L.; Mayer, K.U.; Amos, R.T.; Blowes, D.W.; Ptacek, C.J.; Bain, J.G.

    2007-01-01

    The strongly reducing nature of permeable reactive barrier (PRB) treatment materials can lead to gas production, potentially resulting in the formation of gas bubbles and ebullition. Degassing in organic C based PRB systems due to the production of gases (primarily CO2 and CH4) is investigated using the depletion of naturally occurring non-reactive gases Ar and N2, to identify, confirm, and quantify chemical and physical processes. Sampling and analysis of dissolved gases were performed at the Nickel Rim Mine Organic Carbon PRB, which was designed for the treatment of groundwater contaminated by low quality mine drainage characterized by slightly acidic pH, and elevated Fe(II) and SO4 concentrations. A simple 4-gas degassing model was used to analyze the dissolved gas data, and the results indicate that SO4 reduction is by far the dominant process of organic C consumption within the barrier. The data provided additional information to delineate rates of microbially mediated SO4 reduction and confirm the presence of slow and fast flow zones within the barrier. Degassing was incorporated into multicomponent reactive transport simulations for the barrier and the simulations were successful in reproducing observed dissolved gas trends.

  18. Characterizing Dissolved Gases in Cryogenic Liquid Fuels

    NASA Astrophysics Data System (ADS)

    Richardson, Ian A.

    Pressure-Density-Temperature-Composition (PrhoT-x) measurements of cryogenic fuel mixtures are a historical challenge due to the difficulties of maintaining cryogenic temperatures and precision isolation of a mixture sample. For decades NASA has used helium to pressurize liquid hydrogen propellant tanks to maintain tank pressure and reduce boil off. This process causes helium gas to dissolve into liquid hydrogen creating a cryogenic mixture with thermodynamic properties that vary from pure liquid hydrogen. This can lead to inefficiencies in fuel storage and instabilities in fluid flow. As NASA plans for longer missions to Mars and beyond, small inefficiencies such as dissolved helium in liquid propellant become significant. Traditional NASA models are unable to account for dissolved helium due to a lack of fundamental property measurements necessary for the development of a mixture Equation Of State (EOS). The first PrhoT-x measurements of helium-hydrogen mixtures using a retrofitted single-sinker densimeter, magnetic suspension microbalance, and calibrated gas chromatograph are presented in this research. These measurements were used to develop the first multi-phase EOS for helium-hydrogen mixtures which was implemented into NASA's Generalized Fluid System Simulation Program (GFSSP) to determine the significance of mixture non-idealities. It was revealed that having dissolved helium in the propellant does not have a significant effect on the tank pressurization rate but does affect the rate at which the propellant temperature rises. PrhoT-x measurements are conducted on methane-ethane mixtures with dissolved nitrogen gas to simulate the conditions of the hydrocarbon seas of Saturn's moon Titan. Titan is the only known celestial body in the solar system besides Earth with stable liquid seas accessible on the surface. The PrhoT-x measurements are used to develop solubility models to aid in the design of the Titan Submarine. NASA is currently designing the submarine

  19. Iodine Pathways and Off-Gas Stream Characteristics for Aqueous Reprocessing Plants – A Literature Survey and Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. T. Jubin; D. M. Strachan; N. R. Soelberg

    2013-09-01

    Used nuclear fuel is currently being reprocessed in only a few countries, notably France, England, Japan, and Russia. The need to control emissions of the gaseous radionuclides to the air during nuclear fuel reprocessing has already been reported for the entire plant. But since the gaseous radionuclides can partition to various different reprocessing off-gas streams, for example, from the head end, dissolver, vessel, cell, and melter, an understanding of each of these streams is critical. These off-gas streams have different flow rates and compositions and could have different gaseous radionuclide control requirements, depending on how the gaseous radionuclides partition. Thismore » report reviews the available literature to summarize specific engineering data on the flow rates, forms of the volatile radionuclides in off-gas streams, distributions of these radionuclides in these streams, and temperatures of these streams. This document contains an extensive bibliography of the information contained in the open literature.« less

  20. Low Cost Gas Turbine Off-Design Prediction Technique

    NASA Astrophysics Data System (ADS)

    Martinjako, Jeremy

    This thesis seeks to further explore off-design point operation of gas turbines and to examine the capabilities of GasTurb 12 as a tool for off-design analysis. It is a continuation of previous thesis work which initially explored the capabilities of GasTurb 12. The research is conducted in order to: 1) validate GasTurb 12 and, 2) predict off-design performance of the Garrett GTCP85-98D located at the Arizona State University Tempe campus. GasTurb 12 is validated as an off-design point tool by using the program to predict performance of an LM2500+ marine gas turbine. Haglind and Elmegaard (2009) published a paper detailing a second off-design point method and it includes the manufacturer's off-design point data for the LM2500+. GasTurb 12 is used to predict off-design point performance of the LM2500+ and compared to the manufacturer's data. The GasTurb 12 predictions show good correlation. Garrett has published specification data for the GTCP85-98D. This specification data is analyzed to determine the design point and to comment on off-design trends. Arizona State University GTCP85-98D off-design experimental data is evaluated. Trends presented in the data are commented on and explained. The trends match the expected behavior demonstrated in the specification data for the same gas turbine system. It was originally intended that a model of the GTCP85-98D be constructed in GasTurb 12 and used to predict off-design performance. The prediction would be compared to collected experimental data. This is not possible because the free version of GasTurb 12 used in this research does not have a module to model a single spool turboshaft. This module needs to be purchased for this analysis.

  1. Dissolved gas concentrations of the geothermal fluids in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Ai-Ti; Yang, Tsanyao Frank

    2010-05-01

    Taiwan, a geologically active island, is located on the boundary of the Philippine Sea Plate and the Eurasian Plate. High heat flow and geothermal gradient generated by the complex collision and orogeny, warm up the meteoric water and/or the ground water. The heated water becomes geothermal fluids. In previous studies, researchers tried to categorize hot springs based on the appearance, chemical compositions and lithological areas. Because of the chemical inertness, the concentrations and isotopic composition of dissolved noble gases are good indicators of the mantle degassing, geothermal conditions, and so on. In this study, 55 hot springs were collected from different tectonic units. It is the first time to systematically study the hot springs in Taiwan in terms of dissolved gases. Hot spring water is sampled and stored in pre-evacuated glass bottles for analyzing gas compositions. The abundances of noble gases were determined by a quadrupole mass spectrometer based on the isotope dilution technique. Samples with glass vials are introduced to RAD 7 and GC for dissolved Rn and major dissolved gases analyses. Furthermore, helium isotopic ratios and helium-neon ratios are measured on a conventional noble gas mass spectrometer. For hydrochemistry analysis, water samples are analyzed by IC, ICP-MS and titration. We can classify the hot springs samples into three major groups from main anion concentration data; and then, subdivide them into nine minor groups by cation concentration data. Moreover, according to major dissolved gases compositions, three major gas components: CH4, N2 and CO2, are identified. Dissolved noble gases provided more detailed clues about hot springs sources in Taiwan, such as the degree of mixing between meteoric water and deep-source water, which will be further discussed in this study.

  2. The effects of total dissolved gas on chum salmon fry survival, growth, gas bubble disease, and seawater tolerance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geist, David R.; Linley, Timothy J.; Cullinan, Valerie I.

    2013-02-01

    Chum salmon Oncorhynchus keta alevin developing in gravel habitats downstream of Bonneville Dam on the Columbia River are exposed to elevated levels of total dissolved gas (TDG) when water is spilled at the dam to move migrating salmon smolts downstream to the Pacific Ocean. Current water quality criteria for the management of dissolved gas in dam tailwaters were developed primarily to protect salmonid smolts and are assumed to be protective of alevin if adequate depth compensation is provided. We studied whether chum salmon alevin exposed to six levels of dissolved gas ranging from 100% to 130% TDG at three developmentmore » periods between hatch and emergence (hereafter early, middle, and late stage) suffered differential mortality, growth, gas bubble disease, or seawater tolerance. Each life stage was exposed for 50 d (early stage), 29 d (middle stage), or 16 d (late stage) beginning at 13, 34, and 37 d post-hatch, respectively, through 50% emergence. The mortality for all stages from exposure to emergence was estimated to be 8% (95% confidence interval (CI) of 4% to 12%) when dissolved gas levels were between 100% and 117% TDG. Mortality significantly increased as dissolved gas levels rose above 117% TDG,; with the lethal concentration that produced 50% mortality (LC50 ) was estimated to be 128.7% TDG (95% CI of 127.2% to 130.2% TDG) in the early and middle stages. By contrast, there was no evidence that dissolved gas level significantly affected growth in any life stage except that the mean wet weight at emergence of early stage fish exposed to 130% TDG was significantly less than the modeled growth of unexposed fish. The proportion of fish afflicted with gas bubble disease increased with increasing gas concentrations and occurred most commonly in the nares and gastrointestinal tract. Early stage fish exhibited higher ratios of filament to lamellar gill chloride cells than late stage fish, and these ratios increased and decreased for early and late stage

  3. Total Dissolved Gas Monitoring in Chum Salmon Spawning Gravels Below Bonneville Dam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arntzen, Evan V.; Geist, David R.; Panther, Jennifer L.

    2007-01-30

    At the request of the U.S. Army Corps of Engineers (Portland District), Pacific Northwest National Laboratory (PNNL) conducted research to determine whether total dissolved gas concentrations are elevated in chum salmon redds during spring spill operations at Bonneville Dam. The study involved monitoring the total dissolved gas levels at egg pocket depth and in the river at two chum salmon spawning locations downstream from Bonneville Dam. Dissolved atmospheric gas supersaturation generated by spill from Bonneville Dam may diminish survival of chum (Oncorhynchus keta) salmon when sac fry are still present in the gravel downstream from Bonneville Dam. However, no previousmore » work has been conducted to determine whether total dissolved gas (TDG) levels are elevated during spring spill operations within incubation habitats. The guidance used by hydropower system managers to provide protection for pre-emergent chum salmon fry has been to limit TDG to 105% after allowing for depth compensation. A previous literature review completed in early 2006 shows that TDG levels as low as 103% have been documented to cause mortality in sac fry. Our study measured TDG in the incubation environment to evaluate whether these levels were exceeded during spring spill operations. Total dissolved gas levels were measured within chum salmon spawning areas near Ives Island and Multnomah Falls on the Columbia River. Water quality sensors screened at egg pocket depth and to the river were installed at both sites. At each location, we also measured dissolved oxygen, temperature, specific conductance, and water depth to assist with the interpretation of TDG results. Total dissolved gas was depth-compensated to determine when levels were high enough to potentially affect sac fry. This report provides detailed descriptions of the two study sites downstream of Bonneville Dam, as well as the equipment and procedures employed to monitor the TDG levels at the study sites. Results of the

  4. Method and apparatus for off-gas composition sensing

    DOEpatents

    Ottesen, David Keith; Allendorf, Sarah Williams; Hubbard, Gary Lee; Rosenberg, David Ezechiel

    1999-01-01

    An apparatus and method for non-intrusive collection of off-gas data in a steelmaking furnace includes structure and steps for transmitting a laser beam through the off-gas produced by a steelmaking furnace, for controlling the transmitting to repeatedly scan the laser beam through a plurality of wavelengths in its tuning range, and for detecting the laser beam transmitted through the off-gas and converting the detected laser beam to an electrical signal. The electrical signal is processed to determine characteristics of the off-gas that are used to analyze and/or control the steelmaking process.

  5. Probing the regional distribution of pulmonary gas exchange through single-breath gas- and dissolved-phase 129Xe MR imaging.

    PubMed

    Kaushik, S Sivaram; Freeman, Matthew S; Cleveland, Zackary I; Davies, John; Stiles, Jane; Virgincar, Rohan S; Robertson, Scott H; He, Mu; Kelly, Kevin T; Foster, W Michael; McAdams, H Page; Driehuys, Bastiaan

    2013-09-01

    Although some central aspects of pulmonary function (ventilation and perfusion) are known to be heterogeneous, the distribution of diffusive gas exchange remains poorly characterized. A solution is offered by hyperpolarized 129Xe magnetic resonance (MR) imaging, because this gas can be separately detected in the lung's air spaces and dissolved in its tissues. Early dissolved-phase 129Xe images exhibited intensity gradients that favored the dependent lung. To quantitatively corroborate this finding, we developed an interleaved, three-dimensional radial sequence to image the gaseous and dissolved 129Xe distributions in the same breath. These images were normalized and divided to calculate "129Xe gas-transfer" maps. We hypothesized that, for healthy volunteers, 129Xe gas-transfer maps would retain the previously observed posture-dependent gradients. This was tested in nine subjects: when the subjects were supine, 129Xe gas transfer exhibited a posterior-anterior gradient of -2.00 ± 0.74%/cm; when the subjects were prone, the gradient reversed to 1.94 ± 1.14%/cm (P < 0.001). The 129Xe gas-transfer maps also exhibited significant heterogeneity, as measured by the coefficient of variation, that correlated with subject total lung capacity (r = 0.77, P = 0.015). Gas-transfer intensity varied nonmonotonically with slice position and increased in slices proximal to the main pulmonary arteries. Despite substantial heterogeneity, the mean gas transfer for all subjects was 1.00 ± 0.01 while supine and 1.01 ± 0.01 while prone (P = 0.25), indicating good "matching" between gas- and dissolved-phase distributions. This study demonstrates that single-breath gas- and dissolved-phase 129Xe MR imaging yields 129Xe gas-transfer maps that are sensitive to altered gas exchange caused by differences in lung inflation and posture.

  6. Total dissolved gas, barometric pressure, and water temperature data, lower Columbia River, Oregon and Washington, 1996

    USGS Publications Warehouse

    Tanner, Dwight Q.; Harrison, Howard E.; McKenzie, Stuart W.

    1996-01-01

    Increased levels of total dissolved gas pressure can cause gas-bubble trauma in fish downstream from dams on the Columbia River. In cooperation with the U.S. Army Corps of Engineers, the U.S. Geological Survey collected data on total dissolved gas pressure, barometric pressure, water temperature, and dissolved oxygen pressure at 11 stations on the lower Columbia River from the John Day forebay (river mile 215.6) to Wauna Mill (river mile 41.9) from March to September 1996. Methods of data collection, review, and processing are described in this report. Summaries of daily minimum, maximum, and mean hourly values are presented for total dissolved gas pressure, barometric pressure, and water temperature. Hourly values for these parameters are presented graphically. Dissolved oxygen data are not presented in this report because the quality-control data show that the data have poor precision and high bias. Suggested changes to monitoring procedures for future studies include (1) improved calibration procedures for total dissolved gas and dissolved oxygen to better define accuracy at elevated levels of supersaturation and (2) equipping dissolved oxygen sensors with stirrers because river velocities at the shoreline monitoring stations probably cannot maintain an adequate flow of water across the membrane surface of the dissolved oxygen sensor.

  7. Tracking Dissolved Methane Concentrations near Active Seeps and Gas Hydrates: Sea of Japan.

    NASA Astrophysics Data System (ADS)

    Snyder, G. T.; Aoki, S.; Matsumoto, R.; Tomaru, H.; Owari, S.; Nakajima, R.; Doolittle, D. F.; Brant, B.

    2015-12-01

    A number of regions in the Sea of Japan are known for active gas venting and for gas hydrate exposures on the sea floor. In this investigation we employed several gas sensors mounted on a ROV in order to determine the concentrations of dissolved methane in the water near these sites. Methane concentrations were determined during two-second intervals throughout each ROV deployment during the cruise. The methane sensor deployments were coupled with seawater sampling using Niskin bottles. Dissolved gas concentrations were later measured using gas chromatography in order to compare with the sensor results taken at the same time. The observed maximum dissolved methane concentrations were much lower than saturation values, even when the ROV manipulators were in contact with gas hydrate. Nonetheless, dissolved concentrations did reach several thousands of nmol/L near gas hydrate exposures and gas bubbles, more than two orders of magnitude over the instrumental detection limits. Most of the sensors tested were able to detect dissolved methane concentrations as low as 10 nmol/L which permitted detection when the ROV approached methane plume sites, even from several tens of meters above the sea floor. Despite the low detection limits, the methane sensors showed variable response times when returning to low-background seawater (~5nM). For some of the sensors, the response time necessary to return to background values occurred in a matter of minutes, while for others it took several hours. Response time, as well as detection limit, should be an important consideration when selecting methane sensors for ROV or AUV investigations. This research was made possible, in part, through funding provided by the Japanese Ministry of Economy, Trade and Industry (METI).

  8. Gas hydrate dissociation off Svalbard induced by isostatic rebound rather than global warming.

    PubMed

    Wallmann, Klaus; Riedel, M; Hong, W L; Patton, H; Hubbard, A; Pape, T; Hsu, C W; Schmidt, C; Johnson, J E; Torres, M E; Andreassen, K; Berndt, C; Bohrmann, G

    2018-01-08

    Methane seepage from the upper continental slopes of Western Svalbard has previously been attributed to gas hydrate dissociation induced by anthropogenic warming of ambient bottom waters. Here we show that sediment cores drilled off Prins Karls Foreland contain freshwater from dissociating hydrates. However, our modeling indicates that the observed pore water freshening began around 8 ka BP when the rate of isostatic uplift outpaced eustatic sea-level rise. The resultant local shallowing and lowering of hydrostatic pressure forced gas hydrate dissociation and dissolved chloride depletions consistent with our geochemical analysis. Hence, we propose that hydrate dissociation was triggered by postglacial isostatic rebound rather than anthropogenic warming. Furthermore, we show that methane fluxes from dissociating hydrates were considerably smaller than present methane seepage rates implying that gas hydrates were not a major source of methane to the oceans, but rather acted as a dynamic seal, regulating methane release from deep geological reservoirs.

  9. Sorption Modeling and Verification for Off-Gas Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tavlarides, Lawrence; Yiacoumi, Sotira; Tsouris, Costas

    2016-12-20

    This project was successfully executed to provide valuable adsorption data and improve a comprehensive model developed in previous work by the authors. Data obtained were used in an integrated computer program to predict the behavior of adsorption columns. The model is supported by experimental data and has been shown to predict capture of off gas similar to that evolving during the reprocessing of nuclear waste. The computer program structure contains (a) equilibrium models of off-gases with the adsorbate; (b) mass-transfer models to describe off-gas mass transfer to a particle, diffusion through the pores of the particle, and adsorption on themore » active sites of the particle; and (c) incorporation of these models into fixed bed adsorption modeling, which includes advection through the bed. These models are being connected with the MOOSE (Multiphysics Object-Oriented Simulation Environment) software developed at the Idaho National Laboratory through DGOSPREY (Discontinuous Galerkin Off-gas SeParation and REcoverY) computer codes developed in this project. Experiments for iodine and water adsorption have been conducted on reduced silver mordenite (Ag0Z) for single layered particles. Adsorption apparatuses have been constructed to execute these experiments over a useful range of conditions for temperatures ranging from ambient to 250°C and water dew points ranging from -69 to 19°C. Experimental results were analyzed to determine mass transfer and diffusion of these gases into the particles and to determine which models best describe the single and binary component mass transfer and diffusion processes. The experimental results were also used to demonstrate the capabilities of the comprehensive models developed to predict single-particle adsorption and transients of the adsorption-desorption processes in fixed beds. Models for adsorption and mass transfer have been developed to mathematically describe adsorption kinetics and transport via diffusion and

  10. Microwave off-gas treatment apparatus and process

    DOEpatents

    Schulz, Rebecca L.; Clark, David E.; Wicks, George G.

    2003-01-01

    The invention discloses a microwave off-gas system in which microwave energy is used to treat gaseous waste. A treatment chamber is used to remediate off-gases from an emission source by passing the off-gases through a susceptor matrix, the matrix being exposed to microwave radiation. The microwave radiation and elevated temperatures within the combustion chamber provide for significant reductions in the qualitative and quantitative emissions of the gas waste stream.

  11. Off-Gas Adsorption Model Capabilities and Recommendations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyon, Kevin L.; Welty, Amy K.; Law, Jack

    2016-03-01

    Off-gas treatment is required to reduce emissions from aqueous fuel reprocessing. Evaluating the products of innovative gas adsorption research requires increased computational simulation capability to more effectively transition from fundamental research to operational design. Early modeling efforts produced the Off-Gas SeParation and REcoverY (OSPREY) model that, while efficient in terms of computation time, was of limited value for complex systems. However, the computational and programming lessons learned in development of the initial model were used to develop Discontinuous Galerkin OSPREY (DGOSPREY), a more effective model. Initial comparisons between OSPREY and DGOSPREY show that, while OSPREY does reasonably well to capturemore » the initial breakthrough time, it displays far too much numerical dispersion to accurately capture the real shape of the breakthrough curves. DGOSPREY is a much better tool as it utilizes a more stable set of numerical methods. In addition, DGOSPREY has shown the capability to capture complex, multispecies adsorption behavior, while OSPREY currently only works for a single adsorbing species. This capability makes DGOSPREY ultimately a more practical tool for real world simulations involving many different gas species. While DGOSPREY has initially performed very well, there is still need for improvement. The current state of DGOSPREY does not include any micro-scale adsorption kinetics and therefore assumes instantaneous adsorption. This is a major source of error in predicting water vapor breakthrough because the kinetics of that adsorption mechanism is particularly slow. However, this deficiency can be remedied by building kinetic kernels into DGOSPREY. Another source of error in DGOSPREY stems from data gaps in single species, such as Kr and Xe, isotherms. Since isotherm data for each gas is currently available at a single temperature, the model is unable to predict adsorption at temperatures outside of the set of data

  12. Characterizing Gas Transport in Wetland Soil-Root Systems with Dissolved Gas Tracer Techniques

    NASA Astrophysics Data System (ADS)

    Reid, M. C.; Jaffe, P. R.

    2016-12-01

    Soil fluxes of methane (CH4), nitrous oxide (N2O), and other biogenic gases depend on coupling between microbial and physiochemical processes within soil media. The importance of plant-mediated transport in wetland CH4 emissions is well known, but a generalized understanding of gas transfer between pore water and root aerenchyma, and how this process competes with biogeochemical production/consumption of gases beyond CH4, is incomplete [1]. A lack of experimental approaches to characterize transport processes in complex soil-water-plant systems at field scale has limited efforts to close this knowledge gap. In this presentation we describe dissolved gas tracer techniques to tease apart effects of transport from simultaneous biochemical reaction on trace gas dynamics in soils. We discuss a push-pull test with helium and sulfur hexafluoride gas tracers to quantify in situ root-mediated gas transfer kinetics in a wetland soil [2]. A Damköhler number analysis is introduced to interpret the results and evaluate the balance between biochemical reaction and root-driven gas transfer in controlling the fate of CH4 and N2O in vegetated wetland soils. We conclude with a brief discussion of other problems in soil gas dynamics that can be addressed with gas tracer approaches. [1] Blagodatsky and Smith 2012. Soil physics meets soil biology: Towards better mechanistic prediction of greenhouse gas emissions from soil. Soil Biology and Biochemistry 47, 78-92. [2] Reid et al. 2015. Dissolved gas dynamics in wetland soils: Root-mediated gas transfer kinetics determind via push-pull tracer tests. Water Resour. Res. 51, doi:10.1002/2014WR016803.

  13. Gas hydrate formation rates from dissolved-phase methane in porous laboratory specimens

    USGS Publications Warehouse

    Waite, William F.; Spangenberg, E.K.

    2013-01-01

    Marine sands highly saturated with gas hydrates are potential energy resources, likely forming from methane dissolved in pore water. Laboratory fabrication of gas hydrate-bearing sands formed from dissolved-phase methane usually requires 1–2 months to attain the high hydrate saturations characteristic of naturally occurring energy resource targets. A series of gas hydrate formation tests, in which methane-supersaturated water circulates through 100, 240, and 200,000 cm3 vessels containing glass beads or unconsolidated sand, show that the rate-limiting step is dissolving gaseous-phase methane into the circulating water to form methane-supersaturated fluid. This implies that laboratory and natural hydrate formation rates are primarily limited by methane availability. Developing effective techniques for dissolving gaseous methane into water will increase formation rates above our observed (1 ± 0.5) × 10−7 mol of methane consumed for hydrate formation per minute per cubic centimeter of pore space, which corresponds to a hydrate saturation increase of 2 ± 1% per day, regardless of specimen size.

  14. Laboratory Scoping Tests Of Decontamination Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-Pashow, Kathryn M.; Nash, Charles A.; Crawford, Charles L.

    2014-01-21

    are also compatible with longterm tank storage and immobilization methods. For this new application, testing is needed to demonstrate acceptable treatment sorbents and precipitating agents and measure decontamination factors for additional radionuclides in this unique waste stream. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet and will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. One of the radionuclides that is volatile and expected to be in high concentration in this LAW Off-Gas Condensate stream is Technetium-99 ( 99Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are also expected to be in appreciable concentration in the LAW Off-Gas Condensate are 129I, 90Sr, 137Cs, and {sup 241}Am. This report discusses results of preliminary radionuclide decontamination testing of the simulant. Testing examined use of Monosodium Titanate (MST) to remove 90Sr and actinides, inorganic reducing agents for 99Tc, and zeolites for 137Cs. Test results indicate that excellent removal of 99Tc was achieved using Sn(II)Cl 2 as a reductant, coupled with sorption onto hydroxyapatite, even in the presence of air and at room temperature. This process was very effective at neutral pH, with a Decontamination Factor (DF) >577 in two hours. It was less effective at alkaline pH. Conversely

  15. Dissolved atmospheric gas in xylem sap measured with membrane inlet mass spectrometry.

    PubMed

    Schenk, H Jochen; Espino, Susana; Visser, Ate; Esser, Bradley K

    2016-04-01

    A new method is described for measuring dissolved gas concentrations in small volumes of xylem sap using membrane inlet mass spectrometry. The technique can be used to determine concentrations of atmospheric gases, such as argon, as reported here, or for any dissolved gases and their isotopes for a variety of applications, such as rapid detection of trace gases from groundwater only hours after they were taken up by trees and rooting depth estimation. Atmospheric gas content in xylem sap directly affects the conditions and mechanisms that allow for gas removal from xylem embolisms, because gas can dissolve into saturated or supersaturated sap only under gas pressure that is above atmospheric pressure. The method was tested for red trumpet vine, Distictis buccinatoria (Bignoniaceae), by measuring atmospheric gas concentrations in sap collected at times of minimum and maximum daily temperature and during temperature increase and decline. Mean argon concentration in xylem sap did not differ significantly from saturation levels for the temperature and pressure conditions at any time of collection, but more than 40% of all samples were supersaturated, especially during the warm parts of day. There was no significant diurnal pattern, due to high variability between samples. © 2015 John Wiley & Sons Ltd.

  16. One-dimensional simulation of stratification and dissolved oxygen in McCook Reservoir, Illinois

    USGS Publications Warehouse

    Robertson, Dale M.

    2000-01-01

    As part of the Chicagoland Underflow Plan/Tunnel and Reservoir Plan, the U.S. Army Corps of Engineers, Chicago District, plans to build McCook Reservoir.a flood-control reservoir to store combined stormwater and raw sewage (combined sewage). To prevent the combined sewage in the reservoir from becoming anoxic and producing hydrogen sulfide gas, a coarse-bubble aeration system will be designed and installed on the basis of results from CUP 0-D, a zero-dimensional model, and MAC3D, a three-dimensional model. Two inherent assumptions in the application of MAC3D are that density stratification in the simulated water body is minimal or not present and that surface heat transfers are unimportant and, therefore, may be neglected. To test these assumptions, the previously tested, one-dimensional Dynamic Lake Model (DLM) was used to simulate changes in temperature and dissolved oxygen in the reservoir after a 1-in-100-year event. Results from model simulations indicate that the assumptions made in MAC3D application are valid as long as the aeration system, with an air-flow rate of 1.2 cubic meters per second or more, is operated while the combined sewage is stored in the reservoir. Results also indicate that the high biochemical oxygen demand of the combined sewage will quickly consume the dissolved oxygen stored in the reservoir and the dissolved oxygen transferred through the surface of the reservoir; therefore, oxygen must be supplied by either the rising bubbles of the aeration system (a process not incorporated in DLM) or some other technique to prevent anoxia.

  17. U.S. Geological Survey Noble Gas Laboratory’s standard operating procedures for the measurement of dissolved gas in water samples

    USGS Publications Warehouse

    Hunt, Andrew G.

    2015-08-12

    This report addresses the standard operating procedures used by the U.S. Geological Survey’s Noble Gas Laboratory in Denver, Colorado, U.S.A., for the measurement of dissolved gases (methane, nitrogen, oxygen, and carbon dioxide) and noble gas isotopes (helium-3, helium-4, neon-20, neon-21, neon-22, argon-36, argon-38, argon-40, kryton-84, krypton-86, xenon-103, and xenon-132) dissolved in water. A synopsis of the instrumentation used, procedures followed, calibration practices, standards used, and a quality assurance and quality control program is presented. The report outlines the day-to-day operation of the Residual Gas Analyzer Model 200, Mass Analyzer Products Model 215–50, and ultralow vacuum extraction line along with the sample handling procedures, noble gas extraction and purification, instrument measurement procedures, instrumental data acquisition, and calculations for the conversion of raw data from the mass spectrometer into noble gas concentrations per unit mass of water analyzed. Techniques for the preparation of artificial dissolved gas standards are detailed and coupled to a quality assurance and quality control program to present the accuracy of the procedures used in the laboratory.

  18. Controlling mechanism and resulting spray characteristics of injection of fuel containing dissolved gas

    NASA Astrophysics Data System (ADS)

    Huang, Zhen; Shao, Yiming; Shiga, Seiichi; Nakamura, Hisao

    1994-09-01

    This paper presents a recent advance in the study of injection of fuel containing dissolved gas (IFCDG). Using diesel fuel containing dissolved CO2, experiments were performed under atmospheric conditions on a diesel hole-type nozzle and simple nozzles. The effects of gas concentration in the fuel, injection pressure and the nozzle L/D ratio were examined. In order to reveal the controlling mechanism of IFCDG, the orifice flow pattern, pressure characteristics and their effects were also investigated. The result shows that IFCDG can produce a parabolic-shaped spray pattern with good atomization, which suggests the existence of a new atomization mechanism. In terms of atomization, the beneficial effect of the IFCDG is obtained at the dissolved gas concentration above the transition and in the region of larger nozzle L/D ratio. However, under unfavorable conditions, IFCDG will lead to deterioration of atomization with coarse fuel droplets. It is found that the big difference of the orifice pressure characteristics caused by the variation of the nozzle L/D ratio has a dominant influence on the separation of the dissolved gas from the fuel inside the orifice and is verified to account for a dramatic change in the spray pattern and determine the effect of IFCDG. It is considered that the concept of IFCDG could be attractive in producing more efficient, clean engine and find use in a wide range of application.

  19. Radon depletion in xenon boil-off gas

    NASA Astrophysics Data System (ADS)

    Bruenner, S.; Cichon, D.; Lindemann, S.; Undagoitia, T. Marrodán; Simgen, H.

    2017-03-01

    An important background in detectors using liquid xenon for rare event searches arises from the decays of radon and its daughters. We report for the first time a reduction of ^{222}Rn in the gas phase above a liquid xenon reservoir. We show a reduction factor of ≳ 4 for the ^{222}Rn concentration in boil-off xenon gas compared to the radon enriched liquid phase. A semiconductor-based α -detector and miniaturized proportional counters are used to detect the radon. As the radon depletion in the boil-off gas is understood as a single-stage distillation process, this result establishes the suitability of cryogenic distillation to separate radon from xenon down to the 10^{-15} mol/mol level.

  20. The development of an industrial-scale fed-batch fermentation simulation.

    PubMed

    Goldrick, Stephen; Ştefan, Andrei; Lovett, David; Montague, Gary; Lennox, Barry

    2015-01-10

    This paper describes a simulation of an industrial-scale fed-batch fermentation that can be used as a benchmark in process systems analysis and control studies. The simulation was developed using a mechanistic model and validated using historical data collected from an industrial-scale penicillin fermentation process. Each batch was carried out in a 100,000 L bioreactor that used an industrial strain of Penicillium chrysogenum. The manipulated variables recorded during each batch were used as inputs to the simulator and the predicted outputs were then compared with the on-line and off-line measurements recorded in the real process. The simulator adapted a previously published structured model to describe the penicillin fermentation and extended it to include the main environmental effects of dissolved oxygen, viscosity, temperature, pH and dissolved carbon dioxide. In addition the effects of nitrogen and phenylacetic acid concentrations on the biomass and penicillin production rates were also included. The simulated model predictions of all the on-line and off-line process measurements, including the off-gas analysis, were in good agreement with the batch records. The simulator and industrial process data are available to download at www.industrialpenicillinsimulation.com and can be used to evaluate, study and improve on the current control strategy implemented on this facility. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  1. The effects of dissolved gas supersaturation on white sturgeon larvae

    USGS Publications Warehouse

    Counihan, T.D.; Miller, Allen I.; Mesa, M.G.; Parsley, M.J.

    2000-01-01

    Spill at dams has caused supersaturation of atmospheric gas in waters of the Columbia and Snake rivers and raised concerns about the effects of dissolved gas supersaturation (DGS) on white sturgeons Acipenser transmontanus. The timing and location of white sturgeon spawning and the dispersal of white sturgeon larvae from incubation areas makes the larval stage potentially vulnerable to the effects of DGS. To assess the effects of DGS on white sturgeon larvae, we exposed larvae to mean total dissolved gas (TDG) levels of 118% and 131% saturation in laboratory bioassay tests. Gas bubble trauma (GBT) was manifested as a gas bubble in the buccal cavity, nares, or both and it first occurred at developmental stages characterized by the formation of the mouth and gills. Exposure times of 15 min were sufficient to elicit these signs in larvae in various stages of development. No mortality was observed in larvae exposed to 118% TDG for 10 d, but 50% mortality occurred after a 13-d exposure to 131% TDG. The signs of GBT we observed resulted in positive buoyancy and alterations in behavior that may affect the dispersal and predation vulnerability of white sturgeon larvae. The exact depth distribution of dispersing white sturgeon larvae in the Columbia River currently is unknown. Thus, our results may represent a worst-case scenario if white sturgeon larvae are dispersed at depths with insufficient hydrostatic pressure to compensate for high TDG levels.

  2. Simulation of hydrodynamics, temperature, and dissolved oxygen in Beaver Lake, Arkansas, 1994-1995

    USGS Publications Warehouse

    Haggard, Brian; Green, W. Reed

    2002-01-01

    The tailwaters of Beaver Lake and other White River reservoirs support a cold-water trout fishery of significant economic yield in northwestern Arkansas. The Arkansas Game and Fish Commission has requested an increase in existing minimum flows through the Beaver Lake dam to increase the amount of fishable waters downstream. Information is needed to assess the impact of additional minimum flows on temperature and dissolved-oxygen qualities of reservoir water above the dam and the release water. A two-dimensional, laterally averaged hydrodynamic, thermal and dissolved-oxygen model was developed and calibrated for Beaver Lake, Arkansas. The model simulates surface-water elevation, currents, heat transport and dissolved-oxygen dynamics. The model was developed to assess the impacts of proposed increases in minimum flows from 1.76 cubic meters per second (the existing minimum flow) to 3.85 cubic meters per second (the additional minimum flow). Simulations included assessing (1) the impact of additional minimum flows on tailwater temperature and dissolved-oxygen quality and (2) increasing initial water-surface elevation 0.5 meter and assessing the impact of additional minimum flow on tailwater temperatures and dissolved-oxygen concentrations. The additional minimum flow simulation (without increasing initial pool elevation) appeared to increase the water temperature (<0.9 degrees Celsius) and decrease dissolved oxygen concentration (<2.2 milligrams per liter) in the outflow discharge. Conversely, the additional minimum flow plus initial increase in pool elevation (0.5 meter) simulation appeared to decrease outflow water temperature (0.5 degrees Celsius) and increase dissolved oxygen concentration (<1.2 milligrams per liter) through time. However, results from both minimum flow scenarios for both water temperature and dissolved oxygen concentration were within the boundaries or similar to the error between measured and simulated water column profile values.

  3. FINAL REPORT REGULATORY OFF GAS EMISSIONS TESTING ON THE DM1200 MELTER SYSTEM USING HLW AND LAW SIMULANTS VSL-05R5830-1 REV 0 10/31/05

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KRUGER AA; MATLACK KS; GONG W

    2011-12-29

    DM1200 system was reconfigured to enable testing of the baseline HLW or LAW off-gas trains to perform off-gas emissions testing with both LAW and HLW simulants in the present work. During 2002 and 2003, many of these off-gas components were tested individually and in an integrated manner with the DM1200 Pilot Melter. Data from these tests are being used to support engineering design confirmation and to provide data to support air permitting activities. In fiscal year 2004, the WTP Project was directed by the Office of River Protection (ORP) to comply with Environmental Protection Agency (EPA) Maximum Achievable Control Technology (MACT) requirements for organics. This requires that the combined melter and off-gas system have destruction and removal efficiency (DRE) of >99.99% for principal organic dangerous constituents (PODCs). In order to provide confidence that the melter and off-gas system are able to achieve the required DRE, testing has been directed with both LAW and HLW feeds. The tests included both 'normal' and 'challenge' WTP melter conditions in order to obtain data for the potential range of operating conditions for the WTP melters and off-gas components. The WTP Project, Washington State Department of Ecology, and ORP have agreed that naphthalene will be used for testing to represent semi-volatile organics and allyl alcohol will be used to represent volatile organics. Testing was also performed to determine emissions of halides, metals, products of incomplete combustion (PICs), dioxins, furans, coplanar PCBs, total hydrocarbons, and COX and NOX, as well as the particle size distribution (PSD) of particulate matter discharged at the end of the off-gas train. A description of the melter test requirements and analytical methods used is provided in the Test Plan for this work. Test Exceptions were subsequently issued which changed the TCO catalyst, added total organic emissions (TOE) to exhaust sampling schedule, and allowing modification of the test

  4. Fatigue life analysis of cracked gas receiver of emergency cut-off system in gas gathering station

    NASA Astrophysics Data System (ADS)

    Hu, Junzhi; Zhou, Jiyong; Li, Siyuan

    2017-06-01

    Small-scale air compressor and gas receiver are used as the driving gas of the emergency cut-off system in gas gathering station. Operation of block valve is ensured by starting and stopping compressor automatically. The frequent start-stop of compressor and the pressure fluctuation pose a threat to the service life of gas receiver, and then affect normal operation of the emergency cut-off system and security of gas gathering station. In this paper, the fatigue life of a pressure vessel with axial semi-elliptical surface crack in the inner wall is analyzed under the varying pressure by means of the theory of fracture mechanics. The influences of the amplitude of pressure fluctuation and the initial crack size on the residual life of gas receiver are discussed. It provides a basis for setting the working parameters of gas receiver of emergency cut-off system and determining the maintenance cycle.

  5. DWPF Melter Off-Gas Flammability Assessment for Sludge Batch 9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, A. S.

    2016-07-11

    The slurry feed to the Defense Waste Processing Facility (DWPF) melter contains several organic carbon species that decompose in the cold cap and produce flammable gases that could accumulate in the off-gas system and create potential flammability hazard. To mitigate such a hazard, DWPF has implemented a strategy to impose the Technical Safety Requirement (TSR) limits on all key operating variables affecting off-gas flammability and operate the melter within those limits using both hardwired/software interlocks and administrative controls. The operating variables that are currently being controlled include; (1) total organic carbon (TOC), (2) air purges for combustion and dilution, (3)more » melter vapor space temperature, and (4) feed rate. The safety basis limits for these operating variables are determined using two computer models, 4-stage cold cap and Melter Off-Gas (MOG) dynamics models, under the baseline upset scenario - a surge in off-gas flow due to the inherent cold cap instabilities in the slurry-fed melter.« less

  6. Hanford Low-Activity Waste Processing: Demonstration of the Off-Gas Recycle Flowsheet - 13443

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramsey, William G.; Esparza, Brian P.

    2013-07-01

    Vitrification of Hanford Low-Activity Waste (LAW) is nominally the thermal conversion and incorporation of sodium salts and radionuclides into borosilicate glass. One key radionuclide present in LAW is technetium-99. Technetium-99 is a low energy, long-lived beta emitting radionuclide present in the waste feed in concentrations on the order of 1-10 ppm. The long half-life combined with a high solubility in groundwater results in technetium-99 having considerable impact on performance modeling (as potential release to the environment) of both the waste glass and associated secondary waste products. The current Hanford Tank Waste Treatment and Immobilization Plant (WTP) process flowsheet calls formore » the recycle of vitrification process off-gas condensates to maximize the portion of technetium ultimately immobilized in the waste glass. This is required as technetium acts as a semi-volatile specie, i.e. considerable loss of the radionuclide to the process off-gas stream can occur during the vitrification process. To test the process flowsheet assumptions, a prototypic off-gas system with recycle capability was added to a laboratory melter (on the order of 1/200 scale) and testing performed. Key test goals included determination of the process mass balance for technetium, a non-radioactive surrogate (rhenium), and other soluble species (sulfate, halides, etc.) which are concentrated by recycling off-gas condensates. The studies performed are the initial demonstrations of process recycle for this type of liquid-fed melter system. This paper describes the process recycle system, the waste feeds processed, and experimental results. Comparisons between data gathered using process recycle and previous single pass melter testing as well as mathematical modeling simulations are also provided. (authors)« less

  7. Quantitation of dissolved gas content in emulsions and in blood using mass spectrometric detection

    PubMed Central

    Grimley, Everett; Turner, Nicole; Newell, Clayton; Simpkins, Cuthbert; Rodriguez, Juan

    2011-01-01

    Quantitation of dissolved gases in blood or in other biological media is essential for understanding the dynamics of metabolic processes. Current detection techniques, while enabling rapid and convenient assessment of dissolved gases, provide only direct information on the partial pressure of gases dissolved in the aqueous fraction of the fluid. The more relevant quantity known as gas content, which refers to the total amount of the gas in all fractions of the sample, can be inferred from those partial pressures, but only indirectly through mathematical modeling. Here we describe a simple mass spectrometric technique for rapid and direct quantitation of gas content for a wide range of gases. The technique is based on a mass spectrometer detector that continuously monitors gases that are rapidly extracted from samples injected into a purge vessel. The accuracy and sample processing speed of the system is demonstrated with experiments that reproduce within minutes literature values for the solubility of various gases in water. The capability of the technique is further demonstrated through accurate determination of O2 content in a lipid emulsion and in whole blood, using as little as 20 μL of sample. The approach to gas content quantitation described here should greatly expand the range of animals and conditions that may be used in studies of metabolic gas exchange, and facilitate the development of artificial oxygen carriers and resuscitation fluids. PMID:21497566

  8. Total Dissolved Gas Effects on Fishes of the Lower Columbia River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGrath, Kathy E.; Dawley, Earl; Geist, David R.

    2006-03-31

    Gas supersaturation problems generated by spill from dams on the Columbia River were first identified in the 1960s. Since that time, considerable research has been conducted on effects of gas supersaturation on aquatic life, primarily juvenile salmonids. Also since that time, modifications to dam structures and operations have reduced supersaturated gas levels produced by the dams. The limit for total dissolved gas saturation (TDGS) as mandated by current Environmental Protection Agency water quality standards is 110%. State management agencies issue limited waivers to water quality, allowing production of levels of up to 120% TDGS to facilitate the downstream migration ofmore » juvenile salmonids. Recently, gas supersaturation as a water quality issue has resurfaced as concerns have grown regarding chronic effects of spill-related total dissolved gas on salmonids, including incubating embryos and larvae, resident fish species, and other aquatic organisms. Because of current concerns, and because the last comprehensive review of research on supersaturation effects on fishes was conducted in 1997, we reviewed recent supersaturation literature to identify new or ongoing issues that may not be adequately addressed by the current 110% TDGS limit and the 120% TDGS water quality waiver. We found that recent work supports older research indicating that short-term exposure to levels up to 120% TDGS does not produce acute effects on migratory juvenile or adult salmonids when compensating depths are available. Monitoring programs at Snake and Columbia river dams from 1995 to the early 2000s documented a low incidence of significant gas bubble disease or mortality in Columbia River salmonids, resident fishes, or other taxa. We did, however, identify five areas of concern in which total dissolved gas levels lower than water quality limits may produce sublethal effects on fishes of the Columbia River. These areas of concern are 1) sensitive and vulnerable species or life

  9. Simple and accurate method for determining dissolved inorganic carbon in environmental water by reaction headspace gas chromatography.

    PubMed

    Xie, Wei-Qi; Gong, Yi-Xian; Yu, Kong-Xian

    2018-03-01

    We investigate a simple and accurate method for quantitatively analyzing dissolved inorganic carbon in environmental water by reaction headspace gas chromatography. The neutralization reaction between the inorganic carbon species (i.e. bicarbonate ions and carbonate ions) in environmental water and hydrochloric acid is carried out in a sealed headspace vial, and the carbon dioxide formed from the neutralization reaction, the self-decomposition of carbonic acid, and dissolved carbon dioxide in environmental water is then analyzed by headspace gas chromatography. The data show that the headspace gas chromatography method has good precision (relative standard deviation ≤ 1.63%) and accuracy (relative differences ≤ 5.81% compared with the coulometric titration technique). The headspace gas chromatography method is simple, reliable, and can be well applied in the dissolved inorganic carbon detection in environmental water. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Preliminary Results from Electric Arc Furnace Off-Gas Enthalpy Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nimbalkar, Sachin U; Thekdi, Arvind; Keiser, James R

    2015-01-01

    This article describes electric arc furnace (EAF) off-gas enthalpy models developed at Oak Ridge National Laboratory (ORNL) to calculate overall heat availability (sensible and chemical enthalpy) and recoverable heat values (steam or power generation potential) for existing EAF operations and to test ORNL s new EAF waste heat recovery (WHR) concepts. ORNL s new EAF WHR concepts are: Regenerative Drop-out Box System and Fluidized Bed System. The two EAF off-gas enthalpy models described in this paper are: 1.Overall Waste Heat Recovery Model that calculates total heat availability in off-gases of existing EAF operations 2.Regenerative Drop-out Box System Model in whichmore » hot EAF off-gases alternately pass through one of two refractory heat sinks that store heat and then transfer it to another gaseous medium These models calculate the sensible and chemical enthalpy of EAF off-gases based on the off-gas chemical composition, temperature, and mass flow rate during tap to tap time, and variations in those parameters in terms of actual values over time. The models provide heat transfer analysis for the aforementioned concepts to confirm the overall system and major component sizing (preliminary) to assess the practicality of the systems. Real-time EAF off-gas composition (e.g., CO, CO2, H2, and H2O), volume flow, and temperature data from one EAF operation was used to test the validity and accuracy of the modeling work. The EAF off-gas data was used to calculate the sensible and chemical enthalpy of the EAF off-gases to generate steam and power. The article provides detailed results from the modeling work that are important to the success of ORNL s EAF WHR project. The EAF WHR project aims to develop and test new concepts and materials that allow cost-effective recovery of sensible and chemical heat from high-temperature gases discharged from EAFs.« less

  11. Evaluation of Ruthenium Capture Methods for Tritium Pretreatment Off-Gas Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Barry B.; Jubin, Robert Thomas; Bruffey, Stephanie H.

    2017-07-01

    In the reprocessing of used nuclear fuel, radioactive elements are released into various plant off-gas streams. While much research and development has focused on the abatement of the volatile nuclides 3H, 14C, 85Kr, and 129I, the potential release of semivolatile isotopes that could also report to the off-gas streams in a reprocessing facility has been examined. Ruthenium (as 106Ru) has been identified as one of the semivolatile nuclides requiring the greatest degree of abatement prior to discharging the plant off-gas to the environment.

  12. High resolution spatial and temporal evolution of dissolved gases in groundwater during a controlled natural gas release experiment.

    PubMed

    Cahill, Aaron G; Parker, Beth L; Mayer, Bernhard; Mayer, K Ulrich; Cherry, John A

    2018-05-01

    Fugitive gas comprised primarily of methane (CH 4 ) with traces of ethane and propane (collectively termed C 1-3 ) may negatively impact shallow groundwater when unintentionally released from oil and natural gas wells. Currently, knowledge of fugitive gas migration, subsurface source identification and oxidation potential in groundwater is limited. To advance understanding, a controlled release experiment was performed at the Borden Research Aquifer, Canada, whereby 51m 3 of natural gas was injected into an unconfined sand aquifer over 72days with dissolved gases monitored over 323days. During active gas injection, a dispersed plume of dissolved C 1-3 evolved in a depth discrete and spatially complex manner. Evolution of the dissolved gas plume was driven by free-phase gas migration controlled by small-scale sediment layering and anisotropy. Upon cessation of gas injection, C 1-3 concentrations increased to the greatest levels observed, particularly at 2 and 6m depths, reaching up to 31.5, 1.5 and 0.1mg/L respectively before stabilizing and persisting. At no time did groundwater become fully saturated with natural gas at the scale of sampling undertaken. Throughout the experiment the isotopic composition of injected methane (δ 13 C of -42.2‰) and the wetness parameter (i.e. the ratio of C 1 to C 2+ ) constituted excellent tracers for the presence of fugitive gas at concentrations >2mg/L. At discrete times C 1-3 concentrations varied by up to 4 orders of magnitude over 8m of aquifer thickness (e.g. from <0.01 to 30mg/L for CH 4 ), while some groundwater samples lacked evidence of fugitive gas, despite being within 10m of the injection zone. Meanwhile, carbon isotope ratios of dissolved CH 4 showed no evidence of oxidation. Our results show that while impacts to aquifers from a fugitive gas event are readily detectable at discrete depths, they are spatially and temporally variable and dissolved methane has propensity to persist. Copyright © 2017 Elsevier B.V. All

  13. Quantitation of dissolved gas content in emulsions and in blood using mass spectrometric detection.

    PubMed

    Grimley, Everett; Turner, Nicole; Newell, Clayton; Simpkins, Cuthbert; Rodriguez, Juan

    2011-06-01

    Quantitation of dissolved gases in blood or in other biological media is essential for understanding the dynamics of metabolic processes. Current detection techniques, while enabling rapid and convenient assessment of dissolved gases, provide only direct information on the partial pressure of gases dissolved in the aqueous fraction of the fluid. The more relevant quantity known as gas content, which refers to the total amount of the gas in all fractions of the sample, can be inferred from those partial pressures, but only indirectly through mathematical modeling. Here we describe a simple mass spectrometric technique for rapid and direct quantitation of gas content for a wide range of gases. The technique is based on a mass spectrometer detector that continuously monitors gases that are rapidly extracted from samples injected into a purge vessel. The accuracy and sample processing speed of the system is demonstrated with experiments that reproduce within minutes literature values for the solubility of various gases in water. The capability of the technique is further demonstrated through accurate determination of O(2) content in a lipid emulsion and in whole blood, using as little as 20 μL of sample. The approach to gas content quantitation described here should greatly expand the range of animals and conditions that may be used in studies of metabolic gas exchange, and facilitate the development of artificial oxygen carriers and resuscitation fluids. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Three-dimensional numerical simulations of methane gas migration from decommissioned hydrocarbon production wells into shallow aquifers

    NASA Astrophysics Data System (ADS)

    Roy, N.; Molson, J.; Lemieux, J.-M.; Van Stempvoort, D.; Nowamooz, A.

    2016-07-01

    Three-dimensional numerical simulations are used to provide insight into the behavior of methane as it migrates from a leaky decommissioned hydrocarbon well into a shallow aquifer. The conceptual model includes gas-phase migration from a leaky well, dissolution into groundwater, advective-dispersive transport and biodegradation of the dissolved methane plume. Gas-phase migration is simulated using the DuMux multiphase simulator, while transport and fate of the dissolved phase is simulated using the BIONAPL/3D reactive transport model. Methane behavior is simulated for two conceptual models: first in a shallow confined aquifer containing a decommissioned leaky well based on a monitored field site near Lindbergh, Alberta, Canada, and secondly on a representative unconfined aquifer based loosely on the Borden, Ontario, field site. The simulations show that the Lindbergh site confined aquifer data are generally consistent with a 2 year methane leak of 2-20 m3/d, assuming anaerobic (sulfate-reducing) methane oxidation and with maximum oxidation rates of 1 × 10-5 to 1 × 10-3 kg/m3/d. Under the highest oxidation rate, dissolved methane decreased from solubility (110 mg/L) to the threshold concentration of 10 mg/L within 5 years. In the unconfined case with the same leakage rate, including both aerobic and anaerobic methane oxidation, the methane plume was less extensive compared to the confined aquifer scenarios. Unconfined aquifers may therefore be less vulnerable to impacts from methane leaks along decommissioned wells. At other potential leakage sites, site-specific data on the natural background geochemistry would be necessary to make reliable predictions on the fate of methane in groundwater.

  15. COUPLED FREE AND DISSOLVED PHASE TRANSPORT: NEW SIMULATION CAPABILITIES AND PARAMETER INVERSION

    EPA Science Inventory

    The vadose zone free-phase simulation capabilities of the US EPA Hydrocarbon Spill Screening Model (HSSM)have been linked with the 3-D multi-species dissolved-phase contaminant transport simulator MT3DMS.

  16. Anode shroud for off-gas capture and removal from electrolytic oxide reduction system

    DOEpatents

    Bailey, James L.; Barnes, Laurel A.; Wiedmeyer, Stanley G.; Williamson, Mark A.; Willit, James L.

    2014-07-08

    An electrolytic oxide reduction system according to a non-limiting embodiment of the present invention may include a plurality of anode assemblies and an anode shroud for each of the anode assemblies. The anode shroud may be used to dilute, cool, and/or remove off-gas from the electrolytic oxide reduction system. The anode shroud may include a body portion having a tapered upper section that includes an apex. The body portion may have an inner wall that defines an off-gas collection cavity. A chimney structure may extend from the apex of the upper section and be connected to the off-gas collection cavity of the body portion. The chimney structure may include an inner tube within an outer tube. Accordingly, a sweep gas/cooling gas may be supplied down the annular space between the inner and outer tubes, while the off-gas may be removed through an exit path defined by the inner tube.

  17. Cooler and particulate separator for an off-gas stack

    DOEpatents

    Wright, George T.

    1992-01-01

    An off-gas stack for a melter comprising an air conduit leading to two sets of holes, one set injecting air into the off-gas stack near the melter plenum and the second set injecting air downstream of the first set. The first set injects air at a compound angle, having both downward and tangential components, to create a reverse vortex flow, counter to the direction of flow of gas through the stack and also along the periphery of the stack interior surface. Air from the first set of holes pervents recirculation zones from forming and the attendant accumulation of particulate deposits on the wall of the stack and will also return to the plenum any particulate swept up in the gas entering the stack. The second set of holes injects air in the same direction as the gas in the stack to compensate for the pressure drop and to prevent the concentration of condensate in the stack. A set of sprayers, receiving water from a second conduit, is located downstream of the second set of holes and sprays water into the gas to further cool it.

  18. Cooler and particulate separator for an off-gas stack

    DOEpatents

    Wright, G.T.

    1991-04-08

    This report describes an off-gas stack for a melter, furnace or reaction vessel comprising an air conduit leading to two sets of holes, one set injecting air into the off-gas stack near the melter plenum and the second set injecting air downstream of the first set. The first set injects air at a compound angle, having both downward and tangential components, to create a reverse vortex flow, counter to the direction of flow of gas through the stack and also along the periphery of the stack interior surface. Air from the first set of holes prevents recirculation zones from forming and the attendant accumulation of particulate deposits on the wall of the stack and will also return to the plenum any particulate swept up in the gas entering the stack. The second set of holes injects air in the same direction as the gas in the stack to compensate for the pressure drop and to prevent the concentration of condensate in the stack. A set of sprayers, receiving water from a second conduit, is located downstream of the second set of holes and sprays water into the gas to further cool it.

  19. Sorption Modeling and Verification for Off-Gas Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tavlarides, Lawrence L.; Lin, Ronghong; Nan, Yue

    2015-04-29

    The project has made progress toward developing a comprehensive modeling capability for the capture of target species in off gas evolved during the reprocessing of nuclear fuel. The effort has integrated experimentation, model development, and computer code development for adsorption and absorption processes. For adsorption, a modeling library has been initiated to include (a) equilibrium models for uptake of off-gas components by adsorbents, (b) mass transfer models to describe mass transfer to a particle, diffusion through the pores of the particle and adsorption on the active sites of the particle, and (c) interconnection of these models to fixed bed adsorptionmore » modeling which includes advection through the bed. For single-component equilibria, a Generalized Statistical Thermodynamic Adsorption (GSTA) code was developed to represent experimental data from a broad range of isotherm types; this is equivalent to a Langmuir isotherm in the two-parameter case, and was demonstrated for Kr on INL-engineered sorbent HZ PAN, water sorption on molecular sieve A sorbent material (MS3A), and Kr and Xe capture on metal-organic framework (MOF) materials. The GSTA isotherm was extended to multicomponent systems through application of a modified spreading pressure surface activity model and generalized predictive adsorbed solution theory; the result is the capability to estimate multicomponent adsorption equilibria from single-component isotherms. This advance, which enhances the capability to simulate systems related to off-gas treatment, has been demonstrated for a range of real-gas systems in the literature and is ready for testing with data currently being collected for multicomponent systems of interest, including iodine and water on MS3A. A diffusion kinetic model for sorbent pellets involving pore and surface diffusion as well as external mass transfer has been established, and a methodology was developed for determining unknown diffusivity parameters from

  20. Stimulating hydrogenotrophic denitrification in simulated groundwater containing high dissolved oxygen and nitrate concentrations.

    PubMed

    Schnobrich, Matthew R; Chaplin, Brian P; Semmens, Michael J; Novak, Paige J

    2007-05-01

    In agricultural areas, nitrate (NO3-) is a common groundwater pollutant as a result of extensive fertilizer application. At elevated concentrations, NO3- consumption causes methemoglobinemia in infants and has been linked to several cancers; therefore, its removal from groundwater is important. The addition of hydrogen gas (H2) via gas-permeable membranes has been shown to stimulate denitrification in a laboratory-scale reactor. This research, using large columns packed with aquifer material to which a simulated groundwater was fed, was conducted to further identify the conditions required for the use of membrane-delivered H2 in situ. In this study, we show that this novel technology was capable of treating highly contaminated (25 mg/L NO3- -N) and oxygenated (5.5mg/L dissolved oxygen) water, but that nutrient addition and gas pressure adjustment was required. Complete NO3- reduction was possible without the accumulation of either NO2- or N2O when the H2 lumen pressure was increased to 17 psi and phosphate was added to the groundwater. The total organic carbon content of the effluent, 110 cm downgradient of H2 addition, did not increase. The results from these experiments demonstrate that this technology can be optimized to provide effective NO3- removal in even challenging field applications.

  1. Process for off-gas particulate removal and apparatus therefor

    DOEpatents

    Carl, D.E.

    1997-10-21

    In the event of a breach in the off-gas line of a melter operation requiring closure of the line, a secondary vessel vent line is provided with a particulate collector utilizing atomization for removal of large particulates from the off-gas. The collector receives the gas containing particulates and directs a portion of the gas through outer and inner annular channels. The collector further receives a fluid, such as water, which is directed through the outer channel together with a second portion of the particulate-laden gas. The outer and inner channels have respective ring-like termination apertures concentrically disposed adjacent one another on the outer edge of the downstream side of the particulate collector. Each of the outer and inner channels curves outwardly away from the collector`s centerline in proceeding toward the downstream side of the collector. Gas flow in the outer channel maintains the fluid on the channel`s wall in the form of a ``wavy film,`` while the gas stream from the inner channel shears the fluid film as it exits the outer channel in reducing the fluid to small droplets. Droplets formed by the collector capture particulates in the gas stream by one of three mechanisms: impaction, interception or Brownian diffusion in removing the particulates. The particulate-laden droplets are removed from the fluid stream by a vessel vent condenser or mist eliminator. 4 figs.

  2. Modeling Total Dissolved Gas for Optimal Operation of Multireservoir Systems

    DOE PAGES

    Politano, Marcela; Castro, Alejandro; Hadjerioua, Boualem

    2017-02-09

    One important environmental issue of hydropower in the Columbia and Snake River Basins (Pacific Northwest region of United States) is elevated total dissolved gas (TDG) downstream of a dam, which has the potential to cause gas bubble disease in affected fish. Gas supersaturation in the Columbia River Basin primarily occurs due to dissolution of bubbles entrained during spill events. This paper presents a physically based TDG model that can be used to optimize spill operations in multireservoir hydropower systems. Independent variables of the model are forebay TDG, tailwater elevation, spillway and powerhouse discharges, project head, and environmental parameters such asmore » temperature and atmospheric pressure. The model contains seven physically meaningful experimental parameters, which were calibrated and validated against TDG data collected downstream of Rock Island Dam (Washington) from 2008 to 2012. In conclusion, a sensitivity analysis was performed to increase the understanding of the relationships between TDG downstream of the dam and processes such as air entrainment, lateral powerhouse flow, and dissolution.« less

  3. COUPLED FREE AND DISSOLVED PHASE TRANSPORT: NEW SIMULATION CAPABILITIES AND PARAMETER INVERSION

    EPA Science Inventory

    The vadose zone free-phase simulation capabilities of the US EPA Hydrocarbon Spill Screening Model (HSSM) (Weaver et al., 1994) have been linked with the 3-D multi-species dissolved-phase contaminant transport simulator MT3DMS (Zheng and Wang, 1999; Zheng, 2005). The linkage pro...

  4. On-line fast response device and method for measuring dissolved gas in a fluid

    DOEpatents

    Tutu, Narinder Kumar [Manorville, NY

    2011-01-11

    A method and device for the measurement of dissolved gas within a fluid. The fluid, substantially a liquid, is pumped into a pipe. The flow of the fluid is temporally restricted, creating one or more low pressure regions. A measurement indicative of trapped air is taken before and after the restriction. The amount of dissolved air is calculated from the difference between the first and second measurements. Preferably measurements indicative of trapped air is obtained from one or more pressure transducers, capacitance transducers, or combinations thereof. In the alternative, other methods such as those utilizing x-rays or gamma rays may also be used to detect trapped air. Preferably, the fluid is a hydraulic fluid, whereby dissolved air in the fluid is detected.

  5. Ice Harbor Spillway Dissolved Gas Field Studies: Before and After Spillway Deflectors

    DTIC Science & Technology

    2016-07-01

    Executive Summary The operation of spillways on the Columbia and Snake Rivers causes the absorption of atmospheric gases (chiefly nitrogen and oxygen) to...chiefly nitrogen and oxygen) to super- saturated levels. For many operations, the total dissolved gas (TDG) levels exceed state and National...powerhouse releases. However, these mass- balance calculations conclusively show that a substantial portion of the powerhouse discharge becomes entrained

  6. Discharge dynamics and plasma density recovery by on/off switches of additional gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hyo-Chang, E-mail: lhc@kriss.re.kr; Department of Electrical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763; Kwon, Deuk-Chul

    2016-06-15

    Measurement of the plasma density is investigated to study plasma dynamics by adding reactive gas (O{sub 2}) or rare gas (He) in Ar plasmas. When the O{sub 2} or He gas is added, plasma density is suddenly decreased, while the plasma density recovers slowly with gas off. It is found that the recovery time is strongly dependent on the gas flow rate, and it can be explained by effect of gas residence time. When the He gas is off in the Ar plasma, the plasma density is overshot compared to the case of the O{sub 2} gas pulsing due tomore » enhanced ionizations by metastable atoms. Analysis and calculation for correlation between the plasma density dynamics and the gas pulsing are also presented in detail.« less

  7. Simulation of hydrodynamics, temperature, and dissolved oxygen in Table Rock Lake, Missouri, 1996-1997

    USGS Publications Warehouse

    Green, W. Reed; Galloway, Joel M.; Richards, Joseph M.; Wesolowski, Edwin A.

    2003-01-01

    Outflow from Table Rock Lake and other White River reservoirs support a cold-water trout fishery of substantial economic yield in south-central Missouri and north-central Arkansas. The Missouri Department of Conservation has requested an increase in existing minimum flows through the Table Rock Lake Dam from the U.S. Army Corps of Engineers to increase the quality of fishable waters downstream in Lake Taneycomo. Information is needed to assess the effect of increased minimum flows on temperature and dissolved- oxygen concentrations of reservoir water and the outflow. A two-dimensional, laterally averaged, hydrodynamic, temperature, and dissolved-oxygen model, CE-QUAL-W2, was developed and calibrated for Table Rock Lake, located in Missouri, north of the Arkansas-Missouri State line. The model simulates water-surface elevation, heat transport, and dissolved-oxygen dynamics. The model was developed to assess the effects of proposed increases in minimum flow from about 4.4 cubic meters per second (the existing minimum flow) to 11.3 cubic meters per second (the increased minimum flow). Simulations included assessing the effect of (1) increased minimum flows and (2) increased minimum flows with increased water-surface elevations in Table Rock Lake, on outflow temperatures and dissolved-oxygen concentrations. In both minimum flow scenarios, water temperature appeared to stay the same or increase slightly (less than 0.37 ?C) and dissolved oxygen appeared to decrease slightly (less than 0.78 mg/L) in the outflow during the thermal stratification season. However, differences between the minimum flow scenarios for water temperature and dissolved- oxygen concentration and the calibrated model were similar to the differences between measured and simulated water-column profile values.

  8. Evaluation on simultaneous removal of particles and off-flavors using population balance for application of powdered activated carbon in dissolved air flotation process.

    PubMed

    Kwak, D H; Yoo, S J; Lee, E J; Lee, J W

    2010-01-01

    Most of the water treatment plants applying the DAF process are faced with off-flavors control problems. For simultaneous control of particles of impurities and dissolved organics that cause pungent taste and odor in water, an effective method would be the simple application of powdered activated carbon (PAC) in the DAF process. A series of experiments were carried out to explore the feasibility for simultaneous removal of kaolin particles and organic compounds that produce off-flavors (2-MIB and geosmin). In addition, the flotation efficiency of kaolin and PAC particles adsorbing organics in the DAF process was evaluated by employing the population balance theory. The removal efficiency of 2-MIB and geosmin under the treatment condition with kaolin particles for simultaneous treatment was lower than that of the individual treatment. The decrease in the removal efficiency was probably caused by 2-MIB and geosmin remaining in the PAC particle in the treated water of DAF after bubble flotation. Simulation results obtained by the population balance model indicate, that the initial collision-attachment efficiency of PAC particles was lower than that of kaolin particles.

  9. Off-Gas Treatment: Evaluation of Nano-structured Sorbents for Selective Removal of Contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Utgikar, Vivek; Aston, D. Eric; Sabharwall, Piyush

    Nuclear energy has practically unlimited potential to satisfy world’s energy needs for the foreseeable future. However, a comprehensive and reliable solution must be devised to address the key issues related to nuclear waste management in order to develop nuclear energy in a safe and responsible manner. Capture and immobilization of volatile radionuclides from nuclear operations is an essential component of an integrated nuclear waste management system. The majority of emissions occur during the treatment of the used nuclear fuel (UNF) as it is chopped and dissolved in the boiling nitric acid for subsequent extraction steps. The radionuclides contained in themore » off-gas include 129I, 85Kr, tritium (3H) and 14C. Several alternative technologies have been investigated, with effective adsorption based processes holding the most potential for controlling these emissions, which is highly desirable for the development of the advanced fuel cycle. Proposed project is aimed at developing using a nanosorbent-based process for the capture and immobilization of the radionuclides of interest.« less

  10. Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasetyaningrum, A., E-mail: ajiprasetyaningrum@gmail.com; Ratnawati,; Jos, B.

    Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O{sub 3}) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flowmore » rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV.« less

  11. Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration

    NASA Astrophysics Data System (ADS)

    Prasetyaningrum, A.; Ratnawati, Jos, B.

    2015-12-01

    Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O3) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flow rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV.

  12. Sources, extent and history of methane seepage on the continental shelf off northern Norway

    NASA Astrophysics Data System (ADS)

    Sauer, Simone; Lepland, Aivo; Chand, Shyam; Schubert, Carsten J.; Eichinger, Florian; Knies, Jochen

    2014-05-01

    Active natural hydrocarbon gas seepage was recently discovered in the Hola area on the continental shelf off Vesterålen, northern Norway. We conducted acoustic and geochemical investigations to assess the modern and past extent, source and pathways of the gas seepage . Water column echosounder surveys showed bubble plumes up to several tens of metres above the seafloor. Analyses of dissolved methane in the water column indicated slightly elevated concentrations (50 nM) close to the seafloor. To identify fluxes and origin of methane in the sediments we analysed sediment pore water chemistry, the isotopic composition of methane and of dissolved inorganic carbon (d13CCH4, d2HCH4, d13CDIC) in three closely spaced (

  13. Antifoam Degradation Products in Off Gas and Condensate of Sludge Batch 9 Simulant Nitric-Formic Flowsheet Testing for the Defense Waste Processing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, T.

    Ten chemical processing cell (CPC) experiments were performed using simulant to evaluate Sludge Batch 9 for sludge-only and coupled processing using the nitric-formic flowsheet in the Defense Waste Processing Facility (DWPF). Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on eight of the ten. The other two were SRAT cycles only. Samples of the condensate, sludge, and off gas were taken to monitor the chemistry of the CPC experiments. The Savannah River National Laboratory (SRNL) has previously shown antifoam decomposes to form flammable organic products, (hexamethyldisiloxane (HMDSO), trimethylsilanol (TMS), and propanal), that are presentmore » in the vapor phase and condensate of the CPC vessels. To minimize antifoam degradation product formation, a new antifoam addition strategy was implemented at SRNL and DWPF to add antifoam undiluted.« less

  14. Optimize Flue Gas Settings to Promote Microalgae Growth in Photobioreactors via Computer Simulations

    PubMed Central

    He, Lian; Chen, Amelia B; Yu, Yi; Kucera, Leah; Tang, Yinjie

    2013-01-01

    Flue gas from power plants can promote algal cultivation and reduce greenhouse gas emissions1. Microalgae not only capture solar energy more efficiently than plants3, but also synthesize advanced biofuels2-4. Generally, atmospheric CO2 is not a sufficient source for supporting maximal algal growth5. On the other hand, the high concentrations of CO2 in industrial exhaust gases have adverse effects on algal physiology. Consequently, both cultivation conditions (such as nutrients and light) and the control of the flue gas flow into the photo-bioreactors are important to develop an efficient “flue gas to algae” system. Researchers have proposed different photobioreactor configurations4,6 and cultivation strategies7,8 with flue gas. Here, we present a protocol that demonstrates how to use models to predict the microalgal growth in response to flue gas settings. We perform both experimental illustration and model simulations to determine the favorable conditions for algal growth with flue gas. We develop a Monod-based model coupled with mass transfer and light intensity equations to simulate the microalgal growth in a homogenous photo-bioreactor. The model simulation compares algal growth and flue gas consumptions under different flue-gas settings. The model illustrates: 1) how algal growth is influenced by different volumetric mass transfer coefficients of CO2; 2) how we can find optimal CO2 concentration for algal growth via the dynamic optimization approach (DOA); 3) how we can design a rectangular on-off flue gas pulse to promote algal biomass growth and to reduce the usage of flue gas. On the experimental side, we present a protocol for growing Chlorella under the flue gas (generated by natural gas combustion). The experimental results qualitatively validate the model predictions that the high frequency flue gas pulses can significantly improve algal cultivation. PMID:24121788

  15. Analysis of dissolved gas and fluid chemistry in mountainous region of Goaping river watershed in southern Taiwan

    NASA Astrophysics Data System (ADS)

    Tang, Kai-Wen; Chen, Cheng-Hong; Liu, Tsung-Kwei

    2016-04-01

    Annual rainfall in Taiwan is up to 2500 mm, about 2.5 times the average value of the world. However due to high topographic relief of the Central Mountain Range in Taiwan, groundwater storage is critical for water supply. Mountain region of the Goaping river watershed in southern Taiwan is one of the potential areas to develop groundwater recharge model. Therefore the target of this study is to understand sources of groundwater and surface water using dissolved gas and fluid chemistry. Four groundwater and 6 surface water samples were collected from watershed, 5 groundwater and 13 surface water samples were collected from downstream. All samples were analyzed for stable isotopes (hydrogen and oxygen), dissolved gases (including nitrogen, oxygen, argon, methane and carbon dioxide), noble gases (helium and radon) and major ions. Hydrogen and oxygen isotopic ratios of surface water and groundwater samples aligned along meteoric water line. For surface water, dissolved gases are abundant in N2 (>80%) and O2 (>10%); helium isotopic ratio is approximately equal to 1 RA (RA is 3He/4He ratio of air); radon-222 concentration is below the detection limit (<200 Bq/m3); and concentrations of major anions and cations are low (Na+ <20 ppm, Ca2+ < 60 ppm, Cl- <2 ppm). All these features indicate that surface waters are predominately recharged by precipitation. For groundwater, helium isotopic ratios (0.9˜0.23 RA) are lower and radon-222 concentrations (300˜6000 Bq/m3) are much higher than the surface water. Some samples have high amounts of dissolved gases, such as CH4 (>20%) or CO2 (>10%), most likely contributed by biogenic or geogenic sources. On the other hand, few samples that have temperature 5° higher than the average of other samples, show significantly high Na+ (>1000 ppm), Ca2+ (>150 ppm) and Cl- (>80 ppm) concentrations. An interaction between such groundwater and local hot springs is inferred. Watershed and downstream samples differ in dissolved gas species and

  16. Compliance by Design: Influence of Acceleration Trade-offs on CO2 Emissions and Costs of Fuel Economy and Greenhouse Gas Regulations.

    PubMed

    Whitefoot, Kate S; Fowlie, Meredith L; Skerlos, Steven J

    2017-09-19

    The ability of automakers to improve the fuel economy of vehicles using engineering design modifications that compromise other performance attributes, such as acceleration, is not currently considered when setting fuel economy and greenhouse-gas emission standards for passenger cars and light trucks. We examine the role of these design trade-offs by simulating automaker responses to recently reformed vehicle standards with and without the ability to adjust acceleration performance. Results indicate that acceleration trade-offs can be important in two respects: (1) they can reduce the compliance costs of the standards, and (2) they can significantly reduce emissions associated with a particular level of the standards by mitigating incentives to shift sales toward larger vehicles and light trucks relative to passenger cars. We contrast simulation-based results with observed changes in vehicle attributes under the reformed standards. We find evidence that is consistent with firms using acceleration trade-offs to achieve compliance. Taken together, our analysis suggests that acceleration trade-offs play a role in automaker compliance strategies with potentially large implications for both compliance costs and emissions.

