Science.gov

Sample records for simulating structural collapse

  1. Collapsible Geostrut Structure

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.

    1994-01-01

    Portable truss structure collapsible into smaller volume for storage and transportation. At new site, reerected quickly, without need to reassemble parts. Structure could be tent, dome, tunnel, or platform. Key element in structure joint, called "geostrut joint," includes internal cable. Structure is network of struts attached to geostrut joints. Pulling cables taut in all joints makes structure rigid. Releasing cables relaxes structure.

  2. Formation of a protocluster: A virialized structure from gravoturbulent collapse. I. Simulation of cluster formation in a collapsing molecular cloud

    NASA Astrophysics Data System (ADS)

    Lee, Yueh-Ning; Hennebelle, Patrick

    2016-06-01

    Context. Stars are often observed to form in clusters and it is therefore important to understand how such a region of concentrated mass is assembled out of the diffuse medium. The properties of such a region eventually prescribe the important physical mechanisms and determine the characteristics of the stellar cluster. Aims: We study the formation of a gaseous protocluster inside a molecular cloud and associate its internal properties with those of the parent cloud by varying the level of the initial turbulence of the cloud with a view to better characterize the subsequent stellar cluster formation. Methods: We performed high resolution magnetohydrodynamic (MHD) simulations of gaseous protoclusters forming in molecular clouds collapsing under self-gravity. We determined ellipsoidal cluster regions via gas kinematics and sink particle distribution, permitting us to determine the mass, size, and aspect ratio of the cluster. We studied the cluster properties, such as kinetic and gravitational energy, and made links to the parent cloud. Results: The gaseous protocluster is formed out of global collapse of a molecular cloud and has non-negligible rotation owing to angular momentum conservation during the collapse of the object. Most of the star formation occurs in this region, which occupies only a small volume fraction of the whole cloud. This dense entity is a result of the interplay between turbulence and gravity. We identify such regions in simulations and compare the gas and sink particles to observed star-forming clumps and embedded clusters, respectively. The gaseous protocluster inferred from simulation results presents a mass-size relation that is compatible with observations. We stress that the stellar cluster radius, although clearly correlated with the gas cluster radius, depends sensitively on its definition. Energy analysis is performed to confirm that the gaseous protocluster is a product of gravoturbulent reprocessing and that the support of turbulent

  3. Rigid collapsible dish structure

    NASA Technical Reports Server (NTRS)

    Palmer, William B. (Inventor); Giebler, Martin M. (Inventor)

    1982-01-01

    A collapsible dish structure composed of a plurality of rows of rigid radial petal assemblies concentric with the axis of the dish. The petal assemblies consist of a center petal and two side petals, the center petal hinged on an axis tangent to a circle concentric with the axis of the dish and the side petals hinged to the center petal at their mating edge. The center petal is foldable inwardly and the side petals rotate about their hinges such that the collapsed dish structure occupies a much smaller volume than the deployed dish. Means of controlling the shape of the dish to compensate for differential expansion of the deployed dish are also provided.

  4. Atomistic simulations of langmuir monolayer collapse.

    PubMed

    Lorenz, Christian D; Travesset, Alex

    2006-11-21

    Monolayers at the vapor/water interface collapse by exploring the third dimension at sufficient lateral compression, either by forming three-dimensional structures or by solubilization into the aqueous solution. In this paper, we provide an atomistic description of collapse from molecular dynamics (MD) simulations. More specifically, we investigate monolayers of arachidic acids spread on pure water and in an aqueous solution with Ca2+ ions in the subphase. In both cases, it is found that the collapsed systems generally lead to the formation of multilayer structures, which in the system with Ca2+ ions, proceeds by an intermediate regime where the monolayer exhibits significant roughness (of the order of 4 A). If no roughness is present, the system forms collapsed structures into the aqueous solution. The computational cost of atomic MD limits our simulations to relatively small system sizes, fast compression rates, and temporal scales on the order of a nanosecond. We discuss the issues caused by these limitations and present a detailed discussion of how the collapse regime proceeds at long time scales. We conclude with a summary of the implications of our results for further theoretical and experimental studies. PMID:17106994

  5. Dynamic simulation of voltage collapses

    SciTech Connect

    Deuse, J.; Stubbe, M. )

    1993-08-01

    Most of the time the voltage collapse phenomena are studied by means of computer programs designed for the calculation of steady state conditions. But in the real world, the simultaneous occurrences of losses of synchronism, of AVR dynamics or of transformer tap changes call for a full dynamic simulation of voltage phenomena. The present paper shows some examples of dynamic simulations of voltage phenomena using a new general purpose stability program (EUROSTAG), covering in a continuous way the classical fields of transient, mid-term and long-term stability, and also the quasi steady state conditions of a power system.

  6. SPH and Eulerian underwater bubble collapse simulations

    SciTech Connect

    Swegle, J.W.; Kipp, M.E.

    1998-05-01

    SPH (Smoothed Particle Hydrodynamics) is a gridless Lagrangian technique which is appealing as a possible alternative to numerical techniques currently used to analyze high deformation impulsive loading events. Previously, the SPH algorithm has been subjected to detailed testing and analysis to determine the feasibility of using the coupled finite-element/SPH code PRONTO/SPH for the analysis of various types of underwater explosion problems involving fluid-structure and shock-structure interactions. Here, SPH and Eulerian simulations are used to study the details of underwater bubble collapse, particularly the formation of re-entrant jets during collapse, and the loads generated on nearby structures by the jet and the complete collapse of the bubble. Jet formation is shown to be due simply to the asymmetry caused by nearby structures which disrupt the symmetry of the collapse. However, the load generated by the jet is a minor precursor to the major loads which occur at the time of complete collapse of the bubble.

  7. 1. UPPER NOTTINGHAM MINE. COLLAPSED ADIT AND COLLAPSED WOODEN STRUCTURE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. UPPER NOTTINGHAM MINE. COLLAPSED ADIT AND COLLAPSED WOODEN STRUCTURE. CAMERA IS POINTED EAST. - Florida Mountain Mining Sites, Upper Nottingham Mine, West face of Florida Mountain, head of Jacobs Gulch, Silver City, Owyhee County, ID

  8. Diverse melting modes and structural collapse of hollow bimetallic core-shell nanoparticles: a perspective from molecular dynamics simulations.

    PubMed

    Huang, Rao; Shao, Gui-Fang; Zeng, Xiang-Ming; Wen, Yu-Hua

    2014-01-01

    Introducing hollow structures into metallic nanoparticles has become a promising route to improve their catalytic performances. A fundamental understanding of thermal stability of these novel nanostructures is of significance for their syntheses and applications. In this article, molecular dynamics simulations have been employed to offer insights into the thermodynamic evolution of hollow bimetallic core-shell nanoparticles. Our investigation reveals that for hollow Pt-core/Au-shell nanoparticle, premelting originates at the exterior surface, and a typical two-stage melting behavior is exhibited, similar to the solid ones. However, since the interior surface provides facilitation for the premelting initiating at the core, the two-stage melting is also observed in hollow Au-core/Pt-shell nanoparticle, remarkably different from the solid one. Furthermore, the collapse of hollow structure is accompanied with the overall melting of the hollow Pt-core/Au-shell nanoparticle while it occurs prior to that of the hollow Au-core/Pt-shell nanoparticle and leads to the formation of a liquid-core/solid-shell structure, although both of them finally transform into a mixing alloy with Au-dominated surface. Additionally, the existence of stacking faults in the hollow Pt-core/Au-shell nanoparticle distinctly lowers its melting point. This study could be of great importance to the design and development of novel nanocatalysts with both high activity and excellent stability. PMID:25394424

  9. Diverse Melting Modes and Structural Collapse of Hollow Bimetallic Core-Shell Nanoparticles: A Perspective from Molecular Dynamics Simulations

    PubMed Central

    Huang, Rao; Shao, Gui-Fang; Zeng, Xiang-Ming; Wen, Yu-Hua

    2014-01-01

    Introducing hollow structures into metallic nanoparticles has become a promising route to improve their catalytic performances. A fundamental understanding of thermal stability of these novel nanostructures is of significance for their syntheses and applications. In this article, molecular dynamics simulations have been employed to offer insights into the thermodynamic evolution of hollow bimetallic core-shell nanoparticles. Our investigation reveals that for hollow Pt-core/Au-shell nanoparticle, premelting originates at the exterior surface, and a typical two-stage melting behavior is exhibited, similar to the solid ones. However, since the interior surface provides facilitation for the premelting initiating at the core, the two-stage melting is also observed in hollow Au-core/Pt-shell nanoparticle, remarkably different from the solid one. Furthermore, the collapse of hollow structure is accompanied with the overall melting of the hollow Pt-core/Au-shell nanoparticle while it occurs prior to that of the hollow Au-core/Pt-shell nanoparticle and leads to the formation of a liquid-core/solid-shell structure, although both of them finally transform into a mixing alloy with Au-dominated surface. Additionally, the existence of stacking faults in the hollow Pt-core/Au-shell nanoparticle distinctly lowers its melting point. This study could be of great importance to the design and development of novel nanocatalysts with both high activity and excellent stability. PMID:25394424

  10. Collapse Mechanisms Of Masonry Structures

    SciTech Connect

    Zuccaro, G.; Rauci, M.

    2008-07-08

    The paper outlines a possible approach to typology recognition, safety check analyses and/or damage measuring taking advantage by a multimedia tool (MEDEA), tracing a guided procedure useful for seismic safety check evaluation and post event macroseismic assessment. A list of the possible collapse mechanisms observed in the post event surveys on masonry structures and a complete abacus of the damages are provided in MEDEA. In this tool a possible combination between a set of damage typologies and each collapse mechanism is supplied in order to improve the homogeneity of the damages interpretation. On the other hand recent researches of one of the author have selected a number of possible typological vulnerability factors of masonry buildings, these are listed in the paper and combined with potential collapse mechanisms to be activated under seismic excitation. The procedure takes place from simple structural behavior models, derived from the Umbria-Marche earthquake observations, and tested after the San Giuliano di Puglia event; it provides the basis either for safety check analyses of the existing buildings or for post-event structural safety assessment and economic damage evaluation. In the paper taking advantage of MEDEA mechanisms analysis, mainly developed for the post event safety check surveyors training, a simple logic path is traced in order to approach the evaluation of the masonry building safety check. The procedure starts from the identification of the typological vulnerability factors to derive the potential collapse mechanisms and their collapse multipliers and finally addresses the simplest and cheapest strengthening techniques to reduce the original vulnerability. The procedure has been introduced in the Guide Lines of the Regione Campania for the professionals in charge of the safety check analyses and the buildings strengthening in application of the national mitigation campaign introduced by the Ordinance of the Central Government n. 3362

  11. Collapse Mechanisms Of Masonry Structures

    NASA Astrophysics Data System (ADS)

    Zuccaro, G.; Rauci, M.

    2008-07-01

    The paper outlines a possible approach to typology recognition, safety check analyses and/or damage measuring taking advantage by a multimedia tool (MEDEA), tracing a guided procedure useful for seismic safety check evaluation and post event macroseismic assessment. A list of the possible collapse mechanisms observed in the post event surveys on masonry structures and a complete abacus of the damages are provided in MEDEA. In this tool a possible combination between a set of damage typologies and each collapse mechanism is supplied in order to improve the homogeneity of the damages interpretation. On the other hand recent researches of one of the author have selected a number of possible typological vulnerability factors of masonry buildings, these are listed in the paper and combined with potential collapse mechanisms to be activated under seismic excitation. The procedure takes place from simple structural behavior models, derived from the Umbria-Marche earthquake observations, and tested after the San Giuliano di Puglia event; it provides the basis either for safety check analyses of the existing buildings or for post-event structural safety assessment and economic damage evaluation. In the paper taking advantage of MEDEA mechanisms analysis, mainly developed for the post event safety check surveyors training, a simple logic path is traced in order to approach the evaluation of the masonry building safety check. The procedure starts from the identification of the typological vulnerability factors to derive the potential collapse mechanisms and their collapse multipliers and finally addresses the simplest and cheapest strengthening techniques to reduce the original vulnerability. The procedure has been introduced in the Guide Lines of the Regione Campania for the professionals in charge of the safety check analyses and the buildings strengthening in application of the national mitigation campaign introduced by the Ordinance of the Central Government n. 3362

  12. Simulating the entropic collapse of coarse-grained chromosomes.

    PubMed

    Shendruk, Tyler N; Bertrand, Martin; de Haan, Hendrick W; Harden, James L; Slater, Gary W

    2015-02-17

    Depletion forces play a role in the compaction and decompaction of chromosomal material in simple cells, but it has remained debatable whether they are sufficient to account for chromosomal collapse. We present coarse-grained molecular dynamics simulations, which reveal that depletion-induced attraction is sufficient to cause the collapse of a flexible chain of large structural monomers immersed in a bath of smaller depletants. These simulations use an explicit coarse-grained computational model that treats both the supercoiled DNA structural monomers and the smaller protein crowding agents as combinatorial, truncated Lennard-Jones spheres. By presenting a simple theoretical model, we quantitatively cast the action of depletants on supercoiled bacterial DNA as an effective solvent quality. The rapid collapse of the simulated flexible chromosome at the predicted volume fraction of depletants is a continuous phase transition. Additional physical effects to such simple chromosome models, such as enthalpic interactions between structural monomers or chain rigidity, are required if the collapse is to be a first-order phase transition. PMID:25692586

  13. Simulating the Entropic Collapse of Coarse-Grained Chromosomes

    PubMed Central

    Shendruk, Tyler N.; Bertrand, Martin; de Haan, Hendrick W.; Harden, James L.; Slater, Gary W.

    2015-01-01

    Depletion forces play a role in the compaction and decompaction of chromosomal material in simple cells, but it has remained debatable whether they are sufficient to account for chromosomal collapse. We present coarse-grained molecular dynamics simulations, which reveal that depletion-induced attraction is sufficient to cause the collapse of a flexible chain of large structural monomers immersed in a bath of smaller depletants. These simulations use an explicit coarse-grained computational model that treats both the supercoiled DNA structural monomers and the smaller protein crowding agents as combinatorial, truncated Lennard-Jones spheres. By presenting a simple theoretical model, we quantitatively cast the action of depletants on supercoiled bacterial DNA as an effective solvent quality. The rapid collapse of the simulated flexible chromosome at the predicted volume fraction of depletants is a continuous phase transition. Additional physical effects to such simple chromosome models, such as enthalpic interactions between structural monomers or chain rigidity, are required if the collapse is to be a first-order phase transition. PMID:25692586

  14. Petascale Core-Collapse Supernova Simulation

    NASA Astrophysics Data System (ADS)

    Messer, Bronson

    2009-11-01

    The advent of petascale computing brings with it the promise of substantial increases in physical fidelity for a host of scientific problems. However, the realities of computing on these resources are daunting, and the architectural features of petascale machines will require considerable innovation for effective use. Nevertheless, there exists a class of scientific problems whose ultimate answer requires the application of petascale (and beyond) computing. One example is ascertaining the core-collapse supernova mechanism and explaining the rich phenomenology associated with these events. These stellar explosions produce and disseminate a dominant fraction of the elements in the Universe; are prodigious sources of neutrinos, gravitational waves, and photons across the electromagnetic spectrum; and lead to the formation of neutron stars and black holes. I will describe our recent multidimensional supernova simulations performed on petascale platforms fielded by the DOE and NSF.

  15. Radiation magnetohydrodynamic simulations of protostellar collapse: Low-metallicity environments

    SciTech Connect

    Tomida, Kengo

    2014-05-10

    Among many physical processes involved in star formation, radiation transfer is one of the key processes because it dominantly controls the thermodynamics. Because metallicities control opacities, they are one of the important environmental parameters that affect star formation processes. In this work, I investigate protostellar collapse in solar-metallicity and low-metallicity (Z = 0.1 Z {sub ☉}) environments using three-dimensional radiation hydrodynamic and magnetohydrodynamic simulations. Because radiation cooling in high-density gas is more effective in low-metallicity environments, first cores are colder and have lower entropies. As a result, first cores are smaller, less massive, and have shorter lifetimes in low-metallicity clouds. Therefore, first cores would be less likely to be found in low-metallicity star forming clouds. This also implies that first cores tend to be more gravitationally unstable and susceptible to fragmentation. The evolution and structure of protostellar cores formed after the second collapse weakly depend on metallicities in the spherical and magnetized models, despite the large difference in the metallicities. Because this is due to the change of the heat capacity by dissociation and ionization of hydrogen, it is a general consequence of the second collapse as long as the effects of radiation cooling are not very large during the second collapse. On the other hand, the effects of different metallicities are more significant in the rotating models without magnetic fields, because they evolve slower than other models and therefore are more affected by radiation cooling.

  16. Flux-driven simulations of turbulence collapse

    SciTech Connect

    Park, G. Y.; Kim, S. S.; Jhang, Hogun; Rhee, T.; Diamond, P. H.; Xu, X. Q.

    2015-03-15

    Using three-dimensional nonlinear simulations of tokamak turbulence, we show that an edge transport barrier (ETB) forms naturally once input power exceeds a threshold value. Profiles, turbulence-driven flows, and neoclassical coefficients are evolved self-consistently. A slow power ramp-up simulation shows that ETB transition is triggered by the turbulence-driven flows via an intermediate phase which involves coherent oscillation of turbulence intensity and E×B flow shear. A novel observation of the evolution is that the turbulence collapses and the ETB transition begins when R{sub T} > 1 at t = t{sub R} (R{sub T}: normalized Reynolds power), while the conventional transition criterion (ω{sub E×B}>γ{sub lin} where ω{sub E×B} denotes mean flow shear) is satisfied only after t = t{sub C} ( >t{sub R}), when the mean flow shear grows due to positive feedback.

  17. Structural control on karst collapse sinkhole formation

    NASA Astrophysics Data System (ADS)

    Santo, Antonio; Ascione, Alessandra; Mazzoli, Stefano; Santangelo, Nicoletta

    2013-04-01

    Collapse sinkholes owing their formation to erosion and deformation phenomena caused by subsurface karstification are widespread in the carbonate massifs of peninsular Italy. In contrast with solution dolines, which are densely distributed on the subplanar top surfaces of the carbonate massifs, the collapse sinkholes (hereinafter labelled karst collapse sinkholes) generally occur as isolated landforms and mostly affect the slopes and piedmont areas. In the latter instances, the sinkholes also affect alluvial fan conglomerates, or slope debris, overlying the carbonate rocks. We investigated the karst collapse sinkholes of the southern-central Apennines mountain belt (Italy), which is representative of a young orogenic system, characterised by recent tectonic activity and strong seismicity. The aim of the study is the identification of the causative factors which control the occurrence of such hazardous phenomena. The study was based on a regional scale analysis on sinkhole distribution in relation to the local geological-structural, geomorphological and hydrogeological contexts, and was paralleled with field analysis of some selected areas. The regional scale analysis indicates that the karst collapse sinkholes are not the mere response to the concurrence of the climatic and lithological conditions which commonly favour the development of karst processes, the occurrence of such landforms appearing strongly influenced by distinctive structural and hydrogeological conditions. In particular, a close relationship between the karst collapse sinkholes and the main extensional faults showing evidence of late Quaternary activity may be envisaged. This is inferred from the spatial distribution of the karst collapse sinkholes, which is strikingly uneven, the sinkholes generally occurring in alignments following large late Quaternary fault zones, or being clustered at the terminations of those faults. In addition, areas affected by the occurrence of groups of sinkholes, are

  18. INTERPLAY OF NEUTRINO OPACITIES IN CORE-COLLAPSE SUPERNOVA SIMULATIONS

    SciTech Connect

    Lentz, Eric J.; Mezzacappa, Anthony; Hix, W. Raphael; Messer, O. E. Bronson; Bruenn, Stephen W.

    2012-11-20

    We have conducted a series of numerical experiments using spherically symmetric, general relativistic, neutrino radiation hydrodynamics with the code Agile-BOLTZTRAN to examine the effects of modern neutrino opacities on the development of supernova simulations. We test the effects of opacities by removing opacities or by undoing opacity improvements for individual opacities and groups of opacities. We find that improvements to electron capture (EC) on nuclei, namely EC on an ensemble of nuclei using modern nuclear structure models rather than the simpler independent-particle approximation (IPA) for EC on a mean nucleus, plays the most important role during core collapse of all tested neutrino opacities. Low-energy neutrinos emitted by modern nuclear EC preferentially escape during collapse without the energy downscattering on electrons required to enhance neutrino escape and deleptonization for the models with IPA nuclear EC. During shock breakout the primary influence on the emergent neutrinos arises from non-isoenergetic scattering (NIS) on electrons. For the accretion phase, NIS on free nucleons and pair emission by e {sup +} e {sup -} annihilation have the largest impact on the neutrino emission and shock evolution. Other opacities evaluated, including nucleon-nucleon bremsstrahlung and especially neutrino-positron scattering, have little measurable impact on neutrino emission or shock dynamics. Modern treatments of nuclear EC, e {sup +} e {sup -}-annihilation pair emission, and NIS on electrons and free nucleons are critical elements of core-collapse simulations of all dimensionality.

  19. Interplay of Neutrino Opacities in Core-collapse Supernova Simulations

    NASA Astrophysics Data System (ADS)

    Lentz, Eric J.; Mezzacappa, Anthony; Messer, O. E. Bronson; Hix, W. Raphael; Bruenn, Stephen W.

    2012-11-01

    We have conducted a series of numerical experiments using spherically symmetric, general relativistic, neutrino radiation hydrodynamics with the code Agile-BOLTZTRAN to examine the effects of modern neutrino opacities on the development of supernova simulations. We test the effects of opacities by removing opacities or by undoing opacity improvements for individual opacities and groups of opacities. We find that improvements to electron capture (EC) on nuclei, namely EC on an ensemble of nuclei using modern nuclear structure models rather than the simpler independent-particle approximation (IPA) for EC on a mean nucleus, plays the most important role during core collapse of all tested neutrino opacities. Low-energy neutrinos emitted by modern nuclear EC preferentially escape during collapse without the energy downscattering on electrons required to enhance neutrino escape and deleptonization for the models with IPA nuclear EC. During shock breakout the primary influence on the emergent neutrinos arises from non-isoenergetic scattering (NIS) on electrons. For the accretion phase, NIS on free nucleons and pair emission by e + e - annihilation have the largest impact on the neutrino emission and shock evolution. Other opacities evaluated, including nucleon-nucleon bremsstrahlung and especially neutrino-positron scattering, have little measurable impact on neutrino emission or shock dynamics. Modern treatments of nuclear EC, e + e --annihilation pair emission, and NIS on electrons and free nucleons are critical elements of core-collapse simulations of all dimensionality.

  20. Parametric initial conditions for core-collapse supernova simulations

    NASA Astrophysics Data System (ADS)

    Suwa, Yudai; Müller, Ewald

    2016-08-01

    We investigate a method to construct parametrized progenitor models for core-collapse supernova simulations. Different from all modern core-collapse supernova studies, which rely on progenitor models from stellar evolution calculations, we follow the methodology of Baron & Cooperstein to construct initial models. Choosing parametrized spatial distributions of entropy and electron fraction as a function of mass coordinate and solving the equation of hydrostatic equilibrium, we obtain the initial density structures of our progenitor models. First, we calculate structures with parameters fitting broadly the evolutionary model s11.2 of Woosley et al. (2002). We then demonstrate the reliability of our method by performing general relativistic hydrodynamic simulations in spherical symmetry with the isotropic diffusion source approximation to solve the neutrino transport. Our comprehensive parameter study shows that initial models with a small central entropy (≲0.4 kB nucleon-1) can explode even in spherically symmetric simulations. Models with a large entropy (≳6 kB nucleon-1) in the Si/O layer have a rather large explosion energy (˜4 × 1050 erg) at the end of the simulations, which is still rapidly increasing.

  1. Parametric initial conditions for core-collapse supernova simulations

    NASA Astrophysics Data System (ADS)

    Suwa, Yudai; Müller, Ewald

    2016-08-01

    We investigate a method to construct parametrized progenitor models for core-collapse supernova simulations. Different from all modern core-collapse supernova studies, which rely on progenitor models from stellar evolution calculations, we follow the methodology of Baron & Cooperstein (1990) to construct initial models. Choosing parametrized spatial distributions of entropy and electron fraction as a function of mass coordinate and solving the equation of hydrostatic equilibrium, we obtain the initial density structures of our progenitor models. First, we calculate structures with parameters fitting broadly the evolutionary model s11.2 of Woosley et al. (2002). We then demonstrate the reliability of our method by performing general relativistic hydrodynamic simulations in spherical symmetry with the isotropic diffusion source approximation to solve the neutrino transport. Our comprehensive parameter study shows that initial models with a small central entropy ($\\lesssim 0.4\\,k_B$ nucleon$^{-1}$) can explode even in spherically symmetric simulations. Models with a large entropy ($\\gtrsim 6\\,k_B$ nucleon$^{-1}$) in the Si/O layer have a rather large explosion energy ($\\sim 4\\times 10^{50}$ erg) at the end of the simulations, which is still rapidly increasing.

  2. Numerical simulation of a collapsing bubble subject to gravity

    NASA Astrophysics Data System (ADS)

    Koukouvinis, P.; Gavaises, M.; Supponen, O.; Farhat, M.

    2016-03-01

    The present paper focuses on the simulation of the expansion and aspherical collapse of a laser-generated bubble subjected to an acceleration field and comparison of the results with instances from high-speed videos. The interaction of the liquid and gas is handled with the volume of fluid method. Compressibility effects have been included for each phase to predict the propagation of pressure waves. Initial conditions were estimated through the Rayleigh Plesset equation, based on the maximum bubble size and collapse time. The simulation predictions indicate that during the expansion the bubble shape is very close to spherical. On the other hand, during the collapse the bubble point closest to the bottom of the container develops a slightly higher collapse velocity than the rest of the bubble surface. Over time, this causes momentum focusing and leads to a positive feedback mechanism that amplifies the collapse locally. At the latest collapse stages, a jet is formed at the axis of symmetry, with opposite direction to the acceleration vector, reaching velocities of even 300 m/s. The simulation results agree with the observed bubble evolution and pattern from the experiments, obtained using high speed imaging, showing the collapse mechanism in great detail and clarity.

  3. Simulated Cytoskeletal Collapse via Tau Degradation

    PubMed Central

    Sendek, Austin; Fuller, Henry R.; Hayre, N. Robert; Singh, Rajiv R. P.; Cox, Daniel L.

    2014-01-01

    We present a coarse-grained two dimensional mechanical model for the microtubule-tau bundles in neuronal axons in which we remove taus, as can happen in various neurodegenerative conditions such as Alzheimers disease, tauopathies, and chronic traumatic encephalopathy. Our simplified model includes (i) taus modeled as entropic springs between microtubules, (ii) removal of taus from the bundles due to phosphorylation, and (iii) a possible depletion force between microtubules due to these dissociated phosphorylated taus. We equilibrate upon tau removal using steepest descent relaxation. In the absence of the depletion force, the transverse rigidity to radial compression of the bundles falls to zero at about 60% tau occupancy, in agreement with standard percolation theory results. However, with the attractive depletion force, spring removal leads to a first order collapse of the bundles over a wide range of tau occupancies for physiologically realizable conditions. While our simplest calculations assume a constant concentration of microtubule intercalants to mediate the depletion force, including a dependence that is linear in the detached taus yields the same collapse. Applying percolation theory to removal of taus at microtubule tips, which are likely to be the protective sites against dynamic instability, we argue that the microtubule instability can only obtain at low tau occupancy, from 0.06–0.30 depending upon the tau coordination at the microtubule tips. Hence, the collapse we discover is likely to be more robust over a wide range of tau occupancies than the dynamic instability. We suggest in vitro tests of our predicted collapse. PMID:25162587

  4. Numerical simulations of non-spherical bubble collapse

    PubMed Central

    JOHNSEN, ERIC; COLONIUS, TIM

    2009-01-01

    A high-order accurate shock- and interface-capturing scheme is used to simulate the collapse of a gas bubble in water. In order to better understand the damage caused by collapsing bubbles, the dynamics of the shock-induced and Rayleigh collapse of a bubble near a planar rigid surface and in a free field are analysed. Collapse times, bubble displacements, interfacial velocities and surface pressures are quantified as a function of the pressure ratio driving the collapse and of the initial bubble stand-off distance from the wall; these quantities are compared to the available theory and experiments and show good agreement with the data for both the bubble dynamics and the propagation of the shock emitted upon the collapse. Non-spherical collapse involves the formation of a re-entrant jet directed towards the wall or in the direction of propagation of the incoming shock. In shock-induced collapse, very high jet velocities can be achieved, and the finite time for shock propagation through the bubble may be non-negligible compared to the collapse time for the pressure ratios of interest. Several types of shock waves are generated during the collapse, including precursor and water-hammer shocks that arise from the re-entrant jet formation and its impact upon the distal side of the bubble, respectively. The water-hammer shock can generate very high pressures on the wall, far exceeding those from the incident shock. The potential damage to the neighbouring surface is quantified by measuring the wall pressure. The range of stand-off distances and the surface area for which amplification of the incident shock due to bubble collapse occurs is determined. PMID:19756233

  5. MHD Simulations of Core Collapse Supernovae with Cosmos++

    NASA Astrophysics Data System (ADS)

    Akiyama, Shizuka; Salmonson, Jay

    2010-10-01

    We performed 2D, axisymmetric, MHD simulations with Cosmos++ in order to examine the growth of the magnetorotational instability (MRI) in core-collapse supernovae. We have initialized a non-rotating 15 Msolar progenitor, infused with differential rotation and poloidal magnetic fields. The collapse of the iron core is simulated with the Shen EOS, and the parametric Ye and entropy evolution. The wavelength of the unstable mode in the post-collapse environment is expected to be only ~200 m. In order to achieve the fine spatial resolution requirement, we employed remapping technique after the iron core has collapsed and bounced. The MRI unstable region appears near the equator and angular momentum and entropy are transported outward. Higher resolution remap run display more vigorous overturns and stronger transport of angular momentum and entropy. Our results are in agreement with the earlier work by Akiyama et al. [1] and Obergaulinger et al. [2].

  6. Plasticity-mediated collapse and recrystallization in hollow copper nanowires: a molecular dynamics simulation

    PubMed Central

    Raychaudhuri, Arup Kumar; Saha-Dasgupta, Tanusri

    2016-01-01

    Summary We study the thermal stability of hollow copper nanowires using molecular dynamics simulation. We find that the plasticity-mediated structural evolution leads to transformation of the initial hollow structure to a solid wire. The process involves three distinct stages, namely, collapse, recrystallization and slow recovery. We calculate the time scales associated with different stages of the evolution process. Our findings suggest a plasticity-mediated mechanism of collapse and recrystallization. This contradicts the prevailing notion of diffusion driven transport of vacancies from the interior to outer surface being responsible for collapse, which would involve much longer time scales as compared to the plasticity-based mechanism. PMID:26977380

  7. RADIATION MAGNETOHYDRODYNAMIC SIMULATIONS OF PROTOSTELLAR COLLAPSE: PROTOSTELLAR CORE FORMATION

    SciTech Connect

    Tomida, Kengo; Tomisaka, Kohji; Matsumoto, Tomoaki; Hori, Yasunori; Saigo, Kazuya; Okuzumi, Satoshi; Machida, Masahiro N. E-mail: tomisaka@th.nao.ac.jp E-mail: saigo.kazuya@nao.ac.jp E-mail: okuzumi@nagoya-u.jp

    2013-01-20

    We report the first three-dimensional radiation magnetohydrodynamic (RMHD) simulations of protostellar collapse with and without Ohmic dissipation. We take into account many physical processes required to study star formation processes, including a realistic equation of state. We follow the evolution from molecular cloud cores until protostellar cores are formed with sufficiently high resolutions without introducing a sink particle. The physical processes involved in the simulations and adopted numerical methods are described in detail. We can calculate only about one year after the formation of the protostellar cores with our direct three-dimensional RMHD simulations because of the extremely short timescale in the deep interior of the formed protostellar cores, but successfully describe the early phase of star formation processes. The thermal evolution and the structure of the first and second (protostellar) cores are consistent with previous one-dimensional simulations using full radiation transfer, but differ considerably from preceding multi-dimensional studies with the barotropic approximation. The protostellar cores evolve virtually spherically symmetric in the ideal MHD models because of efficient angular momentum transport by magnetic fields, but Ohmic dissipation enables the formation of the circumstellar disks in the vicinity of the protostellar cores as in previous MHD studies with the barotropic approximation. The formed disks are still small (less than 0.35 AU) because we simulate only the earliest evolution. We also confirm that two different types of outflows are naturally launched by magnetic fields from the first cores and protostellar cores in the resistive MHD models.

  8. Vortex Intensification and Collapse of the Lissajous - Ring: Biot-Savart Simulations and Visiometrics.

    NASA Astrophysics Data System (ADS)

    Fernandez, Victor Manuel

    The collapsing "Lissajous-elliptic" vortex ring is examined via quantifications of single- and multi-filament Biot-Savart numerical simulations. Parametric studies with the single-filament model show simple relationships for the collapse boundary in terms of the impulse and energy invariants. Collapse becomes non-monotonic in time, for a sufficiently small initial core "radius". Self-similar, singular-like behavior of the off-filament strain-rate growth has been observed in a small interval, just prior to core overlapping. We achieve a maximum eigenvalue growth of ~300 during a collapsing run. The computation of the strain-rate eigenvalues and vortex stretching in a diagnostics box surrounding the collapse region, yield patterns observed previously in continuum simulations. New diagnostics are presented, including line densities of the energy and the linear and angular momentum, all of which approach zero in the collapse region of the ring. These diagnostics may provide support for initiating surgery in a filament algorithm. Our multi-filament vortex ring simulations present the core flattening observed in continuum simulations of vortex reconnection. Quantifications in a cross section in the collapse region, indicate that the circulation tends to concentrate in the upper part of the dipole structure, where the smallest filament core sizes delta are also located. The vortex stretching pattern in the collapse region for the multi-filament ring is closer to the "peanut" shape observed in the continuum simulations. The simulations with the variable core model indicate that vorticity and strain-rate growth may continue during the close vortex interaction in the inviscid case. Feature extraction-data reduction are key processes in dealing with large datasets. The efficient implementation of these procedures requires distribution of tasks among supercomputers and networks of workstations. The quantification of the objects identified by the feature extraction algorithms

  9. Multidimensional simulations of core-collapse supernovae with CHIMERA

    NASA Astrophysics Data System (ADS)

    Lentz, Eric J.; Bruenn, S. W.; Yakunin, K.; Endeve, E.; Blondin, J. M.; Harris, J. A.; Hix, W. R.; Marronetti, P.; Messer, O. B.; Mezzacappa, A.

    2014-01-01

    Core-collapse supernovae are driven by a multidimensional neutrino radiation hydrodynamic (RHD) engine, and full simulation requires at least axisymmetric (2D) and ultimately symmetry-free 3D RHD simulation. We present recent and ongoing work with our multidimensional RHD supernova code CHIMERA to understand the nature of the core-collapse explosion mechanism and its consequences. Recently completed simulations of 12-25 solar mass progenitors(Woosley & Heger 2007) in well resolved (0.7 degrees in latitude) 2D simulations exhibit robust explosions meeting the observationally expected explosion energy. We examine the role of hydrodynamic instabilities (standing accretion shock instability, neutrino driven convection, etc.) on the explosion dynamics and the development of the explosion energy. Ongoing 3D and 2D simulations examine the role that simulation resolution and the removal of the imposed axisymmetry have in the triggering and development of an explosion from stellar core collapse. Companion posters will explore the gravitational wave signals (Yakunin et al.) and nucleosynthesis (Harris et al.) of our simulations.

  10. 3. View of collapsed structure (type A) next to type ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. View of collapsed structure (type A) next to type B structure, facing east-northeast - Nevada Test Site, Japanese Village, Area 4, Yucca Flat, 4-04 Road near Rainier Mesa Road, Mercury, Nye County, NV

  11. Numerical Simulations of Silverpit Crater Collapse

    NASA Technical Reports Server (NTRS)

    Collins, G. S.; Ivanov, B. A.; Turtle, E. P.; Melosh, H. J.

    2003-01-01

    The Silverpit crater is a recently discovered, 60-65 Myr old complex crater, which lies buried beneath the North Sea, about 150 km east of Britain. High-resolution images of Silverpit's subsurface structure, provided by three-dimensional seismic reflection data, reveal an inner-crater morphology similar to that expected for a 5-8 km diameter terrestrial crater. The crater walls show evidence of terrace-style slumping and there is a distinct central uplift, which may have produced a central peak in the pristine crater morphology. However, Silverpit is not a typical 5-km diameter terrestrial crater, because it exhibits multiple, concentric rings outside the main cavity. External concentric rings are normally associated with much larger impact structures, for example Chicxulub on Earth, or Orientale on the Moon. Furthermore, external rings associated with large impacts on the terrestrial planets and moons are widely-spaced, predominantly inwardly-facing, asymmetric scarps. However, the seismic data show that the external rings at Silverpit represent closely-spaced, concentric faultbound graben, with both inwardly and outwardly facing fault-scarps. This type of multi-ring structure directly analogous to the Valhalla-type multi-ring basins found on the icy satellites. Thus, the presence and style of the multiple rings at Silverpit is surprising given both the size of the crater and its planetary setting. A further curiosity of the Silverpit structure is that the external concentric rings appear to be extensional features on the West side of the crater and compressional features on the East side. The crater also lies in a local depression, thought to be created by postimpact movement of a salt layer buried beneath the crater.

  12. Numerical Simulations of Silverpit Crater Collapse

    NASA Technical Reports Server (NTRS)

    Collins, G. S.; Turtle, E. P.; Melosh, H. J.