  17. Pulmonary hemodynamics and gas exchange in off pump coronary artery bypass grafting.

    PubMed

    Vedin, Jenny; Jensen, Ulf; Ericsson, Anders; Samuelsson, Sten; Vaage, Jarle

    2005-10-01

    To investigate the influence of cardiopulmonary bypass on pulmonary hemodynamics and gas exchange. Low risk patients admitted for elective coronary artery bypass grafting were randomized to either on (n=25) or off pump (n=25) surgery. Central hemodynamics, gas exchange, and venous admixture were studied during and up to 20 h after surgery. There was no difference in pulmonary vascular resistance index (P=0.16), right ventricular stroke work index (P>0.2), mean pulmonary artery pressure (P>0.2) or pulmonary capillary wedge pressure (P>0.2) between groups. Soon after surgery there was a tendency towards higher cardiac index (P=0.07) in the off pump group. Arterial oxygen tension (P>0.2), hematocrit (P>0.2), venous admixture (P>0.2), and arterial-venous oxygen content difference (P=0.12) did not differ between groups. This prospective, randomized study showed no difference in pulmonary hemodynamics, pulmonary gas exchange, and venous admixture, in low risk patients undergoing off pump compared to on pump coronary artery bypass surgery.

  18. Geopressured-geothermal test of the EDNA Delcambre No. 1 well, Tigre Lagoon Field, Vermilion Parish, Louisiana: Analysis of water and dissolved natural gas: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hankind, B.E.; Karkalits, O.C.

    1978-09-01

    The presence of large volumes of hot water (250-425 F) containing dissolved natural gas in the Gulf of Mexico coastal areas at depths of 5,000 to 25,000 feet (the geopressured zone) has been known for several years. Because natural gas and oil from conventional production methods were relatively inexpensive prior to 1973, and because foreign oil was readily available, no economic incentive existed for developing this resource. With the oil embargo and the resulting rapid escalation in prices of oil and gas since 1973, a new urgency exists for examining the economic potential of the geopressured-geothermal resource. The main objectivemore » of the research reported here was to determine the volume of gas dissolved in the geopressured water, as well as the qualitative and quantitative composition of the water and the dissolved gas. A further objective was to use an existing shut-in gas well so that drilling time and the attendant costs could be avoided.« less

  19. Quality-assurance data, comparison to water-quality standards, and site considerations for total dissolved gas and water temperature, lower Columbia River, Oregon and Washington, 2001

    USGS Publications Warehouse

    Tanner, Dwight Q.; Bragg, Heather M.

    2002-03-06

    At times in July and August 2001, the total-dissolved-gas probe at Warrendale could not be positioned below the minimum compensation depth because the river was too shallow at that location. Consequently, degassing at probe depth may have occurred, and total dissolved gas may have been larger in locations with greater depths.

  20. Three-Dimensional Simulation of Base Bleed Unit with AP/HTPB Propellant in Fast Cook-off Conditions

    NASA Astrophysics Data System (ADS)

    Li, Wen-feng; Yu, Yong-gang; Ye, Rui; Yang, Hou-wen

    2017-07-01

    In this work, a three-dimensional unsteady heat transfer model of base bleed unit with trilobite ammonium perchlorate (AP)/hydroxyl-terminated polybutadiene (HTPB) composite solid propellant is presented to analyze the cook-off characteristics. According to the two-step chemical reaction of AP/HTPB propellant, a small-scale cook-off test is established. A comparison of the experimental and calculated results is made to verify the rationality of the computation model. On this basis, a cook-off numerical simulation of the base bleed unit at the heating rates of 0.33, 0.58 and 0.83 K/s is presented to investigate the ignition and initiation characteristics. The results show that the ignitions occur on the head face of the AP/HTPB propellant and near the internal gas chamber in these conditions. As the heating rate increases, the runaway time decreases and the ignition temperature rises.

  1. Towards Large Eddy Simulation of gas turbine compressors

    NASA Astrophysics Data System (ADS)

    McMullan, W. A.; Page, G. J.

    2012-07-01

    With increasing computing power, Large Eddy Simulation could be a useful simulation tool for gas turbine axial compressor design. This paper outlines a series of simulations performed on compressor geometries, ranging from a Controlled Diffusion Cascade stator blade to the periodic sector of a stage in a 3.5 stage axial compressor. The simulation results show that LES may offer advantages over traditional RANS methods when off-design conditions are considered - flow regimes where RANS models often fail to converge. The time-dependent nature of LES permits the resolution of transient flow structures, and can elucidate new mechanisms of vorticity generation on blade surfaces. It is shown that accurate LES is heavily reliant on both the near-wall mesh fidelity and the ability of the imposed inflow condition to recreate the conditions found in the reference experiment. For components embedded in a compressor this requires the generation of turbulence fluctuations at the inlet plane. A recycling method is developed that improves the quality of the flow in a single stage calculation of an axial compressor, and indicates that future developments in both the recycling technique and computing power will bring simulations of axial compressors within reach of industry in the coming years.

  2. In situ Measurements of Dissolved Gas Dynamics and Root Uptake in the Wetland Rhizosphere

    NASA Astrophysics Data System (ADS)

    Reid, Matthew; Jaffe, Peter

    2013-04-01

    Anaerobic wetland soils are important natural sources of various atmospheric trace gases that are detrimental to the environment, including methane (CH4), nitrous oxide, elemental mercury (Hg°), and halomethanes. The balance between production and uptake in soils depends, in part, on mass transfer within the soil and between soil and the atmosphere. Observed volatilization rates of trace gases are highly variable and poorly described by models, however, so there is a clear need for new process measurements to clarify the rates of these transport mechanisms. Here we present results from mesocosm push-pull tests intended to quantify transport processes of dissolved gases in wetland sediments, with a focus on uptake by wetland plant roots and partitioning into trapped gas bubbles. This technique uses a suite of nonreactive volatile tracers to pinpoint transport mechanisms without the confounding influence of biochemical transformations. Mass balance approaches are used to determine transport kinetics, and a new analytical method to interpret dissolved gas push-pull test data is presented and compared to traditional analytical techniques. Results confirm the key role of vegetation in dramatically enhancing removal rates of dissolved gases from wetland soils. Root uptake is shown to be diffusion-limited and relative root uptake rates are modeled as an empirical function of molecular size. We use the porewater removal rates measured here to estimate potential volatilization fluxes of CH4, methyl chloride, and Hg° from wetlands vegetated with Typha latifolia and Scirpus acutus. The implementation of this new push-pull test methodology to field settings will be discussed.

  3. Simulation of Temperature, Nutrients, Biochemical Oxygen Demand, and Dissolved Oxygen in the Catawba River, South Carolina, 1996-97

    USGS Publications Warehouse

    Feaster, Toby D.; Conrads, Paul; Guimaraes, Wladmir B.; Sanders, Curtis L.; Bales, Jerad D.

    2003-01-01

    Time-series plots of dissolved-oxygen concentrations were determined for various simulated hydrologic and point-source loading conditions along a free-flowing section of the Catawba River from Lake Wylie Dam to the headwaters of Fishing Creek Reservoir in South Carolina. The U.S. Geological Survey one-dimensional dynamic-flow model, BRANCH, was used to simulate hydrodynamic data for the Branched Lagrangian Transport Model. Waterquality data were used to calibrate the Branched Lagrangian Transport Model and included concentrations of nutrients, chlorophyll a, and biochemical oxygen demand in water samples collected during two synoptic sampling surveys at 10 sites along the main stem of the Catawba River and at 3 tributaries; and continuous water temperature and dissolved-oxygen concentrations measured at 5 locations along the main stem of the Catawba River. A sensitivity analysis of the simulated dissolved-oxygen concentrations to model coefficients and data inputs indicated that the simulated dissolved-oxygen concentrations were most sensitive to watertemperature boundary data due to the effect of temperature on reaction kinetics and the solubility of dissolved oxygen. Of the model coefficients, the simulated dissolved-oxygen concentration was most sensitive to the biological oxidation rate of nitrite to nitrate. To demonstrate the utility of the Branched Lagrangian Transport Model for the Catawba River, the model was used to simulate several water-quality scenarios to evaluate the effect on the 24-hour mean dissolved-oxygen concentrations at selected sites for August 24, 1996, as simulated during the model calibration period of August 23 27, 1996. The first scenario included three loading conditions of the major effluent discharges along the main stem of the Catawba River (1) current load (as sampled in August 1996); (2) no load (all point-source loads were removed from the main stem of the Catawba River; loads from the main tributaries were not removed); and (3

  4. Characterization of water quality and simulation of temperature, nutrients, biochemical oxygen demand, and dissolved oxygen in the Wateree River, South Carolina, 1996-98

    USGS Publications Warehouse

    Feaster, Toby D.; Conrads, Paul

    2000-01-01

    In May 1996, the U.S. Geological Survey entered into a cooperative agreement with the Kershaw County Water and Sewer Authority to characterize and simulate the water quality in the Wateree River, South Carolina. Longitudinal profiling of dissolved-oxygen concentrations during the spring and summer of 1996 revealed dissolved-oxygen minimums occurring upstream from the point-source discharges. The mean dissolved-oxygen decrease upstream from the effluent discharges was 2.0 milligrams per liter, and the decrease downstream from the effluent discharges was 0.2 milligram per liter. Several theories were investigated to obtain an improved understanding of the dissolved-oxygen dynamics in the upper Wateree River. Data suggest that the dissolved-oxygen concentration decrease is associated with elevated levels of oxygen-consuming nutrients and metals that are flowing into the Wateree River from Lake Wateree. Analysis of long-term streamflow and water-quality data collected at two U.S. Geological Survey gaging stations suggests that no strong correlation exists between streamflow and dissolved-oxygen concentrations in the Wateree River. However, a strong negative correlation does exist between dissolved-oxygen concentrations and water temperature. Analysis of data from six South Carolina Department of Health and Environmental Control monitoring stations for 1980.95 revealed decreasing trends in ammonia nitrogen at all stations where data were available and decreasing trends in 5-day biochemical oxygen demand at three river stations. The influence of various hydrologic and point-source loading conditions on dissolved-oxygen concentrations in the Wateree River were determined by using results from water-quality simulations by the Branched Lagrangian Transport Model. The effects of five tributaries and four point-source discharges were included in the model. Data collected during two synoptic water-quality samplings on June 23.25 and August 11.13, 1997, were used to calibrate

  5. Gas Retention, Gas Release, and Fluidization of Spherical Resorcinol-Formaldehyde (sRF) Ion Exchange Resin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauglitz, Phillip A.; Rassat, Scot D.; Linn, Diana

    retained bubbles to rise and be carried to the break tank. The overall conclusion of the testing is that fluidization is an effective method to remove hydrogen gas from a bed of sRF resin, but that a single fluidization velocity that is adequate to release gas in 55 ºC water will over-fluidize sRF resin in most LAW liquids, including both nominal and high-limit LAW simulants used in testing. An upper packed bed can retain hydrogen gas and pose a flammability hazard. Using periodic on:off fluidization, such as 5:55 min. on:off cycles, is effective at releasing gas while not creating an upper packed bed. Note that lengthening the fluidization duration in a one-hour cycle did result in a stable upper packed bed in one case with the nominal LAW simulant, so testing focused on shorter “on” periods which are needed for effective hydrogen release with periodic on:off fluidization« less

  6. Continental shelf and slope gas venting off Cascadia

    NASA Astrophysics Data System (ADS)

    Scherwath, Martin; Riedel, Michael; Roemer, Miriam; Juniper, Kim; Heesemann, Martin; Mihaly, Steven; Paull, Charles; Spence, George; Veloso, Mario

    2017-04-01

    Along the Cascadia Margin in the Northeast Pacific, off the coasts of British Columbia, Washington and Oregon, hundreds natural gas vent locations have been mapped using sonar data from ships, autonomous underwater and also remotely operated vehicles, as well as camera and seafloor sonar data. We have combined observed vent locations from published literature as well as analyzed original data from research cruises and fishing sonar from various archives, including those of Natural Resources Canada, the Monterey Bay Aquarium Research Institute, Ocean Networks Canada, the National Ocean and Atmospheric Administration, and the Schmidt Ocean Institute. In total, over 950 individual vents are now mapped. By far the highest accumulation of gas vent locations appear both shallow (<250 m) and concentrated towards the mouth of the Juan de Fuca Strait, however these observations are naturally biased toward the distribution of the observation footprints. Normalized observations confirm the shallow (<500 m) high concentrations of gas vents but also establish some deeper sections of focused venting activity. We will speculate about the reasons behind the distribution, focus on specific examples, extrapolate for rough margin flux rate ranges and comment on short-comings and future directions for margin-wide gas vent studies.

  7. Helium extraction and nitrogen removal from LNG boil-off gas

    NASA Astrophysics Data System (ADS)

    Xiong, L.; Peng, N.; Liu, L.; Gong, L.

    2017-02-01

    The helium bearing boil off gas (BOG) from liquid natural gas (LNG) storage tank in LNG plant, which has a helium concentration of about 1%, has attracted the attention in China as a new helium source. As the BOG is usually reused by re-condensing to recover methane, it is likely to cause continuous accumulation of nitrogen in the unit, thus a nitrogen removal process must be integrated. This paper describes a conceptional cryogenic separation system aiming at recovering methane, helium and nitrogen from BOG based on cryogenic distillation and condensation process.

  8. Gas-grain simulation experiment module conceptual design and gas-grain simulation facility breadboard development

    NASA Technical Reports Server (NTRS)

    Zamel, James M.; Petach, Michael; Gat, Nahum; Kropp, Jack; Luong, Christina; Wolff, Michael

    1993-01-01

    This report delineates the Option portion of the Phase A Gas-Grain Simulation Facility study. The conceptual design of a Gas-Grain Simulation Experiment Module (GGSEM) for Space Shuttle Middeck is discussed. In addition, a laboratory breadboard was developed during this study to develop a key function for the GGSEM and the GGSF, specifically, a solid particle cloud generating device. The breadboard design and test results are discussed and recommendations for further studies are included. The GGSEM is intended to fly on board a low earth orbit (LEO), manned platform. It will be used to perform a subset of the experiments planned for the GGSF for Space Station Freedom, as it can partially accommodate a number of the science experiments. The outcome of the experiments performed will provide an increased understanding of the operational requirements for the GGSF. The GGSEM will also act as a platform to accomplish technology development and proof-of-principle experiments for GGSF hardware, and to verify concepts and designs of hardware for GGSF. The GGSEM will allow assembled subsystems to be tested to verify facility level operation. The technology development that can be accommodated by the GGSEM includes: GGSF sample generation techniques, GGSF on-line diagnostics techniques, sample collection techniques, performance of various types of sensors for environmental monitoring, and some off-line diagnostics. Advantages and disadvantages of several LEO platforms available for GGSEM applications are identified and discussed. Several of the anticipated GGSF experiments require the deagglomeration and dispensing of dry solid particles into an experiment chamber. During the GGSF Phase A study, various techniques and devices available for the solid particle aerosol generator were reviewed. As a result of this review, solid particle deagglomeration and dispensing were identified as key undeveloped technologies in the GGSF design. A laboratory breadboard version of a solid

  9. Gas-grain simulation experiment module conceptual design and gas-grain simulation facility breadboard development

    NASA Astrophysics Data System (ADS)

    Zamel, James M.; Petach, Michael; Gat, Nahum; Kropp, Jack; Luong, Christina; Wolff, Michael

    1993-12-01

    This report delineates the Option portion of the Phase A Gas-Grain Simulation Facility study. The conceptual design of a Gas-Grain Simulation Experiment Module (GGSEM) for Space Shuttle Middeck is discussed. In addition, a laboratory breadboard was developed during this study to develop a key function for the GGSEM and the GGSF, specifically, a solid particle cloud generating device. The breadboard design and test results are discussed and recommendations for further studies are included. The GGSEM is intended to fly on board a low earth orbit (LEO), manned platform. It will be used to perform a subset of the experiments planned for the GGSF for Space Station Freedom, as it can partially accommodate a number of the science experiments. The outcome of the experiments performed will provide an increased understanding of the operational requirements for the GGSF. The GGSEM will also act as a platform to accomplish technology development and proof-of-principle experiments for GGSF hardware, and to verify concepts and designs of hardware for GGSF. The GGSEM will allow assembled subsystems to be tested to verify facility level operation. The technology development that can be accommodated by the GGSEM includes: GGSF sample generation techniques, GGSF on-line diagnostics techniques, sample collection techniques, performance of various types of sensors for environmental monitoring, and some off-line diagnostics. Advantages and disadvantages of several LEO platforms available for GGSEM applications are identified and discussed. Several of the anticipated GGSF experiments require the de-agglomeration and dispensing of dry solid particles into an experiment chamber. During the GGSF Phase A study, various techniques and devices available for the solid particle aerosol generator were reviewed. As a result of this review, solid particle de-agglomeration and dispensing were identified as key undeveloped technologies in the GGSF design. A laboratory breadboard version of a solid

  10. Numerical Simulation of Salinity and Dissolved Oxygen at Perdido Bay and Adjacent Coastal Ocean

    EPA Science Inventory

    Environmental Fluid Dynamic Code (EFDC), a numerical estuarine and coastal ocean circulation hydrodynamic model, was used to simulate the distribution of the salinity, temperature, nutrients and dissolved oxygen (DO) in Perdido Bay and adjacent Gulf of Mexico. External forcing fa...

  11. SIMULATED CLIMATE CHANGE EFFECTS ON DISSOLVED OXYGEN CHARACTERISTICS IN ICE-COVERED LAKES. (R824801)

    EPA Science Inventory

    A deterministic, one-dimensional model is presented which simulates daily dissolved oxygen (DO) profiles and associated water temperatures, ice covers and snow covers for dimictic and polymictic lakes of the temperate zone. The lake parameters required as model input are surface ...

  12. The air, carbon, water synergies and trade-offs in China's natural gas industry

    NASA Astrophysics Data System (ADS)

    Qin, Y.; Mauzerall, D. L.; Höglund-Isaksson, L.; Wagner, F.; Byers, E.

    2017-12-01

    Both energy production and consumption can simultaneously affect regional air quality, local water stress, and the global climate. Identifying air, carbon and water impacts of various energy sources and end-uses is important in determining the relative merits of various energy policies. Here, we examine the air-carbon-water interdependencies of China's six major natural gas source choices (domestic conventional natural gas, domestic coal-based synthetic natural gas (SNG), domestic shale gas, imported liquefied natural gas, imported Russian pipeline gas, and imported Central Asian pipeline gas) and three end-use coal-to-gas deployment strategies (with substitution strategies that focus in turn on air quality, carbon, and water) in 2020. On the supply side, we find that gas sources other than SNG offer national air-carbon-water co-benefits. However, we find striking air-carbon/water trade-offs for SNG at the national scale. Moreover, the use of SNG significantly increases water demand and carbon emissions in regions already suffering from the most severe water stress and the highest per capita carbon footprint. On the end-use side, gas substitution for coal can result in enormous variations in air quality, carbon, and water impacts, with notable air-carbon synergies but air-water trade-offs. Our study finds that, except for SNG, end-use choices generally have a much larger influence on air quality, carbon emissions and water use than do gas source choices. Simultaneous consideration of air, carbon, and water impacts is necessary in designing both beneficial energy development and deployment policies.

  13. Dissolved oxygen in gravity sewers--measurement and simulation.

    PubMed

    Gudjonsson, G; Vollertsen, J; Hvitved-Jacobsen, T

    2002-01-01

    Dissolved oxygen (DO) concentrations were during 2 months continuously measured in an intercepting sewer. Measurements were made upstream and downstream in a 3.6 km gravity sewer. DO showed significant diurnal variations mainly caused by changes in the organic matter composition of the wastewater. At low temperatures the gravity sewer was strictly aerobic. However, towards the end of the measuring campaign, DO concentrations decreased as temperature increased and the sewer became anaerobic part of the day. A conceptual model that takes into account bulk water and biofilm DO uptake as well as reaeration was used to simulate the DO measured. Using measurements from the upstream station as input, the model was calibrated to yield good validation results of the DO at the downstream station.

  14. DIEL FLUX OF DISSOLVED CARBOHYDRATE IN A SALT MARSH AND A SIMULATED ESTUARINE ECOSYSTEM

    EPA Science Inventory

    The concentrations of total dissolved carbohydrate (TCHO), monosaccharide (MCHO) and polysaccharide (PCHO) were followed over a total of ten diel cycles in a salt marsh and a 13 cu m seawater tank simulating an estuarine ecosystem. Their patterns are compared to those for total d...

  15. A physical-based gas-surface interaction model for rarefied gas flow simulation

    NASA Astrophysics Data System (ADS)

    Liang, Tengfei; Li, Qi; Ye, Wenjing

    2018-01-01

    Empirical gas-surface interaction models, such as the Maxwell model and the Cercignani-Lampis model, are widely used as the boundary condition in rarefied gas flow simulations. The accuracy of these models in the prediction of macroscopic behavior of rarefied gas flows is less satisfactory in some cases especially the highly non-equilibrium ones. Molecular dynamics simulation can accurately resolve the gas-surface interaction process at atomic scale, and hence can predict accurate macroscopic behavior. They are however too computationally expensive to be applied in real problems. In this work, a statistical physical-based gas-surface interaction model, which complies with the basic relations of boundary condition, is developed based on the framework of the washboard model. In virtue of its physical basis, this new model is capable of capturing some important relations/trends for which the classic empirical models fail to model correctly. As such, the new model is much more accurate than the classic models, and in the meantime is more efficient than MD simulations. Therefore, it can serve as a more accurate and efficient boundary condition for rarefied gas flow simulations.

  16. Gas turbine system simulation: An object-oriented approach

    NASA Technical Reports Server (NTRS)

    Drummond, Colin K.; Follen, Gregory J.; Putt, Charles W.

    1993-01-01

    A prototype gas turbine engine simulation has been developed that offers a generalized framework for the simulation of engines subject to steady-state and transient operating conditions. The prototype is in preliminary form, but it successfully demonstrates the viability of an object-oriented approach for generalized simulation applications. Although object oriented programming languages are-relative to FORTRAN-somewhat austere, it is proposed that gas turbine simulations of an interdisciplinary nature will benefit significantly in terms of code reliability, maintainability, and manageability. This report elucidates specific gas turbine simulation obstacles that an object-oriented framework can overcome and describes the opportunity for interdisciplinary simulation that the approach offers.

  17. Development And Initial Testing Of Off-Gas Recycle Liquid From The WTP Low Activity Waste Vitrification Process - 14333

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2014-01-07

    The Waste Treatment and Immobilization Plant (WTP) process flow was designed to pre-treat feed from the Hanford tank farms, separate it into a High Level Waste (HLW) and Low Activity Waste (LAW) fraction and vitrify each fraction in separate facilities. Vitrification of the waste generates an aqueous condensate stream from the off-gas processes. This stream originates from two off-gas treatment unit operations, the Submerged Bed Scrubber (SBS) and the Wet Electrospray Precipitator (WESP). Currently, the baseline plan for disposition of the stream from the LAW melter is to recycle it to the Pretreatment facility where it gets evaporated and processedmore » into the LAW melter again. If the Pretreatment facility is not available, the baseline disposition pathway is not viable. Additionally, some components in the stream are volatile at melter temperatures, thereby accumulating to high concentrations in the scrubbed stream. It would be highly beneficial to divert this stream to an alternate disposition path to alleviate the close-coupled operation of the LAW vitrification and Pretreatment facilities, and to improve long-term throughput and efficiency of the WTP system. In order to determine an alternate disposition path for the LAW SBS/WESP Recycle stream, a range of options are being studied. A simulant of the LAW Off-Gas Condensate was developed, based on the projected composition of this stream, and comparison with pilot-scale testing. The primary radionuclide that vaporizes and accumulates in the stream is Tc-99, but small amounts of several other radionuclides are also projected to be present in this stream. The processes being investigated for managing this stream includes evaporation and radionuclide removal via precipitation and adsorption. During evaporation, it is of interest to investigate the formation of insoluble solids to avoid scaling and plugging of equipment. Key parameters for radionuclide removal include identifying effective precipitation or ion

  18. Determination of volumetric gas-liquid mass transfer coefficient of carbon monoxide in a batch cultivation system using kinetic simulations.

    PubMed

    Jang, Nulee; Yasin, Muhammad; Park, Shinyoung; Lovitt, Robert W; Chang, In Seop

    2017-09-01

    A mathematical model of microbial kinetics was introduced to predict the overall volumetric gas-liquid mass transfer coefficient (k L a) of carbon monoxide (CO) in a batch cultivation system. The cell concentration (X), acetate concentration (C ace ), headspace gas (N co and [Formula: see text] ), dissolved CO concentration in the fermentation medium (C co ), and mass transfer rate (R) were simulated using a variety of k L a values. The simulated results showed excellent agreement with the experimental data for a k L a of 13/hr. The C co values decreased with increase in cultivation times, whereas the maximum mass transfer rate was achieved at the mid-log phase due to vigorous microbial CO consumption rate higher than R. The model suggested in this study may be applied to a variety of microbial systems involving gaseous substrates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Gas Bubble Pinch-off in Viscous and Inviscid Liquids

    NASA Astrophysics Data System (ADS)

    Taborek, P.

    2005-11-01

    We have used high-speed video to analyze pinch-off of nitrogen gas bubbles in fluids with a wide range of viscosity. If the external fluid is highly viscous (ηext>100 cP), the radius is proportional to the time before break, τ, and decreases smoothly to zero. If the external fluid has low viscosity (ηext<10 cP), the neck radius scales as &1/2circ; until an instability develops in the gas bubble which causes the neck to rupture and tear apart. Finally, if the viscosity of the external fluid is in an intermediate range, an elongated thread is formed which breaks apart into micron-sized bubbles. 100,000 frame-per-second videos will be presented which illustrate each of these flow regimes.

  20. Dynamics of gas-driven eruptions: Experimental simulations using CO2-H2O-polymer system

    NASA Astrophysics Data System (ADS)

    Zhang, Youxue; Sturtevant, B.; Stolper, E. M.

    1997-02-01

    We report exploratory experiments simulating gas-driven eruptions using the CO2-H2O system at room temperature as an analog of natural eruptive systems. The experimental apparatus consists of a test cell and a large tank. Initially, up to 1.0 wt% of CO2 is dissolved in liquid water under a pressure of up to 735 kPa in the test cell. The experiment is initiated by suddenly reducing the pressure of the test cell to a typical tank pressure of 10 kPa. The following are the main results: (1) The style of the process depends on the decompression ratio. There is a threshold decompression ratio above which rapid eruption occurs. (2) During rapid eruption, there is always fragmentation at the liquid-vapor interface. Fragmentation may also occur in the flow interior. (3) Initially, the top of the erupting column ascends at a constant acceleration (instead of constant velocity). (4) Average bubble radius grows as t2/3. (5) When viscosity is 20 times that of pure water or greater, a static foam may be stable after expansion to 97% vesicularity. The experiments provide several insights into natural gas-driven eruptions, including (1) the interplay between bubble growth and ascent of the erupting column must be considered for realistic modeling of bubble growth during gas-driven eruptions, (2) buoyant rise of the bubbly magma is not necessary during an explosive volcanic eruption, and (3) CO2-driven limnic eruptions can be explosive. The violence increases with the initial CO2 content dissolved in water.

  1. Comparison between reverse Brayton and Kapitza based LNG boil-off gas reliquefaction system using exergy analysis

    NASA Astrophysics Data System (ADS)

    Kochunni, Sarun Kumar; Chowdhury, Kanchan

    2017-02-01

    LNG boil-off gas (BOG) reliquefaction systems in LNG carrier ships uses refrigeration devices which are based on reverse Brayton, Claude, Kapitza (modified Claude) or Cascade cycles. Some of these refrigeration devices use nitrogen as the refrigerants and hence nitrogen storage vessels or nitrogen generators needs to be installed in LNG carrier ships which consume space and add weight to the carrier. In the present work, a new configuration based on Kapitza liquefaction cycle which uses BOG itself as working fluid is proposed and has been compared with Reverse Brayton Cycle (RBC) on sizes of heat exchangers and compressor operating parameters. Exergy analysis is done after simulating at steady state with Aspen Hysys 8.6® and the comparison between RBC and Kapitza may help designers to choose reliquefaction system with appropriate process parameters and sizes of equipment. With comparable exergetic efficiency as that of an RBC, a Kaptiza system needs only BOG compressor without any need of nitrogen gas.

  2. Patterning of oxide-hardened gold black by photolithography and metal lift-off

    NASA Astrophysics Data System (ADS)

    Panjwani, Deep; Yesiltas, Mehmet; Nath, Janardan; Maukonen, D. E.; Rezadad, Imen; Smith, Evan M.; Peale, R. E.; Hirschmugl, Carol; Sedlmair, Julia; Wehlitz, Ralf; Unger, Miriam; Boreman, Glenn

    2014-01-01

    A method to pattern infrared-absorbing gold black by conventional photolithography and lift-off is described. A photo-resist pattern is developed on a substrate by standard photolithography. Gold black is deposited over the whole by thermal evaporation in an inert gas at ˜1 Torr. SiO2 is then deposited as a protection layer by electron beam evaporation. Lift-off proceeds by dissolving the photoresist in acetone. The resulting sub-millimeter size gold black patterns that remain on the substrate retain high infrared absorption out to ˜5 μm wavelength and exhibit good mechanical stability. This technique allows selective application of gold black coatings to the pixels of thermal infrared imaging array detectors.

  3. Structurally integrated organic light emitting device-based sensors for gas phase and dissolved oxygen.

    PubMed

    Shinar, Ruth; Zhou, Zhaoqun; Choudhury, Bhaskar; Shinar, Joseph

    2006-05-24

    A compact photoluminescence (PL)-based O2 sensor utilizing an organic light emitting device (OLED) as the light source is described. The sensor device is structurally integrated. That is, the sensing element and the light source, both typically thin films that are fabricated on separate glass substrates, are attached back-to-back. The sensing elements are based on the oxygen-sensitive dyes Pt- or Pd-octaethylporphyrin (PtOEP or PdOEP, respectively), which are embedded in a polystyrene (PS) matrix, or dissolved in solution. Their performance is compared to that of a sensing element based on tris(4,7-diphenyl-l,10-phenanthroline) Ru II (Ru(dpp)) embedded in a sol-gel film. A green OLED light source, based on tris(8-hydroxy quinoline Al (Alq3), was used to excite the porphyrin dyes; a blue OLED, based on 4,4'-bis(2,2'-diphenylviny1)-1,1'-biphenyl, was used to excite the Ru(dpp)-based sensing element. The O2 level was monitored in the gas phase and in water, ethanol, and toluene solutions by measuring changes in the PL lifetime tau of the O2-sensitive dyes. The sensor performance was evaluated in terms of the detection sensitivity, dynamic range, gas flow rate, and temperature effect, including the temperature dependence of tau in pure Ar and O2 atmospheres. The dependence of the sensitivity on the preparation procedure of the sensing film and on the PS and dye concentrations in the sensing element, whether a solid matrix or solution, were also evaluated. Typical values of the detection sensitivity in the gas phase, S(g) identical with tau(0% O2)/tau(100% O2), at 23 degrees C, were approximately 35 to approximately 50 for the [Alq3 OLED[/[PtOEP dye] pair; S(g) exceeded 200 for the Alq3/PdOEP sensor. For dissolved oxygen (DO) in water and ethanol, S(DO) (defined as the ratio of tau in de-oxygenated and oxygen-saturated solutions) was approximately 9.5 and approximately 11, respectively, using the PtOEP-based film sensor. The oxygen level in toluene was measured with Pt

  4. Evaluation of an Integrated Gas-Cooled Reactor Simulator and Brayton Turbine-Generator

    NASA Technical Reports Server (NTRS)

    Hissam, David Andy; Stewart, Eric T.

    2006-01-01

    A closed-loop brayton cycle, powered by a fission reactor, offers an attractive option for generating both planetary and in-space electric power. Non-nuclear testing of this type of system provides the opportunity to safely work out integration and system control challenges for a modest investment. Recognizing this potential, a team at Marshall Space Flight Center has evaluated the viability of integrating and testing an existing gas-cooled reactor simulator and a modified commercially available, off-the-shelf, brayton turbine-generator. Since these two systems were developed independently of one another, this evaluation had to determine if they could operate together at acceptable power levels, temperatures, and pressures. Thermal, fluid, and structural analyses show that this combined system can operate at acceptable power levels and temperatures. In addition, pressure drops across the reactor simulator, although higher than desired, are also viewed as acceptable. Three potential working fluids for the system were evaluated: N2, He/Ar, and He/Xe. Other potential issues, such as electrical breakdown in the generator and the operation of the brayton foil bearings using various gas mixtures, were also investigated.

  5. Rapid analysis of dissolved methane, ethylene, acetylene and ethane using partition coefficients and headspace-gas chromatography.

    PubMed

    Lomond, Jasmine S; Tong, Anthony Z

    2011-01-01

    Analysis of dissolved methane, ethylene, acetylene, and ethane in water is crucial in evaluating anaerobic activity and investigating the sources of hydrocarbon contamination in aquatic environments. A rapid chromatographic method based on phase equilibrium between water and its headspace is developed for these analytes. The new method requires minimal sample preparation and no special apparatus except those associated with gas chromatography. Instead of Henry's Law used in similar previous studies, partition coefficients are used for the first time to calculate concentrations of dissolved hydrocarbon gases, which considerably simplifies the calculation involved. Partition coefficients are determined to be 128, 27.9, 1.28, and 96.3 at 30°C for methane, ethylene, acetylene, and ethane, respectively. It was discovered that the volume ratio of gas-to-liquid phase is critical to the accuracy of the measurements. The method performance can be readily improved by reducing the volume ratio of the two phases. Method validation shows less than 6% variation in accuracy and precision except at low levels of methane where interferences occur in ambient air. Method detection limits are determined to be in the low ng/L range for all analytes. The performance of the method is further tested using environmental samples collected from various sites in Nova Scotia.

  6. Characterizing spatial and temporal variability of dissolved gases in aquatic environments with in situ mass spectrometry.

    PubMed

    Camilli, Richard; Duryea, Anthony N

    2009-07-01

    The TETHYS mass spectrometer is intended for long-term in situ observation of dissolved gases and volatile organic compounds in aquatic environments. Its design maintains excellent low mass range sensitivity and stability during long-term operations, enabling characterization of low-frequency variability in many trace dissolved gases. Results are presented from laboratory trials and a 300-h in situ trial in a shallow marine embayment in Massachusetts, U.S.A. This time series consists of over 15000 sample measurements and represents the longest continuous record made by an in situ mass spectrometer in an aquatic environment. These measurements possess sufficient sampling density and duration to apply frequency analysis techniques for study of temporal variability in dissolved gases. Results reveal correlations with specific environmental periodicities. Numerical methods are presented for converting mass spectrometer ion peak ratios to absolute-scale dissolved gas concentrations across wide temperature regimes irrespective of ambient pressure, during vertical water column profiles in a hypoxic deep marine basin off the coast of California, U.S.A. Dissolved oxygen concentration values obtained with the TETHYS instrument indicate close correlation with polarographic oxygen sensor data across the entire depth range. These methods and technology enable observation of aquatic environmental chemical distributions and dynamics at appropriate scales of resolution.

  7. Measuring Concentrations of Dissolved Methane and Ethane and the 13 C of Methane in Shale and Till.

    PubMed

    Hendry, M Jim; Barbour, S Lee; Schmeling, Erin E; Mundle, Scott O C

    2017-01-01

    Baseline characterization of concentrations and isotopic values of dissolved natural gases is needed to identify contamination caused by the leakage of fugitive gases from oil and gas activities. Methods to collect and analyze baseline concentration-depth profiles of dissolved CH 4 and C 2 H 6 and δ 13 C-CH 4 in shales and Quaternary clayey tills were assessed at two sites in the Williston Basin, Canada. Core and cuttings samples were stored in Isojars ® in a low O 2 headspace prior to analysis. Measurements and multiphase diffusion modeling show that the gas concentrations in core samples yield well-defined and reproducible depth profiles after 31-d equilibration. No measurable oxidative loss or production during core sample storage was observed. Concentrations from cuttings and mud gas logging (including IsoTubes ® ) were much lower than from cores, but correlated well. Simulations suggest the lower concentrations from cuttings can be attributed to drilling time, and therefore their use to define gas concentration profiles may have inherent limitations. Calculations based on mud gas logging show the method can provide estimates of core concentrations if operational parameters for the mud gas capture cylinder are quantified. The δ 13 C-CH 4 measured from mud gas, IsoTubes ® , cuttings, and core samples are consistent, exhibiting slight variations that should not alter the implications of the results in identifying the sources of the gases. This study shows core and mud gas techniques and, to a lesser extent, cuttings, can generate high-resolution depth profiles of dissolved hydrocarbon gas concentrations and their isotopes. © 2016, National Ground Water Association.

  8. Design of simulation-based medical education and advantages and disadvantages of in situ simulation versus off-site simulation.

    PubMed

    Sørensen, Jette Led; Østergaard, Doris; LeBlanc, Vicki; Ottesen, Bent; Konge, Lars; Dieckmann, Peter; Van der Vleuten, Cees

    2017-01-21

    Simulation-based medical education (SBME) has traditionally been conducted as off-site simulation in simulation centres. Some hospital departments also provide off-site simulation using in-house training room(s) set up for simulation away from the clinical setting, and these activities are called in-house training. In-house training facilities can be part of hospital departments and resemble to some extent simulation centres but often have less technical equipment. In situ simulation, introduced over the past decade, mainly comprises of team-based activities and occurs in patient care units with healthcare professionals in their own working environment. Thus, this intentional blend of simulation and real working environments means that in situ simulation brings simulation to the real working environment and provides training where people work. In situ simulation can be either announced or unannounced, the latter also known as a drill. This article presents and discusses the design of SBME and the advantage and disadvantage of the different simulation settings, such as training in simulation-centres, in-house simulations in hospital departments, announced or unannounced in situ simulations. Non-randomised studies argue that in situ simulation is more effective for educational purposes than other types of simulation settings. Conversely, the few comparison studies that exist, either randomised or retrospective, show that choice of setting does not seem to influence individual or team learning. However, hospital department-based simulations, such as in-house simulation and in situ simulation, lead to a gain in organisational learning. To our knowledge no studies have compared announced and unannounced in situ simulation. The literature suggests some improved organisational learning from unannounced in situ simulation; however, unannounced in situ simulation was also found to be challenging to plan and conduct, and more stressful among participants. The importance of

  9. 46 CFR 154.709 - Cargo boil-off as fuel: Gas detection equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.709 Cargo boil-off as fuel: Gas detection equipment... alarm at the machinery control station and in the wheelhouse if the methane concentration reaches 1.5...

  10. 46 CFR 154.709 - Cargo boil-off as fuel: Gas detection equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.709 Cargo boil-off as fuel: Gas detection equipment... alarm at the machinery control station and in the wheelhouse if the methane concentration reaches 1.5...

  11. 46 CFR 154.709 - Cargo boil-off as fuel: Gas detection equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.709 Cargo boil-off as fuel: Gas detection equipment... alarm at the machinery control station and in the wheelhouse if the methane concentration reaches 1.5...

  12. 46 CFR 154.709 - Cargo boil-off as fuel: Gas detection equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.709 Cargo boil-off as fuel: Gas detection equipment... alarm at the machinery control station and in the wheelhouse if the methane concentration reaches 1.5...

  13. 46 CFR 154.709 - Cargo boil-off as fuel: Gas detection equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.709 Cargo boil-off as fuel: Gas detection equipment... alarm at the machinery control station and in the wheelhouse if the methane concentration reaches 1.5...

  14. Gas-partitioning tracer test to qualify trapped gas during recharge

    USGS Publications Warehouse

    Heilweil, Victor M.; Kip, Solomon D.; Perkins, Kim S.; Ellett, Kevin M.

    2004-01-01

    Dissolved helium and bromide tracers were used to evaluate trapped gas during an infiltration pond experiment. Dissolved helium preferentially partitioned into trapped gas bubbles, or other pore air, because of its low solubility in water. This produced observed helium retardation factors of as much as 12 relative to bromide. Numerical simulations of helium breakthrough with both equilibrium and kinetically limited advection/dispersion/retardation did not match observed helium concentrations. However, better fits were obtained by including a decay term representing the diffusive loss of helium through interconnected, gas-filled pores. Calculations indicate that 7% to more than 26% of the porosity beneath the pond was filled with gas. Measurements of laboratory hydraulic properties indicate that a 10% decrease in saturation would reduce the hydraulic conductivity by at least one order of magnitude in the well-sorted sandstone, but less in the overlying soils. This is consistent with in situ measurements during the experiment, which show steeper hydraulic gradients in sandstone than in soil. Intrinsic permeability of the soil doubled during the first six months of the experiment, likely caused by a combination of dissolution and thermal contraction of trapped gas. Managers of artificial recharge basins may consider minimizing the amount of trapped gas by using wet, rather than dry, tilling to optimize infiltration rates, particularly in well-sorted porous media in which reintroduced trapped gas may cause substantial reductions in permeability. Trapped gas may also inhibit the amount of focused infiltration that occurs naturally during ephemeral flood events along washes and playas.

  15. Gas-partitioning tracer test to quantify trapped gas during recharge

    USGS Publications Warehouse

    Heilweil, V.M.; Solomon, D.K.; Perkins, K.S.; Ellett, K.M.

    2004-01-01

    Dissolved helium and bromide tracers were used to evaluate trapped gas during an infiltration pond experiment. Dissolved helium preferentially partitioned into trapped gas bubbles, or other pore air, because of its low solubility in water. This produced observed helium retardation factors of as much as 12 relative to bromide. Numerical simulations of helium breakthrough with both equilibrium and kinetically limited advection/dispersion/retardation did not match observed helium concentrations. However, better fits were obtained by including a decay term representing the diffusive loss of helium through interconnected, gas-filled pores. Calculations indicate that 7% to more than 26% of the porosity beneath the pond was filled with gas. Measurements of laboratory hydraulic properties indicate that a 10% decrease in saturation would reduce the hydraulic conductivity by at least one order of magnitude in the well-sorted sandstone, but less in the overlying soils. This is consistent with in situ measurements during the experiment, which show steeper hydraulic gradients in sandstone than in soil. Intrinsic permeability of the soil doubled during the first six months of the experiment, likely caused by a combination of dissolution and thermal contraction of trapped gas. Managers of artificial recharge basins may consider minimizing the amount of trapped gas by using wet, rather than dry, tilling to optimize infiltration rates, particularly in well-sorted porous media in which reintroduced trapped gas may cause substantial reductions in permeability. Trapped gas may also inhibit the amount of focused infiltration that occurs naturally during ephemeral flood events along washes and playas.

  16. Online gas composition estimation in solid oxide fuel cell systems with anode off-gas recycle configuration

    NASA Astrophysics Data System (ADS)

    Dolenc, B.; Vrečko, D.; Juričić, Ð.; Pohjoranta, A.; Pianese, C.

    2017-03-01

    Degradation and poisoning of solid oxide fuel cell (SOFC) stacks are continuously shortening the lifespan of SOFC systems. Poisoning mechanisms, such as carbon deposition, form a coating layer, hence rapidly decreasing the efficiency of the fuel cells. Gas composition of inlet gases is known to have great impact on the rate of coke formation. Therefore, monitoring of these variables can be of great benefit for overall management of SOFCs. Although measuring the gas composition of the gas stream is feasible, it is too costly for commercial applications. This paper proposes three distinct approaches for the design of gas composition estimators of an SOFC system in anode off-gas recycle configuration which are (i.) accurate, and (ii.) easy to implement on a programmable logic controller. Firstly, a classical approach is briefly revisited and problems related to implementation complexity are discussed. Secondly, the model is simplified and adapted for easy implementation. Further, an alternative data-driven approach for gas composition estimation is developed. Finally, a hybrid estimator employing experimental data and 1st-principles is proposed. Despite the structural simplicity of the estimators, the experimental validation shows a high precision for all of the approaches. Experimental validation is performed on a 10 kW SOFC system.

  17. Numerical simulation of gas distribution in goaf under Y ventilation mode

    NASA Astrophysics Data System (ADS)

    Li, Shengzhou; Liu, Jun

    2018-04-01

    Taking the Y type ventilation of the working face as the research object, diffusion equation is introduced to simulate the diffusion characteristics of gas, using Navier-Stokes equation and Brinkman equation to simulate the gas flow in working face and goaf, the physical model of gas flow in coal mining face was established. With numerical simulation software COMSOL multiphysics methods, gas distribution in goaf under Y ventilation mode is simulated and gas distribution of the working face, the upper corner and goaf is analysised. The results show that the Y type ventilation system can effectively improve the corner gas accumulation and overrun problem.

  18. Physiological Demands of Simulated Off-Road Cycling Competition

    PubMed Central

    Smekal, Gerhard; von Duvillard, Serge P.; Hörmandinger, Maximilian; Moll, Roland; Heller, Mario; Pokan, Rochus; Bacharach, David W.; LeMura, Linda M.; Arciero, Paul

    2015-01-01

    The purpose of the study was to measure the demands of off-road cycling via portable spirometry, leg-power output (PO), heart rate (HR) and blood lactate (BLa) concentration. Twenty-four male competitive cyclists (age: 29±7.2 yrs, height: 1.79 ± 0.05 m, body mass: 70.0 ± 4.9 kg, VO2peak: 64.9 ± 7.5 ml·kg-1·min-1) performed simulated mountain bike competitions (COMP) and laboratory tests (LabT). From LabT, we determined maximal workload and first and second ventilatory thresholds (VT1, VT2). A high-performance athlete (HPA) was used for comparison with three groups of subjects with different sport-specific performance levels. Load profiles of COMP were also investigated during uphill, flat and downhill cycling. During the COMP, athletes achieved a mean oxygen uptake (VO2COMP) of 57.0 ± 6.8 ml·kg-1·min-1 vs. 71.1 ml·kg-1·min-1 for the HPA. The POCOMP was 2.66±0.43 W·kg-1 and 3.52 W·kg-1 for the HPA. POCOMP, VO2COMP and HRCOMP were compared to corresponding variables at the VT2 of LabT. LabT variables correlated with racing time (RTCOMP) and POCOMP (p < 0.01 to <0.001; r-0.59 to -0.80). The VO2peak (LabT) accounted for 65% of variance of a single COMP test. VO2COMP, POCOMP and also endurance variables measured from LabTs were found as important determinants for cross-country performance. The high average VO2COMP indicates that a high aerobic capacity is a prerequisite for successful COMP. Findings derived from respiratory gas measures during COMPs might be useful when designing mountain bike specific training. Key points Cross- country cycling is characterized by high oxygen costs due to the high muscle mass simultaneously working to fulfill the demands of this kind of sports. Heart rate and blood lactate concentration measures are not sensitive enough to assess the energy requirements of COMP. Therefore, respiratory gas and power output measures are helpful to provide new information to physiological profile of cross- country cycling. An excellent

  19. An experimental study on the cavitation of water with dissolved gases

    NASA Astrophysics Data System (ADS)

    Li, Buxuan; Gu, Youwei; Chen, Min

    2017-12-01

    Cavitation inception is generally determined by the tensile strengths of liquids. Investigations on the tensile strength of water, which is essential in many fields, will help understand the promotion/prevention of cavitation and related applications in water. Previous experimental studies, however, vary in their conclusions about the value of tensile strength of water; the difference is commonly attributed to the existence of impurities in water. Dissolved gases, especially oxygen and nitrogen from the air, are one of the most common kinds of impurities in water. The influence of these gases on the tensile strength of water is still unclear. This study investigated the effects of dissolved gases on water cavitation through experiments. Cavitation in water is generated by acoustic method. Water samples are prepared with dissolved oxygen and nitrogen in different gas concentrations. Results show that under the same temperature, the tensile strength of water with dissolved oxygen or nitrogen decreases with increased gas concentration compared with that of ultrapure water. Under the same gas concentration and temperature, water with dissolved oxygen shows a lower tensile strength than that with dissolved nitrogen. Possible reasons of these results are also discussed.

  20. Experimental Simulations of Methane Gas Migration through Water-Saturated Sediment Cores

    NASA Astrophysics Data System (ADS)

    Choi, J.; Seol, Y.; Rosenbaum, E. J.

    2010-12-01

    Previous numerical simulations (Jaines and Juanes, 2009) showed that modes of gas migration would mainly be determined by grain size; capillary invasion preferably occurring in coarse-grained sediments vs. fracturing dominantly in fine-grained sediments. This study was intended to experimentally simulate preferential modes of gas migration in various water-saturated sediment cores. The cores compacted in the laboratory include a silica sand core (mean size of 180 μm), a silica silt core (1.7 μm), and a kaolin clay core (1.0 μm). Methane gas was injected into the core placed within an x-ray-transparent pressure vessel, which was under continuous x-ray computed tomography (CT) scanning with controlled radial (σr), axial (σa), and pore pressures (P). The CT image analysis reveals that, under the radial effective stress (σr') of 0.69 MPa and the axial effective stress (σa') of 1.31 MPa, fracturings by methane gas injection occur in both silt and clay cores. Fracturing initiates at the capillary pressure (Pc) of ~ 0.41 MPa and ~ 2.41 MPa for silt and clay cores, respectively. Fracturing appears as irregular fracture-networks consisting of nearly invisibly-fine multiple fractures, longitudinally-oriented round tube-shape conduits, or fine fractures branching off from the large conduits. However, for the sand core, only capillary invasion was observed at or above 0.034 MPa of capillary pressure under the confining pressure condition of σr' = 1.38 MPa and σa' = 2.62 MPa. Compared to the numerical predictions under similar confining pressure conditions, fracturing occurs with relatively larger grain sizes, which may result from lower grain-contact compression and friction caused by loose compaction and flexible lateral boundary employed in the experiment.

  1. Assessment of the impact of the next generation solvent on DWPF melter off-gas flammability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, W. E.

    2013-02-13

    An assessment has been made to evaluate the impact on the DWPF melter off-gas flammability of replacing the current solvent used in the Modular Caustic-Side Solvent Extraction Process Unit (MCU) process with the Next Generation Solvent (NGS-MCU) and blended solvent. The results of this study showed that the concentrations of nonvolatile carbon and hydrogen of the current solvent in the Slurry Mix Evaporator (SME) product would both be about 29% higher than their counterparts of the NGS-MCU and blended solvent in the absence of guanidine partitioning. When 6 ppm of guanidine (TiDG) was added to the effluent transfer to DWPFmore » to simulate partitioning for the NGS-MCU and blended solvent cases and the concentration of Isopar{reg_sign} L in the effluent transfer was controlled below 87 ppm, the concentrations of nonvolatile carbon and hydrogen of the NGS-MCU and blended solvent were still about 12% and 4% lower, respectively, than those of the current solvent. It is, therefore, concluded that as long as the volume of MCU effluent transfer to DWPF is limited to 15,000 gallons per Sludge Receipt and Adjustment Tank (SRAT)/SME cycle and the concentration of Isopar{reg_sign} L in the effluent transfer is controlled below 87 ppm, using the current solvent assumption of 105 ppm Isopar{reg_sign} L or 150 ppm solvent in lieu of NGS-MCU or blended solvent in the DWPF melter off-gas flammability assessment is conservative for up to an additional 6 ppm of TiDG in the effluent due to guanidine partitioning. This report documents the calculations performed to reach this conclusion.« less

  2. Enhancement of organic matter degradation and methane gas production of anaerobic granular sludge by degasification of dissolved hydrogen gas.

    PubMed

    Satoh, Hisashi; Bandara, Wasala M K R T W; Sasakawa, Manabu; Nakahara, Yoshihito; Takahashi, Masahiro; Okabe, Satoshi

    2017-11-01

    A hollow fiber degassing membrane (DM) was applied to enhance organic matter degradation and methane gas production of anaerobic granular sludge process by reducing the dissolved hydrogen gas (D-H 2 ) concentration in the liquid phase. DM was installed in the bench-scale anaerobic granular sludge reactors and D-H 2 was removed through DM using a vacuum pump. Degasification improved the organic matter degradation efficiency to 79% while the efficiency was 62% without degasification at 12,000mgL -1 of the influent T-COD concentration. Measurement of D-H 2 concentrations in the liquid phase confirmed that D-H 2 was removed by degasification. Furthermore, the effect of acetate concentrations on the organic matter degradation efficiency was investigated. At acetate concentrations above 3gL -1 , organic matter degradation deteriorated. Degasification enhanced the propionate and acetate degradation. These results suggest that degasification reduced D-H 2 concentration and volatile fatty acids concentrations, prevented pH drop, and subsequent enhanced organic matter degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A new device for continuous monitoring the CO2 dissolved in water

    NASA Astrophysics Data System (ADS)

    de Gregorio, S.; Camarda, M.; Cappuzzo, S.; Giudice, G.; Gurrieri, S.; Longo, M.

    2009-04-01

    The measurements of dissolved CO2 in water are common elements of industrial processes and scientific research. In order to perform gas dissolved measurements is required to separate the dissolved gaseous phase from water. We developed a new device able to separate the gases phase directly in situ and well suitable for continuous measuring the CO2 dissolved in water. The device is made by a probe of a polytetrafluorethylene (PTFE) tube connected to an I.R. spectrophotometer (I.R.) and a pump. The PTFE is a polymeric semi-permeable membrane and allows the permeation of gas in the system. Hence, this part of the device is dipped in water in order to equilibrate the probe headspace with the dissolved gases. The partial pressure of the gas i in the headspace at equilibrium (Pi) follows the Henry's law: Pi=Hi•Ci, where Hi is the Henry's constant and Ci is the dissolved concentration of gas i. After the equilibrium is achieved, the partial pressure of CO2 inside the tube is equal to the partial pressure of dissolved CO2. The concentration of CO2 is measured by the I.R. connected to the tube. The gas is moved from the tube headspace to the I.R. by using the pump. In order to test the device and assess the best operating condition, several experimental were performed in laboratory. All the test were executed in a special apparatus where was feasible to create controlled atmospheres. Afterward the device has been placed in a draining tunnel sited in the Mt. Etna Volcano edifice (Italy). The monitored groundwater intercepts the Pernicana Fault, along which degassing phenomena are often observed. The values recorded by the station result in agreement with monthly directly measurements of dissolved CO2 partial pressure.

  4. Respiratory response to formaldehyde and off-gas of urea formaldehyde foam insulation.

    PubMed Central

    Day, J H; Lees, R E; Clark, R H; Pattee, P L

    1984-01-01

    In 18 subjects, 9 of whom had previously complained of various nonrespiratory adverse effects from the urea formaldehyde foam insulation (UFFI) in their homes, pulmonary function was assessed before and after exposure in a laboratory. On separate occasions formaldehyde, 1 part per million (ppm), and UFFI off-gas yielding a formaldehyde concentration of 1.2 ppm, were delivered to each subject in an environmental chamber for 90 minutes and a fume hood for 30 minutes respectively. None of the measures of pulmonary function used (forced vital capacity, forced expiratory volume in 1 second or maximal midexpiratory flow rate) showed any clinically or statistically significant response to the exposure either immediately after or 8 hours after its beginning. There were no statistically significant differences between the responses of the group that had previously complained of adverse effects and of the group that had not. There was no evidence that either formaldehyde or UFFI off-gas operates as a lower airway allergen or important bronchospastic irritant in this heterogeneous population. Images Fig. 1 PMID:6388780

  5. Assessment of the impact of TOA partitioning on DWPF off-gas flammability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, W. E.

    2013-06-01

    An assessment has been made to evaluate the impact on the DWPF melter off-gas flammability of increasing the amount of TOA in the current solvent used in the Modular Caustic-Side Solvent Extraction Process Unit (MCU) process. The results of this study showed that the concentrations of nonvolatile carbon of the current solvent limit (150 ppm) in the Slurry Mix Evaporator (SME) product would be about 7% higher and the nonvolatile hydrogen would be 2% higher than the actual current solvent (126 ppm) with an addition of up to 3 ppm of TOA when the concentration of Isopar L in themore » effluent transfer is controlled below 87 ppm and the volume of MCU effluent transfer to DWPF is limited to 15,000 gallons per Sludge Receipt and Adjustment Tank (SRAT)/SME cycle. Therefore, the DWPF melter off-gas flammability assessment is conservative for up to an additional 3 ppm of TOA in the effluent based on these assumptions. This report documents the calculations performed to reach this conclusion.« less

  6. Simulation Approach for Microscale Noncontinuum Gas-Phase Heat Transfer

    NASA Astrophysics Data System (ADS)

    Torczynski, J. R.; Gallis, M. A.

    2008-11-01

    In microscale thermal actuators, gas-phase heat transfer from the heated beams to the adjacent unheated substrate is often the main energy-loss mechanism. Since the beam-substrate gap is comparable to the molecular mean free path, noncontinuum gas effects are important. A simulation approach is presented in which gas-phase heat transfer is described by Fourier's law in the bulk gas and by a wall boundary condition that equates the normal heat flux to the product of the gas-solid temperature difference and a heat transfer coefficient. The dimensionless parameters in this heat transfer coefficient are determined by comparison to Direct Simulation Monte Carlo (DSMC) results for heat transfer from beams of rectangular cross section to the substrate at free-molecular to near-continuum gas pressures. This simulation approach produces reasonably accurate gas-phase heat-transfer results for wide ranges of beam geometries and gas pressures. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  7. Visualization of gas dissolution following upward gas migration in porous media: Technique and implications for stray gas

    NASA Astrophysics Data System (ADS)

    Van De Ven, C. J. C.; Mumford, Kevin G.

    2018-05-01

    The study of gas-water mass transfer in porous media is important in many applications, including unconventional resource extraction, carbon storage, deep geological waste storage, and remediation of contaminated groundwater, all of which rely on an understanding of the fate and transport of free and dissolved gas. The novel visual technique developed in this study provided both quantitative and qualitative observations of gas-water mass transfer. Findings included interaction between free gas architecture and dissolved plume migration, plume geometry and longevity. The technique was applied to the injection of CO2 in source patterns expected for stray gas originating from oil and gas operations to measure dissolved phase concentrations of CO2 at high spatial and temporal resolutions. The data set is the first of its kind to provide high resolution quantification of gas-water dissolution, and will facilitate an improved understanding of the fundamental processes of gas movement and fate in these complex systems.

  8. Simulation of subsea gas hydrate exploitation

    NASA Astrophysics Data System (ADS)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2014-05-01

    The recovery of methane from gas hydrate layers that have been detected in several subsea sediments and permafrost regions around the world is a promising perspective to overcome future shortages in natural gas supply. Being aware that conventional natural gas resources are limited, research is going on to develop technologies for the production of natural gas from such new sources. Thus various research programs have started since the early 1990s in Japan, USA, Canada, India, and Germany to investigate hydrate deposits and develop required technologies. In recent years, intensive research has focussed on the capture and storage of CO2 from combustion processes to reduce climate impact. While different natural or man-made reservoirs like deep aquifers, exhausted oil and gas deposits or other geological formations are considered to store gaseous or liquid CO2, the storage of CO2 as hydrate in former methane hydrate fields is another promising alternative. Due to beneficial stability conditions, methane recovery may be well combined with CO2 storage in the form of hydrates. Regarding technological implementation many problems have to be overcome. Especially mixing, heat and mass transfer in the reservoir are limiting factors causing very long process times. Within the scope of the German research project »SUGAR« different technological approaches for the optimized exploitation of gas hydrate deposits are evaluated and compared by means of dynamic system simulations and analysis. Detailed mathematical models for the most relevant chemical and physical processes are developed. The basic mechanisms of gas hydrate formation/dissociation and heat and mass transport in porous media are considered and implemented into simulation programs. Simulations based on geological field data have been carried out. The studies focus on the potential of gas production from turbidites and their fitness for CO2 storage. The effects occurring during gas production and CO2 storage within

  9. Detection of hydrogen dissolved in acrylonitrile butadiene rubber by 1H nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Nishimura, Shin; Fujiwara, Hirotada

    2012-01-01

    Rubber materials, which are used for hydrogen gas seal, can dissolve hydrogen during exposure in high-pressure hydrogen gas. Dissolved hydrogen molecules were detected by solid state 1H NMR of the unfilled vulcanized acrylonitrile butadiene rubber. Two signals were observed at 4.5 ppm and 4.8 ppm, which were assignable to dissolved hydrogen, in the 1H NMR spectrum of NBR after being exposed 100 MPa hydrogen gas for 24 h at room temperature. These signals were shifted from that of gaseous hydrogen molecules. Assignment of the signals was confirmed by quantitative estimation of dissolved hydrogen and peak area of the signals.

  10. New approach in direct-simulation of gas mixtures

    NASA Technical Reports Server (NTRS)

    Chung, Chan-Hong; De Witt, Kenneth J.; Jeng, Duen-Ren

    1991-01-01

    Results are reported for an investigation of a new direct-simulation Monte Carlo method by which energy transfer and chemical reactions are calculated. The new method, which reduces to the variable cross-section hard sphere model as a special case, allows different viscosity-temperature exponents for each species in a gas mixture when combined with a modified Larsen-Borgnakke phenomenological model. This removes the most serious limitation of the usefulness of the model for engineering simulations. The necessary kinetic theory for the application of the new method to mixtures of monatomic or polyatomic gases is presented, including gas mixtures involving chemical reactions. Calculations are made for the relaxation of a diatomic gas mixture, a plane shock wave in a gas mixture, and a chemically reacting gas flow along the stagnation streamline in front of a hypersonic vehicle. Calculated results show that the introduction of different molecular interactions for each species in a gas mixture produces significant differences in comparison with a common molecular interaction for all species in the mixture. This effect should not be neglected for accurate DSMC simulations in an engineering context.

  11. Chromophoric and fluorescent dissolved organic matter in and above the oxygen minimum zone off Peru

    NASA Astrophysics Data System (ADS)

    Loginova, A. N.; Thomsen, S.; Engel, A.

    2016-11-01

    As a result of nutrient upwelling, the Peruvian coastal system is one of the most productive regions in the ocean. Sluggish ventilation of intermediate waters, characteristic for the Eastern Tropical South Pacific (ETSP) and microbial degradation of a high organic matter load promotes deoxygenation at depth. Dissolved organic matter (DOM) plays a key role in microbial respiration and carbon cycling, but little is known on DOM distribution and cycling in the ETSP. DOM optical properties give important insights on DOM sources, structure and biogeochemical reactivity. Here, we present data and a conceptual view on distribution and cycling of chromophoric (CDOM) and fluorescent (FDOM) DOM in and above the oxygen minimum zone (OMZ) off Peru. Five fluorescent components were identified during PARAFAC analysis. Highest intensities of CDOM and of the amino acid-like fluorescent component (C3) occurred above the OMZ and coincided with maximum chl a concentrations, suggesting phytoplankton productivity as major source. High intensities of a marine humic-like fluorescent component (C1), observed in subsurface waters, indicated in situ microbial reworking of DOM. FDOM release from inner shelf sediment was determined by seawater analysis and continuous glider sensor measurement and included a humic-like component (C2) with a signature typical for terrestrially derived humic acids. Upwelling supplied humic-like substances to the euphotic zone. Photo-reactions were likely involved in the production of a humic-like fluorescent component (C5). Our data show that variable biological and physical processes need to be considered for understanding DOM cycling in a highly dynamic coastal upwelling system like the ETSP off Peru.

  12. On the role of sea-state in bubble-mediated air-sea gas flux during a winter storm

    NASA Astrophysics Data System (ADS)

    Liang, Jun-Hong; Emerson, Steven R.; D'Asaro, Eric A.; McNeil, Craig L.; Harcourt, Ramsey R.; Sullivan, Peter P.; Yang, Bo; Cronin, Meghan F.

    2017-04-01

    Oceanic bubbles play an important role in the air-sea exchange of weakly soluble gases at moderate to high wind speeds. A Lagrangian bubble model embedded in a large eddy simulation model is developed to study bubbles and their influence on dissolved gases in the upper ocean. The transient evolution of mixed-layer dissolved oxygen and nitrogen gases at Ocean Station Papa (50°N, 145°W) during a winter storm is reproduced with the model. Among different physical processes, gas bubbles are the most important in elevating dissolved gas concentrations during the storm, while atmospheric pressure governs the variability of gas saturation anomaly (the relative departure of dissolved gas concentration from the saturation concentration). For the same wind speed, bubble-mediated gas fluxes are larger during rising wind with smaller wave age than during falling wind with larger wave age. Wave conditions are the primary cause for the bubble gas flux difference: when wind strengthens, waves are less-developed with respect to wind, resulting in more frequent large breaking waves. Bubble generation in large breaking waves is favorable for a large bubble-mediated gas flux. The wave-age dependence is not included in any existing bubble-mediated gas flux parameterizations.

  13. Effects of simulated flue gas on components of Scenedesmus raciborskii WZKMT.

    PubMed

    Li, Xie-kun; Xu, Jing-liang; Guo, Ying; Zhou, Wei-zheng; Yuan, Zhen-hong

    2015-08-01

    Scenedesmus raciborskii WZKMT cultured with simulated flue gas was investigated. Cellular components, including total sugar, starch, chlorophyll, protein and lipid, were compared between simulated flue gas and 7% (v/v) CO2. Dissolution of SO2 and NO in simulated flue gas led to pH decrease and toxicity to microalgae cells. Furthermore, the death or aging of microalgae cells reduced the buffer capacity and caused decrease of simulated flue gas absorption. With 7% CO2, the highest total sugar and starch content could attain to 66.76% and 53.16%, respectively, which indicated S. raciborskii WZKMT is a desired feedstock candidate for bioethanol production. Microalgae growth and starch accumulation was inhibited, while cells produced more chlorophyll, protein and lipid when simulated flue gas was the carbon source. Fatty acids composition analysis indicated that there was no significant distinction on fatty acids relative content (fatty acid/TFA) between cells aerated using simulated flue gas and 7% CO2. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Natural Gas Evolution in a Gas Hydrate Melt: Effect of Thermodynamic Hydrate Inhibitors.

    PubMed

    Sujith, K S; Ramachandran, C N

    2017-01-12

    Natural gas extraction from gas hydrate sediments by injection of hydrate inhibitors involves the decomposition of hydrates. The evolution of dissolved gas from the hydrate melt is an important step in the extraction process. Using classical molecular dynamics simulations, we study the evolution of dissolved methane from its hydrate melt in the presence of two thermodynamic hydrate inhibitors, NaCl and CH 3 OH. An increase in the concentration of hydrate inhibitors is found to promote the nucleation of methane nanobubbles in the hydrate melt. Whereas NaCl promotes bubble formation by enhancing the hydrophobic interaction between aqueous CH 4 molecules, CH 3 OH molecules assist bubble formation by stabilizing CH 4 bubble nuclei formed in the solution. The CH 3 OH molecules accumulate around the nuclei leading to a decrease in the surface tension at their interface with water. The nanobubbles formed are found to be highly dynamic with frequent exchange of CH 4 molecules between the bubble and the surrounding liquid. A quantitative analysis of the dynamic behavior of the bubble is performed by introducing a unit step function whose value depends on the location of CH 4 molecules with respect to the bubble. It is observed that an increase in the concentration of thermodynamic hydrate inhibitors reduces the exchange process, making the bubble less dynamic. It is also found that for a given concentration of the inhibitor, larger bubbles are less dynamic compared to smaller ones. The dependence of the dynamic nature of nanobubbles on bubble size and inhibitor concentration is correlated with the solubility of CH 4 and the Laplace pressure within the bubble. The effect of CO 2 on the formation of nanobubble in the CH 4 -CO 2 mixed gas hydrate melt in the presence of inhibitors is also examined. The simulations show that the presence of CO 2 molecules significantly reduces the induction time for methane nanobubble nucleation. The role of CO 2 in the early nucleation of

  15. METC CFD simulations of hot gas filtration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O`Brien, T.J.

    1995-06-01

    Computational Fluid Dynamic (CFD) simulations of the fluid/particle flow in several hot gas filtration vessels will be presented. These simulations have been useful in designing filtration vessels and in diagnosing problems with filter operation. The simulations were performed using the commercial code FLUENT and the METC-developed code MFIX. Simulations of the initial configuration of the Karhula facility indicated that the dirty gas flow over the filter assemblage was very non-uniform. The force of the dirty gas inlet flow was inducing a large circulation pattern that caused flow around the candles to be in opposite directions on opposite sides of themore » vessel. By introducing a system of baffles, a more uniform flow pattern was developed. This modification may have contributed to the success of the project. Several simulations of configurations proposed by Industrial Filter and Pump were performed, varying the position of the inlet. A detailed resolution of the geometry of the candles allowed determination of the flow between the individual candles. Recent simulations in support of the METC/CeraMem Cooperative Research and Development Agreement have analyzed the flow in the vessel during the cleaning back-pulse. Visualization of experiments at the CeraMem cold-flow facility provided confidence in the use of CFD. Extensive simulations were then performed to assist in the design of the hot test facility being built by Ahlstrom/Pyropower. These tests are intended to demonstrate the CeraMem technology.« less

  16. Study of plasma off-gas treatment from spent ion exchange resin pyrolysis.

    PubMed

    Castro, Hernán Ariel; Luca, Vittorio; Bianchi, Hugo Luis

    2017-03-23

    Polystyrene divinylbenzene-based ion exchange resins are employed extensively within nuclear power plants (NPPs) and research reactors for purification and chemical control of the cooling water system. To maintain the highest possible water quality, the resins are regularly replaced as they become contaminated with a range of isotopes derived from compromised fuel elements as well as corrosion and activation products including 14 C, 60 Co, 90 Sr, 129 I, and 137 Cs. Such spent resins constitute a major proportion (in volume terms) of the solid radioactive waste generated by the nuclear industry. Several treatment and conditioning techniques have been developed with a view toward reducing the spent resin volume and generating a stable waste product suitable for long-term storage and disposal. Between them, pyrolysis emerges as an attractive option. Previous work of our group suggests that the pyrolysis treatment of the resins at low temperatures between 300 and 350 °C resulted in a stable waste product with a significant volume reduction (>50%) and characteristics suitable for long-term storage and/or disposal. However, another important issue to take into account is the complexity of the off-gas generated during the process and the different technical alternatives for its conditioning. Ongoing work addresses the characterization of the ion exchange resin treatment's off-gas. Additionally, the application of plasma technology for the treatment of the off-gas current was studied as an alternative to more conventional processes utilizing oil- or gas-fired post-combustion chambers operating at temperatures in excess of 1000 °C. A laboratory-scale flow reactor, using inductively coupled plasma, operating under sub-atmospheric conditions was developed. Fundamental experiments using model compounds have been performed, demonstrating a high destruction and removal ratio (>99.99%) for different reaction media, at low reactor temperatures and moderate power consumption

  17. Correlation between centre offsets and gas velocity dispersion of galaxy clusters in cosmological simulations

    NASA Astrophysics Data System (ADS)

    Li, Ming-Hua; Zhu, Weishan; Zhao, Dong

    2018-05-01

    The gas is the dominant component of baryonic matter in most galaxy groups and clusters. The spatial offsets of gas centre from the halo centre could be an indicator of the dynamical state of cluster. Knowledge of such offsets is important for estimate the uncertainties when using clusters as cosmological probes. In this paper, we study the centre offsets roff between the gas and that of all the matter within halo systems in ΛCDM cosmological hydrodynamic simulations. We focus on two kinds of centre offsets: one is the three-dimensional PB offsets between the gravitational potential minimum of the entire halo and the barycentre of the ICM, and the other is the two-dimensional PX offsets between the potential minimum of the halo and the iterative centroid of the projected synthetic X-ray emission of the halo. Haloes at higher redshifts tend to have larger values of rescaled offsets roff/r200 and larger gas velocity dispersion σ v^gas/σ _{200}. For both types of offsets, we find that the correlation between the rescaled centre offsets roff/r200 and the rescaled 3D gas velocity dispersion, σ _v^gas/σ _{200} can be approximately described by a quadratic function as r_{off}/r_{200} ∝ (σ v^gas/σ _{200} - k_2)2. A Bayesian analysis with MCMC method is employed to estimate the model parameters. Dependence of the correlation relation on redshifts and the gas mass fraction are also investigated.

  18. Simulation of a Driven Dense Granular Gas

    NASA Astrophysics Data System (ADS)

    Bizon, Chris; Shattuck, M. D.; Swift, J. B.; Swinney, Harry L.

    1998-11-01

    Event driven particle simulations quantitatively reproduce the experimental results on vibrated granular layers, including the formation of standing wave patterns(C. Bizon, M.D. Shattuck, J.B. Swift, W.D. McCormick, and H.L. Swinney, Phys. Rev. Lett. 80), pp. 57-60 (1998). and secondary instabilities(J.R. deBruyn, C. Bizon, M.D. Shattuck, D. Goldman, J.B. Swift, and H.L. Swinney, Phys. Rev. Lett. 81) (1998), to appear. . In these simulations the velocity distributions are nearly Gaussian when scaled with the local fluctuational kinetic energy (granular temperature); this suggests that inelastic dense gas kinetic theory is applicable. We perform simulations of a two-dimensional granular gas that is homogeneously driven with fluctuating forces. We find that the equation of state differs from that of an elastic dense gas and that this difference is due to a change in the distribution of relative velocities at collisions. Granular thermal conductivity and viscosity are measured by allowing the fluctuating forces to have large scale spatial gradients.

  19. Predation Susceptibility of Juvenile Fall Chinook Salmon Exposed to Sudden Temperature Changes and Slightly Supersaturated Dissolved Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellgraph, Brian J.; Carter, Kathleen M.; Chamness, Michele A.