    2003-01-01

    The Silverpit crater is a recently discovered, 60-65 Myr old complex crater, which lies buried beneath the North Sea, about 150 km east of Britain. High-resolution images of Silverpit's subsurface structure, provided by three-dimensional seismic reflection data, reveal an inner-crater morphology similar to that expected for a 5-8 km diameter terrestrial crater. The crater walls show evidence of terracestyle slumping and there is a distinct central uplift, which may have produced a central peak in the pristine crater morphology. However, Silverpit is not a typical 5-km diameter terrestrial crater, because it exhibits multiple, concentric rings outside the main cavity. External concentric rings are normally associated with much larger impact structures, for example Chicxulub on Earth, or Orientale on the Moon. Furthermore, external rings associated with large impacts on the terrestrial planets and moons are widely-spaced, predominantly inwardly-facing, asymmetric scarps. However, the seismic data show that the external rings at Silverpit represent closely-spaced, concentric fault-bound graben, with both inwardly and outwardly facing faults-carps. This type of multi-ring structure is directly analogous to the Valhalla-type multi-ring basins found on the icy satellites. Thus, the presence and style of the multiple rings at Silverpit is surprising given both the size of the crater and its planetary setting.

  13. Spherically Symmetric Core Collapse Supernova Simulations With Boltzmann Neutrino Transport

    NASA Astrophysics Data System (ADS)

    Messer, O. E. B.

    2001-12-01

    I will describe the results of several spherically symmetric core collapse supernova simulations performed with AGILE-BOLTZTRAN, a state-of-the-art radiation hydrodynamics code incorporating Boltzmann neutrino transport. Collapse simulations comparing two 15 M⊙ progenitor models with significant differences in initial Ye (Woosley & Weaver 1995, Heger et al. 2000) exhibit no differences in Ye at bounce, and, consequently, no difference in homologous core mass and shock formation radius. Fully dynamic simulations of core collapse, rebound, and shock propagation for 15 M⊙ and 20 M⊙ progenitor models of Nomoto & Hashimoto (1988) fail to produce explosions. In both cases, the shock stalls at 200 km, then recedes for several hundred milliseconds. The marked similarities observed in all these simulations highlight the need for both improved progenitor models and the incorporation of improved microphysics in modern supernova codes. Spherically symmetric simulations are, for the immediate future, the only computationally feasible way to investigate the nature of the explosion mechanism while including the requisite level of detailed neutrino transport. They also provide one of the few opportunities to delineate the effects of various feedback mechanisms present in the problem. This research was supported by funds from the Joint Institute for Heavy Ion Research and a DOE PECASE award, and made use of the resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

  14. Interplay of Neutrino Opacities in Core-collapse Supernova Simulations

    SciTech Connect

    Lentz, Eric J; Mezzacappa, Anthony; Messer, Bronson; Hix, William Raphael; Bruenn, S. W.

    2012-01-01

    We have conducted a series of numerical experiments using spherically symmetric, general relativistic, neutrino radiation hydrodynamics with the code Agile-BOLTZTRAN to examine the effects of including, and improving, the calculation of neutrino opacities on the development of supernova simulations by removing, or replacing, each opacity individually, or removing opacities in groups. We find that during core collapse improvements to electron capture (EC) on nuclei, namely EC on an ensemble of nuclei based on the hybrid model, relative to the simpler independent-particle approximation (IPA) for a mean nucleus, plays the most important role of all tested neutrino opacities. Low-energy neutrinos emitted by nuclear EC preferentially escape during collapse leading to larger deleptonization of the collapsing core, without the energy downscattering via non-isoenergetic scattering (NIS) on electrons required for the models with IPA nuclear EC. During shock breakout the primary influence on the emergent neutrinos arises from NIS on electrons. For the accretion phase NIS on free nucleons and pair emission by $e^+e^-$-annihilation have the largest impact on the neutrino emission and shock evolution. Other opacities evaluated including nucleon-nucleon bremsstrahlung and especially neutrino-positron scattering have little measurable impact on neutrino emission or shock dynamics. Modern treatments of nuclear electron capture, $e^+e^-$-annihilation pair emission, and non-isoenergetic scattering on electrons and free nucleons are critical elements of core-collapse simulations of all dimensionality.

  15. Collapsible structure for an antenna reflector

    NASA Technical Reports Server (NTRS)

    Trubert, M. R. (Inventor)

    1973-01-01

    A collapsible support for an antenna reflector for use in supporting spacecraft antennas is described. The support has a regid base and a number of struts which are pivoted at the base. The deployment of the struts and their final configuration for supporting the antenna are illustrated.

  16. PROBABILISTIC STRUCTURAL RESPONSE OF STRUCTURE UNDER COLLAPSE LOADING

    SciTech Connect

    J. PEPIN; E. RODRIGUEZ; ET AL

    2001-01-05

    Engineers at Los Alamos National Laboratory (LANL) are currently developing the capability to provide a reliability-based structural evaluation technique for performing weapon reliability assessments. To enhance the analyst's confidence with these new methods, an integrated experiment and analysis project has been developed. The uncertainty associated with the collapse response of commercially available spherical marine float is evaluated with the aid of the non-linear explicit dynamics code DYNA3D (Whirley and Engelmann 1988) coupled with the probabilistic code NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) (Thacker et al. 1998). Variations in geometric shape parameters and uncertainties in material parameters are characterized and included in the probabilistic model.

  17. 5. TIP TOP MINE. EAST SIDE OF STRUCTURE WITH COLLAPSED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. TIP TOP MINE. EAST SIDE OF STRUCTURE WITH COLLAPSED ADIT. CAMERA POINTED WEST. - Florida Mountain Mining Sites, Tip Top Mine, West face Florida Mountain, approximately 150 feet below summit, Silver City, Owyhee County, ID

  18. Computational Astrophysics at the Bleeding Edge: Simulating Core Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Mezzacappa, Anthony

    2013-04-01

    Core collapse supernovae are the single most important source of elements in the Universe, dominating the production of elements between oxygen and iron and likely responsible for half the elements heavier than iron. They result from the death throes of massive stars, beginning with stellar core collapse and the formation of a supernova shock wave that must ultimately disrupt such stars. Past, first-principles models most often led to the frustrating conclusion the shock wave stalls and is not revived, at least given the physics included in the models. However, recent progress in the context of two-dimensional, first-principles supernova models is reversing this trend, giving us hope we are on the right track toward a solution of one of the most important problems in astrophysics. Core collapse supernovae are multi-physics events, involving general relativity, hydrodynamics and magnetohydrodynamics, nuclear burning, and radiation transport in the form of neutrinos, along with a detailed nuclear physics equation of state and neutrino weak interactions. Computationally, simulating these catastrophic stellar events presents an exascale computing challenge. I will discuss past models and milestones in core collapse supernova theory, the state of the art, and future requirements. In this context, I will present the results and plans of the collaboration led by ORNL and the University of Tennessee.

  19. Temperature considerations in numerical simulations of collapsing bubbles

    NASA Astrophysics Data System (ADS)

    Johnsen, Eric; Alahyari Beig, Shahaboddin

    2014-11-01

    In naval and biomedical engineering applications, the inertial collapse of cavitation bubbles is known to damage its surroundings. While significant attention has been dedicated to investigating the pressures produced by this process, less is known about heating of the surrounding medium, which may be important when collapse occurs near objects whose properties strongly depend on temperature (e.g., polymers). Euler simulations are capable of predicting the high pressures thereby generated. However, numerical errors can occur when solving the Navier-Stokes equations for compressible interface problems. Using a newly developed computational approach that prevents such errors, we investigate the dynamics of shock-induced and Rayleigh collapse of individual and collections of gas bubbles, in a free field and near rigid surfaces. We characterize the temperature rises based on the relevant non-dimensional parameters entering the problem. In particular, we show that the temperature of a neighboring object rises due to two mechanisms: the shock produced at collapse and heat diffusion from the hot bubble as it moves toward the object. This work was supported by ONR Grant N00014-12-1-0751.

  20. Gravitational wave extraction in simulations of rotating stellar core collapse

    SciTech Connect

    Reisswig, C.; Ott, C. D.; Sperhake, U.; Schnetter, E.

    2011-03-15

    We perform simulations of general relativistic rotating stellar core collapse and compute the gravitational waves (GWs) emitted in the core-bounce phase of three representative models via multiple techniques. The simplest technique, the quadrupole formula (QF), estimates the GW content in the spacetime from the mass-quadrupole tensor only. It is strictly valid only in the weak-field and slow-motion approximation. For the first time, we apply GW extraction methods in core collapse that are fully curvature based and valid for strongly radiating and highly relativistic sources. These techniques are not restricted to weak-field and slow-motion assumptions. We employ three extraction methods computing (i) the Newman-Penrose (NP) scalar {Psi}{sub 4}, (ii) Regge-Wheeler-Zerilli-Moncrief master functions, and (iii) Cauchy-characteristic extraction (CCE) allowing for the extraction of GWs at future null infinity, where the spacetime is asymptotically flat and the GW content is unambiguously defined. The latter technique is the only one not suffering from residual gauge and finite-radius effects. All curvature-based methods suffer from strong nonlinear drifts. We employ the fixed-frequency integration technique as a high-pass waveform filter. Using the CCE results as a benchmark, we find that finite-radius NP extraction yields results that agree nearly perfectly in phase, but differ in amplitude by {approx}1%-7% at core bounce, depending on the model. Regge-Wheeler-Zerilli-Moncrief waveforms, while, in general, agreeing in phase, contain spurious high-frequency noise of comparable amplitudes to those of the relatively weak GWs emitted in core collapse. We also find remarkably good agreement of the waveforms obtained from the QF with those obtained from CCE. The results from QF agree very well in phase and systematically underpredict peak amplitudes by {approx}5%-11%, which is comparable to the NP results and is certainly within the uncertainties associated with core collapse

  1. Relativistic MHD simulations of stellar core collapse and magnetars

    NASA Astrophysics Data System (ADS)

    Font, José A.; Cerdá-Durán, Pablo; Gabler, Michael; Müller, Ewald; Stergioulas, Nikolaos

    2011-02-01

    We present results from simulations of magneto-rotational stellar core collapse along with Alfvén oscillations in magnetars. These simulations are performed with the CoCoA/CoCoNuT code, which is able to handle ideal MHD flows in dynamical spacetimes in general relativity. Our core collapse simulations highlight the importance of genuine magnetic effects, like the magneto-rotational instability, for the dynamics of the flow. For the modelling of magnetars we use the anelastic approximation to general relativistic MHD, which allows for an effective suppression of fluid modes and an accurate description of Alfvén waves. We further compute Alfvén oscillation frequencies along individual magnetic field lines with a semi-analytic approach. Our work confirms previous results based on perturbative approaches regarding the existence of two families of quasi-periodic oscillations (QPOs), with harmonics at integer multiples of the fundamental frequency. Additional material is presented in the accompanying contribution by Gabler et al (2010b) in these proceedings.

  2. 26. DETAIL OF STRUCTURAL COLLAPSE OF TOP FLOOR OF MILL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. DETAIL OF STRUCTURAL COLLAPSE OF TOP FLOOR OF MILL, ABOVE ORE BIN, LOOKING WEST FROM TOP OF STAIRWAY IN CA-290-25. THE PIPE AT CENTER WAS USED TO SPREAD CRUSHED ORE COMING FROM THE JAW CRUSHER EVENLY TO ALL AREA OF THE ORE BIN BELOW. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA

  3. DEM simulations of the collapse of submerged granular columns

    NASA Astrophysics Data System (ADS)

    zhao, tao; Houlsby, Guy; Utili, Stefano

    2013-04-01

    The collapse of submerged granular columns in plain strain was simulated by 3D Discrete Element Method simulations with periodic boundary in the out-of-plane direction. These analyses are a first step in the attempt to simulate submarine landslides in sandy seabeds in order to investigate the consequent run-out distances. Spherical particles from a realistic particle size distribution of a Leighton buzzard sand and a simple contact model based on linear springs, dashpots and frictional sliders were employed in the presented simulations. A rolling resistance model governed by two micromechanical parameters was added in order to indirectly account for the effect of particle non-sphericity on the angular moment equilibrium of the granular assembly. Calibration of the rolling resistance model leads to predictions of run-out distances in quantitative agreement with the available experimental data. A comparison between the dry and the submerged cases regarding the observed run-out distances and the time of occurrence of landslide propagation were also drawn up.

  4. Collapse of a Liquid Column: Numerical Simulation and Experimental Validation

    NASA Astrophysics Data System (ADS)

    Cruchaga, Marcela A.; Celentano, Diego J.; Tezduyar, Tayfun E.

    2007-03-01

    This paper is focused on the numerical and experimental analyses of the collapse of a liquid column. The measurements of the interface position in a set of experiments carried out with shampoo and water for two different initial column aspect ratios are presented together with the corresponding numerical predictions. The experimental procedure was found to provide acceptable recurrence in the observation of the interface evolution. Basic models describing some of the relevant physical aspects, e.g. wall friction and turbulence, are included in the simulations. Numerical experiments are conducted to evaluate the influence of the parameters involved in the modeling by comparing the results with the data from the measurements. The numerical predictions reasonably describe the physical trends.

  5. Symmetry energy impact in simulations of core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Fischer, Tobias; Hempel, Matthias; Sagert, Irina; Suwa, Yudai; Schaffner-Bielich, Jürgen

    2014-02-01

    We present a review of a broad selection of nuclear matter equations of state (EOSs) applicable in core-collapse supernova studies. The large variety of nuclear matter properties, such as the symmetry energy, which are covered by these EOSs leads to distinct outcomes in supernova simulations. Many of the currently used EOS models can be ruled out by nuclear experiments, nuclear many-body calculations, and observations of neutron stars. In particular the two classical supernova EOS describe neutron matter poorly. Nevertheless, we explore their impact in supernova simulations since they are commonly used in astrophysics. They serve as extremely soft and stiff representative nuclear models. The corresponding supernova simulations represent two extreme cases, e.g., with respect to the protoneutron star (PNS) compactness and shock evolution. Moreover, in multi-dimensional supernova simulations EOS differences have a strong effect on the explosion dynamics. Because of the extreme behaviors of the classical supernova EOSs we also include DD2, a relativistic mean field EOS with density-dependent couplings, which is in satisfactory agreement with many current nuclear and observational constraints. This is the first time that DD2 is applied to supernova simulations and compared with the classical supernova EOS. We find that the overall behaviour of the latter EOS in supernova simulations lies in between the two extreme classical EOSs. As pointed out in previous studies, we confirm the impact of the symmetry energy on the electron fraction. Furthermore, we find that the symmetry energy becomes less important during the post-bounce evolution, where conversely the symmetric part of the EOS becomes increasingly dominating, which is related to the high temperatures obtained. Moreover, we study the possible impact of quark matter at high densities and light nuclear clusters at low and intermediate densities.

  6. Simulation of bubble expansion and collapse in the vicinity of a free surface

    NASA Astrophysics Data System (ADS)

    Koukouvinis, P.; Gavaises, M.; Supponen, O.; Farhat, M.

    2016-05-01

    The present paper focuses on the numerical simulation of the interaction of laser-generated bubbles with a free surface, including comparison of the results with instances from high-speed videos of the experiment. The Volume Of Fluid method was employed for tracking liquid and gas phases while compressibility effects were introduced with appropriate equations of state for each phase. Initial conditions of the bubble pressure were estimated through the traditional Rayleigh Plesset equation. The simulated bubble expands in a non-spherically symmetric way due to the interference of the free surface, obtaining an oval shape at the maximum size. During collapse, a jet with mushroom cap is formed at the axis of symmetry with the same direction as the gravity vector, which splits the initial bubble to an agglomeration of toroidal structures. Overall, the simulation results are in agreement with the experimental images, both quantitatively and qualitatively, while pressure waves are predicted both during the expansion and the collapse of the bubble. Minor discrepancies in the jet velocity and collapse rate are found and are attributed to the thermodynamic closure of the gas inside the bubble.

  7. Landscape structure and the genetic effects of a population collapse

    PubMed Central

    Caplins, Serena A.; Gilbert, Kimberly J.; Ciotir, Claudia; Roland, Jens; Matter, Stephen F.; Keyghobadi, Nusha

    2014-01-01

    Both landscape structure and population size fluctuations influence population genetics. While independent effects of these factors on genetic patterns and processes are well studied, a key challenge is to understand their interaction, as populations are simultaneously exposed to habitat fragmentation and climatic changes that increase variability in population size. In a population network of an alpine butterfly, abundance declined 60–100% in 2003 because of low over-winter survival. Across the network, mean microsatellite genetic diversity did not change. However, patch connectivity and local severity of the collapse interacted to determine allelic richness change within populations, indicating that patch connectivity can mediate genetic response to a demographic collapse. The collapse strongly affected spatial genetic structure, leading to a breakdown of isolation-by-distance and loss of landscape genetic pattern. Our study reveals important interactions between landscape structure and temporal demographic variability on the genetic diversity and genetic differentiation of populations. Projected future changes to both landscape and climate may lead to loss of genetic variability from the studied populations, and selection acting on adaptive variation will likely occur within the context of an increasing influence of genetic drift. PMID:25320176

  8. Simulation of thick-walled submarine pipeline collapse under bending and hydrostatic pressure

    SciTech Connect

    Al-Sharif, A.M.; Preston, R.

    1996-12-31

    The problem of submarine pipeline buckling or collapse as a result of bending and external pressure is investigated by numerical modeling using finite element analysis. The model takes into account the initial variability of material properties, the effect of cold-work on the pipe material properties and initial geometric imperfections. It is capable of simulating the nonlinear behavior, and structural instability due to the combined effects of bending and pressure. The solution algorithm and verification against experimental results are presented. In addition, a deterministic model for collapse under combined pressure and bending based on measured stress-strain behavior and pipe geometry is derived. Results from both finite element and deterministic models for different parameter sensitivities are examined.

  9. Relativistic structure, stability, and gravitational collapse of charged neutron stars

    SciTech Connect

    Ghezzi, Cristian R.

    2005-11-15

    Charged stars have the potential of becoming charged black holes or even naked singularities. We present a set of numerical solutions of the Tolman-Oppenheimer-Volkov equations that represents spherical charged compact stars in hydrostatic equilibrium. The stellar models obtained are evolved forward in time integrating the Einstein-Maxwell field equations. We assume an equation of state of a neutron gas at zero temperature. The charge distribution is taken as being proportional to the rest mass density distribution. The set of solutions present an unstable branch, even with charge-to-mass ratios arbitrarily close to the extremum case. We perform a direct check of the stability of the solutions under strong perturbations and for different values of the charge-to-mass ratio. The stars that are in the stable branch oscillate and do not collapse, while models in the unstable branch collapse directly to form black holes. Stars with a charge greater than or equal to the extreme value explode. When a charged star is suddenly discharged, it does not necessarily collapse to form a black hole. A nonlinear effect that gives rise to the formation of a shell of matter (in supermassive stars), is negligible in the present simulations. The results are in agreement with the third law of black hole thermodynamics and with the cosmic censorship conjecture.

  10. Ultimate collapse of offshore structures exposed to fire

    SciTech Connect

    Amdahl, J.; Eberg, E.; Holmaas, T.; Landroe, H.; Ulfsnes, M.

    1995-12-31

    A systematic validation of the computer program for analysis of mechanical response USFOS is presented. It is based upon a nonlinear finite element formulation and is capable of predicting total collapse, taking systems effects including force redistribution caused by failing members into account. For acceptance of the method it is vital that component behavior is predicted reliably. For this purpose the element formulation used is calibrated such that buckling curves for fire exposed columns and beam-column behavior are reproduced accurately. As a part of the verification of the program a laboratory test with a three dimensional frame representative of the upper part of a four-legged jacket is carried out. The structure is exposed to a gas pool fire at sea level close to one leg until total collapse takes place. A description of the test is given along with numerically predicted structural response. Some preliminary results from the experiment are also presented. Finally, the use of the integrated fire analysis system is illustrated by application to an actual offshore structure.

  11. Simulations of stripped core-collapse supernovae in close binaries

    NASA Astrophysics Data System (ADS)

    Rimoldi, Alex; Portegies Zwart, Simon; Rossi, Elena Maria

    2016-03-01

    We perform smoothed-particle hydrodynamical simulations of the explosion of a helium star in a close binary system, and study the effects of the explosion on the companion star as well as the effect of the presence of the companion on the supernova remnant. By simulating the mechanism of the supernova from just after core bounce until the remnant shell passes the stellar companion, we are able to separate the various phenomena leading to the final system parameters. In the final system, we measure the mass stripping and ablation from, and the additional velocity imparted to, the companion stars. Our results agree with recent work showing smaller values for these quantities compared to earlier estimates. We do find some differences, however, particularly in the velocity gained by the companion, which can be explained by the different ejecta structure that naturally results from the explosion in our simulations. These results indicate that predictions based on extrapolated Type Ia simulations should be revised. We also examine the structure of the supernova ejecta shell. The presence of the companion star produces a conical cavity in the expanding supernova remnant, and loss of material from the companion causes the supernova remnant to be more metal-rich on one side and more hydrogen-rich (from the companion material) around the cavity. Following the impact of the shell, we examine the state of the companion after being heated by the shock.

  12. Assessment of structural analysis technology for elastic shell collapse problems

    NASA Technical Reports Server (NTRS)

    Knight, N. F., Jr.; Macy, S. C.; Mccleary, S. L.

    1989-01-01

    The prediction of the ultimate load carrying capability for compressively loaded shell structures is a challenging nonlinear analysis problem. Selected areas of finite element technology research and nonlinear solution technology are assessed. Herein, a finite element analysis procedure is applied to four shell collapse problems which have been used by computational structural mechanics researchers in the past. This assessment will focus on a number of different shell element formulations and on different approaches used to account for geometric nonlinearities. The results presented confirm that these aspects of nonlinear shell analysis can have a significant effect on the predicted nonlinear structural response. All analyses were performed using the CSM Testbed software system which allowed a convenient assessment of different element formulations with a consistent approach to solving the discretized nonlinear equations.

  13. Melt-phase behavior of collapsed PMMA/PVC chains revealed by multiscale simulations.

    PubMed

    Wu, Chaofu

    2016-04-01

    Single- and double-chain models of three stereoregular polymers, iso- and syndiotactic poly(methyl methacrylate) and isotactic poly(vinyl chloride), were extensively simulated using systematic coarse-grained (CG) potentials. It was found that, in vacuum, all of these long chains collapse in a two-stage process from their fully extended configurations into coils, and the two chains in each double-chain model ultimately become intertwined. Strong intermolecular interactions were found to occur between two chains of the same polymer ("like pairs"), which helps to explain the high densities of single-component melts. However, the intermolecular interactions between two chains of different polymers ("unlike pairs") were stronger than those in like pairs. The enthalpy of mixing for unlike pairs-obtained from their intermolecular interaction energies-was negative, indicating that the two binary blends considered here are homogeneous systems. Moreover, a more negative enthalpy of mixing is suggested to correlate with better miscibility. These results agree well with corresponding experimental and simulated results, once again validating the accuracy of CG potentials when they are used to explore structural and energetic properties. The local structure captured by the isolated long chains dictates the ability to elucidate melt-phase behavior. A scheme involving the preparation of bulk models with initially collapsed chains was proposed; such CG models could be widely used to rapidly screen pairs of polymers for specific applications. PMID:27037823

  14. Numerical simulations of the translation of collapsing bubbles

    NASA Astrophysics Data System (ADS)

    Igualada-Villodre, Elena; Fuster, Daniel; Rodriguez-Rodriguez, Javier

    2015-11-01

    In this work we present a numerical method developed to solve the collapse of single non-spherical bubbles in an incompressible liquid. The Gerris software is used to solve for the 3D conservation equations in both phases in a system where the total volume changes in the gas are imposed. The numerical results are used to discriminate various bubble collapse regimes as a function of the collapse intensity and the strength of a non-symmetrical force (e.g. gravity). At low Weber numbers and non-zero Froude numbers, the bubble remains approximately spherical. In this regime the solution numerically obtained is shown to converge in the inviscid case to the theoretical solution. For large Weber numbers, a fast jet breaks the bubble dissipating an important part of energy during the collapse. Interestingly, it is possible to identify regimes for moderate Weber numbers where the initiation of jet formation influences its translational motion without breaking the bubble. In accordance with numerical results, experiments with bubbles generated by water electrolysis subjected to shock waves show that bubbles suffer non-spherical interface deformations. The results of this study may help to further develop medical applications using bubbles as drug-carriers.

  15. Molecular dynamics simulation of hollow thick-walled cylinder collapse

    SciTech Connect

    Nikonov, A. Yu.

    2015-10-27

    The generation and evolution of plastic deformation in a hollow single-crystal cylinder under high-rate axisymmetric loading were studied. An advantage of the proposed loading scheme is that all loading modes are applied simultaneously within the chosen crystallographic plane of the cylinder base and different strain degrees are achieved along the specimen cross section. Molecular dynamics simulation was performed to show that the achievement of a certain strain causes the formation of structural defects on the inner surface of the specimen. The obtained results can be used to explain the main plastic deformation mechanisms of crystalline solids.

  16. Simulating Society Transitions: Standstill, Collapse and Growth in an Evolving Network Model

    PubMed Central

    Xu, Guanghua; Yang, Junjie; Li, Guoqing

    2013-01-01

    We developed a model society composed of various occupations that interact with each other and the environment, with the capability of simulating three widely recognized societal transition patterns: standstill, collapse and growth, which are important compositions of society evolving dynamics. Each occupation is equipped with a number of inhabitants that may randomly flow to other occupations, during which process new occupations may be created and then interact with existing ones. Total population of society is associated with productivity, which is determined by the structure and volume of the society. We ran the model under scenarios such as parasitism, environment fluctuation and invasion, which correspond to different driving forces of societal transition, and obtained reasonable simulation results. This work adds to our understanding of societal evolving dynamics as well as provides theoretical clues to sustainable development. PMID:24086530

  17. Multidimensional, multiphysics simulations of core-collapse supernovae

    SciTech Connect

    Messer, Bronson; Mezzacappa, Anthony; Blondin, J. M.; Bruenn, S. W.; Hix, William Raphael

    2008-01-01

    CHIMERA is a multi-dimensional radiation hydrodynamics code designed to study core-collapse supernovae. The code is made up of three essentially independent parts: a hydrodynamics module, a nuclear burning module, and a neutrino transport solver combined within an operator-split approach. We review the code s architecture and some recently improved implementations used in the code. We also briefly discuss preliminary results obtained with the code in three spatial dimensions.

  18. Multidimensional, multiphysics simulations of core-collapse supernovae

    SciTech Connect

    Messer, Bronson; Mezzacappa, Anthony; Blondin, J. M.; Bruenn, S. W.; Hix, William Raphael

    2008-01-01

    CHIMERA is a multi-dimensional radiation hydrodynamics code designed to study core-collapse supernovae. The code is made up of three essentially independent parts: a hydrodynamics module, a nuclear burning module, and a neutrino transport solver combined within an operator-split approach. We review the code's architecture and some recently improved implementations used in the code. We also briefly discuss preliminary results obtained with the code in three spatial dimensions.

  19. Three-Dimensional Hydrodynamic Simulations of Collapsing Prolate Clouds

    NASA Astrophysics Data System (ADS)

    Nelson, R. P.; Papaloizou, J. C. B.

    1993-12-01

    We present the results of collapse calculations for elongated clouds performed using the numerical method of smoothed particle hydrodynamics (SPH). The clouds considered are isothermal, prolate spheroids with different axial ratios (a/b). Results are obtained for different values of a/b and mbarL, the mean mass per unit length. It is found that initially uniform clouds undergo fragmentation when the collapse is preferentially down on to the major axis, due to the intrinsic instability of a linear configuration. This occurs when the value of mbarL is sufficiently large. A criterion for elongated clouds to undergo linear collapse is derived using the tensor virial theorem, and it is found that the numerically obtained value of mbarL for which fragmentation occurs corresponds closely to that expected from analytical considerations. The addition of small density perturbations simply results in clouds that fragment more easily, particularly for cases in which a/b is close to unity. Previous calculations, presented by other authors for the case of finite cylinders, show that clouds with cylindrical geometries are highly unstable to the formation of two fragments that occur at the ends of the cylinder. We find that collapsing, prolate spheroids show qualitatively different behaviour, with no preferred tendency to form fragments at the ends of the cloud. Instead fragmentation appears to occur more readily towards the centre of the cloud where the local mass per unit length is greatest. Our implementation of SPH employs spatially variable smoothing lengths, h. In order to obtain a Hamiltonian system, we incorporate terms involving the spatial variability of h in the particle equations of motion, not included in previous implementations. We find that inclusion of these ∇h terms results in much improved energy conservation, but has little effect on the qualitative outcome of the calculations presented here. (fset 'queer "∇")

  20. Confrontation of top-hat spherical collapse against dark halos from cosmological N-body simulations

    NASA Astrophysics Data System (ADS)

    Suto, Daichi; Kitayama, Tetsu; Osato, Ken; Sasaki, Shin; Suto, Yasushi

    2016-02-01

    The top-hat spherical collapse model (TSC) is one of the most fundamental analytical frameworks to describe the non-linear growth of cosmic structure. TSC has motivated, and been widely applied in, various investigations even in the current era of precision cosmology. While numerous studies exist to examine its validity against numerical simulations in a statistical fashion, there are few analyses which compare the TSC dynamics in an individual object-wise basis, which is what we attempt in the present paper. We extract 100 halos at z = 0 from a cosmological N-body simulation according to the conventional TSC criterion for the spherical over-density. Then we trace back their spherical counterparts at earlier epochs. Just prior to the turn-around epoch of the halos, their dynamics are well approximated by TSC, but their turn-around epochs are systematically delayed and the virial radii are larger by ˜20% on average relative to the TSC predictions. We find that this systematic deviation can mainly be ascribed to the non-uniformity/inhomogeneity of dark matter density profiles and the non-zero velocity dispersions, both of which are neglected in TSC. In particular, the inside-out collapse and shell-crossing of dark matter halos play an important role in generating the significant velocity dispersion. The implications of the present result are briefly discussed.

  1. Structure and Dynamics of Shock-Induced Nanobubble Collapse in Water

    NASA Astrophysics Data System (ADS)

    Vedadi, Mohammad; Choubey, Amit; Nomura, Ken-Ichi; Kalia, Rajiv; Nakano, Aiichiro; Vashishta, Priya; van Duin, Adri

    2011-03-01

    Structure of water under shock and shock-induced collapse of nanobubbles in water are investigated with molecular dynamics simulations based on a reactive force field. Shock induces dramatic structural changes, including an ice-VII-like structural motif at a particle velocity of 1 km/s. The incipient ice VII formation and the calculated Hugoniot curve are in good agreement with experimental results. In the presence of a nanobubble, we observe a focused nanojet at the onset of nanobubble shrinkage and a secondary shock wave upon nanobubble collapse. The secondary shock wave propagates spherically backwards and induces high pressure as it propagates. Both the propagation velocity and the induced pressure are larger than those of the primary shock. We explored effects of nanobubble radius and shock amplitude on nanojet formation. The nanojet size increases by increasing particle velocity but the effect of increasing radius is more significant. The jet length scales linearly with the nanobubble radius, as observed in experiments on micron-to-millimeter size bubbles. Shock-induced collapse of a nanobubble in the vicinity of a cell membrane creates a transient nanopore when the nanojet impacts the membrane. Transient cell poration has potential applications in drug delivery.

  2. Nanobubble collapse on a silica surface in water: billion-atom reactive molecular dynamics simulations.

    PubMed

    Shekhar, Adarsh; Nomura, Ken-ichi; Kalia, Rajiv K; Nakano, Aiichiro; Vashishta, Priya

    2013-11-01

    Cavitation bubbles occur in fluids subjected to rapid changes in pressure. We use billion-atom reactive molecular dynamics simulations on a 163,840-processor BlueGene/P supercomputer to investigate damage caused by shock-induced collapse of nanobubbles in water near an amorphous silica surface. Collapse of an empty bubble generates a high-speed nanojet, which causes pitting on the silica surface. We find pit radii are close to bubble radii, and experiments also indicate linear scaling between them. The gas-filled bubbles undergo partial collapse and, consequently, the damage on the silica surface is mitigated. PMID:24237524

  3. Nanobubble Collapse on a Silica Surface in Water: Billion-Atom Reactive Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Shekhar, Adarsh; Nomura, Ken-ichi; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2013-11-01

    Cavitation bubbles occur in fluids subjected to rapid changes in pressure. We use billion-atom reactive molecular dynamics simulations on a 163 840-processor BlueGene/P supercomputer to investigate damage caused by shock-induced collapse of nanobubbles in water near an amorphous silica surface. Collapse of an empty bubble generates a high-speed nanojet, which causes pitting on the silica surface. We find pit radii are close to bubble radii, and experiments also indicate linear scaling between them. The gas-filled bubbles undergo partial collapse and, consequently, the damage on the silica surface is mitigated.

  4. Simple model of the Rayleigh-Taylor instability, collapse, and structural elements.

    PubMed

    Goncharov, V P; Pavlov, V I

    2013-08-01

    The mechanisms and structural elements of the Rayleigh-Taylor instability whose evolution results in the occurrence of the collapse have been studied in the scope of the rotating shallow water model with horizontal density gradient. Analysis of the instability mechanism shows that two collapse scenarios are possible. One scenario implies anisotropic collapse during which the contact area of a collapsing fragment with the bottom contracts into a spinning segment. The other implies isotropic contracting of the area into a point. The rigorous integral criteria and power laws of collapses are found. PMID:24032919

  5. A perturbative approach to the numerical simulation of rotational collapse of neutron stars

    NASA Astrophysics Data System (ADS)

    Sperhake, Ulrich

    2003-04-01

    The collapse of rotating stars/stellar cores has attracted a lot of attention in the past and is considered among the most promising sources of detectable gravitational waves. We approach the numerical simulation of such scenarios in the slow rotation approximation by evolving gauge invariant second order perturbations on the background of a spherically symmetric collapsing neutron star. Our project thus represents a generalization to 'neutron stars with barotropic equations of state' of work by Cunningham, Price and Moncrief who applied this idea to the analytic background solution for Oppenheimer-Snyder dust collapse. In the slow rotation approximation this approach enables us to obtain fully relativistic simulations of rotating collapsing stars within a well understood numerical framework.

  6. Comparison of Hyperonic Equations of State for Core Collapse Supernovae Simulations

    NASA Astrophysics Data System (ADS)

    Char, Prasanta; Banik, Sarmistha

    In this work, we study the dynamical collapse of a non rotating massive star to a black hole using relativistic supernova equations of state (EoS) incorporating Λ hyperons which would be populated, due to Pauli exclusion principle, in the dense matter region after the core collapse. We use 1D GR hydrodynamic code GR1D for our numerical simulations and compare the properties of the currently available hyperonic equations of state.

  7. Platinum-induced structural collapse in layered oxide polycrystalline films

    SciTech Connect

    Wang, Jianlin; Liu, Changhui; Huang, Haoliang; Fu, Zhengping; Peng, Ranran E-mail: yllu@ustc.edu.cn; Zhai, Xiaofang; Lu, Yalin E-mail: yllu@ustc.edu.cn

    2015-03-30

    Effect of a platinum bottom electrode on the SrBi{sub 5}Fe{sub 1−x}Co{sub x}Ti{sub 4}O{sub 18} layered oxide polycrystalline films was systematically studied. The doped cobalt ions react with the platinum to form a secondary phase of PtCoO{sub 2}, which has a typical Delafossite structure with a weak antiferromagnetism and an exceptionally high in-plane electrical conductivity. Formation of PtCoO{sub 2} at the interface partially consumes the cobalt dopant and leads to the structural collapsing from 5 to 4 layers, which was confirmed by X-ray diffraction and high resolution transmission electron microscopy measurements. Considering the weak magnetic contribution from PtCoO{sub 2}, the observed ferromagnetism should be intrinsic of the Aurivillius compounds. Ferroelectric properties were also indicated by the piezoresponse force microscopy. In this work, the platinum induced secondary phase at the interface was observed, which has a strong impact on Aurivillius structural configuration and thus the ferromagnetic and ferroelectric properties.

  8. Platinum-induced structural collapse in layered oxide polycrystalline films

    NASA Astrophysics Data System (ADS)

    Wang, Jianlin; Huang, Haoliang; Liu, Changhui; Fu, Zhengping; Zhai, Xiaofang; Peng, Ranran; Lu, Yalin

    2015-03-01

    Effect of a platinum bottom electrode on the SrBi5Fe1-xCoxTi4O18 layered oxide polycrystalline films was systematically studied. The doped cobalt ions react with the platinum to form a secondary phase of PtCoO2, which has a typical Delafossite structure with a weak antiferromagnetism and an exceptionally high in-plane electrical conductivity. Formation of PtCoO2 at the interface partially consumes the cobalt dopant and leads to the structural collapsing from 5 to 4 layers, which was confirmed by X-ray diffraction and high resolution transmission electron microscopy measurements. Considering the weak magnetic contribution from PtCoO2, the observed ferromagnetism should be intrinsic of the Aurivillius compounds. Ferroelectric properties were also indicated by the piezoresponse force microscopy. In this work, the platinum induced secondary phase at the interface was observed, which has a strong impact on Aurivillius structural configuration and thus the ferromagnetic and ferroelectric properties.

  9. Multi-Hazard Risk Assessment of Structures Subjected to Seismic Excitation and Blast for the Limit State of Collapse

    SciTech Connect

    Asprone, D.; Jalayer, F.; Prota, A.; Manfredi, G.

    2008-07-08

    Multi-hazard approach represents a convenient way to address structural reliability of a critical infrastructure. Objective of the present paper is to present a multi-hazard methodology for evaluation of the risk associated with the limit state of collapse for a reinforced concrete (RC) structure subject to both seismic and blast threats. Blast fragility can be defined as the probability of progressive collapse given a blast event has taken place and its evaluation is here suggested via a Monte Carlo procedure, generating different possible blast configurations. For each blast scenario, the consequent damages occurring to the investigated structure are identified and an updating of the structure is then performed. The structural stability under gravity loading is then verified by employing a kinematic plastic limit analysis. The conditional probability of collapse or the blast fragility is then calculated as the mean value of the collapse indicator variable over the number of cases generated by the simulation procedure. Therefore, the seismic fragility is also determined via classical methods described elsewhere and the total risk of collapse is evaluated as the sum of blast and seismic contributions.

  10. Recruitment collapse and population structure of the European eel shaped by local ocean current dynamics.

    PubMed

    Baltazar-Soares, Miguel; Biastoch, Arne; Harrod, Chris; Hanel, Reinhold; Marohn, Lasse; Prigge, Enno; Evans, Derek; Bodles, Kenneth; Behrens, Erik; Böning, Claus W; Eizaguirre, Christophe

    2014-01-01

    Worldwide, exploited marine fish stocks are under threat of collapse [1]. Although the drivers behind such collapses are diverse, it is becoming evident that failure to consider evolutionary processes in fisheries management can have drastic consequences on a species' long-term viability [2]. The European eel (Anguilla anguilla; Linnaeus, 1758) is no exception: not only does the steep decline in recruitment observed in the 1980s [3, 4] remain largely unexplained, the punctual detection of genetic structure also raises questions regarding the existence of a single panmictic population [5-7]. With its extended Transatlantic dispersal, pinpointing the role of ocean dynamics is crucial to understand both the population structure and the widespread decline of this species. Hence, we combined dispersal simulations using a half century of high-resolution ocean model data with population genetics tools. We show that regional atmospherically driven ocean current variations in the Sargasso Sea were the major driver of the onset of the sharp decline in eel recruitment in the beginning of the 1980s. The simulations combined with genotyping of natural coastal eel populations furthermore suggest that unexpected evidence of coastal genetic differentiation is consistent with cryptic female philopatric behavior within the Sargasso Sea. Such results demonstrate the key constraint of the variable oceanic environment on the European eel population. PMID:24374306

  11. Catastrophic collapse can occur without early warning: examples of silent catastrophes in structured ecological models.

    PubMed

    Boerlijst, Maarten C; Oudman, Thomas; de Roos, André M

    2013-01-01

    Catastrophic and sudden collapses of ecosystems are sometimes preceded by early warning signals that potentially could be used to predict and prevent a forthcoming catastrophe. Universality of these early warning signals has been proposed, but no formal proof has been provided. Here, we show that in relatively simple ecological models the most commonly used early warning signals for a catastrophic collapse can be silent. We underpin the mathematical reason for this phenomenon, which involves the direction of the eigenvectors of the system. Our results demonstrate that claims on the universality of early warning signals are not correct, and that catastrophic collapses can occur without prior warning. In order to correctly predict a collapse and determine whether early warning signals precede the collapse, detailed knowledge of the mathematical structure of the approaching bifurcation is necessary. Unfortunately, such knowledge is often only obtained after the collapse has already occurred. PMID:23593506

  12. Field structure of collapsing wave packets in 3D strong Langmuir turbulence

    NASA Technical Reports Server (NTRS)

    Newman, D. L.; Robinson, P. A.; Goldman, M. V.

    1989-01-01

    A simple model is constructed for the electric fields in the collapsing wave packets found in 3D simulations of driven and damped isotropic strong Langmuir turbulence. This model, based on a spherical-harmonic decomposition of the electrostatic potential, accounts for the distribution of wave-packet shapes observed in the simulations, particularly the predominance of oblate wave packets. In contrast with predictions for undamped and undriven subsonic collapse of scalar fields, oblate vector-field wave packets do not flatten during collapse but, instead, remain approximately self-similar and rigid.

  13. 3D Seismic Imaging over a Potential Collapse Structure

    NASA Astrophysics Data System (ADS)

    Gritto, Roland; O'Connell, Daniel; Elobaid Elnaiem, Ali; Mohamed, Fathelrahman; Sadooni, Fadhil

    2016-04-01

    The Middle-East has seen a recent boom in construction including the planning and development of complete new sub-sections of metropolitan areas. Before planning and construction can commence, however, the development areas need to be investigated to determine their suitability for the planned project. Subsurface parameters such as the type of material (soil/rock), thickness of top soil or rock layers, depth and elastic parameters of basement, for example, comprise important information needed before a decision concerning the suitability of the site for construction can be made. A similar problem arises in environmental impact studies, when subsurface parameters are needed to assess the geological heterogeneity of the subsurface. Environmental impact studies are typically required for each construction project, particularly for the scale of the aforementioned building boom in the Middle East. The current study was conducted in Qatar at the location of a future highway interchange to evaluate a suite of 3D seismic techniques in their effectiveness to interrogate the subsurface for the presence of karst-like collapse structures. The survey comprised an area of approximately 10,000 m2 and consisted of 550 source- and 192 receiver locations. The seismic source was an accelerated weight drop while the geophones consisted of 3-component 10 Hz velocity sensors. At present, we analyzed over 100,000 P-wave phase arrivals and performed high-resolution 3-D tomographic imaging of the shallow subsurface. Furthermore, dispersion analysis of recorded surface waves will be performed to obtain S-wave velocity profiles of the subsurface. Both results, in conjunction with density estimates, will be utilized to determine the elastic moduli of the subsurface rock layers.

  14. 1. LOWER NOTTINGHAM MINE. COLLAPSED ADIT/WOOD STRUCTURE AND BUILDING 'A' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. LOWER NOTTINGHAM MINE. COLLAPSED ADIT/WOOD STRUCTURE AND BUILDING 'A' ON THE RIGHT EDGE OF THE IMAGE. COLLAPSED CABIN 'B' AND BUILDING 'C' IS ON THE LEFT SIDE. CAMERA IS POINTED SOUTHWEST. - Florida Mountain Mining Sites, Lower Nottingham Mine, Western slope of Florida Mountain, Silver City, Owyhee County, ID

  15. KL4 Peptide Induces Reversible Collapse Structures on Multiple Length Scales in Model Lung Surfactant

    PubMed Central

    Holten-Andersen, Niels; Michael Henderson, J.; Walther, Frans J.; Waring, Alan J.; Ruchala, Piotr; Notter, Robert H.; Lee, Ka Yee C.

    2011-01-01

    We investigated the effects of KL4, a 21-residue amphipathic peptide approximating the overall ratio of positively charged to hydrophobic amino acids in surfactant protein B (SP-B), on the structure and collapse of dipalmitoylphosphatidylcholine and palmitoyl-oleoyl-phosphatidylglycerol monolayers. As reported in prior work on model lung surfactant phospholipid films containing SP-B and SP-B peptides, our experiments show that KL4 improves surfactant film reversibility during repetitive interfacial cycling in association with the formation of reversible collapse structures on multiple length scales. Emphasis is on exploring a general mechanistic connection between peptide-induced nano- and microscale reversible collapse structures (silos and folds). PMID:22208194

  16. Two Dimensional Simulations of Core-Collapse Supernovae with Neutrino Transport in FLASH

    NASA Astrophysics Data System (ADS)

    O'Connor, Evan; Couch, Sean

    2016-03-01

    Core-collapse supernovae are the end stage of massive star evolution and are central to many aspects of astrophysics. They are the birth site of both neutron stars and black holes and their shocks are responsible for spreading the products of stellar evolution throughout the Galaxy and regulating star formation. Despite their importance and decades of research, the precise mechanism that converts the initial implosion of the collapsing iron core to an explosion that unbinds the majority of the star is unknown. However, we know that the majority of the energy released is ultimately radiated in neutrinos and that the physics of neutrino transport and neutrino heating-among many other aspects-must be treated carefully when modelling the core-collapse supernova central engine. In this talk, I will present recent simulations of core-collapse supernovae from the FLASH hydrodynamics code. We perform two dimensional, neutrino transport simulations using several progenitors. We test the influence of general relativity by using a pseudorelativistic potential that effectively models GR. We show that the more compact protoneutron star predicted from GR increases the neutrino heating and can lead to explosions where the corresponding Newtonian simulations fail.

  17. From polymer collapse to confined fluids: investigating the implications of interfacial structuring

    NASA Astrophysics Data System (ADS)

    Goel, Gaurav

    In the first part of this thesis, we present results from extensive molecular dynamics simulations of the collapse transitions of hydrophobic polymers in explicit water. The focus is to understand the roles that curvature and interactions associated with the polymer-water "interface" have on collapse thermodynamics. We show that model hydrophobic polymers can have parabolic, protein-like, temperature-dependent free energies of unfolding. Analysis of the water structure shows that the polymer-water interface can be characterized as soft and weakly dewetted. We also show that an appropriately defined surface tension for the polymer-water interface is independent of the attractive polymer-water interactions. This helped us to develop a perturbation model for predicting the effect of attractions on polymer collapse thermodynamics. In the second part, we explore connections between structure, thermodynamics, and dynamics of inhomogeneous fluids. First, we use molecular dynamics simulations and classical density functional theory (DFT) to study the hard-sphere fluid at approximately 10^3 equilibrium state points, spanning different confininggeometries and particle-boundary interactions. We provide strong empirical evidence that both excess entropy and a new generalized measure of available volume for inhomogeneous fluids correlate excellently with self-diffusivity, approximately independent of the degree of confinement. Next, we study via simulations how tuning particle-wall interactions to flatten or enhance the particle layering of a model confined fluid impacts its self-diffusivity, viscosity, and entropy. Interestingly, interactions that eliminate particle layering can significantly reduce confined fluid mobility, whereas those that enhance layering can have the opposite effect. Excess entropy helps to understand and predict these trends. Finally, we explore the relationships between the effective interparticle interactions, static structure, and tracer diffusivity

  18. Non-Gaussian halo mass function and non-spherical halo collapse: theory vs. simulations

    SciTech Connect

    Achitouv, Ixandra E.; Corasaniti, Pier Stefano E-mail: Pier-Stefano.Corasaniti@obspm.fr

    2012-02-01

    The mass distribution of dark matter halos is a sensitive probe of primordial non-Gaussianity (NG). We derive an analytical formula of the halo mass function by perturbatively computing excursion set path-integrals for a non-Gaussian density field with non-vanishing skewness, f{sub NL}. We assume a stochastic barrier model which captures the main features of the ellipsoidal collapse of halos. Contrary to previous results based on extensions of the Press-Schechter formalism to NG initial conditions, we find that the non-spherical collapse of halos directly alter the signature of primordial NG. This points toward a potential degeneracy between the effect of primordial non-Gaussianity and that of non-linear halo collapse. The inferred mass function is found to be in remarkable agreement with N-body simulations of NG local type. Deviations are well within numerical uncertainties for all values of f{sub NL}{sup loc} in the range of validity of the perturbative calculation (|f{sub nl}{sup loc}|∼<200). Moreover, the comparison with simulation results suggests that for |f{sub NL}|∼>30 the non-linear collapse of halos, as described by our barrier model, strongly deviates from that of Gaussian initial conditions. This is not surprising since the effect of non-linear gravitational processes may be altered by initially large NG. Hence, in the lack of prior theoretical knowledge, halo collapse model parameters should be included in statistical halo mass function data analysis which aim to constrain the signature of primordial NG.

  19. Numerical simulation of cavitation erosion on a NACA0015 hydrofoil based on bubble collapse strength

    NASA Astrophysics Data System (ADS)

    Hidalgo, V.; Luo, X.; Escaler, X.; Huang, R.; Valencia, E.

    2015-12-01

    The prediction of erosion under unsteady cavitation is crucial to prevent damage in hydraulic machinery. The present investigation deals with the numerical simulation of erosive partial cavitation around a NACA0015 hydrofoil. The study presents the calculation of the bubble collapse strength, Sb, based on the bubble potential energy to identify the surface areas with highest risk of damage. The results are obtained with a numerical scheme assuming homogeneous mixture flow, implicit LES and Zwart cavitation model. The 3D unsteady flow simulation has been solved using OpenFOAM. Python language and OpenFOAM calculator (foamCalcEx) have been used to obtain and represent Sb. The obtained results clearly show the instants of erosive bubble collapse and the affected surface areas.

  20. Two- and three-dimensional simulations of core-collapse supernovae with CHIMERA

    SciTech Connect

    Lentz, Eric J; Bruenn, S. W.; Harris, James A; Chertkow, Merek A; Hix, William Raphael; Mezzacappa, Anthony; Messer, Bronson; Blondin, J. M.; Marronetti, Pedro; Mauney, Christopher M; Yakunin, Konstantin

    2012-01-01

    Ascertaining the core-collapse supernova mechanism is a complex, and yet unsolved, problem dependent on the interaction of general relativity, hydrodynamics, neutrino transport, neutrino-matter interactions, and nuclear equations of state and reaction kinetics. Ab initio modeling of core-collapse supernovae and their nucleosynthetic outcomes requires care in the coupling and approximations of the physical components. We have built our multi-physics CHIMERA code for supernova modeling in 1-, 2-, and 3-D, using ray-by-ray neutrino transport, approximate general relativity, and detailed neutrino and nuclear physics. We discuss some early results from our current series of exploding 2D simulations and our work to perform computationally tractable simulations in 3D using the ``Yin--Yang'' grid.

  1. Bayesian reconstruction of gravitational wave burst signals from simulations of rotating stellar core collapse and bounce

    SciTech Connect

    Roever, Christian; Bizouard, Marie-Anne; Christensen, Nelson; Dimmelmeier, Harald; Heng, Ik Siong; Meyer, Renate

    2009-11-15

    Presented in this paper is a technique that we propose for extracting the physical parameters of a rotating stellar core collapse from the observation of the associated gravitational wave signal from the collapse and core bounce. Data from interferometric gravitational wave detectors can be used to provide information on the mass of the progenitor model, precollapse rotation, and the nuclear equation of state. We use waveform libraries provided by the latest numerical simulations of rotating stellar core collapse models in general relativity, and from them create an orthogonal set of eigenvectors using principal component analysis. Bayesian inference techniques are then used to reconstruct the associated gravitational wave signal that is assumed to be detected by an interferometric detector. Posterior probability distribution functions are derived for the amplitudes of the principal component analysis eigenvectors, and the pulse arrival time. We show how the reconstructed signal and the principal component analysis eigenvector amplitude estimates may provide information on the physical parameters associated with the core collapse event.

  2. Numerical simulations of stellar collapse in scalar-tensor theories of gravity

    NASA Astrophysics Data System (ADS)

    Gerosa, Davide; Sperhake, Ulrich; Ott, Christian D.

    2016-07-01

    We present numerical-relativity simulations of spherically symmetric core collapse and compact-object formation in scalar-tensor theories of gravity. The additional scalar degree of freedom introduces a propagating monopole gravitational-wave mode. Detection of monopole scalar waves with current and future gravitational-wave experiments may constitute smoking gun evidence for strong-field modifications of general relativity. We collapse both polytropic and more realistic pre-supernova profiles using a high-resolution shock-capturing scheme and an approximate prescription for the nuclear equation of state. The most promising sources of scalar radiation are protoneutron stars collapsing to black holes. In case of a galactic core collapse event forming a black hole, Advanced LIGO may be able to place independent constraints on the parameters of the theory at a level comparable to current solar-system and binary-pulsar measurements. In the region of the parameter space admitting spontaneously scalarised stars, transition to configurations with prominent scalar hair before black-hole formation further enhances the emitted signal. Although a more realistic treatment of the microphysics is necessary to fully investigate the occurrence of spontaneous scalarisation of neutron star remnants, we speculate that formation of such objects could constrain the parameters of the theory beyond the current bounds obtained with solar-system and binary-pulsar experiments.

  3. Impact of the third dimension on simulations of core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Lentz, Eric J.; Bruenn, Stephen W.; Hix, William R.; Messer, O. E. Bronson; Mezzacappa, Anthony; Blondin, John M.; Endeve, Eirik; Harris, James Austin; Marronetti, Pedro; Yakunin, Konstantin

    2015-01-01

    Modeling of core-collapse supernovae (CCSNe) has been an ongoing challenge to produce explosions that resemble observed supernovae, hampered by availability of appropriate computational resources and codes. For example, the most successful and complete CCSN simulations have been limited to axisymmetry (2D), which alters the behaviors of fluid flows and potentially the simulation outcome. Using a sophisticated 3D simulation from a 15 M⊙ progenitor computed using the Chimera code with appropriate physical detail, we show a delay in the revival of the stalled accretion shock and the development of the explosion energy relative to a comparison 2D simulation. We consider the physical and numerical origins of the differences between 2D and 3D simulations and their long-term impacts on simulation outcomes; and the prospects for the future.

  4. 1-D DSMC simulation of Io's atmospheric collapse and reformation during and after eclipse

    NASA Astrophysics Data System (ADS)

    Moore, C. H.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.; Stewart, B.

    2009-06-01

    A one-dimensional Direct Simulation Monte Carlo (DSMC) model is used to examine the effects of a non-condensable species on Io's sulfur dioxide sublimation atmosphere during eclipse and just after egress. Since the vapor pressure of SO 2 is extremely sensitive to temperature, the frost-supported dayside sublimation atmosphere had generally been expected to collapse during eclipse as the surface temperature dropped. For a pure SO 2 atmosphere, however, it was found that during the first 10 min of eclipse, essentially no change in the atmospheric properties occurs at altitudes above ˜100 km due to the finite ballistic/acoustic time. Hence immediately after ingress the auroral emission morphology above 100 km should resemble that of the immediate pre-eclipse state. Furthermore, the collapse dynamics are found to be greatly altered by the presence of even a small amount of a non-condensable species which forms a diffusion layer near the surface that prevents rapid collapse. It is found that after 10 min essentially no collapse has occurred at altitudes above ˜20 km when a nominal mole fraction of non-condensable gas is present. Collapse near the surface occurs relatively quickly until a static diffusion layer many mean free paths thick of the non-condensable gas builds up which then retards further collapse of the SO 2 atmosphere. For example, for an initial surface temperature of 110 K and 35% non-condensable mole-fraction, the ratio of the SO 2 column density to the initial column density was found to be 0.73 after 10 min, 0.50 after 30 min, and 0.18 at the end of eclipse. However, real gas species (SO, O 2) may not be perfectly non-condensable at Io's surface temperatures. If the gas species was even weakly condensable (non-zero sticking/reaction coefficient) then the effect of the diffusion layer on the dynamics was dramatically reduced. In fact, if the sticking coefficient of the non-condensable exceeds ˜0.25, the collapse dynamics are effectively the same as

  5. Thermal-Structural Analysis of the MacArthur Maze Freeway Collapse

    SciTech Connect

    Noble, C R; Wemhoff, A P; McMichael, L D

    2008-02-26

    At approximately 3:41 AM on the morning of April 29, 2007, a tractor-trailer rig carrying 8,600 gallons (32.6 m{sup 3}) of fuel overturned on Interstate 880 in Oakland, CA. The resultant fire weakened the surrounding steel superstructure and caused a 50-yard (45.7 m) long section of the above connecting ramp from Interstate 80 to Interstate 580 to fail in approximately 18 minutes. In this study, we performed a loosely-coupled thermal-structural finite element analysis of the freeway using the LLNL Engineering codes NIKE3D, DYNA3D and TOPAZ3D. First, we applied an implicit structural code to statically initialize the stresses and displacements in the roadway at ambient conditions due to gravity loading. Next, we performed a thermal analysis by approximating the tanker fire as a moving box region of uniform temperature. This approach allowed for feasible calculation of the fire-to-structure radiative view factors and convective heat transport. We used a mass scaling methodology in the thermal analysis to reduce the overall simulation time so an explicit structural analysis could be used, which provided a more computationally efficient simulation of structural failure. Our approach showed structural failure of both spans due to thermal softening under gravity loading at approximately 20 minutes for a fixed fire temperature of 1200 C and fixed thermal properties. When temperature-dependent thermal properties were applied, the south and north spans collapsed at approximately 10 minutes and 16 minutes, respectively. Finally, we performed a preliminary fully-coupled analysis of the system using the new LLNL implicit multi-mechanics code Diablo. Our investigation shows that our approach provides a reasonable first-order analysis of the system, but improved modeling of the transport properties and the girder-box beam connections is required for more accurate predictions.

  6. RADIATION MAGNETOHYDRODYNAMICS SIMULATION OF PROTO-STELLAR COLLAPSE: TWO-COMPONENT MOLECULAR OUTFLOW

    SciTech Connect

    Tomida, Kengo; Tomisaka, Kohji; Ohsuga, Ken; Matsumoto, Tomoaki; Machida, Masahiro N.; Saigo, Kazuya E-mail: tomisaka@th.nao.ac.jp E-mail: masahiro.machida@nao.ac.jp E-mail: matsu@hosei.ac.jp

    2010-05-01

    We perform a three-dimensional nested-grid radiation magnetohydrodynamics (RMHD) simulation with self-gravity to study the early phase of the low-mass star formation process from a rotating molecular cloud core to a first adiabatic core just before the second collapse begins. Radiation transfer is implemented with the flux-limited diffusion approximation, operator-splitting, and implicit time integrator. In the RMHD simulation, the outer region of the first core attains a higher entropy and its size is larger than that in the magnetohydrodynamics simulations with the barotropic approximation. Bipolar molecular outflow consisting of two components is driven by magnetic Lorentz force via different mechanisms, and shock heating by the outflow is observed. Using the RMHD simulation we can predict and interpret the observed properties of star-forming clouds, first cores, and outflows with millimeter/submillimeter radio interferometers, especially the Atacama Large Millimeter/submillimeter Array.

  7. The influence of inelastic neutrino interactions with light clusters on core-collapse supernova simulations

    NASA Astrophysics Data System (ADS)

    Furusawa, Shun; Nagakura, Hiroki; Sumiyoshi, Kohsuke; Yamada, Shoichi

    2014-12-01

    We perform numerical experiments to investigate the influence of inelastic neutrino reactions with light clusters in hot nuclear matter on core-collapse supernova simulations. These interactions have been neglected in most hydrodynamical supernova simulations. The neutrino absorptions and inelastic interactions with deuterons, tritons, helions and alpha particles are taken into account in the hydrodynamical simulations in addition to the ordinary charged- current interactions with nucleons. Axial symmetry is assumed but no equatorial symmetry is imposed. The time evolutions of shock waves are calculated with a simple light-bulb approximation for the neutrino transport and a multi-nuclei equation of state. We show that the heating rates of deuterons reach as high as ~ 10% of those of nucleons around the bottom of the gain region. On the other hand, alpha particles heat the matter near the shock wave, which is important when the shock wave expands and density and temperature of matter become low. It is also found that the models with heating by light clusters have different evolutions from those without it in non-linear evolution phase. The matter in the gain region has various densities and temperatures and there appear regions that are locally rich in deuterons and alpha particles. These results indicate that the inelastic reactions of light clusters, especially deuterons, should be incorporated in the simulations of core-collapse supernovae.

  8. Relationship between chain collapse and secondary structure formation in a partially folded protein.

    PubMed

    Nakagawa, Kanako; Yamada, Yoshiteru; Matsumura, Yoshitaka; Tsukamoto, Seiichi; Yamamoto-Ohtomo, Mio; Ohtomo, Hideaki; Okabe, Takahiro; Fujiwara, Kazuo; Ikeguchi, Masamichi

    2014-06-01

    Chain collapse and secondary structure formation are frequently observed during the early stages of protein folding. Is the chain collapse brought about by interactions between secondary structure units or is it due to polymer behavior in a poor solvent (coil-globule transition)? To answer this question, we measured small-angle X-ray scattering for a series of β-lactoglobulin mutants under conditions in which they assume a partially folded state analogous to the folding intermediates. Mutants that were designed to disrupt the secondary structure units showed the gyration radii similar to that of the wild type protein, indicating that chain collapse is due to coil-globule transitions. PMID:25100622

  9. Simulation of shock-induced bubble collapse with application to vascular injury in shockwave lithotripsy

    NASA Astrophysics Data System (ADS)

    Coralic, Vedran

    Shockwave lithotripsy is a noninvasive medical procedure wherein shockwaves are repeatedly focused at the location of kidney stones in order to pulverize them. Stone comminution is thought to be the product of two mechanisms: the propagation of stress waves within the stone and cavitation erosion. However, the latter mechanism has also been implicated in vascular injury. In the present work, shock-induced bubble collapse is studied in order to understand the role that it might play in inducing vascular injury. A high-order accurate, shock- and interface-capturing numerical scheme is developed to simulate the three-dimensional collapse of the bubble in both the free-field and inside a vessel phantom. The primary contributions of the numerical study are the characterization of the shock-bubble and shock-bubble-vessel interactions across a large parameter space that includes clinical shockwave lithotripsy pressure amplitudes, problem geometry and tissue viscoelasticity, and the subsequent correlation of these interactions to vascular injury. Specifically, measurements of the vessel wall pressures and displacements, as well as the finite strains in the fluid surrounding the bubble, are utilized with available experiments in tissue to evaluate damage potential. Estimates are made of the smallest injurious bubbles in the microvasculature during both the collapse and jetting phases of the bubble's life cycle. The present results suggest that bubbles larger than one micrometer in diameter could rupture blood vessels under clinical SWL conditions.

  10. Radiation Magnetohydrodynamic Simulations of Protostellar Collapse: Nonideal Magnetohydrodynamic Effects and Early Formation of Circumstellar Disks

    NASA Astrophysics Data System (ADS)

    Tomida, Kengo; Okuzumi, Satoshi; Machida, Masahiro N.

    2015-03-01

    The transport of angular momentum by magnetic fields is a crucial physical process in the formation and evolution of stars and disks. Because the ionization degree in star-forming clouds is extremely low, nonideal magnetohydrodynamic (MHD) effects such as ambipolar diffusion and ohmic dissipation work strongly during protostellar collapse. These effects have significant impacts in the early phase of star formation as they redistribute magnetic flux and suppress angular momentum transport by magnetic fields. We perform three-dimensional nested-grid radiation magnetohydrodynamic simulations including ohmic dissipation and ambipolar diffusion. Without these effects, magnetic fields transport angular momentum so efficiently that no rotationally supported disk is formed even after the second collapse. Ohmic dissipation works only in a relatively high density region within the first core and suppresses angular momentum transport, enabling formation of a very small rotationally supported disk after the second collapse. With both ohmic dissipation and ambipolar diffusion, these effects work effectively in almost the entire region within the first core and significant magnetic flux loss occurs. As a result, a rotationally supported disk is formed even before a protostellar core forms. The size of the disk is still small, about 5 AU at the end of the first core phase, but this disk will grow later as gas accretion continues. Thus, the nonideal MHD effects can resolve the so-called magnetic braking catastrophe while keeping the disk size small in the early phase, which is implied from recent interferometric observations.

  11. Structures and characterizations of bundles of collapsed double-walled carbon nanotubes.

    PubMed

    Zhong, X H; Wang, R; Liu, L B; Kang, M; Wen, Y Y; Hou, F; Feng, J M; Li, Y L

    2012-12-21

    The performance of carbon nanotube fibers (CNTFs) significantly depends on the packing styles of carbon nanotube (CNT) bundles. Revealing the structures and characterizations of CNT bundles is contributive to understanding the structures, properties and even the formation of CNTFs during chemical vapor deposition (CVD) processing. In this paper, bundles consisting of collapsed double-walled carbon nanotubes (CDWNT) in continuous CNTFs fabricated from CVD processing were characterized and analyzed by transmission electronic microscopy (TEM) and x-ray diffraction (XRD). TEM observations show that the continuous CNTFs are composed of CDWNT-bundle units. CDWNT-bundle units of 10-20 nm in thickness contain near numbers of collapsed tubes. The degree of collapse of the CDWNTs varies with their location in the bundle and their own diameter. CDWNT-bundle units pack side by side or face to face, assembling into super-bundles with diameters of 200-300 nm. XRD patterns show that three novel and strong peaks appear at 10°-15°, 21.3° and 23.7°, respectively, corresponding to CDWNT two side pores (10°-15°) and CDWNT layers (21.3° and 23.7°), which indicates the collapsed tube structures in CNTFs are common characterizations. Finally, a collapse mechanism is discussed from the observation and analysis. PMID:23196759

  12. NEW EQUATIONS OF STATE IN SIMULATIONS OF CORE-COLLAPSE SUPERNOVAE

    SciTech Connect

    Hempel, M.; Liebendoerfer, M.; Fischer, T.; Schaffner-Bielich, J.

    2012-03-20

    We discuss three new equations of state (EOS) in core-collapse supernova simulations. The new EOS are based on the nuclear statistical equilibrium model of Hempel and Schaffner-Bielich (HS), which includes excluded volume effects and relativistic mean-field (RMF) interactions. We consider the RMF parameterizations TM1, TMA, and FSUgold. These EOS are implemented into our spherically symmetric core-collapse supernova model, which is based on general relativistic radiation hydrodynamics and three-flavor Boltzmann neutrino transport. The results obtained for the new EOS are compared with the widely used EOS of H. Shen et al. and Lattimer and Swesty. The systematic comparison shows that the model description of inhomogeneous nuclear matter is as important as the parameterization of the nuclear interactions for the supernova dynamics and the neutrino signal. Furthermore, several new aspects of nuclear physics are investigated: the HS EOS contains distributions of nuclei, including nuclear shell effects. The appearance of light nuclei, e.g., deuterium and tritium, is also explored, which can become as abundant as alphas and free protons. In addition, we investigate the black hole formation in failed core-collapse supernovae, which is mainly determined by the high-density EOS. We find that temperature effects lead to a systematically faster collapse for the non-relativistic LS EOS in comparison with the RMF EOS. We deduce a new correlation for the time until black hole formation, which allows the determination of the maximum mass of proto-neutron stars, if the neutrino signal from such a failed supernova would be measured in the future. This would give a constraint for the nuclear EOS at finite entropy, complementary to observations of cold neutron stars.

  13. Axisymmetric collapse simulations of rotating massive stellar cores in full general relativity: Numerical study for prompt black hole formation

    SciTech Connect

    Sekiguchi, Yu-ichirou; Shibata, Masaru

    2005-04-15

    We perform axisymmetric simulations for gravitational collapse of a massive iron core to a black hole in full general relativity. The iron cores are modeled by {gamma}=4/3 equilibrium polytrope for simplicity. The hydrodynamic equations are solved using a high-resolution shock-capturing scheme with a parametric equation of state. The Cartoon method is adopted for solving the Einstein equations. Simulations are performed for a wide variety of initial conditions changing the mass ({approx_equal}2.0-3.0M{sub {center_dot}}), the angular momentum, the rotational velocity profile of the core, and the parameters of the equations of state which are chosen so that the maximum mass of the cold spherical polytrope is {approx_equal}1.6M{sub {center_dot}}. Then, the criterion for the prompt black hole formation is clarified in terms of the mass and the angular momentum for several rotational velocity profile of the core and equations of state. It is found that (i) with the increase of the thermal energy generated by shocks, the threshold mass for the prompt black hole formation is increased by 20-40%, (ii) the rotational centrifugal force increases the threshold mass by < or approx. 25%, (iii) with the increase of the degree of differential rotation, the threshold mass is also increased, and (iv) the amplification factors shown in the results (i)-(iii) depend sensitively on the equation of state. We also find that the collapse dynamics and the structure of the shock formed at the bounce depend strongly on the stiffness of the adopted equation of state. In particular, as a new feature, a strong bipolar explosion is observed for the collapse of rapidly rotating iron cores with an equation of state which is stiff in subnuclear density and soft in supranuclear density. Gravitational waves are computed in terms of a quadrupole formula. It is also found that the waveform depends sensitively on the equations of state.

  14. Neutrino-pair emission from nuclear de-excitation in core-collapse supernova simulations

    NASA Astrophysics Data System (ADS)

    Fischer, T.; Langanke, K.; Martínez-Pinedo, G.

    2013-12-01

    We study the impact of neutrino-pair production from the de-excitation of highly excited heavy nuclei on core-collapse supernova simulations, following the evolution up to several 100 ms after core bounce. Our study is based on the agile-boltztransupernova code, which features general relativistic radiation hydrodynamics and accurate three-flavor Boltzmann neutrino transport in spherical symmetry. In our simulations the nuclear de-excitation process is described in two different ways. At first we follow the approach proposed by Fuller and Meyer [Astrophys. J.AJLEEY0004-637X10.1086/170317 376, 701 (1991)], which is based on strength functions derived in the framework of the nuclear Fermi-gas model of noninteracting nucleons. Second, we parametrize the allowed and forbidden strength distributions in accordance with measurements for selected nuclear ground states. We determine the de-excitation strength by applying the Brink hypothesis and detailed balance. For both approaches, we find that nuclear de-excitation has no effect on the supernova dynamics. However, we find that nuclear de-excitation is the leading source for the production of electron antineutrinos as well as heavy-lepton-flavor (anti)neutrinos during the collapse phase. At sufficiently high densities, the associated neutrino spectra are influenced by interactions with the surrounding matter, making proper simulations of neutrino transport important for the determination of the neutrino-energy loss rate. We find that, even including nuclear de-excitations, the energy loss during the collapse phase is overwhelmingly dominated by electron neutrinos produced by electron capture.

  15. Octupolar out-of-plane magnetic field structure generation during collisionless magnetic reconnection in a stressed X-point collapse

    SciTech Connect

    Graf von der Pahlen, J.; Tsiklauri, D.

    2014-06-15

    The out-of-plane magnetic field, generated by fast magnetic reconnection, during collisionless, stressed X-point collapse, was studied with a kinetic, 2.5D, fully electromagnetic, relativistic particle-in-cell numerical code, using both closed (flux conserving) and open boundary conditions on a square grid. It was discovered that the well known quadrupolar structure in the out-of-plane magnetic field gains four additional regions of opposite magnetic polarity, emerging near the corners of the simulation box, moving towards the X-point. The emerging, outer, magnetic field structure has opposite polarity to the inner quadrupolar structure, leading to an overall octupolar structure. Using Ampere's law and integrating electron and ion currents, defined at grid cells, over the simulation domain, contributions to the out-of-plane magnetic field from electron and ion currents were determined. The emerging regions of opposite magnetic polarity were shown to be the result of ion currents. Magnetic octupolar structure is found to be a signature of X-point collapse, rather than tearing mode, and factors relating to potential discoveries in experimental scenarios or space-craft observations are discussed.

  16. Fully Relativistic Simulations of the Merger and Collapse of Neutron Star Binaries

    NASA Astrophysics Data System (ADS)

    Motl, Patrick M.; Anderson, M.; Hirschman, E. W.; Lehner, L.; Liebling, S. L.; Neilsen, D.; Palenzuela, C.; Tohline, J. E.

    2007-12-01

    We present simulations of the inspiral, merger and eventual collapse of neutron star binaries calculated in full general relativity. The Einstein equations are solved in a first order reduction of the general harmonic formulation while the matter is evolved with a relativistic MHD code though magnetic fields are absent in the simulations presented here. We use the adaptive mesh refinement package HAD to resolve the disparate length scales in the problem ranging from the radiation zone down to the internal dynamics of the neutron stars. We will briefly highlight our results for the gravitational radiation waveform as well as the evolution of angular momentum in the rotationally-supported, merged object that eventually collapses. This work has been supported in part by NSF grants AST 04-07070 and PHY 03-26311, and in part through NASA's ATP program grants NAG5-8497, NAG5-13430 and NNX07AG84G. The computations were performed on Pelican which is supported by LSU's High Performance Computing group, Marylou4 at BYU and with Teragrid resources.

  17. Quantifying Earthquake Collapse Risk of Tall Steel Braced Frame Buildings Using Rupture-to-Rafters Simulations

    NASA Astrophysics Data System (ADS)

    Mourhatch, Ramses

    This thesis examines collapse risk of tall steel braced frame buildings using rupture-to-rafters simulations due to suite of San Andreas earthquakes. Two key advancements in this work are the development of (i) a rational methodology for assigning scenario earthquake probabilities and (ii) an artificial correction-free approach to broadband ground motion simulation. The work can be divided into the following sections: earthquake source modeling, earthquake probability calculations, ground motion simulations, building response, and performance analysis. As a first step the kinematic source inversions of past earthquakes in the magnitude range of 6-8 are used to simulate 60 scenario earthquakes on the San Andreas fault. For each scenario earthquake a 30-year occurrence probability is calculated and we present a rational method to redistribute the forecast earthquake probabilities from UCERF to the simulated scenario earthquake. We illustrate the inner workings of the method through an example involving earthquakes on the San Andreas fault in southern California. Next, three-component broadband ground motion histories are computed at 636 sites in the greater Los Angeles metropolitan area by superposing short-period (0.2s-2.0s) empirical Green's function synthetics on top of long-period (> 2.0s) spectral element synthetics. We superimpose these seismograms on low-frequency seismograms, computed from kinematic source models using the spectral element method, to produce broadband seismograms. Using the ground motions at 636 sites for the 60 scenario earthquakes, 3-D nonlinear analysis of several variants of an 18-story steel braced frame building, designed for three soil types using the 1994 and 1997 Uniform Building Code provisions and subjected to these ground motions, are conducted. Model performance is classified into one of five performance levels: Immediate Occupancy, Life Safety, Collapse Prevention, Red-Tagged, and Model Collapse. The results are combined with

  18. Geophysical signatures of collapsed paleokarst structures in the Upper Miocene reefal complex of Mallorca (Balearic Islands)

    NASA Astrophysics Data System (ADS)

    Casas, Albert; Himi, Mahjoub; Lovera, Raúl; Fornòs, Joan; Montes-Egito, Lucila; Evangelista-Teixeira, Washington; de Medeiro-Souza, Anderson; Casado, Ismael; Pinheiro-Lima Filho, Francisco

    2015-04-01

    Collapsed paleokarst structures of Mallorca Island represent one of the best examples of collapsed paleocaves because of the good outcrops existing along sea cliffs. These structures have been produced by roof collapse of caverns developed in the underlying reefal complex. Coalesced systems of collapsed paleocaves form an important class of carbonate reservoirs that have arisen from shallow karst processes, followed by collapse, burial and diagenesis. These paleokarts structures are characterised by highly irregular subsurface conditions and for better defining their structure different geophysical methods have been tested over well-defined models exposed in a coastal cliff. Electrical resistivity tomography (ERT) profiles were acquired using a Wenner-Schlumberger array and electrodes 2m apart. Inverted resistivity sections show high contrasted electrical properties between different sedimentary facies, ranging from low resistivity values (< 40 ohm•m) for clayey infill sediments to high resistivity values (> 1000 ohm•m) for high porosity breccias. Ground probing radar (GPR) profiles were recorded along the same lines using a constant-offset a station spacing of 0.2 m, with an antenna of 50 MHz of dominant frequency. The total recording time window was 500 ns at a sample interval of 1600 ps. These parameters were determined by a series of tests prior to the main acquisition. Different GPR facies have been recognized. Finally, seismic refraction profiles were recorded in order to define the geometry and distribution of seismic velocities of the models along the same profiles. This geophysical investigation demonstrates that the combination of detailed geological (sedimentology, geomorphology, structural geology…) with high resolution geophysical techniques yields the best results for characterizing such geologically complex structures.