    High mortality of hatchery-reared juvenile fall Chinook salmon emigrating from the Clearwater River was previously measured at the confluence of the Snake and Clearwater rivers; however, the causative mechanism of mortality is unknown. To elucidate potential mechanisms, the predation susceptibility of juvenile fall Chinook salmon was assessed during simulated passage from the Clearwater River and through the confluence of the Clearwater and Snake rivers, with and without cool water flow augmentation. Emigrant-sized juvenile salmon were acclimated to temperatures typical of the Clearwater River when cool water augmentation is discharged from Dworshak Dam (10°C to 17°C) and during temperatures that wouldmore » be present without augmentation (17°C to 24°C), and were then exposed to smallmouth bass within temperatures typical of the Snake River in summer (17°C to 24°C). Slightly supersaturated total dissolved gas concentrations of 105% were also simulated to more closely approximate gas conditions of both rivers in summer. Predation susceptibility of juvenile salmon acclimated at 10°C or 17°C and exposed to predators at 17°C did not differ. However, for salmon exposed to predators at 24°C, predation susceptibility was arguably higher for juvenile salmon acclimated at 10°C (a 14°C increase) than for salmon acclimated at 17°C or 24°C (7°C and 0°C increases, respectively). These results indicate that predation susceptibility may be higher when a relatively large temperature difference exists between the Clearwater and Snake rivers; that is, when cool water flow augmentation is occurs in summer. However, further research is needed to determine if high confluence mortality measured in previous studies is related to cool water augmentation and, ultimately, whether or not this mortality has a population-level effect on the dynamics of wild Snake River fall Chinook salmon.« less

  20. Developing monitoring plans to detect spills related to natural gas production.

    PubMed

    Harris, Aubrey E; Hopkinson, Leslie; Soeder, Daniel J

    2016-11-01

    Surface water is at risk from Marcellus Shale operations because of chemical storage on drill pads during hydraulic fracturing operations, and the return of water high in total dissolved solids (up to 345 g/L) from shale gas production. This research evaluated how two commercial, off-the-shelf water quality sensors responded to simulated surface water pollution events associated with Marcellus Shale development. First, peak concentrations of contaminants from typical spill events in monitored watersheds were estimated using regression techniques. Laboratory measurements were then conducted to determine how standard in-stream instrumentation that monitor conductivity, pH, temperature, and dissolved oxygen responded to three potential spill materials: ethylene glycol (corrosion inhibitor), drilling mud, and produced water. Solutions ranging from 0 to 50 ppm of each spill material were assessed. Over this range, the specific conductivity increased on average by 19.9, 27.9, and 70 μS/cm for drilling mud, ethylene glycol, and produced water, respectively. On average, minor changes in pH (0.5-0.8) and dissolved oxygen (0.13-0.23 ppm) were observed. While continuous monitoring may be part of the strategy for detecting spills to surface water, these minor impacts to water quality highlight the difficulty in detecting spill events. When practical, sensors should be placed at the mouths of small watersheds where drilling activities or spill risks are present, as contaminant travel distance strongly affects concentrations in surface water systems.

  1. Induction simulation of gas core nuclear engine

    NASA Technical Reports Server (NTRS)

    Poole, J. W.; Vogel, C. E.

    1973-01-01

    The design, construction and operation of an induction heated plasma device known as a combined principles simulator is discussed. This device incorporates the major design features of the gas core nuclear rocket engine such as solid feed, propellant seeding, propellant injection through the walls, and a transpiration cooled, choked flow nozzle. Both argon and nitrogen were used as propellant simulating material, and sodium was used for fuel simulating material. In addition, a number of experiments were conducted utilizing depleted uranium as the fuel. The test program revealed that satisfactory operation of this device can be accomplished over a range of operating conditions and provided additional data to confirm the validity of the gas core concept.

  2. In Situ Raman Spectroscopic Observations of Gas-Saturated Rising Oil droplets: Simulation with Decane as an Oil-Equivalent Substitute

    NASA Astrophysics Data System (ADS)

    Peltzer, E. T.; Walz, P. M.; Brewer, P. G.

    2016-02-01

    Oil droplets rising from the sea floor, whether from seeps or well leakage, contain very large quantities of dissolved gas that profoundly affects their density and critical oil-water interfacial characteristics. The primary dissolved gas is methane which may be up to 30% of the molar volume. This can create a hydrate skin as the methane gas is shed from the oil as it rises through the water column, thus decreasing in pressure and increasing in temperature, and steadily changing the rising droplet buoyancy. We have explored this phenomenon by executing controlled ROV based experiments with a "bubble cup" technique in which a small volume of gas saturated decane (saturated with pure methane, a mix of methane and nitrogen , or a mix of methane and CO2) is interrogated by laser Raman spectroscopy. The use of decane as an oil "substitute" is required since natural oil samples are highly fluorescent due to the presence of polycyclic aromatic hydrocarbons. We have devised Matlab techniques for extracting the spectroscopic dissolved methane signal from the thicket of decane peaks that surround it. We have directly observed the rate at which gases are lost from the "oil" per unit area at depths in the water column that are both within and outside the hydrate forming phase boundary. We have compared the behavior of both a non-hydrate forming dissolved gas (nitrogen) with CO2 where the hydrate phase boundary is at significantly shallower depth. The results indicate complex interfacial behavior and physical chemistry. We did not observe direct gas bubble formation on the decane outer surface but did observe gas bubble formation within the oil droplets as they rose through the water column. Because there are significant energy barriers for homogeneous bubble formation within the decane phase, we took this as evidence of significant gas super-saturation within the oil droplet. The gas loss rates increased significantly in all cases when the hydrate phase boundary was crossed.

  3. A sonification algorithm for developing the off-roads models for driving simulators

    NASA Astrophysics Data System (ADS)

    Chiroiu, Veturia; Brişan, Cornel; Dumitriu, Dan; Munteanu, Ligia

    2018-01-01

    In this paper, a sonification algorithm for developing the off-road models for driving simulators, is proposed. The aim of this algorithm is to overcome difficulties of heuristics identification which are best suited to a particular off-road profile built by measurements. The sonification algorithm is based on the stochastic polynomial chaos analysis suitable in solving equations with random input data. The fluctuations are generated by incomplete measurements leading to inhomogeneities of the cross-sectional curves of off-roads before and after deformation, the unstable contact between the tire and the road and the unreal distribution of contact and friction forces in the unknown contact domains. The approach is exercised on two particular problems and results compare favorably to existing analytical and numerical solutions. The sonification technique represents a useful multiscale analysis able to build a low-cost virtual reality environment with increased degrees of realism for driving simulators and higher user flexibility.

  4. Limited Dissolved Phosphorus Runoff Losses from Layered Double Hydroxide and Struvite Fertilizers in a Rainfall Simulation Study.

    PubMed

    Everaert, Maarten; da Silva, Rodrigo C; Degryse, Fien; McLaughlin, Mike J; Smolders, Erik

    2018-03-01

    The enrichment of P in surface waters has been linked to P runoff from agricultural fields amended with fertilizers. Novel slow-release mineral fertilizers, such as struvite and P-exchanged layered double hydroxides (LDHs), have received increasing attention for P recycling from waste streams, and these fertilizers may potentially reduce the risk of runoff losses. Here, a rainfall simulation experiment was performed to evaluate P runoff associated with the application of recycled slow-release fertilizers relative to that of a soluble fertilizer. Monoammonium phosphate (MAP), struvite, and LDH granular fertilizers were broadcasted at equal total P doses on soil packed in trays (5% slope) and covered with perennial ryegrass ( L.). Four rainfall simulation events of 30 min were performed at 1, 5, 15, and 30 d after the fertilizer application. Runoff water from the trays was collected, filtered, and analyzed for dissolved P. For the MAP treatment, P runoff losses were high in the first two rain events and leveled off in later rain events. In total, 42% of the applied P in the MAP treatment was lost due to runoff. In the slow-release fertilizer treatments, P runoff losses were limited to 1.9 (struvite) and 2.4% (LDH) of the applied doses and were more similar over the different rain events. The use of these novel P fertilizer forms could be beneficial in areas with a high risk of surface water eutrophication and a history of intensive fertilization. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  5. Literature review: Assessment of DWPF melter and melter off-gas system lifetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reigel, M. M.

    2015-07-30

    A glass melter for use in processing radioactive waste is a challenging environment for the materials of construction (MOC) resulting from a combination of high temperatures, chemical attack, and erosion/corrosion; therefore, highly engineered materials must be selected for this application. The focus of this report is to review the testing and evaluations used in the selection of the Defense Waste Processing Facility (DWPF), glass contact MOC specifically the Monofrax ® K-3 refractory and Inconel ® 690 alloy. The degradation or corrosion mechanisms of these materials during pilot scale testing and in-service operation were analyzed over a range of oxidizing andmore » reducing flowsheets; however, DWPF has primarily processed a reducing flowsheet (i.e., Fe 2+/ΣFe of 0.09 to 0.33) since the start of radioactive operations. This report also discusses the materials selection for the DWPF off-gas system and the corrosion evaluation of these materials during pilot scale testing and non-radioactive operations of DWPF Melter #1. Inspection of the off-gas components has not been performed during radioactive operations with the exception of maintenance because of plugging.« less

  6. Literature review: Assessment of DWPF melter and melter off-gas system lifetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reigel, M.

    2015-07-30

    A glass melter for use in processing radioactive waste is a challenging environment for the materials of construction (MOC) resulting from a combination of high temperatures, chemical attack, and erosion/corrosion; therefore, highly engineered materials must be selected for this application. The focus of this report is to review the testing and evaluations used in the selection of the Defense Waste Processing Facility (DWPF), glass contact MOC specifically the Monofrax® K-3 refractory and Inconel® 690 alloy. The degradation or corrosion mechanisms of these materials during pilot scale testing and in-service operation were analyzed over a range of oxidizing and reducing flowsheets;more » however, DWPF has primarily processed a reducing flowsheet (i.e., Fe 2+/ΣFe of 0.09 to 0.33) since the start of radioactive operations. This report also discusses the materials selection for the DWPF off-gas system and the corrosion evaluation of these materials during pilot scale testing and non-radioactive operations of DWPF Melter #1. Inspection of the off-gas components has not been performed during radioactive operations with the exception of maintenance because of plugging.« less

  7. Stand-off CWA imaging system: second sight MS

    NASA Astrophysics Data System (ADS)

    Bernascolle, Philippe F.; Elichabe, Audrey; Fervel, Franck; Haumonté, Jean-Baptiste

    2012-06-01

    In recent years, several manufactures of IR imaging devices have launched commercial models applicable to a wide range of chemical species. These cameras are rugged and sufficiently sensitive to detect low concentrations of toxic and combustible gases. Bertin Technologies, specialized in the design and supply of innovating systems for industry, defense and health, has developed a stand-off gas imaging system using a multi-spectral infrared imaging technology. With this system, the gas cloud size, localization and evolution can be displayed in real time. This technology was developed several years ago in partnership with the CEB, a French MoD CBRN organization. The goal was to meet the need for early warning caused by a chemical threat. With a night & day efficiency of up to 5 km, this process is able to detect Chemical Warfare Agents (CWA), critical Toxic Industrial Compounds (TIC) and also flammable gases. The system has been adapted to detect industrial spillage, using off-the-shelf uncooled infrared cameras, allowing 24/7 surveillance without costly frequent maintenance. The changes brought to the system are in compliance with Military Specifications (MS) and primarily focus on the signal processing improving the classification of the detected products and on the simplification of the Human Machine Interface (HMI). Second Sight MS is the only mass produced, passive stand-off CWA imaging system with a wide angle (up to 60°) already used by several regular armies around the world. This paper examines this IR gas imager performance when exposed to several CWA, TIC and simulant compounds. First, we will describe the Second Sight MS system. The theory of gas detection, visualization and classification functions has already been described elsewhere, so we will just summarize it here. We will then present the main topic of this paper which is the results of the tests done in laboratory on live agents and in open field on simulant. The sensitivity threshold of the

  8. Cumulative effects of cascade hydropower stations on total dissolved gas supersaturation.

    PubMed

    Ma, Qian; Li, Ran; Feng, Jingjie; Lu, Jingying; Zhou, Qin

    2018-05-01

    Elevated levels of total dissolved gas (TDG) may occur downstream of dams during the spill process. These high levels would increase the incidence of gas bubble disease in fish and cause severe environmental impacts. With increasing numbers of cascade hydropower stations being built or planned, the cumulative effects of TDG supersaturation are becoming increasingly prominent. The TDG saturation distribution in the downstream reaches of the Jinsha River was studied to investigate the cumulative effects of TDG supersaturation resulting from the cascade hydropower stations. A comparison of the effects of the joint operation and the single operation of two hydropower stations (XLD and XJB) was performed to analyze the risk degree to fish posed by TDG supersaturation. The results showed that water with supersaturated TDG generated at the upstream cascade can be transported to the downstream power station, leading to cumulative TDG supersaturation effects. Compared with the single operation of XJB, the joint operation of both stations produced a much higher TDG saturation downstream of XJB, especially during the non-flood discharge period. Moreover, the duration of high TDG saturation and the lengths of the lethal and sub-lethal areas were much higher in the joint operation scenario, posing a greater threat to fish and severely damaging the environment. This work provides a scientific basis for strategies to reduce TDG supersaturation to the permissible level and minimize the potential risk of supersaturated TDG.

  9. Gas solubility in hydrophobic confinement.

    PubMed

    Luzar, Alenka; Bratko, Dusan

    2005-12-01

    Measured forces between apolar surfaces in water have often been found to be sensitive to exposure to atmospheric gases despite low gas solubilities in bulk water. This raises questions as to how significant gas adsorption is in hydrophobic confinement, whether it is conducive to water depletion at such surfaces, and ultimately if it can facilitate the liquid-to-gas phase transition in the confinement. Open Ensemble molecular simulations have been used here to determine saturated concentrations of atmospheric gases in water-filled apolar confinements as a function of pore width at varied gas fugacities. For paraffin-like confinements of widths barely exceeding the mechanical instability threshold (spinodal) of the liquid-to-vapor transition of confined water (aqueous film thickness between three and four molecular diameters), mean gas concentrations in the pore were found to exceed the bulk values by a factor of approximately 30 or approximately 15 in cases of N2 and CO2, respectively. At ambient conditions, this does not result in visible changes in the water density profile next to the surfaces. Whereas the barrier to capillary evaporation has been found to decrease in the presence of dissolved gas (Leung, K.; Luzar, A.; and Bratko, D. Phys. Rev. Lett. 2003, 90, 065502), gas concentrations much higher than those observed at normal atmospheric conditions would be needed to produce noticeable changes in the kinetics of capillary evaporation. In simulations, dissolved gas concentrations corresponding to fugacities above approximately 40 bar for N2, or approximately 2 bar for CO2, were required to trigger expulsion of water from a hydrocarbon slit as narrow as 1.4 nm. For nanosized pore widths corresponding to the mechanical instability threshold or above, no significant coupling between adsorption layers at opposing confinement walls was observed. This finding explains the approximately linear increase in gas solubility with inverse confinement width and the

  10. Removal of I, Rn, Xe and Kr from off gas streams using PTFE membranes

    DOEpatents

    Siemer, Darryl D.; Lewis, Leroy C.

    1990-01-01

    A process for removing I, R, Xe and Kr which involves the passage of the off gas stream through a tube-in-shell assembly, whereby the tubing is a PTFE membrane which permits the selective passages of the gases for removing and isolating the gases.

  11. Removal of I, Rn, Xe and Kr from off gas streams using PTFE membranes

    DOEpatents

    Siemer, Darryl D.; Lewis, Leroy C.

    1990-08-07

    A process for removing I, R, Xe and Kr which involves the passage of the off gas stream through a tube-in-shell assembly, whereby the tubing is a PTFE membrane which permits the selective passages of the gases for removing and isolating the gases.

  12. Application and evaluation of scale dissolver treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fielder, G.D.

    1994-12-31

    In order to provide an improved basis for the design of barium sulfate scale dissolver treatments both laboratory testing and monitoring of field applications were carried out. The deleterious effects of mixing produced water with dissolver prior to contacting scale are shown. Increasing total dissolved solids (TDS) levels can reduce dissolution depending upon temperature. Precomplexation with divalent cations reduces the capacity of the dissolver to solubilize solid scales. Magnesium may adversely affect dissolver performance at elevated temperatures. Several oil and gas wells were closely monitored during initial flowback after treatment. Samples were collected on a frequent basis and analyzed formore » pH, dissolver content, chlorides and various cations. The resulting data were used to construct flowback profiles for evaluation of the treatments. Evidence of scale dissolution is presented. The presence of an incompatible flush brine was discovered in one case and possible reverse order of addition of preflush and dissolver in another. The importance of establishing and following treatment procedures is briefly discussed.« less

  13. The Air-Carbon-Water Synergies and Trade-Offs in China's Natural Gas Industry

    NASA Astrophysics Data System (ADS)

    Qin, Yue

    China's coal-dominated energy structure is partly responsible for its domestic air pollution, local water stress, and the global climate change. Primarily to tackle the haze issue, China has been actively promoting a nationwide coal to natural gas end-use switch. My dissertation focuses on evaluating the air quality, carbon, and water impacts and their interactions in China's natural gas industry. Chapter 2 assesses the lifecycle climate performance of China's shale gas in comparison to coal based on stage-level energy consumption and methane leakage rates. I find the mean lifecycle carbon footprint of shale gas is about 30-50% lower than that of coal under both 20 year and 100 year global warming potentials (GWP20 and GWP100). However, primarily due to large uncertainties in methane leakage, the lifecycle carbon footprint of shale gas in China could be 15-60% higher than that of coal across sectors under GWP20. Chapter 3 evaluates the air quality, human health, and the climate impacts of China's coal-based synthetic natural gas (SNG) development. Based on earlier 2020 SNG production targets, I conduct an integrated assessment to identify production technologies and end-use applications that will bring as large air quality and health benefits as possible while keeping carbon penalties as small as possible. I find that, due to inefficient and uncontrolled coal combustion in households, allocating currently available SNG to the residential sector proves to be the best SNG allocation option. Chapter 4 compares the air quality, carbon, and water impacts of China's six major gas sources under three end-use substitution scenarios, which are focused on maximizing air pollutant emission reductions, CO 2 emission reductions, and water stress index (WSI)-weighted water consumption reductions, respectively. I find striking national air-carbon/water trade-offs due to SNG, which also significantly increases water demands and carbon emissions in regions already suffering from

  14. Micromotor-based on-off fluorescence detection of sarin and soman simulants.

    PubMed

    Singh, Virendra V; Kaufmann, Kevin; Orozco, Jahir; Li, Jinxing; Galarnyk, Michael; Arya, Gaurav; Wang, Joseph

    2015-06-30

    Self-propelled micromotor-based fluorescent "On-Off" detection of nerve agents is described. The motion-based assay utilizes Si/Pt Janus micromotors coated with fluoresceinamine toward real-time "on-the-fly" field detection of sarin and soman simulants.

  15. Building-Resolved CFD Simulations for Greenhouse Gas Transport and Dispersion over Washington DC / Baltimore

    NASA Astrophysics Data System (ADS)

    Prasad, K.; Lopez-Coto, I.; Ghosh, S.; Mueller, K.; Whetstone, J. R.

    2015-12-01

    The North-East Corridor project aims to use a top-down inversion methodology to quantify sources of Greenhouse Gas (GHG) emissions over urban domains such as Washington DC / Baltimore with high spatial and temporal resolution. Atmospheric transport of tracer gases from an emission source to a tower mounted receptor are usually conducted using the Weather Research and Forecasting (WRF) model. For such simulations, WRF employs a parameterized turbulence model and does not resolve the fine scale dynamics generated by the flow around buildings and communities comprising a large city. The NIST Fire Dynamics Simulator (FDS) is a computational fluid dynamics model that utilizes large eddy simulation methods to model flow around buildings at length scales much smaller than is practical with WRF. FDS has the potential to evaluate the impact of complex urban topography on near-field dispersion and mixing difficult to simulate with a mesoscale atmospheric model. Such capabilities may be important in determining urban GHG emissions using atmospheric measurements. A methodology has been developed to run FDS as a sub-grid scale model within a WRF simulation. The coupling is based on nudging the FDS flow field towards that computed by WRF, and is currently limited to one way coupling performed in an off-line mode. Using the coupled WRF / FDS model, NIST will investigate the effects of the urban canopy at horizontal resolutions of 10-20 m in a domain of 12 x 12 km. The coupled WRF-FDS simulations will be used to calculate the dispersion of tracer gases in the North-East Corridor and to evaluate the upwind areas that contribute to tower observations, referred to in the inversion community as influence functions. Results of this study will provide guidance regarding the importance of explicit simulations of urban atmospheric turbulence in obtaining accurate estimates of greenhouse gas emissions and transport.

  16. A severe artifact in simulation of liquid water using a long cut-off length: Appearance of a strange layer structure

    NASA Astrophysics Data System (ADS)

    Yonetani, Yoshiteru

    2005-04-01

    We report that a severe artifact appeared in molecular dynamics simulation of bulk water using the long cut-off length 18 Å. Our result shows that increasing the cut-off length does not always improve the simulation result. Moreover, the use of the long cut-off length can lead to a spurious result. It is suggested that the simulation of solvated biomolecules using such a long cut-off length, which has been often performed, may contain an unexpected artifact.

  17. Temporal variability of near-bottom dissolved oxygen during upwelling off central Oregon

    NASA Astrophysics Data System (ADS)

    Adams, Katherine A.; Barth, John A.; Chan, Francis

    2013-10-01

    In the productive central-Oregon coastal upwelling environment, wind-driven upwelling, tides, and topographic effects vary across the shelf, setting the stage for varied biogeochemical responses to physical drivers. Current, temperature, salinity, and dissolved oxygen (DO) measurements from three moorings deployed during the upwelling seasons of 2009-2011 off the central-Oregon coast are analyzed over three time bands (interannual, subtidal, tidal) to explore the relationship between mid (70 m) and inner-shelf (15 m) upwelling dynamics and the associated effect on DO. Topographic effects are observed in each time band due to the Heceta and Stonewall Bank complex. Seasonal cumulative hypoxia (DO < 1.4 mL L-1) calculations identify two regions, a well-ventilated inner shelf and a midshelf vulnerable to hypoxia (98 ± 15 days annually). On tidal timescales, along-shelf diurnal (K1) velocities are intensified over the Bank, 0.08 m s-1 compared with 0.03 m s-1 to the north. Interannual variability in the timing of spring and fall transitions, defined using glider-measured continental slope source water temperature, is observed on the midshelf. Interannual source water DO concentrations vary on the order of 0.1 mL L-1. Each spring and summer, DO decline rates are modulated by physical and biological processes. The net observed decrease is about 30% of the expected draw down due to water-column respiration. Physical processes initiate low-oxygen conditions on the shelf through coastal upwelling and subsequently prevent the system via advection and mixing from reaching the potential anoxic levels anticipated from respiration rates alone.

  18. Numerical Simulation of the Effect about Groundwater Level Fluctuation on the Concentration of BTEX Dissolved into Source Zone

    NASA Astrophysics Data System (ADS)

    Sun, Liqun; Chen, Yudao; Jiang, Lingzhi; Cheng, Yaping

    2018-01-01

    The water level fluctuation of groundwater will affect the BTEX dissolution in the fuel leakage source zone. In order to study the effect, a leakage test of gasoline was performed in the sand-tank model in the laboratory, and the concentrations of BTEX along with water level were monitored over a long period. Combined with VISUAL MODFLOW software, RT3D module was used to simulate the concentrations of BTEX, and mass flux method was used to evaluate the effects of water level fluctuation on the BTEX dissolution. The results indicate that water level fluctuation can significantly increase the concentration of BTEX dissolved in the leakage source zone. The dissolved amount of BTEX can reach up to 2.4 times under the water level fluctuation condition. The method of numerical simulation combined with mass flux calculation can be used to evaluate the effect of water level fluctuation on BTEX dissolution.

  19. Rise time of proton cut-off energy in 2D and 3D PIC simulations

    NASA Astrophysics Data System (ADS)

    Babaei, J.; Gizzi, L. A.; Londrillo, P.; Mirzanejad, S.; Rovelli, T.; Sinigardi, S.; Turchetti, G.

    2017-04-01

    The Target Normal Sheath Acceleration regime for proton acceleration by laser pulses is experimentally consolidated and fairly well understood. However, uncertainties remain in the analysis of particle-in-cell simulation results. The energy spectrum is exponential with a cut-off, but the maximum energy depends on the simulation time, following different laws in two and three dimensional (2D, 3D) PIC simulations so that the determination of an asymptotic value has some arbitrariness. We propose two empirical laws for the rise time of the cut-off energy in 2D and 3D PIC simulations, suggested by a model in which the proton acceleration is due to a surface charge distribution on the target rear side. The kinetic energy of the protons that we obtain follows two distinct laws, which appear to be nicely satisfied by PIC simulations, for a model target given by a uniform foil plus a contaminant layer that is hydrogen-rich. The laws depend on two parameters: the scaling time, at which the energy starts to rise, and the asymptotic cut-off energy. The values of the cut-off energy, obtained by fitting 2D and 3D simulations for the same target and laser pulse configuration, are comparable. This suggests that parametric scans can be performed with 2D simulations since 3D ones are computationally very expensive, delegating their role only to a correspondence check. In this paper, the simulations are carried out with the PIC code ALaDyn by changing the target thickness L and the incidence angle α, with a fixed a0 = 3. A monotonic dependence, on L for normal incidence and on α for fixed L, is found, as in the experimental results for high temporal contrast pulses.

  20. Gas Stripping in the Simulated Pegasus Galaxy

    NASA Astrophysics Data System (ADS)

    Mercado, Francisco Javier; Samaniego, Alejandro; Wheeler, Coral; Bullock, James

    2017-01-01

    We utilize the hydrodynamic simulation code GIZMO to construct a non-cosmological idealized dwarf galaxy built to match the parameters of the observed Pegasus dwarf galaxy. This simulated galaxy will be used in a series of tests in which we will implement different methods of removing the dwarf’s gas in order to emulate the ram pressure stripping mechanism encountered by dwarf galaxies as they fall into more massive companion galaxies. These scenarios will be analyzed in order to determine the role that the removal of gas plays in rotational vs. dispersion support (Vrot/σ) of our galaxy.

  1. Experimental study on the impact of temperature on the dissipation process of supersaturated total dissolved gas.

    PubMed

    Shen, Xia; Liu, Shengyun; Li, Ran; Ou, Yangming

    2014-09-01

    Water temperature not only affects the solubility of gas in water but can also be an important factor in the dissipation process of supersaturated total dissolved gas (TDG). The quantitative relationship between the dissipation process and temperature has not been previously described. This relationship affects the accurate evaluation of the dissipation process and the subsequent biological effects. This article experimentally investigates the impact of temperature on supersaturated TDG dissipation in static and turbulent conditions. The results show that the supersaturated TDG dissipation coefficient increases with the temperature and turbulence intensity. The quantitative relationship was verified by straight flume experiments. This study enhances our understanding of the dissipation of supersaturated TDG. Furthermore, it provides a scientific foundation for the accurate prediction of the dissipation process of supersaturated TDG in the downstream area and the negative impacts of high dam projects on aquatic ecosystems. Copyright © 2014. Published by Elsevier B.V.

  2. Effectiveness of purging on preventing gas emission buildup in wood pellet storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yazdanpanah, Fahimeh; Sokhansanj, Shahab; Lim, Choon Jim

    Storage of wood pellets has resulted in deadly accidents in connection with off-gassing and self-heating. A forced ventilation system should be in place to sweep the off-gases and control the thermal conditions. In this study, multiple purging tests were conducted in a pilot scale silo to evaluate the effectiveness of a purging system and quantify the time and volume of the gas needed to sweep the off-gases. To identify the degree of mixing, residence time distribution of the tracer gas was also studied experimentally. Large deviations from plug flow suggested strong gas mixing for all superficial velocities. As the velocitymore » increased, the system dispersion number became smaller, which indicated less degree of mixing with increased volume of the purging gas. Finally, one-dimensional modelling and numerical simulation of the off-gas concentration profile gave the best agreement with the measured gas concentration at the bottom and middle of the silo.« less

  3. Effectiveness of purging on preventing gas emission buildup in wood pellet storage

    DOE PAGES

    Yazdanpanah, Fahimeh; Sokhansanj, Shahab; Lim, Choon Jim; ...

    2015-04-24

    Storage of wood pellets has resulted in deadly accidents in connection with off-gassing and self-heating. A forced ventilation system should be in place to sweep the off-gases and control the thermal conditions. In this study, multiple purging tests were conducted in a pilot scale silo to evaluate the effectiveness of a purging system and quantify the time and volume of the gas needed to sweep the off-gases. To identify the degree of mixing, residence time distribution of the tracer gas was also studied experimentally. Large deviations from plug flow suggested strong gas mixing for all superficial velocities. As the velocitymore » increased, the system dispersion number became smaller, which indicated less degree of mixing with increased volume of the purging gas. Finally, one-dimensional modelling and numerical simulation of the off-gas concentration profile gave the best agreement with the measured gas concentration at the bottom and middle of the silo.« less

  4. Transport of dissolved gases through unsaturated porous media

    NASA Astrophysics Data System (ADS)

    Maryshev, B. S.

    2017-06-01

    The natural porous media (e.g. soil, sand, peat etc.) usually are partially saturated by groundwater. The saturation of soil depends on hydrostatic pressure which is linearly increased with depth. Often some gases (e.g. nitrogen, oxygen, carbon dioxide, methane etc.) are dissolved into the groundwater. The solubility of gases is very small because of that two assumptions is applied: I. The concentration of gas is equal to solubility, II. Solubility depends only on pressure (for isothermal systems). In this way some part of dissolved gas transfers from the solution to the bubble phase. The gas bubbles are immovably trapped in a porous matrix by surface-tension forces and the dominant mechanism of transport of gas mass becomes the diffusion of gas molecules through the liquid. If the value of water content is small then the transport of gas becomes slow and gas accumulates into bubble phase. The presence of bubble phase additionally decreases the water content and slows down the transport. As result the significant mass of gas should be accumulated into the massif of porous media. We derive the transport equations and find the solution which is demonstrated the accumulation of gases. The influence of saturation, porosity and filtration velocity to accumulation process is investigated and discussed.

  5. Pinch-off Scaling Law of Soap Bubbles

    NASA Astrophysics Data System (ADS)

    Davidson, John; Ryu, Sangjin

    2014-11-01

    Three common interfacial phenomena that occur daily are liquid drops in gas, gas bubbles in liquid and thin-film bubbles. One aspect that has been studied for these phenomena is the formation or pinch-off of the drop/bubble from the liquid/gas threads. In contrast to the formation of liquid drops in gas and gas bubbles in liquid, thin-film bubble pinch-off has not been well documented. Having thin-film interfaces may alter the pinch-off process due to the limiting factor of the film thickness. We observed the pinch-off of one common thin-film bubble, soap bubbles, in order to characterize its pinch-off behavior. We achieved this by constructing an experimental model replicating the process of a human producing soap bubbles. Using high-speed videography and image processing, we determined that the minimal neck radius scaled with the time left till pinch-off, and that the scaling law exponent was 2/3, similar to that of liquid drops in gas.

  6. Simulation of dissolved nutrient export from the Dongjiang river basin with a grid-based NEWS model

    NASA Astrophysics Data System (ADS)

    Rong, Qiangqiang; Su, Meirong; Yang, Zhifeng; Cai, Yanpeng; Yue, Wencong; Dang, Zhi

    2018-06-01

    In this research, a grid-based NEWS model was proposed through coupling the geographic information system (GIS) with the Global NEWS model framework. The model was then applied to the Dongjiang River basin to simulate the dissolved nutrient export from this area. The model results showed that the total amounts of the dissolved nitrogen and phosphorus exported from the Dongjiang River basin were approximately 27154.87 and 1389.33 t, respectively. 90 % of the two loads were inorganic forms (i.e. dissolved inorganic nitrogen and phosphorus, DIN and DIP). Also, the nutrient export loads did not evenly distributed in the basin. The main stream watershed of the Dongjiang River basin has the largest DIN and DIP export loads, while the largest dissolved organic nitrogen and phosphorus (DON and DOP) loads were observed in the middle and upper stream watersheds of the basin, respectively. As for the nutrient exported from each subbasin, different sources had different influences on the output of each nutrient form. For the DIN load in each subbasin, fertilization application, atmospheric deposition and biological fixation were the three main contributors, while eluviation was the most important source for DON. In terms of DIP load, fertilizer application and breeding wastewater were the main contributors, while eluviation and fertilizer application were the two main sources for DOP.

  7. Use of off-the-shelf PC-based flight simulators for aviation human factors research.

    DOT National Transportation Integrated Search

    1996-04-01

    Flight simulation has historically been an expensive proposition, particularly if out-the-window views were desired. Advances in computer technology have allowed a modular, off-the-shelf flight simulation (based on 80486 processors or Pentiums) to be...

  8. Modeling of Methane Migration in Shallow Aquifers from Shale Gas Well Drilling.

    PubMed

    Zhang, Liwei; Soeder, Daniel J

    2016-05-01

    The vertical portion of a shale gas well, known as the "tophole" is often drilled using an air-hammer bit that may introduce pressures as high as 2400 kPa (350 psi) into groundwater while penetrating shallow aquifers. A 3-D TOUGH2 model was used to simulate the flow of groundwater under the high hydraulic heads that may be imposed by such trapped compressed air, based on an observed case in West Virginia (USA) in 2012. The model realizations show that high-pressure air trapped in aquifers may cause groundwater to surge away from the drill site at observable velocities. If dissolved methane is present within the aquifer, the methane can be entrained and transported to a maximum distance of 10.6 m per day. Results from this study suggest that one cause of the reported increase in methane concentrations in groundwater near shale gas production wells may be the transport of pre-existing methane via groundwater surges induced by air drilling, not necessarily direct natural gas leakage from the unconventional gas reservoir. The primary transport mechanisms are advective transport of dissolved methane with water flow, and diffusive transport of dissolved methane. © 2015, National Ground Water Association.

  9. Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture

    PubMed

    Rubio; Fernandez; Perez; Camacho; Grima

    1999-01-05

    A model is developed for prediction of axial concentration profiles of dissolved oxygen and carbon dioxide in tubular photobioreactors used for culturing microalgae. Experimental data are used to verify the model for continuous outdoor culture of Porphyridium cruentum grown in a 200-L reactor with 100-m long tubular solar receiver. The culture was carried out at a dilution rate of 0.05 h-1 applied only during a 10-h daylight period. The quasi-steady state biomass concentration achieved was 3.0 g. L-1, corresponding to a biomass productivity of 1.5 g. L-1. d-1. The model could predict the dissolved oxygen level in both gas disengagement zone of the reactor and at the end of the loop, the exhaust gas composition, the amount of carbon dioxide injected, and the pH of the culture at each hour. In predicting the various parameters, the model took into account the length of the solar receiver tube, the rate of photosynthesis, the velocity of flow, the degree of mixing, and gas-liquid mass transfer. Because the model simulated the system behavior as a function of tube length and operational variables (superficial gas velocity in the riser, composition of carbon dioxide in the gas injected in the solar receiver and its injection rate), it could potentially be applied to rational design and scale-up of photobioreactors. Copyright 1999 John Wiley & Sons, Inc.

  10. FINAL REPORT DM1200 TESTS WITH AZ 101 HLW SIMULANTS VSL-03R3800-4 REV 0 2/17/04

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KRUGER AA; MATLACK KS; BARDAKCI T

    2011-12-29

    This report documents melter and off-gas performance results obtained on the DM 1200 HLW Pilot Melter during processing of simulated HLW AZ-101 feed. The principal objectives of the DM1200 melter testing were to determine the achievable glass production rates for simulated HLW AZ-101 feed; determine the effect of bubbling rate and feed solids content on production rate; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and to perform pre- and post-test inspections of system components. The test objectives (including test successmore » criteria), along with how they were met, are outlined in a table.« less

  11. Greenhouse gases dissolved in soil solution - often ignored, but important?

    NASA Astrophysics Data System (ADS)

    Weymann, Daniel; Brueggemann, Nicolas; Puetz, Thomas; Vereecken, Harry

    2014-05-01

    Flux measurements of climate-relevant trace gases from soils are frequently undertaken in contemporary ecosystem studies and substantially contribute to our understanding of greenhouse gas balances of the biosphere. While the great majority of such investigations builds on closed chamber and eddy covariance measurements, where upward gas fluxes to the atmosphere are measured, fewest concurrently consider greenhouse gas dissolution in the seepage and leaching of dissolved gases via the vadose zone to the groundwater. Here we present annual leaching losses of dissolved N2O and CO2 from arable, grassland, and forest lysimeter soils from three sites differing in altitude and climate. We aim to assess their importance in comparison to direct N2O emission, soil respiration, and further leaching parameters of the C- and N cycle. The lysimeters are part of the Germany-wide lysimeter network initiative TERENO-SoilCan, which investigates feedbacks of climate change to the pedosphere on a long-term scale. Soil water samples were collected weekly from different depths of the profiles by means of suction cups. A laboratory pre-experiment proved that no degassing occurred under those sampling conditions. We applied the headspace equilibration technique to determine dissolved gas concentrations by gas chromatography. The seepage water of all lysimeters was consistently supersaturated with N2O and CO2 compared to water equilibrated ambient air. In terms of N2O, leaching losses increased in the ascending order forest, grassland, and arable soils, respectively. In case of the latter soils, we observed a strong variability of N2O, with dissolved concentrations up to 23 μg N L-1. However, since seepage discharge of the arable lysimeters was comparatively small and mostly limited to the hydrological winter season, leached N2O appeared to be less important than direct N2O emissions. In terms of dissolved CO2,our measurements revealed considerable leaching losses from the mountainous

  12. Formation of the ZnFe2O4 phase in an electric arc furnace off-gas treatment system.

    PubMed

    Suetens, T; Guo, M; Van Acker, K; Blanpain, B

    2015-04-28

    To better understand the phenomena of ZnFe2O4 spinel formation in electric arc furnace dust, the dust was characterized with particle size analysis, X-ray fluorescence (XRF), electron backscatter diffraction (EBSD), and electron probe micro-analysis (EPMA). Different ZnFe2O4 formation reaction extents were observed for iron oxide particles with different particle sizes. ZnO particles were present as both individual particles and aggregated on the surface of larger particles. Also, the slag particles found in the off-gas were shown not to react with the zinc vapor. After confirming the presence of a ZnFe2O4 formation reaction, the thermodynamic feasibility of in-process separation - a new electric arc furnace dust treatment technology - was reevaluated. The large air intake and the presence of iron oxide particles in the off-gas were included into the thermodynamic calculations. The formation of the stable ZnFe2O4 spinel phase was shown to be thermodynamically favorable in current electric arc furnace off-gas ducts conditions even before reaching the post combustion chamber. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Can we approach the gas-liquid critical point using slab simulations of two coexisting phases?

    PubMed

    Goujon, Florent; Ghoufi, Aziz; Malfreyt, Patrice; Tildesley, Dominic J

    2016-09-28

    In this paper, we demonstrate that it is possible to approach the gas-liquid critical point of the Lennard-Jones fluid by performing simulations in a slab geometry using a cut-off potential. In the slab simulation geometry, it is essential to apply an accurate tail correction to the potential energy, applied during the course of the simulation, to study the properties of states close to the critical point. Using the Janeček slab-based method developed for two-phase Monte Carlo simulations [J. Janec̆ek, J. Chem. Phys. 131, 6264 (2006)], the coexisting densities and surface tension in the critical region are reported as a function of the cutoff distance in the intermolecular potential. The results obtained using slab simulations are compared with those obtained using grand canonical Monte Carlo simulations of isotropic systems and the finite-size scaling techniques. There is a good agreement between these two approaches. The two-phase simulations can be used in approaching the critical point for temperatures up to 0.97 T C ∗ (T ∗ = 1.26). The critical-point exponents describing the dependence of the density, surface tension, and interfacial thickness on the temperature are calculated near the critical point.

  14. Geological Modeling and Fluid Flow Simulation of Acid Gas Storage, Nugget Sandstone, Moxa Arch, Wyoming

    NASA Astrophysics Data System (ADS)

    Li, S.; Zhang, Y.; Zhang, X.; Du, C.

    2009-12-01

    The Moxa Arch Anticline is a regional-scale northwest-trending uplift in western Wyoming where geological storage of acid gases (CO2, CH4, N2, H2S, He) from ExxonMobile's Shute Creek Gas Plant is under consideration. The Nugget Sandstone, a deep saline aquifer at depths exceeding 17,170 ft, is a candidate formation for acid gas storage. As part of a larger goal of determining site suitability, this study builds three-dimensional local to regional scale geological and fluid flow models for the Nugget Sandstone, its caprock (Twin Creek Limestone), and an underlying aquifer (Ankareh Sandstone), or together, the ``Nugget Suite''. For an area of 3000 square miles, geological and engineering data were assembled, screened for accuracy, and digitized, covering an average formation thickness of ~1700 feet. The data include 900 public-domain well logs (SP, Gamma Ray, Neutron Porosity, Density, Sonic, shallow and deep Resistivity, Lithology, Deviated well logs), 784 feet of core measurements (porosity and permeability), 4 regional geological cross sections, and 3 isopach maps. Data were interpreted and correlated for geological formations and facies, the later categorized using both Neural Network and Gaussian Hierarchical Clustering algorithms. Well log porosities were calibrated with core measurements, those of permeability estimated using formation-specific porosity-permeability transforms. Using conditional geostatistical simulations (first indicator simulation of facies, then sequential Gaussian simulation of facies-specific porosity), data were integrated at the regional-scale to create a geological model from which a local-scale simulation model surrounding the Shute Creek injection site was extracted. Based on this model, full compositional multiphase flow simulations were conducted with which we explore (1) an appropriate grid resolution for accurate acid gas predictions (pressure, saturation, and mass balance); (2) sensitivity of key geological and engineering

  15. Reforming results of a novel radial reactor for a solid oxide fuel cell system with anode off-gas recirculation

    NASA Astrophysics Data System (ADS)

    Bosch, Timo; Carré, Maxime; Heinzel, Angelika; Steffen, Michael; Lapicque, François

    2017-12-01

    A novel reactor of a natural gas (NG) fueled, 1 kW net power solid oxide fuel cell (SOFC) system with anode off-gas recirculation (AOGR) is experimentally investigated. The reactor operates as pre-reformer, is of the type radial reactor with centrifugal z-flow, has the shape of a hollow cylinder with a volume of approximately 1 L and is equipped with two different precious metal wire-mesh catalyst packages as well as with an internal electric heater. Reforming investigations of the reactor are done stand-alone but as if the reactor would operate within the total SOFC system with AOGR. For the tests presented here it is assumed that the SOFC system runs on pure CH4 instead of NG. The manuscript focuses on the various phases of reactor operation during the startup process of the SOFC system. Startup process reforming experiments cover reactor operation points at which it runs on an oxygen to carbon ratio at the reactor inlet (ϕRI) of 1.2 with air supplied, up to a ϕRI of 2.4 without air supplied. As confirmed by a Monte Carlo simulation, most of the measured outlet gas concentrations are in or close to equilibrium.

  16. Simulations of Early Structure Formation: Primordial Gas Clouds

    NASA Astrophysics Data System (ADS)

    Yoshida, Naoki; Abel, Tom; Hernquist, Lars; Sugiyama, Naoshi

    2003-08-01

    We use cosmological simulations to study the origin of primordial star-forming clouds in a ΛCDM universe, by following the formation of dark matter halos and the cooling of gas within them. To model the physics of chemically pristine gas, we employ a nonequilibrium treatment of the chemistry of nine species (e-, H, H+, He, He+, He++, H2, H+2, H-) and include cooling by molecular hydrogen. By considering cosmological volumes, we are able to study the statistical properties of primordial halos, and the high resolution of our simulations enables us to examine these objects in detail. In particular, we explore the hierarchical growth of bound structures forming at redshifts z~25-30 with total masses in the range ~105-106Msolar. We find that when the amount of molecular hydrogen in these objects reaches a critical level, cooling by rotational line emission is efficient, and dense clumps of cold gas form. We identify these ``gas clouds'' as sites for primordial star formation. In our simulations, the threshold for gas cloud formation by molecular cooling corresponds to a critical halo mass of ~5×105h-1Msolar, in agreement with earlier estimates, but with a weak dependence on redshift in the range z>16. The complex interplay between the gravitational formation of dark halos and the thermodynamic and chemical evolution of the gas clouds compromises analytic estimates of the critical H2 fraction. Dynamical heating from mass accretion and mergers opposes relatively inefficient cooling by molecular hydrogen, delaying the production of star-forming clouds in rapidly growing halos. We also investigate the effect of photodissociating ultraviolet radiation on the formation of primordial gas clouds. We consider two extreme cases, first by including a uniform radiation field in the optically thin limit and second by accounting for the maximum effect of gas self-shielding in virialized regions. For radiation with Lyman-Werner band flux J>10-23 ergs s-1 cm-2 Hz-1 sr-1, hydrogen

  17. Basic Science Simulations Provide New Insights to Aid Hydrogen Gas Turbine Development (Fact Sheet), NREL Highlights, Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2011-11-01

    Massive first-principles simulation provides insight into flame anchoring in a hydrogen-rich jet in cross-flow. When gas turbine designers want to use gasified biomass for stationary power generation, they are faced with a challenge: bio-derived syngas typically contains significant amounts of hydrogen, which is far more reactive than the methane that is the traditional gas turbine fuel. This reactivity leads to a safety design issue, because with hydrogen-rich fuels a flame may anchor in the fuel injection section of the combustor instead of the downstream design point. In collaboration with Jacqueline Chen of Sandia National Laboratories and Andrea Gruber of SINTEF,more » a Norwegian energy think tank, the National Renewable Energy Laboratory (NREL) is carrying out fundamental simulations to provide new insight into the physics of flame anchoring in canonical 'jet in cross-flow' configurations using hydrogen-rich fuels. To deal with the large amount and complexity of the data, the combustion scientists also teamed up with computer scientists from across the U.S. Department of Energy's laboratories to develop novel ways to analyze the data. These simulations have shown that fine-scale turbulence structures formed at the jet boundary provide particularly intense mixing between the fuel and air, which then enters a quiescent region formed downstream of the jet in a separate, larger turbulent structure. This insight explains the effect that reducing the wall-normal velocity of the fuel jet causes the flame to blow off; with the aid of the simulation, we now understand this counterintuitive result because reducing the wall-normal velocity would reduce the intensity of the mixing as well as move the quiescent region farther downstream. NREL and its research partners are conducting simulations that provide new insight into the physics of flame anchoring in canonical 'jet in cross-flow' configurations using hydrogen-rich fuels. Simulation results explain the mechanism

  18. A Java-Enabled Interactive Graphical Gas Turbine Propulsion System Simulator

    NASA Technical Reports Server (NTRS)

    Reed, John A.; Afjeh, Abdollah A.

    1997-01-01

    This paper describes a gas turbine simulation system which utilizes the newly developed Java language environment software system. The system provides an interactive graphical environment which allows the quick and efficient construction and analysis of arbitrary gas turbine propulsion systems. The simulation system couples a graphical user interface, developed using the Java Abstract Window Toolkit, and a transient, space- averaged, aero-thermodynamic gas turbine analysis method, both entirely coded in the Java language. The combined package provides analytical, graphical and data management tools which allow the user to construct and control engine simulations by manipulating graphical objects on the computer display screen. Distributed simulations, including parallel processing and distributed database access across the Internet and World-Wide Web (WWW), are made possible through services provided by the Java environment.

  19. Dry Volume Fracturing Simulation of Shale Gas Reservoir

    NASA Astrophysics Data System (ADS)

    Xu, Guixi; Wang, Shuzhong; Luo, Xiangrong; Jing, Zefeng

    2017-11-01

    Application of CO2 dry fracturing technology to shale gas reservoir development in China has advantages of no water consumption, little reservoir damage and promoting CH4 desorption. This paper uses Meyer simulation to study complex fracture network extension and the distribution characteristics of shale gas reservoirs in the CO2 dry volume fracturing process. The simulation results prove the validity of the modified CO2 dry fracturing fluid used in shale volume fracturing and provides a theoretical basis for the following study on interval optimization of the shale reservoir dry volume fracturing.

  20. Optimization of UA of heat exchangers and BOG compressor exit pressure of LNG boil-off gas reliquefaction system using exergy analysis

    NASA Astrophysics Data System (ADS)

    Kochunni, Sarun Kumar; Ghosh, Parthasarathi; Chowdhury, Kanchan

    2015-12-01

    Boil-off gas (BOG) generation and its handling are important issues in Liquefied natural gas (LNG) value chain because of economic, environment and safety reasons. Several variants of reliquefaction systems of BOG have been proposed by researchers. Thermodynamic analyses help to configure them and size their components for improving performance. In this paper, exergy analysis of reliquefaction system based on nitrogen-driven reverse Brayton cycle is carried out through simulation using Aspen Hysys 8.6®, a process simulator and the effects of heat exchanger size with and without related pressure drop and BOG compressor exit pressure are evaluated. Nondimensionalization of parameters with respect to the BOG load allows one to scale up or down the design. The process heat exchanger (PHX) requires much higher surface area than that of BOG condenser and it helps to reduce the quantity of methane vented out to atmosphere. As pressure drop destroys exergy, optimum UA of PHX decreases for highest system performance if pressure drop is taken into account. Again, for fixed sizes of heat exchangers, as there is a range of discharge pressures of BOG compressor at which the loss of methane in vent minimizes, the designer should consider choosing the pressure at lower value.

  1. Numerical simulation of synthesis gas incineration

    NASA Astrophysics Data System (ADS)

    Kazakov, A. V.; Khaustov, S. A.; Tabakaev, R. B.; Belousova, Y. A.

    2016-04-01

    The authors have analysed the expediency of the suggested low-grade fuels application method. Thermal processing of solid raw materials in the gaseous fuel, called synthesis gas, is investigated. The technical challenges concerning the applicability of the existing gas equipment developed and extensively tested exclusively for natural gas were considered. For this purpose computer simulation of three-dimensional syngas-incinerating flame dynamics was performed by means of the ANSYS Multiphysics engineering software. The subjects of studying were: a three-dimensional aerodynamic flame structure, heat-release and temperature fields, a set of combustion properties: a flare range and the concentration distribution of burnout reagents. The obtained results were presented in the form of a time-averaged pathlines with color indexing. The obtained results can be used for qualitative and quantitative evaluation of complex multicomponent gas incineration singularities.

  2. Shipboard Tests of Halon 1301 Test Gas Simulants

    DTIC Science & Technology

    1990-08-22

    Halon 1301 Test Gas Simulants," Memo Report, Naval Research Laboratory, Washington, DC, 1989. 8. Air Products and Chemicals , Inc ., "SF6 , An... Products and Chemicals , Inc ., "Specialty Gas Material Safety Data Sheet, Sulfur Hexafluoride " Air Products and Chemicals, Specialty Gas Department...34 Washington, DC, 1978. 11. N.I. Sax, Dangerous Properties of Industrial Materials, Sixth Edition, Van Nostrand Reinhold Company, New York, NY, 1984. 12. Air

  3. Coupling of Large Eddy Simulations with Meteorological Models to simulate Methane Leaks from Natural Gas Storage Facilities

    NASA Astrophysics Data System (ADS)

    Prasad, K.

    2017-12-01

    Atmospheric transport is usually performed with weather models, e.g., the Weather Research and Forecasting (WRF) model that employs a parameterized turbulence model and does not resolve the fine scale dynamics generated by the flow around buildings and features comprising a large city. The NIST Fire Dynamics Simulator (FDS) is a computational fluid dynamics model that utilizes large eddy simulation methods to model flow around buildings at length scales much smaller than is practical with models like WRF. FDS has the potential to evaluate the impact of complex topography on near-field dispersion and mixing that is difficult to simulate with a mesoscale atmospheric model. A methodology has been developed to couple the FDS model with WRF mesoscale transport models. The coupling is based on nudging the FDS flow field towards that computed by WRF, and is currently limited to one way coupling performed in an off-line mode. This approach allows the FDS model to operate as a sub-grid scale model with in a WRF simulation. To test and validate the coupled FDS - WRF model, the methane leak from the Aliso Canyon underground storage facility was simulated. Large eddy simulations were performed over the complex topography of various natural gas storage facilities including Aliso Canyon, Honor Rancho and MacDonald Island at 10 m horizontal and vertical resolution. The goal of these simulations included improving and validating transport models as well as testing leak hypotheses. Forward simulation results were compared with aircraft and tower based in-situ measurements as well as methane plumes observed using the NASA Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) and the next generation instrument AVIRIS-NG. Comparison of simulation results with measurement data demonstrate the capability of the coupled FDS-WRF models to accurately simulate the transport and dispersion of methane plumes over urban domains. Simulated integrated methane enhancements will be presented and

  4. Modular Aquatic Simulation System 1D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2017-04-19

    MASS1 simulates open channel hydrodynamics and transport in branched channel networks, using cross-section averaged forms of the continuity, momentum, and convection diffusion equations. Thermal energy transport (temperature), including meteorological influences is supported. The thermodynamics of total dissolved gas (TDG) can be directly simulated. MASS1 has been developed over the last 20 years. It is currently being used on DOE projects that require MASS1 to beopen source. Hence, the authors would like to distribute MASS1 in source form.

  5. Adsorption of Dissolved Gases (CH4, CO2, H2, Noble Gases) by Water-Saturated Smectite Clay Minerals

    NASA Astrophysics Data System (ADS)

    Bourg, I. C.; Gadikota, G.; Dazas, B.

    2016-12-01

    Adsorption of dissolved gases by water-saturated clay minerals plays important roles in a range of fields. For example, gas adsorption in on clay minerals may significantly impact the formation of CH4 hydrates in fine-grained sediments, the behavior of CH4 in shale, CO2 leakage across caprocks of geologic CO2 sequestration sites, H2 leakage across engineered clay barriers of high-level radioactive waste repositories, and noble gas geochemistry reconstructions of hydrocarbon migration in the subsurface. Despite its importance, the adsorption of gases on clay minerals remains poorly understood. For example, some studies have suggested that clay surfaces promote the formation of CH4 hydrates, whereas others indicate that clay surfaces inhibit the formation of CH4 hydrates. Here, we present molecular dynamics (MD) simulations of the adsorption of a range of gases (CH4, CO2, H2, noble gases) on clay mineral surfaces. Our results indicate that the affinity of dissolved gases for clay mineral surfaces has a non-monotone dependence on the hydrated radius of the gas molecules. This non-monotone dependence arises from a combination of two effects: the polar nature of certain gas molecules (in particular, CO2) and the templating of interfacial water structure by the clay basal surface, which results in the presence of interfacial water "cages" of optimal size for intermediate-size gas molecules (such as Ne or Ar).

  6. The big fat LARS - a LArge Reservoir Simulator for hydrate formation and gas production

    NASA Astrophysics Data System (ADS)

    Beeskow-Strauch, Bettina; Spangenberg, Erik; Schicks, Judith M.; Giese, Ronny; Luzi-Helbing, Manja; Priegnitz, Mike; Klump, Jens; Thaler, Jan; Abendroth, Sven

    2013-04-01

    Simulating natural scenarios on lab scale is a common technique to gain insight into geological processes with moderate effort and expenses. Due to the remote occurrence of gas hydrates, their behavior in sedimentary deposits is largely investigated on experimental set ups in the laboratory. In the framework of the submarine gas hydrate research project (SUGAR) a large reservoir simulator (LARS) with an internal volume of 425 liter has been designed, built and tested. To our knowledge this is presently a word-wide unique set up. Because of its large volume it is suitable for pilot plant scale tests on hydrate behavior in sediments. That includes not only the option of systematic tests on gas hydrate formation in various sedimentary settings but also the possibility to mimic scenarios for the hydrate decomposition and subsequent natural gas extraction. Based on these experimental results various numerical simulations can be realized. Here, we present the design and the experimental set up of LARS. The prerequisites for the simulation of a natural gas hydrate reservoir are porous sediments, methane, water, low temperature and high pressure. The reservoir is supplied by methane-saturated and pre-cooled water. For its preparation an external gas-water mixing stage is available. The methane-loaded water is continuously flushed into LARS as finely dispersed fluid via bottom-and-top-located sparger. The LARS is equipped with a mantle cooling system and can be kept at a chosen set temperature. The temperature distribution is monitored at 14 reasonable locations throughout the reservoir by Pt100 sensors. Pressure needs are realized using syringe pump stands. A tomographic system, consisting of a 375-electrode-configuration is attached to the mantle for the monitoring of hydrate distribution throughout the entire reservoir volume. Two sets of tubular polydimethylsiloxan-membranes are applied to determine gas-water ratio within the reservoir using the effect of permeability

  7. Simulation of beam-induced plasma in gas-filled rf cavities

    DOE PAGES

    Yu, Kwangmin; Samulyak, Roman; Yonehara, Katsuya; ...

    2017-03-07

    Processes occurring in a radio-frequency (rf) cavity, filled with high pressure gas and interacting with proton beams, have been studied via advanced numerical simulations. Simulations support the experimental program on the hydrogen gas-filled rf cavity in the Mucool Test Area (MTA) at Fermilab, and broader research on the design of muon cooling devices. space, a 3D electromagnetic particle-in-cell (EM-PIC) code with atomic physics support, was used in simulation studies. Plasma dynamics in the rf cavity, including the process of neutral gas ionization by proton beams, plasma loading of the rf cavity, and atomic processes in plasma such as electron-ion andmore » ion-ion recombination and electron attachment to dopant molecules, have been studied. Here, through comparison with experiments in the MTA, simulations quantified several uncertain values of plasma properties such as effective recombination rates and the attachment time of electrons to dopant molecules. Simulations have achieved very good agreement with experiments on plasma loading and related processes. Lastly, the experimentally validated code space is capable of predictive simulations of muon cooling devices.« less

  8. Off-Design Performance of a Multi-Stage Supersonic Turbine

    NASA Technical Reports Server (NTRS)

    Dorney, Daniel J.; Griffin, Lisa W.; Huber, Frank; Sondak, Douglas L.

    2003-01-01

    The drive towards high-work turbines has led to designs which can be compact, transonic, supersonic, counter rotating, or use a dense drive gas. These aggressive designs can lead to strong unsteady secondary flows and flow separation. The amplitude and extent of these unsteady flow phenomena can be amplified at off-design operating conditions. Pre-test off-design predictions have been performed for a new two-stage supersonic turbine design that is currently being tested in air. The simulations were performed using a three-dimensional unsteady Navier-Stokes analysis, and the predicted results have been compared with solutions from a validated meanline analysis.

  9. Total dissolved gas and water temperature in the lower Columbia River, Oregon and Washington, 2003: Quality-assurance data and comparison to water-quality standards

    USGS Publications Warehouse

    Tanner, Dwight Q.; Bragg, Heather M.; Johnston, Matthew W.

    2003-01-01

    The variances to the States of Oregon and Washington water-quality standards for total dissolved gas were exceeded at six of the seven monitoring sites. The sites at Camas and Bonneville forebay had the most days exceeding the variance of 115% saturation. The forebay exceedances may have been the result of the cumulative effects of supersaturated water moving downstream through the lower Columbia River. Apparently, the levels of total dissolved gas did not decrease rapidly enough downstream from the dams before reaching the next site. From mid-July to mid-September, water temperatures were usually above 20 degrees Celsius at each of the seven lower Columbia River sites. According to the Oregon water-quality standard, when the temperature of the lower Columbia River exceeds 20 degrees Celsius, no measurable temperature increase resulting from anthropogenic activities is allowed. Transient increases of about 1 degree Celsius were noted at the John Day forebay site, due to localized solar heating.

  10. Simulating the effects of fluctuating dissolved oxygen on growth, reproduction, and survival of fish and shrimp.

    PubMed

    Miller Neilan, Rachael; Rose, Kenneth

    2014-02-21

    Individuals are commonly exposed to fluctuating levels of stressors, while most laboratory experiments focus on constant exposures. We develop and test a mathematical model for predicting the effects of low dissolved oxygen (hypoxia) on growth, reproduction, and survival using laboratory experiments on fish and shrimp. The exposure-effects model simulates the hourly reductions in growth and survival, and the reduction in reproduction (fecundity) at times of spawning, of an individual as it is exposed to constant or hourly fluctuating dissolved oxygen (DO) concentrations. The model was applied to seven experiments involving fish and shrimp that included constant and fluctuating DO exposures, with constant exposures used for parameter estimation and the model then used to simulate the growth, reproduction, and survival in the fluctuating treatments. Cumulative effects on growth, reproduction, and survival were predicted well by the model, but the model did not replay the observed episodic low survival days. Further investigation should involve the role of acclimation, possible inclusion of repair effects in reproduction and survival, and the sensitivity of model predictions to the shape of the immediate effects function. Additional testing of the model with other taxa, different patterns of fluctuating exposures, and different stressors is needed to determine the model's generality and robustness. © 2013 Elsevier Ltd. All rights reserved.

  11. A Global Assessment of Rain-Dissolved Organic Carbon

    NASA Astrophysics Data System (ADS)

    Safieddine, S.; Heald, C. L.

    2017-12-01

    Precipitation is the largest physical removal pathway of atmospheric organic carbon from the atmosphere. The removed carbon is transferred to the land and ocean in the form of dissolved organic carbon (DOC). Limited measurements have hindered efforts to characterize global DOC. In this poster presentation, we show the first simulated global DOC distribution based on a GEOS-Chem model simulation of the atmospheric reactive carbon budget. Over the ocean, simulated DOC concentrations are between 0.1 to 1 mgCL-1 with a total of 85 TgCyr-1 deposited. DOC concentrations are higher inland, ranging between 1 and 10 mgCL-1, producing a total of 188 TgCyr-1 terrestrial organic wet deposition. We compare the 2010 simulated DOC to a 30-year synthesis of available DOC measurements over different environments. Despite imperfect matching of observational and simulated time intervals, the model is able to reproduce much of the spatial variability of DOC (r= 0.63), with a low bias of 35%. We compare the global average carbon oxidation state (OSc) of both atmospheric and dissolved organic carbon, as a simple metric for describing the chemical composition of organics. In the global atmosphere reactive organic carbon (ROC) is dominated by hydrocarbons and ketones, and OSc, ranges from -1.8 to -0.6. In the dissolved form, formaldehyde, formic acid, primary and secondary semi-volatiles organic aerosol dominate the DOC concentrations. The increase in solubility upon oxidation leads to a global increase in OSc in rainwater with -0.6<=OSc <=0. This simulation provides new insight into the current model representation of the flow of atmospheric and rain-dissolved organic carbon, and new opportunities to use observations and simulations to understand the DOC reaching land and ocean.

  12. Documentation of a dissolved-solids model of the Tongue River, southeastern Montana

    USGS Publications Warehouse

    Woods, Paul F.

    1981-01-01

    A model has been developed for assessing potential increases in dissolved solids of the Tongue River as a result of leaching of overburden materials used to backfill pits in surface coal-mining operations. The model allows spatial and temporal simulation of streamflow and dissolved-solids loads and concentrations under user-defined scenarios of surface coal mining and agricultural development. The model routes an input quantity of streamflow and dissolved solids from the upstream end to the downstream end of a stream reach while algebraically accounting for gains and losses of streamflow and dissolved solids within the stream reach. Input data needed to operate the model include the following: simulation number, designation of hydrologic conditions for each simulated month, either user-defined or regression-defined concentrations of dissolved solids input by the Tongue River Reservoir, number of irrigated acres, number of mined acres, dissolved-solids concentration of mine leachates and quantity of other water losses. A listing of the Fortran computer program, definitions of all variables in the model, and an example output permit use of the model by interested persons. (USGS)

  13. The suitability of using dissolved gases to determine groundwater discharge to high gradient streams

    USGS Publications Warehouse

    Gleeson, Tom; Manning, Andrew H.; Popp, Andrea; Zane, Mathew; Clark, Jordan F.

    2018-01-01

    Determining groundwater discharge to streams using dissolved gases is known to be useful over a wide range of streamflow rates but the suitability of dissolved gas methods to determine discharge rates in high gradient mountain streams has not been sufficiently tested, even though headwater streams are critical as ecological habitats and water resources. The aim of this study is to test the suitability of using dissolved gases to determine groundwater discharge rates to high gradient streams by field experiments in a well-characterized, high gradient mountain stream and a literature review. At a reach scale (550 m) we combined stream and groundwater radon activity measurements with an in-stream SF6 tracer test. By means of numerical modeling we determined gas exchange velocities and derived very low groundwater discharge rates (∼15% of streamflow). These groundwater discharge rates are below the uncertainty range of physical streamflow measurements and consistent with temperature, specific conductance and streamflow measured at multiple locations along the reach. At a watershed-scale (4 km), we measured CFC-12 and δ18O concentrations and determined gas exchange velocities and groundwater discharge rates with the same numerical model. The groundwater discharge rates along the 4 km stream reach were highly variable, but were consistent with the values derived in the detailed study reach. Additionally, we synthesized literature values of gas exchange velocities for different stream gradients which show an empirical relationship that will be valuable in planning future dissolved gas studies on streams with various gradients. In sum, we show that multiple dissolved gas tracers can be used to determine groundwater discharge to high gradient mountain streams from reach to watershed scales.

  14. The suitability of using dissolved gases to determine groundwater discharge to high gradient streams

    NASA Astrophysics Data System (ADS)

    Gleeson, Tom; Manning, Andrew H.; Popp, Andrea; Zane, Matthew; Clark, Jordan F.

    2018-02-01

    Determining groundwater discharge to streams using dissolved gases is known to be useful over a wide range of streamflow rates but the suitability of dissolved gas methods to determine discharge rates in high gradient mountain streams has not been sufficiently tested, even though headwater streams are critical as ecological habitats and water resources. The aim of this study is to test the suitability of using dissolved gases to determine groundwater discharge rates to high gradient streams by field experiments in a well-characterized, high gradient mountain stream and a literature review. At a reach scale (550 m) we combined stream and groundwater radon activity measurements with an in-stream SF6 tracer test. By means of numerical modeling we determined gas exchange velocities and derived very low groundwater discharge rates (∼15% of streamflow). These groundwater discharge rates are below the uncertainty range of physical streamflow measurements and consistent with temperature, specific conductance and streamflow measured at multiple locations along the reach. At a watershed-scale (4 km), we measured CFC-12 and δ18O concentrations and determined gas exchange velocities and groundwater discharge rates with the same numerical model. The groundwater discharge rates along the 4 km stream reach were highly variable, but were consistent with the values derived in the detailed study reach. Additionally, we synthesized literature values of gas exchange velocities for different stream gradients which show an empirical relationship that will be valuable in planning future dissolved gas studies on streams with various gradients. In sum, we show that multiple dissolved gas tracers can be used to determine groundwater discharge to high gradient mountain streams from reach to watershed scales.

  15. Simulating regolith ejecta due to gas impingement

    NASA Astrophysics Data System (ADS)

    Chambers, Wesley Allen; Metzger, Philip; Dove, Adrienne; Britt, Daniel

    2016-10-01

    Space missions operating at or near the surface of a planet or small body must consider possible gas-regolith interactions, as they can cause hazardous effects or, conversely, be employed to accomplish mission goals. They are also directly related to a body's surface properties; thus understanding these interactions could provide an additional tool to analyze mission data. The Python Regolith Interaction Calculator (PyRIC), built upon a computational technique developed in the Apollo era, was used to assess interactions between rocket exhaust and an asteroid's surface. It focused specifically on threshold conditions for causing regolith ejecta. To improve this model, and learn more about the underlying physics, we have begun ground-based experiments studying the interaction between gas impingement and regolith simulant. Compressed air, initially standing in for rocket exhaust, is directed through a rocket nozzle at a bed of simulant. We assess the qualitative behavior of various simulants when subjected to a known maximum surface pressure, both in atmosphere and in a chamber initially at vacuum. These behaviors are compared to prior computational results, and possible flow patterns are inferred. Our future work will continue these experiments in microgravity through the use of a drop tower. These will use several simulant types and various pressure levels to observe the effects gas flow can have on target surfaces. Combining this with a characterization of the surface pressure distribution, tighter bounds can be set on the cohesive threshold necessary to maintain regolith integrity. This will aid the characterization of actual regolith distributions, as well as informing the surface operation phase of mission design.

  16. Dissolved gas geochemical signatures of the ground waters related to the 2011 El Hierro magmatic reactivation

    NASA Astrophysics Data System (ADS)

    Rodríguez, F.; Hernández, P. A.; Padrón, E.; Pérez, N. M.; Sumino, H.; Melián, G. V.; Padilla, G. D.; Barrancos, J.; Dionis, S.; Nolasco, D.; Calvo, D.; Hernández, I.; Peraza, M. D.

    2012-04-01

    El Hierro Island is the south westernmost and the youngest island of the Canary archipelago (<1.2 My). Since 16 July, an anomalous seismicity at El Hierro Island was recorded by IGN seismic network. After the occurrence of more than 10,000 seismic events, volcanic tremor was recorded since 05:15 on October 10, by all of the seismic stations on the island, with highest amplitudes recorded in the southernmost station. During the afternoon of 12 October a large light-green coloured area was observed in the sea to the south of La Restinga village (at the southernmost part of El Hierro island), suggesting the existence of a submarine eruption. Since October 12, frequent episodes of, turbulent gas emission and foaming, and the appearance of steamy lava fragments has been observed on the sea surface. Instituto Volcanologico de Canarias (INVOLCAN) started a hydrogeochemical program on August 2011 in order to evaluate the temporal evolution of dissolved gases on four different observation points (vertical and horizontal wells) of El Hierro. Three wells are located on the north of the island (where the seismic activity occurred at the beginning of the volcano-seismic unrest) and one horizontal well (gallery) in the south. At each observation point the concentration of dissolved helium, CO2, N2, O2 and Ar and the isotopic composition of He, C-CO2 and Ar have been measured three times per week. Significant increases on the dissolved gases content, mainly on CO2 and He/CO2 ratio, have been measured at all the observation points prior to the increasing of released seismic energy. Isotopic composition of dissolved helium, measured as 3He/4He ratio, showed an significant increase (from 1-3 RA up to 7.2 RA, being RA the isotopic 3He/4He ratio on air) at all the observation points 20 days before the occurrence of the submarine eruption and these relatively high 3He/4He values have been maintained along the volcanic unrest period. The isotopic composition of CO2 has showed also

  17. Simulation of the dissolved nitrogen and phosphorus loads in different land uses in the Three Gorges Reservoir Region--based on the improved export coefficient model.

    PubMed

    Wang, Jinliang; Shao, Jing'an; Wang, Dan; Ni, Jiupai; Xie, Deti

    2015-11-01

    Nonpoint source pollution is one of the primary causes of eutrophication of water bodies. The concentrations and loads of dissolved pollutants have a direct bearing on the environmental quality of receiving water bodies. Based on the Johnes export coefficient model, a pollutant production coefficient was established by introducing the topographical index and measurements of annual rainfall. A pollutant interception coefficient was constructed by considering the width and slope of present vegetation. These two coefficients were then used as the weighting factors to modify the existing export coefficients of various land uses. A modified export coefficient model was created to estimate the dissolved nitrogen and phosphorus loads in different land uses in the Three Gorges Reservoir Region (TGRR) in 1990, 1995, 2000, 2005, and 2010. The results show that the new land use export coefficient was established by the modification of the production pollution coefficient and interception pollution coefficient. This modification changed the single numerical structure of the original land use export coefficient and takes into consideration temporal and spatial differentiation features. The modified export coefficient retained the change structure of the original single land use export coefficient, and also demonstrated that the land use export coefficient was not only impacted by the change of land use itself, but was also influenced by other objective conditions, such as the characteristics of the underlying surface, amount of rainfall, and the overall presence of vegetation. In the five analyzed years, the simulation values of the dissolved nitrogen and phosphorus loads in paddy fields increased after applying the modification in calculation. The dissolved nitrogen and phosphorus loads in dry land comprised the largest proportions of the TGRR's totals. After modification, the dry land values showed an initial increase and then a decrease over time, but the increments were

  18. Demonstration of landfill gas enhancement techniques in landfill simulators

    NASA Astrophysics Data System (ADS)

    Walsh, J. J.; Vogt, W. G.

    1982-02-01

    Various techniques to enhance gas production in sanitary landfills were applied to landfill simulators. These techniques include (1) accelerated moisture addition, (2) leachate recycling, (3) buffer addition, (4) nutrient addition, and (5) combinations of the above. Results are compiled through on-going operation and monitoring of sixteen landfill simulators. These test cells contain about 380 kg of municipal solid waste. Quantities of buffer and nutrient materials were placed in selected cells at the time of loading. Water is added to all test cells on a monthly basis; leachate is withdrawn from all cells (and recycled on selected cells) also on a monthly basis. Daily monitoring of gas volumes and refuse temperatures is performed. Gas and leachate samples are collected and analyzed on a monthly basis. Leachate and gas quality and quantity reslts are presented for the first 18 months of operation.

  19. Space Shuttle Propulsion Systems Plume Modeling and Simulation for the Lift-Off Computational Fluid Dynamics Model

    NASA Technical Reports Server (NTRS)

    Strutzenberg, L. L.; Dougherty, N. S.; Liever, P. A.; West, J. S.; Smith, S. D.

    2007-01-01

    This paper details advances being made in the development of Reynolds-Averaged Navier-Stokes numerical simulation tools, models, and methods for the integrated Space Shuttle Vehicle at launch. The conceptual model and modeling approach described includes the development of multiple computational models to appropriately analyze the potential debris transport for critical debris sources at Lift-Off. The conceptual model described herein involves the integration of propulsion analysis for the nozzle/plume flow with the overall 3D vehicle flowfield at Lift-Off. Debris Transport Analyses are being performed using the Shuttle Lift-Off models to assess the risk to the vehicle from Lift-Off debris and appropriately prioritized mitigation of potential debris sources to continue to reduce vehicle risk. These integrated simulations are being used to evaluate plume-induced debris environments where the multi-plume interactions with the launch facility can potentially accelerate debris particles toward the vehicle.

  20. Process for coal liquefaction in staged dissolvers

    DOEpatents

    Roberts, George W.; Givens, Edwin N.; Skinner, Ronald W.

    1983-01-01

    There is described an improved liquefaction process by which coal is converted to a low ash and low sulfur carbonaceous material that can be used as a fuel in an environmentally acceptable manner without costly gas scrubbing equipment. In the process, coal is slurried with a pasting oil, passed through a preheater and at least two dissolvers in series in the presence of hydrogen-rich gases at elevated temperatures and pressures. Solids, including mineral ash and unconverted coal macerals, are separated from the condensed reactor effluent. In accordance with the improved process, the first dissolver is operated at a higher temperature than the second dissolver. This temperature sequence produces improved product selectivity and permits the incorporation of sufficient hydrogen in the solvent for adequate recycle operations.