  19. On the Requirements for Realistic Modeling of Neutrino Transport in Simulations of Core-collapse Supernovae

    SciTech Connect

    Lentz, Eric J; Mezzacappa, Anthony; Messer, Bronson; Liebendoerfer, Matthias; Hix, William Raphael; Bruenn, S. W.

    2012-01-01

    We have conducted a series of numerical experiments with the spherically-symmetric, general-relativistic neutrino radiation hydrodynamics code Agile-BOLTZTRAN to examine the effects of several approximations used in multidimensional core-collapse supernova simulations. Our code permits us to examine the effects of these approximations quantitatively by removing, or substituting for, the pieces of supernova physics of interest. These approximations include: (1) using Newtonian versus general-relativistic gravity, hydrodynamics, and transport; (2) using older weak interactions, including the omission of non-isoenergetic neutrino scattering, versus up-to-date weak interactions; and (3) omitting the velocity-dependent terms, or observer corrections, from the neutrino Boltzmann kinetic equation. We demonstrate that each of these changes has non-negligible effects on the outcomes of our simulations. Finally, we discuss the impact these results have for current, and future, multidimensional models.

  20. Performance of tuned mass damper against structural collapse due to near fault earthquakes

    NASA Astrophysics Data System (ADS)

    Domizio, Martín; Ambrosini, Daniel; Curadelli, Oscar

    2015-02-01

    Tuned mass dampers (TMD) are devices capable of reducing structural vibration by means of transferring energy from the protected structure to the control device. This vibration control strategy has relatively recent use in civil structures, and was proven effective against wind and far-fault earthquakes. In this paper, the effect of near-fault seismic records on structures with TMDs is studied. This type of seismic records has a short significant duration, with few pulses of high amplitude and low frequency. These characteristics raise a question about TMD performance against this type of earthquakes because the device has a very limited time to transfer the energy from the main structure. In this paper, the efficiency of TMD in preventing the collapse of a structure subjected to a series of near-fault records is analyzed. The structure used is a 4-story steel frame on which TMDs with different values of mass are incorporated. From a series of nonlinear dynamic analyses, where the scale of seismic records is modified, the minimum amplitude of each record that produces the structural collapse is found. By comparing the results of the structure with and without the addition of the control device, conclusions about its performance and capability in the prevention of collapse are established.

  1. Extensional tectonics and collapse structures in the Suez Rift (Egypt)

    NASA Technical Reports Server (NTRS)

    Chenet, P. Y.; Colletta, B.; Desforges, G.; Ousset, E.; Zaghloul, E. A.

    1985-01-01

    The Suez Rift is a 300 km long and 50 to 80 km wide basin which cuts a granitic and metamorphic shield of Precambrian age, covered by sediments of Paleozoic to Paleogene age. The rift structure is dominated by tilted blocks bounded by NW-SE normal faults. The reconstruction of the paleostresses indicates a N 050 extension during the whole stage of rifting. Rifting began 24 My ago with dikes intrusions; main faulting and subsidence occurred during Early Miocene producing a 80 km wide basin (Clysmic Gulf). During Pliocene and Quaternary times, faulting is still active but subsidence is restricted to a narrower area (Present Gulf). On the Eastern margin of the gulf, two sets of fault trends are predominant: (1) N 140 to 150 E faults parallel to the gulf trend with pure dip-slip displacement; and (2) cross faults, oriented NOO to N 30 E that have a strike-slip component consistent with the N 050 E distensive stress regime. The mean dip cross fault is steeper (70 to 80 deg) than the dip of the faults parallel to the Gulf (30 to 70 deg). These two sets of fault define diamond shaped tilted block. The difference of mechanical behavior between the basement rocks and the overlying sedimentary cover caused structural disharmony and distinct fault geometries.

  2. Molecular-dynamics simulations of void collapse in shocked model-molecular solids

    NASA Astrophysics Data System (ADS)

    Mintmire, J. W.; Robertson, D. H.; White, C. T.

    1994-06-01

    We have carried out a series of molecular-dynamics simulations on a model three-dimensional molecular solid to study the dynamics of shock-induced collapse of void defects. Molecular-dynamics methods were used for a model system of identical particles arranged as diatomic molecules aligned with the center of mass of each molecule at fcc lattice sites, using a \\{111\\} layering for the two-dimensional boundary conditions. The diatoms were internally coupled via a harmonic potential; all other interactions were modeled with Morse potentials between all particles other than the immediate diatomic partner. Using this model, we have investigated the effect of a cylindrical void at right angles to the direction of layering (and impact). Depending on the strength of the incident shock wave, the void is found to collapse either smoothly and symmetrically (like a balloon gradually losing air), or asymmetrically and turbulently. In the latter case, we note the transient formation (for periods of several hundreds of femtoseconds) of ``hot spots'' at the void location both in terms of the local effective temperature and the vibrational energies of the diatoms.

  3. Mathematical simulation of one-dimensional dam-collapse flow over wetted bed

    NASA Astrophysics Data System (ADS)

    Medkour, D.; Kadja, M.

    2003-05-01

    A mathematical model is described and applied to simulate sudden total one-dimensional dam-break flow over wetted bed. The dam collapse takes place in a rough sloping non-prismatic channel of various cross-sections. The water parameters to be instantaneously calculated are the height h, the discharge Q, the mean velocity u and the pressure force P. The mentioned flow is governed by the Saint-Venant shallow water equations and the computation process, on the basis of rectangular grid of points, consists of two complementary solutions: (a) at the first instant after the collapse, an analytical procedure is considered. The calculated parameters are taken as initial values in the water stream embraced by the flood wave. Outside this zone, initial conditions are those which preexist before the rupture. (b) Beyond this time, a numerical computation is carried out by using an iterative explicit method of characteristics. (c) Every time stage of calculation starts by determining the discontinuity (wave front) parameters namely its abscissa x_δ, height h_δ, celerity c_δ and alert delay t_δ. The former is the discontinuity arrival time at considered station. Typical results are obtained and compared with similar ones already published by others in the literature.

  4. Axisymmetric general relativistic simulations of the accretion-induced collapse of white dwarfs

    SciTech Connect

    Abdikamalov, E. B.; Ott, C. D.; Rezzolla, L.; Dessart, L.; Dimmelmeier, H.; Marek, A.; Janka, H.-T.

    2010-02-15

    The accretion-induced collapse (AIC) of a white dwarf may lead to the formation of a protoneutron star and a collapse-driven supernova explosion. This process represents a path alternative to thermonuclear disruption of accreting white dwarfs in type Ia supernovae. In the AIC scenario, the supernova explosion energy is expected to be small and the resulting transient short-lived, making it hard to detect by electromagnetic means alone. Neutrino and gravitational-wave (GW) observations may provide crucial information necessary to reveal a potential AIC. Motivated by the need for systematic predictions of the GW signature of AIC, we present results from an extensive set of general-relativistic AIC simulations using a microphysical finite-temperature equation of state and an approximate treatment of deleptonization during collapse. Investigating a set of 114 progenitor models in axisymmetric rotational equilibrium, with a wide range of rotational configurations, temperatures and central densities, and resulting white dwarf masses, we extend previous Newtonian studies and find that the GW signal has a generic shape akin to what is known as a 'type III' signal in the literature. Despite this reduction to a single type of waveform, we show that the emitted GWs carry information that can be used to constrain the progenitor and the postbounce rotation. We discuss the detectability of the emitted GWs, showing that the signal-to-noise ratio for current or next-generation interferometer detectors could be high enough to detect such events in our Galaxy. Furthermore, we contrast the GW signals of AIC and rotating massive star iron core collapse and find that they can be distinguished, but only if the distance to the source is known and a detailed reconstruction of the GW time series from detector data is possible. Some of our AIC models form massive quasi-Keplerian accretion disks after bounce. The disk mass is very sensitive to progenitor mass and angular momentum

  5. Estimating the collapse of aggregated fine soil structure in a mountainous forested catchment.

    PubMed

    Mouri, Goro; Shinoda, Seirou; Golosov, Valentin; Chalov, Sergey; Shiiba, Michiharu; Hori, Tomoharu; Oki, Taikan

    2014-06-01

    This paper describes the relationship of forest soil dryness and antecedent rainfall with suspended sediment (SS) yield due to extreme rainfall events and how this relationship affects the survival of forest plants. Several phenomena contribute to this relationship: increasing evaporation (amount of water vapour discharged from soil) due to increasing air temperature, decreasing moisture content in the soil, the collapse of aggregates of fine soil particles, and the resulting effects on forest plants. To clarify the relationships among climate variation, the collapse of soil particle aggregates, and rainfall-runoff processes, a numerical model was developed to reproduce such aggregate collapse in detail. The validity of the numerical model was confirmed by its application to the granitic mountainous catchment of the Nagara River basin in Japan and by comparison with observational data. The simulation suggests that important problems, such as the collapse of forest plants in response to decreases in soil moisture content and antecedent rainfall, will arise if air temperature continues to increase. PMID:24055411

  6. Probabilistic Modeling of Landfill Subsidence Introduced by Buried Structure Collapse - 13229

    SciTech Connect

    Foye, Kevin; Soong, Te-Yang

    2013-07-01

    The long-term reliability of land disposal facility final cover systems - and therefore the overall waste containment - depends on the distortions imposed on these systems by differential settlement/subsidence. The evaluation of differential settlement is challenging because of the heterogeneity of the waste mass and buried structure placement. Deterministic approaches to long-term final cover settlement prediction are not able to capture the spatial variability in the waste mass and sub-grade properties, especially discontinuous inclusions, which control differential settlement. An alternative is to use a probabilistic model to capture the non-uniform collapse of cover soils and buried structures and the subsequent effect of that collapse on the final cover system. Both techniques are applied to the problem of two side-by-side waste trenches with collapsible voids. The results show how this analytical technique can be used to connect a metric of final cover performance (inundation area) to the susceptibility of the sub-grade to collapse and the effective thickness of the cover soils. This approach allows designers to specify cover thickness, reinforcement, and slope to meet the demands imposed by the settlement of the underlying waste trenches. (authors)

  7. Structural mechanics simulations

    NASA Technical Reports Server (NTRS)

    Biffle, Johnny H.

    1992-01-01

    Sandia National Laboratory has a very broad structural capability. Work has been performed in support of reentry vehicles, nuclear reactor safety, weapons systems and components, nuclear waste transport, strategic petroleum reserve, nuclear waste storage, wind and solar energy, drilling technology, and submarine programs. The analysis environment contains both commercial and internally developed software. Included are mesh generation capabilities, structural simulation codes, and visual codes for examining simulation results. To effectively simulate a wide variety of physical phenomena, a large number of constitutive models have been developed.

  8. Three dimensional core-collapse supernova simulated using a 15 M⊙ progenitor

    DOE PAGESBeta

    Lentz, Eric J.; Bruenn, Stephen W.; Hix, W. Raphael; Mezzacappa, Anthony; Messer, O. E. Bronson; Endeve, Eirik; Blondin, John M.; Harris, J. Austin; Marronetti, Pedro; Yakunin, Konstantin N.

    2015-07-10

    We have performed ab initio neutrino radiation hydrodynamics simulations in three and two spatial dimensions (3D and 2D) of core-collapse supernovae from the same 15 M⊙ progenitor through 440 ms after core bounce. Both 3D and 2D models achieve explosions; however, the onset of explosion (shock revival) is delayed by ~100 ms in 3D relative to the 2D counterpart and the growth of the diagnostic explosion energy is slower. This is consistent with previously reported 3D simulations utilizing iron-core progenitors with dense mantles. In the ~100 ms before the onset of explosion, diagnostics of neutrino heating and turbulent kinetic energymore » favor earlier explosion in 2D. During the delay, the angular scale of convective plumes reaching the shock surface grows and explosion in 3D is ultimately lead by a single, large-angle plume, giving the expanding shock a directional orientation not dissimilar from those imposed by axial symmetry in 2D simulations. Finally, we posit that shock revival and explosion in the 3D simulation may be delayed until sufficiently large plumes form, whereas such plumes form more rapidly in 2D, permitting earlier explosions.« less

  9. A method for numerical relativity: Simulation of axisymmetric gravitational collapse and gravitational radiation generation

    NASA Astrophysics Data System (ADS)

    Evans, C. R., II

    A method is presented which allows fully self-consistent numerical simulation of asymptotically flat axisymmetric nonrotating general relativistic systems. These techniques have been developed to model and understand resulting relativistic effects in gravitational core collapse and gravitational radiation generation. Both vacuum (Brill) spacetimes and matter-filled configurations can be treated. The (3 + 1) decomposition of Arnowitt, Deser and Misner is used to write general relativity in a dynamical form. The conformal approach, including the transverse-traceless decomposition of extrinsic curvature due to York, is used to solve the initial value problem. In addition, these techniques are extended to provide a fully constrained evolution scheme. Several new boundary conditions, applied at large but finite radius, are derived for the elliptic constraint equations. This method uses a simplifying three-gauge, placing the metric in quasi-isotropic form.

  10. Near Real-time Data Analysis of Core-Collapse Supernova Simulations With Bellerophon

    SciTech Connect

    Lingerfelt, Eric J; Messer, Bronson; Desai, Sharvari S; Holt, Chastity A; Lentz, Eric J

    2014-01-01

    We present an overview of a software system, Bellerophon, built to support a production-level HPC application called CHIMERA, which simulates core-collapse supernova events at the petascale. Developed over the last four years, Bellerophon enables CHIMERA s geographically dispersed team of collaborators to perform data analysis in near real-time. Its n-tier architecture provides an encapsulated, end-to-end software solution that enables the CHIMERA team to quickly and easily access highly customizable animated and static views of results from anywhere in the world via a web-deliverable, cross-platform desktop application. In addition, Bellerophon addresses software engineering tasks for the CHIMERA team by providing an automated mechanism for performing regression testing on a variety of supercomputing platforms. Elements of the team s workflow management needs are met with software tools that dynamically generate code repository statistics, access important online resources, and monitor the current status of several supercomputing resources.

  11. Inner Structure of Protostellar Collapse Candidate B335 Derived from Millimeter-Wave Interferometry

    NASA Astrophysics Data System (ADS)

    Harvey, Daniel W. A.; Wilner, David J.; Myers, Philip C.; Tafalla, Mario; Mardones, Diego

    2003-02-01

    We present a study of the density structure of the protostellar collapse candidate B335 using continuum observations from the IRAM Plateau de Bure Interferometer made at wavelengths of 1.2 and 3.0 mm. We analyze these data, which probe spatial scales from 5000 to 500 AU, directly in the visibility domain by comparison with synthetic observations constructed from models that assume different physical conditions. This approach allows for much more stringent constraints to be derived from the data than from analysis of images. A single radial power law in density provides a good description of the data, with a best-fit power-law density index p=1.65+/-0.05. Through simulations, we quantify the sensitivity of this result to various model uncertainties, including assumptions of temperature distribution, outer boundary, dust opacity spectral index, and an unresolved central component. The largest uncertainty comes from the unknown presence of a centralized point source. The maximal point source, with 1.2 mm flux of F=12+/-7 mJy, reduces the power-law density index to p=1.47+/-0.07. The remaining sources of systematic uncertainty, of which the most important is the radial dependence of the temperature distribution, likely contribute a total uncertainty at the level of δp<~0.2. Taking into account the uncertainties, we find strong evidence that the power-law index of the density distribution within 5000 AU is significantly less than the value at larger radii, close to 2.0, from previous studies of dust emission and extinction. Images made from the data show clear departures from spherical symmetry, with the globule being slightly extended perpendicular to the outflow axis. The inclusion of a crude model of the outflow as a hollow bipolar cone of constant opening angle improves the fit and leaves the resulting density power-law index unchanged. These results conform well to the generic paradigm of isolated, low-mass star formation, which predicts a power-law density index

  12. Campaign 2 Level 2 Milestone Review 2009: Milestone # 3131 Grain Scale Simulation of Pore Collapse

    SciTech Connect

    Schwartz, A J

    2009-09-28

    The milestone reviewed on Sept. 16, 2009 was 'High-fidelity simulation of shock initiation of high explosives at the grain scale using coupled hydrodynamics, thermal transport and chemistry'. It is the opinion of the committee that the team has satisfied the milestone. A detailed description of how the goals were met is provided. The milestone leveraged capabilities from ASC Physics and Engineering Materials program combined with experimental input from Campaign 2. A combined experimental-multiscale simulation approach was used to create and validate the various TATB model components. At the lowest length scale, quantum chemical calculations were used to determine equations of state, thermal transport properties and reaction rates for TATB as it is decomposing. High-pressure experiments conducted in diamond anvil cells, gas guns and the Z machine were used to validate the EOS, thermal conductivity, specific heat and predictions of water formation. The predicted reaction networks and chemical kinetic equations were implemented in Cheetah and validated against the lower length scale data. Cheetah was then used within the ASC code ALE3D for high-resolution, thermo-mechanically coupled simulations of pore collapse at the micron size scale to predict conditions for detonation initiation.

  13. 4. UPPER NOTTINGHAM MINE LOOKING UP TOWARD COLLAPSED ADIT/WOODEN STRUCTURE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. UPPER NOTTINGHAM MINE LOOKING UP TOWARD COLLAPSED ADIT/WOODEN STRUCTURE AND BOXES IN TREES FAR RIGHT. WOOD, METAL FLUME AND WASTE ROCK ARE VISIBLE ON THE LEFT. STREAM BED IS IN MID-RIGHT. UPPER TAILINGS IN LOWER RIGHT. CAMERA POINTED NORTH-NORTHEAST. - Florida Mountain Mining Sites, Upper Nottingham Mine, West face of Florida Mountain, head of Jacobs Gulch, Silver City, Owyhee County, ID

  14. High-resolution three-dimensional simulations of core-collapse supernovae in multiple progenitors

    SciTech Connect

    Couch, Sean M.; O'Connor, Evan P.

    2014-04-20

    Three-dimensional (3D) simulations of core-collapse supernovae (CCSNe) are granting new insight into the as-yet-uncertain mechanism that drives successful explosions. While there is still debate about whether explosions are obtained more easily in 3D than in 2D, it is undeniable that there exist qualitative and quantitative differences between the results of 3D and 2D simulations. We present an extensive set of high-resolution 1D, 2D, and 3D CCSN simulations with multispecies neutrino leakage carried out in two different progenitors. Our simulations confirm the results of Couch indicating that 2D explodes more readily than 3D. We argue that this is due to the inadequacies of 2D to accurately capture important aspects of the 3D dynamics. We find that without artificially enhancing the neutrino heating rate, we do not obtain explosions in 3D. We examine the development of neutrino-driven convection and the standing accretion shock instability (SASI) and find that, in separate regimes, either instability can dominate. We find evidence for growth of the SASI for both 15 M {sub ☉} and 27 M {sub ☉} progenitors; however, it is weaker in 3D exploding models. The growth rate of both instabilities is artificially enhanced along the symmetry axis in 2D as compared with our axis-free 3D Cartesian simulations. Our work highlights the growing consensus that CCSNe must be studied in 3D if we hope to solve the mystery of how the explosions are powered.

  15. Local Simulations of the Magnetorotational Instability in Core-collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Masada, Youhei; Takiwaki, Tomoya; Kotake, Kei; Sano, Takayoshi

    2012-11-01

    Bearing in mind the application of core-collapse supernovae, we study the nonlinear properties of the magnetorotational instability (MRI) by means of three-dimensional simulations in the framework of a local shearing box approximation. By systematically changing the shear rates that symbolize the degree of differential rotation in nascent proto-neutron stars (PNSs), we derive a scaling relation between the turbulent stress sustained by the MRI and the shear-vorticity ratio. Our parametric survey shows a power-law scaling between the turbulent stress (langlangw totrangrang) and the shear-vorticity ratio (gq ) as langlangw totrangrangvpropg δ q with an index of δ ~ 0.5. The MRI-amplified magnetic energy has a similar scaling relative to the turbulent stress, while the Maxwell stress has a slightly smaller power-law index (~0.36). By modeling the effect of viscous heating rates from MRI turbulence, we show that the stronger magnetic fields, or the larger shear rates initially imposed, lead to higher dissipation rates. For a rapidly rotating PNS with a spin period in milliseconds and with strong magnetic fields of 1015 G, the energy dissipation rate is estimated to exceed 1051 erg s-1. Our results suggest that the conventional magnetohydrodynamic (MHD) mechanism of core-collapse supernovae is likely to be affected by MRI-driven turbulence, which we speculate, on the one hand, could harm the MHD-driven explosions due to the dissipation of the shear rotational energy at the PNS surface; or, on the other hand, its energy deposition might be potentially favorable for the working of the neutrino-heating mechanism.

  16. Simulation of phase structures

    SciTech Connect

    Lawson, J.

    1995-04-20

    This memo outlines a procedure developed by the author to extract information from phase measurements and produce a simulated phase structure for use in modeling optical systems, including characteristic optics for the Beamlet and NIF laser systems. The report includes an IDL program listing.

  17. ON THE REQUIREMENTS FOR REALISTIC MODELING OF NEUTRINO TRANSPORT IN SIMULATIONS OF CORE-COLLAPSE SUPERNOVAE

    SciTech Connect

    Lentz, Eric J.; Mezzacappa, Anthony; Hix, W. Raphael; Messer, O. E. Bronson; Liebendoerfer, Matthias; Bruenn, Stephen W. E-mail: mezzacappaa@ornl.gov

    2012-03-01

    We have conducted a series of numerical experiments with the spherically symmetric, general relativistic, neutrino radiation hydrodynamics code AGILE-BOLTZTRAN to examine the effects of several approximations used in multidimensional core-collapse supernova simulations. Our code permits us to examine the effects of these approximations quantitatively by removing, or substituting for, the pieces of supernova physics of interest. These approximations include: (1) using Newtonian versus general relativistic gravity, hydrodynamics, and transport; (2) using a reduced set of weak interactions, including the omission of non-isoenergetic neutrino scattering, versus the current state-of-the-art; and (3) omitting the velocity-dependent terms, or observer corrections, from the neutrino Boltzmann kinetic equation. We demonstrate that each of these changes has noticeable effects on the outcomes of our simulations. Of these, we find that the omission of observer corrections is particularly detrimental to the potential for neutrino-driven explosions and exhibits a failure to conserve lepton number. Finally, we discuss the impact of these results on our understanding of current, and the requirements for future, multidimensional models.

  18. Multimessenger signals of long-term core-collapse supernova simulations: synergetic observation strategies

    NASA Astrophysics Data System (ADS)

    Nakamura, Ko; Horiuchi, Shunsaku; Tanaka, Masaomi; Hayama, Kazuhiro; Takiwaki, Tomoya; Kotake, Kei

    2016-09-01

    The next Galactic supernova is expected to bring great opportunities for the direct detection of gravitational waves (GW), full flavour neutrinos, and multiwavelength photons. To maximize the science return from such a rare event, it is essential to have established classes of possible situations and preparations for appropriate observations. To this end, we use a long-term numerical simulation of the core-collapse supernova (CCSN) of a 17 M⊙ red supergiant progenitor to self-consistently model the multimessenger signals expected in GW, neutrino, and electromagnetic messengers. This supernova model takes into account the formation and evolution of a protoneutron star, neutrino-matter interaction, and neutrino transport, all within a two-dimensional shock hydrodynamics simulation. With this, we separately discuss three situations: (i) a CCSN at the Galactic Center, (ii) an extremely nearby CCSN within hundreds of parsecs, and (iii) a CCSN in nearby galaxies within several Mpc. These distance regimes necessitate different strategies for synergistic observations. In a Galactic CCSN, neutrinos provide strategic timing and pointing information. We explore how these in turn deliver an improvement in the sensitivity of GW analyses and help to guarantee observations of early electromagnetic signals. To facilitate the detection of multimessenger signals of CCSNe in extremely nearby and extragalactic distances, we compile a list of nearby red supergiant candidates and a list of nearby galaxies with their expected CCSN rates. By exploring the sequential multimessenger signals of a nearby CCSN, we discuss preparations for maximizing successful studies of such an unprecedented stirring event.

  19. Ion acoustic wave collapse via two-ion wave decay: 2D Vlasov simulation and theory

    NASA Astrophysics Data System (ADS)

    Chapman, Thomas; Berger, Richard; Banks, Jeffrey; Brunner, Stephan

    2015-11-01

    The decay of ion acoustic waves (IAWs) via two-ion wave decay may transfer energy from the electric field of the IAWs to the particles, resulting in a significant heating of resonant particles. This process has previously been shown in numerical simulations to decrease the plasma reflectivity due to stimulated Brillouin scattering. Two-ion wave decay is a fundamental property of ion acoustic waves that occurs over most if not all of the parameter space of relevance to inertial confinement fusion experiments, and can lead to a sudden collapse of IAWs. The treatment of all species kinetically, and in particular the electrons, is required to describe the decay process correctly. We present fully kinetic 2D+2V Vlasov simulations of IAWs undergoing decay to a highly nonlinear turbulent state using the code LOKI. The scaling of the decay rate with characteristic plasma parameters and wave amplitude is shown. A new theory describing two-ion wave decay in 2D, that incorporates key kinetic properties of the electrons, is presented and used to explain quantitatively for the first time the observed decay of IAWs. Work performed under auspices of U.S. DoE by LLNL, Contract DE-AC52-07NA2734. Funded by LDRD 15-ERD-038 and supported by LLNL Grand Challenge allocation.

  20. GENERAL-RELATIVISTIC SIMULATIONS OF THREE-DIMENSIONAL CORE-COLLAPSE SUPERNOVAE

    SciTech Connect

    Ott, Christian D.; Abdikamalov, Ernazar; Moesta, Philipp; Haas, Roland; Drasco, Steve; O'Connor, Evan P.; Reisswig, Christian; Meakin, Casey A.; Schnetter, Erik

    2013-05-10

    We study the three-dimensional (3D) hydrodynamics of the post-core-bounce phase of the collapse of a 27 M{sub Sun} star and pay special attention to the development of the standing accretion shock instability (SASI) and neutrino-driven convection. To this end, we perform 3D general-relativistic simulations with a three-species neutrino leakage scheme. The leakage scheme captures the essential aspects of neutrino cooling, heating, and lepton number exchange as predicted by radiation-hydrodynamics simulations. The 27 M{sub Sun} progenitor was studied in 2D by Mueller et al., who observed strong growth of the SASI while neutrino-driven convection was suppressed. In our 3D simulations, neutrino-driven convection grows from numerical perturbations imposed by our Cartesian grid. It becomes the dominant instability and leads to large-scale non-oscillatory deformations of the shock front. These will result in strongly aspherical explosions without the need for large-scale SASI shock oscillations. Low-l-mode SASI oscillations are present in our models, but saturate at small amplitudes that decrease with increasing neutrino heating and vigor of convection. Our results, in agreement with simpler 3D Newtonian simulations, suggest that once neutrino-driven convection is started, it is likely to become the dominant instability in 3D. Whether it is the primary instability after bounce will ultimately depend on the physical seed perturbations present in the cores of massive stars. The gravitational wave signal, which we extract and analyze for the first time from 3D general-relativistic models, will serve as an observational probe of the postbounce dynamics and, in combination with neutrinos, may allow us to determine the primary hydrodynamic instability.

  1. General-relativistic Simulations of Three-dimensional Core-collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Ott, Christian D.; Abdikamalov, Ernazar; Mösta, Philipp; Haas, Roland; Drasco, Steve; O'Connor, Evan P.; Reisswig, Christian; Meakin, Casey A.; Schnetter, Erik

    2013-05-01

    We study the three-dimensional (3D) hydrodynamics of the post-core-bounce phase of the collapse of a 27 M ⊙ star and pay special attention to the development of the standing accretion shock instability (SASI) and neutrino-driven convection. To this end, we perform 3D general-relativistic simulations with a three-species neutrino leakage scheme. The leakage scheme captures the essential aspects of neutrino cooling, heating, and lepton number exchange as predicted by radiation-hydrodynamics simulations. The 27 M ⊙ progenitor was studied in 2D by Müller et al., who observed strong growth of the SASI while neutrino-driven convection was suppressed. In our 3D simulations, neutrino-driven convection grows from numerical perturbations imposed by our Cartesian grid. It becomes the dominant instability and leads to large-scale non-oscillatory deformations of the shock front. These will result in strongly aspherical explosions without the need for large-scale SASI shock oscillations. Low-l-mode SASI oscillations are present in our models, but saturate at small amplitudes that decrease with increasing neutrino heating and vigor of convection. Our results, in agreement with simpler 3D Newtonian simulations, suggest that once neutrino-driven convection is started, it is likely to become the dominant instability in 3D. Whether it is the primary instability after bounce will ultimately depend on the physical seed perturbations present in the cores of massive stars. The gravitational wave signal, which we extract and analyze for the first time from 3D general-relativistic models, will serve as an observational probe of the postbounce dynamics and, in combination with neutrinos, may allow us to determine the primary hydrodynamic instability.

  2. Estimating structural collapse fragility of generic building typologies using expert judgment

    USGS Publications Warehouse

    Jaiswal, Kishor; Wald, David J.; Perkins, David M.; Aspinall, Willy P.; Kiremidjian, Anne S.

    2014-01-01

    The structured expert elicitation process proposed by Cooke (1991), hereafter referred to as Cooke's approach, is applied for the first time in the realm of structural collapse-fragility assessment for selected generic construction types. Cooke's approach works on the principle of objective calibration scoring of judgments couple with hypothesis testing used in classical statistics. The performance-based scoring system reflects the combined measure of an expert's informativeness about variables in the problem are under consideration, and their ability to enumerate, in a statistically accurate way through expressing their true beliefs, the quantitative uncertainties associated with their assessments. We summarize the findings of an expert elicitation workshop in which a dozen earthquake-engineering professionals from around the world were engaged to estimate seismic collapse fragility for generic construction types. Development of seismic collapse fragility-functions was accomplished by combining their judgments using weights derived from Cooke's method. Although substantial effort was needed to elicit the inputs of these experts successfully, we anticipate that the elicitation strategy described here will gain momentum in a wide variety of earthquake seismology and engineering hazard and risk analyses where physical model and data limitations are inherent and objective professional judgment can fill gaps.

  3. Structure of tracheae and the functional implications for collapse in the American cockroach.

    PubMed

    Webster, Matthew R; Socha, John J; Teresi, Luciano; Nardinocchi, Paola; De Vita, Raffaella

    2015-12-01

    The tracheal tubes of insects are complex and heterogeneous composites with a microstructural organization that affects their function as pumps, valves, or static conduits within the respiratory system. In this study, we examined the microstructure of the primary thoracic tracheae of the American cockroach (Periplaneta americana) using a combination of scanning electron microscopy and light microscopy. The organization of the taenidia, which represents the primary source of structural reinforcement of the tracheae, was analyzed. We found that the taenidia were more disorganized in the regions of highest curvature of the tracheal tube. We also used a simple finite element model to explore the effect of cross-sectional shape and distribution of taenidia on the collapsibility of the tracheae. The eccentricity of the tracheal cross-section had a stronger effect on the collapse properties than did the distribution of taenidia. The combination of the macro-scale geometry, meso-scale heterogeneity, and microscale organization likely enables rhythmic tracheal compression during respiration, ultimately driving oxygen-rich air to cells and tissues throughout the insect body. The material design principles of these natural composites could potentially aid in the development of new bio-inspired microfluidic systems based on the differential collapse of tracheae-like networks. PMID:26584154

  4. A new baryonic equation of state at sub-nuclear densities for core-collapse simulations

    NASA Astrophysics Data System (ADS)

    Furusawa, Shun; Yamada, Shoichi; Sumiyoshi, Kohsuke; Suzuki, Hideyuki

    2012-11-01

    We construct a new equation of state for baryons at sub-nuclear densities for the use in core-collapse simulations of massive stars. The formulation is based on the nuclear statistical equilibrium description and the liquid drop approximation of nuclei. The model free energy to minimize is calculated by using relativistic mean field theory for nucleons and the mass formula for nuclei with atomic number up to ~ 1000. We have also taken into account the pasta phase. We find that the free energy and other thermodynamical quantities are not very different from those given in the standard EOSs that adopt the single nucleus approximation. On the other hand, the average mass is systematically different, which may have an important effect to the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores. It is also interesting that the root mean square of the mass number is not very different from the average mass number, since the former is important for the evaluation of coherent scattering rates on nuclei but has been unavailable so far.

  5. Method for numerical relativity: simulation of axisymmetric gravitational collapse and gravitational radiation generation

    SciTech Connect

    Evans, C.R. II

    1984-01-01

    A method is presented that allows fully self-consistent numerical simulation of asymptotically flat axisymmetric nonrotating general relativistic systems. These techniques were developed to model and understand resulting relativistic effects in gravitational core collapse and gravitational radiation generation. Both vacuum (Brill) spacetimes and matter-filled configurations can be treated. The author uses the (3 + 1) composition of Arnowitt, Deser, and Misner to write general relativity in a dynamical form. The conformal approach, including the transverse-traceless decomposition of extrinsic curvature due to York, is used to solve the initial-value problem. In addition, these techniques are extended to provide a fully constrained evolution scheme. Several new boundary conditions, applied at large but finite radius, are derived for the elliptic constraint equations. The method uses a simplifying three-gauge, placing the metric in quasi-isotropic form. The resulting three-metric contains only two components that must be solved. One, the conformal factor, is fixed by the Hamiltonian constraint. The second has nice radiative features and is related in the weak-field limit to the usual transverse-traceless gravitational wave amplitude. The time slicing is determined by implementation of the maximal slicing condition.

  6. Magnetorotational collapse of massive stellar cores to neutron stars: Simulations in full general relativity

    NASA Astrophysics Data System (ADS)

    Shibata, Masaru; Liu, Yuk Tung; Shapiro, Stuart L.; Stephens, Branson C.

    2006-11-01

    We study magnetohydrodynamic (MHD) effects arising in the collapse of magnetized, rotating, massive stellar cores to proto-neutron stars (PNSs). We perform axisymmetric numerical simulations in full general relativity with a hybrid equation of state. The formation and early evolution of a PNS are followed with a grid of 2500×2500 zones, which provides better resolution than in previous (Newtonian) studies. We confirm that significant differential rotation results even when the rotation of the progenitor is initially uniform. Consequently, the magnetic field is amplified both by magnetic winding and the magnetorotational instability (MRI). Even if the magnetic energy EEM is much smaller than the rotational kinetic energy Trot at the time of PNS formation, the ratio EEM/Trot increases to 0.1 0.2 by the magnetic winding. Following PNS formation, MHD outflows lead to losses of rest mass, energy, and angular momentum from the system. The earliest outflow is produced primarily by the increasing magnetic stress caused by magnetic winding. The MRI amplifies the poloidal field and increases the magnetic stress, causing further angular momentum transport and helping to drive the outflow. After the magnetic field saturates, a nearly stationary, collimated magnetic field forms near the rotation axis and a Blandford-Payne type outflow develops along the field lines. These outflows remove angular momentum from the PNS at a rate given by J˙˜ηEEMCB, where η is a constant of order ˜0.1 and CB is a typical ratio of poloidal to toroidal field strength. As a result, the rotation period quickly increases for a strongly magnetized PNS until the degree of differential rotation decreases. Our simulations suggest that rapidly rotating, magnetized PNSs may not give rise to rapidly rotating neutron stars.

  7. Multi-dimensional Simulations of Core Collapse Supernovae employing Ray-by-Ray Neutrino Transport

    NASA Astrophysics Data System (ADS)

    Hix, W. R.; Mezzacappa, A.; Liebendoerfer, M.; Messer, O. E. B.; Blondin, J. M.; Bruenn, S. W.

    2001-12-01

    Decades of research on the mechanism which causes core collapse supernovae has evolved a paradigm wherein the shock that results from the formation of the proto-neutron star stalls, failing to produce an explosion. Only when the shock is re-energized by the tremendous neutrino flux that is carrying off the binding energy of this proto-neutron star can it drive off the star's envelope, creating a supernova. Work in recent years has demonstrated the importance of multi-dimensional hydrodynamic effects like convection to successful simulation of an explosion. Further work has established the necessity of accurately characterizing the distribution of neutrinos in energy and direction. This requires discretizing the neutrino distribution into multiple groups, adding greatly to the computational cost. However, no supernova simulations to date have combined self-consistent multi-group neutrino transport with multi-dimensional hydrodynamics. We present preliminary results of our efforts to combine these important facets of the supernova mechanism by coupling self-consistent ray-by-ray multi-group Boltzmann and flux-limited diffusion neutrino transport schemes to multi-dimensional hydrodynamics. This research is supported by NASA under contract NAG5-8405, by the NSF under contract AST-9877130, and under a SciDAC grant from the DoE Office of Science High Energy and Nuclear Physics Program. Work at Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725.

  8. Simulating the impact of freshwater inputs and deep-draft icebergs formed during a MIS 6 Barents Ice Sheet collapse

    NASA Astrophysics Data System (ADS)

    Green, Clare L.; Green, J. A. Mattias; Bigg, Grant R.

    2011-06-01

    An intermediate complexity climate model is used to simulate the collapse of the Barents Ice Sheet during Marine Isotope Stage 6 (MIS 6; 140 ka B.P) with the purpose of investigating whether a mass input of freshwater from the collapse could have affected the convection and deep water formation in the North Atlantic Ocean. Further experiments used a coupled dynamic and thermodynamic iceberg model to determine the effects of deep-draft icebergs, rather than freshwater alone, on the ocean circulation. The results predict that the collapse of the Barents Ice Sheet had a significant impact on the meridional overturning circulation in both the Atlantic and Pacific oceans. Freshwater fluxes have more of an impact on the Atlantic overturning circulation during the actual release period compared to icebergs, but the bergs induce effects over longer time scales even after the pulse is removed. Freshwater fluxes of 0.15 sverdrup (Sv) and iceberg surges of 0.1 Sv trigger significant changes in the global patterns, particularly in the North Pacific where there is strengthening of the overturning circulation at the expense of that in the North Atlantic, and associated increases in Pacific sea surface temperatures. These results highlight the importance of simulating not only the correct flux but also the form of the freshwater input from ice sheet collapses appropriately.

  9. Collapse of a Rotating Supermassive Star to a Supermassive Black Hole: Fully Relativistic Simulations

    NASA Astrophysics Data System (ADS)

    Shibata, Masaru; Shapiro, Stuart L.

    2002-06-01

    We follow the collapse in axisymmetry of a uniformly rotating, supermassive star (SMS) to a supermassive black hole in full general relativity. The initial SMS of arbitrary mass M is marginally unstable to radial collapse and rotates at the mass-shedding limit. The collapse proceeds homologously early on and results in the appearance of an apparent horizon at the center. Although our integration terminates before final equilibrium is achieved, we determine that the final black hole will contain about 90% of the total mass of the system and will have a spin parameter J/M2~0.75. The remaining gas forms a rotating disk about the nascent hole.

  10. Density profiles of loose and collapsed cohesive granular structures generated by ballistic deposition

    NASA Astrophysics Data System (ADS)

    Kadau, Dirk; Herrmann, Hans J.

    2011-03-01

    Loose granular structures stabilized against gravity by an effective cohesive force are investigated on a microscopic basis using contact dynamics. We study the influence of the granular Bond number on the density profiles and the generation process of packings, generated by ballistic deposition under gravity. The internal compaction occurs discontinuously in small avalanches and we study their size distribution. We also develop a model explaining the final density profiles based on insight about the collapse of a packing under changes of the Bond number.

  11. Subsurface architecture of a strike-slip collapse structure: insights from Ilopango caldera, El Salvador

    NASA Astrophysics Data System (ADS)

    Saxby, Jennifer; Gottsmann, Joachim; Cashman, Katherine; Gutierrez, Eduardo

    2016-04-01

    While most calderas are created by roof collapse along ring-like faults into an emptying magma reservoir during a large and violent explosive eruption, an additional condition for caldera formation may be tectonically induced extensional stresses. Here we provide geophysical insights into the shallow sub-volcanic plumbing system of a collapse caldera in a major strike-slip tectonic setting by inverting Bouguer gravity data from the Ilopango caldera in El Salvador. Despite a long history of catastrophic eruptions with the most recent in 500 A.D., the internal architecture of the caldera has not been investigated, although studies of the most recent eruption have not identified the ring faults commonly associated with caldera collapse. The gravity data show that low-density material aligned along the principal stress orientations of the El Salvador Fault Zone (ESFZ) forms a pronounced gravity low beneath the caldera. Extending to around 6 km depth, the low density structure likely maps a complex stacked shallow plumbing system composed of magmatic and fractured hydrothermal reservoirs. A substantial volume of the plumbing system must be composed of a vapour phase to explain the modeled negative density contrasts. We use these constraints to map the possible multi-phase parameter space contributing to the subsurface architecture of the caldera and propose that the local extension along the complex ESFZ controls accumulation, ascent and eruption of magma at Ilopango. The data further suggest that future eruptions at Ilopango could be facilitated by rapid rise of magma along conjugate fault damage zones through a mechanically weak crust under tension. This may explain the absence of clear ring fault structures at the caldera.

  12. Infilled masonry walls contribution in mitigating progressive collapse of multistory reinforced concrete structures according to UFC guidelines

    NASA Astrophysics Data System (ADS)

    Helmy, Huda; Hadhoud, Hamed; Mourad, Sherif

    2015-09-01

    A structure is subjected to progressive collapse when an element fails, resulting in failure of adjoining structural elements which, in their turn, cause further structural failure leading eventually to partial or total collapse. The failure of a primary vertical support might occur due to extreme loadings such as bomb explosion in a terrorist attack, gas explosion and huge impact of a car in the parking area. Different guidelines such as the General Services Administration (GSA 2003) and the Unified Facilities Criteria (UFC 2009) addressed the structural progressive collapse due to the sudden loss of a main vertical support. In the current study, a progressive collapse assessment according to the UFC guidelines is carried out for a typical ten-story reinforced concrete framed structure designed according to codes [(ACI 318-08) and (ASCE 7-10)] for minimum design loads for buildings and other structures. Fully nonlinear dynamic analysis for the structure was carried out using Applied Element Method (AEM). The investigated cases included the removal of a corner column, an edge column, an edge shear wall, internal columns and internal shear wall. The numerical analysis showed that simplification of the problem into 3D bare frames would lead to uneconomical design. It was found for the studied case that, the infilled masonry walls have a valuable contribution in mitigating progressive collapse of the reinforced concrete framed structures. Neglecting these walls would lead to uneconomical design.

  13. A Combined Spectral/Godunov Code for the Simulation of Gravitational Waves from Stellar Supernova Core Collapse

    NASA Astrophysics Data System (ADS)

    Novak, J.; Dimmelmeier, H.; Font, J. A.

    2008-04-01

    Supernovae represent powerful sources of gravitational radiation. Their numerical simulation, even of simplified core collapse models, requires numerical techniques that are able to handle strong hydrodynamic shocks and a general-relativistic gravitational field. Such hydrodynamics can be modeled with high-resolution shock-capturing (HRSC) schemes, also known as Godunov schemes, in general relativity, while the Einstein equations for the gravitational field may require much computer power, if solved in the same way. It is therefore interesting to use spectral methods to model the gravitational field, which is always regular enough to avoid any Gibbs phenomenon, in conjunction with HRSC schemes for the hydrodynamics equations. We present such a code combining both methods to model stellar core collapse simulations and the resulting gravitational waves, with the most recent equations of state and a simplified neutrino treatment. Some additional results on neutron star oscillations are also shown.

  14. Relativistic MHD simulations of core-collapse GRB jets: 3D instabilities and magnetic dissipation

    NASA Astrophysics Data System (ADS)

    Bromberg, Omer; Tchekhovskoy, Alexander

    2016-02-01

    Relativistic jets are associated with extreme astrophysical phenomena, like the core collapse of massive stars in gamma-ray bursts (GRBs) and the accretion on to supermassive black holes in active galactic nuclei. It is generally accepted that these jets are powered electromagnetically, by the magnetized rotation of a central compact object (black hole or neutron star). However, how the jets produce the observed emission and survive the propagation for many orders of magnitude in distance without being disrupted by current-driven instabilities is the subject of active debate. We carry out time-dependent 3D relativistic magnetohydrodynamic (MHD) simulations of relativistic, Poynting-flux-dominated jets. The jets are launched self-consistently by the rotation of a strongly magnetized central object. This determines the natural degree of azimuthal magnetic field winding, a crucial factor that controls jet stability. We find that the jets are susceptible to two types of instability: (i) a global, external kink mode that grows on long time-scales. It bodily twists the jet, reducing its propagation velocity. We show analytically that in flat density profiles, like the ones associated with galactic cores, the external mode grows and may stall the jet. In the steep profiles of stellar envelopes the external kink weakens as the jet propagates outward. (ii) a local, internal kink mode that grows over short time-scales and causes small-angle magnetic reconnection and conversion of about half of the jet electromagnetic energy flux into heat. We suggest that internal kink instability is the main dissipation mechanism responsible for powering GRB prompt emission.

  15. Axisymmetric Ab Initio Core-Collapse Supernova Simulations of 12--25 Solar Mass Stars

    SciTech Connect

    Bruenn, S. W.; Mezzacappa, Anthony; Hix, William Raphael; Lentz, E. J.; Messer, Bronson; Lingerfelt, Eric J; Blondin, J. M.; Endeve, Eirik; Marronetti, Pedro; Yakunin, Konstantin

    2013-01-01

    We present an overview of four ab initio axisymmetric core-collapse supernova simulations employing detailed spectral neutrino transport computed with our CHIMERA code and initiated from Woosley & Heger (2007) progenitors of mass 12, 15, 20, and 25 M_sun. All four models exhibit shock revival over ~ 200 ms (leading to the possibility of explosion), driven by neutrino energy deposition. Hydrodynamic instabilities that impart substantial asymmetries to the shock aid these revivals, with convection appearing first in the 12 solar mass model and the standing accretion shock instability (SASI) appearing first in the 25 solar mass model. Three of the models have developed pronounced prolate morphologies (the 20 solar mass model has remained approximately spherical). By 500 ms after bounce the mean shock radii in all four models exceed 3,000 km and the diagnostic explosion energies are 0.33, 0.66, 0.65, and 0.70 Bethe (B=10^{51} ergs) for the 12, 15, 20, and 25 solar mass models, respectively, and are increasing. The three least massive of our models are already sufficiently energetic to completely unbind the envelopes of their progenitors (i.e., to explode), as evidenced by our best estimate of their explosion energies, which first become positive at 320, 380, and 440 ms after bounce. By 850 ms the 12 solar mass diagnostic explosion energy has saturated at 0.38 B, and our estimate for the final kinetic energy of the ejecta is ~ 0.3 B, which is comparable to observations for lower-mass progenitors.

  16. Structural Collapse of the Hydroquinone-Formic Acid Clathrate: A Pressure-Medium-Dependent Phase Transition.

    PubMed

    Eikeland, Espen; Thomsen, Maja K; Madsen, Solveig R; Overgaard, Jacob; Spackman, Mark A; Iversen, Bo B

    2016-03-14

    The energy landscape governing a new pressure-induced phase transition in the hydroquinone-formic acid clathrate is reported in which the host structure collapses, opening up the cavity channels within which the guest molecules migrate and order. The reversible isosymmetric phase transition causes significant changes in the morphology and the birefringence of the crystal. The subtle intermolecular interaction energies in the clathrate are quantified at varying pressures using novel model energies and energy frameworks. These calculations show that the high-pressure phase forms a more stable host network at the expense of less-stable host-guest interactions. The phase transition can be kinetically hindered using a nonhydrostatic pressure-transmitting medium, enabling the comparison of intermolecular energies in two polymorphic structures in the same pressure range. Overall this study illustrates a need for accurate intermolecular energies when analyzing self-assembly structures and supramolecular aggregates. PMID:26879515

  17. Charge-controlled nano-structuring in partially collapsed star-shaped macromolecules.

    PubMed

    Uhlík, Filip; Košovan, Peter; Zhulina, Ekaterina B; Borisov, Oleg V

    2016-05-25

    Hydrophobic polyelectrolytes exhibit intra-molecular nano-scale self-organization instead of macroscopic phase separation because of the interplay between short-range hydrophobic attraction and long-range electrostatic repulsion. We aim to unravel how the morphology of the intra-molecular nanostructures can be controlled through the topology of the macromolecule on one hand and by adjustable ionization on the other hand. Specifically, we focus on hydrophobic star-branched polyelectrolytes, composed of either strong or weak acidic monomers. While both collapse in a globule when uncharged, and expand to full stretching of arms at high ionization, they exhibit quite different intermediate scenarios. For the strong ones, we observe the formation of bundles of arms as the main structural motif, and for the weak ones the intramolecular micelle-like structure is found at the same overall charge of the macromolecule. Here intramolecular disproportionation leaves some arms in a collapsed virtually neutral core, while others are substantially ionized and stretched in the corona. PMID:27140226

  18. Continuum viscoplastic simulation of a granular column collapse on large slopes : μ(I) rheology and lateral wall effects

    NASA Astrophysics Data System (ADS)

    Martin, Nathan; Mangeney, Anne; Ionescu, Ioan; Bouchut, Francois

    2016-04-01

    The description of the mechanical behaviour of granular flows and in particular of the static/flowing transition is still an open and challenging issue with strong implication for hazard assessment [{Delannay et al.}, 2016]. In particular, {detailed quantitative} comparison between numerical models and observations is necessary to go further in this direction. We simulate here dry granular flows resulting from the collapse of granular columns on an inclined channel (from horizontal to 22^o) and compare precisely the results with laboratory experiments performed by {Mangeney et al.} [2010] and {Farin et al.} [2014]. Incompressibility is assumed despite the dilatancy observed in the experiments (up to 10%). The 2-D model is based on the so-called μ(I) rheology that induces a Drucker-Prager yield stress and a variable viscosity. A nonlinear Coulomb friction term, representing the friction on the lateral walls of the channel is added to the model. We demonstrate that this term is crucial to accurately reproduce granular collapses on slopes higher than 10o whereas it remains of little effect on horizontal slope [{Martin et al.}, 2016]. We show that the use of a variable or a constant viscosity does not change significantly the results provided that these viscosities are of the same order [{Ionescu et al.}, 2015]. However, only a fine tuning of the constant viscosity (η = 1 Pa.s) makes it possible to predict the slow propagation phase observed experimentally on large slopes. This was not possible when using, without tuning, the variable viscosity calculated from the μ(I) rheology with the parameters estimated from experiments. Finally, we discuss the well-posedness of the model with variable and constant viscosity based in particular on the development of shear bands observed in the numerical simulations. References Delannay, R., Valance, A., Mangeney, A., Roche, O., and Richard, P., 2016. Granular and particle-laden flows: from laboratory experiments to field

  19. Two-dimensional Core-collapse Supernova Simulations with the Isotropic Diffusion Source Approximation for Neutrino Transport

    NASA Astrophysics Data System (ADS)

    Pan, Kuo-Chuan; Liebendörfer, Matthias; Hempel, Matthias; Thielemann, Friedrich-Karl

    2016-01-01

    The neutrino mechanism of core-collapse supernova is investigated via non-relativistic, two-dimensional (2D), neutrino radiation-hydrodynamic simulations. For the transport of electron flavor neutrinos, we use the interaction rates defined by Bruenn and the isotropic diffusion source approximation (IDSA) scheme, which decomposes the transported particles into trapped-particle and streaming-particle components. Heavy neutrinos are described by a leakage scheme. Unlike the “ray-by-ray” approach in some other multidimensional supernova models, we use cylindrical coordinates and solve the trapped-particle component in multiple dimensions, improving the proto-neutron star resolution and the neutrino transport in angular and temporal directions. We provide an IDSA verification by performing one-dimensional (1D) and 2D simulations with 15 and 20 M⊙ progenitors from Woosley et al. and discuss the difference between our IDSA results and those existing in the literature. Additionally, we perform Newtonian 1D and 2D simulations from prebounce core collapse to several hundred milliseconds postbounce with 11, 15, 21, and 27 M⊙ progenitors from Woosley et al. with the HS(DD2) equation of state. General-relativistic effects are neglected. We obtain robust explosions with diagnostic energies Edia ≳ 0.1-0.5 B (1 B ≡ 1051 erg) for all considered 2D models within approximately 100-300 ms after bounce and find that explosions are mostly dominated by the neutrino-driven convection, although standing accretion shock instabilities are observed as well. We also find that the level of electron deleptonization during collapse dramatically affects the postbounce evolution, e.g., the neglect of neutrino-electron scattering during collapse will lead to a stronger explosion.

  20. I35W collapse, rebuild, and structural health monitoring - challenges associated with structural health monitoring of bridge systems

    SciTech Connect

    French, C. E.; Hedegaard, B.; Shield, C. K.; Stolarski, H.

    2011-06-23

    During evening rush hour traffic on August 1, 2007, the major interstate highway bridge carrying I35W over the Mississippi River in Minneapolis catastrophically failed, tragically taking the lives of thirteen people and injuring many more. The steel truss bridge, constructed in 1967, was undergoing deck reconstruction during the collapse, and was estimated to carry more than 140,000 vehicles daily. This tragedy generated great interest in employment of structural health monitoring systems. The I35W St. Anthony Falls Bridge, a post-tensioned concrete box bridge constructed to replace the collapsed steel truss bridge, contains over 500 instruments to monitor the structural behavior. Numerical models of the bridge are being developed and calibrated to the collected data obtained from truck load tests and thermal effects. The data obtained over the first few years of monitoring are being correlated with the calibrated models and used to develop the baseline bridge behavior. This information is being used to develop a system to monitor and interpret the long-term behavior of the bridge. This paper describes the instrumentation, preliminary results from the data and model calibration, the plan for developing long-term monitoring capabilities, and the challenges associated with structural health monitoring of bridge systems. In addition, opportunities and directions for future research required to fully realize the objectives of structural health monitoring are described.

  1. On the solution of elastic-plastic static and dynamic postbuckling collapse of general structure

    NASA Technical Reports Server (NTRS)

    Padovan, J.; Tovichakchaikul, S.

    1983-01-01

    Many investigations have considered structural collapse from strictly the transient point of view. While such an approach is ideally correct, certain difficulties have to be overcome in its implementation. The present investigation is concerned with the development of self-adaptive algorithms which make it possible to conduct the analysis of both static elastic and elastic-plastic postbuckling, as well as static loading to the onset of buckling followed by subsequent dynamic postbuckling. The approach employed to solve the static portion of loading is to extend the constrained Incremental Newton-Raphson (INR) algorithm by incorporating elastic-plastic constitutive characterizations. Large deformation moderate strain theory is adopted to establish the overall strategy. Attention is given to governing field equations, aspects of algorithmic development, and numerical experiments conducted to illustrate the efficiency and stability of the developed schemes.

  2. High Structural Stability of Textile Implants Prevents Pore Collapse and Preserves Effective Porosity at Strain

    PubMed Central

    Klinge, Uwe; Otto, Jens; Mühl, Thomas

    2015-01-01

    Reinforcement of tissues by use of textiles is encouraged by the reduced rate of recurrent tissue dehiscence but for the price of an inflammatory and fibrotic tissue reaction to the implant. The latter mainly is affected by the size of the pores, whereas only sufficiently large pores are effective in preventing a complete scar entrapment. Comparing two different sling implants (TVT and SIS), which are used for the treatment of urinary incontinence, we can demonstrate that the measurement of the effective porosity reveals considerable differences in the textile construction. Furthermore the changes of porosity after application of a tensile load can indicate a structural instability, favouring pore collapse at stress and questioning the use for purposes that are not “tension-free.” PMID:25973427

  3. Progenitor-dependent Explosion Dynamics in Self-consistent, Axisymmetric Simulations of Neutrino-driven Core-collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Summa, Alexander; Hanke, Florian; Janka, Hans-Thomas; Melson, Tobias; Marek, Andreas; Müller, Bernhard

    2016-07-01

    We present self-consistent, axisymmetric core-collapse supernova simulations performed with the Prometheus-Vertex code for 18 pre-supernova models in the range of 11–28 M ⊙, including progenitors recently investigated by other groups. All models develop explosions, but depending on the progenitor structure, they can be divided into two classes. With a steep density decline at the Si/Si–O interface, the arrival of this interface at the shock front leads to a sudden drop of the mass-accretion rate, triggering a rapid approach to explosion. With a more gradually decreasing accretion rate, it takes longer for the neutrino heating to overcome the accretion ram pressure and explosions set in later. Early explosions are facilitated by high mass-accretion rates after bounce and correspondingly high neutrino luminosities combined with a pronounced drop of the accretion rate and ram pressure at the Si/Si–O interface. Because of rapidly shrinking neutron star radii and receding shock fronts after the passage through their maxima, our models exhibit short advection timescales, which favor the efficient growth of the standing accretion-shock instability. The latter plays a supportive role at least for the initiation of the re-expansion of the stalled shock before runaway. Taking into account the effects of turbulent pressure in the gain layer, we derive a generalized condition for the critical neutrino luminosity that captures the explosion behavior of all models very well. We validate the robustness of our findings by testing the influence of stochasticity, numerical resolution, and approximations in some aspects of the microphysics.

  4. Sowing Black Hole Seeds: Forming Direct Collapse Black Holes With Realistic Lyman-Werner Radiation Fields in Cosmological Simulations

    NASA Astrophysics Data System (ADS)

    Holley-Bockelmann, Kelly; Dunn, Glenna; Bellovary, Jillian M.; Christensen, Charlotte

    2016-01-01

    Luminous quasars detected at redshifts z > 6 require that the first black holes form early and grow to ~109 solar masses within one Gyr. Our work uses cosmological simulations to study the formation and early growth of direct collapse black holes. In the pre-reionization epoch, molecular hydrogen (H2) causes gas to fragment and form Population III stars, but Lyman-Werner radiation can suppress H2 formation and allow gas to collapse directly into a massive black hole. The critical flux required to inhibit H2 formation, Jcrit, is hotly debated, largely due to the uncertainties in the source radiation spectrum, H2 self-shielding, and collisional dissociation rates. Here, we test the power of the direct collapse model in a non-uniform Lyman-Werner radiation field, using an updated version of the SPH+N-body tree code Gasoline with H2 non-equilibrium abundance tracking, H2 cooling, and a modern SPH implementation. We vary Jcrit from 30 to 104 J21 to study the effect on seed black holes, focusing on black hole formation as a function of environment, halo mass, metallicity, and proximity of the Lyman-Werner source. We discuss the constraints on massive black hole occupation fraction in the quasar epoch, and implications for reionization, high-redshift X-ray background radiation, and gravitational waves.

  5. Self-Consistent Simulations of Accretion-Induced Collapse of White Dwarfs

    NASA Astrophysics Data System (ADS)

    Kleiser, Io; Ott, Christian; Abdikamalov, Ernazar; O'Connor, Evan

    2013-04-01

    Accreting white dwarfs and white dwarf mergers are commonly thought to end in thermonuclear explosions that produce Type Ia supernovae (SNe Ia). However, there is an alternative outcome for these systems that has not been theoretically explored as thoroughly, nor has it been securely identified observationally. Some white dwarfs, rather than exploding, should undergo electron capture and collapse to neutron stars. This accretion-induced collapse (AIC) scenario is expected to be intrinsically rare compared to SNe Ia, and past studies indicate that the associated optical transient would be faint and short-lived, near the detection limits of current surveys. However, until now there have not been self-consistent numerical studies of AIC that examine the explosion dynamics, subsequent evolution, and all resulting observables. We use GR1D, a one-dimensional general-relativistic hydrodynamics code, to follow AIC through collapse, core bounce, explosion, and shock breakout and to present new results on its neutrino signature and nucleosynthetic yields. This study is preliminary to the goal of developing fully self-consistent three-dimensional models that will yield predictions for electromagnetic, neutrino, and gravitational-wave signals form AIC events.

  6. Self-Consistent Simulations of Accretion-Induced Collapse of White Dwarfs

    NASA Astrophysics Data System (ADS)

    Kleiser, Io; Ott, C. D.

    2013-01-01

    Accreting white dwarfs and white dwarf mergers are commonly thought to end in thermonuclear explosions that produce Type Ia supernovae (SNe Ia). However, there is an alternative outcome for these systems that has not been theoretically explored as thoroughly, nor has it been securely identified observationally. Some white dwarfs, rather than exploding, should undergo electron capture and collapse to neutron stars. This accretion-induced collapse (AIC) scenario is expected to be intrinsically rare compared to SNe Ia, and past studies indicate that the associated optical transient would be faint and short-lived, near the detection limits of current surveys. However, until now there have not been self-consistent numerical studies of AIC that examine the explosion dynamics, subsequent evolution, and all resulting observables. We use GR1D, a one-dimensional general-relativistic hydrodynamics code, to follow AIC through collapse, core bounce, explosion, and shock breakout and to present new results on its neutrino signature. This study is preliminary to the goal of developing fully self-consistent three-dimensional models that will yield predictions for electromagnetic, neutrino, and gravitational-wave signals form AIC events.

  7. Convection, nucleosynthesis, and core collapse

    NASA Technical Reports Server (NTRS)

    Bazan, Grant; Arnett, David

    1994-01-01

    We use a piecewise parabolic method hydrodynamics code (PROMETHEUS) to study convective burning in two dimensions in an oxygen shell prior to core collapse. Significant mixing beyond convective boundaries determined by mixing-length theory brings fuel (C-12) into the convective regon, causing hot spots of nuclear burning. Plumes dominate the velocity structure. Finite perturbations arise in a region in which O-16 will be explosively burned to Ni-56 when the star explodes; the resulting instabilities and mixing are likely to distribute Ni-56 throughout the supernova envelope. Inhomogeneities in Y(sub e) may be large enough to affect core collapse and will affect explosive nucleosynthesis. The nature of convective burning is dramatically different from that assumed in one-dimensional simulations; quantitative estimates of nucleosynthetic yields, core masses, and the approach to core collapse will be affected.

  8. An improved multipole approximation for self-gravity and its importance for core-collapse supernova simulations

    SciTech Connect

    Couch, Sean M.; Graziani, Carlo; Flocke, Norbert

    2013-12-01

    Self-gravity computation by multipole expansion is a common approach in problems such as core-collapse and Type Ia supernovae, where single large condensations of mass must be treated. The standard formulation of multipole self-gravity in arbitrary coordinate systems suffers from two significant sources of error, which we correct in the formulation presented in this article. The first source of error is due to the numerical approximation that effectively places grid cell mass at the central point of the cell, then computes the gravitational potential at that point, resulting in a convergence failure of the multipole expansion. We describe a new scheme that avoids this problem by computing gravitational potential at cell faces. The second source of error is due to sub-optimal choice of location for the expansion center, which results in angular power at high multipole l values in the gravitational field, requiring a high—and expensive—value of multipole cutoff l {sub max}. By introducing a global measure of angular power in the gravitational field, we show that the optimal coordinate for the expansion is the square-density-weighted mean location. We subject our new multipole self-gravity algorithm, implemented in the FLASH simulation framework, to two rigorous test problems: MacLaurin spheroids for which exact analytic solutions are known, and core-collapse supernovae. We show that key observables of the core-collapse simulations, particularly shock expansion, proto-neutron star motion, and momentum conservation, are extremely sensitive to the accuracy of the multipole gravity, and the accuracy of their computation is greatly improved by our reformulated solver.

  9. Voltage collapse in complex power grids

    PubMed Central

    Simpson-Porco, John W.; Dörfler, Florian; Bullo, Francesco

    2016-01-01

    A large-scale power grid's ability to transfer energy from producers to consumers is constrained by both the network structure and the nonlinear physics of power flow. Violations of these constraints have been observed to result in voltage collapse blackouts, where nodal voltages slowly decline before precipitously falling. However, methods to test for voltage collapse are dominantly simulation-based, offering little theoretical insight into how grid structure influences stability margins. For a simplified power flow model, here we derive a closed-form condition under which a power network is safe from voltage collapse. The condition combines the complex structure of the network with the reactive power demands of loads to produce a node-by-node measure of grid stress, a prediction of the largest nodal voltage deviation, and an estimate of the distance to collapse. We extensively test our predictions on large-scale systems, highlighting how our condition can be leveraged to increase grid stability margins. PMID:26887284

  10. Collapsed Lung

    MedlinePlus

    A collapsed lung happens when air enters the pleural space, the area between the lung and the chest wall. If it is a total collapse, it is called pneumothorax. If only part of the lung is affected, ...

  11. From forced collapse to H ii region expansion in Mon R2: Envelope density structure and age determination with Herschel⋆

    NASA Astrophysics Data System (ADS)

    Didelon, P.; Motte, F.; Tremblin, P.; Hill, T.; Hony, S.; Hennemann, M.; Hennebelle, P.; Anderson, L. D.; Galliano, F.; Schneider, N.; Rayner, T.; Rygl, K.; Louvet, F.; Zavagno, A.; Könyves, V.; Sauvage, M.; André, Ph.; Bontemps, S.; Peretto, N.; Griffin, M.; González, M.; Lebouteiller, V.; Arzoumanian, D.; Bernard, J.-P.; Benedettini, M.; Di Francesco, J.; Men'shchikov, A.; Minier, V.; Nguyên Luong, Q.; Palmeirim, P.; Pezzuto, S.; Rivera-Ingraham, A.; Russeil, D.; Ward-Thompson, D.; White, G. J.

    2015-12-01

    Context. The surroundings of H ii regions can have a profound influence on their development, morphology, and evolution. This paper explores the effect of the environment on H ii regions in the MonR2 molecular cloud. Aims: We aim to investigate the density structure of envelopes surrounding H ii regions and to determine their collapse and ionisation expansion ages. The Mon R2 molecular cloud is an ideal target since it hosts an H ii region association, which has been imaged by the Herschel PACS and SPIRE cameras as part of the HOBYS key programme. Methods: Column density and temperature images derived from Herschel data were used together to model the structure of H ii bubbles and their surrounding envelopes. The resulting observational constraints were used to follow the development of the Mon R2 ionised regions with analytical calculations and numerical simulations. Results: The four hot bubbles associated with H ii regions are surrounded by dense, cold, and neutral gas envelopes, which are partly embedded in filaments. The envelope's radial density profiles are reminiscent of those of low-mass protostellar envelopes. The inner parts of envelopes of all four H ii regions could be free-falling because they display shallow density profiles: ρ(r) ∝ r- q with q ≤slant 1.5. As for their outer parts, the two compact H ii regions show a ρ(r) ∝ r-2 profile, which is typical of the equilibrium structure of a singular isothermal sphere. In contrast, the central UCH ii region shows a steeper outer profile, ρ(r) ∝ r-2.5, that could be interpreted as material being forced to collapse, where an external agent overwhelms the internal pressure support. Conclusions: The size of the heated bubbles, the spectral type of the irradiating stars, and the mean initial neutral gas density are used to estimate the ionisation expansion time, texp ~ 0.1 Myr, for the dense UCH ii and compact H ii regions and ~ 0.35 Myr for the extended H ii region. Numerical simulations with and

  12. From orogenic collapse to rifting ; structures of the South China Sea

    NASA Astrophysics Data System (ADS)

    Pubellier, M.; Chan, L. S.; Chamot Rooke, N.; Shen, W.; Ringenbach, J. C.

    2009-04-01

    The opening of the South China Sea has been a matter of debate for many years because of its internal structure, the differences between the conjugate margins and the variations of rifting and spreading directions. Although it is considered as being a back-arc basin, it is not sitting directly above a subduction zone, and the rifting process lasted for an unusually long duration. Among the specific characteristics is the early phase of rifting which took place early in place of the former Yanshanian andean-type mountain range. This stage is marked by narrow basins filled with deformed conglomerate, and initiated around 70My ago within a framework where the oblique subduction marked by igneous activity and ductile wrench faults, was replaced by orogenic collapse. The rifting stage is marked by Eocene syntectonic normal faults and occasional volcanics centres and has proceeded from NW-SE to NS extension. The NW stretching created at least two aborted basins which remained at rift stage. Extension was followed by spreading from 33 to ~20 Ma in the South China Sea. The ocean floor spreading also changed direction to NW-SE with a propagator inside the Sunda shelf from 20 to 17My ago. However the propagator opening implies that deformation is also taken by rifting around a southern wedge which in turn created strain inside the thinned crust. Another extension parallel to the margin is also observed althought the spreading was in process. The southward motion of the southern conjugate margin was later accommodated by its subduction beneath the NW Borneo wedge until completion of the Proto South China Sea subduction. Variations of rifting spreading through time and variations of structural styles are discussed in terms of boundary forces acting to the SE.

  13. Constraining the supersaturation density equation of state from core-collapse supernova simulations?. Excluded volume extension of the baryons

    NASA Astrophysics Data System (ADS)

    Fischer, Tobias

    2016-03-01

    In this article the role of the supersaturation density equation of state (EOS) is explored in simulations of failed core-collapse supernova explosions. Therefore the nuclear EOS is extended via a one-parameter excluded-volume description for baryons, taking into account their finite and increasing volume with increasing density in excess of saturation density. Parameters are selected such that the resulting supernova EOS represent extreme cases, with high pressure variations at supersaturation density which feature extreme stiff and soft EOS variants of the reference case, i.e. without excluded-volume corrections. Unlike in the interior of neutron stars with central densities in excess of several times saturation density, central densities of core-collapse supernovae reach only slightly above saturation density. Hence, the impact of the supersaturation density EOS on the supernova dynamics as well as the neutrino signal is found to be negligible. It is mainly determined from the low- and intermediate-density domain, which is left unmodified within this generalized excluded volume approach.

  14. Simulated effects of salt-mine collapse on ground-water flow and land subsidence in a glacial aquifer system, Livingston County, New York

    USGS Publications Warehouse

    Yager, Richard M.; Miller, Todd S.; Kappel, William M.

    2001-01-01

    This report describes the hydrogeology of the Genesee Valley and the effects of the ceiling collapse of the Retsof salt mine on the aquifer system. It discusses the origin and character of glacial sediments; the occurrence, flow directions, and chemical quality of water in the aquifer system before the collapse; the effects of the collapse on the aquifer system in terms of land subsidence, water-level declines, changes in water quality, and exsolution of natural gas, and design and calibration of the ground-water-flow model. It also presents results of flow-model simulations, including an estimated ground-water budget and graphs showing the simulated water-level recovery; and results of subsidence simulations, including maps and graphs showing the extent of land subsidence.

  15. Volcano electrical tomography unveils edifice collapse hazard linked to hydrothermal system structure and dynamics

    NASA Astrophysics Data System (ADS)

    Rosas-Carbajal, Marina; Komorowski, Jean-Christophe; Nicollin, Florence; Gibert, Dominique

    2016-07-01

    Catastrophic collapses of the flanks of stratovolcanoes constitute a major hazard threatening numerous lives in many countries. Although many such collapses occurred following the ascent of magma to the surface, many are not associated with magmatic reawakening but are triggered by a combination of forcing agents such as pore-fluid pressurization and/or mechanical weakening of the volcanic edifice often located above a low-strength detachment plane. The volume of altered rock available for collapse, the dynamics of the hydrothermal fluid reservoir and the geometry of incipient collapse failure planes are key parameters for edifice stability analysis and modelling that remain essentially hidden to current volcano monitoring techniques. Here we derive a high-resolution, three-dimensional electrical conductivity model of the La Soufrière de Guadeloupe volcano from extensive electrical tomography data. We identify several highly conductive regions in the lava dome that are associated to fluid saturated host-rock and preferential flow of highly acid hot fluids within the dome. We interpret this model together with the existing wealth of geological and geochemical data on the volcano to demonstrate the influence of the hydrothermal system dynamics on the hazards associated to collapse-prone altered volcanic edifices.

  16. Volcano electrical tomography unveils edifice collapse hazard linked to hydrothermal system structure and dynamics

    PubMed Central

    Rosas-Carbajal, Marina; Komorowski, Jean-Christophe; Nicollin, Florence; Gibert, Dominique

    2016-01-01

    Catastrophic collapses of the flanks of stratovolcanoes constitute a major hazard threatening numerous lives in many countries. Although many such collapses occurred following the ascent of magma to the surface, many are not associated with magmatic reawakening but are triggered by a combination of forcing agents such as pore-fluid pressurization and/or mechanical weakening of the volcanic edifice often located above a low-strength detachment plane. The volume of altered rock available for collapse, the dynamics of the hydrothermal fluid reservoir and the geometry of incipient collapse failure planes are key parameters for edifice stability analysis and modelling that remain essentially hidden to current volcano monitoring techniques. Here we derive a high-resolution, three-dimensional electrical conductivity model of the La Soufrière de Guadeloupe volcano from extensive electrical tomography data. We identify several highly conductive regions in the lava dome that are associated to fluid saturated host-rock and preferential flow of highly acid hot fluids within the dome. We interpret this model together with the existing wealth of geological and geochemical data on the volcano to demonstrate the influence of the hydrothermal system dynamics on the hazards associated to collapse-prone altered volcanic edifices. PMID:27457494

  17. Volcano electrical tomography unveils edifice collapse hazard linked to hydrothermal system structure and dynamics.

    PubMed

    Rosas-Carbajal, Marina; Komorowski, Jean-Christophe; Nicollin, Florence; Gibert, Dominique

    2016-01-01

    Catastrophic collapses of the flanks of stratovolcanoes constitute a major hazard threatening numerous lives in many countries. Although many such collapses occurred following the ascent of magma to the surface, many are not associated with magmatic reawakening but are triggered by a combination of forcing agents such as pore-fluid pressurization and/or mechanical weakening of the volcanic edifice often located above a low-strength detachment plane. The volume of altered rock available for collapse, the dynamics of the hydrothermal fluid reservoir and the geometry of incipient collapse failure planes are key parameters for edifice stability analysis and modelling that remain essentially hidden to current volcano monitoring techniques. Here we derive a high-resolution, three-dimensional electrical conductivity model of the La Soufrière de Guadeloupe volcano from extensive electrical tomography data. We identify several highly conductive regions in the lava dome that are associated to fluid saturated host-rock and preferential flow of highly acid hot fluids within the dome. We interpret this model together with the existing wealth of geological and geochemical data on the volcano to demonstrate the influence of the hydrothermal system dynamics on the hazards associated to collapse-prone altered volcanic edifices. PMID:27457494

  18. The effect of dark matter resolution on the collapse of baryons in high-redshift numerical simulations

    NASA Astrophysics Data System (ADS)

    Regan, John A.; Johansson, Peter H.; Wise, John H.