  1. The effect of dissolve gas concentration in the initial growth stage of multi cavitation bubbles. Differences between vacuum degassing and ultrasound degassing.

    PubMed

    Yanagida, Hirotaka

    2008-04-01

    The sonochemical luminescence intensity from luminol was measured at a sampling rate of several kilohertz. This was noted at three different periods: first, the latent period in which no light emission occurs at all; second, the increased emission period from the start of light emission to the time when a steady state is reached; and third, the steady state period in which light emission occurs at the steady state value. When irradiated with ultrasound of different intensities, the times of the latent period and increased emission period are shorter for higher ultrasound intensities. To know how the dissolved oxygen content is involved in early-stage cavitation growth, an experiment was conducted using solutions with varying dissolved oxygen contents from 100% to 37%. For dissolved air content of 50% or less, it was found that the latent period was 30 times longer in a saturated condition. It was also found that the increased emission period was 10 times longer. However, the emission intensity in the steady state did not change at all even when the initial dissolved gas concentration of the sample was changed. From this, it was found that the reuse of collapsed bubbles takes place efficiently in the steady state. Dissolved oxygen was reduced by the use of a vacuum pump and by the degassing action of ultrasound, and it was discovered that the behavior of transient emission differed for the two ways of degassing.

  2. Simulation of granular and gas-solid flows using discrete element method

    NASA Astrophysics Data System (ADS)

    Boyalakuntla, Dhanunjay S.

    2003-10-01

    In recent years there has been increased research activity in the experimental and numerical study of gas-solid flows. Flows of this type have numerous applications in the energy, pharmaceuticals, and chemicals process industries. Typical applications include pulverized coal combustion, flow and heat transfer in bubbling and circulating fluidized beds, hopper and chute flows, pneumatic transport of pharmaceutical powders and pellets, and many more. The present work addresses the study of gas-solid flows using computational fluid dynamics (CFD) techniques and discrete element simulation methods (DES) combined. Many previous studies of coupled gas-solid flows have been performed assuming the solid phase as a continuum with averaged properties and treating the gas-solid flow as constituting of interpenetrating continua. Instead, in the present work, the gas phase flow is simulated using continuum theory and the solid phase flow is simulated using DES. DES treats each solid particle individually, thus accounting for its dynamics due to particle-particle interactions, particle-wall interactions as well as fluid drag and buoyancy. The present work involves developing efficient DES methods for dense granular flow and coupling this simulation to continuum simulations of the gas phase flow. Simulations have been performed to observe pure granular behavior in vibrating beds. Benchmark cases have been simulated and the results obtained match the published literature. The dimensionless acceleration amplitude and the bed height are the parameters governing bed behavior. Various interesting behaviors such as heaping, round and cusp surface standing waves, as well as kinks, have been observed for different values of the acceleration amplitude for a given bed height. Furthermore, binary granular mixtures (granular mixtures with two particle sizes) in a vibrated bed have also been studied. Gas-solid flow simulations have been performed to study fluidized beds. Benchmark 2D

  3. How Properties of Solid Surfaces Modulate the Nucleation of Gas Hydrate

    PubMed Central

    Bai, Dongsheng; Chen, Guangjin; Zhang, Xianren; Sum, Amadeu K.; Wang, Wenchuan

    2015-01-01

    Molecular dynamics simulations were performed for CO2 dissolved in water near silica surfaces to investigate how the hydrophilicity and crystallinity of solid surfaces modulate the local structure of adjacent molecules and the nucleation of CO2 hydrates. Our simulations reveal that the hydrophilicity of solid surfaces can change the local structure of water molecules and gas distribution near liquid-solid interfaces, and thus alter the mechanism and dynamics of gas hydrate nucleation. Interestingly, we find that hydrate nucleation tends to occur more easily on relatively less hydrophilic surfaces. Different from surface hydrophilicity, surface crystallinity shows a weak effect on the local structure of adjacent water molecules and on gas hydrate nucleation. At the initial stage of gas hydrate growth, however, the structuring of molecules induced by crystalline surfaces are more ordered than that induced by amorphous solid surfaces. PMID:26227239

  4. UNDERSTANDING AND MANAGING RISKS POSED BY BRINES CONTAINING DISSOLVED CARBON DIOXIDE

    EPA Science Inventory

    Geologic disposal of supercritical carbon dioxide in saline aquifers and depleted oil and gas fields will cause large volumes of brine to become saturated with dissolved CO2 at concentrations of 50 g/l or more.  As CO2 dissolves in brine, the brine de...

  5. Coupling of WRF and Building-resolved CFD Simulations for Greenhouse Gas Transport and Dispersion

    NASA Astrophysics Data System (ADS)

    Prasad, K.; Hu, H.; McDermott, R.; Lopez-Coto, I.; Davis, K. J.; Whetstone, J. R.; Lauvaux, T.

    2014-12-01

    The Indianapolis Flux Experiment (INFLUX) aims to use a top-down inversion methodology to quantify sources of Greenhouse Gas (GHG) emissions over an urban domain with high spatial and temporal resolution. Atmospheric transport of tracer gases from an emission source to a tower mounted receptor are usually conducted using the Weather Research and Forecasting (WRF) model. WRF is used extensively in the atmospheric community to simulate mesoscale atmospheric transport. For such simulations, WRF employs a parameterized turbulence model and does not resolve the fine scale dynamics that are generated by the flow around buildings and communities that are part of a large city. Since the model domain includes the city of Indianapolis, much of the flow of interest is over an urban topography. The NIST Fire Dynamics Simulator (FDS) is a computational fluid dynamics model to perform large eddy simulations of flow around buildings, but it has not been nested within a larger-scale atmospheric transport model such as WRF. FDS has the potential to evaluate the impact of complex urban topography on near-field dispersion and mixing that cannot be simulated with a mesoscale atmospheric model, and which may be important to determining urban GHG emissions using atmospheric measurements. A methodology has been developed to run FDS as a sub-grid scale model within a WRF simulation. The coupling is based on nudging the FDS flow field towards the one computed by WRF, and is currently limited to one way coupling performed in an off-line mode. Using the coupled WRF / FDS model, NIST will investigate the effects of the urban canopy at horizontal resolutions of 2-10 m. The coupled WRF-FDS simulations will be used to calculate the dispersion of tracer gases in an urban domain and to evaluate the upwind areas that contribute to tower observations, referred to in the inversion community as influence functions. Predicted mixing ratios will be compared with tower measurements and WRF simulations

  6. Off-diagonal long-range order, cycle probabilities, and condensate fraction in the ideal Bose gas.

    PubMed

    Chevallier, Maguelonne; Krauth, Werner

    2007-11-01

    We discuss the relationship between the cycle probabilities in the path-integral representation of the ideal Bose gas, off-diagonal long-range order, and Bose-Einstein condensation. Starting from the Landsberg recursion relation for the canonic partition function, we use elementary considerations to show that in a box of size L3 the sum of the cycle probabilities of length k>L2 equals the off-diagonal long-range order parameter in the thermodynamic limit. For arbitrary systems of ideal bosons, the integer derivative of the cycle probabilities is related to the probability of condensing k bosons. We use this relation to derive the precise form of the pik in the thermodynamic limit. We also determine the function pik for arbitrary systems. Furthermore, we use the cycle probabilities to compute the probability distribution of the maximum-length cycles both at T=0, where the ideal Bose gas reduces to the study of random permutations, and at finite temperature. We close with comments on the cycle probabilities in interacting Bose gases.

  7. Simulation of natural gas production from submarine gas hydrate deposits combined with carbon dioxide storage

    NASA Astrophysics Data System (ADS)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2013-04-01

    The recovery of methane from gas hydrate layers that have been detected in several submarine sediments and permafrost regions around the world so far is considered to be a promising measure to overcome future shortages in natural gas as fuel or raw material for chemical syntheses. Being aware that natural gas resources that can be exploited with conventional technologies are limited, research is going on to open up new sources and develop technologies to produce methane and other energy carriers. Thus various research programs have started since the early 1990s in Japan, USA, Canada, South Korea, India, China and Germany to investigate hydrate deposits and develop technologies to destabilize the hydrates and obtain the pure gas. In recent years, intensive research has focussed on the capture and storage of carbon dioxide from combustion processes to reduce climate change. While different natural or manmade reservoirs like deep aquifers, exhausted oil and gas deposits or other geological formations are considered to store gaseous or liquid carbon dioxide, the storage of carbon dioxide as hydrate in former methane hydrate fields is another promising alternative. Due to beneficial stability conditions, methane recovery may be well combined with CO2 storage in form of hydrates. This has been shown in several laboratory tests and simulations - technical field tests are still in preparation. Within the scope of the German research project »SUGAR«, different technological approaches are evaluated and compared by means of dynamic system simulations and analysis. Detailed mathematical models for the most relevant chemical and physical effects are developed. The basic mechanisms of gas hydrate formation/dissociation and heat and mass transport in porous media are considered and implemented into simulation programs like CMG STARS and COMSOL Multiphysics. New simulations based on field data have been carried out. The studies focus on the evaluation of the gas production

  8. The detection of dissolved gases in transformer oil by gas chromatography with helium ionization detector

    NASA Astrophysics Data System (ADS)

    Deng, Xian-qin; Fang, Hua; Li, Min-xian

    2017-07-01

    The GC-PDD with the technology of valve cutting and helium ionization detector was used to analyze the dissolved gases in ultra-high voltage(UHV) and extra-high voltage(EHV) transformer oil. The detection limit(DL) reached ppb grade, especially for the featuring gas—C2H2 and H2, whose DL could reach 5ppb and 11ppb respectively. The test reproducibility of the instrument was about 1% and the correlation coefficient of standard curve-r is greater or equal to 0.99, which showed obvious advantage compared with normal GC. In addition, the auxiliary gas of H2 was not used in this instrument, which completely improved the safety performance. Thus, the application of GC-PDD has significant meaning in warning potential malfunction inside the ultra-high voltage transformer in advance.

  9. Understanding road surface pollutant wash-off and underlying physical processes using simulated rainfall.

    PubMed

    Egodawatta, Prasanna; Goonetilleke, Ashantha

    2008-01-01

    Pollutant wash-off is one of the key pollutant processes that detailed knowledge is required in order to develop successful treatment design strategies for urban stormwater. Unfortunately, current knowledge relating to pollutant wash-off is limited. This paper presents the outcomes of a detailed investigation into pollutant wash-off on residential road surfaces. The investigations consisted of research methodologies formulated to overcome the physical constraints due to the heterogeneity of urban paved surfaces and the dependency on naturally occurring rainfall. This entailed the use of small road surface plots and artificially simulated rainfall. Road surfaces were selected due to its critical importance as an urban stormwater pollutant source. The study results showed that the influence of initially available pollutants on the wash-off process was limited. Furthermore, pollutant wash-off from road surfaces can be replicated using an exponential equation. However, the typical version of the exponential wash-off equation needs to be modified by introducing a non dimensional factor referred to as 'capacity factor' CF. Three rainfall intensity ranges were identified where the variation of CF can be defined. Furthermore, it was found that particulate density rather than size is the critical parameter that influences the process of pollutant wash-off. (c) IWA Publishing 2008.

  10. Absorption properties of chromophoric dissolved organic matter (CDOM) in the East China Sea and the waters off eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Zhou, Fengxia; Gao, Xuelu; Song, Jinming; Chen, Chen-Tung Arthur; Yuan, Huamao; Xing, Qianguo

    2018-05-01

    The absorption properties of chromophoric dissolved organic matter (CDOM) in the East China Sea (ECS) and the waters off eastern Taiwan (WET) were studied during May 2014. CDOM absorption coefficient (a280) and spectral slope (S275-295) revealed considerable spatial variations. In the ECS, the values of a280 and S275-295 presented a reverse distribution pattern. In the WET, a280 values were generally low while S275-295 values were generally high. Vertical distributions of a280 and S275-295 also varied in different regions. Terrestrial input, phytoplankton production, sediment release or photobleaching may be responsible for the dynamics of CDOM. Relationships among CDOM related parameters could partly support this conclusion. a280 were also used to trace different water masses and the result showed that the influence of Changjiang Diluted Water could reach the outer shelf of the northern ECS, and that the Kuroshio Current had a strong influence on the middle shelf of the southern ECS.

  11. Molecular simulation of a model of dissolved organic matter.

    PubMed

    Sutton, Rebecca; Sposito, Garrison; Diallo, Mamadou S; Schulten, Hans-Rolf

    2005-08-01

    A series of atomistic simulations was performed to assess the ability of the Schulten dissolved organic matter (DOM) molecule, a well-established model humic molecule, to reproduce the physical and chemical behavior of natural humic substances. The unhydrated DOM molecule had a bulk density value appropriate to humic matter, but its Hildebrand solubility parameter was lower than the range of current experimental estimates. Under hydrated conditions, the DOM molecule went through conformational adjustments that resulted in disruption of intramolecular hydrogen bonds (H-bonds), although few water molecules penetrated the organic interior. The radius of gyration of the hydrated DOM molecule was similar to those measured for aquatic humic substances. To simulate humic materials under aqueous conditions with varying pH levels, carboxyl groups were deprotonated, and hydrated Na+ or Ca2+ were added to balance the resulting negative charge. Because of intrusion of the cation hydrates, the model metal-humic structures were more porous, had greater solvent-accessible surface areas, and formed more H-bonds with water than the protonated, hydrated DOM molecule. Relative to Na+, Ca2+ was both more strongly bound to carboxylate groups and more fully hydrated. This difference was attributed to the higher charge of the divalent cation. The Ca-DOM hydrate, however, featured fewer H-bonds than the Na-DOM hydrate, perhaps because of the reduced orientational freedom of organic moieties and water molecules imposed by Ca2+. The present work is, to our knowledge, the first rigorous computational exploration regarding the behavior of a model humic molecule under a range of physical conditions typical of soil and water systems.

  12. Land Disturbance Associated with Oil and Gas Development and Effects of Development-Related Land Disturbance on Dissolved-Solids Loads in Streams in the Upper Colorado River Basin, 1991, 2007, and 2025

    USGS Publications Warehouse

    Buto, Susan G.; Kenney, Terry A.; Gerner, Steven J.

    2010-01-01

    Oil and gas resource development in the Upper Colorado River Basin (UCRB) has increased substantially since the year 2000. The UCRB encompasses several significant oil and gas producing areas that have the potential for continued oil and gas resource development. Land disturbance associated with oil and gas resource development is caused by activities related to constructing drill pads to contain drilling and well maintenance equipment and roads to access the drill pad. Land disturbed by oil and gas development has the potential to cause increased erosion, stream degradation, habitat fragmentation and alteration, and increase public use of areas that may be environmentally sensitive. Land disturbance resulting from oil and gas resource development has not been monitored and mapped on a regional scale in the UCRB. However, information on the location and age of oil and gas wells in the UCRB is available. These data combined with geographic data analysis and modeling techniques were used to estimate the total area of disturbed land associated with oil and gas resource development in 1991 and in 2007 in the UCRB. Additional information about anticipated oil and gas development in the UCRB was used to project land disturbance to the year 2025. Results of the analysis indicate that approximately 117,500 acres (183 mi2) of total land disturbance was associated with drill pads and related roads in the UCRB in 1991. The estimated area of disturbed land associated with oil and gas development increased 53 percent to 179,400 acres (280 mi2) in 2007. Projecting oil and gas development through 2025 results in a potential near doubling of the land surface disturbance to approximately 319,300 acres (500 mi2). Estimated land disturbance for 1991 and 2007 were input to a contaminant transport model developed for the UCRB to assess the statistical significance of energy-related land disturbance to contributing dissolved solids to basin streams. The statistical assessment was an

  13. Raman spectroscopy measurement of CH4 gas and CH4 dissolved in water for laser remote sensing in water

    NASA Astrophysics Data System (ADS)

    Somekawa, Toshihiro; Fujita, Masayuki

    2018-04-01

    We examined the applicability of Raman spectroscopy as a laser remote sensing tool for monitoring CH4 in water. The Raman technique has already been used successfully for measurements of CO2 gas in water. In this paper, considering the spectral transmittance of water, third harmonics of Q-switched Nd:YAG laser at 355 nm (UV region) was used for detection of CH4 Raman signals. The Raman signal at 2892 cm-1 from CH4 dissolved in water was detected at a tail of water Raman signal.

  14. Mean flows and blob velocities in scrape-off layer (SOLT) simulations of an L-mode discharge on Alcator C-Mod

    DOE PAGES

    Russell, D. A.; Myra, J. R.; D'Ippolito, D. A.; ...

    2016-06-10

    Two-dimensional scrape-off layer turbulence (SOLT) code simulations are compared with an L-mode discharge on the Alcator C-Mod tokamak [M. Greenwald, et al., Phys. Plasmas 21, 110501 (2014)]. Density and temperature profiles for the simulations were obtained by smoothly fitting Thomson scattering and mirror Langmuir probe (MLP) data from the shot. Simulations differing in turbulence intensity were obtained by varying a dissipation parameter. Mean flow profiles and density fluctuation amplitudes are consistent with those measured by MLP in the experiment and with a Fourier space diagnostic designed to measure poloidal phase velocity. Blob velocities in the simulations were determined from themore » correlation function for density fluctuations, as in the analysis of gas-puff-imaging (GPI) blobs in the experiment. In the simulations, it was found that larger blobs moved poloidally with the ExB flow velocity, v E , in the near-SOL, while smaller fluctuations moved with the group velocity of the dominant linear (interchange) mode, v E + 1/2 v di, where v di is the ion diamagnetic drift velocity. Comparisons are made with the measured GPI correlation velocity for the discharge. The saturation mechanisms operative in the simulation of the discharge are also discussed. In conclusion, it is found that neither sheared flow nor pressure gradient modification can be excluded as saturation mechanisms.« less

  15. Microfluidic dissolved oxygen gradient generator biochip as a useful tool in bacterial biofilm studies.

    PubMed

    Skolimowski, Maciej; Nielsen, Martin Weiss; Emnéus, Jenny; Molin, Søren; Taboryski, Rafael; Sternberg, Claus; Dufva, Martin; Geschke, Oliver

    2010-08-21

    A microfluidic chip for generation of gradients of dissolved oxygen was designed, fabricated and tested. The novel way of active oxygen depletion through a gas permeable membrane was applied. Numerical simulations for generation of O(2) gradients were correlated with measured oxygen concentrations. The developed microsystem was used to study growth patterns of the bacterium Pseudomonas aeruginosa in medium with different oxygen concentrations. The results showed that attachment of Pseudomonas aeruginosa to the substrate changed with oxygen concentration. This demonstrates that the device can be used for studies requiring controlled oxygen levels and for future studies of microaerobic and anaerobic conditions.

  16. Design of the liquefied natural gas (LNG) vehicle gas cylinder filling semi-physical simulation training and assessment system

    NASA Astrophysics Data System (ADS)

    Gao, Jie; Zheng, Jianrong; Zhao, Yinghui

    2017-08-01

    With the rapid development of LNG vehicle in China, the operator's training and assessment of the operating skills cannot operate on material objects, because of Vehicle Gas Cylinder's high pressure, flammable and explosive characteristics. LNG Vehicle Gas Cylinder's filling simulation system with semi-physical simulation technology presents the overall design and procedures of the simulation system, and elaborates the realization of the practical analog machine, data acquisition and control system and the computer software, and introduces the design process of equipment simulation model in detail. According to the designed assessment system of the Vehicle Gas Cylinder, it can obtain the operation on the actual cylinder filling and visual effects for the operator, and automatically record operation, the results of real operation with its software, and achieve the operators' training and assessment of operating skills on mobile special equipment.

  17. ρ-VOF: An interface sharpening method for gas-liquid flow simulation

    NASA Astrophysics Data System (ADS)

    Wang, Jiantao; Liu, Gang; Jiang, Xiong; Mou, Bin

    2018-05-01

    The study on simulation of compressible gas-liquid flow remains open. Popular methods are either confined to incompressible flow regime, or inevitably induce smear of the free interface. A new finite volume method for compressible two-phase flow simulation is contributed for this subject. First, the “heterogeneous equilibrium” assumption is introduced to the control volume, by hiring free interface reconstruction technology, the distribution of each component in the control volume is achieved. Next, AUSM+-up (advection upstream splitting method) scheme is employed to calculate the convective fluxes and pressure fluxes, with the contact discontinuity characteristic considered, followed by the update of the whole flow field. The new method features on density-based pattern and interface reconstruction technology from VOF (volume of fluid), thus we name it “ρ-VOF method”. Inherited from AUSM families and VOF, ρ-VOF behaves as an all-speed method, capable of simulating shock in gas-liquid flow, and preserving the sharpness of the free interface. Gas-liquid shock tube is simulated to evaluate the method, from which good agreement is obtained between the predicted results and those of the cited literature, meanwhile, sharper free interface is identified. Finally, the capability and validity of ρ-VOF method can be concluded in compressible gas-liquid flow simulation.

  18. Gas flows in the circumgalactic medium around simulated high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Mitchell, Peter D.; Blaizot, Jérémy; Devriendt, Julien; Kimm, Taysun; Michel-Dansac, Léo; Rosdahl, Joakim; Slyz, Adrianne

    2018-03-01

    We analyse the properties of circumgalactic gas around simulated galaxies in the redshift range z ≥ 3, utilizing a new sample of cosmological zoom simulations. These simulations are intended to be representative of the observed samples of Lyman α (Ly α) emitters recently obtained with the multi unit spectroscopic explorer (MUSE) instrument (halo masses ˜1010-1011 M⊙). We show that supernova feedback has a significant impact on both the inflowing and outflowing circumgalactic medium (CGM) by driving outflows, reducing diffuse inflow rates, and by increasing the neutral fraction of inflowing gas. By temporally stacking simulation outputs, we find that significant net mass exchange occurs between inflowing and outflowing phases: none of the phases are mass-conserving. In particular, we find that the mass in neutral outflowing hydrogen declines exponentially with radius as gas flows outwards from the halo centre. This is likely caused by a combination of both fountain-like cycling processes and gradual photoionization/collisional ionization of outflowing gas. Our simulations do not predict the presence of fast-moving neutral outflows in the CGM. Neutral outflows instead move with modest radial velocities (˜50 km s-1), and the majority of the kinetic energy is associated with tangential rather than radial motion.

  19. Photographic simulation of off-axis blurring due to chromatic aberration in spectacle lenses.

    PubMed

    Doroslovački, Pavle; Guyton, David L

    2015-02-01

    Spectacle lens materials of high refractive index (nd) tend to have high chromatic dispersion (low Abbé number [V]), which may contribute to visual blurring with oblique viewing. A patient who noted off-axis blurring with new high-refractive-index spectacle lenses prompted us to do a photographic simulation of the off-axis aberrations in 3 readily available spectacle lens materials, CR-39 (nd = 1.50), polyurethane (nd = 1.60), and polycarbonate (nd = 1.59). Both chromatic and monochromatic aberrations were found to cause off-axis image degradation. Chromatic aberration was more prominent in the higher-index materials (especially polycarbonate), whereas the lower-index CR-39 had more astigmatism of oblique incidence. It is important to consider off-axis aberrations when a patient complains of otherwise unexplained blurred vision with a new pair of spectacle lenses, especially given the increasing promotion of high-refractive-index materials with high chromatic dispersion. Copyright © 2015 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.

  20. Watershed modeling of dissolved oxygen and biochemical oxygen demand using a hydrological simulation Fortran program.

    PubMed

    Liu, Zhijun; Kieffer, Janna M; Kingery, William L; Huddleston, David H; Hossain, Faisal

    2007-11-01

    Several inland water bodies in the St. Louis Bay watershed have been identified as being potentially impaired due to low level of dissolved oxygen (DO). In order to calculate the total maximum daily loads (TMDL), a standard watershed model supported by U.S. Environmental Protection Agency, Hydrological Simulation Program Fortran (HSPF), was used to simulate water temperature, DO, and bio-chemical oxygen demand (BOD). Both point and non-point sources of BOD were included in watershed modeling. The developed model was calibrated at two time periods: 1978 to 1986 and 2000 to 2001 with simulated DO closely matched the observed data and captured the seasonal variations. The model represented the general trend and average condition of observed BOD. Water temperature and BOD decay are the major factors that affect DO simulation, whereas nutrient processes, including nitrification, denitrification, and phytoplankton cycle, have slight impacts. The calibrated water quality model provides a representative linkage between the sources of BOD and in-stream DO\\BOD concentrations. The developed input parameters in this research could be extended to similar coastal watersheds for TMDL determination and Best Management Practice (BMP) evaluation.

  1. Effect of natural gas exsolution on specific storage in a confined aquifer undergoing water level decline.

    PubMed

    Yager, R M; Fountain, J C

    2001-01-01

    The specific storage of a porous medium, a function of the compressibility of the aquifer material and the fluid within it, is essentially constant under normal hydrologic conditions. Gases dissolved in ground water can increase the effective specific storage of a confined aquifer, however, during water level declines. This causes a reduction in pore pressure that lowers the gas solubility and results in exsolution. The exsolved gas then displaces water from storage, and the specific storage increases because gas compressibility is typically much greater than that of water or aquifer material. This work describes the effective specific storage of a confined aquifer exsolving dissolved gas as a function of hydraulic head and the dimensionless Henry's law constant for the gas. This relation is applied in a transient simulation of ground water discharge from a confined aquifer system to a collapsed salt mine in the Genesee Valley in western New York. Results indicate that exsolution of gas significantly increased the effective specific storage in the aquifer system, thereby decreasing the water level drawdown.

  2. Effect of natural gas exsolution on specific storage in a confined aquifer undergoing water level decline

    USGS Publications Warehouse

    Yager, R.M.; Fountain, J.C.

    2001-01-01

    The specific storage of a porous medium, a function of the compressibility of the aquifer material and the fluid within it, is essentially constant under normal hydrologic conditions. Gases dissolved in ground water can increase the effective specific storage of a confined aquifer, however, during water level declines. This causes a reduction in pore pressure that lowers the gas solubility and results in exsolution. The exsolved gas then displaces water from storage, and the specific storage increases because gas compressibility is typically much greater than that of water or aquifer material. This work describes the effective specific storage of a confined aquifer exsolving dissolved gas as a function of hydraulic head and the dimensionless Henry's law constant for the gas. This relation is applied in a transient simulation of ground water discharge from a confined aquifer system to a collapsed salt mine in the Genesee Valley in western New York. Results indicate that exsolution of gas significantly increased the effective specific storage in the aquifer system, thereby decreasing the water level drawdown.

  3. FY-12 INL KR CAPTURE ACTIVITIES SUPPORTING THE OFF-GAS SIGMA TEAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troy G. Garn; Mitchell R. Greenhalgh; Jack D Law

    2012-08-01

    Tasks performed this year by INL Kr capture off-gas team members can be segregated into three separate task sub-sections which include: 1) The development and testing of a new engineered form sorbent, 2) An initial NDA gamma scan effort performed on the drum containing the Legacy Kr-85 sample materials, and 3) Collaborative research efforts with PNNL involving the testing of the Ni-DOBDC MOF and an initial attempt to make powdered chalcogel material into an engineered form using our binding process. This document describes the routes to success for the three task sub-sections.

  4. Validation of the BASALT model for simulating off-axis hydrothermal circulation in oceanic crust

    NASA Astrophysics Data System (ADS)

    Farahat, Navah X.; Archer, David; Abbot, Dorian S.

    2017-08-01

    Fluid recharge and discharge between the deep ocean and the porous upper layer of off-axis oceanic crust tends to concentrate in small volumes of rock, such as seamounts and fractures, that are unimpeded by low-permeability sediments. Basement structure, sediment burial, heat flow, and other regional characteristics of off-axis hydrothermal systems appear to produce considerable diversity of circulation behaviors. Circulation of seawater and seawater-derived fluids controls the extent of fluid-rock interaction, resulting in significant geochemical impacts. However, the primary regional characteristics that control how seawater is distributed within upper oceanic crust are still poorly understood. In this paper we present the details of the two-dimensional (2-D) BASALT (Basement Activity Simulated At Low Temperatures) numerical model of heat and fluid transport in an off-axis hydrothermal system. This model is designed to simulate a wide range of conditions in order to explore the dominant controls on circulation. We validate the BASALT model's ability to reproduce observations by configuring it to represent a thoroughly studied transect of the Juan de Fuca Ridge eastern flank. The results demonstrate that including series of narrow, ridge-parallel fractures as subgrid features produces a realistic circulation scenario at the validation site. In future projects, a full reactive transport version of the validated BASALT model will be used to explore geochemical fluxes in a variety of off-axis hydrothermal environments.

  5. Gas Bubble Migration and Trapping in Porous Media: Pore-Scale Simulation

    NASA Astrophysics Data System (ADS)

    Mahabadi, Nariman; Zheng, Xianglei; Yun, Tae Sup; van Paassen, Leon; Jang, Jaewon

    2018-02-01

    Gas bubbles can be naturally generated or intentionally introduced in sediments. Gas bubble migration and trapping affect the rate of gas emission into the atmosphere or modify the sediment properties such as hydraulic and mechanical properties. In this study, the migration and trapping of gas bubbles are simulated using the pore-network model extracted from the 3D X-ray image of in situ sediment. Two types of bubble size distribution (mono-sized and distributed-sized cases) are used in the simulation. The spatial and statistical bubble size distribution, residual gas saturation, and hydraulic conductivity reduction due to the bubble trapping are investigated. The results show that the bubble size distribution becomes wider during the gas bubble migration due to bubble coalescence for both mono-sized and distributed-sized cases. And the trapped bubble fraction and the residual gas saturation increase as the bubble size increases. The hydraulic conductivity is reduced as a result of the gas bubble trapping. The reduction in hydraulic conductivity is apparently observed as bubble size and the number of nucleation points increase.

  6. Attractive forces between hydrophobic solid surfaces measured by AFM on the first approach in salt solutions and in the presence of dissolved gases.

    PubMed

    Azadi, Mehdi; Nguyen, Anh V; Yakubov, Gleb E

    2015-02-17

    Interfacial gas enrichment of dissolved gases (IGE) has been shown to cover hydrophobic solid surfaces in water. The atomic force microscopy (AFM) data has recently been supported by molecular dynamics simulation. It was demonstrated that IGE is responsible for the unexpected stability and large contact angle of gaseous nanobubbles at the hydrophobic solid-water interface. Here we provide further evidence of the significant effect of IGE on an attractive force between hydrophobic solid surfaces in water. The force in the presence of dissolved gas, i.e., in aerated and nonaerated NaCl solutions (up to 4 M), was measured by the AFM colloidal probe technique. The effect of nanobubble bridging on the attractive force was minimized or eliminated by measuring forces on the first approach of the AFM probe toward the flat hydrophobic surface and by using high salt concentrations to reduce gas solubility. Our results confirm the presence of three types of forces, two of which are long-range attractive forces of capillary bridging origin as caused by either surface nanobubbles or gap-induced cavitation. The third type is a short-range attractive force observed in the absence of interfacial nanobubbles that is attributed to the IGE in the form of a dense gas layer (DGL) at hydrophobic surfaces. Such a force was found to increase with increasing gas saturation and to decrease with decreasing gas solubility.

  7. Distribution and Dynamic Properties of Xenon Dissolved in the Ionic Smectic Phase of [C16mim][NO3]: MD Simulation and Theoretical Model.

    PubMed

    Frezzato, Diego; Saielli, Giacomo

    2016-03-10

    We have investigated the structural and dynamic properties of Xe dissolved in the ionic liquid crystal (ILC) phase of 1-hexadecyl-3-methylimidazolium nitrate using classical molecular dynamics (MD) simulations. Xe is found to be preferentially dissolved within the hydrophobic environment of the alkyl chains rather than in the ionic layers of the smectic phase. The structural parameters and the estimated local diffusion coefficients concerning the short-time motion of Xe are used to parametrize a theoretical model based on the Smoluchowski equation for the macroscopic dynamics across the smectic layers, a feature which cannot be directly obtained from the relatively short MD simulations. This protocol represents an efficient combination of computational and theoretical tools to obtain information on slow processes concerning the permeability and diffusivity of the xenon in smectic ILCs.

  8. Energy decay in a granular gas collapse

    NASA Astrophysics Data System (ADS)

    Almazán, Lidia; Serero, Dan; Salueña, Clara; Pöschel, Thorsten

    2017-01-01

    An inelastic hard ball bouncing repeatedly off the ground comes to rest in finite time by performing an infinite number of collisions. Similarly, a granular gas under the influence of external gravity, condenses at the bottom of the confinement due to inelastic collisions. By means of hydrodynamical simulations, we find that the condensation process of a granular gas reveals a similar dynamics as the bouncing ball. Our result is in agreement with both experiments and particle simulations, but disagrees with earlier simplified hydrodynamical description. Analyzing the result in detail, we find that the adequate modeling of pressure plays a key role in continuum modeling of granular matter.

  9. Gas kinematics in FIRE simulated galaxies compared to spatially unresolved H I observations

    NASA Astrophysics Data System (ADS)

    El-Badry, Kareem; Bradford, Jeremy; Quataert, Eliot; Geha, Marla; Boylan-Kolchin, Michael; Weisz, Daniel R.; Wetzel, Andrew; Hopkins, Philip F.; Chan, T. K.; Fitts, Alex; Kereš, Dušan; Faucher-Giguère, Claude-André

    2018-06-01

    The shape of a galaxy's spatially unresolved, globally integrated 21-cm emission line depends on its internal gas kinematics: galaxies with rotationally supported gas discs produce double-horned profiles with steep wings, while galaxies with dispersion-supported gas produce Gaussian-like profiles with sloped wings. Using mock observations of simulated galaxies from the FIRE project, we show that one can therefore constrain a galaxy's gas kinematics from its unresolved 21-cm line profile. In particular, we find that the kurtosis of the 21-cm line increases with decreasing V/σ and that this trend is robust across a wide range of masses, signal-to-noise ratios, and inclinations. We then quantify the shapes of 21-cm line profiles from a morphologically unbiased sample of ˜2000 low-redshift, H I-detected galaxies with Mstar = 107-11 M⊙ and compare to the simulated galaxies. At Mstar ≳ 1010 M⊙, both the observed and simulated galaxies produce double-horned profiles with low kurtosis and steep wings, consistent with rotationally supported discs. Both the observed and simulated line profiles become more Gaussian like (higher kurtosis and less-steep wings) at lower masses, indicating increased dispersion support. However, the simulated galaxies transition from rotational to dispersion support more strongly: at Mstar = 108-10 M⊙, most of the simulations produce more Gaussian-like profiles than typical observed galaxies with similar mass, indicating that gas in the low-mass simulated galaxies is, on average, overly dispersion supported. Most of the lower-mass-simulated galaxies also have somewhat lower gas fractions than the median of the observed population. The simulations nevertheless reproduce the observed line-width baryonic Tully-Fisher relation, which is insensitive to rotational versus dispersion support.

  10. A Ni-Doped Carbon Nanotube Sensor for Detecting Oil-Dissolved Gases in Transformers.

    PubMed

    Lu, Jia; Zhang, Xiaoxing; Wu, Xiaoqing; Dai, Ziqiang; Zhang, Jinbin

    2015-06-09

    C2H2, C2H4, and C2H6 are important oil-dissolved gases in power transformers. Detection of the composition and content of oil-dissolved gases in transformers is very significant in the diagnosis and assessment of the state of transformer operations. The commonly used oil-gas analysis methods have many disadvantages, so this paper proposes a Ni-doped carbon nanotube (Ni-CNT) gas sensor to effectively detect oil-dissolved gases in a transformer. The gas-sensing properties of the sensor to C2H2, C2H4, and C2H6 were studied using the test device. Based on the density functional theory (DFT) the adsorption behaviors of the three gases on intrinsic carbon nanotubes (CNTs) and Ni-CNTs were calculated. The adsorption energy, charge transfer, and molecular frontier orbital of the adsorption system were also analyzed. Results showed that the sensitivity of the CNT sensor to the three kinds of gases was in the following order: C2H2 > C2H4 > C2H6. Moreover, the doped Ni improved the sensor response, and the sensor response and gas concentration have a good linear relationship.

  11. Long-term simulations of dissolved oxygen concentrations in Lake Trout lakes

    NASA Astrophysics Data System (ADS)

    Jabbari, A.; Boegman, L.; MacKay, M.; Hadley, K.; Paterson, A.; Jeziorski, A.; Nelligan, C.; Smol, J. P.

    2016-02-01

    Lake Trout are a rare and valuable natural resource that are threatened by multiple environmental stressors. With the added threat of climate warming, there is growing concern among resource managers that increased thermal stratification will reduce the habitat quality of deep-water Lake Trout lakes through enhanced oxygen depletion. To address this issue, a three-part study is underway, which aims to: analyze sediment cores to understand the past, develop empirical formulae to model the present and apply computational models to forecast the future. This presentation reports on the computational modeling efforts. To this end, a simple dissolved oxygen sub-model has been embedded in the one-dimensional bulk mixed-layer thermodynamic Canadian Small Lake Model (CSLM). This model is currently being incorporated into the Canadian Land Surface Scheme (CLASS), the primary land surface component of Environment Canada's global and regional climate modelling systems. The oxygen model was calibrated and validated by hind-casting temperature and dissolved oxygen profiles from two Lake Trout lakes on the Canadian Shield. These data sets include 5 years of high-frequency (10 s to 10 min) data from Eagle Lake and 30 years of bi-weekly data from Harp Lake. Initial results show temperature and dissolved oxygen was predicted with root mean square error <1.5 °C and <3 mgL-1, respectively. Ongoing work is validating the model, over climate-change relevant timescales, against dissolved oxygen reconstructions from the sediment cores and predicting future deep-water temperature and dissolved oxygen concentrations in Canadian Lake Trout lakes under future climate change scenarios. This model will provide a useful tool for managers to ensure sustainable fishery resources for future generations.

  12. Total dissolved gas and water temperature in the lower Columbia river, Oregon and Washington, 2004: quality-assurance data and comparison to water-quality standards

    USGS Publications Warehouse

    Tanner, Dwight Q.; Bragg, Heather M.; Johnston, Matthew

    2004-01-01

    For the seven monitoring sites used to regulate spill in water year 2004, an average of 99.0% of the total- dissolved-gas data were received in real time by the USGS satellite downlink and were within 1% saturation of the expected value, based on calibration data, replicate quality-control measurements in the river, and comparison to ambient river conditions at adjacent sites.

  13. Total dissolved gas and water temperature in the lower Columbia River, Oregon and Washington, 2006: Quality-assurance data and comparison to water-quality standards

    USGS Publications Warehouse

    Tanner, Dwight Q.; Bragg, Heather M.; Johnston, Matthew W.

    2006-01-01

    For the eight monitoring stations in water year 2006, an average of 99.1% of the total-dissolved-gas data were received in real time by the USGS satellite downlink and were within 1% saturation of the expected value on the basis of calibration data, replicate quality-control measurements in the river, and comparison to ambient river conditions at adjacent stations. 

  14. Total dissolved gas and water temperature in the lower Columbia River, Oregon and Washington, 2005: quality-assurance data and comparison to water-quality standards

    USGS Publications Warehouse

    Tanner, Dwight Q.; Bragg, Heather M.; Johnston, Matthew W.

    2005-01-01

    For the eight monitoring sites in water year 2005, an average of 98.2% of the total-dissolved-gas data were received in real time by the USGS satellite downlink and were within 1% saturation of the expected value, based on calibration data, replicate quality-control measurements in the river, and comparison to ambient river conditions at adjacent sites. 

  15. Improved arterial blood oxygenation following intravenous infusion of cold supersaturated dissolved oxygen solution.

    PubMed

    Grady, Daniel J; Gentile, Michael A; Riggs, John H; Cheifetz, Ira M

    2014-01-01

    One of the primary goals of critical care medicine is to support adequate gas exchange without iatrogenic sequelae. An emerging method of delivering supplemental oxygen is intravenously rather than via the traditional inhalation route. The objective of this study was to evaluate the gas-exchange effects of infusing cold intravenous (IV) fluids containing very high partial pressures of dissolved oxygen (>760 mm Hg) in a porcine model. Juvenile swines were anesthetized and mechanically ventilated. Each animal received an infusion of cold (13 °C) Ringer's lactate solution (30 mL/kg/hour), which had been supersaturated with dissolved oxygen gas (39.7 mg/L dissolved oxygen, 992 mm Hg, 30.5 mL/L). Arterial blood gases and physiologic measurements were repeated at 15-minute intervals during a 60-minute IV infusion of the supersaturated dissolved oxygen solution. Each animal served as its own control. Five swines (12.9 ± 0.9 kg) were studied. Following the 60-minute infusion, there were significant increases in PaO2 and SaO2 (P < 0.05) and a significant decrease in PaCO2 (P < 0.05), with a corresponding normalization in arterial blood pH. Additionally, there was a significant decrease in core body temperature (P < 0.05) when compared to the baseline preinfusion state. A cold, supersaturated dissolved oxygen solution may be intravenously administered to improve arterial blood oxygenation and ventilation parameters and induce a mild therapeutic hypothermia in a porcine model.

  16. On- and off-axis spectral emission features from laser-produced gas breakdown plasmas

    NASA Astrophysics Data System (ADS)

    Harilal, S. S.; Skrodzki, P. J.; Miloshevsky, A.; Brumfield, B. E.; Phillips, M. C.; Miloshevsky, G.

    2017-06-01

    Laser-heated gas breakdown plasmas or sparks emit profoundly in the ultraviolet and visible region of the electromagnetic spectrum with contributions from ionic, atomic, and molecular species. Laser created kernels expand into a cold ambient with high velocities during their early lifetime followed by confinement of the plasma kernel and eventually collapse. However, the plasma kernels produced during laser breakdown of gases are also capable of exciting and ionizing the surrounding ambient medium. Two mechanisms can be responsible for excitation and ionization of the surrounding ambient: photoexcitation and ionization by intense ultraviolet emission from the sparks produced during the early times of their creation and/or heating by strong shocks generated by the kernel during its expansion into the ambient. In this study, an investigation is made on the spectral features of on- and off-axis emission of laser-induced plasma breakdown kernels generated in atmospheric pressure conditions with an aim to elucidate the mechanisms leading to ambient excitation and emission. Pulses from an Nd:YAG laser emitting at 1064 nm with a pulse duration of 6 ns are used to generate plasma kernels. Laser sparks were generated in air, argon, and helium gases to provide different physical properties of expansion dynamics and plasma chemistry considering the differences in laser absorption properties, mass density, and speciation. Point shadowgraphy and time-resolved imaging were used to evaluate the shock wave and spark self-emission morphology at early and late times, while space and time resolved spectroscopy is used for evaluating the emission features and for inferring plasma physical conditions at on- and off-axis positions. The structure and dynamics of the plasma kernel obtained using imaging techniques are also compared to numerical simulations using the computational fluid dynamics code. The emission from the kernel showed that spectral features from ions, atoms, and

  17. On- and off-axis spectral emission features from laser-produced gas breakdown plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harilal, S. S.; Skrodzki, P. J.; Miloshevsky, A.

    Laser-heated gas breakdown plasmas or sparks emit profoundly in the ultraviolet and visible region of the electromagnetic spectrum with contributions from ionic, atomic, and molecular species. Laser created kernels expand into a cold ambient with high velocities during its early lifetime followed by confinement of the plasma kernel and eventually collapse. However, the plasma kernels produced during laser breakdown of gases are also capable of exciting and ionizing the surrounding ambient medium. Two mechanisms can be responsible for excitation and ionization of surrounding ambient: viz. photoexcitation and ionization by intense ultraviolet emission from the sparks produced during the early timesmore » of its creation and/or heating by strong shocks generated by the kernel during its expansion into the ambient. In this study, an investigation is made on the spectral features of on- and off-axis emission features of laser-induced plasma breakdown kernels generated in atmospheric pressure conditions with an aim to elucidate the mechanisms leading to ambient excitation and emission. Pulses from an Nd:YAG laser emitting at 1064 nm with 6 ns pulse duration are used to generate plasma kernels. Laser sparks were generated in air, argon, and helium gases to provide different physical properties of expansion dynamics and plasma chemistry considering the differences in laser absorption properties, mass density and speciation. Point shadowgraphy and time-resolved imaging were used to evaluate the shock wave and spark self-emission morphology at early and late times while space and time resolved spectroscopy is used for evaluating the emission features as well as for inferring plasma fundaments at on- and off-axis. Structure and dynamics of the plasma kernel obtained using imaging techniques are also compared to numerical simulations using computational fluid dynamics code. The emission from the kernel showed that spectral features from ions, atoms and molecules are

  18. On- and off-axis spectral emission features from laser-produced gas breakdown plasmas

    DOE PAGES

    Harilal, S. S.; Skrodzki, P. J.; Miloshevsky, A.; ...

    2017-06-01

    Laser-heated gas breakdown plasmas or sparks emit profoundly in the ultraviolet and visible region of the electromagnetic spectrum with contributions from ionic, atomic, and molecular species. Laser created kernels expand into a cold ambient with high velocities during its early lifetime followed by confinement of the plasma kernel and eventually collapse. However, the plasma kernels produced during laser breakdown of gases are also capable of exciting and ionizing the surrounding ambient medium. Two mechanisms can be responsible for excitation and ionization of surrounding ambient: viz. photoexcitation and ionization by intense ultraviolet emission from the sparks produced during the early timesmore » of its creation and/or heating by strong shocks generated by the kernel during its expansion into the ambient. In this study, an investigation is made on the spectral features of on- and off-axis emission features of laser-induced plasma breakdown kernels generated in atmospheric pressure conditions with an aim to elucidate the mechanisms leading to ambient excitation and emission. Pulses from an Nd:YAG laser emitting at 1064 nm with 6 ns pulse duration are used to generate plasma kernels. Laser sparks were generated in air, argon, and helium gases to provide different physical properties of expansion dynamics and plasma chemistry considering the differences in laser absorption properties, mass density and speciation. Point shadowgraphy and time-resolved imaging were used to evaluate the shock wave and spark self-emission morphology at early and late times while space and time resolved spectroscopy is used for evaluating the emission features as well as for inferring plasma fundaments at on- and off-axis. Structure and dynamics of the plasma kernel obtained using imaging techniques are also compared to numerical simulations using computational fluid dynamics code. The emission from the kernel showed that spectral features from ions, atoms and molecules are

  19. Massive Halos in Millennium Gas Simulations: Multivariate Scaling Relations

    NASA Astrophysics Data System (ADS)

    Stanek, R.; Rasia, E.; Evrard, A. E.; Pearce, F.; Gazzola, L.

    2010-06-01

    The joint likelihood of observable cluster signals reflects the astrophysical evolution of the coupled baryonic and dark matter components in massive halos, and its knowledge will enhance cosmological parameter constraints in the coming era of large, multiwavelength cluster surveys. We present a computational study of intrinsic covariance in cluster properties using halo populations derived from Millennium Gas Simulations (MGS). The MGS are re-simulations of the original 500 h -1 Mpc Millennium Simulation performed with gas dynamics under two different physical treatments: shock heating driven by gravity only (GO) and a second treatment with cooling and preheating (PH). We examine relationships among structural properties and observable X-ray and Sunyaev-Zel'dovich (SZ) signals for samples of thousands of halos with M 200 >= 5 × 1013 h -1 M sun and z < 2. While the X-ray scaling behavior of PH model halos at low redshift offers a good match to local clusters, the model exhibits non-standard features testable with larger surveys, including weakly running slopes in hot gas observable-mass relations and ~10% departures from self-similar redshift evolution for 1014 h -1 M sun halos at redshift z ~ 1. We find that the form of the joint likelihood of signal pairs is generally well described by a multivariate, log-normal distribution, especially in the PH case which exhibits less halo substructure than the GO model. At fixed mass and epoch, joint deviations of signal pairs display mainly positive correlations, especially the thermal SZ effect paired with either hot gas fraction (r = 0.88/0.69 for PH/GO at z = 0) or X-ray temperature (r = 0.62/0.83). The levels of variance in X-ray luminosity, temperature, and gas mass fraction are sensitive to the physical treatment, but offsetting shifts in the latter two measures maintain a fixed 12% scatter in the integrated SZ signal under both gas treatments. We discuss halo mass selection by signal pairs, and find a minimum mass

  20. High-Fidelity Multi-Rotor Unmanned Aircraft System Simulation Development for Trajectory Prediction Under Off-Nominal Flight Dynamics

    NASA Technical Reports Server (NTRS)

    Foster, John V.; Hartman, David C.

    2017-01-01

    The NASA Unmanned Aircraft System (UAS) Traffic Management (UTM) project is conducting research to enable civilian low-altitude airspace and UAS operations. A goal of this project is to develop probabilistic methods to quantify risk during failures and off nominal flight conditions. An important part of this effort is the reliable prediction of feasible trajectories during off-nominal events such as control failure, atmospheric upsets, or navigation anomalies that can cause large deviations from the intended flight path or extreme vehicle upsets beyond the normal flight envelope. Few examples of high-fidelity modeling and prediction of off-nominal behavior for small UAS (sUAS) vehicles exist, and modeling requirements for accurately predicting flight dynamics for out-of-envelope or failure conditions are essentially undefined. In addition, the broad range of sUAS aircraft configurations already being fielded presents a significant modeling challenge, as these vehicles are often very different from one another and are likely to possess dramatically different flight dynamics and resultant trajectories and may require different modeling approaches to capture off-nominal behavior. NASA has undertaken an extensive research effort to define sUAS flight dynamics modeling requirements and develop preliminary high fidelity six degree-of-freedom (6-DOF) simulations capable of more closely predicting off-nominal flight dynamics and trajectories. This research has included a literature review of existing sUAS modeling and simulation work as well as development of experimental testing methods to measure and model key components of propulsion, airframe and control characteristics. The ultimate objective of these efforts is to develop tools to support UTM risk analyses and for the real-time prediction of off-nominal trajectories for use in the UTM Risk Assessment Framework (URAF). This paper focuses on modeling and simulation efforts for a generic quad-rotor configuration typical

  1. DISSOLVED OXYGEN AND METHANE IN WATER BY A GC HEADSPACE EQUILIBRATION TECHNIQUE

    EPA Science Inventory

    An analytical procedure is described for the determination of dissolved oxygen and methane in groundwater samples. The method consists of generating a helium gas headspace in a water filled bottle, and analysis of the headspace by gas chromatography. Other permanent gases such as...

  2. Hardware simulation of fuel cell/gas turbine hybrids

    NASA Astrophysics Data System (ADS)

    Smith, Thomas Paul

    Hybrid solid oxide fuel cell/gas turbine (SOFC/GT) systems offer high efficiency power generation, but face numerous integration and operability challenges. This dissertation addresses the application of hardware-in-the-loop simulation (HILS) to explore the performance of a solid oxide fuel cell stack and gas turbine when combined into a hybrid system. Specifically, this project entailed developing and demonstrating a methodology for coupling a numerical SOFC subsystem model with a gas turbine that has been modified with supplemental process flow and control paths to mimic a hybrid system. This HILS approach was implemented with the U.S. Department of Energy Hybrid Performance Project (HyPer) located at the National Energy Technology Laboratory. By utilizing HILS the facility provides a cost effective and capable platform for characterizing the response of hybrid systems to dynamic variations in operating conditions. HILS of a hybrid system was accomplished by first interfacing a numerical model with operating gas turbine hardware. The real-time SOFC stack model responds to operating turbine flow conditions in order to predict the level of thermal effluent from the SOFC stack. This simulated level of heating then dynamically sets the turbine's "firing" rate to reflect the stack output heat rate. Second, a high-speed computer system with data acquisition capabilities was integrated with the existing controls and sensors of the turbine facility. In the future, this will allow for the utilization of high-fidelity fuel cell models that infer cell performance parameters while still computing the simulation in real-time. Once the integration of the numeric and the hardware simulation components was completed, HILS experiments were conducted to evaluate hybrid system performance. The testing identified non-intuitive transient responses arising from the large thermal capacitance of the stack that are inherent to hybrid systems. Furthermore, the tests demonstrated the

  3. Bubble growth as a means to measure dissolved nitrogen concentration in aerated water

    NASA Astrophysics Data System (ADS)

    Ando, Keita; Yamashita, Tatsuya

    2017-11-01

    Controlling the amount of dissolved gases in water is important, for example, to food processing; it is essential to quantitatively evaluate dissolved gas concentration. The concentration of dissolved oxygen (DO) can be measured by commercial DO meters, but that of dissolved nitrogen (DN) cannot be obtained easily. Here, we propose a means to measure DN concentration based on Epstein-Plesset-type analysis of bubble growth under dissolved gas supersaturation. DO supersaturation in water is produced by oxygen microbubble aeration. The diffusion-driven growth of bubbles nucleated at glass surfaces in contact with the aerated water is first observed. The observed growth is then compared to the extended Epstein-Plesset theory that considers Fick's mass transfer of both DO and DN across bubble interfaces; in this comparison, the unknown DN concentration is treated as a fitting parameter. Comparisons between the experiment and the theory suggest, as expected, that DN can be effectively purged by oxygen microbubble aeration. This study was supported in part by the Mizuho Foundation for the Promotion of Science and by a MEXT Grant-in-Aid for the Program for Leading Graduate Schools.

  4. Dissolved Greenhouse Gas Concentration Patterns and Relationships with Stream Chemistry in Tropical Headwater Streams

    NASA Astrophysics Data System (ADS)

    López-Lloreda, C.; McDowell, W. H.; Potter, J.

    2017-12-01

    Recent studies have shown that freshwater ecosystems, mainly lakes and large rivers, can be an important source of greenhouse gas (GHG) emissions. Headwater streams have received less attention but have been identified as being a potentially important contributor to these emissions. The complex biogeochemical interactions between dissolved GHG, stream chemistry and other physicochemical parameters in streams are not well understood, particularly in small, tropical headwater streams. Surface water samples were taken at weekly intervals at 8 sites in the Luquillo Experimental Forest in Puerto Rico. Samples were analyzed for carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) as well as dissolved organic carbon (DOC), nitrate (NO3) and other major cations and anions. Additionally, physicochemical parameters and discharge (at a subset of sites) were recorded for each sample. Initial analyses of stream greenhouse gas concentrations showed very little seasonality across all sites as well as no change in concentrations during a drought in 2015. One of our hypothesized drivers, discharge, did not show any significant relationship with any of the greenhouse gases at our two gaged sites. Relationships between GHG and stream chemistry, mainly DOC and NO3, varied across sites. A significant negative relationship was found between NO3 and N2O when data were pooled across all sites, but no significant relationship was found at any individual site. CH4 was positively correlated with NO3, but only at one of our sites. N2O showed a significant positive relationship with DOC at two of our sites but interestingly, CO2 and CH4 did not show any significant relationship with DOC. Our initial results suggest that NO3 can be an important driver for N2O and CH4 concentrations, while DOC can be an important driver for N2O. Our results differ from those found in lowland tropical rivers, suggesting that river order and floodplain connections may be important drivers of GHG

  5. The Linked Neighbour List (LNL) method for fast off-lattice Monte Carlo simulations of fluids

    NASA Astrophysics Data System (ADS)

    Mazzeo, M. D.; Ricci, M.; Zannoni, C.

    2010-03-01

    We present a new algorithm, called linked neighbour list (LNL), useful to substantially speed up off-lattice Monte Carlo simulations of fluids by avoiding the computation of the molecular energy before every attempted move. We introduce a few variants of the LNL method targeted to minimise memory footprint or augment memory coherence and cache utilisation. Additionally, we present a few algorithms which drastically accelerate neighbour finding. We test our methods on the simulation of a dense off-lattice Gay-Berne fluid subjected to periodic boundary conditions observing a speedup factor of about 2.5 with respect to a well-coded implementation based on a conventional link-cell. We provide several implementation details of the different key data structures and algorithms used in this work.

  6. Ratio of produced gas to produced water from DOE's EDNA Delcambre No. 1 geopressured-geothermal aquifer gas well test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, L.A.; Randolph, P.L.

    1979-01-01

    A paper presented by the Institute of Gas Technology (IGT) at the Third Geopressured-Geothermal Energy Conference hypothesized that the high ratio of produced gas to produced water from the No. 1 sand in the Edna Delcambre No. 1 well was due to free gas trapped in pores by imbibition over geological time. This hypothesis was examined in relation to preliminary test data which reported only average gas to water ratios over the roughly 2-day steps in flow rate. Subsequent public release of detailed test data revealed substantial departures from the previously reported computer simulation results. Also, data now in themore » public domain reveal the existence of a gas cap on the aquifier tested. This paper describes IGT's efforts to match the observed gas/water production with computer simulation. Two models for the occurrence and production of gas in excess of that dissolved in the brine have been used. One model considers the gas to be dispersed in pores by imbibition, and the other model considers the gas as a nearby free gas cap above the aquifier. The studies revealed that the dispersed gas model characteristically gave the wrong shape to plots of gas production on the gas/water ratio plots such that no reasonable match to the flow data could be achieved. The free gas cap model gave a characteristically better shape to the production plots and could provide an approximate fit to the data of the edge of the free gas cap is only about 400 feet from the well.Because the geological structure maps indicate the free gas cap to be several thousand feet away and the computer simulation results match the distance to the nearby Delcambre Nos. 4 and 4A wells, it appears that the source of the excess free gas in the test of the No. 1 sand may be from these nearby wells. The gas source is probably a separate gas zone and is brought into contact with the No. 1 sand via a conduit around the No. 4 well.« less

  7. Investigating the role of gas bubble formation and entrapment in contaminated aquifers: Reactive transport modelling

    USGS Publications Warehouse

    Amos, Richard T.; Mayer, K. Ulrich

    2006-01-01

    In many natural and contaminated aquifers, geochemical processes result in the production or consumption of dissolved gases. In cases where methanogenesis or denitrification occurs, the production of gases may result in the formation and growth of gas bubbles below the water table. Near the water table, entrapment of atmospheric gases during water table rise may provide a significant source of O2 to waters otherwise depleted in O2. Furthermore, the presence of bubbles will affect the hydraulic conductivity of an aquifer, resulting in changes to the groundwater flow regime. The interactions between physical transport, biogeochemical processes, and gas bubble formation, entrapment and release is complex and requires suitable analysis tools. The objective of the present work is the development of a numerical model capable of quantitatively assessing these processes. The multicomponent reactive transport code MIN3P has been enhanced to simulate bubble growth and contraction due to in-situ gas production or consumption, bubble entrapment due to water table rise and subsequent re-equilibration of the bubble with ambient groundwater, and permeability changes due to trapped gas phase saturation. The resulting formulation allows for the investigation of complex geochemical systems where microbially mediated redox reactions both produce and consume gases as well as affect solution chemistry, alkalinity, and pH. The enhanced model has been used to simulate processes in a petroleum hydrocarbon contaminated aquifer where methanogenesis is an important redox process. The simulations are constrained by data from a crude oil spill site near Bemidji, MN. Our results suggest that permeability reduction in the methanogenic zone due to in-situ formation of gas bubbles, and dissolution of entrapped atmospheric bubbles near the water table, both work to attenuate the dissolved gas plume emanating from the source zone. Furthermore, the simulations demonstrate that under the given

  8. Investigating the role of gas bubble formation and entrapment in contaminated aquifers: Reactive transport modelling

    NASA Astrophysics Data System (ADS)

    Amos, Richard T.; Ulrich Mayer, K.

    2006-09-01

    In many natural and contaminated aquifers, geochemical processes result in the production or consumption of dissolved gases. In cases where methanogenesis or denitrification occurs, the production of gases may result in the formation and growth of gas bubbles below the water table. Near the water table, entrapment of atmospheric gases during water table rise may provide a significant source of O 2 to waters otherwise depleted in O 2. Furthermore, the presence of bubbles will affect the hydraulic conductivity of an aquifer, resulting in changes to the groundwater flow regime. The interactions between physical transport, biogeochemical processes, and gas bubble formation, entrapment and release is complex and requires suitable analysis tools. The objective of the present work is the development of a numerical model capable of quantitatively assessing these processes. The multicomponent reactive transport code MIN3P has been enhanced to simulate bubble growth and contraction due to in-situ gas production or consumption, bubble entrapment due to water table rise and subsequent re-equilibration of the bubble with ambient groundwater, and permeability changes due to trapped gas phase saturation. The resulting formulation allows for the investigation of complex geochemical systems where microbially mediated redox reactions both produce and consume gases as well as affect solution chemistry, alkalinity, and pH. The enhanced model has been used to simulate processes in a petroleum hydrocarbon contaminated aquifer where methanogenesis is an important redox process. The simulations are constrained by data from a crude oil spill site near Bemidji, MN. Our results suggest that permeability reduction in the methanogenic zone due to in-situ formation of gas bubbles, and dissolution of entrapped atmospheric bubbles near the water table, both work to attenuate the dissolved gas plume emanating from the source zone. Furthermore, the simulations demonstrate that under the given

  9. Real-time simulation of an automotive gas turbine using the hybrid computer

    NASA Technical Reports Server (NTRS)

    Costakis, W.; Merrill, W. C.

    1984-01-01

    A hybrid computer simulation of an Advanced Automotive Gas Turbine Powertrain System is reported. The system consists of a gas turbine engine, an automotive drivetrain with four speed automatic transmission, and a control system. Generally, dynamic performance is simulated on the analog portion of the hybrid computer while most of the steady state performance characteristics are calculated to run faster than real time and makes this simulation a useful tool for a variety of analytical studies.

  10. Off-Center Collisions between Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Ricker, P. M.

    1998-03-01

    We present numerical simulations of off-center collisions between galaxy clusters made using a new hydrodynamical code based on the piecewise-parabolic method (PPM) and an isolated multigrid potential solver. The current simulations follow only the intracluster gas. We have performed three high-resolution (256 × 1282) simulations of collisions between equal-mass clusters using a nonuniform grid with different values of the impact parameter (0, 5, and 10 times the cluster core radius). Using these simulations, we have studied the variation in equilibration time, luminosity enhancement during the collision, and structure of the merger remnant with varying impact parameter. We find that in off-center collisions the cluster cores (the inner regions where the pressure exceeds the ram pressure) behave quite differently from the clusters' outer regions. A strong, roughly ellipsoidal shock front, similar to that noted in previous simulations of head-on collisions, enables the cores to become bound to each other by dissipating their kinetic energy as heat in the surrounding gas. These cores survive well into the collision, dissipating their orbital angular momentum via spiral bow shocks. After the ellipsoidal shock has passed well outside the interaction region, the material left in its wake falls back onto the merger remnant formed through the inspiral of the cluster cores, creating a roughly spherical accretion shock. For less than one-half of a sound crossing time after the cores first interact, the total X-ray luminosity increases by a large factor; the magnitude of this increase depends sensitively on the size of the impact parameter. Observational evidence of the ongoing collision, in the form of bimodality and distortion in projected X-ray surface brightness and temperature maps, is present for one to two sound crossing times after the collision but only for special viewing angles. The remnant actually requires at least five crossing times to reach virial

  11. Cartesian Off-Body Grid Adaption for Viscous Time- Accurate Flow Simulation

    NASA Technical Reports Server (NTRS)

    Buning, Pieter G.; Pulliam, Thomas H.

    2011-01-01

    An improved solution adaption capability has been implemented in the OVERFLOW overset grid CFD code. Building on the Cartesian off-body approach inherent in OVERFLOW and the original adaptive refinement method developed by Meakin, the new scheme provides for automated creation of multiple levels of finer Cartesian grids. Refinement can be based on the undivided second-difference of the flow solution variables, or on a specific flow quantity such as vorticity. Coupled with load-balancing and an inmemory solution interpolation procedure, the adaption process provides very good performance for time-accurate simulations on parallel compute platforms. A method of using refined, thin body-fitted grids combined with adaption in the off-body grids is presented, which maximizes the part of the domain subject to adaption. Two- and three-dimensional examples are used to illustrate the effectiveness and performance of the adaption scheme.

  12. Direct simulation of high-vorticity gas flows

    NASA Technical Reports Server (NTRS)

    Bird, G. A.

    1987-01-01

    The computational limitations associated with the molecular dynamics (MD) method and the direct simulation Monte Carlo (DSMC) method are reviewed in the context of the computation of dilute gas flows with high vorticity. It is concluded that the MD method is generally limited to the dense gas case in which the molecular diameter is one-tenth or more of the mean free path. It is shown that the cell size in DSMC calculations should be small in comparison with the mean free path, and that this may be facilitated by a new subcell procedure for the selection of collision partners.

  13. Spontaneous Growth and Mobilization of a Gas Phase in the Presence of Dense Non- Aqueous Phase Liquid (DNAPL)

    NASA Astrophysics Data System (ADS)

    Roy, J. W.; Smith, J. E.

    2006-12-01

    A number of mechanisms can lead to the presence of disconnected bubbles or ganglia of gas phase in groundwater. When associated with or near a DNAPL phase, the disconnected gas phase experiences mass transfer of dissolved gases including the volatile components of the DNAPL. The properties of the gas phase interface, such as interfacial tension and contact angle, can also be affected. This work addresses the behavior of spontaneous continual growth of initially trapped seed gas bubbles within DNAPL source zones. Three different experiments were performed in a 2-dimensional transparent flow cell 15 cm by 20 cm by 1.5 cm. In each case, a DNAPL pool was created within larger glass beads over smaller glass beads that served as a capillary barrier. The DNAPL consisted of either a 1:2 (v/v) tetrachloroethene (PCE) to benzene mixture, single component PCE, or single component TCE. The experiments effectively demonstrate spontaneous gas phase expansion and vertical advective mobilization of gas bubbles and ganglia above the DNAPL source zone. A cycle of gas phase growth and mobilization was facilitated by the presence of secondary seed bubbles left behind due to snap-off during vertical bubble (ganglion) mobilization. This gas phase growth process was relatively slow but continuous and could be expected to continue until the NAPL is completely dissolved. Some implications of the demonstrated behavior for water flow and mass transfer within and near the DNAPL source zone are highlighted.

  14. FINAL REPORT INTEGRATED DM1200 MELTER TESTING USING AZ 102 AND C 106/AY-102 HLW SIMULANTS: HLW SIMULANT VERIFICATION VSL-05R5800-1 REV 0 6/27/05

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KRUGER AA; MATLACK KS; GONG W

    2011-12-29

    The principal objectives of the DM1200 melter tests were to determine the effects of feed rheology, feed solid content, and bubbler configuration on glass production rate and off-gas system performance while processing the HLW AZ-101 and C-106/AY-102 feed compositions; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components, as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and perform pre- and post test inspections of system components. The specific objectives (including test success criteria) of this testing, along with how each objective was met, are outlined in a table. The datamore » provided in this Final Report address the impacts of HLW melter feed rheology on melter throughput and validation of the simulated HLW melter feeds. The primary purpose of this testing is to further validate/verify the HLW melter simulants that have been used for previous melter testing and to support their continued use in developing melter and off-gas related processing information for the Project. The primary simulant property in question is rheology. Simulants and melter feeds used in all previous melter tests were produced by direct addition of chemicals; these feed tend to be less viscous than rheological the upper-bound feeds made from actual wastes. Data provided here compare melter processing for the melter feed used in all previous DM100 and DM1200 tests (nominal melter feed) with feed adjusted by the feed vendor (NOAH Technologies) to be more viscous, thereby simulating more closely the upperbounding feed produced from actual waste. This report provides results of tests that are described in the Test Plan for this work. The Test Plan is responsive to one of several test objectives covered in the WTP Test Specification for this work; consequently, only part of the scope described in the Test Specification was addressed in this particular Test Plan. For the

  15. Gas kinematics, morphology and angular momentum in the FIRE simulations

    NASA Astrophysics Data System (ADS)

    El-Badry, Kareem; Quataert, Eliot; Wetzel, Andrew; Hopkins, Philip F.; Weisz, Daniel R.; Chan, T. K.; Fitts, Alex; Boylan-Kolchin, Michael; Kereš, Dušan; Faucher-Giguère, Claude-André; Garrison-Kimmel, Shea

    2018-01-01

    We study the z = 0 gas kinematics, morphology and angular momentum content of isolated galaxies in a suite of cosmological zoom-in simulations from the FIRE project spanning Mstar = 106-11 M⊙. Gas becomes increasingly rotationally supported with increasing galaxy mass. In the lowest mass galaxies (Mstar < 108 M⊙), gas fails to form a morphological disc and is primarily dispersion and pressure supported. At intermediate masses (Mstar = 108-10 M⊙), galaxies display a wide range of gas kinematics and morphologies, from thin, rotating discs to irregular spheroids with negligible net rotation. All the high-mass (Mstar = 1010-11 M⊙) galaxies form rotationally supported gas discs. Many of the haloes whose galaxies fail to form discs harbour high angular momentum gas in their circumgalactic medium. The ratio of the specific angular momentum of gas in the central galaxy to that of the dark matter halo increases significantly with galaxy mass, from 〈jgas〉/〈jDM〉 ∼ 0.1 at M_star=10^{6-7} M_{⊙} to 〈jgas〉/〈jDM〉 ∼ 2 at Mstar = 1010-11 M⊙. The reduced rotational support in the lowest mass galaxies owes to (a) stellar feedback and the UV background suppressing the accretion of high angular momentum gas at late times, and (b) stellar feedback driving large non-circular gas motions. We broadly reproduce the observed scaling relations between galaxy mass, gas rotation velocity, size and angular momentum, but may somewhat underpredict the incidence of disky, high angular momentum galaxies at the lowest observed masses (Mstar = (106-2 × 107) M⊙). Stars form preferentially from low angular momentum gas near the galactic centre and are less rotationally supported than gas. The common assumption that stars follow the same rotation curve as gas thus substantially overestimates the simulated galaxies' stellar angular momentum, particularly at low masses.

  16. Experimental and simulation studies of iron oxides for geochemical fixation of CO2-SO2 gas mixtures

    USGS Publications Warehouse

    Garcia, Susana; Rosenbauer, Robert J.; Palandri, James; Maroto-Valer, M. Mercedes

    2011-01-01

    Iron-bearing minerals are reactive phases of the subsurface environment and could potentially trap CO2–SO2gas mixtures derived from fossil fuel combustion processes by their conversion to siderite (FeCO3) and dissolved sulfate. Changes in fluid and mineral compositions resulting from reactions, involving the co-injection of SO2 with CO2 were observed both theoretically and experimentally. Experiments were conducted with a natural hematite (α-Fe2O3) sample. A high pressure-high temperature apparatus was used to simulate conditions in geologic formations deeper than 800 m, where CO2 is in the supercritical state. Solid samples were allowed to react with a NaCl–NaOH brine and SO2-bearing CO2-dominated gas mixtures. The predicted equilibrium mineral assemblage at 100 °C and 250 bar became hematite, dawsonite (NaAl(OH)2CO3), siderite (FeCO3) and quartz (SiO2). Experimentally, siderite and dawsonite, derived from the presence of kaolinite (Al2Si2O5(OH)4) in the parent material, were present in residual solids at longer reaction time intervals, which agreed well with results from the modelling work.

  17. Methane hydrate-bearing seeps as a source of aged dissolved organic carbon to the oceans

    USGS Publications Warehouse

    Pohlman, J.W.; Bauer, J.E.; Waite, W.F.; Osburn, C.L.; Chapman, N.R.

    2011-01-01

    Marine sediments contain about 500-10,000 Gt of methane carbon, primarily in gas hydrate. This reservoir is comparable in size to the amount of organic carbon in land biota, terrestrial soils, the atmosphere and sea water combined, but it releases relatively little methane to the ocean and atmosphere. Sedimentary microbes convert most of the dissolved methane to carbon dioxide. Here we show that a significant additional product associated with microbial methane consumption is methane-derived dissolved organic carbon. We use ??14 C and ??13 C measurements and isotopic mass-balance calculations to evaluate the contribution of methane-derived carbon to seawater dissolved organic carbon overlying gas hydrate-bearing seeps in the northeastern Pacific Ocean. We show that carbon derived from fossil methane accounts for up to 28% of the dissolved organic carbon. This methane-derived material is much older, and more depleted in 13 C, than background dissolved organic carbon. We suggest that fossil methane-derived carbon may contribute significantly to the estimated 4,000-6,000 year age of dissolved organic carbon in the deep ocean, and provide reduced organic matter and energy to deep-ocean microbial communities. ?? 2011 Macmillan Publishers Limited. All rights reserved.

  18. Geological Characteristics of Active Methane Expulsion In Accretionary Prism Kaoping Slope Off SW Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, C.; Chien, C.; Yang, T. F.; Lin, S.