    2015-06-01

    We examine the impact of dark matter particle resolution on the formation of a baryonic core in high-resolution adaptive mesh refinement simulations. We test the effect that both particle smoothing and particle splitting have on the hydrodynamic properties of a collapsing halo at high redshift (z > 20). Furthermore, we vary the background field intensity, with energy below the Lyman limit (<13.6 eV), as may be relevant for the case of metal-free star formation and supermassive black hole seed formation. We find that using particle splitting methods greatly increases our particle resolution without introducing any numerical noise and allows us to achieve converged results over a wide range of external background fields. Additionally, we find that for lower values of the background field a lower dark matter particle mass is required. We define the radius of the core as the point at which the enclosed baryonic mass dominates over the enclosed dark matter mass. For our simulations this results in Rcore ˜ 5 pc. We find that in order to produce converged results which are not affected by dark matter particles requires that the relationship Mcore/MDM > 100.0 be satisfied, where Mcore is the enclosed baryon mass within the core and MDM is the minimum dark matter particle mass. This ratio should provide a very useful starting point for conducting convergence tests before any production run simulations. We find that dark matter particle smoothing is a useful adjunct to already highly resolved simulations.

  19. Three dimensional core-collapse supernova simulated using a 15 M progenitor

    SciTech Connect

    Lentz, Eric J.; Bruenn, Stephen W.; Hix, W. Raphael; Mezzacappa, Anthony; Messer, O. E. Bronson; Endeve, Eirik; Blondin, John M.; Harris, J. Austin; Marronetti, Pedro; Yakunin, Konstantin N.

    2015-07-10

    We have performed ab initio neutrino radiation hydrodynamics simulations in three and two spatial dimensions (3D and 2D) of core-collapse supernovae from the same 15 M⊙ progenitor through 440 ms after core bounce. Both 3D and 2D models achieve explosions; however, the onset of explosion (shock revival) is delayed by ~100 ms in 3D relative to the 2D counterpart and the growth of the diagnostic explosion energy is slower. This is consistent with previously reported 3D simulations utilizing iron-core progenitors with dense mantles. In the ~100 ms before the onset of explosion, diagnostics of neutrino heating and turbulent kinetic energy favor earlier explosion in 2D. During the delay, the angular scale of convective plumes reaching the shock surface grows and explosion in 3D is ultimately lead by a single, large-angle plume, giving the expanding shock a directional orientation not dissimilar from those imposed by axial symmetry in 2D simulations. Finally, we posit that shock revival and explosion in the 3D simulation may be delayed until sufficiently large plumes form, whereas such plumes form more rapidly in 2D, permitting earlier explosions.

  20. ON THE IMPACT OF THREE DIMENSIONS IN SIMULATIONS OF NEUTRINO-DRIVEN CORE-COLLAPSE SUPERNOVA EXPLOSIONS

    SciTech Connect

    Couch, Sean M.

    2013-09-20

    We present one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) hydrodynamical simulations of core-collapse supernovae including a parameterized neutrino heating and cooling scheme in order to investigate the critical core neutrino luminosity (L{sub crit}) required for explosion. In contrast to some previous works, we find that 3D simulations explode later than 2D simulations, and that L{sub crit} at fixed mass accretion rate is somewhat higher in three dimensions than in two dimensions. We find, however, that in two dimensions L{sub crit} increases as the numerical resolution of the simulation increases. In contrast to some previous works, we argue that the average entropy of the gain region is in fact not a good indicator of explosion but is rather a reflection of the greater mass in the gain region in two dimensions. We compare our simulations to semi-analytic explosion criteria and examine the nature of the convective motions in two dimensions and three dimensions. We discuss the balance between neutrino-driven buoyancy and drag forces. In particular, we show that the drag force will be proportional to a buoyant plume's surface area while the buoyant force is proportional to a plume's volume and, therefore, plumes with greater volume-to-surface-area ratios will rise more quickly. We show that buoyant plumes in two dimensions are inherently larger, with greater volume-to-surface-area ratios, than plumes in three dimensions. In the scenario that the supernova shock expansion is dominated by neutrino-driven buoyancy, this balance between buoyancy and drag forces may explain why 3D simulations explode later than 2D simulations and why L{sub crit} increases with resolution. Finally, we provide a comparison of our results with other calculations in the literature.

  1. Oxygen limitations on marine animal distributions and the collapse of epibenthic community structure during shoaling hypoxia.

    PubMed

    Chu, Jackson W F; Tunnicliffe, Verena

    2015-08-01

    Deoxygenation in the global ocean is predicted to induce ecosystem-wide changes. Analysis of multidecadal oxygen time-series projects the northeast Pacific to be a current and future hot spot of oxygen loss. However, the response of marine communities to deoxygenation is unresolved due to the lack of applicable data on component species. We repeated the same benthic transect (n = 10, between 45 and 190 m depths) over 8 years in a seasonally hypoxic fjord using remotely operated vehicles equipped with oxygen sensors to establish the lower oxygen levels at which 26 common epibenthic species can occur in the wild. By timing our surveys to shoaling hypoxia events, we show that fish and crustacean populations persist even in severe hypoxia (<0.5 mL L(-1) ) with no mortality effects but that migration of mobile species occurs. Consequently, the immediate response to hypoxia expansion is the collapse of community structure; normally partitioned distributions of resident species coalesced and localized densities increased. After oxygen renewal and formation of steep oxygen gradients, former ranges re-established. High frequency data from the nearby VENUS subsea observatory show the average oxygen level at our site declined by ~0.05 mL L(-1) year(-1) over the period of our study. The increased annual duration of the hypoxic (<1.4 mL L(-1) ) and severely hypoxic periods appears to reflect the oxygen dynamics demonstrated in offshore source waters and the adjacent Strait of Georgia. Should the current trajectory of oxygen loss continue, community homogenization and reduced suitable habitat may become the dominant state of epibenthic systems in the northeast Pacific. In situ oxygen occurrences were not congruent with lethal and sublethal hypoxia thresholds calculated across the literature for major taxonomic groups indicating that research biases toward laboratory studies on Atlantic species are not globally applicable. Region-specific hypoxia thresholds are necessary to

  2. Structure and collapse of a surface-grown strong polyelectrolyte brush on sapphire.

    PubMed

    Dunlop, Iain E; Thomas, Robert K; Titmus, Simon; Osborne, Victoria; Edmondson, Steve; Huck, Wilhelm T S; Klein, Jacob

    2012-02-14

    We have used neutron reflectometry to investigate the behavior of a strong polyelectrolyte brush on a sapphire substrate, grown by atom-transfer radical polymerization (ATRP) from a silane-anchored initiator layer. The initiator layer was deposited from vapor, following treatment of the substrate with an Ar/H(2)O plasma to improve surface reactivity. The deposition process was characterized using X-ray reflectometry, indicating the formation of a complete, cross-linked layer. The brush was grown from the monomer [2-(methacryloyloxy)ethyl]trimethylammonium chloride (METAC), which carries a strong positive charge. The neutron reflectivity profile of the swollen brush in pure water (D(2)O) showed that it adopted a two-region structure, consisting of a dense surface region ∼100 Å thick, in combination with a diffuse brush region extending to around 1000 Å from the surface. The existence of the diffuse brush region may be attributed to electrostatic repulsion from the positively charged surface region, while the surface region itself most probably forms due to polyelectrolyte adsorption to the hydrophobic initiator layer. The importance of electrostatic interactions in maintaining the brush region is confirmed by measurements at high (1 M) added 1:1 electrolyte, which show a substantial transfer of polymer from the brush to the surface region, together with a strong reduction in brush height. On addition of 10(-4) M oppositely charged surfactant (sodium dodecyl sulfate), the brush undergoes a dramatic collapse, forming a single dense layer about 200 Å in thickness, which may be attributed to the neutralization of the monomers by adsorbed dodecyl sulfate ions in combination with hydrophobic interactions between these dodecyl chains. Subsequent increases in surfactant concentration result in slow increases in brush height, which may be caused by stiffening of the polyelectrolyte chains due to further dodecyl sulfate adsorption. PMID:22292571

  3. Isotropic sources and attenuation structure: Nuclear tests, mine collapses, and Q

    NASA Astrophysics Data System (ADS)

    Ford, Sean Ricardo

    This dissertation investigates two different, but related, topics: isotropic sources and attenuation structure. The first section reports the analysis of explosions, earthquakes, and collapses in the western US using a regional time-domain full waveform inversion for the complete moment tensor. The events separate into specific populations according to their deviation from a pure double-couple and ratio of isotropic to deviatoric energy. We find that in the band of interest (0.02-0.10 Hz) the source-type is insensitive to small velocity model perturbations and several kilometers of incorrect depth when the signal-to-noise ratio (SNR) is greater than 5. However, error in the isotropic moment grows from 50% to 200% as the source depth decreases from 1 km to 200 m. We add an analysis of the Crandall Canyon Mine collapse that occurred on 6 August 2007 in Utah to our dataset. The results show that most of the recorded seismic wave energy is consistent with an underground collapse in the mine. We contrast the waveforms and moment tensor results of the Crandall Canyon Mine seismic event to a similar sized tectonic earthquake about 200 km away near Tremonton, Utah, that occurred on September 1, 2007 demonstrating the low frequency regional waveforms carry sufficient information to distinguish the source-type. Finally, confidence in the regional full moment tensor inversion solution is described via the introduction of the network sensitivity solution (NSS), which takes into account the unique station distribution, frequency band, and signal-to-noise ratio of a given event scenario. The method is tested for the well-recorded nuclear test, JUNCTION, at the Nevada Test Site and the October 2006 North Korea test, where the station coverage is poor and the event magnitude is small. Both events contain large isotropic components that are 60% of the total moment, though the NTS event is much better constrained than the North Korea test. The network solutions illustrate the effect

  4. Isotropic sources and attenuation structure: Nuclear tests, mine collapses, and Q

    NASA Astrophysics Data System (ADS)

    Ford, Sean Ricardo

    This dissertation investigates two different, but related, topics: isotropic sources and attenuation structure. The first section reports the analysis of explosions, earthquakes, and collapses in the western US using a regional time-domain full waveform inversion for the complete moment tensor. The events separate into specific populations according to their deviation from a pure double-couple and ratio of isotropic to deviatoric energy. We find that in the band of interest (0.02-0.10 Hz) the source-type is insensitive to small velocity model perturbations and several kilometers of incorrect depth when the signal-to-noise ratio (SNR) is greater than 5. However, error in the isotropic moment grows from 50% to 200% as the source depth decreases from 1 km to 200 m. We add an analysis of the Crandall Canyon Mine collapse that occurred on 6 August 2007 in Utah to our dataset. The results show that most of the recorded seismic wave energy is consistent with an underground collapse in the mine. We contrast the waveforms and moment tensor results of the Crandall Canyon Mine seismic event to a similar sized tectonic earthquake about 200 km away near Tremonton, Utah, that occurred on September 1, 2007 demonstrating the low frequency regional waveforms carry sufficient information to distinguish the source-type. Finally, confidence in the regional full moment tensor inversion solution is described via the introduction of the network sensitivity solution (NSS), which takes into account the unique station distribution, frequency band, and signal-to-noise ratio of a given event scenario. The method is tested for the well-recorded nuclear test, JUNCTION, at the Nevada Test Site and the October 2006 North Korea test, where the station coverage is poor and the event magnitude is small. Both events contain large isotropic components that are 60% of the total moment, though the NTS event is much better constrained than the North Korea test. The network solutions illustrate the effect

  5. Microsecond Rearrangements of Hydrophobic Clusters in an Initially Collapsed Globule Prime Structure Formation during the Folding of a Small Protein.

    PubMed

    Goluguri, Rama Reddy; Udgaonkar, Jayant B

    2016-07-31

    Determining how polypeptide chain collapse initiates structure formation during protein folding is a long standing goal. It has been challenging to characterize experimentally the dynamics of the polypeptide chain, which lead to the formation of a compact kinetic molten globule (MG) in about a millisecond. In this study, the sub-millisecond events that occur early during the folding of monellin from the guanidine hydrochloride-unfolded state have been characterized using multiple fluorescence and fluorescence resonance energy transfer probes. The kinetic MG is shown to form in a noncooperative manner from the unfolded (U) state as a result of at least three different processes happening during the first millisecond of folding. Initial chain compaction completes within the first 37μs, and further compaction occurs only after structure formation commences at a few milliseconds of folding. The transient nonnative and native-like hydrophobic clusters with side chains of certain residues buried form during the initial chain collapse and the nonnative clusters quickly disassemble. Subsequently, partial chain desolvation occurs, leading to the formation of a kinetic MG. The initial chain compaction and subsequent chain rearrangement appear to be barrierless processes. The two structural rearrangements within the collapsed globule appear to prime the protein for the actual folding transition. PMID:27370109

  6. Results from Core-collapse Simulations with Multi-dimensional, Multi-angle Neutrino Transport

    NASA Astrophysics Data System (ADS)

    Brandt, Timothy D.; Burrows, Adam; Ott, Christian D.; Livne, Eli

    2011-02-01

    We present new results from the only two-dimensional multi-group, multi-angle calculations of core-collapse supernova evolution. The first set of results from these calculations was published in 2008 by Ott et al. We have followed a nonrotating and a rapidly rotating 20 M sun model for ~400 ms after bounce. We show that the radiation fields vary much less with angle than the matter quantities in the region of net neutrino heating. This happens because most neutrinos are emitted from inner radiative regions and because the specific intensity is an integral over sources from many angles at depth. The latter effect can only be captured by multi-angle transport. We then compute the phase relationship between dipolar oscillations in the shock radius and in matter and radiation quantities throughout the post-shock region. We demonstrate a connection between variations in neutrino flux and the hydrodynamical shock oscillations, and use a variant of the Rayleigh test to estimate the detectability of these neutrino fluctuations in IceCube and Super-Kamiokande. Neglecting flavor oscillations, fluctuations in our nonrotating model would be detectable to ~10 kpc in IceCube, and a detailed power spectrum could be measured out to ~5 kpc. These distances are considerably lower in our rapidly rotating model or with significant flavor oscillations. Finally, we measure the impact of rapid rotation on detectable neutrino signals. Our rapidly rotating model has strong, species-dependent asymmetries in both its peak neutrino flux and its light curves. The peak flux and decline rate show pole-equator ratios of up to ~3 and ~2, respectively.

  7. On the interaction between shear dusty currents and buildings in vertical collapse: Theoretical aspects, experimental observations, and 3D numerical simulation

    NASA Astrophysics Data System (ADS)

    Doronzo, Domenico M.; de Tullio, Marco D.; Pascazio, Giuseppe; Dellino, Pierfrancesco; Liu, Guilin

    2015-09-01

    We investigate the behavior of vertical building collapses that, at impact on the ground, can generate shear dusty currents. These currents macroscopically resemble natural currents like dust storms and pyroclastic density currents, which may heavily interact with the surroundings while propagating. In particular, shear dusty currents are generated because of building collapse after pulverization, whereas pyroclastic density currents can be generated because of eruptive column or volcano collapse after fragmentation. Pyroclastic density currents can move for kilometers, and then load the surroundings by flow dynamic pressure; a similar dynamical behavior occurs in shear dusty currents that load buildings. We employed 3D engineering fluid dynamics to simulate the generation (by vertical collapse), and the propagation and building interaction of shear dusty currents. We used an Eulerian-Lagrangian multiphase approach to model the gas-particle flow, and an immersed boundary technique to mesh the domain, in order to account for sedimentary processes and complex 3D urban geometry in the computation. Results show that the local dynamic pressure of the shear current is amplified up to a factor ~ 10 because of flow-building interaction. Also, the surroundings consisting of multiple buildings and empty spaces make walls and streets as surfaces of particle accumulation, which from the collapse zone on can get thinner by exponential law. These results can help better assessing the intricate interaction between pyroclastic density currents and urban surroundings, as well as better link fragmentation, collapse and density current to each other.

  8. Catastrophic vs gradual collapse of thin-walled nanocrystalline Ni hollow cylinders as building blocks of microlattice structures.

    PubMed

    Lian, Jie; Jang, Dongchan; Valdevit, Lorenzo; Schaedler, Tobias A; Jacobsen, Alan J; B Carter, William; Greer, Julia R

    2011-10-12

    Lightweight yet stiff and strong lattice structures are attractive for various engineering applications, such as cores of sandwich shells and components designed for impact mitigation. Recent breakthroughs in manufacturing enable efficient fabrication of hierarchically architected microlattices, with dimensional control spanning seven orders of magnitude in length scale. These materials have the potential to exploit desirable nanoscale-size effects in a macroscopic structure, as long as their mechanical behavior at each appropriate scale - nano, micro, and macro levels - is properly understood. In this letter, we report the nanomechanical response of individual microlattice members. We show that hollow nanocrystalline Ni cylinders differing only in wall thicknesses, 500 and 150 nm, exhibit strikingly different collapse modes: the 500 nm sample collapses in a brittle manner, via a single strain burst, while the 150 nm sample shows a gradual collapse, via a series of small and discrete strain bursts. Further, compressive strength in 150 nm sample is 99.2% lower than predicted by shell buckling theory, likely due to localized buckling and fracture events observed during in situ compression experiments. We attribute this difference to the size-induced transition in deformation behavior, unique to nanoscale, and discuss it in the framework of "size effects" in crystalline strength. PMID:21851060

  9. Collapse of an HIV-1 protease (1DIFA-dimer) in an effective solvent medium by a Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Pandey, Ras; Farmer, Barry

    2010-03-01

    HIV-1 protease (1DIFA) consists of two polypeptide chains, each monomer with 99 residues where two aspartic acid residues (Asp^25) form the active catalytic site. The conformation and dynamics of the protein chain (with 198 residues) are investigated on a cubic lattice where empty sites represent effective solvent. Specificities of residues are captured via an interaction matrix (residue-residue, residue-solvent) of the Lennard-Jones potential. We examine global properties such as the variation of the root mean square displacement and radius of gyration with the time steps for a range of solvent interaction strength. Local quantities include energy and mobility profiles of residues to understand the active segments (useful in proteolysis). The hydrophobic residues possess higher energy and lower mobility while the electrostatic and polar residues are more mobile despite their lower interaction energy. We find that the radius of gyration of the protein collapses (globular structure) in a narrow range of solvent interaction strength.

  10. A new equation of state with light nuclei and their weak interactions in core-collapse supernova simulations

    SciTech Connect

    Furusawa, Shun; Yamada, Shoichi; Nagakura, Hiroki; Sumiyoshi, Kohsuke; Suzuki, Hideyuki

    2014-05-02

    We perform numerical experiments to investigate the influence of inelastic neutrino reactions with light nuclei on the standing accretion shock instability. The time evolutions of shock waves are calculated with a simple light-bulb approximation for the neutrino transport and a multi-nuclei equation of state. The neutrino absorptions and inelastic interactions with deuterons, tritons, helions and alpha particles are taken into account in the hydrodynamical simulations in addition to the ordinary charged-current interactions with nucleons. Axial symmetry is assumed but no equatorial symmetry is imposed. We show that the heating rates of deuterons reach as high as ∼ 10% of those of nucleons around the bottom of the gain region. On the other hands, alpha particles heat the matter near the shock wave, which is important when the shock wave expands and density and temperature of matter become low. It is also found that the models with heating by light nuclei have different evolutions from those without it in non-linear evolution phase. The matter in the gain region has various densities and temperatures and there appear regions that are locally rich in deuterons and alpha particles. These results indicate that the inelastic reactions of light nuclei, especially deuterons, should be incorporated in the simulations of core-collapse supernovae.

  11. A new equation of state with light nuclei and their weak interactions in core-collapse supernova simulations

    NASA Astrophysics Data System (ADS)

    Furusawa, Shun; Nagakura, Hiroki; Sumiyoshi, Kohsuke; Yamada, Shoichi; Suzuki, Hideyuki

    2014-05-01

    We perform numerical experiments to investigate the influence of inelastic neutrino reactions with light nuclei on the standing accretion shock instability. The time evolutions of shock waves are calculated with a simple light-bulb approximation for the neutrino transport and a multi-nuclei equation of state. The neutrino absorptions and inelastic interactions with deuterons, tritons, helions and alpha particles are taken into account in the hydrodynamical simulations in addition to the ordinary charged-current interactions with nucleons. Axial symmetry is assumed but no equatorial symmetry is imposed. We show that the heating rates of deuterons reach as high as ˜ 10% of those of nucleons around the bottom of the gain region. On the other hands, alpha particles heat the matter near the shock wave, which is important when the shock wave expands and density and temperature of matter become low. It is also found that the models with heating by light nuclei have different evolutions from those without it in non-linear evolution phase. The matter in the gain region has various densities and temperatures and there appear regions that are locally rich in deuterons and alpha particles. These results indicate that the inelastic reactions of light nuclei, especially deuterons, should be incorporated in the simulations of core-collapse supernovae.

  12. Shallow seismic imaging of flank collapse structures in oceanic island volcanoes: Application to the Western Canary Islands

    NASA Astrophysics Data System (ADS)

    Sanchez, L.; González, P.; Tiampo, K. F.

    2013-12-01

    Volcanic flank collapse counts among the many hazards associated with volcanic activity. This type of event involves the mobilization of large volumes, producing debris avalanches. It affects mostly oceanic island volcanoes, involving the potential for tsunami occurrence. Geophysical imaging can illuminate subvolcanic features such as volcano-tectonic structures, magmatic plumbing systems or differences in rock type. The most commonly used geophysical methods are gravity, electromagnetics and seismics. In particular, seismic measurements quantify anomalies in seismic waves propagation velocities and can be used to obtain information on the subsurface arrangement of different materials. In the Western Canary Islands, the Cumbre Vieja volcano in La Palma (Canary Islands) has been proposed to be near the collapse stage. Previous geophysical studies that have been carried out on the flank of the volcano comprise gravity and electromagnetic methods. These types of surveys gather information on the deep structures of the volcano (1-2 km). In this project, we complement previous studies by using seismic methods to investigate the near-surface seismic structure of the Cumbre Vieja fault system (La Palma Island) and the structure of the well-developed San Andres fault system (El Hierro Island). We aim to compare the Cumbre Vieja and San Andres fault systems to infer the degree of maturity of collapse structures. We carried out reflection and refraction seismic surveys in order to image approximately the first 10 meters of the subsurface. We used 24 low frequency (4,5 Hz) geophones as receivers and a sledge hammer as the seismic source. The survey lines were located across visible parts of the fault systems at the Cumbre Vieja volcano and the San Andres fault in El Hierro. Here, we present the survey setup and results from the preliminary analysis of the data.

  13. Structural transformation in the collapse transition of the single flexible homopolymer model

    NASA Astrophysics Data System (ADS)

    Hu, Wenbing

    1998-09-01

    The structural transformation in the coil-globule transition of a single flexible lattice chain has been investigated using dynamic Monte Carlo simulations. The results based upon ensemble averaging illustrated that for the homopolymers with limited chain length, an intermediate state with a dense-core and molten-shell structure reversibly occurs in the transition region. It was attributed to a special microphase separation behavior in an isolated coil, performing with densifying the dense core and contracting the thin shell. The continuous appearance of the size transition and its tendency to discontinuity at the theta temperature with the chain length approaching infinity were illustrated by the coexistence curves of the monomers with limited chain length. A possible explanation and its implications to the general mechanism of protein folding are also discussed.

  14. The Campi Flegrei Deep Drilling Project: understanding the structure and mechanisms of large collapse calderas

    NASA Astrophysics Data System (ADS)

    de Natale, Giuseppe; Troise, Claudia

    2010-05-01

    Large calderas are the most dangerous volcanoes on the Earth. They are produced by collapse during explosive super-eruptions, which are capable of triggering global catastrophes comparable to large meteorite impacts. The mechanisms of unrest and eruption at calderas are at a large extent unknown and, as demonstrated by volcanological research in the last decades, they may be very different from those characterizing more commonly studied stratovolcanoes. Campi Flegrei caldera (Italy) represents an ideal natural laboratory to fully understand mechanisms of caldera dynamics and to develop techniques for eruption forecast and effective risk mitigation. It is an active volcanic area marked by a quasi-circular caldera depression, formed by huge ignimbritic eruptions. The caldera has recently experienced intense deformation, originating uplift phenomena of more than 3.5 m in 15 years, with maximum rates of 1 m/year in the period 1982-1984, which caused the temporary evacuation of 30,000 people from the centre of Pozzuoli and exposed more than 500,000 to impending eruption risk (several millions in case of an ignimbritic eruption). This area will be the target of a leading International project, the ‘Campi Flegrei Deep Drilling Project', sponsored by ICDP, aimed to study in detail, by a crustal deviated drilling reaching the depth of about 4 km, the deep structure of the caldera. The role of deep drilling at this area is crucial. It could give a fundamental, precise insight into the substructure, the geometry and character of the geothermal systems and their role in the unrest episodes, as well as to explain magma chemistry and the mechanisms of magma-water interaction. One of the main goal will be giving a precise determination of the magma depth, based on the extrapolation of the geothermal gradient in purely conductive conditions, occurring below the maximum aquifer depth. The choice of Campi Flegrei as a target for the deep study of large calderas is justified by the

  15. The Development of Explosions in Axisymmetric Ab Initio Core-collapse Supernova Simulations of 12-25 M Stars

    NASA Astrophysics Data System (ADS)

    Bruenn, Stephen W.; Lentz, Eric J.; Hix, W. Raphael; Mezzacappa, Anthony; Harris, J. Austin; Messer, O. E. Bronson; Endeve, Eirik; Blondin, John M.; Chertkow, Merek Austin; Lingerfelt, Eric J.; Marronetti, Pedro; Yakunin, Konstantin N.

    2016-02-01

    We present four ab initio axisymmetric core-collapse supernova simulations initiated from 12, 15, 20, and 25 {M}⊙ zero-age main sequence progenitors. All of the simulations yield explosions and have been evolved for at least 1.2 s after core bounce and 1 s after material first becomes unbound. These simulations were computed with our Chimera code employing RbR spectral neutrino transport, special and general relativistic transport effects, and state-of-the-art neutrino interactions. Continuing the evolution beyond 1 s after core bounce allows the explosions to develop more fully and the processes involved in powering the explosions to become more clearly evident. We compute explosion energy estimates, including the negative gravitational binding energy of the stellar envelope outside the expanding shock, of 0.34, 0.88, 0.38, and 0.70 Bethe (B ≡ {10}51 erg) and increasing at 0.03, 0.15, 0.19, and 0.52 {\\text{B s}}-1, respectively, for the 12, 15, 20, and 25 {M}⊙ models at the endpoint of this report. We examine the growth of the explosion energy in our models through detailed analyses of the energy sources and flows. We discuss how the explosion energies may be subject to stochastic variations as exemplfied by the effect of the explosion geometry of the 20 {M}⊙ model in reducing its explosion energy. We compute the proto-neutron star masses and kick velocities. We compare our results for the explosion energies and ejected {}56{Ni} masses against some observational standards despite the large error bars in both models and observations.

  16. The development of explosions in axisymmetric ab initio core-collapse supernova simulations of 12–25 M⊙ stars

    DOE PAGESBeta

    Bruenn, Stephen W.; Lentz, Eric J.; Hix, William Raphael; Mezzacappa, Anthony; Harris, James Austin; Messer, O. E. Bronson; Endeve, Eirik; Blondin, John M.; Chertkow, Merek Austin; Lingerfelt, Eric J.; et al

    2016-02-16

    We present four ab initio axisymmetric core-collapse supernova simulations initiated from 12, 15, 20, and 25 M⊙ zero-age main sequence progenitors. All of the simulations yield explosions and have been evolved for at least 1.2 s after core bounce and 1 s after material first becomes unbound. These simulations were computed with our Chimera code employing RbR spectral neutrino transport, special and general relativistic transport effects, and state-of-the-art neutrino interactions. Continuing the evolution beyond 1 s after core bounce allows the explosions to develop more fully and the processes involved in powering the explosions to become more clearly evident. Wemore » compute explosion energy estimates, including the negative gravitational binding energy of the stellar envelope outside the expanding shock, of 0.34, 0.88, 0.38, and 0.70 Bethe (B ≡ 1051 erg) and increasing at 0.03, 0.15, 0.19, and 0.52 BS–1, respectively, for the 12, 15, 20, and 25 M⊙ models at the endpoint of this report. We examine the growth of the explosion energy in our models through detailed analyses of the energy sources and flows. We discuss how the explosion energies may be subject to stochastic variations as exemplfied by the effect of the explosion geometry of the 20 M⊙ model in reducing its explosion energy. We compute the proto-neutron star masses and kick velocities. In conclusion, we compare our results for the explosion energies and ejected 56Ni masses against some observational standards despite the large error bars in both models and observations.« less

  17. Collapsed Lung

    MedlinePlus

    A collapsed lung happens when air enters the pleural space, the area between the lung and the chest wall. If it is a ... is called pneumothorax. If only part of the lung is affected, it is called atelectasis. Causes of ...

  18. Collapse in Thermal Plumes

    NASA Astrophysics Data System (ADS)

    Pears, M. I.; Lithgow-Bertelloni, C. R.; Dobson, D. P.; Davies, R.

    2013-12-01

    Collapsing thermal plumes have been investigated through experimental and numerical simulations. Collapsing plumes are an uncommon fluid dynamical phenomenon, usually seen when the buoyancy source is turned off. A series of fluid dynamical experiments were conducted on thermal plumes at a variety of temperature and viscosity contrasts, in a 26.5 cm^3 cubic tank heated by a constant temperature heater 2 cm in diameter and no-slip bottom and top surfaces. Working fluids included Lyle's Golden Syrup and ADM's Liquidose 436 syrup, which have strongly-temperature dependent viscosity and high Pr number (10^3-10^7 at experimental conditions). Visualisation included white light shadowgraphs and PIV of the central plane. Temperature contrasts ranged from 3-60°C, and two differing forms of collapse were identified. At very low temperature differences 'no rise' collapse was discovered, where the plumes stagnate in the lower third of the tank before collapsing. At temperature differences between 10-23°C normal evolution occurred until 'lens shape' collapse developed between midway and two-thirds of the distance from the base. The lens shape originated in the top of the conduit and was present throughout collapse. At temperatures above ΔT=23°C the plumes follow the expected growth and shape and flatten out at the top of the tank. Thermal collapse remains difficult to explain given experimental conditions (continuous heating). Instead it is possible that small density differences arising from crystallization at ambient temperatures changes plume buoyancy-inducing collapse. We show results on the evolution of the refractive index of the syrup through time to ascertain this possibility. Preliminary numerical results using Fluidity will be presented to explore a greater parameter range of viscosity contrasts and tank aspect ratios.

  19. First MHD simulation of collapse and fragmentation of magnetized molecular cloud cores

    NASA Astrophysics Data System (ADS)

    Machida, Masahiro N.; Tomisaka, Kohji; Matsumoto, Tomoaki

    2004-02-01

    This is the first paper about fragmentation and mass outflow in molecular clouds by using three-dimensional magnetohydrodynamical (MHD) nested-grid simulations. The binary star formation process is studied, paying particular attention to the fragmentation of a rotating magnetized molecular cloud. We assume an isothermal rotating and magnetized cylindrical cloud in hydrostatic balance. Non-axisymmetric as well as axisymmetric perturbations are added to the initial state and the subsequent evolutions are studied. The evolution is characterized by three parameters: the amplitude of the non-axisymmetric perturbations, the rotation speed and the magnetic field strength. As a result, it is found that non-axisymmetry hardly evolves in the early phase, but begins to grow after the gas contracts and forms a thin disc. Disc formation is strongly promoted by the rotation speed and the magnetic field strength. There are two types of fragmentation: that from a ring and that from a bar. Thin adiabatic cores fragment if their thickness is less than 1/4 of the radius. For the fragments to survive, they should be formed in a heavily elongated barred core or a flat round disc. In the models showing fragmentation, outflows from respective fragments are found as well as those driven by the rotating bar or the disc.

  20. Computer simulations of stellar collapse and supernovae explosions - Non-rotating and rotating models

    NASA Astrophysics Data System (ADS)

    Hillebrandt, W.

    1982-11-01

    Computer simulation models of type II supernova explosions are reviewed. For nonrotating models, it is discussed whether or not a shock wave generated from the rebounding core by itself causes mass ejection. Both adiabatic and nonadiabatic models are discussed in detail. In the former, entropy is strictly conserved and weak interaction reactions are ignored. Consequently, the electron concentration stays high and a very energetic supernova explosion results. In the nonadiabatic model, most of the shock energy is consumed in dissociating heavy nuclei on the way out, the rest being radiated away by neutrinos. In none of the recent computations does a supernova explosion result; possibilities to overcome these difficulties are discussed. Then, computation in which the assumption of spherical symmetry is omitted are addressed. Rotating models are considered, and it is shown that even initially moderately rotating stellar cores add important modifications to the simple core-bounce picture. Finally, processes resulting from the presence of magnetic fields, lepton number, entropy gradients, and unburned nuclear fuel are treated.

  1. A comparative study of chemical kinetics models for HMX in mesoscale simulations of shock initiation due to void collapse

    NASA Astrophysics Data System (ADS)

    Rai, Nirmal; Schweigert, Igor; Udaykumar, H. S.

    2015-06-01

    The development of chemical kinetics schemes for use in modeling the reactive mechanics of energetic materials such as HMX has been an active area of research. Decomposition, deflagration and detonation models need to predict time to ignition and locations of onset of chemical reaction in energetic materials when used in meso- and macro-scale simulations. Modeling the chemical processes and development of appropriate kinetic law is challenging work because of lack of experimental data. However, significant work has been done in this area. Multistep kinetic models by Tarver and Tran, Henson and Smilowitz have provided plausible chemical kinetic rate laws for HMX. These models vary in the way they model the details of the decomposition process. Hence, a comparative study of different models will provide an understanding of the uncertainties involved in predicting ignition in HMX. In the current work, hot-spot ignition due to void collapse in shock compressed HMX has been analyzed using several reaction rate models, including the Tarver-Tran 4-equation model, the Henson-Smilowitz 7-equation model, and a new rate model that combines the condensed-phase decomposition rates measured by Brill et al and the detailed mechanism of nitramine flame chemistry due to Yetter et al. The chemical models have been incorporated in a massively parallel Eulerian code SCIMITAR3D. The variations in the predicted thresholds due to differences in the rate models will be discussed.

  2. Gravitational waves from gravitational collapse

    SciTech Connect

    Fryer, Christopher L; New, Kimberly C

    2008-01-01

    Gravitational wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.

  3. Transient simulation and analysis of current collapse due to trapping effects in AlGaN/GaN high-electron-mobility transistor

    NASA Astrophysics Data System (ADS)

    Zhou, Xing-Ye; Feng, Zhi-Hong; Wang, Yuan-Gang; Gu, Guo-Dong; Song, Xu-Bo; Cai, Shu-Jun

    2015-04-01

    In this paper, two-dimensional (2D) transient simulations of an AlGaN/GaN high-electron-mobility transistor (HEMT) are carried out and analyzed to investigate the current collapse due to trapping effects. The coupling effect of the trapping and thermal effects are taken into account in our simulation. The turn-on pulse gate-lag transient responses with different quiescent biases are obtained, and the pulsed current-voltage (I-V) curves are extracted from the transients. The experimental results of both gate-lag transient current and pulsed I-V curves are reproduced by the simulation, and the current collapse due to the trapping effect is explained from the view of physics based on the simulation results. In addition, the results show that bulk acceptor traps can influence the gate-lag transient characteristics of AlGaN/GaN HEMTs besides surface traps and that the thermal effect can accelerate the emission of captured electrons for traps. Pulse transient simulation is meaningful in analyzing the mechanism of dynamic current collapse, and the work in this paper will benefit the reliability study and model development of GaN-based devices. Project supported by the National Natural Science Foundation of China (Grant No. 61306113).

  4. Characterization of the structural collapse undergone by an unstable system of ultrasoft particles

    NASA Astrophysics Data System (ADS)

    Prestipino, Santi; Malescio, Gianpietro

    2016-09-01

    The effective repulsion between macromolecules such as polymer chains or dendrimers is everywhere finite, implying that interaction centers can even coincide. If, in addition, the large-distance attraction is sufficiently strong, then the system is driven unstable. An unstable system lacks a conventional thermodynamics since, in the infinite-size limit, it eventually collapses to a finite-size cluster (for instance, a polymer dispersion undergoes irreversible coagulation when increasing the amount of dissolved salt beyond a certain limit). Using a double-Gaussian (DG) potential for demonstration, we study the phase behavior of a system of ultrasoft particles as a function of the attraction strength η. Above a critical threshold ηc, the DG system is unstable but its collective behavior is far from trivial since two separate regions of the thermodynamic plane can be identified, based on the value taken by the average waiting time for collapse: this is finite and small on one side of the boundary, while presumably infinite in the other region. In order to make sense of this evidence, we consider a stable system of particles interacting through a DG potential augmented with a hard core (stabilized DG, or SDG potential). We provide arguments supporting the view that the boundary line of the unstable DG model is the remnant of the spinodal line of a fluid-fluid phase transition occurring in the SDG model when the hard-core diameter is sent to zero.

  5. Influence of the structure on the collapse of poly(N-isopropylacrylamide)-based microgels: an insight by quantitative dielectric analysis.