    2005-12-01

    The Kaoping Slope off SW Taiwan represents the syn-collision accretionary prism characterized by active NW-trending folding - thrusting structures and high sedimentation rate favoring the formation of gas hydrate. For an assessment of gas hydrate potential in the Kaoping Slope off SW Taiwan, sedimentology, paleontology and geochemistry in box cores and piston cores were studied. BSRs are commonly found in seismic profiles in 400-600 m below seafloor of water depth 2500-1000 m. Active expulsions of methane were found along active thrust faults where sulfate/methane interface could be as shallow as 30 cm and the methane concentration of dissolved gases in bottom water and in pore-space of drilled core samples could be three-four order higher than the normal marine environments. Occurrences of authigenic carbonate and elongated pyrite tubes are correlated with shallow SMI depth and high methane content in bottom water and pore-space of sediment cores. Authigenic carbonates were found in seafloor surface and in 20-25 meters below seafloor. The authigenic carbonate nodules are characterized by irregular shape, whitish color, no visible microfossil, containing native sulfur, pyrites, gypsum, small open spaces, and very depleted carbon isotope (-54 ~ -43 per mil PDB). Tiny native sulfur and gypsum crystals were commonly found either on surface of foraminiferal tests and elongated pyrite tubes or in the authigenic carbonate nodules. Morphological measurements of elongated pyrite tubes show that they could represent pseudomorphs after three types of Pogonophora tube worm. Foraminifers are commonly filled by rhomboidal pyrites or cemented by pyrite crystals. Normal marine benthic foraminifers predominated by calcareous tests of slope fauna are associated with authigenic carbonate nodules in the study area, suggesting no major geochemistry effect on distribution of benthic foraminifers. Integrating sedimentology, paleontology and geochemistry characters, there could be high

  19. Improved Arterial Blood Oxygenation Following Intravenous Infusion of Cold Supersaturated Dissolved Oxygen Solution

    PubMed Central

    Grady, Daniel J; Gentile, Michael A; Riggs, John H; Cheifetz, Ira M

    2014-01-01

    BACKGROUND One of the primary goals of critical care medicine is to support adequate gas exchange without iatrogenic sequelae. An emerging method of delivering supplemental oxygen is intravenously rather than via the traditional inhalation route. The objective of this study was to evaluate the gas-exchange effects of infusing cold intravenous (IV) fluids containing very high partial pressures of dissolved oxygen (>760 mm Hg) in a porcine model. METHODS Juvenile swines were anesthetized and mechanically ventilated. Each animal received an infusion of cold (13 °C) Ringer’s lactate solution (30 mL/kg/hour), which had been supersaturated with dissolved oxygen gas (39.7 mg/L dissolved oxygen, 992 mm Hg, 30.5 mL/L). Arterial blood gases and physiologic measurements were repeated at 15-minute intervals during a 60-minute IV infusion of the supersaturated dissolved oxygen solution. Each animal served as its own control. RESULTS Five swines (12.9 ± 0.9 kg) were studied. Following the 60-minute infusion, there were significant increases in PaO2 and SaO2 (P < 0.05) and a significant decrease in PaCO2 (P < 0.05), with a corresponding normalization in arterial blood pH. Additionally, there was a significant decrease in core body temperature (P < 0.05) when compared to the baseline preinfusion state. CONCLUSIONS A cold, supersaturated dissolved oxygen solution may be intravenously administered to improve arterial blood oxygenation and ventilation parameters and induce a mild therapeutic hypothermia in a porcine model. PMID:25249764

  20. A Ni-Doped Carbon Nanotube Sensor for Detecting Oil-Dissolved Gases in Transformers

    PubMed Central

    Lu, Jia; Zhang, Xiaoxing; Wu, Xiaoqing; Dai, Ziqiang; Zhang, Jinbin

    2015-01-01

    C2H2, C2H4, and C2H6 are important oil-dissolved gases in power transformers. Detection of the composition and content of oil-dissolved gases in transformers is very significant in the diagnosis and assessment of the state of transformer operations. The commonly used oil-gas analysis methods have many disadvantages, so this paper proposes a Ni-doped carbon nanotube (Ni-CNT) gas sensor to effectively detect oil-dissolved gases in a transformer. The gas-sensing properties of the sensor to C2H2, C2H4, and C2H6 were studied using the test device. Based on the density functional theory (DFT) the adsorption behaviors of the three gases on intrinsic carbon nanotubes (CNTs) and Ni-CNTs were calculated. The adsorption energy, charge transfer, and molecular frontier orbital of the adsorption system were also analyzed. Results showed that the sensitivity of the CNT sensor to the three kinds of gases was in the following order: C2H2 > C2H4 > C2H6. Moreover, the doped Ni improved the sensor response, and the sensor response and gas concentration have a good linear relationship. PMID:26066989

  1. Off-axis Gamma-ray Burst Afterglow Modeling Based on a Two-dimensional Axisymmetric Hydrodynamics Simulation

    NASA Astrophysics Data System (ADS)

    van Eerten, Hendrik; Zhang, Weiqun; MacFadyen, Andrew

    2010-10-01

    Starting as highly relativistic collimated jets, gamma-ray burst outflows gradually slow down and become nonrelativistic spherical blast waves. Although detailed analytical solutions describing the afterglow emission received by an on-axis observer during both the early and late phases of the outflow evolution exist, a calculation of the received flux during the intermediate phase and for an off-axis observer requires either a more simplified analytical model or direct numerical simulations of the outflow dynamics. In this paper, we present light curves for off-axis observers covering the long-term evolution of the blast wave, calculated from a high-resolution two-dimensional relativistic hydrodynamics simulation using a synchrotron radiation model. We compare our results to earlier analytical work and calculate the consequence of the observer angle with respect to the jet axis both for the detection of orphan afterglows and for jet break fits to the observational data. We confirm earlier results in the literature finding that only a very small number of local type Ibc supernovae can harbor an orphan afterglow. For off-axis observers, the observable jet break can be delayed up to several weeks, potentially leading to overestimation of the beaming-corrected total energy. In addition we find that, when using our off-axis light curves to create synthetic Swift X-ray data, jet breaks are likely to remain hidden in the data.

  2. Simulation of a combined-cycle engine

    NASA Technical Reports Server (NTRS)

    Vangerpen, Jon

    1991-01-01

    A FORTRAN computer program was developed to simulate the performance of combined-cycle engines. These engines combine features of both gas turbines and reciprocating engines. The computer program can simulate both design point and off-design operation. Widely varying engine configurations can be evaluated for their power, performance, and efficiency as well as the influence of altitude and air speed. Although the program was developed to simulate aircraft engines, it can be used with equal success for stationary and automative applications.

  3. Gas production and migration in landfills and geological materials.

    PubMed

    Nastev, M; Therrien, R; Lefebvre, R; Gélinas, P

    2001-11-01

    Landfill gas, originating from the anaerobic biodegradation of the organic content of waste, consists mainly of methane and carbon dioxide, with traces of volatile organic compounds. Pressure, concentration and temperature gradients that develop within the landfill result in gas emissions to the atmosphere and in lateral migration through the surrounding soils. Environmental and safety issues associated with the landfill gas require control of off-site gas migration. The numerical model TOUGH2-LGM (Transport of Unsaturated Groundwater and Heat-Landfill Gas Migration) has been developed to simulate landfill gas production and migration processes within and beyond landfill boundaries. The model is derived from the general non-isothermal multiphase flow simulator TOUGH2, to which a new equation of state module is added. It simulates the migration of five components in partially saturated media: four fluid components (water, atmospheric air, methane and carbon dioxide) and one energy component (heat). The four fluid components are present in both the gas and liquid phases. The model incorporates gas-liquid partitioning of all fluid components by means of dissolution and volatilization. In addition to advection in the gas and liquid phase, multi-component diffusion is simulated in the gas phase. The landfill gas production rate is proportional to the organic substrate and is modeled as an exponentially decreasing function of time. The model is applied to the Montreal's CESM landfill site, which is located in a former limestone rock quarry. Existing data were used to characterize hydraulic properties of the waste and the limestone. Gas recovery data at the site were used to define the gas production model. Simulations in one and two dimensions are presented to investigate gas production and migration in the landfill, and in the surrounding limestone. The effects of a gas recovery well and landfill cover on gas migration are also discussed.

  4. Oxidation and Condensation of Zinc Fume From Zn-CO 2-CO-H 2O Streams Relevant to Steelmaking Off-Gas Systems

    DOE PAGES

    Bronson, Tyler Mark; Ma, Naiyang; Zhu, Liang Zhu; ...

    2017-01-23

    Here the objective of this research was to study the condensation of zinc vapor to metallic zinc and zinc oxide solid under varying environments to investigate the feasibility of in-process separation of zinc from steelmaking off-gas dusts. Water vapor content, temperature, degree of cooling, gas composition, and initial zinc partial pressure were varied to simulate the possible conditions that can occur within steelmaking off-gas systems, limited to Zn-CO 2-CO-H 2O gas compositions. The temperature of deposition and the effect of rapidly quenching the gas were specifically studied. A homogeneous nucleation model for applicable experiments was applied to the analysis of the experimental data. It was determined that under the experimental conditions, oxidation of zinc vapor by H 2O or CO 2 does not occur above 1108 K (835 °C) even for highly oxidizing streams (CO 2/CO = 40/7). Rate expressions that correlate CO 2 and H 2O oxidation rates to gas composition, partial pressure of water vapor, temperature, and zinc partial pressure were determined to be as follows: Ratemore » $$ \\left(\\frac{mol}{m^2s}\\right) $$ = 406 exp $$ \\left(\\frac{-50.2 kJ/mol}{RT}\\right) $$ (pZnpCO 2 $-$ PCO/K eqCO 2) $$\\frac{mol}{m^2 x s}$$ Rate $$ \\left(\\frac{mol}{m^2s}\\right) $$ = 32.9 exp $$ \\left(\\frac{-13.7 kJ/mol}{RT}\\right) $$ (pZnPH 2O $-$ PH 2/K eqH 2O) $$\\frac{mol}{m^2 x s}$$. It was proven that a rapid cooling rate (500 K/s) significantly increases the ratio of metallic zinc to zinc oxide as opposed to a slow cooling rate (250 K/s). SEM analysis found evidence of heterogeneous growth of ZnO as well as of homogeneous formation of metallic zinc. The homogeneous nucleation model fit well with experiments where only metallic zinc deposited. An expanded model with rates of oxidation by CO 2 and H 2O as shown was combined with the homogenous nucleation model and then compared with experimental data. The calculated results based on the model gave a reasonable fit to the

  5. Oxidation and Condensation of Zinc Fume From Zn-CO 2-CO-H 2O Streams Relevant to Steelmaking Off-Gas Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bronson, Tyler Mark; Ma, Naiyang; Zhu, Liang Zhu

    Here the objective of this research was to study the condensation of zinc vapor to metallic zinc and zinc oxide solid under varying environments to investigate the feasibility of in-process separation of zinc from steelmaking off-gas dusts. Water vapor content, temperature, degree of cooling, gas composition, and initial zinc partial pressure were varied to simulate the possible conditions that can occur within steelmaking off-gas systems, limited to Zn-CO 2-CO-H 2O gas compositions. The temperature of deposition and the effect of rapidly quenching the gas were specifically studied. A homogeneous nucleation model for applicable experiments was applied to the analysis of the experimental data. It was determined that under the experimental conditions, oxidation of zinc vapor by H 2O or CO 2 does not occur above 1108 K (835 °C) even for highly oxidizing streams (CO 2/CO = 40/7). Rate expressions that correlate CO 2 and H 2O oxidation rates to gas composition, partial pressure of water vapor, temperature, and zinc partial pressure were determined to be as follows: Ratemore » $$ \\left(\\frac{mol}{m^2s}\\right) $$ = 406 exp $$ \\left(\\frac{-50.2 kJ/mol}{RT}\\right) $$ (pZnpCO 2 $-$ PCO/K eqCO 2) $$\\frac{mol}{m^2 x s}$$ Rate $$ \\left(\\frac{mol}{m^2s}\\right) $$ = 32.9 exp $$ \\left(\\frac{-13.7 kJ/mol}{RT}\\right) $$ (pZnPH 2O $-$ PH 2/K eqH 2O) $$\\frac{mol}{m^2 x s}$$. It was proven that a rapid cooling rate (500 K/s) significantly increases the ratio of metallic zinc to zinc oxide as opposed to a slow cooling rate (250 K/s). SEM analysis found evidence of heterogeneous growth of ZnO as well as of homogeneous formation of metallic zinc. The homogeneous nucleation model fit well with experiments where only metallic zinc deposited. An expanded model with rates of oxidation by CO 2 and H 2O as shown was combined with the homogenous nucleation model and then compared with experimental data. The calculated results based on the model gave a reasonable fit to the

  6. Pore-Scale Simulation and Sensitivity Analysis of Apparent Gas Permeability in Shale Matrix

    PubMed Central

    Zhang, Pengwei; Hu, Liming; Meegoda, Jay N.

    2017-01-01

    Extremely low permeability due to nano-scale pores is a distinctive feature of gas transport in a shale matrix. The permeability of shale depends on pore pressure, porosity, pore throat size and gas type. The pore network model is a practical way to explain the macro flow behavior of porous media from a microscopic point of view. In this research, gas flow in a shale matrix is simulated using a previously developed three-dimensional pore network model that includes typical bimodal pore size distribution, anisotropy and low connectivity of the pore structure in shale. The apparent gas permeability of shale matrix was calculated under different reservoir pressures corresponding to different gas exploitation stages. Results indicate that gas permeability is strongly related to reservoir gas pressure, and hence the apparent permeability is not a unique value during the shale gas exploitation, and simulations suggested that a constant permeability for continuum-scale simulation is not accurate. Hence, the reservoir pressures of different shale gas exploitations should be considered. In addition, a sensitivity analysis was also performed to determine the contributions to apparent permeability of a shale matrix from petro-physical properties of shale such as pore throat size and porosity. Finally, the impact of connectivity of nano-scale pores on shale gas flux was analyzed. These results would provide an insight into understanding nano/micro scale flows of shale gas in the shale matrix. PMID:28772465

  7. Pore-Scale Simulation and Sensitivity Analysis of Apparent Gas Permeability in Shale Matrix.

    PubMed

    Zhang, Pengwei; Hu, Liming; Meegoda, Jay N

    2017-01-25

    Extremely low permeability due to nano-scale pores is a distinctive feature of gas transport in a shale matrix. The permeability of shale depends on pore pressure, porosity, pore throat size and gas type. The pore network model is a practical way to explain the macro flow behavior of porous media from a microscopic point of view. In this research, gas flow in a shale matrix is simulated using a previously developed three-dimensional pore network model that includes typical bimodal pore size distribution, anisotropy and low connectivity of the pore structure in shale. The apparent gas permeability of shale matrix was calculated under different reservoir pressures corresponding to different gas exploitation stages. Results indicate that gas permeability is strongly related to reservoir gas pressure, and hence the apparent permeability is not a unique value during the shale gas exploitation, and simulations suggested that a constant permeability for continuum-scale simulation is not accurate. Hence, the reservoir pressures of different shale gas exploitations should be considered. In addition, a sensitivity analysis was also performed to determine the contributions to apparent permeability of a shale matrix from petro-physical properties of shale such as pore throat size and porosity. Finally, the impact of connectivity of nano-scale pores on shale gas flux was analyzed. These results would provide an insight into understanding nano/micro scale flows of shale gas in the shale matrix.

  8. Pockels-effect cell for gas-flow simulation

    NASA Astrophysics Data System (ADS)

    Weimer, D.

    1982-05-01

    A Pockels effect cell using a 75 cu cm DK*P crystal was developed and used as a gas flow simulator. Index of refraction gradients were produced in the cell by the fringing fields of parallel plate electrodes. Calibration curves for the device were obtained for index of refraction gradients in excess of .00025 m.

  9. Depressurization and two-phase flow of water containing high levels of dissolved nitrogen gas

    NASA Technical Reports Server (NTRS)

    Simoneau, R. J.

    1981-01-01

    Depressurization of water containing various concentrations of dissolved nitrogen gas was studied. In a nonflow depressurization experiment, water with very high nitrogen content was depressurized at rates from 0.09 to 0.50 MPa per second and a metastable behavior which was a strong function of the depressurization rate was observed. Flow experiments were performed in an axisymmetric, converging diverging nozzle, a two dimensional, converging nozzle with glass sidewalls, and a sharp edge orifice. The converging diverging nozzle exhibited choked flow behavior even at nitrogen concentration levels as low as 4 percent of the saturation level. The flow rates were independent of concentration level. Flow in the two dimensional, converging, visual nozzle appeared to have a sufficient pressure drop at the throat to cause nitrogen to come out of solution, but choking occurred further downstream. The orifice flow motion pictures showed considerable oscillation downstream of the orifice and parallel to the flow. Nitrogen bubbles appeared in the flow at back pressures as high as 3.28 MPa, and the level at which bubbles were no longer visible was a function of nitrogen concentration.

  10. Study of the coupling between real gas effects and rarefied effects on hypersonic aerodynamics

    NASA Astrophysics Data System (ADS)

    Chen, Song; Hu, Yuan; Sun, Quanhua

    2012-11-01

    Hypersonic vehicles travel across the atmosphere at very high speed, and the surrounding gas experiences complicated physical and chemical processes. These processes produce real gas effects at high temperature and rarefied gas effects at high altitude where the two effects are coupled through molecular collisions. In this study, we aim to identify the individual real gas and rarefied gas effects by simulating hypersonic flow over a 2D cylinder, a sphere and a blunted cone using a continuum-based CFD approach and the direct simulation Monte Carlo method. It is found that physical processes such as vibrational excitation and chemical reaction will reduce significantly the shock stand-off distance and flow temperature for flows having small Knudsen number. The calculated skin friction and surface heat flux will decrease when the real gas effects are considered in simulations. The trend, however, gets weakened as the Knudsen number increases. It is concluded that the rarefied gas effects weaken the real gas effects on hypersonic flows.

  11. Simulation Modeling for Off-Nominal Conditions - Where Are We Today?

    NASA Technical Reports Server (NTRS)

    Shah, Gautam H.; Foster, John V.; Cunningham, Kevin

    2010-01-01

    The modeling of aircraft flight characteris4cs in off-nominal or otherwise adverse conditions has become increasingly important for simulation in the loss-of-control arena. Adverse conditions include environmentally-induced upsets such as wind shear or wake vortex encounters; off-nominal flight conditions, such as stall or departure; on-board systems failures; and structural failures or aircraft damage. Spirited discussions in the research community are taking place as to the fidelity and data requirements for adequate representation of vehicle dynamics under such conditions for a host of research areas, including recovery training, flight controls development, trajectory guidance/planning, and envelope limiting. The increasing need for multiple sources of data (empirical, computational, experimental) for modeling across a larger flight envelope leads to challenges in developing methods of appropriately applying or combining such data, particularly in a dynamic flight environment with a physically and/or aerodynamically asymmetric vehicle. Traditional simplifications and symmetry assumptions in current modeling methodology may no longer be valid. Furthermore, once modeled, challenges abound in the validation of flight dynamics characteristics in adverse flight regimes

  12. Molecular dynamics simulations of the surface tension of oxygen-supersaturated water

    NASA Astrophysics Data System (ADS)

    Jain, S.; Qiao, L.

    2017-04-01

    In this work, non-reactive molecular dynamic simulations were conducted to determine the surface tension of water as a function of the concentration of the dissolved gaseous molecules (O2), which would in turn help to predict the pressure inside the nanobubbles under supersaturation conditions. Knowing the bubble pressure is a prerequisite for understanding the mechanisms behind the spontaneous combustion of the H2/O2 gases inside the nanobubbles. First, the surface tension of pure water was determined using the planar interface method and the Irving and Kirkwood formula. Next, the surface tension of water containing four different supersaturation concentrations (S) of O2 gas molecules was computed considering the curved interface of a nanobubble. The surface tension of water was found to decrease with an increase in the supersaturation ratio or the concentration of the dissolved O2 gas molecules.

  13. Determination of dissolved nitric oxide in coastal waters of the Yellow Sea off Qingdao

    NASA Astrophysics Data System (ADS)

    Liu, Chun-Ying; Feng, Wei-Hua; Tian, Ye; Yang, Gui-Peng; Li, Pei-Feng; Bange, Hermann W.

    2017-08-01

    We developed a new method for the determination of dissolved nitric oxide (NO) in discrete seawater samples based on the combination of a purge-and-trap setup and a fluorometric detection of NO. 2,3-diaminonaphthalene (DAN) reacts with NO in seawater to form the highly fluorescent 2,3-naphthotriazole (NAT). The fluorescence intensity was linear for NO concentrations in the range from 0.14 to 19 nmol L-1. We determined a detection limit of 0.068 nmol L-1, an average recovery coefficient of 83.8 % (80.2-90.0 %), and a relative standard deviation of ±7.2 %. With our method we determined for the first time the temporal and spatial distributions of NO surface concentrations in coastal waters of the Yellow Sea off Qingdao and in Jiaozhou Bay during a cruise in November 2009. The concentrations of NO varied from below the detection limit to 0.50 nmol L-1 with an average of 0.26 ± 0.14 nmol L-1. NO surface concentrations were generally enhanced significantly during daytime, implying that NO formation processes such as NO2- photolysis are much higher during daytime than chemical NO consumption, which, in turn, lead to a significant decrease in NO concentrations during nighttime. In general, NO surface concentrations and measured NO production rates were higher compared to previously reported measurements. This might be caused by the high NO2- surface concentrations encountered during the cruise. Moreover, additional measurements of NO production rates implied that the occurrence of particles and a temperature increase can enhance NO production rates. With the method introduced here, we have a reliable and comparably easy to use method at hand to measure oceanic NO surface concentrations, which can be used to decipher both its temporal and spatial distributions as well as its biogeochemical pathways in the oceans.

  14. Modeling Dissolved Solids in the Rincon Valley, New Mexico Using RiverWare

    NASA Astrophysics Data System (ADS)

    Abudu, S.; Ahn, S. R.; Sheng, Z.

    2017-12-01

    Simulating transport and storage of dissolved solids in surface water and underlying alluvial aquifer is essential to evaluate the impacts of surface water operations, groundwater pumping, and climate variability on the spatial and temporal variability of salinity in the Rio Grande Basin. In this study, we developed a monthly RiverWare water quantity and quality model to simulate the both concentration and loads of dissolved solids for the Rincon Valley, New Mexico from Caballo Reservoir to Leasburg Dam segment of the Rio Grande. The measured flows, concentration and loads of dissolved solids in the main stream and drains were used to develop RiveWare model using 1980-1988 data for calibration, and 1989-1995 data for validation. The transport of salt is tracked using discretized salt and post-process approaches. Flow and salt exchange between the surface water and adjacent groundwater objects is computed using "soil moisture salt with supplemental flow" method in the RiverWare. In the groundwater objects, the "layered salt" method is used to simulate concentration of the dissolved solids in the shallow groundwater storage. In addition, the estimated local inflows under different weather conditions by using a calibrated Soil Water Assessment Tool (SWAT) were fed into the RiverWare to refine the simulation of the flow and dissolved solids. The results show the salt concentration and loads increased at Leasburg Dam, which indicates the river collects salts from the agricultural return flow and the underlying aquifer. The RiverWare model with the local inflow fed by SWAT delivered the better quantification of temporal and spatial salt exchange patterns between the river and the underlying aquifer. The results from the proposed modeling approach can be used to refine the current mass-balance budgets for dissolved-solids transport in the Rio Grande, and provide guidelines for planning and decision-making to control salinity in arid river environment.

  15. Distribution and key influential factors of dissolved oxygen off the Changjiang River Estuary (CRE) and its adjacent waters in China.

    PubMed

    Chi, Lianbao; Song, Xiuxian; Yuan, Yongquan; Wang, Wentao; Zhou, Peng; Fan, Xin; Cao, Xihua; Yu, Zhiming

    2017-12-15

    Based on two multidisciplinary investigations conducted in summer and winter 2015, the distribution of dissolved oxygen (DO) and the associated seasonal variations off the Changjiang River Estuary (CRE) were studied. The DO content was high in winter, ranging from 6.81-10.29mg/L, and the distribution was mainly controlled by temperature and salinity. The DO concentration was 1.92-9.67mg/L in summer, and a hypoxic zone (DO<3mg/L) covered 14,800km 2 , which was mainly controlled by stratification and organic matter decomposition. The hypoxic zone exhibited a "dual-core" structure and the differences in the biochemical and physical processes between the southern and northern regions were compared: the northern region exhibited stronger pycnocline intensity; while larger biomass and higher TOC as well as TN contents were observed in the southern region. Hypoxia in the northern region might be mainly dominated by stratification, while that in the southern region was mainly associated with organic matter decomposition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Thermodynamic properties of gases dissolved in electrolyte solutions.

    NASA Technical Reports Server (NTRS)

    Tiepel, E. W.; Gubbins, K. E.

    1973-01-01

    A method based on perturbation theory for mixtures is applied to the prediction of thermodynamic properties of gases dissolved in electrolyte solutions. The theory is compared with experimental data for the dependence of the solute activity coefficient on concentration, temperature, and pressure; calculations are included for partial molal enthalpy and volume of the dissolved gas. The theory is also compared with previous theories for salt effects and found to be superior. The calculations are best for salting-out systems. The qualitative feature of salting-in is predicted by the theory, but quantitative predictions are not satisfactory for such systems; this is attributed to approximations made in evaluating the perturbation terms.

  17. Methane hydrate-bearing seeps as a source of aged dissolved organic carbon to the oceans

    USGS Publications Warehouse

    Pohlman, John; Waite, William F.; Bauer, James E.; Osburn, Christopher L.; Chapman, N. Ross

    2011-01-01

    Marine sediments contain about 500–10,000 Gt of methane carbon1, 2, 3, primarily in gas hydrate. This reservoir is comparable in size to the amount of organic carbon in land biota, terrestrial soils, the atmosphere and sea water combined1, 4, but it releases relatively little methane to the ocean and atmosphere5. Sedimentary microbes convert most of the dissolved methane to carbon dioxide6, 7. Here we show that a significant additional product associated with microbial methane consumption is methane-derived dissolved organic carbon. We use Δ14C and δ13C measurements and isotopic mass-balance calculations to evaluate the contribution of methane-derived carbon to seawater dissolved organic carbon overlying gas hydrate-bearing seeps in the northeastern Pacific Ocean. We show that carbon derived from fossil methane accounts for up to 28% of the dissolved organic carbon. This methane-derived material is much older, and more depleted in 13C, than background dissolved organic carbon. We suggest that fossil methane-derived carbon may contribute significantly to the estimated 4,000–6,000 year age of dissolved organic carbon in the deep ocean8, and provide reduced organic matter and energy to deep-ocean microbial communities.

  18. Towards the reliable calculation of residence time for off-lattice kinetic Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Alexander, Kathleen C.; Schuh, Christopher A.

    2016-08-01

    Kinetic Monte Carlo (KMC) methods have the potential to extend the accessible timescales of off-lattice atomistic simulations beyond the limits of molecular dynamics by making use of transition state theory and parallelization. However, it is a challenge to identify a complete catalog of events accessible to an off-lattice system in order to accurately calculate the residence time for KMC. Here we describe possible approaches to some of the key steps needed to address this problem. These include methods to compare and distinguish individual kinetic events, to deterministically search an energy landscape, and to define local atomic environments. When applied to the ground state  ∑5(2 1 0) grain boundary in copper, these methods achieve a converged residence time, accounting for the full set of kinetically relevant events for this off-lattice system, with calculable uncertainty.

  19. Improvement in etching rate for epilayer lift-off with surfactant

    NASA Astrophysics Data System (ADS)

    Wu, Fan-Lei; Horng, Ray-Hua; Lu, Jian-Heng; Chen, Chun-Li; Kao, Yu-Cheng

    2013-03-01

    In this study, the GaAs epilayer is quickly separated from GaAs substrate by epitaxial lift-off (ELO) process with mixture etchant solution. The HF solution mixes with surfactant as mixture etchant solution to etch AlAs sacrificial layer for the selective wet etching of AlAs sacrificial layer. Addiction surfactants etchant significantly enhance the etching rate in the hydrofluoric acid etching solution. It is because surfactant provides hydrophilicity to change the contact angle with enhances the fluid properties of the mixture etchant between GaAs epilayer and GaAs substrate. Arsine gas was released from the etchant solution because the critical reaction product in semiconductor etching is dissolved arsine gas. Arsine gas forms a bubble, which easily displaces the etchant solution, before the AlAs layer was undercut. The results showed that acetone and hydrofluoric acid ratio of about 1:1 for the fastest etching rate of 13.2 μm / min. The etching rate increases about 4 times compared with pure hydrofluoric acid, moreover can shorten the separation time about 70% of GaAs epilayer with GaAs substrate. The results indicate that etching ratio and stability are improved by mixture etchant solution. It is not only saving the epilayer and the etching solution exposure time, but also reducing the damage to the epilayer structure.

  20. Lattice gas simulations of dynamical geometry in two dimensions.

    PubMed

    Klales, Anna; Cianci, Donato; Needell, Zachary; Meyer, David A; Love, Peter J

    2010-10-01

    We present a hydrodynamic lattice gas model for two-dimensional flows on curved surfaces with dynamical geometry. This model is an extension to two dimensions of the dynamical geometry lattice gas model previously studied in one dimension. We expand upon a variation of the two-dimensional flat space Frisch-Hasslacher-Pomeau (FHP) model created by Frisch [Phys. Rev. Lett. 56, 1505 (1986)] and independently by Wolfram, and modified by Boghosian [Philos. Trans. R. Soc. London, Ser. A 360, 333 (2002)]. We define a hydrodynamic lattice gas model on an arbitrary triangulation whose flat space limit is the FHP model. Rules that change the geometry are constructed using the Pachner moves, which alter the triangulation but not the topology. We present results on the growth of the number of triangles as a function of time. Simulations show that the number of triangles grows with time as t(1/3), in agreement with a mean-field prediction. We also present preliminary results on the distribution of curvature for a typical triangulation in these simulations.

  1. Tests of Halon 1301 test gas simulants

    NASA Astrophysics Data System (ADS)

    Carhart, H. W.; Leonard, J. T.; Dinenno, P. J.; Starchville, M. D.; Forssell, E. W.; Wong, J. T.

    1989-02-01

    All new and retrofit installations of Halon 1301 (CBrF3) total flooding fire protection systems in shipboard machinery spaces require full acceptance discharge test. It is desirable to use a suitable simulant test gas in these tests in view of current and future regulation of Halon 1301. Sulfur hexafluoride, SF6, and chlorodifluromethane R-22, were identified as candidate simulants on the basis of their similarity in physical properties to Halon 1301. These two candidates were then evaluated on the basis of leakage from an enclosure. SF6 was determined to be an excellent simulant for Halon 1301 when considering leakage from an enclosure. Further testing of SF6 and R-22 is planned for other important aspects of Halon 1301 systems, i.e., flow hydraulics, initial mixing.

  2. Real gas CFD simulations of hydrogen/oxygen supercritical combustion

    NASA Astrophysics Data System (ADS)

    Pohl, S.; Jarczyk, M.; Pfitzner, M.; Rogg, B.

    2013-03-01

    A comprehensive numerical framework has been established to simulate reacting flows under conditions typically encountered in rocket combustion chambers. The model implemented into the commercial CFD Code ANSYS CFX includes appropriate real gas relations based on the volume-corrected Peng-Robinson (PR) equation of state (EOS) for the flow field and a real gas extension of the laminar flamelet combustion model. The results indicate that the real gas relations have a considerably larger impact on the flow field than on the detailed flame structure. Generally, a realistic flame shape could be achieved for the real gas approach compared to experimental data from the Mascotte test rig V03 operated at ONERA when the differential diffusion processes were only considered within the flame zone.

  3. Supersaturation of Dissolved Hydrogen and Methane in Rumen of Tibetan Sheep

    PubMed Central

    Wang, Min; Ungerfeld, Emilio M.; Wang, Rong; Zhou, Chuan She; Basang, Zhu Zha; Ao, Si Man; Tan, Zhi Liang

    2016-01-01

    Hydrogen (H2) is an essential substrate for methanogens to produce methane (CH4), and also influences pathways of volatile fatty acids (VFA) production in the rumen. Dissolved H2 (H2 (aq)) is the form of H2 available to microbes, and dissolved CH4 (CH4 (aq)) is important for indicating methanogens activity. Rumen H2 (aq) concentration has been estimated by assuming equilibrium with headspace gaseous H2 (H2 (g)) concentration using Henry's law, and has also been directly measured in the liquid phase in some in vitro and in vivo experiments. In this in vivo study, H2 (aq) and CH4 (aq) concentration measured directly in rumen fluid and their corresponding concentrations estimated from their gaseous phase concentrations, were compared to investigate the existence of equilibrium between the gas and liquid phases. Twenty-four Tibetan sheep were randomly assigned to two mixed diets containing the same concentrate mixed with oat grass (OG diet) or barley straw (BS diet). Rumen gaseous phase and contents were sampled using rumenocentesis and oral stomach tubing, respectively. Rumen H2 (aq) and CH4 (aq) concentration and VFA profile differed between sheep fed OG and BS diets. Measured H2 (aq) and CH4 (aq) concentration were greater than H2 (aq) and CH4 (aq) concentrations estimated using gas concentrations, indicating lack of equilibrium between gas and liquid phase and supersaturation of H2 and CH4 in rumen fluid. As a consequence, Gibbs energy changes (ΔG) estimated for various metabolic pathways were different when calculated using dissolved gases concentrations directly measured and when using dissolved gases concentrations assuming equilibrium with the gaseous phase. Dissolved CH4, but not CH4 (g), was positively correlated with H2 (aq). Both H2 (aq) and H2 (g) concentrations were positively correlated with the molar percentage of butyrate and negatively correlated with the molar percentage of acetate. In summary, rumen fluid was supersaturated with both H2 and CH4

  4. FACTORS INFLUENCING PHOTOREACTIONS OF DISSOLVED ORGANIC MATTER IN A COASTAL RIVER OF THE SOUTHEASTERN UNITED STATES

    EPA Science Inventory

    Photoreactions of dissolved organic matter can affect the oxidizing capacity, nutrient dynamics, trace gas exchange, and color of surface waters. This study focuses on factors that affect the photoreactions of the colored dissolved organic matter (CDOM) in the Satilla River, a co...

  5. Total dissolved gas and water temperature in the lower Columbia River, Oregon and Washington, 2007: Quality-assurance data and comparison to water-quality standards

    USGS Publications Warehouse

    Tanner, Dwight Q.; Bragg, Heather M.; Johnston, Matthew W.

    2007-01-01

    For the eight monitoring sites in water year 2007, an average of 99.5% of the total-dissolved-gas data were received in real time by the USGS satellite downlink and were within 1% saturation of the expected value on the basis of calibration data, replicate quality-control measurements in the river, and comparison to ambient river conditions at adjacent sites. Data received from the sites ranged from 97.9% to 100.0% complete.

  6. Air ionization as a control technology for off-gas emissions of volatile organic compounds.

    PubMed

    Kim, Ki-Hyun; Szulejko, Jan E; Kumar, Pawan; Kwon, Eilhann E; Adelodun, Adedeji A; Reddy, Police Anil Kumar

    2017-06-01

    High energy electron-impact ionizers have found applications mainly in industry to reduce off-gas emissions from waste gas streams at low cost and high efficiency because of their ability to oxidize many airborne organic pollutants (e.g., volatile organic compounds (VOCs)) to CO 2 and H 2 O. Applications of air ionizers in indoor air quality management are limited due to poor removal efficiency and production of noxious side products, e.g., ozone (O 3 ). In this paper, we provide a critical evaluation of the pollutant removal performance of air ionizing system through comprehensive review of the literature. In particular, we focus on removal of VOCs and odorants. We also discuss the generation of unwanted air ionization byproducts such as O 3 , NOx, and VOC oxidation intermediates that limit the use of air-ionizers in indoor air quality management. Copyright © 2017. Published by Elsevier Ltd.

  7. Modeling and validation of single-chamber microbial fuel cell cathode biofilm growth and response to oxidant gas composition

    NASA Astrophysics Data System (ADS)

    Ou, Shiqi; Zhao, Yi; Aaron, Douglas S.; Regan, John M.; Mench, Matthew M.

    2016-10-01

    This work describes experiments and computational simulations to analyze single-chamber, air-cathode microbial fuel cell (MFC) performance and cathodic limitations in terms of current generation, power output, mass transport, biomass competition, and biofilm growth. Steady-state and transient cathode models were developed and experimentally validated. Two cathode gas mixtures were used to explore oxygen transport in the cathode: the MFCs exposed to a helium-oxygen mixture (heliox) produced higher current and power output than the group of MFCs exposed to air or a nitrogen-oxygen mixture (nitrox), indicating a dependence on gas-phase transport in the cathode. Multi-substance transport, biological reactions, and electrochemical reactions in a multi-layer and multi-biomass cathode biofilm were also simulated in a transient model. The transient model described biofilm growth over 15 days while providing insight into mass transport and cathodic dissolved species concentration profiles during biofilm growth. Simulation results predict that the dissolved oxygen content and diffusion in the cathode are key parameters affecting the power output of the air-cathode MFC system, with greater oxygen content in the cathode resulting in increased power output and fully-matured biomass.

  8. Modeling and validation of single-chamber microbial fuel cell cathode biofilm growth and response to oxidant gas composition

    DOE PAGES

    Ou, Shiqi; Zhao, Yi; Aaron, Douglas S.; ...

    2016-08-15

    This work describes experiments and computational simulations to analyze single-chamber, air-cathode microbial fuel cell (MFC) performance and cathodic limitations in terms of current generation, power output, mass transport, biomass competition, and biofilm growth. Steady-state and transient cathode models were developed and experimentally validated. Two cathode gas mixtures were used to explore oxygen transport in the cathode: the MFCs exposed to a helium-oxygen mixture (heliox) produced higher current and power output than the group of MFCs exposed to air or a nitrogen-oxygen mixture (nitrox), indicating a dependence on gas-phase transport in the cathode. Multi-substance transport, biological reactions, and electrochemical reactions inmore » a multi-layer and multi-biomass cathode biofilm were also simulated in a transient model. The transient model described biofilm growth over 15 days while providing insight into mass transport and cathodic dissolved species concentration profiles during biofilm growth. Lastly, simulation results predict that the dissolved oxygen content and diffusion in the cathode are key parameters affecting the power output of the air-cathode MFC system, with greater oxygen content in the cathode resulting in increased power output and fully-matured biomass.« less

  9. Ambient conditions and fate and transport simulations of dissolved solids, chloride, and sulfate in Beaver Lake, Arkansas, 2006--10

    USGS Publications Warehouse

    Green, W. Reed

    2013-01-01

    Beaver Lake is a large, deep-storage reservoir located in the upper White River Basin in northwestern Arkansas, and was completed in 1963 for the purposes of flood control, hydroelectric power, and water supply. Beaver Lake is affected by point and nonpoint sources of minerals, nutrients, and sediments. The City of Fayetteville discharges about half of its sewage effluent into the White River immediately upstream from the backwater of the reservoir. The City of West Fork discharges its sewage effluent into the West Fork of the White River, and the City of Huntsville discharges its sewage effluent into a tributary of War Eagle Creek. A study was conducted to describe the ambient conditions and fate and transport of dissolved solids, chloride, and sulfate concentrations in Beaver Lake. Dissolved solids, chloride, and sulfate are components of wastewater discharged into Beaver Lake and a major concern of the drinking water utilities that use Beaver Lake as their source. A two-dimensional model of hydrodynamics and water quality was calibrated to include simulations of dissolved solids, chloride, and sulfate for the period January 2006 through December 2010. Estimated daily dissolved solids, chloride, and sulfate loads were increased in the White River and War Eagle Creek tributaries, individually and the two tributaries together, by 1.2, 1.5, 2.0, 5.0, and 10.0 times the baseline conditions to examine fate and transport of these constituents through time at seven locations (segments) in the reservoir, from upstream to downstream in Beaver Lake. Fifteen dissolved solids, chloride, and sulfate fate and transport scenarios were compared to the baseline simulation at each of the seven downstream locations in the reservoir, both 2 meters (m) below the surface and 2 m above the bottom. Concentrations were greater in the reservoir at model segments closer to where the tributaries entered the reservoir. Concentrations resulting from the increase in loading became more diluted

  10. Outer midplane scrape-off layer profiles and turbulence in simulations of Alcator C-Mod inner-wall limited discharges

    DOE PAGES

    Halpern, Federico D.; LaBombard, Brian; Terry, James L.; ...

    2017-06-27

    A region of steep plasma gradients, the so-called ”narrow-feature”, has been found in the near scrape-off layer (SOL) of inner-wall limited (IWL) discharges. Dedicated IWL discharges were carried out in Alcator C-Mod [E.S. Marmar et al., Nucl. Fusion 55, (2015)] to study this phenomenon, allowing detailed observations of the plasma profiles and fluctuations. Langmuir probe (LP) measurements show a clear two decay length n e and T e profile structure at the outer midplane. The Gas-Puff Imaging (GPI) diagnostic shows large turbulent fluctuations across the last closed flux-surface, hence supporting the hypothesis that turbulent phenomena play a role in settingmore » the profile steepness. We have carried out the flux-driven non-linear turbulence simulations of two C-Mod discharges which allows a three-way comparison between LP, GPI, and simulation data. Observations and simulations correlate the steep gradient region characterizing the narrow feature with sheared poloidal flows and a deviation of the plasma potential from its floating value. Furthermore, the E x B shear rate exceeds the linear ballooning growth rate, indicating that the narrow feature could result from the effects of sheared flows, although causality could not be established. The fluctuation level in the narrow feature remains of order unity across the entire SOL, indicating that the transport reduction in the near-SOL cannot result from a simple quench rule.« less

  11. Outer midplane scrape-off layer profiles and turbulence in simulations of Alcator C-Mod inner-wall limited discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halpern, Federico D.; LaBombard, Brian; Terry, James L.

    A region of steep plasma gradients, the so-called ”narrow-feature”, has been found in the near scrape-off layer (SOL) of inner-wall limited (IWL) discharges. Dedicated IWL discharges were carried out in Alcator C-Mod [E.S. Marmar et al., Nucl. Fusion 55, (2015)] to study this phenomenon, allowing detailed observations of the plasma profiles and fluctuations. Langmuir probe (LP) measurements show a clear two decay length n e and T e profile structure at the outer midplane. The Gas-Puff Imaging (GPI) diagnostic shows large turbulent fluctuations across the last closed flux-surface, hence supporting the hypothesis that turbulent phenomena play a role in settingmore » the profile steepness. We have carried out the flux-driven non-linear turbulence simulations of two C-Mod discharges which allows a three-way comparison between LP, GPI, and simulation data. Observations and simulations correlate the steep gradient region characterizing the narrow feature with sheared poloidal flows and a deviation of the plasma potential from its floating value. Furthermore, the E x B shear rate exceeds the linear ballooning growth rate, indicating that the narrow feature could result from the effects of sheared flows, although causality could not be established. The fluctuation level in the narrow feature remains of order unity across the entire SOL, indicating that the transport reduction in the near-SOL cannot result from a simple quench rule.« less

  12. Molecular dynamics simulations of classical sound absorption in a monatomic gas

    NASA Astrophysics Data System (ADS)

    Ayub, M.; Zander, A. C.; Huang, D. M.; Cazzolato, B. S.; Howard, C. Q.

    2018-05-01

    Sound wave propagation in argon gas is simulated using molecular dynamics (MD) in order to determine the attenuation of acoustic energy due to classical (viscous and thermal) losses at high frequencies. In addition, a method is described to estimate attenuation of acoustic energy using the thermodynamic concept of exergy. The results are compared against standing wave theory and the predictions of the theory of continuum mechanics. Acoustic energy losses are studied by evaluating various attenuation parameters and by comparing the changes in behavior at three different frequencies. This study demonstrates acoustic absorption effects in a gas simulated in a thermostatted molecular simulation and quantifies the classical losses in terms of the sound attenuation constant. The approach can be extended to further understanding of acoustic loss mechanisms in the presence of nanoscale porous materials in the simulation domain.

  13. GADEN: A 3D Gas Dispersion Simulator for Mobile Robot Olfaction in Realistic Environments.

    PubMed

    Monroy, Javier; Hernandez-Bennets, Victor; Fan, Han; Lilienthal, Achim; Gonzalez-Jimenez, Javier

    2017-06-23

    This work presents a simulation framework developed under the widely used Robot Operating System (ROS) to enable the validation of robotics systems and gas sensing algorithms under realistic environments. The framework is rooted in the principles of computational fluid dynamics and filament dispersion theory, modeling wind flow and gas dispersion in 3D real-world scenarios (i.e., accounting for walls, furniture, etc.). Moreover, it integrates the simulation of different environmental sensors, such as metal oxide gas sensors, photo ionization detectors, or anemometers. We illustrate the potential and applicability of the proposed tool by presenting a simulation case in a complex and realistic office-like environment where gas leaks of different chemicals occur simultaneously. Furthermore, we accomplish quantitative and qualitative validation by comparing our simulated results against real-world data recorded inside a wind tunnel where methane was released under different wind flow profiles. Based on these results, we conclude that our simulation framework can provide a good approximation to real world measurements when advective airflows are present in the environment.

  14. GADEN: A 3D Gas Dispersion Simulator for Mobile Robot Olfaction in Realistic Environments

    PubMed Central

    Hernandez-Bennetts, Victor; Fan, Han; Lilienthal, Achim; Gonzalez-Jimenez, Javier

    2017-01-01

    This work presents a simulation framework developed under the widely used Robot Operating System (ROS) to enable the validation of robotics systems and gas sensing algorithms under realistic environments. The framework is rooted in the principles of computational fluid dynamics and filament dispersion theory, modeling wind flow and gas dispersion in 3D real-world scenarios (i.e., accounting for walls, furniture, etc.). Moreover, it integrates the simulation of different environmental sensors, such as metal oxide gas sensors, photo ionization detectors, or anemometers. We illustrate the potential and applicability of the proposed tool by presenting a simulation case in a complex and realistic office-like environment where gas leaks of different chemicals occur simultaneously. Furthermore, we accomplish quantitative and qualitative validation by comparing our simulated results against real-world data recorded inside a wind tunnel where methane was released under different wind flow profiles. Based on these results, we conclude that our simulation framework can provide a good approximation to real world measurements when advective airflows are present in the environment. PMID:28644375

  15. Evaluation of gas production potential from gas hydrate deposits in National Petroleum Reserve Alaska using numerical simulations

    USGS Publications Warehouse

    Nandanwar, Manish S.; Anderson, Brian J.; Ajayi, Taiwo; Collett, Timothy S.; Zyrianova, Margarita V.

    2016-01-01

    An evaluation of the gas production potential of Sunlight Peak gas hydrate accumulation in the eastern portion of the National Petroleum Reserve Alaska (NPRA) of Alaska North Slope (ANS) is conducted using numerical simulations, as part of the U.S. Geological Survey (USGS) gas hydrate Life Cycle Assessment program. A field scale reservoir model for Sunlight Peak is developed using Advanced Processes & Thermal Reservoir Simulator (STARS) that approximates the production design and response of this gas hydrate field. The reservoir characterization is based on available structural maps and the seismic-derived hydrate saturation map of the study region. A 3D reservoir model, with heterogeneous distribution of the reservoir properties (such as porosity, permeability and vertical hydrate saturation), is developed by correlating the data from the Mount Elbert well logs. Production simulations showed that the Sunlight Peak prospect has the potential of producing 1.53 × 109 ST m3 of gas in 30 years by depressurization with a peak production rate of around 19.4 × 104 ST m3/day through a single horizontal well. To determine the effect of uncertainty in reservoir properties on the gas production, an uncertainty analysis is carried out. It is observed that for the range of data considered, the overall cumulative production from the Sunlight Peak will always be within the range of ±4.6% error from the overall mean value of 1.43 × 109 ST m3. A sensitivity analysis study showed that the proximity of the reservoir from the base of permafrost and the base of hydrate stability zone (BHSZ) has significant effect on gas production rates. The gas production rates decrease with the increase in the depth of the permafrost and the depth of BHSZ. From the overall analysis of the results it is concluded that Sunlight Peak gas hydrate accumulation behaves differently than other Class III reservoirs (Class III reservoirs are composed of a single layer of hydrate with no

  16. Natural gas use is taking off

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kauffmann, B.G.

    1995-07-01

    The paper describes an infrared radiant heat process to de-ice aircraft. A typical 727 aircraft de-icing costs $2000--3000 using the current glycol method. The natural gas powered heater would only cost $400 per aircraft and would not pose the environmental problems that the glycol does. It is estimated that one Infratek system could consume 3.8 million cubic feet of natural gas each year during the de-icing season. Large airports might have as many as 10 units. 3.8 million cu. ft. of gas is equal to about 40 New York residential customers or eight New York commercial customers.

  17. Gasometer: An inexpensive device for continuous monitoring of dissolved gases and supersaturation

    USGS Publications Warehouse

    Bouck, G.R.

    1982-01-01

    The “gasometer” is a device that measures differential dissolved-gas pressures (δP) in water relative to barometric pressure (as does the “Weiss saturometer”), but operates continuously without human attention. The gasometer can be plumbed into a water-supply system and requires 8 liters/minute of water or more at 60 kilopascals. The gasometer's surfaces are nontoxic, and flow-through water can be used for fish culture. The gasometer may be connected to a small submersible pump and operated as a portable unit. The gasometer can activate an alarm system and thus protect fish from hyperbaric (supersaturation) or hypobaric gas pressures (usually due to low dissolved oxygen). Instructions are included for calculating and reporting data including the pressure and saturation of individual gases. Construction and performance standards are given for the gasometer. Occasional cleaning is required to remove biofouling from the gas-permeable tubing.PDF

  18. 10 CFR 590.108 - Off-the-record communications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Off-the-record communications. 590.108 Section 590.108 Energy DEPARTMENT OF ENERGY (CONTINUED) NATURAL GAS (ECONOMIC REGULATORY ADMINISTRATION) ADMINISTRATIVE PROCEDURES WITH RESPECT TO THE IMPORT AND EXPORT OF NATURAL GAS General Provisions § 590.108 Off-the-record...

  19. 10 CFR 590.108 - Off-the-record communications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Off-the-record communications. 590.108 Section 590.108 Energy DEPARTMENT OF ENERGY (CONTINUED) NATURAL GAS (ECONOMIC REGULATORY ADMINISTRATION) ADMINISTRATIVE PROCEDURES WITH RESPECT TO THE IMPORT AND EXPORT OF NATURAL GAS General Provisions § 590.108 Off-the-record...

  20. Multicomponent Gas Storage in Organic Cage Molecules

    DOE PAGES

    Zhang, Fei; He, Yadong; Huang, Jingsong; ...

    2017-05-18

    Porous liquids are a promising new class of materials featuring nanoscale cavity units dispersed in liquids that are suitable for applications such as gas storage and separation. In this work, we use molecular dynamics simulations to examine the multicomponent gas storage in a porous liquid consisting of crown-ether-substituted cage molecules dissolved in a 15-crown-5 solvent. We compute the storage of three prototypical small molecules including CO 2, CH 4, and N 2 and their binary mixtures in individual cage molecules. For porous liquids in equilibrium with a binary 1:1 gas mixture bath with partial gas pressure of 27.5 bar, amore » cage molecule shows a selectivity of 4.3 and 13.1 for the CO 2/CH 4 and CO 2/N 2 pairs, respectively. We provide a molecular perspective of how gas molecules are stored in the cage molecule and how the storage of one type of gas molecule is affected by other types of gas molecules. Finally, our results clarify the molecular mechanisms behind the selectivity of such cage molecules toward different gases.« less

  1. Tracing Acetylene Dissolved in Transformer Oil by Tunable Diode Laser Absorption Spectrum.

    PubMed

    Ma, Guo-Ming; Zhao, Shu-Jing; Jiang, Jun; Song, Hong-Tu; Li, Cheng-Rong; Luo, Ying-Ting; Wu, Hao

    2017-11-02

    Dissolved gas analysis (DGA) is widely used in monitoring and diagnosing of power transformer, since the insulation material in the power transformer decomposes gases under abnormal operation condition. Among the gases, acetylene, as a symbol of low energy spark discharge and high energy electrical faults (arc discharge) of power transformer, is an important monitoring parameter. The current gas detection method used by the online DGA equipment suffers from problems such as cross sensitivity, electromagnetic compatibility and reliability. In this paper, an optical gas detection system based on TDLAS technology is proposed to detect acetylene dissolved in transformer oil. We selected a 1530.370 nm laser in the near infrared wavelength range to correspond to the absorption peak of acetylene, while using the wavelength modulation strategy and Herriott cell to improve the detection precision. Results show that the limit of detection reaches 0.49 ppm. The detection system responds quickly to changes of gas concentration and is easily to maintenance while has no electromagnetic interference, cross-sensitivity, or carrier gas. In addition, a complete detection process of the system takes only 8 minutes, implying a practical prospect of online monitoring technology.

  2. High Resolution CH4 Emissions and Dissolved CH4 Measurements Elucidate Surface Gas Exchange Processes in Toolik Lake, Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Del Sontro, T.; Sollberger, S.; Kling, G. W.; Shaver, G. R.; Eugster, W.

    2013-12-01

    Approximately 14% of the Alaskan North Slope is covered in lakes of various sizes and depths. Diffusive carbon emissions (CH4 and CO2) from these lakes offset the tundra sink by ~20 %, but the offset would substantially increase if ebullitive CH4 emissions were also considered. Ultimately, arctic lake CH4 emissions are not insignificant in the global CH4 budget and their contribution is bound to increase due to impacts from climate change. Here we present high resolution CH4 emission data as measured via eddy covariance and a Los Gatos gas analyzer during the ice free period from Toolik Lake, a deep (20 m) Arctic lake located on the Alaskan North Slope, over the last few summers. Emissions are relatively low (< 25 mg CH4 m-2 d-1) with little variation over the summer. Diurnal variations regularly occur, however, with up to 3 times higher fluxes at night. Gas exchange is a relatively difficult process to estimate, but is normally done so as the product of the CH4 gradient across the air-water interface and the gas transfer velocity, k. Typically, k is determined based on the turbulence on the water side of the interface, which is most commonly approximated by wind speed; however, it has become increasingly apparent that this assumption does not remain valid across all water bodies. Dissolved CH4 profiles in Toolik revealed a subsurface peak in CH4 at the thermocline of up to 3 times as much CH4 as in the surface water. We hypothesize that convective mixing at night due to cooling surface waters brings the subsurface CH4 to the surface and causes the higher night fluxes. In addition to high resolution flux emission estimates, we also acquired high resolution data for dissolved CH4 in surface waters of Toolik Lake during the last two summers using a CH4 equilibrator system connected to a Los Gatos gas analyzer. Thus, having both the flux and the CH4 gradient across the air-water interface measured directly, we can calculate k and investigate the processes influencing

  3. Emission quantification using the tracer gas dispersion method: The influence of instrument, tracer gas species and source simulation.

    PubMed

    Delre, Antonio; Mønster, Jacob; Samuelsson, Jerker; Fredenslund, Anders M; Scheutz, Charlotte

    2018-09-01

    The tracer gas dispersion method (TDM) is a remote sensing method used for quantifying fugitive emissions by relying on the controlled release of a tracer gas at the source, combined with concentration measurements of the tracer and target gas plumes. The TDM was tested at a wastewater treatment plant for plant-integrated methane emission quantification, using four analytical instruments simultaneously and four different tracer gases. Measurements performed using a combination of an analytical instrument and a tracer gas, with a high ratio between the tracer gas release rate and instrument precision (a high release-precision ratio), resulted in well-defined plumes with a high signal-to-noise ratio and a high methane-to-tracer gas correlation factor. Measured methane emission rates differed by up to 18% from the mean value when measurements were performed using seven different instrument and tracer gas combinations. Analytical instruments with a high detection frequency and good precision were established as the most suitable for successful TDM application. The application of an instrument with a poor precision could only to some extent be overcome by applying a higher tracer gas release rate. A sideward misplacement of the tracer gas release point of about 250m resulted in an emission rate comparable to those obtained using a tracer gas correctly simulating the methane emission. Conversely, an upwind misplacement of about 150m resulted in an emission rate overestimation of almost 50%, showing the importance of proper emission source simulation when applying the TDM. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Achieving high peak capacity production for gas chromatography and comprehensive two-dimensional gas chromatography by minimizing off-column peak broadening.

    PubMed

    Wilson, Ryan B; Siegler, W Christopher; Hoggard, Jamin C; Fitz, Brian D; Nadeau, Jeremy S; Synovec, Robert E

    2011-05-27

    By taking into consideration band broadening theory and using those results to select experimental conditions, and also by reducing the injection pulse width, peak capacity production (i.e., peak capacity per separation time) is substantially improved for one dimensional (1D-GC) and comprehensive two dimensional (GC×GC) gas chromatography. A theoretical framework for determining the optimal linear gas velocity (the linear gas velocity producing the minimum H), from experimental parameters provides an in-depth understanding of the potential for GC separations in the absence of extra-column band broadening. The extra-column band broadening is referred to herein as off-column band broadening since it is additional band broadening not due to the on-column separation processes. The theory provides the basis to experimentally evaluate and improve temperature programmed 1D-GC separations, but in order to do so with a commercial 1D-GC instrument platform, off-column band broadening from injection and detection needed to be significantly reduced. Specifically for injection, a resistively heated transfer line is coupled to a high-speed diaphragm valve to provide a suitable injection pulse width (referred to herein as modified injection). Additionally, flame ionization detection (FID) was modified to provide a data collection rate of 5kHz. The use of long, relatively narrow open tubular capillary columns and a 40°C/min programming rate were explored for 1D-GC, specifically a 40m, 180μm i.d. capillary column operated at or above the optimal average linear gas velocity. Injection using standard auto-injection with a 1:400 split resulted in an average peak width of ∼1.5s, hence a peak capacity production of 40peaks/min. In contrast, use of modified injection produced ∼500ms peak widths for 1D-GC, i.e., a peak capacity production of 120peaks/min (a 3-fold improvement over standard auto-injection). Implementation of modified injection resulted in retention time, peak width

  5. Geochemistry of dissolved gases in the hypersaline Orca basin. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiesenburg, D.A.

    1980-12-01

    Hypersaline, anoxic waters significantly affect the biogeochemistry of dissolved gases in the Orca Basin (Northern Gulf of Mexico). The high stability of the Orca brine pool makes it an ideal laboratory for studying production and consumption of dissolved gases during anaerobic decomposition. Depth distributions were determined for nitrogen, oxygen, argon, methane, ethane, propane, ammonia, hydrogen sulfide, and nitrous oxide. Physical stratification of the water column strongly influences Orca Basin gas distributions. The high salinity brine (approx. 250%) is internally well mixed due to convective overturning, but transfer across the brine-sea water interface is controlled by molecular diffusion. With a molecularmore » diffusivity of 0.00001 sq cm/sec, it will take 1,000,000 years for all salts to diffuse from the basin. Heat diffuses faster than salt and is lost from the basin at a rate of 0.5 microcal sq cm/sec. If geothermal heat input from the sediments is slightly higher, this input could account for the higher temperature in the brine (5.6C) compared to the deep Gulf waters (4.2 C). This study has shown the utility of dissolved gases in examining water chemistry of unusual areas. Since sources of dissolved gases are independent of the sources of major ions in solution, calculations of gas distributions on a salt-free basis are useful in examining production and consumption processes.« less

  6. How are quasars fueled? Simulating interstellar gas in tidally disturbed galaxies

    NASA Technical Reports Server (NTRS)

    Byrd, Gene G.

    1986-01-01

    Whether gravitational tides from companions trigger global instabilities in spiral galaxy disks and thus rapid flows of gas into the nucleus to fuel activity is investigated. An n-body computer program is used to simulate the disk of the spiral galaxy within a much more stable, high-velocity dispersion spherical halo. Under sufficient perturbation, the disk undergoes violent distortions due to the disturber and its self-gravitation. The tidal action of companions was simulated and the tidal strengths at which the instabilities appear to match those of the observed companions of Seyferts and quasars was shown. With the additional modifications planned, the gas flow will be more realistically simulated to compare with observations (e.g., colors, velocity fields) of active galaxies.

  7. A Sixteen-year Decline in Dissolved Oxygen in the Central California Current.

    PubMed

    Ren, Alice S; Chai, Fei; Xue, Huijie; Anderson, David M; Chavez, Francisco P

    2018-05-08

    A potential consequence of climate change is global decrease in dissolved oxygen at depth in the oceans due to changes in the balance of ventilation, mixing, respiration, and photosynthesis. We present hydrographic cruise observations of declining dissolved oxygen collected along CalCOFI Line 66.7 (Line 67) off of Monterey Bay, in the Central California Current region, and investigate likely mechanisms. Between 1998 and 2013, dissolved oxygen decreased at the mean rate of 1.92 µmol kg -1 year -1 on σ θ 26.6-26.8 kg m -3 isopycnals (250-400 m), translating to a 40% decline from initial concentrations. Two cores of elevated dissolved oxygen decline at 130 and 240 km from shore, which we suggest are a California Undercurrent and a California Current signal respectively, occurred on σ θ ranges of 26.0-26.8 kg m -3 (100-400 m). A box model suggests that small annual changes in dissolved oxygen in source regions are sufficient to be the primary driver of the mid-depth declines. Variation in dissolved oxygen at the bottom of the surface mixed layer suggests that there is also a signal of increased local remineralization.

  8. Representation of Dissolved Organic Carbon in the JULES Dynamic Global Vegetation Model

    NASA Astrophysics Data System (ADS)

    Nakhavali, Mahdi; Friedlingstein, Pierre; Guenet, Bertrand; Ciais, Philip

    2017-04-01

    Current global models of the carbon cycle consider only vertical gas exchanges between terrestrial or oceanic reservoirs and the atmosphere, hence not considering lateral transport of carbon from the continent to the oceans. This also means that such models implicitly consider that all the CO2 which is not respired to the atmosphere is stored on land, hence overestimating the land sink of carbon. Moving toward a boundless carbon cycle that is integrating the whole continuum from land to ocean to atmosphere is needed in order to better understand Earth's carbon cycle and to make more reliable projection of its future. Here we present an original representation of Dissolved Organic Carbon (DOC) processes in the Joint UK Land Environment Simulator (JULES). The standard version of JULES represent energy, water and carbon cycles and exchanges with the atmosphere, but only account for water run-off, not including export of carbon from terrestrial ecosystems to the aquatic environments. The aim of the project is to include in JULES a representation of DOC production in terrestrial soils, due to incomplete decomposition of organic matter, its decomposition to the atmosphere, and its export to the river network by leaching. In new developed version of JULES (JULES-DOCM), DOC pools, based on their decomposition rate, are classified into labile and recalcitrant within 3 meters of soil. Based on turnover rate, DOC coming from plant material pools and microbial biomass is directed to labile pool, while DOC from humus is directed to recalcitrant pool. Both of these pools have free (dissolved) and locked (adsorbed) form where just the free pool is subjected to decomposition and leaching. DOC production and decomposition are controlled by rate modifiers (moisture, temperature, vegetation fraction and decomposition rate) at each soil layer. Decomposed DOC is released to the atmosphere following a fixed carbon use efficiency. Leaching accounts for both surface (runoff) and

  9. Kinetic simulations of gas breakdown in the dense plasma focus

    NASA Astrophysics Data System (ADS)

    Bennett, N.; Blasco, M.; Breeding, K.; DiPuccio, V.; Gall, B.; Garcia, M.; Gardner, S.; Gatling, J.; Hagen, E. C.; Luttman, A.; Meehan, B. T.; Molnar, S.; O'Brien, R.; Ormond, E.; Robbins, L.; Savage, M.; Sipe, N.; Welch, D. R.

    2017-06-01

    The first fully kinetic, collisional, and electromagnetic simulations of the breakdown phase of a MA-scale dense plasma focus are described and shown to agree with measured electrical characteristics, including breakdown time. In the model, avalanche ionization is driven by cathode electron emission, and this results in incomplete gas breakdown along the insulator. This reinforces the importance of the conditioning process that creates a metallic layer on the insulator surface. The simulations, nonetheless, help explain the relationship between the gas pressure, the insulator length, and the coaxial gap width. Previously, researchers noted three breakdown patterns related to pressure. Simulation and analytical results show that at low pressures, long ionization path lengths lead to volumetric breakdown, while high pressures lead to breakdown across the relatively small coaxial electrode gap. In an intermediate pressure regime, ionization path lengths are comparable to the insulator length which promotes ideal breakdown along the insulator surface.

  10. Simulation of Water Gas Shift Zeolite Membrane Reactor

    NASA Astrophysics Data System (ADS)

    Makertiharta, I. G. B. N.; Rizki, Z.; Zunita, Megawati; Dharmawijaya, P. T.

    2017-07-01

    The search of alternative energy sources keeps growing from time to time. Various alternatives have been introduced to reduce the use of fossil fuel, including hydrogen. Many pathways can be used to produce hydrogen. Among all of those, the Water Gas Shift (WGS) reaction is the most common pathway to produce high purity hydrogen. The WGS technique faces a downstream processing challenge due to the removal hydrogen from the product stream itself since it contains a mixture of hydrogen, carbon dioxide and also the excess reactants. An integrated process using zeolite membrane reactor has been introduced to improve the performance of the process by selectively separate the hydrogen whilst boosting the conversion. Furthermore, the zeolite membrane reactor can be further improved via optimizing the process condition. This paper discusses the simulation of Zeolite Membrane Water Gas Shift Reactor (ZMWGSR) with variation of process condition to achieve an optimum performance. The simulation can be simulated into two consecutive mechanisms, the reaction prior to the permeation of gases through the zeolite membrane. This paper is focused on the optimization of the process parameters (e.g. temperature, initial concentration) and also membrane properties (e.g. pore size) to achieve an optimum product specification (concentration, purity).

  11. SIMULATION OF DISSOLVED OXYGEN PROFILES IN A TRANSPARENT, DIMICTIC LAKE

    EPA Science Inventory

    Thrush Lake is a small, highly transparent lake in northeastern Minnesota. rom 1986 to 1991, vertical profiles of water temperature, dissolved oxygen, chlorophyll a concentration, underwater light irradiance, and Secchi depths were measured at monthly intervals during the ice-fre...

  12. 3-D simulation of gases transport under condition of inert gas injection into goaf

    NASA Astrophysics Data System (ADS)

    Liu, Mao-Xi; Shi, Guo-Qing; Guo, Zhixiong; Wang, Yan-Ming; Ma, Li-Yang

    2016-12-01

    To prevent coal spontaneous combustion in mines, it is paramount to understand O2 gas distribution under condition of inert gas injection into goaf. In this study, the goaf was modeled as a 3-D porous medium based on stress distribution. The variation of O2 distribution influenced by CO2 or N2 injection was simulated based on the multi-component gases transport and the Navier-Stokes equations using Fluent. The numerical results without inert gas injection were compared with field measurements to validate the simulation model. Simulations with inert gas injection show that CO2 gas mainly accumulates at the goaf floor level; however, a notable portion of N2 gas moves upward. The evolution of the spontaneous combustion risky zone with continuous inert gas injection can be classified into three phases: slow inerting phase, rapid accelerating inerting phase, and stable inerting phase. The asphyxia zone with CO2 injection is about 1.25-2.4 times larger than that with N2 injection. The efficacy of preventing and putting out mine fires is strongly related with the inert gas injecting position. Ideal injections are located in the oxidation zone or the transitional zone between oxidation zone and heat dissipation zone.

  13. The recovery of waste and off-gas in Large Combustion Plants subject to IPPC National Permit in Italy.

    PubMed

    Di Marco, Giuseppe; Manuzzi, Raffaella

    2018-03-01

    The recovery of off-gas, waste, and biomass in Large Combustion Plants for energy production gives the opportunity to recycle waste and by-products and to recover materials produced in agricultural and industrial activities. The paper illustrates the Italian situation regarding the production of energy from off-gas, biomass, and waste in Large Combustion Plants subject to Integrated Pollution Prevention and Control (IPPC) National Permit. Moreover, it focuses on the 4 Italian Large Combustion Plants producing energy from biomass and waste. For these ones it illustrates the specific issues related to and provides a description of the solutions adopted in the 4 Italian plants. Given that air emission performance is the most relevant aspect of this kind of plants, the paper specifically focuses and reports results about this subject. In particular, in Italy among 113 LCPs subject to IPPC National Permit we have found that 4 plants use as fuel waste (i.e. solid or liquid biomasses and Solid Recovered Fuels), or a mixture of waste and traditional fuels (co-combustion of Solid Recovered Fuels and coal), and that 11 plants use as fuel off-gases listed in Annex X (i.e. Refinery Fuel Gas, Syngas, and gases produced in iron and steel industries). Moreover, there are 2 IPPC chemical plants that recovery energy from different off-gases not listed in Annex X. Regarding the 4 LCPs that produce energy from waste combustion or co-combustion, we find that they take into account all the specific issues related to this kind of plants (i.e. detailed waste characterization, waste acceptance procedures, waste handling and storage, waste pretreatment and emissions to air), and adopt solutions that are best available techniques to prevent pollution. Moreover for one of these plants, the only one for which we have a significant set of monitoring data because it obtained the IPPC National Permit in 2008, we find that energy efficiency and air emissions of the principal pollutants are in

  14. The effects of klapskate hinge position on push-off performance: a simulation study.

    PubMed

    Houdijk, Han; Bobbert, Maarten F; De Koning, Jos J; De Groot, Gert

    2003-12-01

    The introduction of the klapskate in speed skating confronts skaters with the question of how to adjust the position of the hinge in order to maximize performance. The purpose of this study was to reveal the constraint that klapskate hinge position imposes on push-off performance in speed skating. For this purpose, a model of the musculoskeletal system was designed to simulate a simplified, two-dimensional skating push off. To capture the essence of a skating push off, this model performed a one-leg vertical jump, from a frictionless surface, while keeping its trunk horizontally. In this model, klapskate hinge position was varied by varying the length of the foot segment between 115 and 300 mm. With each foot length, an optimal control solution was found that resulted in the maximal amount of vertical kinetic and potential energy of the body's center of mass at take off (Weff). Foot length was shown to considerably affect push-off performance. Maximal Weff was obtained with a foot length of 185 mm and decreased by approximately 25% at either foot length of 115 mm and 300 mm. The reason for this decrease was that foot length affected the onset and control of foot rotation. This resulted in a distortion of the pattern of leg segment rotations and affected muscle work (Wmus) and the efficacy ratio (Weff/Wmus) of the entire leg system. Despite its simplicity, the model very well described and explained the effects of klapskate hinge position on push off performance that have been observed in speed-skating experiments. The simplicity of the model, however, does not allow quantitative analyses of optimal klapskate hinge position for speed-skating practice.

  15. A gas kinetic scheme for hybrid simulation of partially rarefied flows

    NASA Astrophysics Data System (ADS)

    Colonia, S.; Steijl, R.; Barakos, G.

    2017-06-01

    Approaches to predict flow fields that display rarefaction effects incur a cost in computational time and memory considerably higher than methods commonly employed for continuum flows. For this reason, to simulate flow fields where continuum and rarefied regimes coexist, hybrid techniques have been introduced. In the present work, analytically defined gas-kinetic schemes based on the Shakhov and Rykov models for monoatomic and diatomic gas flows, respectively, are proposed and evaluated with the aim to be used in the context of hybrid simulations. This should reduce the region where more expensive methods are needed by extending the validity of the continuum formulation. Moreover, since for high-speed rare¦ed gas flows it is necessary to take into account the nonequilibrium among the internal degrees of freedom, the extension of the approach to employ diatomic gas models including rotational relaxation process is a mandatory first step towards realistic simulations. Compared to previous works of Xu and coworkers, the presented scheme is de¦ned directly on the basis of kinetic models which involve a Prandtl number correction. Moreover, the methods are defined fully analytically instead of making use of Taylor expansion for the evaluation of the required derivatives. The scheme has been tested for various test cases and Mach numbers proving to produce reliable predictions in agreement with other approaches for near-continuum flows. Finally, the performance of the scheme, in terms of memory and computational time, compared to discrete velocity methods makes it a compelling alternative in place of more complex methods for hybrid simulations of weakly rarefied flows.

  16. Simulations of Propane and Butane Gas Sensor Based on Pristine Armchair Graphene Nanoribbon

    NASA Astrophysics Data System (ADS)

    Rashid, Haroon; Koel, Ants; Rang, Toomas

    2018-05-01

    Over the last decade graphene and its derivatives have gained a remarkable place in research field. As silicon technology is approaching to its geometrical limits so there is a need of alternate that can replace it. Graphene has emerged as a potential candidate for future nano-electronics applications due to its exceptional and extraordinary chemical, optical, electrical and mechanical properties. Graphene based sensors have gained significance for a wide range of sensing applications like detection of biomolecules, chemicals and gas molecules. It can be easily used to make electrical contacts and manipulate them according to the requirements as compared to the other nanomaterials. The intention of the work presented in this article is to contribute in this field by simulating a novel and cheap graphene nanoribbon sensor for the household gas leakage detection. QuantumWise Atomistix (ATK) software is used for the simulations of propane and butane gas sensor. Projected device density of the states (PDDOS) and the transmission spectrum of the device in the proximity of gas molecules are calculated and discussed. The change in the electric current through the device in the presence of the gas molecules is used as a gas detection mechanism for the simulated sensor.

  17. Analysis of temperature and pressure changes in liquefied natural gas (LNG) cryogenic tanks

    NASA Astrophysics Data System (ADS)

    Chen, Q.-S.; Wegrzyn, J.; Prasad, V.

    2004-10-01

    Liquefied natural gas (LNG) is being developed as a transportation fuel for heavy vehicles such as trucks and transit buses, to lessen the dependency on oil and to reduce greenhouse gas emissions. The LNG stations are properly designed to prevent the venting of natural gas (NG) from LNG tanks, which can cause evaporative greenhouse gas emissions and result in fluctuations of fuel flow and changes of fuel composition. Boil-off is caused by the heat added into the LNG fuel during the storage and fueling. Heat can leak into the LNG fuel through the shell of tank during the storage and through hoses and dispensers during the fueling. Gas from tanks onboard vehicles, when returned to LNG tanks, can add additional heat into the LNG fuel. A thermodynamic and heat transfer model has been developed to analyze different mechanisms of heat leak into the LNG fuel. The evolving of properties and compositions of LNG fuel inside LNG tanks is simulated. The effect of a number of buses fueled each day on the possible total fuel loss rate has been analyzed. It is found that by increasing the number of buses, fueled each day, the total fuel loss rate can be reduced significantly. It is proposed that an electric generator be used to consume the boil-off gas or a liquefier be used to re-liquefy the boil-off gas to reduce the tank pressure and eliminate fuel losses. These approaches can prevent boil-off of natural gas emissions, and reduce the costs of LNG as transportation fuel.

  18. Evaluation of Watershed-Scale Simulations of In-Stream Pesticide Concentrations from Off-Target Spray Drift.

    PubMed

    Winchell, Michael F; Pai, Naresh; Brayden, Benjamin H; Stone, Chris; Whatling, Paul; Hanzas, John P; Stryker, Jody J

    2018-01-01

    The estimation of pesticide concentrations in surface water bodies is a critical component of the environmental risk assessment process required by regulatory agencies in North America, the European Union, and elsewhere. Pesticide transport to surface waters via deposition from off-field spray drift can be an important route of potential contamination. The spatial orientation of treated fields relative to receiving water bodies make prediction of off-target pesticide spray drift deposition and resulting aquatic estimated environmental concentrations (EECs) challenging at the watershed scale. The variability in wind conditions further complicates the simulation of the environmental processes leading to pesticide spray drift contributions to surface water. This study investigates the use of the Soil Water Assessment Tool (SWAT) for predicting concentrations of malathion (O,O-deimethyl thiophosphate of diethyl mercaptosuccinate) in a flowing water body when exposure is a result of off-target spray drift, and assesses the model's performance using a parameterization typical of a screening-level regulatory assessment. Six SWAT parameterizations, each including incrementally more site-specific data, are then evaluated to quantify changes in model performance. Results indicate that the SWAT model is an appropriate tool for simulating watershed scale concentrations of pesticides resulting from off-target spray drift deposition. The model predictions are significantly more accurate when the inputs and assumptions accurately reflect application practices and environmental conditions. Inclusion of detailed wind data had the most significant impact on improving model-predicted EECs in comparison to observed concentrations. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. Reduced model simulations of the scrape-off-layer heat-flux width and comparison with experiment

    DOE PAGES

    Myra, J. R.; Russell, D. A.; D’Ippolito, D. A.; ...