    PubMed

    Yang, Man; Zhao, Kongshuang

    2016-05-14

    The collapse of poly(N-isopropylacrylamide)/poly(acrylic acid) semi-interpenetrating polymer network (PNIPAM/PAA SIPN) and poly(N-isopropylacrylamide-co-acrylic acid) (P(NIPAM-co-AA)) microgel suspensions is studied by dielectric spectroscopy in a frequency range from 40 Hz to 110 MHz as a function of temperature. Dielectric measurements show that the structure affects the relaxation behavior of microgels: two relaxations (micro-Brownian motion and interfacial polarization at low frequency and counterion polarization at high frequency) are observed in the SIPN microgel whose charges mainly exist in domains and one relaxation (interfacial polarization) is observed in the copolymer microgel whose charges distribute in the whole network. A dielectric model is proposed to describe the collapsed microgel suspensions, from which some parameters, such as the volume fraction and the permittivity of microgels, were calculated using Hanai's equation. The temperature dependencies of these parameters show that the SIPN microgel has better low-temperature swelling properties and thermal responsiveness. This is caused by different polymer-solvent and electrostatic repulsion interactions in different microgels. Compared with pure PNIPAM, the relationship of volume phase transition temperature (VPTT) is VPTTP(NIPAM-co-AA) > VPTTPNIPAM/PAA SIPN > VPTTPNIPAM, and it is explained from the viewpoint of interaction. Besides, the activation energy data prove that the structure influences the electrical properties of microgels, which is consistent with the results obtained from quantitative dielectric analysis. PMID:27035253

  6. Tracheal collapse.

    PubMed

    Hedlund, C S

    1991-06-01

    Tracheal collapse, one form of tracheal obstruction, is classically described as occurring in middle-aged or older toy breed dogs with a history of chronic "goose-honk" cough. Many dogs with tracheal collapse fit this description, but others are young and may wheeze, hack, or have no cough at all. Patients with a history and physical examination compatible with tracheal collapse are definitively diagnosed based on the findings of the following respiratory tract examinations: inspiratory/expiratory radiographs, fluoroscopy, culture and susceptibility, and a thorough endoscopic evaluation. Prosthetic ring tracheoplasty relieves many of the signs of tracheal obstruction but does not cure the disease. Early diagnosis and treatment are expected to give the dog a better quality life. Following prosthetic ring tracheoplasty, most dogs are more active, breathe easier, cough less, and require less medical treatment for respiratory disease. PMID:1802250

  7. 3-cm Fine Structure Masers: A Unique Signature of Supermassive Black Hole Formation via Direct Collapse in the Early Universe

    NASA Astrophysics Data System (ADS)

    Dijkstra, Mark; Sethi, Shiv; Loeb, Abraham

    2016-03-01

    The direct collapse black hole (DCBH) scenario describes the isothermal collapse of a pristine gas cloud directly into a massive, {M}{BH} = 104-106{M}⊙ black hole. In this paper we show that large H i column densities of primordial gas at T˜ {10}4 K with low molecular abundance—which represent key aspects of the DCBH scenario—provide optimal conditions for the pumping of the 2p-level of atomic hydrogen by trapped Lyα photons. This Lyα pumping mechanism gives rise to an inverted level population of the 2{s}1/2-2{p}3/2 transition, and therefore also gives rise to stimulated fine structure emission at λ =3.04 {cm} (rest-frame). We show that simplified models of the DCBH scenario amplify the CMB by up to a factor of ˜ {10}5, above which the maser saturates. Hyperfine splitting of the 3 cm transition gives rise to a characteristic broad (FWHM ˜ tens of MHz in the observers frame) asymmetric line profile. This signal subtends an angular scale of ˜1-10 mas, which translates to a flux of ˜0.3-3 μJy, which is detectable with ultra-deep surveys being planned with SKA1-MID. While challenging, as the signal is visible for a fraction of the collapse time of the cloud, the matching required physical conditions imply that a detection of the redshifted 3-cm emission line could provide direct evidence for the DCBH scenario.

  8. Formation of a protocluster: A virialized structure from gravoturbulent collapse. II. A two-dimensional analytical model for a rotating and accreting system

    NASA Astrophysics Data System (ADS)

    Lee, Yueh-Ning; Hennebelle, Patrick

    2016-06-01

    Context. Most stars are born in the gaseous protocluster environment where the gas is reprocessed after the global collapse from the diffuse molecular cloud. The knowledge of this intermediate step gives more accurate constraints on star formation characteristics. Aims: We demonstrate that a virialized globally supported structure, in which star formation happens, is formed out of a collapsing molecular cloud, and we derive a mapping from the parent cloud parameters to the protocluster to predict its properties with a view to confront analytical calculations with observations and simulations. Methods: We decomposed the virial theorem into two dimensions to account for the rotation and the flattened geometry. Equilibrium was found by balancing rotation, turbulence, and self-gravity, while turbulence was maintained through accretion driving and it dissipates in one crossing time. We estimated the angular momentum and the accretion rate of the protocluster from the parent cloud properties. Results: The two-dimensional virial model predicts the size and velocity dispersion given the mass of the protocluster and that of the parent cloud. The gaseous protoclusters lie on a sequence of equilibrium with the trend R ~ M0.5 with limited variations, depending on the evolutionary stage, parent cloud, and parameters that are not well known, such as turbulence driving efficiency by accretion and turbulence anisotropy. The model reproduces observations and simulation results successfully. Conclusions: The properties of protoclusters follow universal relations and they can be derived from that of the parent cloud. The gaseous protocluster is an important primary stage of stellar cluster formation, and should be taken into account when studying star formation. Using simple estimates to infer the peak position of the core mass function (CMF) we find a weak dependence on the cluster mass, suggesting that the physical conditions inside protoclusters may contribute to set a CMF, and by

  9. AXISYMMETRIC AB INITIO CORE-COLLAPSE SUPERNOVA SIMULATIONS OF 12-25 M{sub Sun} STARS

    SciTech Connect

    Bruenn, Stephen W.; Yakunin, Konstantin N.; Mezzacappa, Anthony; Hix, W. Raphael; Lingerfelt, Eric J.; Lentz, Eric J.; Messer, O. E. Bronson; Blondin, John M.; Endeve, Eirik; Marronetti, Pedro

    2013-04-10

    We present an overview of four ab initio axisymmetric core-collapse supernova simulations employing detailed spectral neutrino transport computed with our CHIMERA code and initiated from Woosley and Heger progenitors of mass 12, 15, 20, and 25 M{sub Sun }. All four models exhibit shock revival over {approx}200 ms (leading to the possibility of explosion), driven by neutrino energy deposition. Hydrodynamic instabilities that impart substantial asymmetries to the shock aid these revivals, with convection appearing first in the 12 M{sub Sun} model and the standing accretion shock instability appearing first in the 25 M{sub Sun} model. Three of the models have developed pronounced prolate morphologies (the 20 M{sub Sun} model has remained approximately spherical). By 500 ms after bounce the mean shock radii in all four models exceed 3000 km and the diagnostic explosion energies are 0.33, 0.66, 0.65, and 0.70 Bethe (B = 10{sup 51} erg) for the 12, 15, 20, and 25 M{sub Sun} models, respectively, and are increasing. The three least massive of our models are already sufficiently energetic to completely unbind the envelopes of their progenitors (i.e., to explode), as evidenced by our best estimate of their explosion energies, which first become positive at 320, 380, and 440 ms after bounce. By 850 ms the 12 M{sub Sun} diagnostic explosion energy has saturated at 0.38 B, and our estimate for the final kinetic energy of the ejecta is {approx}0.3 B, which is comparable to observations for lower mass progenitors.

  10. Dramatic changes in the electronic structure upon transition to the collapsed tetragonal phase in CaFe2As2

    NASA Astrophysics Data System (ADS)

    Dhaka, R. S.; Jiang, Rui; Ran, S.; Bud'ko, S. L.; Canfield, P. C.; Harmon, B. N.; Kaminski, Adam; Tomić, Milan; Valentí, Roser; Lee, Yongbin

    2014-01-01

    We use angle-resolved photoemission spectroscopy and density functional theory calculations to study the electronic structure of CaFe2As2 in the collapsed tetragonal (CT) phase. This unusual phase of iron arsenic high-temperature superconductors was hard to measure as it exists only under pressure. By inducing internal strain, via the postgrowth thermal treatment of single crystals, we were able to stabilize the CT phase at ambient pressure. We find significant differences in the Fermi surface topology and band dispersion data from the more common orthorhombic-antiferromagnetic or tetragonal-paramagnetic phases, consistent with electronic structure calculations. The top of the hole bands sinks below the Fermi level, which destroys the nesting present in parent phases. The absence of nesting in this phase, along with an apparent loss of Fe magnetic moment, are now clearly experimentally correlated with the lack of superconductivity in this phase.

  11. Core Formation And Gravothermal Collapse Of Self-interacting Dark Matter Halos: Monte Carlo N-body simulation versus Conducting Fluid Model

    NASA Astrophysics Data System (ADS)

    Koda, Jun; Shapiro, P. R.

    2007-12-01

    Self-interacting dark matter (SIDM) has been proposed to solve the cuspy core problem of dark matter halos in standard CDM. There are two ways to investigate the effect of the 2-body, non-gravitational, elastic collisions of SIDM, Monte-Carlo N-body simulation and a conducting fluid model. The former is a gravitational N-body simulation with a Monte Carlo algorithm for the SIDM scattering that changes the direction of N-body particles randomly according to a given scattering cross section. The latter is a system of fluid conservation equations with a thermal conduction that describes the collisional effect, which was originally invented to describe the gravothermal collapse of globular clusters. Our previous work found a significant disagreement as regards the strength of collisionality required to solve cuspy core problem. However the two methods have not been properly tested against each other. Here, we make direct comparisons between Monte Carlo N-body simulations and analytic and numerical solutions of the conducting fluid (gaseous) model, for various isolated self-interacting dark matter halos. The N-body simulations reproduce the analytical self-similar solution of gravothermal collapse in the fluid model when one free parameter, the coefficient of heat conduction C, is chosen to be 0.75. The gravothermal collapse results of the simulations agrees well with our 1D numerical hydro solutions of the fluid model within 20% for other initial conditions, including Plummer model, Hernquist profile and NFW profile. In conclusion the conducting fluid model is in reasonably good agreement with the Monte Carlo simulations for isolated halos. We will pursue the origin of the reported disagreement between two methods in a cosmological environment by comparing new N-body simulations with fully cosmological initial conditions.

  12. Collapsing Containers.

    ERIC Educational Resources Information Center

    Brown, Justina L.; Battino, Rubin

    1994-01-01

    Describes variations on atmospheric pressure demonstrations and some systematic studies. Demonstrations use steam, generated either externally or internally to the container, to sweep out residual air. Preferred vessels collapsed slowly. Demonstrations use plastic milk jugs set in layers of aluminum foil, pop bottles immersed in 4-L beakers…

  13. Asymmetrically multi-collapsed structure of Kikai caldera in southern off Kyushu Island, Japan: A reconstruction from seismic reflection images

    NASA Astrophysics Data System (ADS)

    Ikegami, F.; Kiyokawa, S.; Oiwane, H.; Nakamura, Y.; Kameo, K.; Minowa, Y.; Kuratomi, T.

    2012-12-01

    Kikai caldera (Matsumoto, 1943) is a mostly submerged highly active caldera complex located in the southern Japan 40 km off Kyushu Island. The caldera has bathymetrically two rims partially that are previously considered as older-outer and newer-inner ones (Yokoyama et al., 1966). The caldera is believed to be the source of Akahoya tephra (Machida and Arai, 1978) which date was determined as 7300 cal. BP (Fukusawa, 1995) which is the most recent VEI-7 class eruption in the eastern margin of Asia. Intense earthquakes (Naruo and Kobayashi, 2002), low-aspect ratio Koya ignimbrite (Maeno and Taniguchi, 2007) and tsunami (Geshi, 2009) are presumed to have taken place at the climax of the eruption. There are at least two other series of giant eruption deposits that are considered to have originated from the Kikai caldera (Ono et al., 1986) and this indicates that it has been serving as an eruptive center for the past 150,000 years. We conducted seismic reflection observations in two survey cruises (KT-10-18 and KT-11-11) in 2010 and 2011 using a research vessel Tansei-maru of JAMSTEC (Japan Agency for Marine-Earth Science and Technology). The sound source was a 150 cubic inches G-I gun with 10 seconds of shot interval, and a 48-channled streamer cable was used for acquisition. Totally 24 profiles were obtained with the speed of 4 knots. First, the absence of large fault in northern and western caldera rim indicates Kikai likely had an asymmetric "trapdoor" style collapse (Lipman, 1995) rather than the ideal "piston" type one. Inner and outer topographic rims at the east to south do correspond with large faults, however the both of them may have worked in 7300 BP eruption because they reach to the seafloor. Such asymmetric multi-collapse would provide some characteristics to the climactic pyroclastic flow in 7300 BP. Second, the bathymetric rise at the center of the caldera consists of high-amplitude surface and chaotic thick facies outwardly collapsed by intense normal

  14. Peer review of the National Transportation Safety Board structural analysis of the I-35W bridge collapse.

    SciTech Connect

    Gwinn, Kenneth West; Redmond, James Michael; Wellman, Gerald William

    2008-10-01

    The Engineering Sciences Center at Sandia National Laboratories provided an independent peer review of the structural analysis supporting the National Transportation Safety Board investigation of the August 1, 2007 collapse of the I-35W Bridge in Minneapolis. The purpose of the review was to provide an impartial critique of the analysis approach, assumptions, solution techniques, and conclusions. Subsequent to reviewing numerous supporting documents, a SNL team of staff and management visited NTSB to participate in analysis briefings, discussions with investigators, and examination of critical elements of the bridge wreckage. This report summarizes the opinion of the review team that the NTSB analysis effort was appropriate and provides compelling supporting evidence for the NTSB probable cause conclusion.

  15. Ascraeus Mons Collapse Pits

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    We will be looking at collapse pits for the next two weeks. Collapse pits on Mars are formed in several ways. In volcanic areas, channelized lava flows can form roofs which insulate the flowing lava. These features are termed lava tubes on Earth and are common features in basaltic flows. After the lava has drained, parts of the roof of the tube will collapse under its own weight. These collapse pits will only be as deep as the bottom of the original lava tube. Another type of collapse feature associated with volcanic areas arises when very large eruptions completely evacuate the magma chamber beneath the volcano. The weight of the volcano will cause the entire edifice to subside into the void space below it. Structural features including fractures and graben will form during the subsidence. Many times collapse pits will form within the graben. In addition to volcanic collapse pits, Mars has many collapse pits formed when volatiles (such as subsurface ice) are released from the surface layers. As the volatiles leave, the weight of the surrounding rock causes collapse pits to form.

    These collapse pits are found on the flank of Ascraeus Mons. The pits and channels are all related to lava tube formation and emptying.

    Image information: IR instrument. Latitude 8, Longitude 253.9 East (106.1 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science

  16. Collapse of the native structure caused by a single amino acid exchange in human NAD(P)H:quinone oxidoreductase

    PubMed Central

    Uhl, Michael K.; Binter, Alexandra; Pulido, Sergio A.; Saf, Robert; Zangger, Klaus; Gruber, Karl; Macheroux, Peter

    2015-01-01

    Human NAD(P)H:quinone oxidoreductase 1 (NQO1) is essential for the antioxidant defense system, stabilization of tumor suppressors (e.g. p53, p33, and p73), and activation of quinone-based chemotherapeutics. Overexpression of NQO1 in many solid tumors, coupled with its ability to convert quinone-based chemotherapeutics into potent cytotoxic compounds, have made it a very attractive target for anticancer drugs. A naturally occurring single-nucleotide polymorphism (C609T) leading to an amino acid exchange (P187S) has been implicated in the development of various cancers and poor survival rates following anthracyclin-based adjuvant chemotherapy. Despite its importance for cancer prediction and therapy, the exact molecular basis for the loss of function in NQO1 P187S is currently unknown. Therefore, we solved the crystal structure of NQO1 P187S. Surprisingly, this structure is almost identical to NQO1. Employing a combination of NMR spectroscopy and limited proteolysis experiments, we demonstrated that the single amino acid exchange destabilized interactions between the core and C-terminus, leading to depopulation of the native structure in solution. This collapse of the native structure diminished cofactor affinity and led to a less competent FAD-binding pocket, thus severely compromising the catalytic capacity of the variant protein. Hence, our findings provide a rationale for the loss of function in NQO1 P187S with a frequently occurring single-nucleotide polymorphism. PMID:25143260

  17. Fast collapse but slow formation of secondary structure elements in the refolding transition of E. coli adenylate kinase.

    PubMed

    Ratner, V; Amir, D; Kahana, E; Haas, E

    2005-09-23

    The various models proposed for protein folding transition differ in their order of appearance of the basic steps during this process. In this study, steady state and time-resolved dynamic non-radiative excitation energy transfer (FRET and trFRET) combined with site specific labeling experiments were applied in order to characterize the initial transient ensemble of Escherichia coli adenylate kinase (AK) molecules upon shifting conditions from those favoring denaturation to refolding and from folding to denaturing. Three sets of labeled AK mutants were prepared, which were designed to probe the equilibrium and transient distributions of intramolecular segmental end-to-end distances. A 176 residue section (residues 28-203), which spans most of the 214 residue molecule, and two short secondary structure chain segments including an alpha-helix (residues 169-188) and a predominantly beta-strand region (residues 188-203), were labeled. Upon fast change of conditions from denaturing to folding, the end-to-end distance of the 176 residue chain section showed an immediate collapse to a mean value of 26 A. Under the same conditions, the two short secondary structure elements did not respond to this shift within the first ten milliseconds, and retained the characteristics of a fully unfolded state. Within the first 10 ms after changes of the solvent from folding to denaturing, only minor changes were observed at the local environments of residues 203 and 169. The response of these same local environments to the shift of conditions from denaturing to folding occurred within the dead time of the mixing device. Thus, the response of the CORE domain of AK to fast transfer from folding to unfolding conditions is slow at all three conformational levels that were probed, and for at least a few milliseconds the ensemble of folded molecules is maintained under unfolding conditions. A different order of the changes was observed upon initiation of refolding. The AK molecules undergo

  18. Numerical simulation of bubble collapse and the transfer of vapor and noncondensable gas through the bubble interface using the ghost fluid method

    NASA Astrophysics Data System (ADS)

    Jinbo, Y.; Kobayashi, K.; Watanabe, M.; Takahira, H.

    2015-12-01

    The ghost fluid method is improved to include heat and mass transfer across the gas- liquid interface during the bubble collapse in a compressible liquid. This transfer is due to both nonequilibrium phase transition at the interface and diffusion of the noncondensable gas across the interface. In the present method, the ghost fluids are defined with the intention of conserving the total mass, momentum, and energy, as well as the mass of each component while considering the heat and mass fluxes across the interface. The gas phase inside the bubble is a mixture of vapor and noncondensable gas, where binary diffusion between the mixture components is taken into account. The gas diffusion in the surrounding liquid is also considered. This method is applied to a simulation of a single spherical bubble collapse with heat and mass transfer across the interface in a compressible liquid. When noncondensable gas is present, it accumulates near the interface due to vapor condensation, thereby preventing further condensation. This results in a weaker bubble collapse than the case without noncondensable gas.

  19. Structure and evolution of collapse sinkholes: Combined interpretation from physico-chemical modelling and geophysical field work

    NASA Astrophysics Data System (ADS)

    Kaufmann, Georg; Romanov, Douchko

    2016-09-01

    In karst rocks (limestone, anhydrite, gypsum, etc.), water flowing through fissures and bedding partings can enlarge voids either by physical or chemical dissolution. Within a geologically short period of time, the increase in void space creates a large secondary porosity typical for soluble rocks, which is responsible for preferential flow through the karst rock, often through cave systems with passages reaching the meter-scale and more. This large-scale voids in the sub-surface can initiate collapse of the overburden, either through wall or roof breakdown, and the initial void created by dissolution can migrate upwards and finally cause a surface collapse and create a collapse sinkhole. While the dissolution part of this evolution is in the order of 10,000-100,000 years, the final mechanical collapse can occur on time scales of days. We have studied a typical collapse sinkhole site in the southern Harz Mountains in Germany, with anhydrite (partly converted to gypsum) as soluble rock in the sub-surface. We discuss geophysical measurements (gravity, electrical resistivity tomography, self potential, magnetics) from the location to identify the local collapse sinkhole signal and the possibility to separate the collapse sinkhole signal from the broader geological signal of the study site. We model the initiation of sub-surface voids with our numerical tool KARSTAQUIFER, a 3D karst evolution model describing flow and dissolution in karst rocks. We apply this numerical model to predict collapse sinkholes in a locality in the Harz Mountains.

  20. Collapse Miscellany

    NASA Astrophysics Data System (ADS)

    Pearle, Philip

    An introduction to the CSL (Continuous Spontaneous Localization) theory of dynamical wave function collapse is provided, including a derivation of CSL from two postulates, a new result. There follows a review of applications to a free particle, or to a `small' rigid cluster of free particles, in a single wave-packet and in interfering packets: the latter result is new. [Editors note: for a video of the talk given by Prof. Pearle at the Aharonov-80 conference in 2012 at Chapman University, see http://quantum.chapman.edu/talk-11.

  1. Super-resolution microscopy reveals a preformed NEMO lattice structure that is collapsed in incontinentia pigmenti.

    PubMed

    Scholefield, Janine; Henriques, Ricardo; Savulescu, Anca F; Fontan, Elisabeth; Boucharlat, Alix; Laplantine, Emmanuel; Smahi, Asma; Israël, Alain; Agou, Fabrice; Mhlanga, Musa M

    2016-01-01

    The NF-κB pathway has critical roles in cancer, immunity and inflammatory responses. Understanding the mechanism(s) by which mutations in genes involved in the pathway cause disease has provided valuable insight into its regulation, yet many aspects remain unexplained. Several lines of evidence have led to the hypothesis that the regulatory/sensor protein NEMO acts as a biological binary switch. This hypothesis depends on the formation of a higher-order structure, which has yet to be identified using traditional molecular techniques. Here we use super-resolution microscopy to reveal the existence of higher-order NEMO lattice structures dependent on the presence of polyubiquitin chains before NF-κB activation. Such structures may permit proximity-based trans-autophosphorylation, leading to cooperative activation of the signalling cascade. We further show that NF-κB activation results in modification of these structures. Finally, we demonstrate that these structures are abrogated in cells derived from incontinentia pigmenti patients. PMID:27586688

  2. CCD photometry of globular cluster core structure. 2: U-band profiles for 15 candidate collapsed-core clusters

    NASA Technical Reports Server (NTRS)

    Lugger, Phyllis M.; Cohn, Haldan N.; Grindlay, Jonathan E.

    1995-01-01

    We present U-band CCD surface brightness profiles for 15 of the 21 globular clusters that have been identified as having collapsed cores by Djorgovski & King (1986). Fourteen of the clusters were observed with the Cerro Tololo 4 m telescope; NGC 7078 was observed with the Canada-France-Hawaii 3.6 m telescope (CFHT). We have fitted the profiles with seeing-convolved power laws, both with and without cores, to assess the evidence for central power-law structure and to place upper limits on core radius r(sub c). We find nine of the clusters (NGC 5946, NGC 6284, NGC 6293, NGC 6325, NGC 6342, NGC 6558, NGC 6624, NGC 6681, and NGC 7078) to have unresolved cores, with upper limits r(sub c) less than or = 1.9 arcsecs. Three of the clusters (NGC 6453, NGC 6522, and NGC 7099) have marginally resolved cores, with upper limits in the range 2.7 arcsecs less than or = r(sub c) less than or = 3.4 arcsecs. The remaining three clusters (NGC 6355, NGC 6397, and NGC 6752) have resolved cores. Of the latter three clusters, NGC 6355 and NGC 6752 are consistent with single-mass King model structure. The median cluster distances are 9.2 kpc for those with unresolved cores, 7.2 kpc for those with marginally resolved cores, and 4.1 kpc for those with resolved cores. The 13 clusters that do not resemble single-mass King models have central power-law structure with surface brightness slopes in the range of d ln S/d ln r = -0.6 to -0.8. These slopes are consistent with the models of Grabhorn et al. (1992) for clusters evolving beyond core collapse. The models include a centrally concentrated population of nonluminous remnants with masses in the range 1.2-1.4 solar mass, thus providing evidence for significant neutron star populations in most of our cluster sample. This finding is consistent with the observation of centrally concentrated low-mass X-ray binary and millisecond pulsar populations in several clusters.

  3. Collapse Tubes

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA02154 Collapse Tubes

    The discontinuous channels in this image are collapsed lava tubes.

    Image information: VIS instrument. Latitude -19.7N, Longitude 317.5E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  4. Relationship between tissue structural collapse and disappearance of flesh transparency during postmortem changes in squid mantles.

    PubMed

    Kugino, Mutsuko; Kugino, Kenji; Tamura, Tomoko; Asakura, Tomiko

    2009-01-01

    This study evaluated the relationship between squid flesh transparency and muscle tissue microstructure. Squid mantle muscle was stored at 4 degrees C after being transported for 2 h by 4 different transportation methods used commonly in Japan (Group 1: live squid packed in ice-cold seawater; Group 2: live squid packed at 4 degrees C; Group 3: squid killed immediately after harvest and packed at 4 degrees C; Group 4: live squid packed in a fish tank containing seawater). Parameters of muscle tissue transparency were measured by an image analysis of digital images of squid muscle tissue. The mantle muscle tissue was observed under a transmission electron microscope to determine the postmortem structural changes at the cellular level. The ATP content of muscle tissue and rupture energy of squid flesh were also measured. As a result, the transparency of squid flesh and the ATP content of the muscles showed the same pattern of change in degree as time passed. The values of these parameters were highest in the group of squid killed immediately followed in order by those transported live, the refrigerated squid, and squid stored in ice-cold seawater. The mantle muscle tissue started to lose its transparency when the ATP in the muscle tissue started to decline. Disintegration of squid muscle tissue structure at the cellular level during storage under refrigeration for 24 h (4 degrees C) was observed in all methods of transportation. This suggested that destruction of the squid muscle tissue structure by autolysis is remarkably fast. The muscle tissue structure disintegrates due to decomposition of the muscle proteins, and muscle transparency is lost because the entire muscle develops a mixed coarse-minute structure. PMID:20492111

  5. Opening of the blood-brain barrier tight junction due to shock wave induced bubble collapse: a molecular dynamics simulation study.

    PubMed

    Goliaei, Ardeshir; Adhikari, Upendra; Berkowitz, Max L

    2015-08-19

    Passage of a shock wave across living organisms may produce bubbles in the blood vessels and capillaries. It was suggested that collapse of these bubbles imposed by an impinging shock wave can be responsible for the damage or even destruction of the blood-brain barrier. To check this possibility, we performed molecular dynamics computer simulations on systems that contained a model of tight junction from the blood-brain barrier. In our model, we represent the tight junction by two pairs of interacting proteins, claudin-15. Some of the simulations were done in the absence of a nanobubble, some in its presence. Our simulations show that when no bubble is present in the system, no damage to tight junction is observed when the shock wave propagates across it. In the presence of a nanobubble, even when the impulse of the shock wave is relatively low, the implosion of the bubble causes serious damage to our model tight junction. PMID:26075566

  6. Structure and evolution of collapse sinkholes: Combined interpretation from physico-chemical modelling and geophysical field work

    NASA Astrophysics Data System (ADS)

    Kaufmann, Georg; Romanov, Douchko

    2015-04-01

    In karst rocks (limestone, anhydrite, gypsum, ...), water flowing through fissures and bedding partings can enlarge voids either by physical and/or chemical dissolution. Within a geologically short period of time, the increase in void space creates a large secondary porosity typical for soluble rocks, which is responsible for preferential flow through the karst rock, often through cave systems with passages reaching the meter-scale and more. This large-scale voids in the sub-surface can initiate collapse of the overburden, either through wall or roof breakdown, and the initial void created by dissolution can migrate upwards and finally cause a surface collapse and create a collapse sinkhole. While the dissolution part of this evolution is in the order of 10,000-100,000 years, the final mechanical collapse can occur on time scales of days. We have studied the initiation of sub-surface voids with our numerical tool KARSTAQUIFER, a 3D karst evolution model describing flow and dissolution in karst rocks. We apply this numerical model to a typical collapse sinkhole site in the southern Harz Mountains in Germany, with anhydrite as soluble rock in the sub-surface. We then discuss geophysical measurements (gravity, electrical resistivity tomography, self potential, magnetics) from the location to identify the local collapse sinkhole signal and the possibility to separate the collapse sinkhole signal from the broader geological signal of the study site.

  7. Formation of fractal-like structures driven by carbon nanotubes-based collapsed hollow capsules.

    PubMed

    Salgueiriño-Maceira, Verónica; Hoppe, Cristina E; Correa-Duarte, Miguel A

    2007-01-18

    Carbon nanotubes (CNTs) based hollow capsules were obtained by degradation under acidic conditions of core-shell nanocomposites build up upon adsorption of multilayers of CNTs (shell) onto melamine-formaldehyde (MF) spheres (core). By evaporation of the dispersions obtained, polymeric fractal patterns from the degradation products of the MF core were formed onto silicon wafers. The proposed mechanism for the formation of these structures is based on the role of the capsules as arrangements of heterogeneities that facilitate the dewetting of the liquid polymeric films. PMID:17214481

  8. Collapsible Cryogenic Storage Vessel Project

    NASA Technical Reports Server (NTRS)

    Fleming, David C.

    2002-01-01

    Collapsible cryogenic storage vessels may be useful for future space exploration missions by providing long-term storage capability using a lightweight system that can be compactly packaged for launch. Previous development efforts have identified an 'inflatable' concept as most promising. In the inflatable tank concept, the cryogen is contained within a flexible pressure wall comprised of a flexible bladder to contain the cryogen and a fabric reinforcement layer for structural strength. A flexible, high-performance insulation jacket surrounds the vessel. The weight of the tank and the cryogen is supported by rigid support structures. This design concept is developed through physical testing of a scaled pressure wall, and through development of tests for a flexible Layered Composite Insulation (LCI) insulation jacket. A demonstration pressure wall is fabricated using Spectra fabric for reinforcement, and burst tested under noncryogenic conditions. An insulation test specimens is prepared to demonstrate the effectiveness of the insulation when subject to folding effects, and to examine the effect of compression of the insulation under compressive loading to simulate the pressure effect in a nonrigid insulation blanket under the action atmospheric pressure, such as would be seen in application on the surface of Mars. Although pressure testing did not meet the design goals, the concept shows promise for the design. The testing program provides direction for future development of the collapsible cryogenic vessel concept.

  9. Structured building model reduction toward parallel simulation

    SciTech Connect

    Dobbs, Justin R.; Hencey, Brondon M.

    2013-08-26

    Building energy model reduction exchanges accuracy for improved simulation speed by reducing the number of dynamical equations. Parallel computing aims to improve simulation times without loss of accuracy but is poorly utilized by contemporary simulators and is inherently limited by inter-processor communication. This paper bridges these disparate techniques to implement efficient parallel building thermal simulation. We begin with a survey of three structured reduction approaches that compares their performance to a leading unstructured method. We then use structured model reduction to find thermal clusters in the building energy model and allocate processing resources. Experimental results demonstrate faster simulation and low error without any interprocessor communication.

  10. Fires in storages of LFO: Analysis of hazard of structural collapse of steel-aluminium containers.

    PubMed

    Rebec, A; Kolšek, J; Plešec, P

    2016-04-01

    Pool fires of light fuel oil (LFO) in above-ground storages with steel-aluminium containers are discussed. A model is developed for assessments of risks of between-tank fire spread. Radiative effects of the flame body are accounted for by a solid flame radiation model. Thermal profiles evolved due to fire in the adjacent tanks and their consequential structural response is pursued in an exact (materially and geometrically non-linear) manner. The model's derivation is demonstrated on the LFO tank storage located near the Port of Koper (Slovenia). In support of the model, data from literature are adopted where appropriate. Analytical expressions are derived correspondingly for calculations of emissive characteristics of LFO pool fires. Additional data are collected from experiments. Fire experiments conducted on 300cm diameter LFO pans and at different wind speeds and high-temperature uniaxial tension tests of the analysed aluminium alloys types 3xxx and 6xxx are presented. The model is of an immediate fire engineering practical value (risk analyses) or can be used for further research purposes (e.g. sensitivity and parametric studies). The latter use is demonstrated in the final part of the paper discussing possible effects of high-temperature creep of 3xxx aluminium. PMID:26802486

  11. Hierarchical Gravitational Fragmentation. I. Collapsing Cores within Collapsing Clouds

    NASA Astrophysics Data System (ADS)

    Naranjo-Romero, Raúl; Vázquez-Semadeni, Enrique; Loughnane, Robert M.

    2015-11-01

    We investigate the Hierarchical Gravitational Fragmentation scenario through numerical simulations of the prestellar stages of the collapse of a marginally gravitationally unstable isothermal sphere immersed in a strongly gravitationally unstable, uniform background medium. The core developes a Bonnor-Ebert (BE)-like density profile, while at the time of singularity (the protostar) formation the envelope approaches a singular-isothermal-sphere (SIS)-like r-2 density profile. However, these structures are never hydrostatic. In this case, the central flat region is characterized by an infall speed, while the envelope is characterized by a uniform speed. This implies that the hydrostatic SIS initial condition leading to Shu's classical inside-out solution is not expected to occur, and therefore neither should the inside-out solution. Instead, the solution collapses from the outside-in, naturally explaining the observation of extended infall velocities. The core, defined by the radius at which it merges with the background, has a time-variable mass, and evolves along the locus of the ensemble of observed prestellar cores in a plot of M/MBE versus M, where M is the core's mass and MBE is the critical BE mass, spanning the range from the “stable” to the “unstable” regimes, even though it is collapsing at all times. We conclude that the presence of an unstable background allows a core to evolve dynamically from the time when it first appears, even when it resembles a pressure-confined, stable BE-sphere. The core can be thought of as a ram-pressure confined BE-sphere, with an increasing mass due to the accretion from the unstable background.

  12. Fluid-structure Interaction Simulations of Deformable Soft Tissue

    NASA Astrophysics Data System (ADS)

    Borazjani, Iman

    2011-11-01

    Soft tissue interacts with the surrounding fluid environment in many biological and biomedical applications. Simulating such an interaction is quite challenging due to the large non-linear deformations of tissue, flow pulsatility, transition to turbulence, and non-linear fluid-structure interaction. We have extended our previous three-dimensional fluid-structure interaction (FSI) framework for rigid bodies (Borazjani, Ge, and Sotiropoulos, Journal of Computational Physics, 2008) to deformable soft tissue by coupling our incompressible Navier-Stokes solver for fluids with a non-linear large deformation finite element method for soft tissue. We use Fung-type constitutive law for the soft tissue that can capture the stress-strain behavior of the tissue. The FSI solver adopts a strongly-coupled partitioned approach that is stabilized with under-relaxation and Aitken acceleration technique. We validate our solvers against the experimental data for tissue valves and elastic tubes. We show the capabilities of our solver by simulating the fluid-structure interaction of tissue valves implanted in the aortic positions and elastic collapsible tubes. This work was partly supported by the Center for Computational Research at the University at Buffalo.

  13. Towards a formal description of the collapse approach to the inflationary origin of the seeds of cosmic structure

    SciTech Connect

    Diez-Tejedor, Alberto; Sudarsky, Daniel E-mail: sudarsky@nucleares.unam.mx

    2012-07-01

    Inflation plays a central role in our current understanding of the universe. According to the standard viewpoint, the homogeneous and isotropic mode of the inflaton field drove an early phase of nearly exponential expansion of the universe, while the quantum fluctuations (uncertainties) of the other modes gave rise to the seeds of cosmic structure. However, if we accept that the accelerated expansion led the universe into an essentially homogeneous and isotropic space-time, with the state of all the matter fields in their vacuum (except for the zero mode of the inflaton field), we can not escape the conclusion that the state of the universe as a whole would remain always homogeneous and isotropic. It was recently proposed in [A. Perez, H. Sahlmann and D. Sudarsky, {sup O}n the quantum origin of the seeds of cosmic structure{sup ,} Class. Quant. Grav. 23 (2006) 2317–2354] that a collapse (representing physics beyond the established paradigm, and presumably associated with a quantum-gravity effect à la Penrose) of the state function of the inflaton field might be the missing element, and thus would be responsible for the emergence of the primordial inhomogeneities. Here we will discuss a formalism that relies strongly on quantum field theory on curved space-times, and within which we can implement a detailed description of such a process. The picture that emerges clarifies many aspects of the problem, and is conceptually quite transparent. Nonetheless, we will find that the results lead us to argue that the resulting picture is not fully compatible with a purely geometric description of space-time.

  14. Elements of Regolith Simulant's Cost Structure

    NASA Technical Reports Server (NTRS)

    Rickman, Douglas L.

    2009-01-01

    The cost of lunar regolith simulants is much higher than many users anticipate. After all, it is nothing more than broken rock. This class will discuss the elements which make up the cost structure for simulants. It will also consider which elements can be avoided under certain circumstances and which elements might be altered by the application of additional research and development.

  15. Analysing Deep Structure in Games and Simulations.

    ERIC Educational Resources Information Center

    Gredler, Margaret Bell

    1990-01-01

    Discussion of the design of games and simulations focuses on the fundamental defining features called deep structure. The two main levels of interaction in games and simulations are described; generalized reinforcers are discussed; types of defective contingencies are explained, including escape or avoidance behaviors; and the concept of negative…

  16. Structural Reliability and Monte Carlo Simulation.

    ERIC Educational Resources Information Center

    Laumakis, P. J.; Harlow, G.

    2002-01-01

    Analyzes a simple boom structure and assesses its reliability using elementary engineering mechanics. Demonstrates the power and utility of Monte-Carlo simulation by showing that such a simulation can be implemented more readily with results that compare favorably to the theoretical calculations. (Author/MM)

  17. Core-collapse Supernovae

    SciTech Connect

    Hix, William Raphael; Lentz, E. J.; Baird, Mark L; Chertkow, Merek A; Lee, Ching-Tsai; Blondin, J. M.; Bruenn, S. W.; Messer, Bronson; Mezzacappa, Anthony

    2013-01-01

    Marking the inevitable death of a massive star, and the birth of a neutron star or black hole, core-collapse supernovae bring together physics at a wide range in spatial scales, from kilometer-sized hydrodynamic motions (growing to gigameter scale) down to femtometer scale nuclear reactions. Carrying 10$^{51}$ ergs of kinetic energy and a rich-mix of newly synthesized atomic nuclei, core-collapse supernovae are the preeminent foundries of the nuclear species which make up ourselves and our solar system. We will discuss our emerging understanding of the convectively unstable, neutrino-driven explosion mechanism, based on increasingly realistic neutrino-radiation hydrodynamic simulations that include progressively better nuclear and particle physics. Recent multi-dimensional models with spectral neutrino transport from several research groups, which slowly develop successful explosions for a range of progenitors, have motivated changes in our understanding of the neutrino reheating mechanism. In a similar fashion, improvements in nuclear physics, most notably explorations of weak interactions on nuclei and the nuclear equation of state, continue to refine our understanding of how supernovae explode. Recent progress on both the macroscopic and microscopic effects that affect core-collapse supernovae are discussed.

  18. Three-dimensional simulations of rapidly rotating core-collapse supernovae: finding a neutrino-powered explosion aided by non-axisymmetric flows

    NASA Astrophysics Data System (ADS)

    Takiwaki, Tomoya; Kotake, Kei; Suwa, Yudai

    2016-09-01

    We report results from a series of three-dimensional (3D) rotational core-collapse simulations for 11.2 and 27 M⊙ stars employing neutrino transport scheme by the isotropic diffusion source approximation. By changing the initial strength of rotation systematically, we find a rotation-assisted explosion for the 27 M⊙ progenitor , which fails in the absence of rotation. The unique feature was not captured in previous two-dimensional (2D) self-consistent rotating models because the growing non-axisymmetric instabilities play a key role. In the rapidly rotating case, strong spiral flows generated by the so-called low T/|W| instability enhance the energy transport from the proto-neutron star (PNS) to the gain region, which makes the shock expansion more energetic. The explosion occurs more strongly in the direction perpendicular to the rotational axis, which is different from previous 2D predictions.

  19. Synthetic observations of first hydrostatic cores in collapsing low-mass dense cores. II. Simulated ALMA dust emission maps

    NASA Astrophysics Data System (ADS)

    Commerçon, B.; Levrier, F.; Maury, A. J.; Henning, Th.; Launhardt, R.

    2012-12-01

    Context. First hydrostatic cores are predicted by theories of star formation, but their existence has never been demonstrated convincingly by (sub)millimeter observations. Furthermore, the multiplicity in the early phases of the star formation process is poorly constrained. Aims: The purpose of this paper is twofold. First, we seek to provide predictions for ALMA dust continuum emission maps from early Class 0 objects. Second, we show to what extent ALMA will be able to probe the fragmentation scale in these objects. Methods: Following our companion paper, we post-processed three state-of-the-art radiation-magneto-hydrodynamic 3D adaptive mesh refinement calculations to compute the emanating dust emission maps. We then produced synthetic ALMA observations of the dust thermal continuum from first hydrostatic cores. Results: We present the first synthetic ALMA observations of dust continuum emission from the first hydrostatic cores. We analyze the results given by the different bands and configurations and we discuss for which combinations of the two the first hydrostatic cores would most likely be observed. We also show that observing dust continuum emission with ALMA will help in identifying the physical processes occurring within collapsing dense cores. If the magnetic field is playing a role, the emission pattern will show evidence of a pseudo-disk and even of a magnetically driven outflow, which pure hydrodynamical calculations cannot reproduce. Conclusions: The capabilities of ALMA will enable us to make significant progress towards understanding the fragmentation at the early Class 0 stage and discovering first hydrostatic cores.

  20. Multicolor Light Curve Simulations of Population III Core-Collapse Supernovae: From Shock Breakout to 56Co Decay

    NASA Astrophysics Data System (ADS)

    Tolstov, Alexey; Nomoto, Ken’ichi; Tominaga, Nozomu; Ishigaki, Miho N.; Blinnikov, Sergey; Suzuki, Tomoharu

    2016-04-01

    The properties of the first generation of stars and their supernova (SN) explosions remain unknown due to the lack of actual observations. Recently, many transient surveys have been conducted and the feasibility of detecting supernovae (SNe) of Pop III stars is growing. In this paper, we study the multicolor light curves for a number of metal-free core-collapse SN models (25–100 {M}ȯ ) to determine the indicators for the detection and identification of first generation SNe. We use mixing-fallback supernova explosion models that explain the observed abundance patterns of metal-poor stars. Numerical calculations of the multicolor light curves are performed using the multigroup radiation hydrodynamic code stella. The calculated light curves of metal-free SNe are compared with non-zero-metallicity models and several observed SNe. We have found that the shock breakout characteristics, the evolution of the photosphere’s velocity, the luminosity, and the duration and color evolution of the plateau, that is, all of the SN phases from shock breakout to 56Co decay, are helpful for estimating the parameters of the SN progenitor: the mass, the radius, the explosion energy, and the metallicity. We conclude that the multicolor light curves could potentially be used to identify first-generation SNe in current (Subaru/HSC) and future transient surveys (LSST, James Webb Space Telescope). They are also suitable for identifying low-metallicity SNe in the nearby universe (PTF, Pan-STARRS, Gaia).

  1. Shock-induced nanobubble collapse and its applications

    NASA Astrophysics Data System (ADS)

    Vedadi, Mohammad Hossein

    The shock-induced collapse of nanobubbles in water is investigated using molecular dynamics simulations based on a reactive force field. Monitoring the collapse of a cavitation nanobubble, we observe a focused nanojet at the onset of bubble shrinkage and a water hammer shock wave upon bubble collapse. The nanojet length scales linearly with the nanobubble radius, as observed in experiments on micron-to-millimeter size bubbles. The shock induces dramatic structural changes, including an ice-VII-like structural motif at a particle velocity of approximately 1 km/s. The incipient ice VII formation and the calculated Hugoniot curve are in good agreement with experimental results. Moreover, a substantial number of positive and negative ions appear when the nanojet hits the distal side of the nanobubble and the water hammer shock forms. Furthermore, two promising applications of shock-induced nanobubble collapse have been explored. Our simulations of poration in lipid bilayers due to shock-induced collapse of nanobubbles reveal penetration of nanojets into lipid bilayers. The nanojet impact generates shear flow of water on bilayer leaflets and pressure gradients across them, which transiently enhance the bilayer permeability by creating nanopores through which water molecules translocate across the bilayer. The effects of nanobubble size and temperature on the porosity of lipid bilayers are examined. Finally, the shock-induced collapse of CO2-filled nanobubbles in water is investigated. The energetic nanojet and high-pressure water hammer shock formed during and after collapse of the nanobubble trigger mechano-chemical H2O-CO2 reactions, some of which lead to splitting of water molecules. The dominant pathways through which splitting of water molecules occur are identified.

  2. Simulations of Metallic Nanoscale Structures

    NASA Astrophysics Data System (ADS)

    Jacobsen, Karsten W.

    2003-03-01

    Density-functional-theory calculations can be used to understand and predict materials properties based on their nanoscale composition and structure. In combination with efficient search algorithms DFT can furthermore be applied in the nanoscale design of optimized materials. The first part of the talk will focus on two different types of nanostructures with an interesting interplay between chemical activity and conducting states. MoS2 nanoclusters are known for their catalyzing effect in the hydrodesulfurization process which removes sulfur-containing molecules from oil products. MoS2 is a layered material which is insulating. However, DFT calculations indicates the exsistence of metallic states at some of the edges of MoS2 nanoclusters, and the calculations show that the conducting states are not passivated by for example the presence of hydrogen gas. The edge states may play an important role for the chemical activity of MoS_2. Metallic nanocontacts can be formed during the breaking of a piece of metal, and atomically thin structures with conductance of only a single quantum unit may be formed. Such open metallic structures are chemically very active and susceptible to restructuring through interactions with molecular gases. DFT calculations show for example that atomically thin gold wires may incorporate oxygen atoms forming a new type of metallic nanowire. Adsorbates like hydrogen may also affect the conductance. In the last part of the talk I shall discuss the possibilities for designing alloys with optimal mechanical properties based on a combination of DFT calculations with genetic search algorithms. Simulaneous optimization of several parameters (stability, price, compressibility) is addressed through the determination of Pareto optimal alloy compositions within a large database of more than 64000 alloys.

  3. Photonic band gap structure simulator

    DOEpatents

    Chen, Chiping; Shapiro, Michael A.; Smirnova, Evgenya I.; Temkin, Richard J.; Sirigiri, Jagadishwar R.

    2006-10-03

    A system and method for designing photonic band gap structures. The system and method provide a user with the capability to produce a model of a two-dimensional array of conductors corresponding to a unit cell. The model involves a linear equation. Boundary conditions representative of conditions at the boundary of the unit cell are applied to a solution of the Helmholtz equation defined for the unit cell. The linear equation can be approximated by a Hermitian matrix. An eigenvalue of the Helmholtz equation is calculated. One computation approach involves calculating finite differences. The model can include a symmetry element, such as a center of inversion, a rotation axis, and a mirror plane. A graphical user interface is provided for the user's convenience. A display is provided to display to a user the calculated eigenvalue, corresponding to a photonic energy level in the Brilloin zone of the unit cell.

  4. Collapse, environment, and society

    PubMed Central

    2012-01-01

    Historical collapse of ancient states poses intriguing social-ecological questions, as well as potential applications to global change and contemporary strategies for sustainability. Five Old World case studies are developed to identify interactive inputs, triggers, and feedbacks in devolution. Collapse is multicausal and rarely abrupt. Political simplification undermines traditional structures of authority to favor militarization, whereas disintegration is preconditioned or triggered by acute stress (insecurity, environmental or economic crises, famine), with breakdown accompanied or followed by demographic decline. Undue attention to stressors risks underestimating the intricate interplay of environmental, political, and sociocultural resilience in limiting the damages of collapse or in facilitating reconstruction. The conceptual model emphasizes resilience, as well as the historical roles of leaders, elites, and ideology. However, a historical model cannot simply be applied to contemporary problems of sustainability without adjustment for cumulative information and increasing possibilities for popular participation. Between the 14th and 18th centuries, Western Europe responded to environmental crises by innovation and intensification; such modernization was decentralized, protracted, flexible, and broadly based. Much of the current alarmist literature that claims to draw from historical experience is poorly focused, simplistic, and unhelpful. It fails to appreciate that resilience and readaptation depend on identified options, improved understanding, cultural solidarity, enlightened leadership, and opportunities for participation and fresh ideas. PMID:22371579

  5. Collapse, environment, and society.

    PubMed

    Butzer, Karl W

    2012-03-01

    Historical collapse of ancient states poses intriguing social-ecological questions, as well as potential applications to global change and contemporary strategies for sustainability. Five Old World case studies are developed to identify interactive inputs, triggers, and feedbacks in devolution. Collapse is multicausal and rarely abrupt. Political simplification undermines traditional structures of authority to favor militarization, whereas disintegration is preconditioned or triggered by acute stress (insecurity, environmental or economic crises, famine), with breakdown accompanied or followed by demographic decline. Undue attention to stressors risks underestimating the intricate interplay of environmental, political, and sociocultural resilience in limiting the damages of collapse or in facilitating reconstruction. The conceptual model emphasizes resilience, as well as the historical roles of leaders, elites, and ideology. However, a historical model cannot simply be applied to contemporary problems of sustainability without adjustment for cumulative information and increasing possibilities for popular participation. Between the 14th and 18th centuries, Western Europe responded to environmental crises by innovation and intensification; such modernization was decentralized, protracted, flexible, and broadly based. Much of the current alarmist literature that claims to draw from historical experience is poorly focused, simplistic, and unhelpful. It fails to appreciate that resilience and readaptation depend on identified options, improved understanding, cultural solidarity, enlightened leadership, and opportunities for participation and fresh ideas. PMID:22371579

  6. Structural model uncertainty in stochastic simulation

    SciTech Connect

    McKay, M.D.; Morrison, J.D.

    1997-09-01

    Prediction uncertainty in stochastic simulation models can be described by a hierarchy of components: stochastic variability at the lowest level, input and parameter uncertainty at a higher level, and structural model uncertainty at the top. It is argued that a usual paradigm for analysis of input uncertainty is not suitable for application to structural model uncertainty. An approach more likely to produce an acceptable methodology for analyzing structural model uncertainty is one that uses characteristics specific to the particular family of models.

  7. Probabilistic simulation of uncertainties in thermal structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Shiao, Michael

    1990-01-01

    Development of probabilistic structural analysis methods for hot structures is a major activity at NASA-Lewis, and consists of five program elements: (1) probabilistic loads, (2) probabilistic finite element analysis, (3) probabilistic material behavior, (4) assessment of reliability and risk, and (5) probabilistic structural performance evaluation. Attention is given to quantification of the effects of uncertainties for several variables on High Pressure Fuel Turbopump blade temperature, pressure, and torque of the Space Shuttle Main Engine; the evaluation of the cumulative distribution function for various structural response variables based on assumed uncertainties in primitive structural variables; evaluation of the failure probability; reliability and risk-cost assessment; and an outline of an emerging approach for eventual hot structures certification. Collectively, the results demonstrate that the structural durability/reliability of hot structural components can be effectively evaluated in a formal probabilistic framework. In addition, the approach can be readily extended to computationally simulate certification of hot structures for aerospace environments.

  8. Simulating Vibrations in a Complex Loaded Structure

    NASA Technical Reports Server (NTRS)

    Cao, Tim T.

    2005-01-01

    The Dynamic Response Computation (DIRECT) computer program simulates vibrations induced in a complex structure by applied dynamic loads. Developed to enable rapid analysis of launch- and landing- induced vibrations and stresses in a space shuttle, DIRECT also can be used to analyze dynamic responses of other structures - for example, the response of a building to an earthquake, or the response of an oil-drilling platform and attached tanks to large ocean waves. For a space-shuttle simulation, the required input to DIRECT includes mathematical models of the space shuttle and its payloads, and a set of forcing functions that simulates launch and landing loads. DIRECT can accommodate multiple levels of payload attachment and substructure as well as nonlinear dynamic responses of structural interfaces. DIRECT combines the shuttle and payload models into a single structural model, to which the forcing functions are then applied. The resulting equations of motion are reduced to an optimum set and decoupled into a unique format for simulating dynamics. During the simulation, maximum vibrations, loads, and stresses are monitored and recorded for subsequent analysis to identify structural deficiencies in the shuttle and/or payloads.

  9. Gravitational collapse of depletion-induced colloidal gels.

    PubMed

    Harich, R; Blythe, T W; Hermes, M; Zaccarelli, E; Sederman, A J; Gladden, L F; Poon, W C K

    2016-05-11

    We study the ageing and ultimate gravitational collapse of colloidal gels in which the interparticle attraction is induced by non-adsorbing polymers via the depletion effect. The gels are formed through arrested spinodal decomposition, whereby the dense phase arrests into an attractive glass. We map the experimental state diagram onto a theoretical one obtained from computer simulations and theoretical calculations. Discrepancies between the experimental and simulated gel regions in the state diagram can be explained by the particle size and density dependence of the boundary below which the gel is not strong enough to resist gravitational stress. Visual observations show that gravitational collapse of the gels falls into two distinct regimes as the colloid and polymer concentrations are varied, with gels at low colloid concentrations showing the onset of rapid collapse after a delay time. Magnetic resonance imaging (MRI) was used to provide quantitative, spatio-temporally resolved measurements of the solid volume fraction in these rapidly collapsing gels. We find that during the delay time, a dense region builds up at the top of the sample. The rapid collapse is initiated when the gel structure is no longer able to support this dense layer. PMID:27001686

  10. Signatures of Star Cluster Formation by Cold Collapse

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Aleksandra; Hartmann, Lee; Ballesteros-Paredes, Javier

    2015-12-01

    Subvirial gravitational collapse is one mechanism by which star clusters may form. Here we investigate whether this mechanism can be inferred from observations of young clusters. To address this question, we have computed smoothed particle hydrodynamics simulations of the initial formation and evolution of a dynamically young star cluster through cold (subvirial) collapse, starting with an ellipsoidal, turbulently seeded distribution of gas, and forming sink particles representing (proto)stars. While the initial density distributions of the clouds do not have large initial mass concentrations, gravitational focusing due to the global morphology leads to cluster formation. We use the resulting structures to extract observable morphological and kinematic signatures for the case of subvirial collapse. We find that the signatures of the initial conditions can be erased rapidly as the gas and stars collapse, suggesting that kinematic observations need to be made early in cluster formation and/or at larger scales, away from the growing cluster core. Our results emphasize that a dynamically young system is inherently evolving on short timescales, so that it can be highly misleading to use current-epoch conditions to study aspects such as star formation rates as a function of local density. Our simulations serve as a starting point for further studies of collapse including other factors such as magnetic fields and stellar feedback.

  11. Towards numerical simulations of fluid-structure interactions for investigation of obstructive sleep apnea

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Jung; White, Susan M.; Huang, Shao-Ching; Mallya, Sanjay; Eldredge, Jeff D.

    2014-11-01

    Obstructive sleep apnea(OSA) is a medical condition characterized by repetitive partial or complete occlusion of the airway during sleep. The soft tissues in the airway of OSA patients are prone to collapse under the low pressure loads incurred during breathing. The numerical simulation with patient-specific upper airway model can provide assistance for diagnosis and treatment assessment. The eventual goal of this research is the development of numerical tool for air-tissue interactions in the upper airway of patients with OSA. This tool is expected to capture collapse of the airway in respiratory flow conditions, as well as the effects of various treatment protocols. Here, we present our ongoing progress toward this goal. A sharp-interface embedded boundary method is used on Cartesian grids for resolving the air-tissue interface in the complex patient-specific airway geometries. For the structure simulation, a cut-cell FEM is used. Non-linear Green strains are used for properly resolving the large tissue displacements in the soft palate structures. The fluid and structure solvers are strongly coupled. Preliminary results will be shown, including flow simulation inside the 3D rigid upper airway of patients with OSA, and several validation problem for the fluid-structure coupling.

  12. Numerically simulating the sandwich plate system structures

    NASA Astrophysics Data System (ADS)

    Feng, Guo-Qing; Li, Gang; Liu, Zhi-Hui; Niu, Huai-Lei; Li, Chen-Feng

    2010-09-01

    Sandwich plate systems (SPS) are advanced materials that have begun to receive extensive attention in naval architecture and ocean engineering. At present, according to the rules of classification societies, a mixture of shell and solid elements are required to simulate an SPS. Based on the principle of stiffness decomposition, a new numerical simulation method for shell elements was proposed. In accordance with the principle of stiffness decomposition, the total stiffness can be decomposed into the bending stiffness and shear stiffness. Displacement and stress response related to bending stiffness was calculated with the laminated shell element. Displacement and stress response due to shear was calculated by use of a computational code write by FORTRAN language. Then the total displacement and stress response for the SPS was obtained by adding together these two parts of total displacement and stress. Finally, a rectangular SPS plate and a double-bottom structure were used for a simulation. The results show that the deflection simulated by the elements proposed in the paper is larger than the same simulated by solid elements and the analytical solution according to Hoff theory and approximate to the same simulated by the mixture of shell-solid elements, and the stress simulated by the elements proposed in the paper is approximate to the other simulating methods. So compared with calculations based on a mixture of shell and solid elements, the numerical simulation method given in the paper is more efficient and easier to do.

  13. Collapsible Towers

    NASA Technical Reports Server (NTRS)

    1976-01-01

    NASA needed a means of orbiting a large radio telescope antenna. Astro Research Corporation developed a new structure that was strong, lightweight, folded into a small storage space, and could be erected by rotation. Later they adapted it to commercial use. Today the "Astromast" tower consists of tubular aluminum alloy and stainless steel members that deploy into small three-sided bays, each made rigid by six diagonal cables. All joints are flexible to permit folding and unfolding. Tower packs into container 5% of its height, can be erected without tools and is reusable. Tower has won "Design of the Year" award from Machine Design. Variations include portable emergency bridges and commercial scaffolding.

  14. A comprehensive classification of collapse calderas

    NASA Astrophysics Data System (ADS)

    Geyer, A.; Marti, J.; Acocella, V.; Aguirre-Diaz, G. J.; Cas, R. A.

    2012-12-01

    Collapse calderas are volcanic depressions that result from the disruption of the magma chamber roof during an eruption or lateral intrusion of magma. Their formation implies a perturbation of the structure and dynamics of the associated magma chambers. Collapse calderas are present in any geodynamic environment and may be associated with a wide range of magma compositions. Caldera morphology and structure yield information on subsidence mechanisms, evolutionary stage of collapse and the associated magma chamber, while any eruptive product provides the clues on magma composition and eruption dynamics. The term "caldera" has been commonly used to define certain sizes of collapses in volcanic areas, rather than a specific process. Moreover, several different classifications of collapse caldera have been proposed considering separately various aspects such as morphology, structure, composition, style of subsidence, size, eruption dynamics, or tectonic controls. However, the causative relationships between the resulting caldera types are not always well defined, thus causing confusion on the causes and results of each caldera process. This study has two main goals. 1) First, we provide a timely definition for calderas: we propose to restrict the term collapse caldera to those cases in which there is a direct interaction of the structures controlling collapse with an underlying magma chamber, independently of its size. 2) We present a comprehensive classification of collapse calderas based on an event tree structure that considers a hierarchy of criteria that we analyse in a logical sequence. This classification allows identifying any collapse caldera as a function of its dynamic, geometric, evolutionary and compositional conditions.

  15. Domain Collapse in Grooved Magnetic Garnet Material

    NASA Technical Reports Server (NTRS)

    Peredo, J.; Fedyunin, Y.; Patterson, G.

    1995-01-01

    Domain collapse fields in grooved garnet material were investigated by experimental observation and numerical simulation. The results indicate that the change in domain collapse field is largely due to magnetostatic effects produced by the groove edge. A simplified model based on the effective field produced at a groove edge, and local changes in the material thickness explain the observed trends very well.!.

  16. Shock Wave Induced Collapse of Arrays of Nanobubbles Located Next to a Lipid Membrane: Coarse-Grained Computer Simulations.

    PubMed

    Santo, Kolattukudy P; Berkowitz, Max L

    2015-07-23

    We used molecular dynamics simulations to study creation of pores in lipid bilayer membranes by inducing shock waves in systems containing arrays of nanobubbles next to these membranes. Shock waves impinged on the bubbles imploding them and produced nanojets that subsequently hit the bilayers making pores in them. Our simulations were performed using the MARTINI coarse-grained force field. The emphasis in our study was on the interaction of shock waves with two-bubble arrays when the bubbles were placed in different alignments. We observed that the largest damage to the bilayer was produced when two bubbles were positioned in a serial alignment and the bubbles touched each other. When two touching each other bubbles were located parallel to the membrane surface and at the same distance from the surface, the membrane damage was reduced, compared to the damage done by explosion of two independent nanobubbles. When two nanobubbles were placed in slanted configurations, the damage was intermediate between damages produced by two bubbles in parallel or serial alignment. Damage to the membrane produced by arrays containing more than two bubbles can be understood as a combination of damage produced by all three alignments of two bubbles. PMID:25117111

  17. Computational Simulation of Composite Structural Fatigue

    NASA Technical Reports Server (NTRS)

    Minnetyan, Levon

    2004-01-01

    Progressive damage and fracture of composite structures subjected to monotonically increasing static, tension-tension cyclic, pressurization, and flexural cyclic loading are evaluated via computational simulation. Constituent material properties, stress and strain limits are scaled up to the structure level to evaluate the overall damage and fracture propagation for composites. Damage initiation, growth, accumulation, and propagation to fracture due to monotonically increasing static and cyclic loads are included in the simulations. Results show the number of cycles to failure at different temperatures and the damage progression sequence during different degradation stages. A procedure is outlined for use of computational simulation data in the assessment of damage tolerance, determination of sensitive parameters affecting fracture, and interpretation of results with insight for design decisions.

  18. Computational Simulation of Composite Structural Fatigue

    NASA Technical Reports Server (NTRS)

    Minnetyan, Levon; Chamis, Christos C. (Technical Monitor)

    2005-01-01

    Progressive damage and fracture of composite structures subjected to monotonically increasing static, tension-tension cyclic, pressurization, and flexural cyclic loading are evaluated via computational simulation. Constituent material properties, stress and strain limits are scaled up to the structure level to evaluate the overall damage and fracture propagation for composites. Damage initiation, growth, accumulation, and propagation to fracture due to monotonically increasing static and cyclic loads are included in the simulations. Results show the number of cycles to failure at different temperatures and the damage progression sequence during different degradation stages. A procedure is outlined for use of computational simulation data in the assessment of damage tolerance, determination of sensitive parameters affecting fracture, and interpretation of results with insight for design decisions.

  19. Proline puckering parameters for collagen structure simulations

    SciTech Connect

    Wu, Di

    2015-03-15

    Collagen is made of triple helices rich in proline residues, and hence is influenced by the conformational motions of prolines. Because the backbone motions of prolines are restricted by the helical structures, the only side chain motion—proline puckering—becomes an influential factor that may affect the stability of collagen structures. In molecular simulations, a proper proline puckering population is desired so to yield valid results of the collagen properties. Here we design the proline puckering parameters in order to yield suitable proline puckering populations as demonstrated in the experimental results. We test these parameters in collagen and the proline dipeptide simulations. Compared with the results of the PDB and the quantum calculations, we propose the proline puckering parameters for the selected collagen model simulations.

  20. Simulating the formation of cosmic structure.

    PubMed

    Frenk, C S

    2002-06-15

    A timely combination of new theoretical ideas and observational discoveries has brought about significant advances in our understanding of cosmic evolution. Computer simulations have played a key role in these developments by providing the means to interpret astronomical data in the context of physical and cosmological theory. In the current paradigm, our Universe has a flat geometry, is undergoing accelerated expansion and is gravitationally dominated by elementary particles that make up cold dark matter. Within this framework, it is possible to simulate in a computer the emergence of galaxies and other structures from small quantum fluctuations imprinted during an epoch of inflationary expansion shortly after the Big Bang. The simulations must take into account the evolution of the dark matter as well as the gaseous processes involved in the formation of stars and other visible components. Although many unresolved questions remain, a coherent picture for the formation of cosmic structure is now beginning to emerge. PMID:12804279

  1. Hierarchical Simulation of Hot Composite Structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Murthy, P. L. N.; Singhal, S. N.

    1993-01-01

    Computational procedures are described to simulate the thermal and mechanical behavior of high temperature metal matrix composites (HT-MMC) in the following three broad areas: (1) Behavior of HT-MMC's from micromechanics to laminate via Metal Matrix Composite Analyzer (METCAN), (2) tailoring of HT-MMC behavior for optimum specific performance via Metal Matrix Laminate Tailoring (MMLT), and (3) HT-MMC structural response for hot structural components via High Temperature Composite Analyzer (HITCAN). Representative results from each area are presented to illustrate the effectiveness of computational simulation procedures. The sample case results show that METCAN can be used to simulate material behavior such as strength, stress-strain response, and cyclic life in HTMMC's; MMLT can be used to tailor the fabrication process for optimum performance such as that for in-service load carrying capacity of HT-MMC's; and HITCAN can be used to evaluate static fracture and fatigue life of hot pressurized metal matrix composite rings.

  2. Structured Debriefing in Simulation-Based Education.

    PubMed

    Palaganas, Janice C; Fey, Mary; Simon, Robert

    2016-02-01

    Debriefing following a simulation event is a conversational period for reflection and feedback aimed at sustaining or improving future performance. It is considered by many simulation educators to be a critical activity for learning in simulation-based education. Deep learning can be achieved during debriefing and often depends on the facilitation skills of the debriefer as well as the learner's perceptions of a safe and supportive learning environment as created by the debriefer. On the other hand, poorly facilitated debriefings may create adverse learning, generate bad feelings, and may lead to a degradation of clinical performance, self-reflection, or harm to the educator-learner relationship. The use of a structure that recognizes logical and sequential phases during debriefing can assist simulation educators to achieve a deep level of learning. PMID:26909457

  3. Numerical Simulation of Downstream Flooding due to a Flexible-Dam Collapse. The case of "La Esperanza" dam, Hidalgo-México: Implication on Hazard Assessment.

    NASA Astrophysics Data System (ADS)

    Areu Rangel, O. S., Sr.; Mendoza-Sanchez, I.; Bonasia, R.

    2015-12-01

    The risk of flooding of settlements located downstream of a dam is high due to the large number of people living on natural waterways. Risk assessment of flooding could help in projecting containment and protection in case of a dam-break. For projecting containment and protection works, the assessment should take into account velocities, densities and impact pressure of the water on the villages in risk. Therefore, it is appealing to conduct a series of numerical simulations of downstream flooding including velocity and pressure fields, and their temporal and spatial fluctuations. The present work focuses on the real case of "La Esperanza" dam, located in the state of Hidalgo (Mexico). The dam was built 70 years ago and currently two thirds of its capacity is covered with silt, which implies a very high horizontal thrust. The simulation of the flood due to failure of the dam was carried on using the DualSPHysics code, a new implementation of the mesh-free Lagrangian Smoothed Particle Hydrodynamic (SPH) method. For the boundary conditions, a Digital Elevation Model of the potentially affected area was built using satellite images, the actual bathymetry of the dam and cross sections of the channel. In order to evaluate the hazard posed to the villages located downstream of the dam, different collapse scenarios were simulated, with particular focus on the consequences of the temporal variation of rainfall. Preliminary results show acceleration and dynamic pressure values of water in especially selected areas that are subjected to high risk for the elevated number of inhabitant.

  4. SIMULATING ACCELERATOR STRUCTURE OPERATION AT HIGH POWER

    SciTech Connect

    Ivanov, V

    2004-09-15

    The important limiting factors in high-gradient accelerator structure operation are dark current capture, RF breakdown and electron multipacting. These processes involve both primary and secondary electron field emission and produce plasma and X-rays. To better understand these phenomena, they have simulated dark current generation and transport in a linac structure and a square-bend waveguide, both high power tested at SLAC. For these simulations, they use the parallel, time-domain, unstructured-grid code Tau3P and the particle tracking module Track3P. In this paper, they present numerical results and their comparison with measurements on energy spectrum of electrons transmitted in a 30-cell structure and of X-rays emitted from the square-bend waveguide.

  5. Solvent controlled ion association in structured copolymers: Molecular dynamics simulations in dilute solutions

    NASA Astrophysics Data System (ADS)

    Aryal, Dipak; Perahia, Dvora; Grest, Gary S.

    2015-09-01

    Tailoring the nature of individual segments within ion containing block co-polymers is one critical design tool to achieve desired properties. The local structure including the size and distribution of the ionic blocks, as well as the long range correlations, are crucial for their transport ability. Here, we present molecular dynamics simulations on the effects of varying the concentrations of the ionizable groups on the conformations of pentablock ionomer that consist of a center block of ionic sulfonated styrene tethered to polyethylene and terminated by a bulky substituted styrene in dilute solutions. Sulfonation fractions f (0 ≤ f ≤ 0.55), spanning the range from ionomer to polyelectrolytes, were studied. Results for the equilibrium conformation of the chains in water and a 1:1 mixture of cyclohexane and heptane are compared to that in implicit poor solvents with dielectric constants ɛ = 1.0 and 77.73. In water, the pentablock collapses with the sulfonated groups on the outer surface. As f increases, the ionic, center block increasingly segregates from the hydrophobic regions. In the 1:1 mixture of cyclohexane and heptane, the flexible blocks swell, while the center ionic block collapses for f > 0. For f = 0, all blocks swell. In both implicit poor solvents, the pentablock collapses into a nearly spherical shape for all f. The sodium counterions disperse widely throughout the simulation cell for both water and ɛ = 77.73, whereas for ɛ = 1.0 and mixture of cyclohexane and heptane, the counterions largely condense onto the collapsed pentablock.

  6. Stochastic Simulation Tool for Aerospace Structural Analysis

    NASA Technical Reports Server (NTRS)

    Knight, Norman F.; Moore, David F.

    2006-01-01

    Stochastic simulation refers to incorporating the effects of design tolerances and uncertainties into the design analysis model and then determining their influence on the design. A high-level evaluation of one such stochastic simulation tool, the MSC.Robust Design tool by MSC.Software Corporation, has been conducted. This stochastic simulation tool provides structural analysts with a tool to interrogate their structural design based on their mathematical description of the design problem using finite element analysis methods. This tool leverages the analyst's prior investment in finite element model development of a particular design. The original finite element model is treated as the baseline structural analysis model for the stochastic simulations that are to be performed. A Monte Carlo approach is used by MSC.Robust Design to determine the effects of scatter in design input variables on response output parameters. The tool was not designed to provide a probabilistic assessment, but to assist engineers in understanding cause and effect. It is driven by a graphical-user interface and retains the engineer-in-the-loop strategy for design evaluation and improvement. The application problem for the evaluation is chosen to be a two-dimensional shell finite element model of a Space Shuttle wing leading-edge panel under re-entry aerodynamic loading. MSC.Robust Design adds value to the analysis effort by rapidly being able to identify design input variables whose variability causes the most influence in response output parameters.

  7. Computational simulation of human upper airway collapse using a pressure-/state-dependent model of genioglossal muscle contraction under laminar flow conditions

    PubMed Central

    Huang, Yaqi; Malhotra, Atul; White, David P.

    2012-01-01

    A three-element, pressure- and state (sleep and wake) -dependent contraction model of the genioglossal muscle was developed based on the microstructure of skeletal muscle and the cross-bridge theory. This model establishes a direct connection between the contractile forces generated in muscle fibers and the measured electromyogram signals during various upper airway conditions. This effectively avoids the difficulty of determining muscle shortening velocity during complex pharyngeal conditions when modeling the muscle’s contractile behaviors. The activation of the genioglossal muscle under different conditions was then simulated. A sensitivity analysis was performed to determine the effects of varying each modeled parameter on the muscle’s contractile behaviors. This muscle contraction model was then incorporated into our anatomically correct, two-dimensional computational model of the pharyngeal airway to perform a finite-element analysis of air flow, tissue deformation, and airway collapse. The model-predicted muscle deformations are consistent with previous observations regarding upper airway behavior in normal subjects. PMID:15831800

  8. NEW EQUATIONS OF STATE BASED ON THE LIQUID DROP MODEL OF HEAVY NUCLEI AND QUANTUM APPROACH TO LIGHT NUCLEI FOR CORE-COLLAPSE SUPERNOVA SIMULATIONS

    SciTech Connect

    Furusawa, Shun; Yamada, Shoichi; Sumiyoshi, Kohsuke; Suzuki, Hideyuki

    2013-08-01

    We construct new equations of state for baryons at subnuclear densities for the use in core-collapse simulations of massive stars. The abundance of various nuclei is obtained together with thermodynamic quantities. A model free energy is constructed, based on the relativistic mean field theory for nucleons and the mass formula for nuclei with the proton number up to {approx}1000. The formulation is an extension of the previous model, in which we adopted the liquid drop model to all nuclei under the nuclear statistical equilibrium. We reformulate the new liquid drop model so that the temperature dependences of bulk energies could be taken into account. Furthermore, we extend the region in the nuclear chart, in which shell effects are included, by using theoretical mass data in addition to experimental ones. We also adopt a quantum-theoretical mass evaluation of light nuclei, which incorporates the Pauli- and self-energy shifts that are not included in the ordinary liquid drop model. The pasta phases for heavy nuclei are taken into account in the same way as in the previous model. We find that the abundances of heavy nuclei are modified by the shell effects of nuclei and temperature dependence of bulk energies. These changes may have an important effect on the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores. The abundances of light nuclei are also modified by the new mass evaluation, which may affect the heating and cooling rates of supernova cores and shocked envelopes.

  9. Probabilistic simulation of uncertainties in thermal structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Shiao, Michael

    1990-01-01

    Development of probabilistic structural analysis methods for hot structures is a major activity at Lewis Research Center. It consists of five program elements: (1) probabilistic loads; (2) probabilistic finite element analysis; (3) probabilistic material behavior; (4) assessment of reliability and risk; and (5) probabilistic structural performance evaluation. Recent progress includes: (1) quantification of the effects of uncertainties for several variables on high pressure fuel turbopump (HPFT) blade temperature, pressure, and torque of the Space Shuttle Main Engine (SSME); (2) the evaluation of the cumulative distribution function for various structural response variables based on assumed uncertainties in primitive structural variables; (3) evaluation of the failure probability; (4) reliability and risk-cost assessment, and (5) an outline of an emerging approach for eventual hot structures certification. Collectively, the results demonstrate that the structural durability/reliability of hot structural components can be effectively evaluated in a formal probabilistic framework. In addition, the approach can be readily extended to computationally simulate certification of hot structures for aerospace environments.

  10. Simulation of plasma double-layer structures

    NASA Technical Reports Server (NTRS)

    Borovsky, J. E.; Joyce, G.

    1982-01-01

    Electrostatic plasma double layers are numerically simulated by means of a magnetized 2 1/2 dimensional particle in cell method. The investigation of planar double layers indicates that these one dimensional potential structures are susceptible to periodic disruption by instabilities in the low potential plasmas. Only a slight increase in the double layer thickness with an increase in its obliqueness to the magnetic field is observed. Weak magnetization results in the double layer electric field alignment of accelerated particles and strong magnetization results in their magnetic field alignment. The numerical simulations of spatially periodic two dimensional double layers also exhibit cyclical instability. A morphological invariance in two dimensional double layers with respect to the degree of magnetization implies that the potential structures scale with Debye lengths rather than with gyroradii. Electron beam excited electrostatic electron cyclotron waves and (ion beam driven) solitary waves are present in the plasmas adjacent to the double layers.