    2011-01-01

    Reduced model simulations of turbulence in the edge and scrape-off-layer (SOL) region of a spherical torus or tokamak plasma are employed to address the physics of the scrape-off-layer heat flux width. The simulation model is an electrostatic two-dimensional fluid turbulence model, applied in the plane perpendicular to the magnetic field at the outboard midplane of the torus. The model contains curvature-driven-interchange modes, sheath losses, and both perpendicular turbulent diffusive and convective (blob) transport. These transport processes compete with classical parallel transport to set the SOL width. Midplane SOL profiles of density, temperature and parallel heat flux are obtained from themore » simulation and compared with experimental results from the National Spherical Torus Experiment (NSTX) to study the scaling of the heat flux width with power and plasma current. It is concluded that midplane turbulence is the main contributor to the SOL heat flux width for the low power H-mode discharges studied, while additional physics is required to explain the plasma current scaling of the SOL heat flux width observed experimentally in higher power discharges. Intermittent separatrix spanning convective cells are found to be the main mechanism that sets the near-SOL width in the simulations. The roles of sheared flows and blob trapping vs. emission are discussed.« less

  20. Effects of three years of simulated nitrogen deposition on soil nitrogen dynamics and greenhouse gas emissions in a Korean pine plantation of northeast China.

    PubMed

    Song, Lei; Tian, Peng; Zhang, Jinbo; Jin, Guangze

    2017-12-31

    Continuously enhanced nitrogen (N) deposition alters the pattern of N and carbon (C) transformations, and thus influences greenhouse gas emissions. It is necessary to clarify the effect of N deposition on greenhouse gas emissions and soil N dynamics for an accurate assessment of C and N budgets under increasing N deposition. In this study, four simulated N deposition treatments (control [CK: no N addition], low-N [L: 20kgNha -1 yr -1 ], medium-N [M: 40kgNha -1 yr -1 ], and high-N [H: 80kgNha -1 yr -1 ]) were operated from 2014. Carbon dioxide, methane and nitrous oxide fluxes were monitored semimonthly, as were soil variables such as temperature, moisture and the concentrations of total dissolved N (TDN), NO 3 - , NO 2 - , NH 4 + , and dissolved organic N (DON) in soil solutions. The simulated N deposition resulted in a significant increase in TDN, NO 3 - and DON concentrations in soil solutions. The average CO 2 emission rate ranged from 222.6mgCO 2 m -2 h -1 in CK to 233.7mgCO 2 m -2 h -1 in the high-N treatment. Three years of simulated N deposition had no effect on soil CO 2 emission, which was mainly controlled by soil temperature. The mean N 2 O emission rate during the whole 3years was 0.02mgN 2 Om -2 h -1 for CK, which increased significantly to 0.05mgN 2 Om -2 h -1 in the high-N treatment. The N 2 O emission rate positively correlated with NH 4 + concentrations, and negatively correlated with soil moisture. The average CH 4 flux during the whole 3years was -0.74μgCH 4 m -2 h -1 in CK, which increased to 1.41μgCH 4 m -2 h -1 in the low-N treatment. CH 4 flux positively correlated with NO 3 - concentrations. These results indicate that short-term N deposition did not affect soil CO 2 emissions, while CH 4 and N 2 O emissions were sensitive to N deposition. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Spatial resolution of gas hydrate and permeability changes from ERT data in LARS simulating the Mallik gas hydrate production test

    NASA Astrophysics Data System (ADS)

    Priegnitz, Mike; Thaler, Jan; Spangenberg, Erik; Schicks, Judith M.; Abendroth, Sven

    2014-05-01

    The German gas hydrate project SUGAR studies innovative methods and approaches to be applied in the production of methane from hydrate-bearing reservoirs. To enable laboratory studies in pilot scale, a large reservoir simulator (LARS) was realized allowing for the formation and dissociation of gas hydrates under simulated in-situ conditions. LARS is equipped with a series of sensors. This includes a cylindrical electrical resistance tomography (ERT) array composed of 25 electrode rings featuring 15 electrodes each. The high-resolution ERT array is used to monitor the spatial distribution of the electrical resistivity during hydrate formation and dissociation experiments over time. As the present phases of poorly conducting sediment, well conducting pore fluid, non-conducting hydrates, and isolating free gas cover a wide range of electrical properties, ERT measurements enable us to monitor the spatial distribution of these phases during the experiments. In order to investigate the hydrate dissociation and the resulting fluid flow, we simulated a hydrate production test in LARS that was based on the Mallik gas hydrate production test (see abstract Heeschen et al., this volume). At first, a hydrate phase was produced from methane saturated saline water. During the two months of gas hydrate production we measured the electrical properties within the sediment sample every four hours. These data were used to establish a routine estimating both the local degrees of hydrate saturation and the resulting local permeabilities in the sediment's pore space from the measured resistivity data. The final gas hydrate saturation filled 89.5% of the total pore space. During hydrate dissociation, ERT data do not allow for a quantitative determination of free gas and remaining gas hydrates since both phases are electrically isolating. However, changes are resolved in the spatial distribution of the conducting liquid and the isolating phase with gas being the only mobile isolating phase

  2. Description of web-enhanced virtual character simulation system to standardize patient hand-offs.

    PubMed

    Filichia, Lori; Halan, Shivashankar; Blackwelder, Ethan; Rossen, Brent; Lok, Benjamin; Korndorffer, James; Cendan, Juan

    2011-04-01

    The 80-h work week has increased discontinuity of patient care resulting in reports of increased medication errors and preventable adverse events. Graduate medical programs are addressing these shortcomings in a number of ways. We have developed a computer simulation platform called the Virtual People Factory (VPF), which allows us to capture and simulate the dialogue between a real user and a virtual character. We have converted the system to reflect a physician in the process of "checking-out" a patient to a covering physician. The responses are tracked and matched to educator-defined information termed "discoveries." Our proof of concept represented a typical post-operative patient with tachycardia. The system is web enabled. So far, 26 resident users at two institutions have completed the module. The critical discovery of tachycardia was identified by 62% of users. Residents spend 85% of the time asking intraoperative, postoperative, and past medical history questions. The system improves over time such that there is a near-doubling of questions that yield appropriate answers between users 13 and 22. Users who identified the virtual patient's underlying tachycardia expressed more concern and were more likely to order further testing for the patient in a post-module questionnaire (P = 0.13 and 0.08, respectively, NS). The VPF system can capture unique details about the hand-off interchange. The system improves with sequential users such that better matching of questions and answers occurs within the initial 25 users allowing rapid development of new modules. A catalog of hand-off modules could be easily developed. Wide-scale web-based deployment was uncomplicated. Identification of the critical findings appropriately translated to user concern for the patient though our series was too small to reach significance. Performance metrics based on the identification of critical discoveries could be used to assess readiness of the user to carry off a successful hand-off

  3. Thick massive gas hydrate deposits were revealed by LWD in Off-Joetsu area, eastern margin of Japan Sea.

    NASA Astrophysics Data System (ADS)

    Tanahashi, M.; Morita, S.; Matsumoto, R.

    2016-12-01

    GR14 and HR15 survey cruises, which were dedicated to the LWD (Logging While Drilling), were carried out in summers of 2014 and 2015, respectively, by Meiji University and Geological Survey of Japan, AIST to explore the "gas chimney" structures in eastern margin of Japan Sea. Shallow (33 to 172m-bsf, average 136m-bsf) 33 LWD drilling were performed in Oki Trough, Off-Joetsu, and Mogami Trough areas along eastern margin of Japan Sea during two cruises. Schlumberger LWD tools, GeoVISION (resistivity), TeleScope, ProVISION (NMR) and SonicVISION were used during GR14. NeoScope (neutron) was added and SonicScope was replaced for SonicVISION during HR14. The data quality was generally good. "Gas chimney" structures with acoustic blanking columns on the high frequency seismic sections with mound and pockmark morphologic features on the sea bottom, are well developed within survey areas. Every LWD records taken from gas chimney structures during the cruises show high resistivity and acoustic velocity anomalies which suggest the development of gas hydrate. Characteristic development of massive gas hydrate was interpreted at the Umitaka CW mound structure, Off-Joetsu. The mound lies at 890-910m in water depth and has very rough bottom surface, regional high resistivity, regional high heat flow, several natural seep sites, 200m x 300m area, and 10-20m height. 8 LWD holes, J18L to J21L and J23L to J26L, were drilled on and around the mound. There are highly anomalous intervals which suggest the development of massive gas hydrate at J24L, with high resistivity, high Vp and Vs, high neutron porosity, low natural gamma ray intensity, low neutron gamma density, low NMR porosity, low NMR permeability, low formation sigma, from 10 to 110m-bsf with intercalating some thin less hydrate layers. It is interpreted that there is several tens of meter thick massive gas hydrate in the gas chimney mound. It is partly confirmed by the later nearby coring result which showed the repetition of

  4. Object-oriented approach for gas turbine engine simulation

    NASA Technical Reports Server (NTRS)

    Curlett, Brian P.; Felder, James L.

    1995-01-01

    An object-oriented gas turbine engine simulation program was developed. This program is a prototype for a more complete, commercial grade engine performance program now being proposed as part of the Numerical Propulsion System Simulator (NPSS). This report discusses architectural issues of this complex software system and the lessons learned from developing the prototype code. The prototype code is a fully functional, general purpose engine simulation program, however, only the component models necessary to model a transient compressor test rig have been written. The production system will be capable of steady state and transient modeling of almost any turbine engine configuration. Chief among the architectural considerations for this code was the framework in which the various software modules will interact. These modules include the equation solver, simulation code, data model, event handler, and user interface. Also documented in this report is the component based design of the simulation module and the inter-component communication paradigm. Object class hierarchies for some of the code modules are given.

  5. Simulations of the Neutron Gas in the Inner Crust of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Vandegriff, Elizabeth; Horowitz, Charles; Caplan, Matthew

    2017-09-01

    Inside neutron stars, the structures known as `nuclear pasta' are found in the crust. This pasta forms near nuclear density as nucleons arrange in spaghetti- or lasagna-like structures to minimize their energy. We run classical molecular dynamics simulations to visualize the geometry of this pasta and study the distribution of nucleons. In the simulations, we observe that the pasta is embedded in a gas of neutrons, which we call the `sauce'. In this work, we developed two methods for determining the density of neutrons in the gas, one which is accurate at low temperatures and a second which justifies an extrapolation at high temperatures. Running simulations with no Coulomb interactions, we find that the neutron density increases linearly with temperature for every proton fraction we simulated. NSF REU Grant PHY-1460882 at Indiana University.

  6. Raman Spectroscopic Measurements of Co2 Dissolved in Seawater for Laser Remote Sensing in Water

    NASA Astrophysics Data System (ADS)

    Somekawa, Toshihiro; Fujita, Masayuki

    2016-06-01

    We examined the applicability of Raman lidar technique as a laser remote sensing tool in water. The Raman technique has already been used successfully for measurements of CO2 gas dissolved in water and bubbles. Here, the effect of seawater on CO2 Raman spectra has been evaluated. A frequency doubled Q-switched Nd:YAG laser (532 nm) was irradiated to CO2 gas dissolved in a standard seawater. In seawater, the Raman signals at 984 and 1060-1180 cm-1 from SO42- were detected, which shows no spectral interference caused by Raman signals derived from CO2.

  7. Model-Based Feasibility Assessment of Membrane Biofilm Reactor to Achieve Simultaneous Ammonium, Dissolved Methane, and Sulfide Removal from Anaerobic Digestion Liquor

    PubMed Central

    Chen, Xueming; Liu, Yiwen; Peng, Lai; Yuan, Zhiguo; Ni, Bing-Jie

    2016-01-01

    In this study, the membrane biofilm reactor (MBfR) is proposed to achieve simultaneous removal of ammonium, dissolved methane, and sulfide from main-stream and side-stream anaerobic digestion liquors. To avoid dissolved methane stripping, oxygen is introduced through gas-permeable membranes, which also from the substratum for the growth of a biofilm likely comprising ammonium oxidizing bacteria (AOB), anaerobic ammonium oxidation (Anammox) bacteria, denitrifying anaerobic methane oxidation (DAMO) microorganisms, aerobic methane oxidizing bacteria (MOB), and sulfur oxidizing bacteria (SOB). A mathematical model is developed and applied to assess the feasibility of such a system and the associated microbial community structure under different operational conditions. The simulation studies demonstrate the feasibility of achieving high-level (>97.0%), simultaneous removal of ammonium, dissolved methane, and sulfide in the MBfRs from both main-stream and side-stream anaerobic digestion liquors through adjusting the influent surface loading (or hydraulic retention time (HRT)) and the oxygen surface loading. The optimal HRT was found to be inversely proportional to the corresponding oxygen surface loading. Under the optimal operational conditions, AOB, DAMO bacteria, MOB, and SOB dominate the biofilm of the main-stream MBfR, while AOB, Anammox bacteria, DAMO bacteria, and SOB coexist in the side-stream MBfR to remove ammonium, dissolved methane, and sulfide simultaneously. PMID:27112502

  8. Lattice Boltzmann accelerated direct simulation Monte Carlo for dilute gas flow simulations.

    PubMed

    Di Staso, G; Clercx, H J H; Succi, S; Toschi, F

    2016-11-13

    Hybrid particle-continuum computational frameworks permit the simulation of gas flows by locally adjusting the resolution to the degree of non-equilibrium displayed by the flow in different regions of space and time. In this work, we present a new scheme that couples the direct simulation Monte Carlo (DSMC) with the lattice Boltzmann (LB) method in the limit of isothermal flows. The former handles strong non-equilibrium effects, as they typically occur in the vicinity of solid boundaries, whereas the latter is in charge of the bulk flow, where non-equilibrium can be dealt with perturbatively, i.e. according to Navier-Stokes hydrodynamics. The proposed concurrent multiscale method is applied to the dilute gas Couette flow, showing major computational gains when compared with the full DSMC scenarios. In addition, it is shown that the coupling with LB in the bulk flow can speed up the DSMC treatment of the Knudsen layer with respect to the full DSMC case. In other words, LB acts as a DSMC accelerator.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).

  9. Dissolved gases in hydrothermal (phreatic) and geyser eruptions at Yellowstone National Park, USA

    USGS Publications Warehouse

    Hurwitz, Shaul; Clor, Laura; McCleskey, R. Blaine; Nordstrom, D. Kirk; Hunt, Andrew G.; Evans, William C.

    2016-01-01

    Multiphase and multicomponent fluid flow in the shallow continental crust plays a significant role in a variety of processes over a broad range of temperatures and pressures. The presence of dissolved gases in aqueous fluids reduces the liquid stability field toward lower temperatures and enhances the explosivity potential with respect to pure water. Therefore, in areas where magma is actively degassing into a hydrothermal system, gas-rich aqueous fluids can exert a major control on geothermal energy production, can be propellants in hazardous hydrothermal (phreatic) eruptions, and can modulate the dynamics of geyser eruptions. We collected pressurized samples of thermal water that preserved dissolved gases in conjunction with precise temperature measurements with depth in research well Y-7 (maximum depth of 70.1 m; casing to 31 m) and five thermal pools (maximum depth of 11.3 m) in the Upper Geyser Basin of Yellowstone National Park, USA. Based on the dissolved gas concentrations, we demonstrate that CO2 mainly derived from magma and N2 from air-saturated meteoric water reduce the near-surface saturation temperature, consistent with some previous observations in geyser conduits. Thermodynamic calculations suggest that the dissolved CO2 and N2 modulate the dynamics of geyser eruptions and are likely triggers of hydrothermal eruptions when recharged into shallow reservoirs at high concentrations. Therefore, monitoring changes in gas emission rate and composition in areas with neutral and alkaline chlorine thermal features could provide important information on the natural resources (geysers) and hazards (eruptions) in these areas.

  10. The Stop-Only-While-Shocking algorithm reduces hands-off time by 17% during cardiopulmonary resuscitation - a simulation study.

    PubMed

    Koch Hansen, Lars; Mohammed, Anna; Pedersen, Magnus; Folkestad, Lars; Brodersen, Jacob; Hey, Thomas; Lyhne Christensen, Nicolaj; Carter-Storch, Rasmus; Bendix, Kristoffer; Hansen, Morten R; Brabrand, Mikkel

    2016-12-01

    Reducing hands-off time during cardiopulmonary resuscitation (CPR) is believed to increase survival after cardiac arrests because of the sustaining of organ perfusion. The aim of our study was to investigate whether charging the defibrillator before rhythm analyses and shock delivery significantly reduced hands-off time compared with the European Resuscitation Council (ERC) 2010 CPR guideline algorithm in full-scale cardiac arrest scenarios. The study was designed as a full-scale cardiac arrest simulation study including administration of drugs. Participants were randomized into using the Stop-Only-While-Shocking (SOWS) algorithm or the ERC2010 algorithm. In SOWS, chest compressions were only interrupted for a post-charging rhythm analysis and immediate shock delivery. A Resusci Anne HLR-D manikin and a LIFEPACK 20 defibrillator were used. The manikin recorded time and chest compressions. Sample size was calculated with an α of 0.05 and 80% power showed that we should test four scenarios with each algorithm. Twenty-nine physicians participated in 11 scenarios. Hands-off time was significantly reduced 17% using the SOWS algorithm compared with ERC2010 [22.1% (SD 2.3) hands-off time vs. 26.6% (SD 4.8); P<0.05]. In full-scale cardiac arrest simulations, a minor change consisting of charging the defibrillator before rhythm check reduces hands-off time by 17% compared with ERC2010 guidelines.

  11. Fabrication and test of digital output interface devices for gas turbine electronic controls

    NASA Technical Reports Server (NTRS)

    Newirth, D. M.; Koenig, E. W.

    1978-01-01

    A program was conducted to develop an innovative digital output interface device, a digital effector with optical feedback of the fuel metering valve position, for future electronic controls for gas turbine engines. A digital effector (on-off solenoids driven directly by on-off signals from a digital electronic controller) with optical position feedback was fabricated, coupled with the fuel metering valve, and tested under simulated engine operating conditions. The testing indicated that a digital effector with optical position feedback is a suitable candidate, with proper development for future digital electronic gas turbine controls. The testing also identified several problem areas which would have to be overcome in a final production configuration.

  12. Gas loss in simulated galaxies as they fall into clusters

    PubMed Central

    Cen, Renyue; Pop, Ana Roxana; Bahcall, Neta A.

    2014-01-01

    We use high-resolution cosmological hydrodynamic galaxy formation simulations to gain insights into how galaxies lose their cold gas at low redshift as they migrate from the field to the high-density regions of clusters of galaxies. We find that beyond three cluster virial radii, the fraction of gas-rich galaxies is constant, representing the field. Within three cluster-centric radii, the fraction of gas-rich galaxies declines steadily with decreasing radius, reaching <10% near the cluster center. Our results suggest galaxies start to feel the effect of the cluster environment on their gas content well beyond the cluster virial radius. We show that almost all gas-rich galaxies at the cluster virial radius are falling in for the first time at nearly radial orbits. Furthermore, we find that almost no galaxy moving outward at the cluster virial radius is gas-rich (with a gas-to-baryon ratio greater than 1%). These results suggest that galaxies that fall into clusters lose their cold gas within a single radial round-trip. PMID:24843167

  13. Gas loss in simulated galaxies as they fall into clusters.

    PubMed

    Cen, Renyue; Pop, Ana Roxana; Bahcall, Neta A

    2014-06-03

    We use high-resolution cosmological hydrodynamic galaxy formation simulations to gain insights into how galaxies lose their cold gas at low redshift as they migrate from the field to the high-density regions of clusters of galaxies. We find that beyond three cluster virial radii, the fraction of gas-rich galaxies is constant, representing the field. Within three cluster-centric radii, the fraction of gas-rich galaxies declines steadily with decreasing radius, reaching <10% near the cluster center. Our results suggest galaxies start to feel the effect of the cluster environment on their gas content well beyond the cluster virial radius. We show that almost all gas-rich galaxies at the cluster virial radius are falling in for the first time at nearly radial orbits. Furthermore, we find that almost no galaxy moving outward at the cluster virial radius is gas-rich (with a gas-to-baryon ratio greater than 1%). These results suggest that galaxies that fall into clusters lose their cold gas within a single radial round-trip.

  14. Taxiing, Take-Off, and Landing Simulation of the High Speed Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Reaves, Mercedes C.; Horta, Lucas G.

    1999-01-01

    The aircraft industry jointly with NASA is studying enabling technologies for higher speed, longer range aircraft configurations. Higher speeds, higher temperatures, and aerodynamics are driving these newer aircraft configurations towards long, slender, flexible fuselages. Aircraft response during ground operations, although often overlooked, is a concern due to the increased fuselage flexibility. This paper discusses modeling and simulation of the High Speed Civil Transport aircraft during taxiing, take-off, and landing. Finite element models of the airframe for various configurations are used and combined with nonlinear landing gear models to provide a simulation tool to study responses to different ground input conditions. A commercial computer simulation program is used to numerically integrate the equations of motion and to compute estimates of the responses using an existing runway profile. Results show aircraft responses exceeding safe acceptable human response levels.

  15. METHOD OF DISSOLVING REFRACTORY ALLOYS

    DOEpatents

    Helton, D.M.; Savolainen, J.K.

    1963-04-23

    This patent relates to the dissolution of alloys of uranium with zirconium, thorium, molybdenum, or niobium. The alloy is contacted with an anhydrous solution of mercuric chloride in a low-molecular-weight monohydric alcohol to produce a mercury-containing alcohol slurry. The slurry is then converted to an aqueous system by adding water and driving off the alcohol. The resulting aqueous slurry is electrolyzed in the presence of a mercury cathode to remove the mercury and produce a uranium-bearing aqueous solution. This process is useful for dissolving irradiated nuclear reactor fuels for radiochemical reprocessing by solvent extraction. In addition, zirconium-alloy cladding is selectively removed from uranium dioxide fuel compacts by this means. (AEC)

  16. Calibration and use of an interactive-accounting model to simulate dissolved solids, streamflow, and water-supply operations in the Arkansas River basin, Colorado

    USGS Publications Warehouse

    Burns, A.W.

    1989-01-01

    An interactive-accounting model was used to simulate dissolved solids, streamflow, and water supply operations in the Arkansas River basin, Colorado. Model calibration of specific conductance to streamflow relations at three sites enabled computation of dissolved-solids loads throughout the basin. To simulate streamflow only, all water supply operations were incorporated in the regression relations for streamflow. Calibration for 1940-85 resulted in coefficients of determination that ranged from 0.89 to 0.58, and values in excess of 0.80 were determined for 16 of 20 nodes. The model then incorporated 74 water users and 11 reservoirs to simulate the water supply operations for two periods, 1943-74 and 1975-85. For the 1943-74 calibration, coefficients of determination for streamflow ranged from 0.87 to 0.02. Calibration of the water supply operations resulted in coefficients of determination that ranged from 0.87 to negative for simulated irrigation diversions of 37 selected water users. Calibration for 1975-85 was not evaluated statistically, but average values and plots of reservoir contents indicated reasonableness of the simulation. To demonstrate the utility of the model, six specific alternatives were simulated to consider effects of potential enlargement of Pueblo Reservoir. Three general major alternatives were simulated: the 1975-85 calibrated model data, the calibrated model data with an addition of 30 cu ft/sec in Fountain Creek flows, and the calibrated model data plus additional municipal water in storage. These three major alternatives considered the options of reservoir enlargement or no enlargement. A 40,000-acre-foot reservoir enlargement resulted in average increases of 2,500 acre-ft in transmountain diversions, of 800 acre-ft in storage diversions, and of 100 acre-ft in winter-water storage. (USGS)

  17. Numerical simulation of gas hydrate exploitation from subsea reservoirs in the Black Sea

    NASA Astrophysics Data System (ADS)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2017-04-01

    Natural gas (methane) is the most environmental friendly source of fossil energy. When coal is replace by natural gas in power production the emission of carbon dioxide is reduced by 50 %. The vast amount of methane assumed in gas hydrate deposits can help to overcome a shortage of fossil energy resources in the future. To increase their potential for energy applications new technological approaches are being discussed and developed worldwide. Besides technical challenges that have to be overcome climate and safety issues have to be considered before a commercial exploitation of such unconventional reservoirs. The potential of producing natural gas from subsea gas hydrate deposits by various means (e. g. depressurization and/or carbon dioxide injection) is numerically studied in the frame of the German research project »SUGAR - Submarine Gas Hydrate Reservoirs«. In order to simulate the exploitation of hydrate-bearing sediments in the subsea, an in-house simulation model HyReS which is implemented in the general-purpose software COMSOL Multiphysics is used. This tool turned out to be especially suited for the flexible implementation of non-standard correlations concerning heat transfer, fluid flow, hydrate kinetics, and other relevant model data. Partially based on the simulation results, the development of a technical concept and its evaluation are the subject of ongoing investigations, whereby geological and ecological criteria are to be considered. The results illustrate the processes and effects occurring during the gas production from a subsea gas hydrate deposit by depressurization. The simulation results from a case study for a deposit located in the Black Sea reveal that the production of natural gas by simple depressurization is possible but with quite low rates. It can be shown that the hydrate decomposition and thus the gas production strongly depend on the geophysical properties of the reservoir, the mass and heat transport within the reservoir, and

  18. Effect of dissolved gases in water on acoustic cavitation and bubble growth rate in 0.83 MHz megasonic of interest to wafer cleaning.

    PubMed

    Kang, Bong-Kyun; Kim, Min-Su; Park, Jin-Goo

    2014-07-01

    Changes in the cavitation intensity of gases dissolved in water, including H2, N2, and Ar, have been established in studies of acoustic bubble growth rates under ultrasonic fields. Variations in the acoustic properties of dissolved gases in water affect the cavitation intensity at a high frequency (0.83 MHz) due to changes in the rectified diffusion and bubble coalescence rate. It has been proposed that acoustic bubble growth rates rapidly increase when water contains a gas, such as hydrogen faster single bubble growth due to rectified diffusion, and a higher rate of coalescence under Bjerknes forces. The change of acoustic bubble growth rate in rectified diffusion has an effect on the damping constant and diffusivity of gas at the acoustic bubble and liquid interface. It has been suggested that the coalescence reaction of bubbles under Bjerknes forces is a reaction determined by the compressibility and density of dissolved gas in water associated with sound velocity and density in acoustic bubbles. High acoustic bubble growth rates also contribute to enhanced cavitation effects in terms of dissolved gas in water. On the other hand, when Ar gas dissolves into water under ultrasound field, cavitation behavior was reduced remarkably due to its lower acoustic bubble growth rate. It is shown that change of cavitation intensity in various dissolved gases were verified through cleaning experiments in the single type of cleaning tool such as particle removal and pattern damage based on numerically calculated acoustic bubble growth rates. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Method to Estimate the Dissolved Air Content in Hydraulic Fluid

    NASA Technical Reports Server (NTRS)

    Hauser, Daniel M.

    2011-01-01

    In order to verify the air content in hydraulic fluid, an instrument was needed to measure the dissolved air content before the fluid was loaded into the system. The instrument also needed to measure the dissolved air content in situ and in real time during the de-aeration process. The current methods used to measure the dissolved air content require the fluid to be drawn from the hydraulic system, and additional offline laboratory processing time is involved. During laboratory processing, there is a potential for contamination to occur, especially when subsaturated fluid is to be analyzed. A new method measures the amount of dissolved air in hydraulic fluid through the use of a dissolved oxygen meter. The device measures the dissolved air content through an in situ, real-time process that requires no additional offline laboratory processing time. The method utilizes an instrument that measures the partial pressure of oxygen in the hydraulic fluid. By using a standardized calculation procedure that relates the oxygen partial pressure to the volume of dissolved air in solution, the dissolved air content is estimated. The technique employs luminescent quenching technology to determine the partial pressure of oxygen in the hydraulic fluid. An estimated Henry s law coefficient for oxygen and nitrogen in hydraulic fluid is calculated using a standard method to estimate the solubility of gases in lubricants. The amount of dissolved oxygen in the hydraulic fluid is estimated using the Henry s solubility coefficient and the measured partial pressure of oxygen in solution. The amount of dissolved nitrogen that is in solution is estimated by assuming that the ratio of dissolved nitrogen to dissolved oxygen is equal to the ratio of the gas solubility of nitrogen to oxygen at atmospheric pressure and temperature. The technique was performed at atmospheric pressure and room temperature. The technique could be theoretically carried out at higher pressures and elevated

  20. A simple headspace equilibration method for measuring dissolved methane

    USGS Publications Warehouse

    Magen, C; Lapham, L.L.; Pohlman, John W.; Marshall, Kristin N.; Bosman, S.; Casso, Michael; Chanton, J.P.

    2014-01-01

    Dissolved methane concentrations in the ocean are close to equilibrium with the atmosphere. Because methane is only sparingly soluble in seawater, measuring it without contamination is challenging for samples collected and processed in the presence of air. Several methods for analyzing dissolved methane are described in the literature, yet none has conducted a thorough assessment of the method yield, contamination issues during collection, transport and storage, and the effect of temperature changes and preservative. Previous extraction methods transfer methane from water to gas by either a "sparge and trap" or a "headspace equilibration" technique. The gas is then analyzed for methane by gas chromatography. Here, we revisit the headspace equilibration technique and describe a simple, inexpensive, and reliable method to measure methane in fresh and seawater, regardless of concentration. Within the range of concentrations typically found in surface seawaters (2-1000 nmol L-1), the yield of the method nears 100% of what is expected from solubility calculation following the addition of known amount of methane. In addition to being sensitive (detection limit of 0.1 ppmv, or 0.74 nmol L-1), this method requires less than 10 min per sample, and does not use highly toxic chemicals. It can be conducted with minimum materials and does not require the use of a gas chromatograph at the collection site. It can therefore be used in various remote working environments and conditions.

  1. Coupling Hydraulic Fracturing Propagation and Gas Well Performance for Simulation of Production in Unconventional Shale Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Wang, C.; Winterfeld, P. H.; Wu, Y. S.; Wang, Y.; Chen, D.; Yin, C.; Pan, Z.

    2014-12-01

    Hydraulic fracturing combined with horizontal drilling has made it possible to economically produce natural gas from unconventional shale gas reservoirs. An efficient methodology for evaluating hydraulic fracturing operation parameters, such as fluid and proppant properties, injection rates, and wellhead pressure, is essential for the evaluation and efficient design of these processes. Traditional numerical evaluation and optimization approaches are usually based on simulated fracture properties such as the fracture area. In our opinion, a methodology based on simulated production data is better, because production is the goal of hydraulic fracturing and we can calibrate this approach with production data that is already known. This numerical methodology requires a fully-coupled hydraulic fracture propagation and multi-phase flow model. In this paper, we present a general fully-coupled numerical framework to simulate hydraulic fracturing and post-fracture gas well performance. This three-dimensional, multi-phase simulator focuses on: (1) fracture width increase and fracture propagation that occurs as slurry is injected into the fracture, (2) erosion caused by fracture fluids and leakoff, (3) proppant subsidence and flowback, and (4) multi-phase fluid flow through various-scaled anisotropic natural and man-made fractures. Mathematical and numerical details on how to fully couple the fracture propagation and fluid flow parts are discussed. Hydraulic fracturing and production operation parameters, and properties of the reservoir, fluids, and proppants, are taken into account. The well may be horizontal, vertical, or deviated, as well as open-hole or cemented. The simulator is verified based on benchmarks from the literature and we show its application by simulating fracture network (hydraulic and natural fractures) propagation and production data history matching of a field in China. We also conduct a series of real-data modeling studies with different combinations of

  2. Bench scale experiments for the remediation of Hanford Waste Treatment Plant low activity waste melter off-gas condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-Pashow, Kathryn M.L.; Poirier, Michael; McCabe, Daniel J.

    The Low Activity Waste (LAW) vitrification facility at the Hanford Waste Treatment and Immobilization Plant (WTP) will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The plan for disposition of this stream during baseline operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. The primary reason to recycle this stream is so that the semi-volatile 99Tc isotope eventually becomes incorporated into the glass. This stream also contains non-radioactive salt components that are problematic in the melter,more » so diversion of this stream to another process would eliminate recycling of these salts and would enable simplified operation of the LAW melter and the Pretreatment Facilities. This diversion from recycling this stream within WTP would have the effect of decreasing the LAW vitrification mission duration and quantity of glass waste. The concept being tested here involves removing the 99Tc so that the decontaminated aqueous stream, with the problematic salts, can be disposed elsewhere.« less

  3. Integration of On-Line and Off-Line Diagnostic Algorithms for Aircraft Engine Health Management

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2007-01-01

    This paper investigates the integration of on-line and off-line diagnostic algorithms for aircraft gas turbine engines. The on-line diagnostic algorithm is designed for in-flight fault detection. It continuously monitors engine outputs for anomalous signatures induced by faults. The off-line diagnostic algorithm is designed to track engine health degradation over the lifetime of an engine. It estimates engine health degradation periodically over the course of the engine s life. The estimate generated by the off-line algorithm is used to update the on-line algorithm. Through this integration, the on-line algorithm becomes aware of engine health degradation, and its effectiveness to detect faults can be maintained while the engine continues to degrade. The benefit of this integration is investigated in a simulation environment using a nonlinear engine model.

  4. Aerodynamic improvement of the assembly through which gas conduits are taken into a smoke stack by simulating gas flow on a computer

    NASA Astrophysics Data System (ADS)

    Prokhorov, V. B.; Fomenko, M. V.; Grigor'ev, I. V.

    2012-06-01

    Results from computer simulation of gas flow motion for gas conduits taken on one and two sides into the gas-removal shaft of a smoke stack with a constant cross section carried out using the SolidWorks and FlowVision application software packages are presented.

  5. Isotope effect on blob-statistics in gyrofluid simulations of scrape-off layer turbulence

    NASA Astrophysics Data System (ADS)

    Meyer, O. H. H.; Kendl, A.

    2017-12-01

    In this contribution we apply a recently established stochastic model for scrape-off layer fluctuations to long time series obtained from gyrofluid simulations of fusion edge plasma turbulence. Characteristic parameters are estimated for different fusion relevant isotopic compositions (protium, deuterium, tritium and singly charged helium) by means of conditional averaging. It is shown that large amplitude fluctuations associated with radially propagating filaments in the scrape-off layer feature double-exponential wave-forms. We find increased pulse duration and longer waiting times between peaks for heavier ions, while the amplitudes are similar. The associated radial blob velocity is shown to be reduced for heavier ions. A parabolic relation between skewness and kurtosis of density fluctuations seems to be present. Improved particle confinement in terms of reduced mean value close to the outermost radial boundary and blob characteristics for heavier plasmas is presented.

  6. Headspace gas chromatography with flame ionization detection (HS-GC-FID) for the determination of dissolved methane in wastewater.

    PubMed

    Beale, D J; Tjandraatmadja, G; Toifl, M; Goodman, N

    2014-01-01

    There is currently a need for a simple, accurate and reproducible method that quantifies the amount of dissolved methane in wastewater in order to realize the potential methane that can be recovered and account for any emissions. This paper presents such a method, using gas chromatography with flame ionization detection fitted with a GS-Gas PRO column coupled with a headspace auto sampler. A practical limit of detection for methane of 0.9 mg L(-1), with a retention time of 1.24 min, was obtained. It was found that the reproducibility and accuracy of the method increased significantly when samples were collected using an in-house constructed bailer sampling device and with the addition of 100 μL hydrochloric acid (HCl) and 25% sodium chloride (NaCl) and sonication for 30 min prior to analysis. Analysis of wastewater samples and wastewater sludge collected from a treatment facility were observed to range from 12.51 to 15.79 mg L(-1) (relative standard deviation (RSD) 8.1%) and 17.56 to 18.67 mg L(-1) (RSD 3.4%) respectively. The performance of this method was validated by repeatedly measuring a mid-level standard (n=8; 10 mg L(-1)), with an observed RSD of 4.6%.

  7. 3-D Numerical Simulation for Gas-Liquid Two-Phase Flow in Aeration Tank

    NASA Astrophysics Data System (ADS)

    Xue, R.; Tian, R.; Yan, S. Y.; Li, S.

    In the crafts of activated sludge treatment, oxygen supply and the suspending state of activated sludge are primary factors to keep biochemistry process carrying on normally. However, they are all controlled by aeration. So aeration is crucial. The paper focus on aeration, use CFD software to simulate the field of aeration tank which is designed by sludge load method. The main designed size of aeration tank is: total volume: 20 000 m3; corridor width: 8m; total length of corridors: 139m; number of corridors: 3; length of one single corridor: 48m; effective depth: 4.5m; additional depth: 0.5m. According to the similarity theory, a geometrical model is set up in proportion of 10:1. The way of liquid flow is submerge to avoid liquid flow out directly. The grid is plotted by dividing the whole computational area into two parts. The bottom part which contains gas pipe and gas exit hole and the above part which is the main area are plotted by tetrahedron and hexahedron respectively. In boundary conditions, gas is defined as the primary-phase, and liquid is defined as the secondary-phase. Choosing mixture model, two-phase flow field of aeration tank is simulated by solved the Continuity equation for the mixture, Momentum equation for the mixture, Volume fraction equation for the secondary phases and Relative velocity formula when gas velocity is 10m/s, 20m/s, 30m/s. what figure shows is the contour of velocity magnitude for the mixture phase when gas velocity is 20m/s. Through analysis, the simulation tendency is agreed with actual running of aeration tank. It is feasible to use mixture model to simulate flow field of aeration tank by fluent software. According to the simulation result, the better velocity of liquid or gas (the quantity of inlet air) can be chosen by lower cost, and also the performance of aeration tank can be forecast. It will be helpful for designing and operation.

  8. The Numerical Simulation of the Shock Wave of Coal Gas Explosions in Gas Pipe*

    NASA Astrophysics Data System (ADS)

    Chen, Zhenxing; Hou, Kepeng; Chen, Longwei

    2018-03-01

    For the problem of large deformation and vortex, the method of Euler and Lagrange has both advantage and disadvantage. In this paper we adopt special fuzzy interface method(volume of fluid). Gas satisfies the conditions of conservation equations of mass, momentum, and energy. Based on explosion and three-dimension fluid dynamics theory, using unsteady, compressible, inviscid hydrodynamic equations and state equations, this paper considers pressure gradient’s effects to velocity, mass and energy in Lagrange steps by the finite difference method. To minimize transport errors of material, energy and volume in Finite Difference mesh, it also considers material transport in Euler steps. Programmed with Fortran PowerStation 4.0 and visualized with the software designed independently, we design the numerical simulation of gas explosion with specific pipeline structure, check the key points of the pressure change in the flow field, reproduce the gas explosion in pipeline of shock wave propagation, from the initial development, flame and accelerate the process of shock wave. This offers beneficial reference and experience to coal gas explosion accidents or safety precautions.

  9. Numerical simulations of CO2 -assisted gas production from hydrate reservoirs

    NASA Astrophysics Data System (ADS)

    Sridhara, P.; Anderson, B. J.; Myshakin, E. M.

    2015-12-01

    A series of experimental studies over the last decade have reviewed the feasibility of using CO2 or CO2+N2 gas mixtures to recover CH4 gas from hydrates deposits. That technique would serve the dual purpose of CO2 sequestration and production of CH4 while maintaining the geo-mechanical stability of the reservoir. In order to analyze CH4 production process by means of CO2 or CO2+N2 injection into gas hydrate reservoirs, a new simulation tool, Mix3HydrateResSim (Mix3HRS)[1], was previously developed to account for the complex thermodynamics of multi-component hydrate phase and to predict the process of CH4 substitution by CO2 (and N2) in the hydrate lattice. In this work, Mix3HRS is used to simulate the CO2 injection into a Class 2 hydrate accumulation characterized by a mobile aqueous phase underneath a hydrate bearing sediment. That type of hydrate reservoir is broadly confirmed in permafrost and along seashore. The production technique implies a two-stage approach using a two-well design, one for an injector and one for a producer. First, the CO2 is injected into the mobile aqueous phase to convert it into immobile CO2 hydrate and to initiate CH4 release from gas hydrate across the hydrate-water boundary (generally designating the onset of a hydrate stability zone). Second, CH4 hydrate decomposition is induced by the depressurization method at a producer to estimate gas production potential over 30 years. The conversion of the free water phase into the CO2 hydrate significantly reduces competitive water production in the second stage, thereby improving the methane gas production. A base case using only the depressurization stage is conducted to compare with enhanced gas production predicted by the CO2-assisted technique. The approach also offers a possibility to permanently store carbon dioxide in the underground formation to greater extent comparing to a direct injection of CO2 into gas hydrate sediment. Numerical models are based on the hydrate formations at the

  10. Macroscopic analysis of gas-jet wiping: Numerical simulation and experimental approach

    NASA Astrophysics Data System (ADS)

    Lacanette, Delphine; Gosset, Anne; Vincent, Stéphane; Buchlin, Jean-Marie; Arquis, Éric

    2006-04-01

    Coating techniques are frequently used in industrial processes such as paper manufacturing, wire sleeving, and in the iron and steel industry. Depending on the application considered, the thickness of the resulting substrate is controlled by mechanical (scraper), electromagnetic (if the entrained fluid is appropriated), or hydrodynamic (gas-jet wiping) operations. This paper deals with the latter process, referred to as gas-jet wiping, in which a turbulent slot jet is used to wipe the coating film dragged by a moving substrate. This mechanism relies on the gas-jet-liquid film interaction taking place on the moving surface. The aim of this study is to compare the results obtained by a lubrication one-dimensional model, numerical volume of fluid-large eddy simulation (VOF-LES) modeling and an experimental approach. The investigation emphasizes the effect of the controlling wiping parameters, i.e., the pressure gradient and shear stress distributions induced by the jet, on the shape of the liquid film. Those profiles obtained experimentally and numerically for a jet impinging on a dry fixed surface are compared. The effect of the substrate motion and the presence of the dragged liquid film on these actuators are analyzed through numerical simulations. Good agreement is found between the film thickness profile in the wiping zone obtained from the VOF-LES simulations and with the analytical model, provided that a good model for the wiping actuators is used. The effect of the gas-jet nozzle to substrate standoff distance on the final coating thickness is analyzed; the experimental and predicted values are compared for a wide set of conditions. Finally, the occurrence of the splashing phenomenon, which is characterized by the ejection of droplets from the runback film flow at jet impingement, thus limiting the wiping process, is investigated through experiments and numerical simulations.

  11. British firms mark progress off Viet Nam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-11-23

    British companies are making more inroads in exploring for oil and gas off Viet Nam. British Gas plc won a 25 year production sharing contract for a license off southern Viet Nam in the South China Sea. Meantime, London independent Lasmo plc started seismic surveys on the block adjoining the British Gas block. Separately, Thailand and Viet Nam have reached agreement to jointly explore for and develop oil and gas found in waters claimed by both countries. Plans call for the two countries to draw up joint development plans covering oil and gas resources in the southeastern fringe of themore » Gulf of Thailand. Bangkok officials say they would have preferred to delineate maritime boundaries with Hanoi, but opted for the joint development accord, noting that Thailand and Malaysia had taken 12 years to resolve a similar dispute.« less

  12. Analysis of Gas-Particle Flows through Multi-Scale Simulations

    NASA Astrophysics Data System (ADS)

    Gu, Yile

    Multi-scale structures are inherent in gas-solid flows, which render the modeling efforts challenging. On one hand, detailed simulations where the fine structures are resolved and particle properties can be directly specified can account for complex flow behaviors, but they are too computationally expensive to apply for larger systems. On the other hand, coarse-grained simulations demand much less computations but they necessitate constitutive models which are often not readily available for given particle properties. The present study focuses on addressing this issue, as it seeks to provide a general framework through which one can obtain the required constitutive models from detailed simulations. To demonstrate the viability of this general framework in which closures can be proposed for different particle properties, we focus on the van der Waals force of interaction between particles. We start with Computational Fluid Dynamics (CFD) - Discrete Element Method (DEM) simulations where the fine structures are resolved and van der Waals force between particles can be directly specified, and obtain closures for stress and drag that are required for coarse-grained simulations. Specifically, we develop a new cohesion model that appropriately accounts for van der Waals force between particles to be used for CFD-DEM simulations. We then validate this cohesion model and the CFD-DEM approach by showing that it can qualitatively capture experimental results where the addition of small particles to gas fluidization reduces bubble sizes. Based on the DEM and CFD-DEM simulation results, we propose stress models that account for the van der Waals force between particles. Finally, we apply machine learning, specifically neural networks, to obtain a drag model that captures the effects from fine structures and inter-particle cohesion. We show that this novel approach using neural networks, which can be readily applied for other closures other than drag here, can take advantage of

  13. A Comparative Analysis of Commercial Off-The-Shelf Naval Simulations and Classic Operations Research Models

    DTIC Science & Technology

    2009-09-01

    69 VI. CONCLUSIONS AND RECOMMENDATIONS ........................73 A. CONCLUSION ........................................73 1. Benefits of Off...simulation software results and similar results produced from the thesis work conducted by Ozdemir (2009). This study directly benefits decision makers...interested in identifying and benefiting from a cost- effective, readily available aggregated learning tool, with the potential to provide tactical

  14. Chemical, isotopic, and dissolved gas compositions of the hydrothermal system in Twin Falls and Jerome counties, Idaho

    USGS Publications Warehouse

    Mariner, R.H.; Young, H.W.; Evans, W. E.; Parliman, D.J.

    1991-01-01

    The chemical, isotopic, and gas compositions of the hydrothermal system in Twin Falls and Jerome counties, Idaho, change systematically as the water moves northward from the Idaho-Nevada boundary toward the Snake River. Sodium, chloride, fluoride, alkalinity, dissolved helium, and carbon-13 increase as calcium and carbon-14 decrease. Water-rock reactions may result in dissolution of plagioclase or volcanic glass and calcite, followed by precipitation of zeolites and clays. On the basis of carbon-14 age dating, apparent water ages range from 2,000 to more than 26,000 years; most apparent ages range from about 4,000 to 10,000 years. The older waters, north of the Snake River, are isotopically depleted in deuterium and are enriched in chloride relative to waters to the south. Thermal waters flowing northward beneath the Snake River may join a westward flow of older thermal water slightly north of the river. The direction of flow in the hydrothermal system seems to parallel the surface drainage.

  15. Dissolved oxygen as a key parameter to aerobic granule formation.

    PubMed

    Sturm, B S McSwain; Irvine, R L

    2008-01-01

    Much research has asserted that high shear forces are necessary for the formation of aerobic granular sludge in Sequencing Batch Reactors (SBRs). In order to distinguish the role of shear and dissolved oxygen on granule formation, two separate experiments were conducted with three bench-scale SBRs. In the first experiment, an SBR was operated with five sequentially decreasing superficial upflow gas velocities ranging from 1.2 to 0.4 cm s(-1). When less than 1 cm s(-1) shear was applied to the reactor, aerobic granules disintegrated into flocs, with corresponding increases in SVI and effluent suspended solids. However, the dissolved oxygen also decreased from 8 mg L(-1) to 5 mg L(-1), affecting the Feast/Famine regime in the SBR and the substrate removal kinetics. A second experiment operated two SBRs with an identical shear force of 1.2 cm s(-1), but two dissolved oxygen concentrations. Even when supplied a high shear force, aerobic granules could not form at a dissolved oxygen less than 5 mg L(-1), with a Static Fill. These results indicate that the substrate removal kinetics and dissolved oxygen are more significant to granule formation than shear force. Copyright IWA Publishing 2008.

  16. The effect of dissolved oxygen on the susceptibility of blood.

    PubMed

    Berman, Avery J L; Ma, Yuhan; Hoge, Richard D; Pike, G Bruce

    2016-01-01

    It has been predicted that, during hyperoxia, excess O2 dissolved in arterial blood will significantly alter the blood's magnetic susceptibility. This would confound the interpretation of the hyperoxia-induced blood oxygenation level-dependent signal as arising solely from changes in deoxyhemoglobin. This study, therefore, aimed to determine how dissolved O2 affects the susceptibility of blood. We present a comprehensive model for the effect of dissolved O2 on the susceptibility of blood and compare it with another recently published model, referred to here as the ideal gas model (IGM). For validation, distilled water and samples of bovine plasma were oxygenated over a range of hyperoxic O2 concentrations and their susceptibilities were determined using multiecho gradient echo phase imaging. In distilled water and plasma, the measured changes in susceptibility were very linear, with identical slopes of 0.062 ppb/mm Hg of O2. This change was dramatically less than previously predicted using the IGM and was close to that predicted by our model. The primary source of error in the IGM is the overestimation of the volume fraction occupied by dissolved O2. Under most physiological conditions, the susceptibility of dissolved O2 can be disregarded in MRI studies employing hyperoxia. © 2015 Wiley Periodicals, Inc.

  17. Integral Field Spectroscopy of Markarian 273: Mapping High-Velocity Gas Flows and an Off-Nucleus Seyfert 2 Nebula.

    PubMed

    Colina; Arribas; Borne

    1999-12-10

    Integral field optical spectroscopy with the INTEGRAL fiber-based system is used to map the extended ionized regions and gas flows in Mrk 273, one of the closest ultraluminous infrared galaxies. The Hbeta and [O iii] lambda5007 maps show the presence of two distinct regions separated by 4&arcsec; (3.1 kpc) along position angle (P.A.) 240 degrees. The northeastern region coincides with the optical nucleus of the galaxy and shows the spectral characteristics of LINERs. The southwestern region is dominated by [O iii] emission and is classified as a Seyfert 2. Therefore, in the optical, Mrk 273 is an ultraluminous infrared galaxy with a LINER nucleus and an extended off-nucleus Seyfert 2 nebula. The kinematics of the [O iii] ionized gas shows (1) the presence of highly disturbed gas in the regions around the LINER nucleus, (2) a high-velocity gas flow with a peak-to-peak amplitude of 2.4x103 km s-1, and (3) quiescent gas in the outer regions (at 3 kpc). We hypothesize that the high-velocity flow is the starburst-driven superwind generated in an optically obscured nuclear starburst and that the quiescent gas is directly ionized by a nuclear source, similar to the ionization cones typically seen in Seyfert galaxies.

  18. Simulation modelling for new gas turbine fuel controller creation.

    NASA Astrophysics Data System (ADS)

    Vendland, L. E.; Pribylov, V. G.; Borisov, Yu A.; Arzamastsev, M. A.; Kosoy, A. A.

    2017-11-01

    State of the art gas turbine fuel flow control systems are based on throttle principle. Major disadvantage of such systems is that they require high pressure fuel intake. Different approach to fuel flow control is to use regulating compressor. And for this approach because of controller and gas turbine interaction a specific regulating compressor is required. Difficulties emerge as early as the requirement definition stage. To define requirements for new object, his properties must be known. Simulation modelling helps to overcome these difficulties. At the requirement definition stage the most simplified mathematical model is used. Mathematical models will get more complex and detailed as we advance in planned work. If future adjusting of regulating compressor physical model to work with virtual gas turbine and physical control system is planned.

  19. Comparison of simulation and experimental results for a gas puff nozzle on Ambiorix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnier, J-N.; Chevalier, J-M.; Dubroca, B.

    One of source term of Z-Pinch experiments is the gas puff density profile. In order to characterize the gas jet, an experiment based on interferometry has been performed. The first study was a point measurement (a section density profile) which led us to develop a global and instantaneous interferometry imaging method. In order to optimise the nozzle, we simulated the experiment with a flow calculation code (ARES). In this paper, the experimental results are compared with simulations. The different gas properties (He, Ne, Ar) and the flow duration lead us to take care, on the one hand, of the gasmore » viscosity, and on the other, of modifying the code for an instationary flow.« less

  20. Axisymmetric bubble pinch-off at high Reynolds numbers.

    PubMed

    Gordillo, J M; Sevilla, A; Rodríguez-Rodríguez, J; Martínez-Bazán, C

    2005-11-04

    Analytical considerations and potential-flow numerical simulations of the pinch-off of bubbles at high Reynolds numbers reveal that the bubble minimum radius, rn, decreases as tau proportional to r2n sqrt[1lnr2n], where tau is the time to break up, when the local shape of the bubble near the singularity is symmetric. However, if the gas convective terms in the momentum equation become of the order of those of the liquid, the bubble shape is no longer symmetric and the evolution of the neck changes to a rn proportional to tau1/3 power law. These findings are verified experimentally.

  1. Investigation of variable compositions on the removal of technetium from Hanford Waste Treatment Plant low activity waste melter off-gas condensate simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-Pashow, Kathryn M. L.; McCabe, Daniel J.; Pareizs, John M.

    The Low Activity Waste (LAW) vitrification facility at the Hanford Waste Treatment and Immobilization Plant (WTP) will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the offgas system. The plan for disposition of this stream during baseline operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. The primary reason to recycle this stream is so that the semi-volatile 99Tc isotope eventually becomes incorporated into the glass. This stream also contains non-radioactive salt components that are problematic in the melter,more » so diversion of this stream to another process would eliminate recycling of these salts and would enable simplified operation of the LAW melter and the Pretreatment Facilities. This diversion from recycling this stream within WTP would have the effect of decreasing the LAW vitrification mission duration and quantity of glass waste. The concept being tested here involves removing the 99Tc so that the decontaminated aqueous stream, with the problematic salts, can be disposed elsewhere.« less

  2. Numerical simulation of turbulent gas flames in tubes.

    PubMed

    Salzano, E; Marra, F S; Russo, G; Lee, J H S

    2002-12-02

    Computational fluid dynamics (CFD) is an emerging technique to predict possible consequences of gas explosion and it is often considered a powerful and accurate tool to obtain detailed results. However, systematic analyses of the reliability of this approach to real-scale industrial configurations are still needed. Furthermore, few experimental data are available for comparison and validation. In this work, a set of well documented experimental data related to the flame acceleration obtained within obstacle-filled tubes filled with flammable gas-air mixtures, has been simulated. In these experiments, terminal steady flame speeds corresponding to different propagation regimes were observed, thus, allowing a clear and prompt characterisation of the numerical results with respect to numerical parameters, as grid definition, geometrical parameters, as blockage ratio and to mixture parameters, as mixture reactivity. The CFD code AutoReagas was used for the simulations. Numerical predictions were compared with available experimental data and some insights into the code accuracy were determined. Computational results are satisfactory for the relatively slower turbulent deflagration regimes and became fair when choking regime is observed, whereas transition to quasi-detonation or Chapman-Jogouet (CJ) were never predicted.

  3. PREDICTION OF TOTAL DISSOLVED GAS EXCHANGE AT HYDROPOWER DAMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadjerioua, Boualem; Pasha, MD Fayzul K; Stewart, Kevin M

    2012-07-01

    Total dissolved gas (TDG) supersaturation in waters released at hydropower dams can cause gas bubble trauma in fisheries resulting in physical injuries and eyeball protrusion that can lead to mortality. Elevated TDG pressures in hydropower releases are generally caused by the entrainment of air in spillway releases and the subsequent exchange of atmospheric gasses into solution during passage through the stilling basin. The network of dams throughout the Columbia River Basin (CRB) are managed for irrigation, hydropower production, flood control, navigation, and fish passage that frequently result in both voluntary and involuntary spillway releases. These dam operations are constrained bymore » state and federal water quality standards for TDG saturation which balance the benefits of spillway operations designed for Endangered Species Act (ESA)-listed fisheries versus the degradation to water quality as defined by TDG saturation. In the 1970s, the United States Environmental Protection Agency (USEPA), under the federal Clean Water Act (Section 303(d)), established a criterion not to exceed the TDG saturation level of 110% in order to protect freshwater and marine aquatic life. The states of Washington and Oregon have adopted special water quality standards for TDG saturation in the tailrace and forebays of hydropower facilities on the Columbia and Snake Rivers where spillway operations support fish passage objectives. The physical processes that affect TDG exchange at hydropower facilities have been studied throughout the CRB in site-specific studies and routine water quality monitoring programs. These data have been used to quantify the relationship between project operations, structural properties, and TDG exchange. These data have also been used to develop predictive models of TDG exchange to support real-time TDG management decisions. These empirically based predictive models have been developed for specific projects and account for both the fate of spillway

  4. Investigation of the on-axis atom number density in the supersonic gas jet under high gas backing pressure by simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Guanglong; Xu, Yi; Cao, Yunjiu

    The supersonic gas jets from conical nozzles are simulated using 2D model. The on-axis atom number density in gas jet is investigated in detail by comparing the simulated densities with the idealized densities of straight streamline model in scaling laws. It is found that the density is generally lower than the idealized one and the deviation between them is mainly dependent on the opening angle of conical nozzle, the nozzle length and the gas backing pressure. The density deviation is then used to discuss the deviation of the equivalent diameter of a conical nozzle from the idealized d{sub eq} inmore » scaling laws. The investigation on the lateral expansion of gas jet indicates the lateral expansion could be responsible for the behavior of the density deviation. These results could be useful for the estimation of cluster size and the understanding of experimental results in laser-cluster interaction experiments.« less

  5. Percolation connectivity, pore size, and gas apparent permeability: Network simulations and comparison to experimental data

    NASA Astrophysics Data System (ADS)

    Li, M.; Tang, Y. B.; Bernabé, Y.; Zhao, J. Z.; Li, X. F.; Li, T.

    2017-07-01

    We modeled single-phase gas flow through porous media using percolation networks. Gas permeability is different from liquid permeability. The latter is only related to the geometry and topology of the pore space, while the former depends on the specific gas considered and varies with gas pressure. As gas pressure decreases, four flow regimes can be distinguished as viscous flow, slip flow, transition flow, and free molecular diffusion. Here we use a published conductance model presumably capable of predicting the flow rate of an arbitrary gas through a cylindrical pipe in the four regimes. We incorporated this model into pipe network simulations. We considered 3-D simple cubic, body-centered cubic, and face-centered cubic lattices, in which we varied the pipe radius distribution and the bond coordination number. Gas flow was simulated at different gas pressures. The simulation results showed that the gas apparent permeability kapp obeys an identical scaling law in all three lattices, kapp (z-zc)β, where the exponent β depends on the width of the pipe radius distribution, z is the mean coordination number, and zc its critical value at the percolation threshold. Surprisingly, (z-zc) had a very weak effect on the ratio of the apparent gas permeability to the absolute liquid permeability, kapp/kabs, suggesting that the Klinkenberg gas slippage correction factor is nearly independent of connectivity. We constructed models of kapp and kapp/kabs based on the observed power law and tested them by comparison with published experimental data on glass beads and other materials.

  6. Removing freon gas from hydraulic fluid

    NASA Technical Reports Server (NTRS)

    Williams, B. B.; Mitchell, S. M.; State, T. S.

    1981-01-01

    Dissolved freon gas is removed from hydraulic fluid by raising temperature to 150 F and bubbling dry nitrogen gas through it, even while fluid circulates through hydraulic system. Procedure reduces parts corrosion, sludge formation, and contamination.

  7. Dissolved Gases and Ice Fracturing During the Freezing of a Multicellular Organism: Lessons from Tardigrades.

    PubMed

    Kletetschka, Gunther; Hruba, Jolana

    2015-01-01

    Three issues are critical for successful cryopreservation of multicellular material: gases dissolved in liquid, thermal conductivity of the tissue, and localization of microstructures. Here we show that heat distribution is controlled by the gas amount dissolved in liquids and that when changing the liquid into solid, the dissolved gases either form bubbles due to the absence of space in the lattice of solids and/or are migrated toward the concentrated salt and sugar solution at the cost of amount of heat required to be removed to complete a solid-state transition. These factors affect the heat distribution in the organs to be cryopreserved. We show that the gas concentration issue controls fracturing of ice when freezing. There are volumetric changes not only when changing the liquid into solid (volume increases) but also reduction of the volume when reaching lower temperatures (volume decreases). We discuss these issues parallel with observations of the cryosurvivability of multicellular organisms, tardigrades, and discuss their analogy for cryopreservation of large organs.

  8. Process Simulation of Gas Metal Arc Welding Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, Paul E.

    2005-09-06

    ARCWELDER is a Windows-based application that simulates gas metal arc welding (GMAW) of steel and aluminum. The software simulates the welding process in an accurate and efficient manner, provides menu items for process parameter selection, and includes a graphical user interface with the option to animate the process. The user enters the base and electrode material, open circuit voltage, wire diameter, wire feed speed, welding speed, and standoff distance. The program computes the size and shape of a square-groove or V-groove weld in the flat position. The program also computes the current, arc voltage, arc length, electrode extension, transfer ofmore » droplets, heat input, filler metal deposition, base metal dilution, and centerline cooling rate, in English or SI units. The simulation may be used to select welding parameters that lead to desired operation conditions.« less

  9. Use of gas chromatography-mass spectrometry-olfactometry and a conventional flask test to identify off-flavor compounds generated from phenylalanine during chlorination of drinking water.

    PubMed

    Matsushita, Taku; Sakuma, Miki; Tazawa, Shiori; Hatase, Taiki; Shirasaki, Nobutaka; Matsui, Yoshihiko

    2017-11-15

    Off-flavor in drinking water can be caused by transformation products (TPs) generated from organic compounds, such as amino acids, present during chlorination. However, the contributions of many of these TPs to overall off-flavor have not been quantified, mainly because the lack of appropriate chemical standards prevents sensory evaluation by means of a conventional flask test. In the present study, we used gas chromatography-mass spectrometry-olfactometry (GC-MS-O) to identify compounds responsible for the off-flavor generated by chlorination of an aqueous solution of the amino acid phenylalanine, and we propose a sensory evaluation procedure for quantification of the contributions of the identified TPs to the overall off-flavor, regardless of the availability of chemical standards of the TPs. GC-MS-O revealed that two TPs, N-chlorophenylacetaldimine and 2-chloro-2-phenylacetaldehyde, for which chemical standards are not commercially available, were the main components responsible for the off-flavor of the chlorinated solution. By using a sensory evaluation procedure involving a combination of GC-MS-O and a conventional flask test, we quantified the contributions of TPs to the overall off-flavor of the chlorinated solution. Approximately 60% of the off-flavor was attributable to free chlorine (13%), 2-chloro-2-phenylacetaldehyde (13%), trichloramine (12%) phenylacetaldehyde (11%) phenylacetonitrile (8%), and N-chlorophenylacetaldimine (2%). Treatment with powdered activated carbon (PAC) removed the off-flavor. Experiments with chlorination of 15 N-labeled phenylalanine suggested that PAC reductively decomposed trichloramine into N 2 gas and adsorbed all of the other identified TPs. Superfine PAC (median diameter, 0.7 μm) removed the off-flavor more rapidly than normal-size PAC (median diameter, 8.0 μm). Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Gas-phase elemental mercury removal in a simulated combustion flue gas using TiO2 with fluorescent light.

    PubMed

    Cho, Jae Han; Lee, Tai Gyu; Eom, Yujin

    2012-10-01

    A previously proposed technology incorporating TiO2 into common household fluorescent lighting was further tested for its Hg0 removal capability in a simulated flue-gas system. The flue gas is simulated by the addition of O2, SO2, HCl, NO, H2O, and Hg0, which are frequently found in combustion facilities such as waste incinerators and coal-fired power plants. In the O2 + N2 + Hg0 environment, a Hg0 removal efficiency (etaHg) greater than 95% was achieved. Despite the tendency for etaHg to decrease with increasing SO2 and HCl, no significant drop was observed at the tested level (SO2: 5-300 ppm, HCl: 30-120 ppm(v)). In terms of NO and moisture, a significant negative effect on etaHg was observed for both factors. NO eliminated the OH radical on the TiO2 surface, whereas water vapor caused either the occupation of active sites available to Hg0 or the reduction of Hg0 by free electron. However, the negative effect of NO was minimized (etaHg > 90%) by increasing the residence time in the photochemical reactor. The moisture effect can be avoided by installing a water trap before the flue gas enters the Hg0 removal system. This paper reports a novel technology for a removal of gas-phase elemental mercury (Hg0) from a simulated flue gas using TiO2-coated glass beads under a low-cost, easily maintainable household fluorescent light instead of ultraviolet (UV) light. In this study, the effects of individual chemical species (O2, SO2, HCl, NO, and water vapor) on the performance of the proposed technology for Hg0 removal are investigated. The result suggests that the proposed technology can be highly effective, even in real combustion environments such as waste incinerators and coal-fired power plants.

  11. ADDING REALISM TO NUCLEAR MATERIAL DISSOLVING ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, B.

    2011-08-15

    Two new criticality modeling approaches have greatly increased the efficiency of dissolver operations in H-Canyon. The first new approach takes credit for the linear, physical distribution of the mass throughout the entire length of the fuel assembly. This distribution of mass is referred to as the linear density. Crediting the linear density of the fuel bundles results in using lower fissile concentrations, which allows higher masses to be charged to the dissolver. Also, this approach takes credit for the fact that only part of the fissile mass is wetted at a time. There are multiple assemblies stacked on top ofmore » each other in a bundle. On average, only 50-75% of the mass (the bottom two or three assemblies) is wetted at a time. This means that only 50-75% (depending on operating level) of the mass is moderated and is contributing to the reactivity of the system. The second new approach takes credit for the progression of the dissolving process. Previously, dissolving analysis looked at a snapshot in time where the same fissile material existed both in the wells and in the bulk solution at the same time. The second new approach models multiple consecutive phases that simulate the fissile material moving from a high concentration in the wells to a low concentration in the bulk solution. This approach is more realistic and allows higher fissile masses to be charged to the dissolver.« less

  12. Electrolytic dissolver

    DOEpatents

    Wheelwright, E.J.; Fox, R.D.

    1975-08-26

    This patent related to an electrolytic dissolver wherein dissolution occurs by solution contact including a vessel of electrically insulative material, a fixed first electrode, a movable second electrode, means for insulating the electrodes from the material to be dissolved while permitting a free flow of electrolyte therebetween, means for passing a direct current between the electrodes and means for circulating electrolyte through the dissolver. (auth)

  13. Study on Fluid-solid Coupling Mathematical Models and Numerical Simulation of Coal Containing Gas

    NASA Astrophysics Data System (ADS)

    Xu, Gang; Hao, Meng; Jin, Hongwei

    2018-02-01

    Based on coal seam gas migration theory under multi-physics field coupling effect, fluid-solid coupling model of coal seam gas was build using elastic mechanics, fluid mechanics in porous medium and effective stress principle. Gas seepage behavior under different original gas pressure was simulated. Results indicated that residual gas pressure, gas pressure gradient and gas low were bigger when original gas pressure was higher. Coal permeability distribution decreased exponentially when original gas pressure was lower than critical pressure. Coal permeability decreased rapidly first and then increased slowly when original pressure was higher than critical pressure.

  14. Transient Resistive Switching Devices Made from Egg Albumen Dielectrics and Dissolvable Electrodes.

    PubMed

    He, Xingli; Zhang, Jian; Wang, Wenbo; Xuan, Weipeng; Wang, Xiaozhi; Zhang, Qilong; Smith, Charles G; Luo, Jikui

    2016-05-04

    Egg albumen as the dielectric, and dissolvable Mg and W as the top and bottom electrodes are used to fabricate water-soluble memristors. 4 × 4 cross-bar configuration memristor devices show a bipolar resistive switching behavior with a high to low resistance ratio in the range of 1 × 10(2) to 1 × 10(4), higher than most other biomaterial-based memristors, and a retention time over 10(4) s without any sign of deterioration, demonstrating its high stability and reliability. Metal filaments accompanied by hopping conduction are believed to be responsible for the switching behavior of the memory devices. The Mg and W electrodes, and albumen film all can be dissolved in water within 72 h, showing their transient characteristics. This work demonstrates a new way to fabricate biocompatible and dissolvable electronic devices by using cheap, abundant, and 100% natural materials for the forthcoming bioelectronics era as well as for environmental sensors when the Internet of things takes off.

  15. Simulating the gas hydrate production test at Mallik using the pilot scale pressure reservoir LARS

    NASA Astrophysics Data System (ADS)

    Heeschen, Katja; Spangenberg, Erik; Schicks, Judith M.; Priegnitz, Mike; Giese, Ronny; Luzi-Helbing, Manja

    2014-05-01

    LARS, the LArge Reservoir Simulator, allows for one of the few pilot scale simulations of gas hydrate formation and dissociation under controlled conditions with a high resolution sensor network to enable the detection of spatial variations. It was designed and built within the German project SUGAR (submarine gas hydrate reservoirs) for sediment samples with a diameter of 0.45 m and a length of 1.3 m. During the project, LARS already served for a number of experiments simulating the production of gas from hydrate-bearing sediments using thermal stimulation and/or depressurization. The latest test simulated the methane production test from gas hydrate-bearing sediments at the Mallik test site, Canada, in 2008 (Uddin et al., 2011). Thus, the starting conditions of 11.5 MPa and 11°C and environmental parameters were set to fit the Mallik test site. The experimental gas hydrate saturation of 90% of the total pore volume (70 l) was slightly higher than volumes found in gas hydrate-bearing formations in the field (70 - 80%). However, the resulting permeability of a few millidarcy was comparable. The depressurization driven gas production at Mallik was conducted in three steps at 7.0 MPa - 5.0 MPa - 4.2 MPa all of which were used in the laboratory experiments. In the lab the pressure was controlled using a back pressure regulator while the confining pressure was stable. All but one of the 12 temperature sensors showed a rapid decrease in temperature throughout the sediment sample, which accompanied the pressure changes as a result of gas hydrate dissociation. During step 1 and 2 they continued up to the point where gas hydrate stability was regained. The pressure decreases and gas hydrate dissociation led to highly variable two phase fluid flow throughout the duration of the simulated production test. The flow rates were measured continuously (gas) and discontinuously (liquid), respectively. Next to being discussed here, both rates were used to verify a model of gas

  16. Spatial patterns and biodiversity in off-lattice simulations of a cyclic three-species Lotka-Volterra model

    NASA Astrophysics Data System (ADS)

    Avelino, P. P.; Bazeia, D.; Losano, L.; Menezes, J.; de Oliveira, B. F.

    2018-02-01

    Stochastic simulations of cyclic three-species spatial predator-prey models are usually performed in square lattices with nearest-neighbour interactions starting from random initial conditions. In this letter we describe the results of off-lattice Lotka-Volterra stochastic simulations, showing that the emergence of spiral patterns does occur for sufficiently high values of the (conserved) total density of individuals. We also investigate the dynamics in our simulations, finding an empirical relation characterizing the dependence of the characteristic peak frequency and amplitude on the total density. Finally, we study the impact of the total density on the extinction probability, showing how a low population density may jeopardize biodiversity.

  17. Large eddy simulation applications in gas turbines.

    PubMed

    Menzies, Kevin

    2009-07-28

    The gas turbine presents significant challenges to any computational fluid dynamics techniques. The combination of a wide range of flow phenomena with complex geometry is difficult to model in the context of Reynolds-averaged Navier-Stokes (RANS) solvers. We review the potential for large eddy simulation (LES) in modelling the flow in the different components of the gas turbine during a practical engineering design cycle. We show that while LES has demonstrated considerable promise for reliable prediction of many flows in the engine that are difficult for RANS it is not a panacea and considerable application challenges remain. However, for many flows, especially those dominated by shear layer mixing such as in combustion chambers and exhausts, LES has demonstrated a clear superiority over RANS for moderately complex geometries although at significantly higher cost which will remain an issue in making the calculations relevant within the design cycle.

  18. 25 CFR 226.23 - Easements for wells off leased premises.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... OSAGE RESERVATION LANDS FOR OIL AND GAS MINING Operations § 226.23 Easements for wells off leased premises. The Superintendent, with the consent of the Osage Tribal Council, may grant commercial and noncommercial easements for wells off the leased premises to be used for purposes associated with oil and gas...

  19. Observational Tracers of Hot and Cold Gas in Isolated Galaxy Simulations

    NASA Astrophysics Data System (ADS)

    Brzycki, Bryan; Silvia, Devin

    2018-01-01

    We present results from an analysis comparing simulations of isolated spiral galaxies with recent observations of the circumgalactic medium (CGM). As the interface containing inflows and outflows between the interstellar and intergalactic media, the CGM plays an important role in the composition and evolution of galaxies. Using a set of isolated galaxy simulations over different initial conditions and star formation and feedback parameters, we investigate the evolution of CGM gas. Specifically, in light of recent observational studies, we compute the radial column density profiles and covering fractions of various observable ion species (H I, C IV, O VI, Mg II, Si III) for each simulated galaxy. Taking uniformly random sightlines through the CGM of each simulated galaxy, we find the abundance of gas absorbers and analyze their contribution to the overall column density along each sightline. By identifying the prevalence of high column density absorbers, we seek to characterize the distribution and evolution of observable ion species in the CGM. We also highlight a subset of our isolated galaxy simulations that produce and maintain a stable precipitating CGM that fuels high rates of sustained star formation. This project was supported in part by the NSF REU grant AST-1358980 and by the Nantucket Maria Mitchell Association.

  20. A simple technique for continuous measurement of time-variable gas transfer in surface waters

    USGS Publications Warehouse

    Tobias, Craig R.; Bohlke, John Karl; Harvey, Judson W.; Busenberg, Eurybiades

    2009-01-01

    Mass balance models of dissolved gases in streams, lakes, and rivers serve as the basis for estimating wholeecosystem rates for various biogeochemical processes. Rates of gas exchange between water and the atmosphere are important and error-prone components of these models. Here we present a simple and efficient modification of the SF6 gas tracer approach that can be used concurrently while collecting other dissolved gas samples for dissolved gas mass balance studies in streams. It consists of continuously metering SF6-saturated water directly into the stream at a low rate of flow. This approach has advantages over pulse injection of aqueous solutions or bubbling large amounts of SF6 into the stream. By adding the SF6 as a saturated solution, we minimize the possibility that other dissolved gas measurements are affected by sparging and/or bubble injecta. Because the SF6 is added continuously we have a record of changing gas transfer velocity (GTV) that is contemporaneous with the sampling of other nonconservative ambient dissolved gases. Over a single diel period, a 30% variation in GTV was observed in a second-order stream (Sugar Creek, Indiana, USA). The changing GTV could be attributed in part to changes in temperature and windspeed that occurred on hourly to diel timescales.

  1. Ammonium production off central Chile (36°S) by photodegradation of phytoplankton-derived and marine dissolved organic matter.

    PubMed

    Rain-Franco, Angel; Muñoz, Claudia; Fernandez, Camila

    2014-01-01

    We investigated the production of ammonium by the photodegradation of dissolved organic matter (DOM) in the coastal upwelling system off central Chile (36°S). The mean penetration of solar radiation (Z1%) between April 2011 and February 2012 was 9.4 m, 4.4 m and 3.2 m for Photosynthetically Active Radiation (PAR; 400-700 nm), UV-A (320-400 nm) and UV-B (280-320 nm), respectively. Ammonium photoproduction experiments were carried out using exudates of DOM obtained from cultured diatom species (Chaetoceros muelleri and Thalassiosira minuscule) as well as natural marine DOM. Diatom exudates showed net photoproduction of ammonium under exposure to UVR with a mean rate of 0.56±0.4 µmol L(-1) h(-1) and a maximum rate of 1.49 µmol L(-1) h(-1). Results from natural marine DOM showed net photoproduction of ammonium under exposure to PAR+UVR ranging between 0.06 and 0.2 µmol L(-1) h(-1). We estimated the potential contribution of photochemical ammonium production for phytoplankton ammonium demand. Photoammonification of diatom exudates could support between 117 and 453% of spring-summer NH4(+) assimilation, while rates obtained from natural samples could contribute to 50-178% of spring-summer phytoplankton NH4(+) requirements. These results have implications for local N budgets, as photochemical ammonium production can occur year-round in the first meters of the euphotic zone that are impacted by full sunlight.

  2. Ammonium Production off Central Chile (36°S) by Photodegradation of Phytoplankton-Derived and Marine Dissolved Organic Matter

    PubMed Central

    Rain-Franco, Angel; Muñoz, Claudia; Fernandez, Camila

    2014-01-01

    We investigated the production of ammonium by the photodegradation of dissolved organic matter (DOM) in the coastal upwelling system off central Chile (36°S). The mean penetration of solar radiation (Z1%) between April 2011 and February 2012 was 9.4 m, 4.4 m and 3.2 m for Photosynthetically Active Radiation (PAR; 400–700 nm), UV-A (320–400 nm) and UV-B (280–320 nm), respectively. Ammonium photoproduction experiments were carried out using exudates of DOM obtained from cultured diatom species (Chaetoceros muelleri and Thalassiosira minuscule) as well as natural marine DOM. Diatom exudates showed net photoproduction of ammonium under exposure to UVR with a mean rate of 0.56±0.4 µmol L−1 h−1 and a maximum rate of 1.49 µmol L−1 h−1. Results from natural marine DOM showed net photoproduction of ammonium under exposure to PAR+UVR ranging between 0.06 and 0.2 µmol L−1 h−1. We estimated the potential contribution of photochemical ammonium production for phytoplankton ammonium demand. Photoammonification of diatom exudates could support between 117 and 453% of spring-summer NH4 + assimilation, while rates obtained from natural samples could contribute to 50–178% of spring-summer phytoplankton NH4 + requirements. These results have implications for local N budgets, as photochemical ammonium production can occur year-round in the first meters of the euphotic zone that are impacted by full sunlight. PMID:24968138

  3. a Real-Time GIS Platform for High Sour Gas Leakage Simulation, Evaluation and Visualization

    NASA Astrophysics Data System (ADS)

    Li, M.; Liu, H.; Yang, C.

    2015-07-01

    The development of high-sulfur gas fields, also known as sour gas field, is faced with a series of safety control and emergency management problems. The GIS-based emergency response system is placed high expectations under the consideration of high pressure, high content, complex terrain and highly density population in Sichuan Basin, southwest China. The most researches on high hydrogen sulphide gas dispersion simulation and evaluation are used for environmental impact assessment (EIA) or emergency preparedness planning. This paper introduces a real-time GIS platform for high-sulfur gas emergency response. Combining with real-time data from the leak detection systems and the meteorological monitoring stations, GIS platform provides the functions of simulating, evaluating and displaying of the different spatial-temporal toxic gas distribution patterns and evaluation results. This paper firstly proposes the architecture of Emergency Response/Management System, secondly explains EPA's Gaussian dispersion model CALPUFF simulation workflow under high complex terrain and real-time data, thirdly explains the emergency workflow and spatial analysis functions of computing the accident influencing areas, population and the optimal evacuation routes. Finally, a well blow scenarios is used for verify the system. The study shows that GIS platform which integrates the real-time data and CALPUFF models will be one of the essential operational platforms for high-sulfur gas fields emergency management.

  4. ELEVATED DISSOLVED SULFIDES IN SURFICIAL SEDIMENTS OF YAQUINA BAY ESTUARY, OREGON

    EPA Science Inventory

    Dissolved sulfide concentrations were measured in porewater of surficial sediments collected from two exposed intertidal sites in Yaquina Bay, Oregon. Idaho Pt. (IP) is an area where drift green macroalgae is known to accumulate, and the odor of hydrogen sulfide gas (H2S) on th...

  5. [CFD numerical simulation onto the gas-liquid two-phase flow behavior during vehicle refueling process].

    PubMed

    Chen, Jia-Qing; Zhang, Nan; Wang, Jin-Hui; Zhu, Ling; Shang, Chao

    2011-12-01

    With the gradual improvement of environmental regulations, more and more attentions are attracted to the vapor emissions during the process of vehicle refueling. Research onto the vehicle refueling process by means of numerical simulation has been executed abroad since 1990s, while as it has never been involved so far domestically. Through reasonable simplification about the physical system of "Nozzle + filler pipe + gasoline storage tank + vent pipe" for vehicle refueling, and by means of volume of fluid (VOF) model for gas-liquid two-phase flow and Re-Normalization Group kappa-epsilon turbulence flow model provided in commercial computational fluid dynamics (CFD) software Fluent, this paper determined the proper mesh discretization scheme and applied the proper boundary conditions based on the Gambit software, then established the reasonable numerical simulation model for the gas-liquid two-phase flow during the refueling process. Through discussing the influence of refueling velocity on the static pressure of vent space in gasoline tank, the back-flowing phenomenon has been revealed in this paper. It has been demonstrated that, the more the flow rate and the refueling velocity of refueling nozzle is, the higher the gross static pressure in the vent space of gasoline tank. In the meanwhile, the variation of static pressure in the vent space of gasoline tank can be categorized into three obvious stages. When the refueling flow rate becomes higher, the back-flowing phenomenon of liquid gasoline can sometimes be induced in the head section of filler pipe, thus making the gasoline nozzle pre-shut-off. Totally speaking, the theoretical work accomplished in this paper laid some solid foundation for self-researching and self-developing the technology and apparatus for the vehicle refueling and refueling emissions control domestically.

  6. Bull heading to kill live gas wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oudeman, P.; Avest, D. ter; Grodal, E.O.

    1994-12-31

    To kill a live closed-in gas well by bull heading down the tubing, the selected pump rate should be high enough to ensure efficient displacement of the gas into the formation (i.e., to avoid the kill fluid bypassing the gas). On the other hand, the pressures that develop during bull heading at high rate must not exceed wellhead pressure rating, tubing or casing burst pressures or the formation breakdown gradient, since this will lead, at best, to a very inefficient kill job. Given these constraints, the optimum kill rate, requited hydraulic horsepower, density and type of kill fluids have tomore » be selected. For this purpose a numerical simulator has been developed, which predicts the sequence of events during bull heading. Pressures and flow rates in the well during the kill job are calculated, taking to account slip between the gas and kill fluid, hydrostatic and friction pressure drop, wellbore gas compression and leak-off to the formation. Comparison with the results of a dedicated field test demonstrates that these parameters can be estimated accurately. Example calculations will be presented to show how the simulator can be used to identify an optimum kill scenario.« less

  7. Vectorization of a Monte Carlo simulation scheme for nonequilibrium gas dynamics

    NASA Technical Reports Server (NTRS)

    Boyd, Iain D.

    1991-01-01

    Significant improvement has been obtained in the numerical performance of a Monte Carlo scheme for the analysis of nonequilibrium gas dynamics through an implementation of the algorithm which takes advantage of vector hardware, as presently demonstrated through application to three different problems. These are (1) a 1D standing-shock wave; (2) the flow of an expanding gas through an axisymmetric nozzle; and (3) the hypersonic flow of Ar gas over a 3D wedge. Problem (3) is illustrative of the greatly increased number of molecules which the simulation may involve, thanks to improved algorithm performance.

  8. Pore fluid geochemistry from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    USGS Publications Warehouse

    Torres, M.E.; Collett, T.S.; Rose, K.K.; Sample, J.C.; Agena, W.F.; Rosenbaum, E.J.

    2011-01-01

    The BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well was drilled and cored from 606.5 to 760.1. m on the North Slope of Alaska, to evaluate the occurrence, distribution and formation of gas hydrate in sediments below the base of the ice-bearing permafrost. Both the dissolved chloride and the isotopic composition of the water co-vary in the gas hydrate-bearing zones, consistent with gas hydrate dissociation during core recovery, and they provide independent indicators to constrain the zone of gas hydrate occurrence. Analyses of chloride and water isotope data indicate that an observed increase in salinity towards the top of the cored section reflects the presence of residual fluids from ion exclusion during ice formation at the base of the permafrost layer. These salinity changes are the main factor controlling major and minor ion distributions in the Mount Elbert Well. The resulting background chloride can be simulated with a one-dimensional diffusion model, and the results suggest that the ion exclusion at the top of the cored section reflects deepening of the permafrost layer following the last glaciation (???100 kyr), consistent with published thermal models. Gas hydrate saturation values estimated from dissolved chloride agree with estimates based on logging data when the gas hydrate occupies more than 20% of the pore space; the correlation is less robust at lower saturation values. The highest gas hydrate concentrations at the Mount Elbert Well are clearly associated with coarse-grained sedimentary sections, as expected from theoretical calculations and field observations in marine and other arctic sediment cores. ?? 2009 Elsevier Ltd.

  9. Development of a Gas Dynamic and Thermodynamic Simulation Model of the Lontra Blade Compressor™

    NASA Astrophysics Data System (ADS)

    Karlovsky, Jerome

    2015-08-01

    The Lontra Blade Compressor™ is a patented double acting, internally compressing, positive displacement rotary compressor of innovative design. The Blade Compressor is in production for waste-water treatment, and will soon be launched for a range of applications at higher pressure ratios. In order to aid the design and development process, a thermodynamic and gas dynamic simulation program has been written in house. The software has been successfully used to optimise geometries and running conditions of current designs, and is also being used to evaluate future designs for different applications and markets. The simulation code has three main elements. A positive displacement chamber model, a leakage model and a gas dynamic model to simulate gas flow through ports and to track pressure waves in the inlet and outlet pipes. All three of these models are interlinked in order to track mass and energy flows within the system. A correlation study has been carried out to verify the software. The main correlation markers used were mass flow, chamber pressure, pressure wave tracking in the outlet pipe, and volumetric efficiency. It will be shown that excellent correlation has been achieved between measured and simulated data. Mass flow predictions were to within 2% of measured data, and the timings and magnitudes of all major gas dynamic effects were well replicated. The simulation will be further developed in the near future to help with the optimisation of exhaust and inlet silencers.

  10. Numerical Simulations for Enhanced Methane Recovery from Gas Hydrate Accumulations by Utilizing CO2 Sequestration

    NASA Astrophysics Data System (ADS)

    Sridhara, Prathyusha

    In 2013, the International Energy Outlook (EIA, 2013) projected that global energy demand will grow by 56% between 2010 and 2040. Despite strong growth in renewable energy supplies, much of this growth is expected to be met by fossil fuels. Concerns ranging from greenhouse gas emissions and energy security are spawning new interests for other sources of energy including renewable and unconventional fossil fuel such as shale gas and oil as well as gas hydrates. The production methods as well as long-term reservoir behavior of gas hydrate deposits have been under extensive investigation. Reservoir simulators can be used to predict the production potentials of hydrate formations and to determine which technique results in enhanced gas recovery. In this work, a new simulation tool, Mix3HydrateResSim (Mix3HRS), which accounts for complex thermodynamics of multi-component hydrate phase comprised of varying hydrate solid crystal structure, is used to perform the CO2-assisted production technique simulations from CH4 hydrate accumulations. The simulator is one among very few reservoir simulators which can simulate the process of CH4 substitution by CO2 (and N2 ) in the hydrate lattice. Natural gas hydrate deposits around the globe are categorized into three different classes based on the characteristics of the geological sediments present in contact with the hydrate bearing deposits. Amongst these, the Class 2 hydrate accumulations predominantly confirmed in the permafrost and along seashore, are characterized by a mobile aqueous phase underneath a hydrate bearing sediment. The exploitation of such gas hydrate deposits results in release of large amounts of water due to the presence of permeable water-saturated sediments encompassing the hydrate deposits, thus lowering the produced gas rates. In this study, a suite of numerical simulation scenarios with varied complexity are considered which aimed at understanding the underlying changes in physical, thermodynamic and

  11. Geopressured-geothermal test of the EDNA Delcambre No. 1 well, Tigre Lagoon Field, Vermilion Parish, Louisiana: analysis of water an dissolved natural gas. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hankins, B.E.; Karkalits, O.C.

    1978-09-01

    The Edna Delcambre et al. No. 1 gas well, shut-in since June 1975, was made available for the project. Two geopressured sand-bed aquifers were tested: sand No. 3 at a depth of 12,900 feet and sand No. 1 at a depth of 12,600 feet. Each aquifer was subjected to flow tests which lasted approximately three weeks in each case. Water samples were obtained during flow testing of the two geopressured aquifers. The water contained 11.3 to 13.3% dissolved solids. Several radioactive species were measured. Radium-226 was found to be approximately 10 times more concentrated than the average amount observed inmore » surface waters. No appreciable amount of heavy metals was detected. Recombination studies at bottom-hole conditions indicate the solubility of natural gas per barrel of water to be about 24 SCF. The methane content was 93 to 95%, and the gas had a heating value in the range of 1020 to 1070 Btu/cu.ft. During the flow tests, the gas/water ratio at the well-head was observed to be 45 to 88 SCF/Bbl water produced. (MHR)« less

  12. Gas Eruptions Taper Off in Northwestern Oklahoma.

    ERIC Educational Resources Information Center

    Preston, Don

    1980-01-01

    Describes the eruption of inflammable natural gas from the ground surface in the Edith area near Camp Houston. Determining the source of the gas, the results established the Chester-Oswago interval as the most likely source. The surface venting has declined steadily; the likelihood of finding its cause is also described. (SK)

  13. Development of a prototype for dissolved CO2 rapid measurement and preliminary tests

    NASA Astrophysics Data System (ADS)

    Li, Meng; Guo, Jinjia; Zhang, Zhihao; Luo, Zhao; Qin, Chuan; Zheng, Ronger

    2017-10-01

    The measurements of dissolved CO2 in seawater is of great significance for the study of global carbon cycle. At present, the commercial sensors used for dissolved CO2 measurements are mostly equipped with permeable membranes for the purpose of gas-liquid separation, with the advantages of easy operation, low cost, etc.. However, most of these devices measure CO2 after reaching gas equilibrium, so it takes a few minutes to respond, which limited its applications in rapid measurements. In this paper, a set of prototype was developed for the rapid measurements of dissolved CO2. The system was built basing the direct absorption TDLAS. To detect the CO2 absorption line located at 4991.26 cm-1 , a fiber-coupled DFB laser operating at 2004 nm was selected as the light source. A Herriott type multi-pass cavity with an effective optical path length of 10 m and an inner volume of 90 mL was used for absorption measurements. A detection limit of 26 μatm can be obtained with this compact cavity. To realize the rapid measurements of dissolved CO2, a degasser with high degassing rate was necessary. A hollow fiber membrane with a large permeable area used in this paper can achieve degassing rate up to 2.88 kPa/min. Benefitted from the high degassing rate of the degasser and high sensitivity of the compact TDLAS system, a rapid measurement of dissolved CO2 in water can be achieved within 1s time, and the response time of the prototype when the dissolved CO2 concentration changed abruptly in actual measurement was 15 s. To evaluate the performance of the prototype, comparison measurements were carried out with a commercial mass spectrometer. The dissolved CO2 in both seawater and tap-water was measured, and the experimental results showed good consistent trends with R2 of 0.973 and 0.931. The experimental results proved the feasibility of dissolved CO2 rapid measurement. In the near future, more system evaluation experiments will be carried out and the system will be further

  14. Turboexpanders with pressurized magnetic bearings for off-shore applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agahi, R.R.; Ershaghi, B.; Baudelocque, L.

    1995-12-31

    There are two primary parameters that encourage the use of magnetic bearings in turbomachinery: oil-free process and space requirements. For cryogenic processes such as hydrogen purification and ethylene plants, oil free process is the primary objective. In the case of off-shore platforms for oil and gas production, the occupied space and weight are of prime concern. In off-shore operations, the process gas density is usually higher than in normal process plants because the gas is untreated and at high pressure. High density process gas generates more windage loss and may also cause excessive radial load to journal bearings. The bearingmore » assembly design should be suitable for sour gas environments as well. Furthermore, the thrust bearing system should withstand process fluctuations which are more severe due to high pressure. In this paper, the authors explain their experience of designing a turboexpander-compressor with magnetic bearings for an off-shore oil production platform. They will present side load analysis and their solutions for heat dissipation and coping with process fluctuations.« less

  15. The persistence of natural CO2 accumulations over millennial timescales: Integrating noble gas and reservoir data at Bravo Dome, NM

    NASA Astrophysics Data System (ADS)

    Akhbari, D.

    2017-12-01

    Bravo Dome, the largest CO2 reservoir in the US, is a hydrogeologically closed system that has stored a very large amount of CO2 on millennial time scales. The pre-production gas pressures in Bravo Dome indicate that the reservoir is highly under-pressured and is divided into separate pressure compartments that do not communicate hydrologically. Previous studies used the noble gas composition at Bravo Dome to constrain the amount of dissolved CO2 into the brine. This CO2 dissolution into brine plays an important role in the observed under-pressure at the reservoir. However, the dissolution rates and transport mechanisms remain unknown. In this study, we are looking into reservoir pressures and noble gas composition in the northeastern section of the reservoir to constrain timescales of CO2 dissolution. We are interested in northeastern part of the reservoir because the largest amount of CO2 was dissolved into brine in this section. Also, we specifically look into the evolution of the CO2/3He and 20Ne concentration during convective CO2 dissolution at Bravo Dome. 20Ne has atmospheric origin and is initially in the brine, while 3He and CO2 have magmatic sources and were introduced with the gas. CO2/3He decreases as more CO2 dissolves into brine, due to the higher solubility of CO2 compare to that of 3He. However, 20Ne concentration in the gas increases due to exsolution of 20Ne from brine into the gas phase. We present 2D numerical simulation that demonstrate the persistence of CO2 over 1Ma and reproduce the observed reservoir pressures and noble gas compositions. Our results indicate that convection is required to produce observed changes in gas composition. But diffusion makes a significant contribution to mass transport.

  16. Fabrication of simulated DUPIC fuel

    NASA Astrophysics Data System (ADS)

    Kang, Kweon Ho; Song, Ki Chan; Park, Hee Sung; Moon, Je Sun; Yang, Myung Seung

    2000-12-01

    Simulated DUPIC fuel provides a convenient way to investigate the DUPIC fuel properties and behavior such as thermal conductivity, thermal expansion, fission gas release, leaching, and so on without the complications of handling radioactive materials. Several pellets simulating the composition and microstructure of DUPIC fuel are fabricated by resintering the powder, which was treated through OREOX process of simulated spent PWR fuel pellets, which had been prepared from a mixture of UO2 and stable forms of constituent nuclides. The key issues for producing simulated pellets that replicate the phases and microstructure of irradiated fuel are to achieve a submicrometre dispersion during mixing and diffusional homogeneity during sintering. This study describes the powder treatment, OREOX, compaction and sintering to fabricate simulated DUPIC fuel using the simulated spent PWR fuel. The homogeneity of additives in the powder was observed after attrition milling. The microstructure of the simulated spent PWR fuel agrees well with the other studies. The leading structural features observed are as follows: rare earth and other oxides dissolved in the UO2 matrix, small metallic precipitates distributed throughout the matrix, and a perovskite phase finely dispersed on grain boundaries.

  17. PCBs, PCDD/Fs and PAHs in dissolved, suspended and settling particulate matrixes from the Baltic Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naef, C.; Broman, D.; Zebuehr, Y.

    The occurrence and dynamics of polychlorinated biphenyls (PCBs), dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and polycyclic aromatic hydrocarbons (PAHs) are discussed on the basis of results from samples taken at pristine coastal and off shore locations in the Baltic Sea. The sampling techniques used were high volume cross flow filtration and sediment traps for suspended and settling particulate matter, respectively, and polyurethane foam adsorbents for the compounds associated with the apparently dissolved fractions. All samples were Soxhlet extracted with toluene and separated on a HPLC system followed by quantification on GS/MS. The importance of parameters such as concentrations of particulate lipids, particulatemore » organic carbon and dissolved organic carbon, etc. for the distribution of the compounds between the suspended and settling particulate matrixes and the dissolved phase in the water are discussed. In situ determined particulate organic carbon-water partition coefficients as well as predicted dissolved organic carbon-water partition coefficients and approximations of the average ``truly`` dissolved concentrations are presented. The particulate and dissolved concentrations in the mixed surface layer are discussed in perspective to the particulate flux of PCBs, PCDD/Fs and PAHs.« less

  18. You Sunk My Constitution: Using a Popular Off-the-Shelf Board Game to Simulate Political Concepts

    ERIC Educational Resources Information Center

    Bridge, Dave

    2014-01-01

    Using an example, this article demonstrates how instructors can make use of popular off-the-shelf board games to model politics. I show how the rules of the popular board game "Battleship" can be manipulated to simulate centralization of power and, more specifically, the differences between the Articles of Confederation and the…

  19. CFD simulation of gas and non-Newtonian fluid two-phase flow in anaerobic digesters.

    PubMed

    Wu, Binxin

    2010-07-01

    This paper presents an Eulerian multiphase flow model that characterizes gas mixing in anaerobic digesters. In the model development, liquid manure is assumed to be water or a non-Newtonian fluid that is dependent on total solids (TS) concentration. To establish the appropriate models for different TS levels, twelve turbulence models are evaluated by comparing the frictional pressure drops of gas and non-Newtonian fluid two-phase flow in a horizontal pipe obtained from computational fluid dynamics (CFD) with those from a correlation analysis. The commercial CFD software, Fluent12.0, is employed to simulate the multiphase flow in the digesters. The simulation results in a small-sized digester are validated against the experimental data from literature. Comparison of two gas mixing designs in a medium-sized digester demonstrates that mixing intensity is insensitive to the TS in confined gas mixing, whereas there are significant decreases with increases of TS in unconfined gas mixing. Moreover, comparison of three mixing methods indicates that gas mixing is more efficient than mixing by pumped circulation while it is less efficient than mechanical mixing.

  20. Thermal transistor utilizing gas-liquid transition.

    PubMed

    Komatsu, Teruhisa S; Ito, Nobuyasu

    2011-01-01

    We propose a simple thermal transistor, a device to control heat current. In order to effectively change the current, we utilize the gas-liquid transition of the heat-conducting medium (fluid) because the gas region can act as a good thermal insulator. The three terminals of the transistor are located at both ends and the center of the system, and are put into contact with distinct heat baths. The key idea is a special arrangement of the three terminals. The temperature at one end (the gate temperature) is used as an input signal to control the heat current between the center (source, hot) and another end (drain, cold). Simulating the nanoscale systems of this transistor, control of heat current is demonstrated. The heat current is effectively cut off when the gate temperature is cold and it flows normally when it is hot. By using an extended version of this transistor, we also simulate a primitive application for an inverter.

  1. Adsorption of mercury by activated carbon prepared from dried sewage sludge in simulated flue gas.

    PubMed

    Park, Jeongmin; Lee, Sang-Sup

    2018-04-25

    Conversion of sewage sludge to activated carbon is attractive as an alternative method to ocean dumping for the disposal of sewage sludge. Injection of activated carbon upstream of particulate matter control devices has been suggested as a method to remove elemental mercury from flue gas. Activated carbon was prepared using various activation temperatures and times and was tested for their mercury adsorption efficiency using lab-scale systems. To understand the effect of the physical property of the activated carbon, its mercury adsorption efficiency was investigated as a function of their Brunauer-Emmett-Teller (BET) surface area. Two simulated flue gas conditions: (1) without hydrogen chloride (HCl) and (2) with 20 ppm HCl, were used to investigate the effect of flue gas composition on the mercury adsorption capacity of activated carbon. Despite very low BET surface area of the prepared sewage sludge activated carbons, their mercury adsorption efficiencies were comparable under both simulated flue gas conditions to those of pinewood and coal activated carbons. After injecting HCl into the simulated flue gas, all sewage sludge activated carbons demonstrated high adsorption efficiencies, i.e., more than 87%, regardless of their BET surface area. IMPLICATIONS We tested activated carbons prepared from dried sewage sludge to investigate the effect of their physical properties on their mercury adsorption efficiency. Using two simulated flue gas conditions, we conducted mercury speciation for the outlet gas. We found that the sewage sludge activated carbon had comparable mercury adsorption efficiency to pinewood and coal activated carbons, and the presence of HCl minimized the effect of physical property of the activated carbon on its mercury adsorption efficiency.

  2. The Benthic Exchange of O2, N2 and Dissolved Nutrients Using Small Core Incubations.

    PubMed

    Owens, Michael S; Cornwell, Jeffrey C

    2016-08-03

    The measurement of sediment-water exchange of gases and solutes in aquatic sediments provides data valuable for understanding the role of sediments in nutrient and gas cycles. After cores with intact sediment-water interfaces are collected, they are submerged in incubation tanks and kept under aerobic conditions at in situ temperatures. To initiate a time course of overlying water chemistry, cores are sealed without bubbles using a top cap with a suspended stirrer. Time courses of 4-7 sample points are used to determine the rate of sediment water exchange. Artificial illumination simulates day-time conditions for shallow photosynthetic sediments, and in conjunction with dark incubations can provide net exchanges on a daily basis. The net measurement of N2 is made possible by sampling a time course of dissolved gas concentrations, with high precision mass spectrometric analysis of N2:Ar ratios providing a means to measure N2 concentrations. We have successfully applied this approach to lakes, reservoirs, estuaries, wetlands and storm water ponds, and with care, this approach provides valuable information on biogeochemical balances in aquatic ecosystems.

  3. Modelling in-stream temperature and dissolved oxygen at sub-daily time steps: an application to the River Kennet, UK.

    PubMed

    Williams, Richard J; Boorman, David B

    2012-04-15

    The River Kennet in southern England shows a clear diurnal signal in both water temperature and dissolved oxygen concentrations through the summer months. The water quality model QUESTOR was applied in a stepwise manner (adding modelled processes or additional data) to simulate the flow, water temperature and dissolved oxygen concentrations along a 14 km reach. The aim of the stepwise model building was to find the simplest process-based model which simulated the observed behaviour accurately. The upstream boundary used was a diurnal signal of hourly measurements of water temperature and dissolved oxygen. In the initial simulations, the amplitude of the signal quickly reduced to zero as it was routed through the model; a behaviour not seen in the observed data. In order to keep the correct timing and amplitude of water temperature a heating term had to be introduced into the model. For dissolved oxygen, primary production from macrophytes was introduced to better simulate the oxygen pattern. Following the modifications an excellent simulation of both water temperature and dissolved oxygen was possible at an hourly resolution. It is interesting to note that it was not necessary to include nutrient limitation to the primary production model. The resulting model is not sufficiently proven to support river management but suggests that the approach has some validity and merits further development. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  4. Plan for radionuclide tracer studies of the residence time distribution in the Wilsonville dissolver and preheater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jolley, R.L.; Begovich, J.M.; Brashear, H.R.

    1983-12-01

    Stimulus-response measurements using radiotracers to measure residence time distribution (RTD) and hydrodynamic parameters for the preheaters and dissolvers at the Ft. Lewis Solvent Refined Coal (SRC) and the Exxon Donor Solvent (EDS) coal conversion pilot plants are reviewed. A plan is also presented for a series of radioactive tracer studies proposed for the Advanced Coal Liquefaction Facility at Wilsonville, Alabama, to measure the RTD for the preheater and dissolvers in the SRC-I mode. The tracer for the gas phase will be /sup 133/Xe, and /sup 198/Au (on carbonized resin or as an aqueous colloidal suspension) will be used as themore » slurry tracer. Four experimental phases are recommended for the RTD tracer studies: (1) preheater; (2) dissolver with 100% takeoff; (3) dissolver with 100% takeoff and solids withdrawal; and (4) dissolver with 50% takeoff. Eighteen gas-tracer and 22 liquid-tracer injections are projected to accomplish the four experimental phases. Two to four tracer injections are projected for preliminary tests to ensure the capability of safe injection of the radiotracers and the collection of statistically significant data. A complete projected cost and time schedule is provided, including procurement of necessary components, preparation of the radiotracers, assembly and testing of tracer injection apparatus and detection systems, onsite work and tracer injections, laboratory experimentation, data analysis, and report writing.« less

  5. Pressure of the hot gas in simulations of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Planelles, S.; Fabjan, D.; Borgani, S.; Murante, G.; Rasia, E.; Biffi, V.; Truong, N.; Ragone-Figueroa, C.; Granato, G. L.; Dolag, K.; Pierpaoli, E.; Beck, A. M.; Steinborn, Lisa K.; Gaspari, M.

    2017-06-01

    We analyse the radial pressure profiles, the intracluster medium (ICM) clumping factor and the Sunyaev-Zel'dovich (SZ) scaling relations of a sample of simulated galaxy clusters and groups identified in a set of hydrodynamical simulations based on an updated version of the treepm-SPH GADGET-3 code. Three different sets of simulations are performed: the first assumes non-radiative physics, the others include, among other processes, active galactic nucleus (AGN) and/or stellar feedback. Our results are analysed as a function of redshift, ICM physics, cluster mass and cluster cool-coreness or dynamical state. In general, the mean pressure profiles obtained for our sample of groups and clusters show a good agreement with X-ray and SZ observations. Simulated cool-core (CC) and non-cool-core (NCC) clusters also show a good match with real data. We obtain in all cases a small (if any) redshift evolution of the pressure profiles of massive clusters, at least back to z = 1. We find that the clumpiness of gas density and pressure increases with the distance from the cluster centre and with the dynamical activity. The inclusion of AGN feedback in our simulations generates values for the gas clumping (√{C}_{ρ }˜ 1.2 at R200) in good agreement with recent observational estimates. The simulated YSZ-M scaling relations are in good accordance with several observed samples, especially for massive clusters. As for the scatter of these relations, we obtain a clear dependence on the cluster dynamical state, whereas this distinction is not so evident when looking at the subsamples of CC and NCC clusters.

  6. Dissolved methane occurrences in aquifers in the footprint of Texas shale plays and their controls

    NASA Astrophysics Data System (ADS)

    Nicot, J. P.; Mickler, P. J.; Larson, T.; Darvari, R.; Smyth, R. C.

    2015-12-01

    Many constituents typically associated with oil and gas production, such as methane and higher-order hydrocarbons, exist naturally in shallow groundwater. Recent studies of aquifers in the footprint of several gas plays across the US have showed that (1) dissolved thermogenic methane may or may not be present in the shallow subsurface and (2) shallow thermogenic methane could be naturally occurring and emplaced through mostly vertical migration over geologic time and is not necessarily a consequence of gas production from a gas play. A total of 800+ water wells have been sampled across the state of Texas to characterize shallow methane in fresh-water aquifers overlying shale plays and other tight formations (Barnett, Eagle Ford, Haynesville shale areas as well as in the Delaware Basin of West Texas). Analytical results suggest that dissolved methane is not widespread in shallow groundwater and that, when present at concentration greater than 10 mg/L, is often of natural but thermogenic or mixed origin according to the isotopic signature and to the presence of other light hydrocarbons.

  7. Vibration-Induced Gas-Liquid Interface Breakup

    NASA Astrophysics Data System (ADS)

    O'Hern, Timothy; Torczynski, John; Romero, Ed; Shelden, Bion

    2010-11-01

    Gas-liquid interfaces can be forced to break up when subjected to vibrations within critical ranges of frequency and amplitude. This breakup mechanism was examined experimentally using deep layers of silicone oils over a range of viscosity and sinusoidal, primarily axial vibration conditions that can produce dramatic disturbances at the gas-liquid free surface. Although small-amplitude vibrations produce standing Faraday waves, large-amplitude vibrations produce liquid jets into the gas, droplets pinching off from the jets, gas cavities in the liquid from droplet impact, and bubble transport below the interface. Experiments used several different silicone oils over a range of pressures and vibration conditions. Computational simulations exhibiting similar behavior will be included in the presentation. Applications include liquid fuel rockets, inertial sensing devices, moving vehicles, mixing processes, and acoustic excitation. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. Pockmarks off Big Sur, California

    USGS Publications Warehouse

    Paull, C.; Ussler, W.; Maher, N.; Greene, H. Gary; Rehder, G.; Lorenson, T.; Lee, H.

    2002-01-01

    A pockmark field was discovered during EM-300 multi-beam bathymetric surveys on the lower continental slope off the Big Sur coast of California. The field contains ??? 1500 pockmarks which are between 130 and 260 m in diameter, and typically are 8-12 m deep located within a 560 km2 area. To investigate the origin of these features, piston cores were collected from both the interior and the flanks of the pockmarks, and remotely operated vehicle observation (ROV) video and sampling transects were conducted which passed through 19 of the pockmarks. The water column within and above the pockmarks was sampled for methane concentration. Piston cores and ROV collected push cores show that the pockmark field is composed of monotonous fine silts and clays and the cores within the pockmarks are indistinguishable from those outside the pockmarks. No evidence for either sediment winnowing or diagenetic alteration suggestive of fluid venting was obtained. 14C measurements of the organic carbon in the sediments indicate continuous sedimentation throughout the time resolution of the radiocarbon technique ( ??? 45000 yr BP), with a sedimentation rate of ??? 10 cm per 1000 yr both within and between the pockmarks. Concentrations of methane, dissolved inorganic carbon, sulfate, chloride, and ammonium in pore water extracted from within the cores are generally similar in composition to seawater and show little change with depth, suggesting low biogeochemical activity. These pore water chemical gradients indicate that neither significant accumulations of gas are likely to exist in the shallow subsurface ( ??? 100 m) nor is active fluid advection occurring within the sampled sediments. Taken together the data indicate that these pockmarks are more than 45000 yr old, are presently inactive, and contain no indications of earlier fluid or gas venting events. ?? 2002 Elsevier Science B.V. All rights reserved.

  9. The impact of an underground cut-off wall on nutrient dynamics in groundwater in the lower Wang River watershed, China.

    PubMed

    Kang, Pingping; Xu, Shiguo

    2017-03-01

    Underground cut-off walls in coastal regions are mainly used to prevent saltwater intrusion, but their impact on nutrient dynamics in groundwater is not clear. In this study, a combined analysis of multiple isotopes ([Formula: see text]) and nitrogen and phosphorus concentrations is used in order to assess the impact of the underground cut-off walls on the nutrient dynamics in groundwater in the lower Wang River watershed, China. Compared with the nitrogen and phosphorus concentrations in groundwater downstream of the underground cut-off walls, high [Formula: see text] and total dissolved nitrogen concentrations and similar concentration levels of [Formula: see text] and total dissolved phosphorus are found in groundwater upstream of the underground cut-off walls. The isotopic data indicated the probable occurrence of denitrification and nitrification processes in groundwater upstream, whereas the fingerprint of these processes was not shown in groundwater downstream. The management of fertilizer application is critical to control nitrogen concentrations in groundwater restricted by the underground cut-off walls.

  10. Large-eddy simulation of dense gas dispersion over a simplified urban area

    NASA Astrophysics Data System (ADS)

    Wingstedt, E. M. M.; Osnes, A. N.; Åkervik, E.; Eriksson, D.; Reif, B. A. Pettersson

    2017-03-01

    Dispersion of neutral and dense gas over a simplified urban area, comprising four cubes, has been investigated by the means of large-eddy simulations (LES). The results have been compared to wind tunnel experiments and both mean and fluctuating quantities of velocity and concentration are in very good agreement. High-quality inflow profiles are necessary to achieve physically realistic LES results. In this study, profiles matching the atmospheric boundary layer flow in the wind tunnel, are generated by means of a separate precursor simulation. Emission of dense gas dramatically alters the flow in the near source region and introduces an upstream dispersion. The resulting dispersion patterns of neutral and dense gas differ significantly, where the plume in the latter case is wider and shallower. The dense gas is highly affected by the cube array, which seems to act as a barrier, effectively deflecting the plume. This leads to higher concentrations outside of the array than inside. On the contrary, the neutral gas plume has a Gaussian-type shape, with highest concentrations along the centreline. It is found that the dense gas reduces the vertical and spanwise turbulent momentum transport and, as a consequence, the turbulence kinetic energy. The reduction coincides with the area where the gradient Richardson number exceeds its critical value, i.e. where the flow may be characterized as stably stratified. Interestingly, this region does not correspond to where the concentration of dense gas is the highest (close to the ground), as this is also where the largest velocity gradients are to be found. Instead there is a layer in the middle of the dense gas cloud where buoyancy is dynamically dominant.

  11. Distribution of polycyclic aromatic hydrocarbons in southern Chesapeake Bay surface water: Evaluation of three methods for determining freely dissolved water concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustafson, K.E.; Dickhut, R.M.

    1997-03-01

    Gas sparging, semipermeable-membrane devices (SPMDs), and filtration with sorption of dissolved polycyclic aromatic hydrocarbons (PAHs) to XAD-2 resin were evaluated for determining the concentrations of freely dissolved PAHs in estuarine waters of southern Chesapeake Bay at sites ranging from rural to urban and highly industrialized. Gas sparging had significant sampling artifacts due to particle scavenging by rising bubbles, and SPMDs were kinetically limited for four-ring and larger PAHs relative to short-term temporal changes in water concentrations. Filtration with sorption of the dissolved contaminant fraction to XAD-2 resin was found to be the most accurate and feasible method for determining concentrationsmore » of freely dissolved PAHs in estuarine water. Concentrations and distribution coefficients of dissolved and particulate PAHs were measured using the filtration/XAD-2 method. Concentrations of PAHs in surface waters of southern Chesapeake Bay were higher than those reported for the northern bay; concentrations in the Elizabeth River were elevated relative to all other sites. A gradient for particulate PAHs was observed from urban to remote sites. No seasonal trends were observed in dissolved or particle-bound PAH fractions at any site. Distributions of dissolved and particulate PAHs in surface waters of the Chesapeake Bay are near equilibrium at all locations and during all seasons.« less

  12. Modeling the Impact of Arctic Shipping Pollution on Air Quality off the Coast of Northern Norway

    NASA Astrophysics Data System (ADS)

    Thomas, J. L.; Law, K.; Marelle, L.; Raut, J.; Jalkanen, J.; Johansson, L.; Roiger, A.; Schlager, H.; Kim, J.; Reiter, A.; Weinzierl, B.; Rose, M.; Fast, J. D.

    2013-12-01

    As the Arctic is undergoing rapid and potentially irreversible changes, such as the shrinking and thinning of sea-ice cover, the levels of atmospheric pollution are expected to rise dramatically due to the emergence of local pollution sources including shipping. Shipping routes through the Arctic (such as Russia's Northern Sea Route) are already used as an alternative to the traditional global transit shipping routes. In summer 2012, the ACCESS (Arctic Climate Change, Economy, and Society) aircraft campaign focused on studying pollution sources off the coast of northern Norway to quantify emissions from shipping and other anthropogenic pollution sources. To complement these measurements, a regional chemical transport model is used to study the impact of shipping pollution on gas and aerosol concentrations in the region. WRF-Chem (The Weather Research and Forecasting Model with Chemistry, which simulates gas and aerosols simultaneously with meteorology) is run with real time shipping emissions from STEAM (Ship Traffic Emission Assessment Model) for July 2012. The STEAM model calculates gas and aerosol emissions of marine traffic based on the ship type and location provided by the Automatic Identification System (AIS). Use of real time position, speed, and ship specific information allows for development of emissions with very high spatial (1x1 km) and temporal (30 min) resolution, which are used in the regional model runs. STEAM emissions have been specifically generated for shipping off the coast of Norway during the entire ACCESS campaign period. Simulated ship plumes from high-resolution model runs are compared to aircraft measurements. The regional impact of current summertime shipping is also examined. At present, relatively light ship traffic off the coast of northern Norway results in only a small impact of shipping pollution on regional atmospheric chemistry. The impact of increased future shipping on regional atmospheric chemistry is also assessed.

  13. Eos modeling and reservoir simulation study of bakken gas injection improved oil recovery in the elm coulee field, Montana

    NASA Astrophysics Data System (ADS)

    Pu, Wanli

    The Bakken Formation in the Williston Basin is one of the most productive liquid-rich unconventional plays. The Bakken Formation is divided into three members, and the Middle Bakken Member is the primary target for horizontal wellbore landing and hydraulic fracturing because of its better rock properties. Even with this new technology, the primary recovery factor is believed to be only around 10%. This study is to evaluate various gas injection EOR methods to try to improve on that low recovery factor of 10%. In this study, the Elm Coulee Oil Field in the Williston Basin was selected as the area of interest. Static reservoir models featuring the rock property heterogeneity of the Middle Bakken Member were built, and fluid property models were built based on Bakken reservoir fluid sample PVT data. By employing both compositional model simulation and Todd-Longstaff solvent model simulation methods, miscible gas injections were simulated and the simulations speculated that oil recovery increased by 10% to 20% of OOIP in 30 years. The compositional simulations yielded lower oil recovery compared to the solvent model simulations. Compared to the homogeneous model, the reservoir model featuring rock property heterogeneity in the vertical direction resulted in slightly better oil recovery, but with earlier CO2 break-through and larger CO2 production, suggesting that rock property heterogeneity is an important property for modeling because it has a big effect on the simulation results. Long hydraulic fractures shortened CO2 break-through time greatly and increased CO 2 production. Water-alternating-gas injection schemes and injection-alternating-shut-in schemes can provide more options for gas injection EOR projects, especially for gas production management. Compared to CO2 injection, separator gas injection yielded slightly better oil recovery, meaning separator gas could be a good candidate for gas injection EOR; lean gas generated the worst results. Reservoir

  14. Computer simulation of energy use, greenhouse gas emissions and process economics of the fluid milk process

    USDA-ARS?s Scientific Manuscript database

    On-farm activities associated with fluid milk production contribute approximately 70% of total greenhouse gas (GHG) emissions while off-farm activities arising from milk processing, packaging, and refrigeration, contribute the remainder in the form of energy-related carbon dioxide (CO2) emissions. W...

  15. A new boil-off gas re-liquefaction system for LNG carriers based on dual mixed refrigerant cycle

    NASA Astrophysics Data System (ADS)

    Tan, Hongbo; Shan, Siyu; Nie, Yang; Zhao, Qingxuan

    2018-06-01

    A new boil-off gas (BOG) re-liquefaction system for LNG carriers has been proposed to improve the system energy efficiency. Two cascade mixed refrigerant cycles (or dual mixed refrigerant cycle, DMR) are used to provide the cooling capacity for the re-liquefaction of BOG. The performance of the new system is analysed on the basis of the thermodynamic data obtained in the process simulation in Aspen HYSYS software. The results show that the power consumed in the BOG compressor and the high-temperature mixed refrigerant compressor could be saved greatly due to the reduced mass flow rates of the processed fluids. Assuming the re-liquefaction capacity of the investigated system is 4557.6 kg/h, it is found that the total power consumption can be reduced by 25%, from 3444 kW in the existing system to 2585.8 kW in the proposed system. The coefficient of performance (COP) of 0.25, exergy efficiency of 41.3% and the specific energy consumption (SEC) of 0.589 kWh/kg(LNG) could be achieved in the new system. It exhibits 33% of improvement in the COP and exergy efficiency in comparison with the corresponding values of the existing system. It indicates that employing the DMR based BOG re-liquefaction system could improve the system energy efficiency of LNG carriers substantially.

  16. Numerical simulations of depressurization-induced gas production from gas hydrate reservoirs at the Walker Ridge 312 site, northern Gulf of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myshakin, Evgeniy M.; Gaddipati, Manohar; Rose, Kelly

    2012-06-01

    In 2009, the Gulf of Mexico (GOM) Gas Hydrates Joint-Industry-Project (JIP) Leg II drilling program confirmed that gas hydrate occurs at high saturations within reservoir-quality sands in the GOM. A comprehensive logging-while-drilling dataset was collected from seven wells at three sites, including two wells at the Walker Ridge 313 site. By constraining the saturations and thicknesses of hydrate-bearing sands using logging-while-drilling data, two-dimensional (2D), cylindrical, r-z and three-dimensional (3D) reservoir models were simulated. The gas hydrate occurrences inferred from seismic analysis are used to delineate the areal extent of the 3D reservoir models. Numerical simulations of gas production from themore » Walker Ridge reservoirs were conducted using the depressurization method at a constant bottomhole pressure. Results of these simulations indicate that these hydrate deposits are readily produced, owing to high intrinsic reservoir-quality and their proximity to the base of hydrate stability. The elevated in situ reservoir temperatures contribute to high (5–40 MMscf/day) predicted production rates. The production rates obtained from the 2D and 3D models are in close agreement. To evaluate the effect of spatial dimensions, the 2D reservoir domains were simulated at two outer radii. The results showed increased potential for formation of secondary hydrate and appearance of lag time for production rates as reservoir size increases. Similar phenomena were observed in the 3D reservoir models. The results also suggest that interbedded gas hydrate accumulations might be preferable targets for gas production in comparison with massive deposits. Hydrate in such accumulations can be readily dissociated due to heat supply from surrounding hydrate-free zones. Special cases were considered to evaluate the effect of overburden and underburden permeability on production. The obtained data show that production can be significantly degraded in comparison with a

  17. Using stable isotopes of dissolved oxygen for the determination of gas exchange in the Grand River, Ontario, Canada.

    PubMed

    Jamieson, Terra S; Schiff, Sherry L; Taylor, William D

    2013-02-01

    Gas exchange can be a key component of the dissolved oxygen (DO) mass balance in aquatic ecosystems. Quantification of gas transfer rates is essential for the estimation of DO production and consumption rates, and determination of assimilation capacities of systems receiving organic inputs. Currently, the accurate determination of gas transfer rate is a topic of debate in DO modeling, and there are a wide variety of approaches that have been proposed in the literature. The current study investigates the use of repeated measures of stable isotopes of O₂ and DO and a dynamic dual mass-balance model to quantify gas transfer coefficients (k) in the Grand River, Ontario, Canada. Measurements were conducted over a longitudinal gradient that reflected watershed changes from agricultural to urban. Values of k in the Grand River ranged from 3.6 to 8.6 day⁻¹, over discharges ranging from 5.6 to 22.4 m³ s⁻¹, with one high-flow event of 73.1 m³ s⁻¹. The k values were relatively constant over the range of discharge conditions studied. The range in discharge observed in this study is generally representative of non-storm and summer low-flow events; a greater range in k might be observed under a wider range of hydrologic conditions. Overall, k values obtained with the dual model for the Grand River were found to be lower than predicted by the traditional approaches evaluated, highlighting the importance of determining site-specific values of k. The dual mass balance approach provides a more constrained estimate of k than using DO only, and is applicable to large rivers where other approaches would be difficult to use. The addition of an isotopic mass balance provides for a corroboration of the input parameter estimates between the two balances. Constraining the range of potential input values allows for a direct estimate of k in large, productive systems where other k-estimation approaches may be uncertain or logistically infeasible. Copyright © 2012 Elsevier Ltd

  18. Characterization of Vacuum Facility Background Gas Through Simulation and Considerations for Electric Propulsion Ground Testing

    NASA Technical Reports Server (NTRS)

    Yim, John T.; Burt, Jonathan M.

    2015-01-01

    The background gas in a vacuum facility for electric propulsion ground testing is examined in detail through a series of cold flow simulations using a direct simulation Monte Carlo (DSMC) code. The focus here is on the background gas itself, its structure and characteristics, rather than assessing its interaction and impact on thruster operation. The background gas, which is often incorrectly characterized as uniform, is found to have a notable velocity within a test facility. The gas velocity has an impact on the proper measurement of pressure and the calculation of ingestion flux to a thruster. There are also considerations for best practices for tests that involve the introduction of supplemental gas flows to artificially increase the background pressure. All of these effects need to be accounted for to properly characterize the operation of electric propulsion thrusters across different ground test vacuum facilities.

  19. Kinetic simulations of gas breakdown in the dense plasma focus

    DOE PAGES

    Bennett, N.; Blasco, M.; Breeding, K.; ...

    2017-06-09

    We describe the first fully-kinetic, collisional, and electromagnetic simulations of the breakdown phase of a MA-scale dense plasma focus and are shown to agree with measured electrical characteristics, including breakdown time. In the model, avalanche ionization is driven by cathode electron emission and this results in incomplete gas breakdown along the insulator. This reinforces the importance of the conditioning process that creates a metallic layer on the insulator surface. The simulations, nonetheless, help explain the relationship between the gas pressure, the insulator length, and the coaxial gap width. In the past, researchers noted three breakdown patterns related to pressure. Simulationmore » and analytic results show that at low pressures, long ionization path lengths lead to volumetric breakdown, while high pressures lead to breakdown across the relatively small coaxial electrode gap. In an intermediate pressure regime, ionization path lengths are comparable to the insulator length which promotes ideal breakdown along the insulator surface.« less

  20. Short-range, overpressure-driven methane migration in coarse-grained gas hydrate reservoirs

    DOE PAGES

    Nole, Michael; Daigle, Hugh; Cook, Ann E.; ...

    2016-08-31

    Two methane migration mechanisms have been proposed for coarse-grained gas hydrate reservoirs: short-range diffusive gas migration and long-range advective fluid transport from depth. Herein we demonstrate that short-range fluid flow due to overpressure in marine sediments is a significant additional methane transport mechanism that allows hydrate to precipitate in large quantities in thick, coarse-grained hydrate reservoirs. Two-dimensional simulations demonstrate that this migration mechanism, short-range advective transport, can supply significant amounts of dissolved gas and is unencumbered by limitations of the other two end-member mechanisms. Here, short-range advective migration can increase the amount of methane delivered to sands as compared tomore » the slow process of diffusion, yet it is not necessarily limited by effective porosity reduction as is typical of updip advection from a deep source.« less

  1. Short-range, overpressure-driven methane migration in coarse-grained gas hydrate reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nole, Michael; Daigle, Hugh; Cook, Ann E.

    Two methane migration mechanisms have been proposed for coarse-grained gas hydrate reservoirs: short-range diffusive gas migration and long-range advective fluid transport from depth. Herein we demonstrate that short-range fluid flow due to overpressure in marine sediments is a significant additional methane transport mechanism that allows hydrate to precipitate in large quantities in thick, coarse-grained hydrate reservoirs. Two-dimensional simulations demonstrate that this migration mechanism, short-range advective transport, can supply significant amounts of dissolved gas and is unencumbered by limitations of the other two end-member mechanisms. Here, short-range advective migration can increase the amount of methane delivered to sands as compared tomore » the slow process of diffusion, yet it is not necessarily limited by effective porosity reduction as is typical of updip advection from a deep source.« less

  2. Lattice Boltzmann Simulation of Shale Gas Transport in Organic Nano-Pores

    PubMed Central

    Zhang, Xiaoling; Xiao, Lizhi; Shan, Xiaowen; Guo, Long

    2014-01-01

    Permeability is a key parameter for investigating the flow ability of sedimentary rocks. The conventional model for calculating permeability is derived from Darcy's law, which is valid only for continuum flow in porous rocks. We discussed the feasibility of simulating methane transport characteristics in the organic nano-pores of shale through the Lattice Boltzmann method (LBM). As a first attempt, the effects of high Knudsen number and the associated slip flow are considered, whereas the effect of adsorption in the capillary tube is left for future work. Simulation results show that at small Knudsen number, LBM results agree well with Poiseuille's law, and flow rate (flow capacity) is proportional to the square of the pore scale. At higher Knudsen numbers, the relaxation time needs to be corrected. In addition, velocity increases as the slip effect causes non negligible velocities on the pore wall, thereby enhancing the flow rate inside the pore, i.e., the permeability. Therefore, the LBM simulation of gas flow characteristics in organic nano-pores provides an effective way of evaluating the permeability of gas-bearing shale. PMID:24784022

  3. Simultaneous determination of dissolved gases and moisture in mineral insulating oils by static headspace gas chromatography with helium photoionization pulsed discharge detection.

    PubMed

    Jalbert, J; Gilbert, R; Tétreault, P

    2001-07-15

    This paper presents the development of a static headspace capillary gas chromatographic method (HS-GC) for simultaneously determining dissolved gases (H2, O2, N2, CO, CO2, CH4, C2H6, C2H4, C2H2, C3H8) and moisture from a unique 15-mL mineral oil sample. A headspace sampler device is used to equilibrate the sample species in a two-phase system under controlled temperature and agitation conditions. A portion of the equilibrated species is then automatically split-injected into two chromatographic channels mounted on the same GC for their separation. The hydrocarbons and the lighter gases are separated on the first channel by a GS-Q column coupled with a MolSieve 5-A column via a bypass valve, while the moisture is separated on the second channel using a Stabilwax column. The analytes are detected by using two universal pulsed-discharge helium ionization detectors (PDHID). The performance of the method was established using equilibrated vials containing known amounts of gas mixture, water, and blank oil. The signal is linear over the concentration ranges normally found for samples collected from open-breathing power transformers. Determination sensitivity varies with the nature of the species considered with values as high as 21 500 A x 10(-9) s (microg/ g)(-1) for H2O, 46-216 A x 10(-9) s (microL/L)(-1) for the hydrocarbons and carbon oxides, and as low as 8-21 A x 10(-9) s (microL/L)(-1) for the O2 and N2 permanent gases. The detection limit of the method is between 0.08 and 6 microL/L for the dissolved gases, except for O2, N2, and CO2, where higher values are observed due to air intrusion during sampler operations, and 0.1 microg/g for the dissolved water. Ten consecutive measurements in the low and high levels of the calibration curves have shown a precision better than 12% and 6%, respectively, in all cases. A comparison study between the HS-GC method and the ASTM standard procedures on 31 field samples showed a very good agreement of the results. The advantages

  4. Distributional prediction of Pleistocene forearc minibasin turbidites in the NE Nankai Trough area (off central Japan)

    NASA Astrophysics Data System (ADS)

    Egawa, K.; Furukawa, T.; Saeki, T.; Suzuki, K.; Narita, H.

    2011-12-01

    Natural gas hydrate-related sequences commonly provide unclear seismic images due to bottom simulating reflector, a seismic indicator of the theoretical base of gas hydrate stability zone, which usually causes problems for fully analyzing the detailed sedimentary structures and seismic facies. Here we propose an alternative technique to predict the distributional pattern of gas hydrate-related deep-sea turbidites with special reference to a Pleistocene forearc minibasin in the northeastern Nankai Trough area, off central Japan, from the integrated 3D structural and sedimentologic modeling. Structural unfolding and stratigraphic backstripping successively modeled a simple horseshoe-shaped paleobathymetry of the targeted turbidite sequence. Based on best-fit matching of net-to-gross ratio (or sand fraction) between the model and wells, subsequent turbidity current modeling on the restored paleobathymetric surface during a single flow event demonstrated excellent prediction results showing the morphologically controlled turbidity current evolution and selective turbidite sand distribution within the modeled minibasin. Also, multiple turbidity current modeling indicated the stacking sheet turbidites with regression and proximal/distal onlaps in the minibasin due to reflections off an opposing slope, whose sedimentary features are coincident with the seismic interpretation. Such modeling works can help us better understand the depositional pattern of gas hydrate-related, unconsolidated turbidites and also can improve gas hydrate reservoir characterization. This study was financially supported by MH21 Research Consortium.

  5. Simulation of fuel demand for wood-gas in combustion engine

    NASA Astrophysics Data System (ADS)

    Botwinska, Katarzyna; Mruk, Remigiusz; Tucki, Karol; Wata, Mateusz

    2017-10-01

    In the era of the oil crisis and proceeding contamination of the natural environment, it is attempted to substitute fossil raw materials with alternative carriers. For many years, road transport has been considered as one of the main sources of the substances deteriorating air quality. Applicable European directives oblige the member states to implement biofuels and biocomponents into the general fuel market, however, such process is proceeding gradually and relatively slowly. So far, alternative fuels have been used on a large scale to substitute diesel fuel or petrol. Derivatives of vegetable raw materials, such as vegetable oils or their esters and ethanol extracted from biomass, are used to that end. It has been noticed that there is no alternative to LPG which, due to financial reasons, is more and more popular as fuel in passenger cars. In relation to solutions adopted in the past, it has been decided to analyse the option of powering a modern passenger car with wood gas - syngas. Such fuel has been practically used since the 1920's. To that end, a computer simulation created in SciLab environment was carried out. Passenger car Fiat Seicento, fitted with Fire 1.1 8V petrol engine with power of 40kW, whose parameters were used to prepare the model, was selected as the model vehicle. The simulation allows the determination of engine demand on the given fuel. Apart from the wood gas included in the title, petrol, methane and LPG were used. Additionally, the created model enables the determination of the engine power at the time of the indicated fuels supply. The results obtained in the simulation revealed considerable decrease in the engine power when the wood gas was supplied and the increased consumption of this fuel. On the basis of the analysis of the professional literature describing numerous inconveniences connected with the use of this fuel as well as the obtained results, it has been established that using the wood gas as alternative fuel is currently

  6. Probability theory versus simulation of petroleum potential in play analysis

    USGS Publications Warehouse

    Crovelli, R.A.

    1987-01-01

    An analytic probabilistic methodology for resource appraisal of undiscovered oil and gas resources in play analysis is presented. This play-analysis methodology is a geostochastic system for petroleum resource appraisal in explored as well as frontier areas. An objective was to replace an existing Monte Carlo simulation method in order to increase the efficiency of the appraisal process. Underlying the two methods is a single geologic model which considers both the uncertainty of the presence of the assessed hydrocarbon and its amount if present. The results of the model are resource estimates of crude oil, nonassociated gas, dissolved gas, and gas for a geologic play in terms of probability distributions. The analytic method is based upon conditional probability theory and a closed form solution of all means and standard deviations, along with the probabilities of occurrence. ?? 1987 J.C. Baltzer A.G., Scientific Publishing Company.

  7. Dissolved Gases and Ice Fracturing During the Freezing of a Multicellular Organism: Lessons from Tardigrades

    PubMed Central

    Kletetschka, Gunther; Hruba, Jolana

    2015-01-01

    Abstract Three issues are critical for successful cryopreservation of multicellular material: gases dissolved in liquid, thermal conductivity of the tissue, and localization of microstructures. Here we show that heat distribution is controlled by the gas amount dissolved in liquids and that when changing the liquid into solid, the dissolved gases either form bubbles due to the absence of space in the lattice of solids and/or are migrated toward the concentrated salt and sugar solution at the cost of amount of heat required to be removed to complete a solid-state transition. These factors affect the heat distribution in the organs to be cryopreserved. We show that the gas concentration issue controls fracturing of ice when freezing. There are volumetric changes not only when changing the liquid into solid (volume increases) but also reduction of the volume when reaching lower temperatures (volume decreases). We discuss these issues parallel with observations of the cryosurvivability of multicellular organisms, tardigrades, and discuss their analogy for cryopreservation of large organs. PMID:26309797

  8. The comparison of greenhouse gas emissions in sewage treatment plants with different treatment processes.

    PubMed

    Masuda, Shuhei; Sano, Itsumi; Hojo, Toshimasa; Li, Yu-You; Nishimura, Osamu

    2018-02-01

    Greenhouse gas emissions from different sewage treatment plants: oxidation ditch process, double-circulated anoxic-oxic process and anoxic-oxic process were evaluated based on the survey. The methane and nitrous oxide characteristics were discussed based on the gaseous and dissolved gas profiles. As a result, it was found that methane was produced in the sewer pipes and the primary sedimentation tank. Additionally, a ventilation system would promote the gasification of dissolved methane in the first treatment units. Nitrous oxide was produced and emitted in oxic tanks with nitrite accumulation inside the sewage treatment plant. A certain amount of nitrous oxide was also discharged as dissolved gas through the effluent water. If the amount of dissolved nitrous oxide discharge is not included, 7-14% of total nitrous oxide emission would be overlooked. Based on the greenhouse gas calculation, electrical consumption and the N 2 O emission from incineration process were major sources in all the plants. For greenhouse gas reduction, oxidation ditch process has an advantage over the other advanced systems due to lower energy consumption, sludge production, and nitrogen removal without gas stripping. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Results for the DWPF Slurry Mix Evaporator Condensate Tank, Off Gas Condensate Tank, And Recycle Collection Tank Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TERRI, FELLINGER

    2004-12-21

    The Defense Waste Processing Facility, DWPF, currently generates approximately 1.4 million gallons of recycle water per year during Sludge-Only operations. DWPF has minimized condensate generation to 1.4 million gallons by not operating the Steam Atomized Scrubbers, SASs, for the melter off gas system. By not operating the SASs, DWPF has reduced the total volume by approximately 800,000 gallons of condensate per year. Currently, the recycle stream is sent to back to the Tank Farm and processed through the 2H Evaporator system. To alleviate the load on the 2H Evaporator system, an acid evaporator design is being considered as an alternatemore » processing and/or concentration method for the DWPF recycle stream. In order to support this alternate processing option, the DWPF has requested that the chemical and radionuclide compositions of the Off Gas Condensate Tank, OGCT, Slurry Mix Evaporator Condensate Tank, SMECT, Recycle Collection Tank, RCT, and the Decontamination Waste Treatment Tank, DWTT, be determined as a part of the process development work for the acid evaporator design. Samples have been retrieved from the OGCT, RCT, and SMECT and have been sent to the Savannah River National Laboratory, SRNL for this characterization. The DWTT samples have been recently shipped to SRNL. The results for the DWTT samples will be issued at later date.« less

  10. Integrated Turbine Tip Clearance and Gas Turbine Engine Simulation

    NASA Technical Reports Server (NTRS)

    Chapman, Jeffryes W.; Kratz, Jonathan; Guo, Ten-Huei; Litt, Jonathan

    2016-01-01

    Gas turbine compressor and turbine blade tip clearance (i.e., the radial distance between the blade tip of an axial compressor or turbine and the containment structure) is a major contributing factor to gas path sealing, and can significantly affect engine efficiency and operational temperature. This paper details the creation of a generic but realistic high pressure turbine tip clearance model that may be used to facilitate active tip clearance control system research. This model uses a first principles approach to approximate thermal and mechanical deformations of the turbine system, taking into account the rotor, shroud, and blade tip components. Validation of the tip clearance model shows that the results are realistic and reflect values found in literature. In addition, this model has been integrated with a gas turbine engine simulation, creating a platform to explore engine performance as tip clearance is adjusted. Results from the integrated model explore the effects of tip clearance on engine operation and highlight advantages of tip clearance management.

  11. Analysis of maximum allowable fragment heights during dissolution of high flux isotope reactor fuel in an h-canyon dissolver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, G.; Rudisill, T.

    2017-07-17

    As part of the Spent Nuclear Fuel (SNF) processing campaign, H-Canyon is planning to begin dissolving High Flux Isotope Reactor (HFIR) fuel in late FY17 or early FY18. Each HFIR fuel core contains inner and outer fuel elements which were fabricated from uranium oxide (U 3O 8) dispersed in a continuous Al phase using traditional powder metallurgy techniques. Fuels fabricated in this manner, like other SNF’s processed in H-Canyon, dissolve by the same general mechanisms with similar gas generation rates and the production of H 2. The HFIR fuel cores will be dissolved using a flowsheet developed by the Savannahmore » River National Laboratory (SRNL) in either the 6.4D or 6.1D dissolver using a unique insert. Multiple cores will be charged to the same dissolver solution maximizing the concentration of dissolved Al. The recovered U will be down-blended into low-enriched U for subsequent use as commercial reactor fuel. During the development of the HFIR fuel dissolution flowsheet, the cycle time for the initial core was estimated at 28 to 40 h. Once the cycle is complete, H-Canyon personnel will open the dissolver and probe the HFIR insert wells to determine the height of any fuel fragments which did not dissolve. Before the next core can be charged to the dissolver, an analysis of the potential for H 2 gas generation must show that the combined surface area of the fuel fragments and the subsequent core will not generate H 2 concentrations in the dissolver offgas which exceeds 60% of the lower flammability limit (LFL) of H 2 at 200 °C. The objective of this study is to identify the maximum fuel fragment height as a function of the Al concentration in the dissolving solution which will provide criteria for charging successive HFIR cores to an H-Canyon dissolver.« less

  12. High-Resolution Simulations of Gas-Solids Jet Penetration Into a High Density Riser Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tingwen

    2011-05-01

    High-resolution simulations of a gas-solids jet in a 0.3 m diameter and 15.9 m tall circulating fluidized bed (CFB) riser were conducted with the open source software-MFIX. In the numerical simulations, both gas and solids injected through a 1.6 cm diameter radial-directed tube 4.3 m above the bottom distributor were tracked as tracers, which enable the analysis of the characteristics of a two-phase jet. Two jetting gas velocities of 16.6 and 37.2 m/s were studied with the other operating conditions fixed. Reasonable flow hydrodynamics with respect to overall pressure drop, voidage, and solids velocity distributions were predicted. Due to themore » different dynamic responses of gas and particles to the crossflow, a significant separation of gas and solids within the jet region was predicted for both cases. In addition, the jet characteristics based on tracer concentration and tracer mass fraction profiles at different downstream levels are discussed. Overall, the numerical predictions compare favorably to the experimental measurements made at NETL.« less

  13. Analytical solutions for a soil vapor extraction model that incorporates gas phase dispersion and molecular diffusion

    NASA Astrophysics Data System (ADS)

    Huang, Junqi; Goltz, Mark N.

    2017-06-01

    To greatly simplify their solution, the equations describing radial advective/dispersive transport to an extraction well in a porous medium typically neglect molecular diffusion. While this simplification is appropriate to simulate transport in the saturated zone, it can result in significant errors when modeling gas phase transport in the vadose zone, as might be applied when simulating a soil vapor extraction (SVE) system to remediate vadose zone contamination. A new analytical solution for the equations describing radial gas phase transport of a sorbing contaminant to an extraction well is presented. The equations model advection, dispersion (including both mechanical dispersion and molecular diffusion), and rate-limited mass transfer of dissolved, separate phase, and sorbed contaminants into the gas phase. The model equations are analytically solved by using the Laplace transform with respect to time. The solutions are represented by confluent hypergeometric functions in the Laplace domain. The Laplace domain solutions are then evaluated using a numerical Laplace inversion algorithm. The solutions can be used to simulate the spatial distribution and the temporal evolution of contaminant concentrations during operation of a soil vapor extraction well. Results of model simulations show that the effect of gas phase molecular diffusion upon concentrations at the extraction well is relatively small, although the effect upon the distribution of concentrations in space is significant. This study provides a tool that can be useful in designing SVE remediation strategies, as well as verifying numerical models used to simulate SVE system performance.

  14. Project ARGO: Gas phase formation in simulated microgravity

    NASA Technical Reports Server (NTRS)

    Powell, Michael R.; Waligora, James M.; Norfleet, William T.; Kumar, K. Vasantha

    1993-01-01

    The ARGO study investigated the reduced incidence of joint pain decompression sickness (DCS) encountered in microgravity as compared with an expected incidence of joint pain DCS experienced by test subjects in Earth-based laboratories (unit gravity) with similar protocols. Individuals who are decompressed from saturated conditions usually acquire joint pain DCS in the lower extremities. Our hypothesis is that the incidence of joint pain DCS can be limited by a significant reduction in the tissue gas micronuclei formed by stress-assisted nucleation. Reductions in dynamic and kinetic stresses in vivo are linked to hypokinetic and adynamic conditions of individuals in zero g. We employed the Doppler ultrasound bubble detection technique in simulated microgravity studies to determine quantitatively the degree of gas phase formation in the upper and lower extremities of test subjects during decompression. We found no evidence of right-to-left shunting through pulmonary vasculature. The volume of gas bubble following decompression was examined and compared with the number following saline contrast injection. From this, we predict a reduced incidence of DCS on orbit, although the incidence of predicted mild DCS still remains larger than that encountered on orbit.

  15. Microstructure simulation of rapidly solidified ASP30 high-speed steel particles by gas atomization

    NASA Astrophysics Data System (ADS)

    Ma, Jie; Wang, Bo; Yang, Zhi-liang; Wu, Guang-xin; Zhang, Jie-yu; Zhao, Shun-li

    2016-03-01

    In this study, the microstructure evolution of rapidly solidified ASP30 high-speed steel particles was predicted using a simulation method based on the cellular automaton-finite element (CAFE) model. The dendritic growth kinetics, in view of the characteristics of ASP30 steel, were calculated and combined with macro heat transfer calculations by user-defined functions (UDFs) to simulate the microstructure of gas-atomized particles. The relationship among particle diameter, undercooling, and the convection heat transfer coefficient was also investigated to provide cooling conditions for simulations. The simulated results indicated that a columnar grain microstructure was observed in small particles, whereas an equiaxed microstructure was observed in large particles. In addition, the morphologies and microstructures of gas-atomized ASP30 steel particles were also investigated experimentally using scanning electron microscopy (SEM). The experimental results showed that four major types of microstructures were formed: dendritic, equiaxed, mixed, and multi-droplet microstructures. The simulated results and the available experimental data are in good agreement.

  16. Numerical simulation of the distribution of individual gas bubbles in shaped sapphire crystals

    NASA Astrophysics Data System (ADS)

    Borodin, A. V.; Borodin, V. A.

    2017-11-01

    The simulation of the effective density of individual gas bubbles in a two-phase melt, consisting of a liquid and gas bubbles, is performed using the virtual model of the thermal unit. Based on the studies, for the first time the theoretically and experimentally grounded mechanism of individual gas bubbles formation in shaped sapphire is proposed. It is shown that the change of the melt flow pattern in crucible affects greatly the bubble density at the crystallization front, and in the crystal. The obtained results allowed reducing the number of individual gas bubbles in sapphire sheets.

  17. Weaning mechanical ventilation after off-pump coronary artery bypass graft procedures directed by noninvasive gas measurements.

    PubMed

    Chakravarthy, Murali; Narayan, Sandeep; Govindarajan, Raghav; Jawali, Vivek; Rajeev, Subramanyam

    2010-06-01

    Partial pressure of carbon dioxide and oxygen were transcutaneously measured in adults after off-pump coronary artery bypass (OPCAB) surgery. The clinical use of such measurements and interchangeability with arterial blood gas measurements for weaning patients from postoperative mechanical ventilation were assessed. This was a prospective observational study. Tertiary referral heart hospital. Postoperative OPCAB surgical patients. Transcutaneous oxygen and carbon dioxide measurements. In this prospective observational study, 32 consecutive adult patients in a tertiary care medical center underwent OPCAB surgery. Noninvasive measurement of respiratory gases was performed during the postoperative period and compared with arterial blood gases. The investigator was blinded to the reports of arterial blood gas studies and weaned patients using a "weaning protocol" based on transcutaneous gas measurement. The number of patients successfully weaned based on transcutaneous measurements and the number of times the weaning process was held up were noted. A total of 212 samples (pairs of arterial and transcutaneous values of oxygen and carbon dioxide) were obtained from 32 patients. Bland-Altman plots and mountain plots were used to analyze the interchangeability of the data. Twenty-five (79%) of the patients were weaned from the ventilator based on transcutaneous gas measurements alone. Transcutaneous carbon dioxide measurements were found to be interchangeable with arterial carbon dioxide during 96% of measurements, versus 79% for oxygen measurements. More than three fourths of the patients were weaned from mechanical ventilation and extubated based on transcutaneous gas values alone after OPCAB surgery. The noninvasive transcutaneous carbon dioxide measurement can be used as a surrogate for arterial carbon dioxide measurement to manage postoperative OPCAB patients. Copyright 2010 Elsevier Inc. All rights reserved.

  18. Characteristics and settling behaviour of particles from blast furnace flue gas washing.

    PubMed

    Kiventerä, Jenni; Leiviskä, Tiina; Keski-Ruismäki, Kirsi; Tanskanen, Juha

    2016-05-01

    A lot of particles from iron-making are removed with blast furnace off-gas and routed to the gas cleaning system. As water is used for cleaning the gas, the produced wash water contains a large amount of particles such as valuable Fe and C. However, the presence of zinc prevents recycling. In addition, the high amount of calcium results in uncontrolled scaling. Therefore, the properties of the wash water from scrubber and sludge, from the Finnish metal industry (SSAB Raahe), were evaluated in this study. Size fractionation of wash water revealed that Fe, Zn, Al, Mn, V, Cr and Cd appeared mainly in the larger fractions (>1.2 μm) and Na, Mg, Si, Ni, K, Cu and As appeared mainly in the smaller fractions (<1.2 μm) or in dissolved form. Calcium was found both in the larger fractions and dissolved (∼60 mg/L). Most of the particles in wash water were included in the 1.2-10 μm particle size and were settled effectively. However, a clear benefit was observed when using a chemical to enhance particle settling. In comparison to 2.5 h of settling without chemical, the turbidity was further decreased by about 94%, iron 85% and zinc 50%. Coagulation-flocculation experiments indicated that both low and high molecular weight cationic polymers could provide excellent purification results in terms of turbidity. Calcium should be removed by other methods. The particles in sludge were mostly in the 2-4 μm or 10-20 μm fractions. Further sludge settling resulted in high solids removal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Fast Simulations of Gas Sloshing and Cold Front Formation

    NASA Technical Reports Server (NTRS)

    Roediger, E.; ZuHone, J. A.

    2011-01-01

    We present a simplified and fast method for simulating minor mergers between galaxy clusters. Instead of following the evolution of the dark matter halos directly by the N-body method, we employ a rigid potential approximation for both clusters. The simulations are run in the rest frame of the more massive cluster and account for the resulting inertial accelerations in an optimised way. We test the reliability of this method for studies of minor merger induced gas sloshing by performing a one-to-one comparison between our simulations and hydro+N-body ones. We find that the rigid potential approximation reproduces the sloshing-related features well except for two artefacts: the temperature just outside the cold fronts is slightly over-predicted, and the outward motion of the cold fronts is delayed by typically 200 Myr. We discuss reasons for both artefacts.

  20. Fast Simulations of Gas Sloshing and Cold Front Formation

    NASA Technical Reports Server (NTRS)

    Roediger, E.; ZuHone, J. A.

    2012-01-01

    We present a simplified and fast method for simulating minor mergers between galaxy clusters. Instead of following the evolution of the dark matter halos directly by the N-body method, we employ a rigid potential approximation for both clusters. The simulations are run in the rest frame of the more massive cluster and account for the resulting inertial accelerations in an optimised way. We test the reliability of this method for studies of minor merger induced gas sloshing by performing a one-to-one comparison between our simulations and hydro+N-body ones. We find that the rigid potential approximation reproduces the sloshing-related features well except for two artifacts: the temperature just outside the cold fronts is slightly over-predicted, and the outward motion of the cold fronts is delayed by typically 200 Myr. We discuss reasons for both artifacts.

  1. Comet 67P/Churyumov-Gerasimenko during the Rosetta mission: numerical simulation of dusty gas coma

    NASA Astrophysics Data System (ADS)

    Tenishev, Valeriy; Combi, Michael; Rubin, Martin; Hansen, Kenneth; Gombosi, Tamas

    The Rosetta spacecraft is en route to comet 67P/Churyumov-Gerasimenko for a rendezvous, landing, and extensive orbital phase beginning in 2014. Having a limited amount of information regarding its coma, interpretation of measurements and safety consideration of the spacecraft will require modeling of the comet's environment. Such models should be able to simulate both the gas and dust phases of the coma as well as the interaction between them in a self-consistent manner. The relevant physical processes in the coma include photolytic reactions and interaction with the nucleus for the gas phase and drag by the gas, gravity of the nucleus, solar gravity and radiation pressure, and charging by the ambient plasma for the dust phase. Developing of such modeling capabilities will be able to link measurements obtained by different instruments onboard of spacecraft. Some examples of cometary comae simulations can be found in [1-3]. In this work we present our kinetic model of a dusty gas coma [4] with results of its application to the case of comet Churyumov-Gerasimenko at conditions corresponding to some stages the during the Rosetta mission. Based on the surface properties and local production rates obtained by MIRO, RSI and VIRTIS the model will be able to propagate the injected gas and dust into the coma linking the measurements to those obtained by ALICE, MIDAS and ROSINA for the gas phase and COSIMA and GIADA for the dust phase of the coma. A simultaneous simulation of the major components of the multi-phase coma will allow us to link observations of the gas and dust phases. In this work we present results of a numerical study of neutral/ionized multispecies gaseous and electrically charged dust environment of the comet Churyumov-Gerasimenko at a helio-centric distance of 1.3 AU. The simulation is performed in fully 3D geometry with a realistic nucleus model that describes its topological features and source distribution. Both, neutral and ionized components of the

  2. Ancient dissolved methane in inland waters at low concentrations revealed by a new collection method for radiocarbon (^{14}C) analysis

    NASA Astrophysics Data System (ADS)

    Dean, Joshua F.; Billett, Michael F.; Murray, Callum; Garnett, Mark H.

    2017-04-01

    Methane (CH4) is a powerful greenhouse gas and is released to the atmosphere from freshwater systems in numerous biomes globally. Radiocarbon (14C) analysis of methane can provide unique information about its age, source and rate of cycling in natural environments. Methane is often released from aquatic sediments in bubbles (ebullition), but dissolved methane is also present in lakes and streams at lower concentrations, and may not be of the same age or source. Obtaining sufficient non-ebullitive aquatic methane for 14C analysis remains a major technical challenge. Previous studies have shown that freshwater methane, in both dissolved and ebullitive form, can be significantly older than other forms of aquatic carbon (C), and it is therefore important to characterise this part of the terrestrial C balance. We present a novel method to capture sufficient amounts of dissolved methane from freshwater environments for 14C analysis by circulating water across a hydrophobic, gas-permeable membrane and collecting the methane in a large collapsible vessel. The results of laboratory and field tests show that reliable dissolved δ13CH4 and 14CH4 samples can be readily collected over short time periods (˜4 to 24 hours), at relatively low cost and from a variety of surface water types. The initial results further support previous findings that dissolved methane can be significantly older than other forms of aquatic C, especially in organic-rich catchments, and is currently unaccounted for in many terrestrial C balances and models. This method is suitable for use in remote locations, and could potentially be used to detect the leakage of unique 14CH4 signatures from point sources into waterways, e.g. coal seam gas and landfill gas.

  3. Numerical Simulation of Dispersion from Urban Greenhouse Gas Sources

    NASA Astrophysics Data System (ADS)

    Nottrott, Anders; Tan, Sze; He, Yonggang; Winkler, Renato

    2017-04-01

    Cities are characterized by complex topography, inhomogeneous turbulence, and variable pollutant source distributions. These features create a scale separation between local sources and urban scale emissions estimates known as the Grey-Zone. Modern computational fluid dynamics (CFD) techniques provide a quasi-deterministic, physically based toolset to bridge the scale separation gap between source level dynamics, local measurements, and urban scale emissions inventories. CFD has the capability to represent complex building topography and capture detailed 3D turbulence fields in the urban boundary layer. This presentation discusses the application of OpenFOAM to urban CFD simulations of natural gas leaks in cities. OpenFOAM is an open source software for advanced numerical simulation of engineering and environmental fluid flows. When combined with free or low cost computer aided drawing and GIS, OpenFOAM generates a detailed, 3D representation of urban wind fields. OpenFOAM was applied to model scalar emissions from various components of the natural gas distribution system, to study the impact of urban meteorology on mobile greenhouse gas measurements. The numerical experiments demonstrate that CH4 concentration profiles are highly sensitive to the relative location of emission sources and buildings. Sources separated by distances of 5-10 meters showed significant differences in vertical dispersion of plumes, due to building wake effects. The OpenFOAM flow fields were combined with an inverse, stochastic dispersion model to quantify and visualize the sensitivity of point sensors to upwind sources in various built environments. The Boussinesq approximation was applied to investigate the effects of canopy layer temperature gradients and convection on sensor footprints.

  4. Three-dimensional simulation of gas and dust in Io's Pele plume

    NASA Astrophysics Data System (ADS)

    McDoniel, William J.; Goldstein, David B.; Varghese, Philip L.; Trafton, Laurence M.

    2015-09-01

    Io's giant Pele plume rises high above the moon's surface and produces a complex deposition pattern. We use the direct simulation Monte Carlo (DSMC) method to model the flow of SO2 gas and silicate ash from the surface of the lava lake, into the umbrella-shaped canopy of the plume, and eventually onto the surface where the flow leaves black "butterfly wings" surrounded by a large red ring. We show how the geometry of the lava lake, from which the gas is emitted, is responsible for significant asymmetry in the plume and for the shape of the red deposition ring by way of complicated gas-dynamic interactions between parts of the gas flow arising from different areas in the lava lake. We develop a model for gas flow in the immediate vicinity of the lava lake and use it to show that the behavior of ash particles of less than about 2 μm in diameter in the plume is insensitive to the details of how they are introduced into the flow because they are coupled to the gas at low altitudes. We simulate dust particles in the plume to show how particle size determines the distance from the lava lake at which particles deposit on the surface, and we use this dependence to find a size distribution of black dust particles in the plume that provides the best explanation for the observed black fans to the east and west of the lava lake. This best-fit particle size distribution suggests that there may be two distinct mechanisms of black dust creation at Pele, and when two log-normal distributions are fit to our results we obtain a mean particle diameter of 88 nm. We also propose a mechanism by which the condensible plume gas might overlay black dust in areas where black coloration is not observed and compare this to the observed overlaying of Pillanian dust by Pele's red ring.

  5. CFD simulation of water vapour condensation in the presence of non-condensable gas in vertical cylindrical condensers.

    PubMed

    Li, Jun-De

    2013-02-01

    This paper presents the simulation of the condensation of water vapour in the presence of non-condensable gas using computational fluid dynamics (CFD) for turbulent flows in a vertical cylindrical condenser tube. The simulation accounts for the turbulent flow of the gas mixture, the condenser wall and the turbulent flow of the coolant in the annular channel with no assumptions of constant wall temperature or heat flux. The condensate film is assumed to occupy a negligible volume and its effect on the condensation of the water vapour has been taken into account by imposing a set of boundary conditions. A new strategy is used to overcome the limitation of the currently available commercial CFD package to solve the simultaneous simulation of flows involving multispecies and fluids of gas and liquid in separate channels. The results from the CFD simulations are compared with the experimental results from the literature for the condensation of water vapour with air as the non-condensable gas and for inlet mass fraction of the water vapour from 0.66 to 0.98. The CFD simulation results in general agree well with the directly measured quantities and it is found that the variation of heat flux in the condenser tube is more complex than a simple polynomial curve fit. The CFD results also show that, at least for flows involving high water vapour content, the axial velocity of the gas mixture at the interface between the gas mixture and the condensate film is in general not small and cannot be neglected.

  6. CFD simulation of water vapour condensation in the presence of non-condensable gas in vertical cylindrical condensers

    PubMed Central

    Li, Jun-De

    2013-01-01

    This paper presents the simulation of the condensation of water vapour in the presence of non-condensable gas using computational fluid dynamics (CFD) for turbulent flows in a vertical cylindrical condenser tube. The simulation accounts for the turbulent flow of the gas mixture, the condenser wall and the turbulent flow of the coolant in the annular channel with no assumptions of constant wall temperature or heat flux. The condensate film is assumed to occupy a negligible volume and its effect on the condensation of the water vapour has been taken into account by imposing a set of boundary conditions. A new strategy is used to overcome the limitation of the currently available commercial CFD package to solve the simultaneous simulation of flows involving multispecies and fluids of gas and liquid in separate channels. The results from the CFD simulations are compared with the experimental results from the literature for the condensation of water vapour with air as the non-condensable gas and for inlet mass fraction of the water vapour from 0.66 to 0.98. The CFD simulation results in general agree well with the directly measured quantities and it is found that the variation of heat flux in the condenser tube is more complex than a simple polynomial curve fit. The CFD results also show that, at least for flows involving high water vapour content, the axial velocity of the gas mixture at the interface between the gas mixture and the condensate film is in general not small and cannot be neglected. PMID:24850953

  7. The GBS code for tokamak scrape-off layer simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halpern, F.D., E-mail: federico.halpern@epfl.ch; Ricci, P.; Jolliet, S.

    2016-06-15

    We describe a new version of GBS, a 3D global, flux-driven plasma turbulence code to simulate the turbulent dynamics in the tokamak scrape-off layer (SOL), superseding the code presented by Ricci et al. (2012) [14]. The present work is driven by the objective of studying SOL turbulent dynamics in medium size tokamaks and beyond with a high-fidelity physics model. We emphasize an intertwining framework of improved physics models and the computational improvements that allow them. The model extensions include neutral atom physics, finite ion temperature, the addition of a closed field line region, and a non-Boussinesq treatment of the polarizationmore » drift. GBS has been completely refactored with the introduction of a 3-D Cartesian communicator and a scalable parallel multigrid solver. We report dramatically enhanced parallel scalability, with the possibility of treating electromagnetic fluctuations very efficiently. The method of manufactured solutions as a verification process has been carried out for this new code version, demonstrating the correct implementation of the physical model.« less

  8. Analysis on storage off-gas emissions from woody, herbaceous, and torrefied biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumuluru, Jaya Shankar; Lim, C. Jim; Bi, Xiaotao T.

    Wood chips, torrefied wood chips, ground switchgrass, and wood pellets were tested for off-gas emissions during storage. Storage canisters with gas-collection ports were used to conduct experiments at room temperature of 20 °C and in a laboratory oven set at 40 °C. Commercially-produced wood pellets yielded the highest carbon monoxide (CO) emissions at both 20 and 40 °C (1600 and 13,000 ppmv), whereas torrefied wood chips emitted the lowest of about <200 and <2000 ppmv. Carbon dioxide (CO₂) emissions from wood pellets were 3000 ppmv and 42,000 ppmv, whereas torrefied wood chips registered at about 2000 and 25,000 ppmv, atmore » 20 and 40 °C at the end of 11 days of storage. CO emission factors (milligrams per kilogram of biomass) calculated were lowest for ground switchgrass and torrefied wood chips (2.68 and 4.86 mg/kg) whereas wood pellets had the highest CO of about 10.60 mg/kg, respectively, at 40 °C after 11 days of storage. In the case of CO₂, wood pellets recorded the lowest value of 55.46 mg/kg, whereas switchgrass recorded the highest value of 318.72 mg/kg. This study concludes that CO emission factor is highest for wood pellets, CO₂ is highest for switchgrass and CH₄ is negligible for all feedstocks except for wood pellets, which is about 0.374 mg/kg at the end of 11-day storage at 40 °C.« less

  9. Analysis on storage off-gas emissions from woody, herbaceous, and torrefied biomass

    DOE PAGES

    Tumuluru, Jaya Shankar; Lim, C. Jim; Bi, Xiaotao T.; ...

    2015-03-02

    Wood chips, torrefied wood chips, ground switchgrass, and wood pellets were tested for off-gas emissions during storage. Storage canisters with gas-collection ports were used to conduct experiments at room temperature of 20 °C and in a laboratory oven set at 40 °C. Commercially-produced wood pellets yielded the highest carbon monoxide (CO) emissions at both 20 and 40 °C (1600 and 13,000 ppmv), whereas torrefied wood chips emitted the lowest of about <200 and <2000 ppmv. Carbon dioxide (CO₂) emissions from wood pellets were 3000 ppmv and 42,000 ppmv, whereas torrefied wood chips registered at about 2000 and 25,000 ppmv, atmore » 20 and 40 °C at the end of 11 days of storage. CO emission factors (milligrams per kilogram of biomass) calculated were lowest for ground switchgrass and torrefied wood chips (2.68 and 4.86 mg/kg) whereas wood pellets had the highest CO of about 10.60 mg/kg, respectively, at 40 °C after 11 days of storage. In the case of CO₂, wood pellets recorded the lowest value of 55.46 mg/kg, whereas switchgrass recorded the highest value of 318.72 mg/kg. This study concludes that CO emission factor is highest for wood pellets, CO₂ is highest for switchgrass and CH₄ is negligible for all feedstocks except for wood pellets, which is about 0.374 mg/kg at the end of 11-day storage at 40 °C.« less

  10. No condylar lift-off occurs because of excessive lateral soft tissue laxity in neutrally aligned total knee arthroplasty: a computer simulation study.

    PubMed

    Kuriyama, Shinichi; Ishikawa, Masahiro; Nakamura, Shinichiro; Furu, Moritoshi; Ito, Hiromu; Matsuda, Shuichi

    2016-08-01

    Condylar lift-off can induce excessive polyethylene wear after total knee arthroplasty (TKA). A computer simulation was used to evaluate the influence of femoral varus alignment and lateral collateral ligament (LCL) laxity on lift-off after single-design TKA. It was hypothesised that proper ligament balancing and coronal alignment would prevent lift-off. The computer model in this study is a dynamic musculoskeletal program that simulates gait up to 60° of knee flexion. The lift-off phenomenon was defined as positive with an intercomponent distance of >2 mm. In neutrally aligned components in the coronal plane, the femoral and tibial components were set perpendicular to the femoral and tibial mechanical axis, respectively. The femoral coronal alignment was changed from neutral to 5° varus in 1° increments. Simultaneously, the LCL length was elongated from 0 to 5 mm in 1-mm increments to provide a model of pathological slack. Within 2° of femoral varus alignment, lift-off did not occur even if the LCL was elongated by up to 5 mm. However, lift-off occurred easily in the stance phase in femoral varus alignments of >3° with slight LCL slack. The contact forces of the tibiofemoral joint were influenced more by femoral varus alignment than by LCL laxity. Aiming for neutral alignment in severely varus knees makes it difficult to achieve appropriate ligament balance. Our study suggests that no lift-off occurs with excessive LCL laxity alone in a neutrally aligned TKA and therefore that varus alignment should be avoided to decrease lift-off after TKA. Case series, Level IV.

  11. Air-water Gas Exchange Rates on a Large Impounded River Measured Using Floating Domes (Poster)

    EPA Science Inventory

    Mass balance models of dissolved gases in rivers typically serve as the basis for whole-system estimates of greenhouse gas emission rates. An important component of these models is the exchange of dissolved gases between air and water. Controls on gas exchange rates (K) have be...

  12. Fail Save Shut Off Valve for Filtering Systems Employing Candle Filters

    DOEpatents

    VanOsdol, John

    2006-01-03

    The invention relates to an apparatus that acts as a fail save shut off valve. More specifically, the invention relates to a fail save shut off valve that allows fluid flow during normal operational conditions, but prevents the flow of fluids in the event of system failure upstream that causes over-pressurization. The present invention is particularly well suited for use in conjunction with hot gas filtering systems, which utilize ceramic candle filters. Used in such a hot gas system the present invention stops the flow of hot gas and prevents any particulate laden gas from entering the clean side of the system.

  13. Fail save shut off valve for filtering systems employing candle filters

    DOEpatents

    VanOsdol, John [Fairmont, WV

    2006-01-03

    The invention relates to an apparatus that acts as a fail save shut off valve. More specifically, the invention relates to a fail save shut off valve that allows fluid flow during normal operational conditions, but prevents the flow of fluids in the event of system failure upstream that causes over-pressurization. The present invention is particularly well suited for use in conjunction with hot gas filtering systems, which utilize ceramic candle filters. Used in such a hot gas system the present invention stops the flow of hot gas and prevents any particulate laden gas from entering the clean side of the system.

  14. Percolation Pore Network Study on the Residue Gas Saturation of Dry Reservoir Rocks

    NASA Astrophysics Data System (ADS)

    Cheng, T.; Tang, Y. B.; Zou, G. Y.; Jiang, K.; Li, M.

    2014-12-01

    We tried to model the effect of pore size heterogeneity and pore connectivity on the residue gas saturation for dry gas reservoir rocks. If we consider that snap-off does not exist and only piston displacement takes place in all pores with the same size during imbibition process, in the extreme case, the residue gas saturation will be equal to zero. Thus we can suppose that the residue gas saturation of dry rocks is mainly controlled by the pore size distribution. To verify the assumption, percolation pore networks (i.e., three-dimensional simple cubic (SC) and body-center cubic (BCC)) were used in the study. The connectivity and the pore size distribution in percolation pore network could be changed randomly. The concept of water phase connectivity zw(i.e., water coordination number) and gas phase connectivity zg (i.e., gas coordination number) was introduced here. zw and zg will change during simulation and can be estimated numerically from the results of simulations through gradually saturated networks by water. The Simulation results show that when zg less than or equal to 1.5 during water quasi - static imbibition, the gas will be trapped in rock pores. Network simulation results also shows that the residue gas saturation Srg follows a power law relationship (i.e.,Srg∝σrα, where σr is normalized standard deviation of the pore radius distribution, and exponent α is a function of coordination number). This indicates that the residue gas saturation has no explicit relationship with porosity and permeability as it should have in light of previous study, pore radius distribution is the principal factor in determining the residue gas saturation of dry reservoir rocks.

  15. Dissolved-Solids Load in Henrys Fork Upstream from the Confluence with Antelope Wash, Wyoming, Water Years 1970-2009

    USGS Publications Warehouse

    Foster, Katharine; Kenney, Terry A.

    2010-01-01

    Annual dissolved-solids load at the mouth of Henrys Fork was estimated by using data from U.S. Geological Survey streamflow-gaging station 09229500, Henrys Fork near Manila, Utah. The annual dissolved-solids load for water years 1970-2009 ranged from 18,300 tons in 1977 to 123,300 tons in 1983. Annual streamflows for this period ranged from 14,100 acre-feet in 1977 to 197,500 acre-feet in 1983. The 25-percent trimmed mean dissolved-solids load for water years 1970-2009 was 44,300 tons per year at Henrys Fork near Manila, Utah. Previous simulations using a SPAtially Referenced Regression On Watershed attributes (SPARROW) model for dissolved solids specific to water year 1991 conditions in the Upper Colorado River Basin predicted an annual dissolved-solids load of 25,000 tons for the Henrys Fork Basin upstream from Antelope Wash. On the basis of computed dissolved-solids load data from Henrys Fork near Manila, Utah, together with estimated annual dissolved-solids load from Antelope Wash and Peoples Canal, this prediction was adjusted to 37,200 tons. As determined by simulations with the Upper Colorado River Basin SPARROW model, approximately 56 percent (14,000 tons per year) of the dissolved-solids load at Henrys Fork upstream from Antelope Wash is associated with the 21,500 acres of irrigated agricultural lands in the upper Henrys Fork Basin.

  16. Air-gas exchange reevaluated: clinically important results of a computer simulation.

    PubMed

    Shunmugam, Manoharan; Shunmugam, Sudhakaran; Williamson, Tom H; Laidlaw, D Alistair

    2011-10-21

    The primary aim of this study was to evaluate the efficiency of air-gas exchange techniques and the factors that influence the final concentration of an intraocular gas tamponade. Parameters were varied to find the optimum method of performing an air-gas exchange in ideal circumstances. A computer model of the eye was designed using 3D software with fluid flow analysis capabilities. Factors such as angular distance between ports, gas infusion gauge, exhaust vent gauge and depth were varied in the model. Flow rate and axial length were also modulated to simulate faster injections and more myopic eyes, respectively. The flush volume of gas required to achieve a 97% intraocular gas fraction concentration were compared. Modulating individual factors did not reveal any clinically significant difference in the angular distance between ports, exhaust vent size, and depth or rate of gas injection. In combination, however, there was a 28% increase in air-gas exchange efficiency comparing the most efficient with the least efficient studied parameters in this model. The gas flush volume required to achieve a 97% gas fill also increased proportionately at a ratio of 5.5 to 6.2 times the volume of the eye. A 35-mL flush is adequate for eyes up to 25 mm in axial length; however, eyes longer than this would require a much greater flush volume, and surgeons should consider using two separate 50-mL gas syringes to ensure optimal gas concentration for eyes greater than 25 mm in axial length.

  17. Mechanistic simulation of batch acetone-butanol-ethanol (ABE) fermentation with in situ gas stripping using Aspen Plus™.

    PubMed

    Darkwah, Kwabena; Nokes, Sue E; Seay, Jeffrey R; Knutson, Barbara L

    2018-05-22

    Process simulations of batch fermentations with in situ product separation traditionally decouple these interdependent steps by simulating a separate "steady state" continuous fermentation and separation units. In this study, an integrated batch fermentation and separation process was simulated for a model system of acetone-butanol-ethanol (ABE) fermentation with in situ gas stripping, such that the fermentation kinetics are linked in real-time to the gas stripping process. A time-dependent cell growth, substrate utilization, and product production is translated to an Aspen Plus batch reactor. This approach capitalizes on the phase equilibria calculations of Aspen Plus to predict the effect of stripping on the ABE fermentation kinetics. The product profiles of the integrated fermentation and separation are shown to be sensitive to gas flow rate, unlike separate steady state fermentation and separation simulations. This study demonstrates the importance of coupled fermentation and separation simulation approaches for the systematic analyses of unsteady state processes.

  18. The Seepage Simulation of Single Hole and Composite Gas Drainage Based on LB Method

    NASA Astrophysics Data System (ADS)

    Chen, Yanhao; Zhong, Qiu; Gong, Zhenzhao

    2018-01-01

    Gas drainage is the most effective method to prevent and solve coal mine gas power disasters. It is very important to study the seepage flow law of gas in fissure coal gas. The LB method is a simplified computational model based on micro-scale, especially for the study of seepage problem. Based on fracture seepage mathematical model on the basis of single coal gas drainage, using the LB method during coal gas drainage of gas flow numerical simulation, this paper maps the single-hole drainage gas, symmetric slot and asymmetric slot, the different width of the slot combined drainage area gas flow under working condition of gas cloud of gas pressure, flow path diagram and flow velocity vector diagram, and analyses the influence on gas seepage field under various working conditions, and also discusses effective drainage method of the center hole slot on both sides, and preliminary exploration that is related to the combination of gas drainage has been carried on as well.

  19. Simulating the escaping atmospheres of hot gas planets in the solar neighborhood

    NASA Astrophysics Data System (ADS)

    Salz, M.; Czesla, S.; Schneider, P. C.; Schmitt, J. H. M. M.

    2016-02-01

    Absorption of high-energy radiation in planetary thermospheres is generally believed to lead to the formation of planetary winds. The resulting mass-loss rates can affect the evolution, particularly of small gas planets. We present 1D, spherically symmetric hydrodynamic simulations of the escaping atmospheres of 18 hot gas planets in the solar neighborhood. Our sample only includes strongly irradiated planets, whose expanded atmospheres may be detectable via transit spectroscopy using current instrumentation. The simulations were performed with the PLUTO-CLOUDY interface, which couples a detailed photoionization and plasma simulation code with a general MHD code. We study the thermospheric escape and derive improved estimates for the planetary mass-loss rates. Our simulations reproduce the temperature-pressure profile measured via sodium D absorption in HD 189733 b, but show still unexplained differences in the case of HD 209458 b. In contrast to general assumptions, we find that the gravitationally more tightly bound thermospheres of massive and compact planets, such as HAT-P-2 b are hydrodynamically stable. Compact planets dispose of the radiative energy input through hydrogen Lyα and free-free emission. Radiative cooling is also important in HD 189733 b, but it decreases toward smaller planets like GJ 436 b. Computing the planetary Lyα absorption and emission signals from the simulations, we find that the strong and cool winds of smaller planets mainly cause strong Lyα absorption but little emission. Compact and massive planets with hot, stable thermospheres cause small absorption signals but are strong Lyα emitters, possibly detectable with the current instrumentation. The absorption and emission signals provide a possible distinction between these two classes of thermospheres in hot gas planets. According to our results, WASP-80 and GJ 3470 are currently the most promising targets for observational follow-up aimed at detecting atmospheric Lyα absorption

  20. Evaluation and Testing of IONSIV IE-911 for the Removal of Cesium-137 from INEEL Tank Waste and Dissolved Calcines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N. R. Mann; T. A. Todd; K. N. Brewer

    1999-04-01

    Development of waste treatment processes for the remediation of radioactive wastes is currently underway. A number of experiments were performed at the Idaho Nuclear Technology and Environmental Center (INTEC) located at the Idaho National Engineering and Environmental Laboratory (INEEL) with the commercially available sorbent material, IONSIV IE-911, crystalline silicotitanate (CST), manufactured by UOP LLC. The purpose of this work was to evaluate the removal efficiency, sorbent capacity and selectivity of CST for removing Cs-137 from actual and simulated acidic tank waste in addition to dissolved pilot-plant calcine solutions. The scope of this work included batch contact tests performed with non-radioactivemore » dissolved Al and Run-64 pilot plant calcines in addition to simulants representing the average composition of tank waste. Small-scale column tests were performed with actual INEEL tank WM-183 waste, tank waste simulant, dissolved Al and Run-64 pilot plant calcine solutions. Small-scale column experiments using actual WM-183 tank waste resulted in fifty-percent Cs-137 breakthrough at approximately 589 bed volumes. Small-scale column experiments using the tank waste simulant displayed fifty-percent Cs-137 breakthrough at approximately 700 bed volumes. Small-scale column experiments using dissolved Al calcine simulant displayed fifty-percent Cs-137 breakthrough at approximately 795 bed volumes. Column experiments with dissolved Run-64, pilot plant calcine did not reach fifty-percent breakthrough throughout the test.« less

  1. Method 366.0 Determination of Dissolved Silicate in Estuarine and Coastal Watersby Gas Segmented Continuous Flow Colorimetric Analysis

    EPA Science Inventory

    This method provides a procedure for the determination of dissolved silicate concentration in estuarine and coastal waters. The dissolved silicate is mainly in the form of silicic acid, H SiO , in estuarine and 4 4 coastal waters. All soluble silicate, including colloidal silici...

  2. Effects of tip-substrate gap, deposition temperature, holding time, and pull-off velocity on dip-pen lithography investigated using molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Wu, Cheng-Da; Fang, Te-Hua; Lin, Jen-Fin

    2012-05-01

    The process parameters in the dip-pen nanolithography process, including tip-substrate gap, deposition temperature, holding time, and pull-off velocity are evaluated in terms of the mechanism of molecular transference, alkanethiol meniscus characteristic, surface adsorbed energy, and pattern formation using molecular dynamics simulations. The simulation results clearly show that the optimum deposition occurs at a smaller tip-substrate gap, a slower pull-off velocity, a higher temperature, and a longer holding time. The pattern area increases with decreasing tip-substrate gap and increasing deposition temperature and holding time. With an increase in deposition temperature, the molecular transfer ability significantly increases. Pattern height is a function of meniscus length. When the pull-off velocity is decreased, the pattern height increases. The height of the neck in meniscus decreases and the neck width increases with holding time. Meniscus size increases with increasing deposition temperature and holding time.

  3. Galaxy Feeds Off Gas Artist Concept

    NASA Image and Video Library

    2011-09-13

    In this artist conception based on data from ESA Herschel observatory, a galaxy accretes mass from rapid, narrow streams of cold gas. These filaments provide the galaxy with continuous flows of raw material to feed its star-forming at a leisurely pace

  4. Summary and Preliminary Interpretation of Tritium and Dissolved Noble Gas Data from Site 300

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visser, A.; Singleton, M.; Madrid, V.

    2014-01-29

    In October 2013, groundwater samples were collected from 10 wells from Site 300 and analyzed by the Environmental Radiochemistry Laboratory at Lawrence Livermore National Laboratory (LLNL). Groundwater samples were analyzed for groundwater age tracers: tritium, the helium isotope ratio of dissolved helium and the concentrations of dissolved noble gases (Helium, Neon, Argon, Krypton, and Xenon). A subset of the samples was also analyzed for excess nitrogen due to saturated zone denitrification. The age-dating data were used to evaluate the degree to which groundwater at a particular monitoring well was derived from pre-modern and/or modern sources. More specifically, the analyses canmore » be used to determine whether the recharge age of the groundwater beneath the site pre-dates anthropogenic activities at the site.« less

  5. Linking environment-productivity trade-offs and correlated uncertainties: Greenhouse gas emissions and crop productivity in paddy rice production systems.

    PubMed

    Hayashi, Kiyotada; Nagumo, Yoshifumi; Domoto, Akiko

    2016-11-15

    In comparative life cycle assessments of agricultural production systems, analyses of both the trade-offs between environmental impacts and crop productivity and of the uncertainties specific to agriculture such as fluctuations in greenhouse gas (GHG) emissions and crop yields are crucial. However, these two issues are usually analyzed separately. In this paper, we present a framework to link trade-off and uncertainty analyses; correlated uncertainties are integrated into environment-productivity trade-off analyses. We compared three rice production systems in Japan: a system using a pelletized, nitrogen-concentrated organic fertilizer made from poultry manure using closed-air composting techniques (high-N system), a system using a conventional organic fertilizer made from poultry manure using open-air composting techniques (low-N system), and a system using a chemical compound fertilizer (conventional system). We focused on two important sources of uncertainties in paddy rice cultivation-methane emissions from paddy fields and crop yields. We found trade-offs between the conventional and high-N systems and the low-N system and the existence of positively correlated uncertainties in the conventional and high-N systems. We concluded that our framework is effective in recommending the high-N system compared with the low-N system, although the performance of the former is almost the same as the conventional system. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Mixed integer simulation optimization for optimal hydraulic fracturing and production of shale gas fields

    NASA Astrophysics Data System (ADS)

    Li, J. C.; Gong, B.; Wang, H. G.

    2016-08-01

    Optimal development of shale gas fields involves designing a most productive fracturing network for hydraulic stimulation processes and operating wells appropriately throughout the production time. A hydraulic fracturing network design-determining well placement, number of fracturing stages, and fracture lengths-is defined by specifying a set of integer ordered blocks to drill wells and create fractures in a discrete shale gas reservoir model. The well control variables such as bottom hole pressures or production rates for well operations are real valued. Shale gas development problems, therefore, can be mathematically formulated with mixed-integer optimization models. A shale gas reservoir simulator is used to evaluate the production performance for a hydraulic fracturing and well control plan. To find the optimal fracturing design and well operation is challenging because the problem is a mixed integer optimization problem and entails computationally expensive reservoir simulation. A dynamic simplex interpolation-based alternate subspace (DSIAS) search method is applied for mixed integer optimization problems associated with shale gas development projects. The optimization performance is demonstrated with the example case of the development of the Barnett Shale field. The optimization results of DSIAS are compared with those of a pattern search algorithm.

  7. Simulation of gas diffusion and sorption in nanoceramic semiconductors

    NASA Astrophysics Data System (ADS)

    Skouras, E. D.; Burganos, V. N.; Payatakes, A. C.

    1999-05-01

    Gas diffusion and sorption in nanoceramic semiconductors are studied using atomistic simulation techniques and numerical results are presented for a variety of sorbate-sorbent systems. SnO2, BaTiO3, CuO, and MgO substrates are built on the computer using lattice constants and atomic parameters that have been either measured or computed by ab initio methods. The Universal force field is employed here for the description of both intramolecular and nonbonded interactions for various gas sorbates, including CH4, CO, CO2, and O2, pure and in binary mixtures. Mean residence times are determined by molecular dynamics computations, whereas the Henry constant and the isosteric heat of adsorption are estimated by a Monte Carlo technique. The effects of surface hydroxylation on the diffusion and sorption characteristics are quantified and discussed in view of their significance in practical gas sensing applications. The importance of fast diffusion on the response time of the sensitive layer and of the sorption efficiency on the overall sensitivity as well as the potential synergy of the two phenomena are discussed.

  8. Mangroves, a major source of dissolved organic carbon to the oceans

    NASA Astrophysics Data System (ADS)

    Dittmar, Thorsten; Hertkorn, Norbert; Kattner, Gerhard; Lara, RubéN. J.

    2006-03-01

    Organic matter, which is dissolved in low concentrations in the vast waters of the oceans, contains a total amount of carbon similar to atmospheric carbon dioxide. To understand global biogeochemical cycles, it is crucial to quantify the sources of marine dissolved organic carbon (DOC). We investigated the impact of mangroves, the dominant intertidal vegetation of the tropics, on marine DOC inventories. Stable carbon isotopes and proton nuclear magnetic resonance spectroscopy showed that mangroves are the main source of terrigenous DOC in the open ocean off northern Brazil. Sunlight efficiently destroyed aromatic molecules during transport offshore, removing about one third of mangrove-derived DOC. The remainder was refractory and may thus be distributed over the oceans. On a global scale, we estimate that mangroves account for >10% of the terrestrially derived, refractory DOC transported to the ocean, while they cover only <0.1% of the continents' surface.

  9. BOREAS TGB-5 Dissolved Organic Carbon Data from NSA Beaver Ponds

    NASA Technical Reports Server (NTRS)

    Bourbonniere, Rick; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-5) team collected several data sets related to carbon and trace gas fluxes and concentrations in the Northern Study Area (NSA). This data set contains concentrations of dissolved organic and inorganic carbon species from water samples collected at various NSA sites. In particular, this set covers the NSA Tower Beaver Pond Site and the NSA Gillam Road Beaver Pond Site, including data from all visits to open water sampling locations during the BOREAS field campaigns from April to September 1994. The data are provided in tabular ASCII files.

  10. Interaction between phases in the liquid–gas system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, R. S., E-mail: bmsmirnov@gmail.com; Smirnov, B. M.

    This work analyzes the equilibrium between a liquid and a gas over this liquid separated by an interface. Various gas forms exist inside the liquid: dissolved gas molecules attached to solvent molecules, free gas molecules, and gaseous bubbles. Thermodynamic equilibrium is maintained between two phases; the first phase is the liquid containing dissolved and free molecules, and the second phase is the gas over the liquid and bubbles inside it. Kinetics of gas transition between the internal and external gas proceeds through bubbles and includes the processes of bubbles floating up and bubble growth as a result of association duemore » to the Smoluchowski mechanism. Evolution of a gas in the liquid is considered using the example of oxygen in water, and numerical parameters of this system are given. In the regime under consideration for an oxygen–water system, transport of oxygen into the surrounding air proceeds through micron-size bubbles with lifetimes of hours. This regime is realized if the total number of oxygen molecules in water is small compared with the numbers of solvated and free molecules in the liquid.« less

  11. Fictitious domain method for fully resolved reacting gas-solid flow simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Longhui; Liu, Kai; You, Changfu

    2015-10-01

    Fully resolved simulation (FRS) for gas-solid multiphase flow considers solid objects as finite sized regions in flow fields and their behaviours are predicted by solving equations in both fluid and solid regions directly. Fixed mesh numerical methods, such as fictitious domain method, are preferred in solving FRS problems and have been widely researched. However, for reacting gas-solid flows no suitable fictitious domain numerical method has been developed. This work presents a new fictitious domain finite element method for FRS of reacting particulate flows. Low Mach number reacting flow governing equations are solved sequentially on a regular background mesh. Particles are immersed in the mesh and driven by their surface forces and torques integrated on immersed interfaces. Additional treatments on energy and surface reactions are developed. Several numerical test cases validated the method and a burning carbon particles array falling simulation proved the capability for solving moving reacting particle cluster problems.

  12. Gas Core Reactor Numerical Simulation Using a Coupled MHD-MCNP Model

    NASA Technical Reports Server (NTRS)

    Kazeminezhad, F.; Anghaie, S.

    2008-01-01

    Analysis is provided in this report of using two head-on magnetohydrodynamic (MHD) shocks to achieve supercritical nuclear fission in an axially elongated cylinder filled with UF4 gas as an energy source for deep space missions. The motivation for each aspect of the design is explained and supported by theory and numerical simulations. A subsequent report will provide detail on relevant experimental work to validate the concept. Here the focus is on the theory of and simulations for the proposed gas core reactor conceptual design from the onset of shock generations to the supercritical state achieved when the shocks collide. The MHD model is coupled to a standard nuclear code (MCNP) to observe the neutron flux and fission power attributed to the supercritical state brought about by the shock collisions. Throughout the modeling, realistic parameters are used for the initial ambient gaseous state and currents to ensure a resulting supercritical state upon shock collisions.

  13. Analysis of minerals containing dissolved traces of the fluid phase components water and carbon dioxide

    NASA Technical Reports Server (NTRS)

    Freund, Friedemann

    1991-01-01

    Substantial progress has been made towards a better understanding of the dissolution of common gas/fluid phase components, notably H2O and CO2, in minerals. It has been shown that the dissolution mechanisms are significantly more complex than currently believed. By judiciously combining various solid state analytical techniques, convincing evidence was obtained that traces of dissolved gas/fluid phase components undergo, at least in part, a redox conversion by which they split into reduced H2 and and reduced C on one hand and oxidized oxygen, O(-), on the other. Analysis for 2 and C as well as for any organic molecules which may form during the process of co-segregation are still impeded by the omnipresent danger of extraneous contamination. However, the presence of O(-), an unusual oxidized form of oxygen, has been proven beyond a reasonable doubt. The presence of O(-) testifies to the fact that a redox reaction must have taken place in the solid state involving the dissolved traces of gas/fluid phase components. Detailed information on the techniques used and the results obtained are given.

  14. Molecular simulation of excess isotherm and excess enthalpy change in gas-phase adsorption.

    PubMed

    Do, D D; Do, H D; Nicholson, D

    2009-01-29

    We present a new approach to calculating excess isotherm and differential enthalpy of adsorption on surfaces or in confined spaces by the Monte Carlo molecular simulation method. The approach is very general and, most importantly, is unambiguous in its application to any configuration of solid structure (crystalline, graphite layer or disordered porous glass), to any type of fluid (simple or complex molecule), and to any operating conditions (subcritical or supercritical). The behavior of the adsorbed phase is studied using the partial molar energy of the simulation box. However, to characterize adsorption for comparison with experimental data, the isotherm is best described by the excess amount, and the enthalpy of adsorption is defined as the change in the total enthalpy of the simulation box with the change in the excess amount, keeping the total number (gas + adsorbed phases) constant. The excess quantities (capacity and energy) require a choice of a reference gaseous phase, which is defined as the adsorptive gas phase occupying the accessible volume and having a density equal to the bulk gas density. The accessible volume is defined as the mean volume space accessible to the center of mass of the adsorbate under consideration. With this choice, the excess isotherm passes through a maximum but always remains positive. This is in stark contrast to the literature where helium void volume is used (which is always greater than the accessible volume) and the resulting excess can be negative. Our definition of enthalpy change is equivalent to the difference between the partial molar enthalpy of the gas phase and the partial molar enthalpy of the adsorbed phase. There is no need to assume ideal gas or negligible molar volume of the adsorbed phase as is traditionally done in the literature. We illustrate this new approach with adsorption of argon, nitrogen, and carbon dioxide under subcritical and supercritical conditions.

  15. Compressed gas manifold

    DOEpatents

    Hildebrand, Richard J.; Wozniak, John J.

    2001-01-01

    A compressed gas storage cell interconnecting manifold including a thermally activated pressure relief device, a manual safety shut-off valve, and a port for connecting the compressed gas storage cells to a motor vehicle power source and to a refueling adapter. The manifold is mechanically and pneumatically connected to a compressed gas storage cell by a bolt including a gas passage therein.

  16. Influence of hot and cold neutrals on scrape-off layer tokamak plasma turbulence

    NASA Astrophysics Data System (ADS)

    Bisai, N.; Kaw, P. K.

    2018-01-01

    The modification of interchange plasma turbulence in the scrape-off layer (SOL) region by the presence of hot and cold neutral gas molecules has been studied. The nonlinear equations have been solved numerically using two different simulations ("uniform-Te" and "varying-Te"), and the results obtained from both of the models have been compared. The hot neutrals, responsible for the increase in the electron density in the SOL, also account for more ionization of the cold molecules. The effect of hot and cold neutrals on the interchange turbulence is almost similar in the "uniform-Te" model, but in the "varying-Te" model, the influence of the hot neutrals is very small, specifically in the far SOL region. The neutral gas in the "varying Te" model decreases the heat load on the material walls by about 7%. A reduction in the radial velocity by about 25% and effective diffusion coefficient of the plasma particles has been found by the influence of the neutral gas.

  17. Combining asymmetrical flow field-flow fractionation with on- and off-line fluorescence detection to examine biodegradation of riverine dissolved and particulate organic matter.

    PubMed

    Lee, Sang Tak; Yang, Boram; Kim, Jin-Yong; Park, Ji-Hyung; Moon, Myeong Hee

    2015-08-28

    This study demonstrated that asymmetrical flow field-flow fractionation (AF4) coupled with on-line UV and fluorescence detection (FLD) and off-line excitation-emission matrix (EEM) fluorescence spectroscopy can be employed to analyze the influence of microbial metabolic activity on the consumption and production of freshwater organic matter. With the AF4 system, organic matter is on-line enriched during a focusing/relaxation period, which is an essential process prior to separation. Size-fractionated chromophoric and fluorophoric organic materials were simultaneously monitored during the 30-min AF4 separation process. Two fractions of different sizes (dissolved organic matter (DOM) and particulate organic matter (POM)) of freshwater samples from three locations (up-, mid-, and downstream) along the Han River basin of Korea were incubated with the same inoculum for 14 days to analyze fraction-specific alterations in optical properties using AF4-UV-FLD. A comparison of AF4 fractograms obtained from pre- and post-incubation samples revealed that POM-derived DOM were more susceptible to microbial metabolic activity than was DOM. Preferential microbial consumption of protein-like DOM components concurred with enhanced peaks of chromophoric and humic-like fluorescent components, presumably formed as by-products of microbial processing. AF4-UV-FLD combined with off-line identification of microbially processed components using EEM fluorescence spectroscopy provides a powerful tool to study the relationship between microbial activity and composition as well as biodegradability of DOM and POM-derived DOM from different origins, especially for the analysis of chromophoric and fluorophoric organic matter that are consumed and produced by microbial metabolic activity. The proposed AF4 system can be applied to organic matter in freshwater samples having low concentration range (0.3-2.5ppm of total organic carbon) without a pre-concentration procedure. Copyright © 2015 Elsevier

  18. The effect of dissolved oxygen on the relaxation rates of blood plasma: Implications for hyperoxia calibrated BOLD.

    PubMed

    Ma, Yuhan; Berman, Avery J L; Pike, G Bruce

    2016-12-01

    To determine the contribution of paramagnetic dissolved oxygen in blood plasma to blood-oxygenation-level-dependent (BOLD) signal changes in hyperoxic calibrated BOLD studies. Bovine blood plasma samples were prepared with partial pressures of oxygen (pO 2 ) ranging from 110 to 600 mmHg. R 1 , R 2 , and R 2 * of the plasma with dissolved oxygen were measured using quantitative MRI sequences at 3 Tesla. Simulations were performed to predict the relative effects of dissolved oxygen and deoxyhemoglobin changes in hyperoxia calibrated BOLD. The relaxivities of dissolved oxygen in plasma were found to be r 1, O2 =1.97 ± 0.09 ×10 -4 s -1 mmHg -1 , r 2, O2 =2.3 ± 0.7 ×10 -4 s -1 mmHg -1 , and r 2, O2 * = 2.3 ± 0.7 ×10 -4 s -1 mmHg -1 . Simulations predict that neither the transverse nor longitudinal relaxation rates of dissolved oxygen contribute significantly to the BOLD signal during hyperoxia. During hyperoxia, the increases in R 2 and R 2 * of blood from dissolved oxygen in plasma are considerably less than the decreases in R 2 and R 2 * from venous deoxyhemoglobin. R 1 effects due to dissolved oxygen are also predicted to be negligible. As a result, dissolved oxygen in arteries should not contribute significantly to the hyperoxic calibrated BOLD signal. Magn Reson Med 76:1905-1911, 2016. © 2015 International Society for Magnetic Resonance in Medicine. © 2015 International Society for Magnetic Resonance in Medicine.

  19. US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-10-18

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reservesmore » and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided.« less

  20. Dissolver vessel bottom assembly

    DOEpatents

    Kilian, Douglas C.

    1976-01-01

    An improved bottom assembly is provided for a nuclear reactor fuel reprocessing dissolver vessel wherein fuel elements are dissolved as the initial step in recovering fissile material from spent fuel rods. A shock-absorbing crash plate with a convex upper surface is disposed at the bottom of the dissolver vessel so as to provide an annular space between the crash plate and the dissolver vessel wall. A sparging ring is disposed within the annular space to enable a fluid discharged from the sparging ring to agitate the solids which deposit on the bottom of the dissolver vessel and accumulate in the annular space. An inlet tangential to the annular space permits a fluid pumped into the annular space through the inlet to flush these solids from the dissolver vessel through tangential outlets oppositely facing the inlet. The sparging ring is protected against damage from the impact of fuel elements being charged to the dissolver vessel by making the crash plate of such a diameter that the width of the annular space between the crash plate and the vessel wall is less than the diameter of the fuel elements.

  1. A new model for two-dimensional numerical simulation of pseudo-2D gas-solids fluidized beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tingwen; Zhang, Yongmin

    2013-10-11

    Pseudo-two dimensional (pseudo-2D) fluidized beds, for which the thickness of the system is much smaller than the other two dimensions, is widely used to perform fundamental studies on bubble behavior, solids mixing, or clustering phenomenon in different gas-solids fluidization systems. The abundant data from such experimental systems are very useful for numerical model development and validation. However, it has been reported that two-dimensional (2D) computational fluid dynamic (CFD) simulations of pseudo-2D gas-solids fluidized beds usually predict poor quantitative agreement with the experimental data, especially for the solids velocity field. In this paper, a new model is proposed to improve themore » 2D numerical simulations of pseudo-2D gas-solids fluidized beds by properly accounting for the frictional effect of the front and back walls. Two previously reported pseudo-2D experimental systems were simulated with this model. Compared to the traditional 2D simulations, significant improvements in the numerical predictions have been observed and the predicted results are in better agreement with the available experimental data.« less

  2. Equilibrium gas-oil ratio measurements using a microfluidic technique.

    PubMed

    Fisher, Robert; Shah, Mohammad Khalid; Eskin, Dmitry; Schmidt, Kurt; Singh, Anil; Molla, Shahnawaz; Mostowfi, Farshid

    2013-07-07

    A method for measuring the equilibrium GOR (gas-oil ratio) of reservoir fluids using microfluidic technology is developed. Live crude oils (crude oil with dissolved gas) are injected into a long serpentine microchannel at reservoir pressure. The fluid forms a segmented flow as it travels through the channel. Gas and liquid phases are produced from the exit port of the channel that is maintained at atmospheric conditions. The process is analogous to the production of crude oil from a formation. By using compositional analysis and thermodynamic principles of hydrocarbon fluids, we show excellent equilibrium between the produced gas and liquid phases is achieved. The GOR of a reservoir fluid is a key parameter in determining the equation of state of a crude oil. Equations of state that are commonly used in petroleum engineering and reservoir simulations describe the phase behaviour of a fluid at equilibrium state. Therefore, to accurately determine the coefficients of an equation of state, the produced gas and liquid phases have to be as close to the thermodynamic equilibrium as possible. In the examples presented here, the GORs measured with the microfluidic technique agreed with GOR values obtained from conventional methods. Furthermore, when compared to conventional methods, the microfluidic technique was simpler to perform, required less equipment, and yielded better repeatability.

  3. Tc removal from the waste treatment and immobilization plant low-activity waste vitrification off-gas recycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-Pashow, Kathryn M. L.; McCabe, Daniel J.; Nash, Charles A.

    Vitrification of Low Activity Waste in the Hanford Waste Treatment and Immobilization Plant generates a condensate stream from the off-gas processes. Components in this stream are partially volatile and accumulate to high concentrations through recycling, which impacts the waste glass loading and facility throughput. The primary radionuclide that vaporizes and accumulates in the stream is 99Tc. This program is investigating Tc removal via reductive precipitation with stannous chloride to examine the potential for diverting this stream to an alternate disposition path. As a result, research has shown stannous chloride to be effective, and this paper describes results of recent experimentsmore » performed to further mature the technology.« less

  4. Tc removal from the waste treatment and immobilization plant low-activity waste vitrification off-gas recycle

    DOE PAGES

    Taylor-Pashow, Kathryn M. L.; McCabe, Daniel J.; Nash, Charles A.

    2017-03-16

    Vitrification of Low Activity Waste in the Hanford Waste Treatment and Immobilization Plant generates a condensate stream from the off-gas processes. Components in this stream are partially volatile and accumulate to high concentrations through recycling, which impacts the waste glass loading and facility throughput. The primary radionuclide that vaporizes and accumulates in the stream is 99Tc. This program is investigating Tc removal via reductive precipitation with stannous chloride to examine the potential for diverting this stream to an alternate disposition path. As a result, research has shown stannous chloride to be effective, and this paper describes results of recent experimentsmore » performed to further mature the technology.« less

  5. Behavior of ceramics at 1200 C in a simulated gas turbine environment

    NASA Technical Reports Server (NTRS)

    Sanders, W. A.; Probst, H. B.

    1974-01-01

    This report summarizes programs at the NASA Lewis Research Center evaluating several classes of commercial ceramics, in a high gas velocity burner rig simulating a gas turbine engine environment. Testing of 23 ceramics in rod geometry identified SiC and Si3N4 as outstanding in resistance to oxidation and thermal stress and identified the failure modes of other ceramics. Further testing of a group of 15 types of SiC and Si3N4 in simulated vane shape geometry has identified a hot pressed SiC, a reaction sintered SiC, and hot pressed Si3N4 as the best of that group. SiC and Si3N4 test specimens were compared on the basis of weight change, dimensional reductions, metallography, fluorescent penetrant inspection, X-ray diffraction analyses, and failure mode.

  6. Kinetic simulations of scrape-off layer physics in the DIII-D tokamak

    DOE PAGES

    Churchill, Randy M.; Canik, John M.; Chang, C. S.; ...

    2016-12-27

    Simulations using the fully kinetic code XGCa were undertaken to explore the impact of kinetic effects on scrape-off layer (SOL) physics in DIII-D H-mode plasmas. XGCa is a total- f, gyrokinetic code which self-consistently calculates the axisymmetric electrostatic potential and plasma dynamics, and includes modules for Monte Carlo neutral transport. Fluid simulations are normally used to simulate the SOL, due to its high collisionality. However, depending on plasma conditions, a number of discrepancies have been observed between experiment and leading SOL fluid codes (e.g. SOLPS), including underestimating outer target temperatures, radial electric field in the SOL, parallel ion SOL flowsmore » at the low field side, and impurity radiation. Many of these discrepancies may be linked to the fluid treatment, and might be resolved by including kinetic effects in SOL simulations. The XGCa simulation of the DIII-D tokamak in a nominally sheath-limited regime show many noteworthy features in the SOL. The density and ion temperature are higher at the low-field side, indicative of ion orbit loss. The SOL ion Mach flows are at experimentally relevant levels ( Mi ~0.5), with similar shapes and poloidal variation as observed in various tokamaks. Surprisingly, the ion Mach flows close to the sheath edge remain subsonic, in contrast to the typical fluid Bohm criterion requiring ion flows to be above sonic at the sheath edge. Related to this are the presence of elevated sheath potentials, eΔΦ/T e ~ 3–4, over most of the SOL, with regions in the near-SOL close to the separatrix having eΔΦ/Te > 4. Finally, these two results at the sheath edge are a consequence of non-Maxwellian features in the ions and electrons there.« less

  7. Off-line exhaled nitric oxide measurements in children.

    PubMed

    Barreto, M; Villa, M P; Martella, S; Falasca, C; Guglielmi, F; Pagani, J; Darder, M T; Ronchetti, R

    2001-08-01

    The concentration of exhaled nitric oxide (eNO) is a useful marker of asthmatic bronchial inflammation. eNO can now be measured away from the laboratory (off-line), even in children. Short exhalation maneuvers (8 sec) and small samples (1 L) of exhaled gas are probably sufficient in children, but more information is needed about the effect of different measurement conditions. As a preliminary step before conducting epidemiological studies in schoolchildren, we investigated the effects of expiratory flow, dead space, and expiratory time on eNO concentrations collected in 1-L mylar collection bags. We studied 101 cooperative subjects (62 males) aged 5-18 years (30 healthy volunteers, 51 asthmatics, and 20 children with various other respiratory diseases) in our pulmonary function laboratory. On-line and off-line eNO were compared in a single session, and analyzed with a Sievers NOA 280 nitric oxide analyzer. For both methods of collecting expired gas, subjects did a single exhalation without breath-holding against an expiratory pressure 10 cm H(2)O. We investigated the effects of expiratory flow, dead space, and exhalation time on eNO; we also compared on-line and off-line eNO measurements, and the repeatability of both techniques at a given flow rate. Expiratory flows of 58 mL/sec provided more reproducible data than lower flows (coefficient of repeatability 1.1 ppb for 58 mL/sec vs. 2.8 for 27 mL/sec vs. 5.7 for 18 mL/sec). eNO concentrations were about 25% higher in off-line than in on-line recordings if the initial 250 mL of exhaled gas were not eliminated, and 37% higher if exhalation lasted longer (16 sec vs. 8 sec). Eliminating 250 mL of dead space and shortening the filling time to 8 sec yielded off-line eNO values close to those on-line (geometric mean off-line eNO 14.4 ppb, 95% confidence interval: 12.2-17.0) vs. on-line eNO 13.8 ppb (95% confidence interval: 11.6-16.5). On-line and off-line results were highly correlated (r = 0.996, P = 0.000) and had

  8. Comparing Natural Gas Leakage Detection Technologies Using an Open-Source "Virtual Gas Field" Simulator.

    PubMed

    Kemp, Chandler E; Ravikumar, Arvind P; Brandt, Adam R

    2016-04-19

    We present a tool for modeling the performance of methane leak detection and repair programs that can be used to evaluate the effectiveness of detection technologies and proposed mitigation policies. The tool uses a two-state Markov model to simulate the evolution of methane leakage from an artificial natural gas field. Leaks are created stochastically, drawing from the current understanding of the frequency and size distributions at production facilities. Various leak detection and repair programs can be simulated to determine the rate at which each would identify and repair leaks. Integrating the methane leakage over time enables a meaningful comparison between technologies, using both economic and environmental metrics. We simulate four existing or proposed detection technologies: flame ionization detection, manual infrared camera, automated infrared drone, and distributed detectors. Comparing these four technologies, we found that over 80% of simulated leakage could be mitigated with a positive net present value, although the maximum benefit is realized by selectively targeting larger leaks. Our results show that low-cost leak detection programs can rely on high-cost technology, as long as it is applied in a way that allows for rapid detection of large leaks. Any strategy to reduce leakage should require a careful consideration of the differences between low-cost technologies and low-cost programs.

  9. Temperature, productivity and sediment characteristics as drivers of seasonal and spatial variations of dissolved methane in the near-shore coastal areas (Belgian coastal zone, North Sea)

    NASA Astrophysics Data System (ADS)

    Borges, Alberto V.; Speeckaert, Gaëlle; Champenois, Willy; Scranton, Mary I.; Gypens, Nathalie

    2017-04-01

    The open ocean is a modest source of CH4 to the atmosphere compared to other natural and anthropogenic CH4 emissions. Coastal regions are more intense sources of CH4 to the atmosphere than open oceanic waters, in particular estuarine zones. The CH4 emission to the atmosphere from coastal areas is sustained by riverine inputs and methanogenesis in the sediments due to high organic matter (OM) deposition. Additionally, natural gas seeps are sources of CH4 to bottom waters leading to high dissolved CH4 concentrations in bottom waters (from tenths of nmol L-1 up to several µmol L-1). We report a data set of dissolved CH4 concentrations obtained at nine fixed stations in the Belgian coastal zone (Southern North Sea), during one yearly cycle, with a bi-monthly frequency in spring, and a monthly frequency during the rest of the year. This is a coastal area with multiple possible sources of CH4 such as from rivers and gassy sediments, and where intense phytoplankton blooms are dominated by the high dimethylsulfoniopropionate (DMSP) producing micro-algae Phaeocystis globosa, leading to DMSP and dimethylsulfide (DMS) concentrations. Furthermore, the BCZ is a site of important OM sedimentation and accumulation unlike the rest of the North Sea. Spatial variations of dissolved CH4 concentrations were very marked with a minimum yearly average of 9 nmol L-1 in one of the most off-shore stations and maximum yearly average of 139 nmol L-1 at one of the most near-shore stations. The spatial variations of dissolved CH4 concentrations were related to the organic matter (OM) content of sediments, although the highest concentrations seemed to also be related to inputs of CH4 from gassy sediments associated to submerged peat. In the near-shore stations with fine sand or muddy sediments with a high OM content, the seasonal cycle of dissolved CH4 concentration closely followed the seasonal cycle of water temperature, suggesting the control of methanogenesis by temperature in these OM

  10. Hybrid lattice gas simulations of flow through porous media

    NASA Astrophysics Data System (ADS)

    Becklehimer, Jeffrey Lynn

    1997-10-01

    This study introduces a suite of models designed to investigate transport phenomena in simulated porous media such as rigid or quenched sediment and clay-like deformable environments. This is achieved by using a variety of techniques that are borrowed from the field of statistical physics. These techniques include percolation, lattice gas, and cellular automata. A percolation-based model is used to study a porous medium by using rods and chains of various shapes and sizes to model the porous media formed by sediments. This is further extended to model clay-like deformable media by interacting heavy sediment particles. An interacting lattice gas computer simulation model based on the Metropolis algorithm is used to study the transport properties of fluid particles and permeability of a porous sediment. Finally, a hybrid lattice gas model is introduced by combining the Metropolis Monte Carlo method with a direct simulation which involves the collision rules as in cellular automata. This model is then used to study shock propagation in a fluid filled porous medium. This study is then extended to study shock propagation through in a fluid filled elastic porous medium. Several interesting and new results were obtained. These results show that for rigid chain percolation the percolation threshold shows a dependence on the chain length of pc~ Lc-1/2 and the jamming coverage decreases with the chain length as Lc- 1/3. For the random SAW-like chains the percolation threshold decays with the chain length as Lc- 0.01 and the jamming coverage as Lc-1/3. The fluid flow model shows that permeability depends nonmonotonically on the concentration of the fluid. For some fluids at a fixed porosity, the permeability increases on increasing the bias until a certain value Bc above which it decreases. Also, it was found that a shock propagates in a drift-like fashion when in a rigid porous medium when the porosity is high; low porosity damps out the shock front very quickly. For a shock

  11. Flow of a Gas Turbine Engine Low-Pressure Subsystem Simulated

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    1997-01-01

    The NASA Lewis Research Center is managing a task to numerically simulate overnight, on a parallel computing testbed, the aerodynamic flow in the complete low-pressure subsystem (LPS) of a gas turbine engine. The model solves the three-dimensional Navier- Stokes flow equations through all the components within the LPS, as well as the external flow around the engine nacelle. The LPS modeling task is being performed by Allison Engine Company under the Small Engine Technology contract. The large computer simulation was evaluated on networked computer systems using 8, 16, and 32 processors, with the parallel computing efficiency reaching 75 percent when 16 processors were used.

  12. Kinetics of CH4 and CO2 hydrate dissociation and gas bubble evolution via MD simulation.

    PubMed

    Uddin, M; Coombe, D

    2014-03-20

    Molecular dynamics simulations of gas hydrate dissociation comparing the behavior of CH4 and CO2 hydrates are presented. These simulations were based on a structurally correct theoretical gas hydrate crystal, coexisting with water. The MD system was first initialized and stabilized via a thorough energy minimization, constant volume-temperature ensemble and constant volume-energy ensemble simulations before proceeding to constant pressure-temperature simulations for targeted dissociation pressure and temperature responses. Gas bubble evolution mechanisms are demonstrated as well as key investigative properties such as system volume, density, energy, mean square displacements of the guest molecules, radial distribution functions, H2O order parameter, and statistics of hydrogen bonds. These simulations have established the essential similarities between CH4 and CO2 hydrate dissociation. The limiting behaviors at lower temperature (no dissociation) and higher temperature (complete melting and formation of a gas bubble) have been illustrated for both hydrates. Due to the shift in the known hydrate stability curves between guest molecules caused by the choice of water model as noted by other authors, the intermediate behavior (e.g., 260 K) showed distinct differences however. Also, because of the more hydrogen-bonding capability of CO2 in water, as reflected in its molecular parameters, higher solubility of dissociated CO2 in water was observed with a consequence of a smaller size of gas bubble formation. Additionally, a novel method for analyzing hydrate dissociation based on H-bond breakage has been proposed and used to quantify the dissociation behaviors of both CH4 and CO2 hydrates. Activation energies Ea values from our MD studies were obtained and evaluated against several other published laboratory and MD values. Intrinsic rate constants were estimated and upscaled. A kinetic reaction model consistent with macroscale fitted kinetic models has been proposed to

  13. Photoacoustic Spectroscopy for the Quantification of N2O in the Off-Gas of Wastewater Treatment Plants.

    PubMed

    Thaler, Klemens M; Berger, Christoph; Leix, Carmen; Drewes, Jörg; Niessner, Reinhard; Haisch, Christoph

    2017-03-21

    Different configurations of photoacoustic (PA) setups for the online-measurement of gaseous N 2 O, employing semiconductor lasers at 2.9 and 4.5 μm, were developed and tested. Their performance was assessed with respect to the analysis of N 2 O emissions from wastewater treatment plants. For this purpose, the local N 2 O emissions of a wastewater treatment bioreactor was sampled by a dedicated mobile sampling device, and the total N 2 O emissions were analyzed in the gastight headspace of the bioreactor. We found that the use of a quantum-cascade laser emitting at about 4.53 μm, operated in a wavelength modulation mode, in combination with a conventional longitudinal PA cell yielded the highest sensitivity (<100 ppbv). However, we also observed a strong cross-sensitivity to humidity, which can be explained by increased V-T relaxation. This observation in combination with the limited dynamic range (max conc. ∼ 3000 ppmv) led us to the use of the less-sensitive but spectroscopically more robust 2.9 μm laser. A detection limit below 1 ppmv, a dynamic range of more than 4 orders of magnitude, no influence of humidity or any other substance relevant to the off-gas analysis, as well as a comparable low price of the laser source made it the ideal tool for N 2 O analyses of the off-gas of a wastewater treatment plant. Such a system was implemented successfully in a full-scale wastewater treatment plant. The results regarding the comparison of different PA setups can be transferred to other systems, and the optimum performance can be selected according to the specific demands.

  14. Significance of dissolved methane in effluents of anaerobically ...

    EPA Pesticide Factsheets

    The need for energy efficient Domestic Wastewater (DWW) treatment is increasing annually with population growth and expanding global energy demand. Anaerobic treatment of low strength DWW produces methane which can be used to as an energy product. Temperature sensitivity, low removal efficiencies (Chemical Oxygen Demand (COD), Suspended Solids (SS), and Nutrients), alkalinity demand, and potential greenhouse gas (GHG) emissions have limited its application to warmer climates. Although well designed anaerobic Membrane Bioreactors (AnMBRs) are able to effectively treat DWW at psychrophilic temperatures (10–30 °C), lower temperatures increase methane solubility leading to increased energy losses in the form of dissolved methane in the effluent. Estimates of dissolved methane losses are typically based on concentrations calculated using Henry's Law but advection limitations can lead to supersaturation of methane between 1.34 and 6.9 times equilibrium concentrations and 11–100% of generated methane being lost in the effluent. In well mixed systems such as AnMBRs which use biogas sparging to control membrane fouling, actual concentrations approach equilibrium values. Non-porous membranes have been used to recover up to 92.6% of dissolved methane and well suited for degassing effluents of Upflow Anaerobic Sludge Blanket (UASB) reactors which have considerable solids and organic contents and can cause pore wetting and clogging in microporous membrane modules. Micro

  15. Optimizing Noble Gas-Water Interactions via Monte Carlo Simulations.

    PubMed

    Warr, Oliver; Ballentine, Chris J; Mu, Junju; Masters, Andrew

    2015-11-12

    In this work we present optimized noble gas-water Lennard-Jones 6-12 pair potentials for each noble gas. Given the significantly different atomic nature of water and the noble gases, the standard Lorentz-Berthelot mixing rules produce inaccurate unlike molecular interactions between these two species. Consequently, we find simulated Henry's coefficients deviate significantly from their experimental counterparts for the investigated thermodynamic range (293-353 K at 1 and 10 atm), due to a poor unlike potential well term (εij). Where εij is too high or low, so too is the strength of the resultant noble gas-water interaction. This observed inadequacy in using the Lorentz-Berthelot mixing rules is countered in this work by scaling εij for helium, neon, argon, and krypton by factors of 0.91, 0.8, 1.1, and 1.05, respectively, to reach a much improved agreement with experimental Henry's coefficients. Due to the highly sensitive nature of the xenon εij term, coupled with the reasonable agreement of the initial values, no scaling factor is applied for this noble gas. These resulting optimized pair potentials also accurately predict partitioning within a CO2-H2O binary phase system as well as diffusion coefficients in ambient water. This further supports the quality of these interaction potentials. Consequently, they can now form a well-grounded basis for the future molecular modeling of multiphase geological systems.

  16. Evolution of gas saturation and relative permeability during gas production from hydrate-bearing sediments: Gas invasion vs. gas nucleation

    NASA Astrophysics Data System (ADS)

    Jang, Jaewon; Santamarina, J. Carlos

    2014-01-01

    Capillarity and both gas and water permeabilities change as a function of gas saturation. Typical trends established in the discipline of unsaturated soil behavior are used when simulating gas production from hydrate-bearing sediments. However, the evolution of gas saturation and water drainage in gas invasion (i.e., classical soil behavior) and gas nucleation (i.e., gas production) is inherently different: micromodel experimental results show that gas invasion forms a continuous flow path while gas nucleation forms isolated gas clusters. Complementary simulations conducted using tube networks explore the implications of the two different desaturation processes. In spite of their distinct morphological differences in fluid displacement, numerical results show that the computed capillarity-saturation curves are very similar in gas invasion and nucleation (the gas-water interface confronts similar pore throat size distribution in both cases); the relative water permeability trends are similar (the mean free path for water flow is not affected by the topology of the gas phase); and the relative gas permeability is slightly lower in nucleation (delayed percolation of initially isolated gas-filled pores that do not contribute to gas conductivity). Models developed for unsaturated sediments can be used for reservoir simulation in the context of gas production from hydrate-bearing sediments, with minor adjustments to accommodate a lower gas invasion pressure Po and a higher gas percolation threshold.

  17. Sequential Gaussian co-simulation of rate decline parameters of longwall gob gas ventholes.

    PubMed

    Karacan, C Özgen; Olea, Ricardo A

    2013-04-01

    Gob gas ventholes (GGVs) are used to control methane inflows into a longwall mining operation by capturing the gas within the overlying fractured strata before it enters the work environment. Using geostatistical co-simulation techniques, this paper maps the parameters of their rate decline behaviors across the study area, a longwall mine in the Northern Appalachian basin. Geostatistical gas-in-place (GIP) simulations were performed, using data from 64 exploration boreholes, and GIP data were mapped within the fractured zone of the study area. In addition, methane flowrates monitored from 10 GGVs were analyzed using decline curve analyses (DCA) techniques to determine parameters of decline rates. Surface elevation showed the most influence on methane production from GGVs and thus was used to investigate its relation with DCA parameters using correlation techniques on normal-scored data. Geostatistical analysis was pursued using sequential Gaussian co-simulation with surface elevation as the secondary variable and with DCA parameters as the primary variables. The primary DCA variables were effective percentage decline rate, rate at production start, rate at the beginning of forecast period, and production end duration. Co-simulation results were presented to visualize decline parameters at an area-wide scale. Wells located at lower elevations, i.e., at the bottom of valleys, tend to perform better in terms of their rate declines compared to those at higher elevations. These results were used to calculate drainage radii of GGVs using GIP realizations. The calculated drainage radii are close to ones predicted by pressure transient tests.

  18. Sequential Gaussian co-simulation of rate decline parameters of longwall gob gas ventholes

    USGS Publications Warehouse

    Karacan, C. Özgen; Olea, Ricardo A.

    2013-01-01

    Gob gas ventholes (GGVs) are used to control methane inflows into a longwall mining operation by capturing the gas within the overlying fractured strata before it enters the work environment. Using geostatistical co-simulation techniques, this paper maps the parameters of their rate decline behaviors across the study area, a longwall mine in the Northern Appalachian basin. Geostatistical gas-in-place (GIP) simulations were performed, using data from 64 exploration boreholes, and GIP data were mapped within the fractured zone of the study area. In addition, methane flowrates monitored from 10 GGVs were analyzed using decline curve analyses (DCA) techniques to determine parameters of decline rates. Surface elevation showed the most influence on methane production from GGVs and thus was used to investigate its relation with DCA parameters using correlation techniques on normal-scored data. Geostatistical analysis was pursued using sequential Gaussian co-simulation with surface elevation as the secondary variable and with DCA parameters as the primary variables. The primary DCA variables were effective percentage decline rate, rate at production start, rate at the beginning of forecast period, and production end duration. Co-simulation results were presented to visualize decline parameters at an area-wide scale. Wells located at lower elevations, i.e., at the bottom of valleys, tend to perform better in terms of their rate declines compared to those at higher elevations. These results were used to calculate drainage radii of GGVs using GIP realizations. The calculated drainage radii are close to ones predicted by pressure transient tests.

  19. Sequential Gaussian co-simulation of rate decline parameters of longwall gob gas ventholes

    PubMed Central

    Karacan, C.Özgen; Olea, Ricardo A.

    2015-01-01

    Gob gas ventholes (GGVs) are used to control methane inflows into a longwall mining operation by capturing the gas within the overlying fractured strata before it enters the work environment. Using geostatistical co-simulation techniques, this paper maps the parameters of their rate decline behaviors across the study area, a longwall mine in the Northern Appalachian basin. Geostatistical gas-in-place (GIP) simulations were performed, using data from 64 exploration boreholes, and GIP data were mapped within the fractured zone of the study area. In addition, methane flowrates monitored from 10 GGVs were analyzed using decline curve analyses (DCA) techniques to determine parameters of decline rates. Surface elevation showed the most influence on methane production from GGVs and thus was used to investigate its relation with DCA parameters using correlation techniques on normal-scored data. Geostatistical analysis was pursued using sequential Gaussian co-simulation with surface elevation as the secondary variable and with DCA parameters as the primary variables. The primary DCA variables were effective percentage decline rate, rate at production start, rate at the beginning of forecast period, and production end duration. Co-simulation results were presented to visualize decline parameters at an area-wide scale. Wells located at lower elevations, i.e., at the bottom of valleys, tend to perform better in terms of their rate declines compared to those at higher elevations. These results were used to calculate drainage radii of GGVs using GIP realizations. The calculated drainage radii are close to ones predicted by pressure transient tests. PMID:26190930

  20. Simulation of real-gas effects on pressure distributions for aeroassist flight experiment vehicle and comparison with prediction

    NASA Technical Reports Server (NTRS)

    Micol, John R.

    1992-01-01

    Pressure distributions measured on a 60 degree half-angle elliptic cone, raked off at an angle of 73 degrees from the cone centerline and having an ellipsoid nose (ellipticity equal to 2.0 in the symmetry plane) are presented for angles of attack from -10 degrees to 10 degrees. The high normal shock density ratio aspect of a real gas was simulated by testing in Mach 6 air and CF sub 4 (density ratio equal to 5.25 and 12.0, respectively). The effects of Reynolds number, angle of attack, and normal shock density ratio on these measurements are examined, and comparisons with a three dimensional Euler code known as HALIS are made. A significant effect of density ratio on pressure distributions on the cone section of the configuration was observed; the magnitude of this effect decreased with increasing angle of attack. The effect of Reynolds number on pressure distributions was negligible for forebody pressure distributions, but a measurable effect was noted on base pressures. In general, the HALIS code accurately predicted the measured pressure distributions in air and CF sub 4.