Science.gov

Sample records for single antigen gp63

  1. Immunogenicity of a Salmonella typhi CVD 908 candidate vaccine strain expressing the major surface protein gp63 of Leishmania mexicana mexicana.

    PubMed

    González, C R; Noriega, F R; Huerta, S; Santiago, A; Vega, M; Paniagua, J; Ortiz-Navarrete, V; Isibasi, A; Levine, M M

    1998-01-01

    Attenuated Salmonella typhi are attractive for use as live vector vaccines to express protozoal antigens and deliver them to the human immune system. The gene encoding the mature form of Leishmania mexicana mexicana gp63 under control of tac promoter was integrated into the delta aroC locus of the chromosome of attenuated delta aroC, delta aroD S. typhi strain CVD 908. After oral immunization of BALB/c mice with two 1 x 10(9) colony forming unit doses given 21 days apart, CVD 908 omega (delta aroC::Ptac-gp63) elicited a broad T cell-mediated immune response against L. m. mexicana gp63 as demonstrated by: (1) lymphoproliferative response to fixed whole L. m. mexicana promastigotes; (2) activation of IL-2 (but not IL-4)-producing lymphocytes; (3) appearance of cytotoxic T cells against mouse mastocytoma cells expressing gp63. This T-cell mediated immune response was associated with significant protection in F1 (BALB/cXC57Bl/6) mice challenged in their footpads with a wild type strain of L. m. mexicana. PMID:9682357

  2. Gp63-like molecules in Phytomonas serpens: possible role in the insect interaction.

    PubMed

    d'Avila-Levy, Claudia M; Santos, Lívia O; Marinho, Fernanda A; Dias, Felipe A; Lopes, Angela H; Santos, André L S; Branquinha, Marta H

    2006-06-01

    In this study, we demonstrated that metallopeptidase inhibitors (EDTA, EGTA, and 1,10-phenanthroline) were able to arrest Phytomonas serpens growth in distinct patterns. This parasite released exclusively metallopeptidases to the extracellular environment, whereas in cellular extracts only cysteine peptidases were detected. In addition, an extracellular polypeptide of 60 kDa reacted in Western blotting probed with polyclonal antibody raised against gp63 of Leishmania amazonensis. In the cellular parasite extract, this antibody recognized bands migrating at 63 and 52 kDa, which partitioned on both aqueous and membrane-rich fractions. Flow cytometry and fluorescence microscopy analyses showed that the gp63-like molecules have a surface location. Moreover, phospholipase C (PLC)-treated parasites reduced the number of gp63-positive cells. The anti-cross-reacting determinant (CRD) and anti-gp63 antibodies recognized the 60-kDa band in the supernatant from PLC-treated cells, suggesting that this protein is glycosylphosphatidylinositol-anchored to the plasma membrane. This is the first report on the presence of gp63-like molecules in members of the Phytomonas genus. The pretreatment of the parasites with anti-gp63 antibody significantly diminished their adhesion index to explanted salivary glands of the phytophagous insect Oncopeltus fasciatus, suggesting a potential involvement of the gp63-like molecules in the adhesive process of this plant trypanosomatid. PMID:16732452

  3. Cysteine Peptidase B Regulates Leishmania mexicana Virulence through the Modulation of GP63 Expression

    PubMed Central

    Casgrain, Pierre-André; Martel, Caroline; McMaster, W. Robert; Mottram, Jeremy C.; Olivier, Martin; Descoteaux, Albert

    2016-01-01

    Cysteine peptidases play a central role in the biology of Leishmania. In this work, we sought to further elucidate the mechanism(s) by which the cysteine peptidase CPB contributes to L. mexicana virulence and whether CPB participates in the formation of large communal parasitophorous vacuoles induced by these parasites. We initially examined the impact of L. mexicana infection on the trafficking of VAMP3 and VAMP8, two endocytic SNARE proteins associated with phagolysosome biogenesis and function. Using a CPB-deficient mutant, we found that both VAMP3 and VAMP8 were down-modulated in a CPB-dependent manner. We also discovered that expression of the virulence-associated GPI-anchored metalloprotease GP63 was inhibited in the absence of CPB. Expression of GP63 in the CPB-deficient mutant was sufficient to down-modulate VAMP3 and VAMP8. Similarly, episomal expression of GP63 enabled the CPB-deficient mutant to establish infection in macrophages, induce the formation of large communal parasitophorous vacuoles, and cause lesions in mice. These findings implicate CPB in the regulation of GP63 expression and provide evidence that both GP63 and CPB are key virulence factors in L. mexicana. PMID:27191844

  4. Leishmania major Promastigotes Evade LC3-Associated Phagocytosis through the Action of GP63

    PubMed Central

    Matte, Christine; Casgrain, Pierre-André; Séguin, Olivier; Moradin, Neda; Hong, Wan Jin; Descoteaux, Albert

    2016-01-01

    The protozoan Leishmania parasitizes macrophages and evades the microbicidal consequences of phagocytosis through the inhibition of phagolysosome biogenesis. In this study, we investigated the impact of this parasite on LC3-associated phagocytosis, a non-canonical autophagic process that enhances phagosome maturation and functions. We show that whereas internalization of L. major promastigotes by macrophages promoted LC3 lipidation, recruitment of LC3 to phagosomes was inhibited through the action of the parasite surface metalloprotease GP63. Reactive oxygen species generated by the NOX2 NADPH oxidase are necessary for LC3-associated phagocytosis. We found that L. major promastigotes prevented, in a GP63-dependent manner, the recruitment of NOX2 to phagosomes through a mechanism that does not involve NOX2 cleavage. Moreover, we found that the SNARE protein VAMP8, which regulates phagosomal assembly of the NADPH oxidase NOX2, was down-modulated by GP63. In the absence of VAMP8, recruitment of LC3 to phagosomes containing GP63-deficient parasites was inhibited, indicating that VAMP8 is involved in the phagosomal recruitment of LC3. These findings reveal a role for VAMP8 in LC3-associated phagocytosis and highlight a novel mechanism exploited by L. major promastigotes to interfere with the host antimicrobial machinery. PMID:27280768

  5. Leishmania major Promastigotes Evade LC3-Associated Phagocytosis through the Action of GP63.

    PubMed

    Matte, Christine; Casgrain, Pierre-André; Séguin, Olivier; Moradin, Neda; Hong, Wan Jin; Descoteaux, Albert

    2016-06-01

    The protozoan Leishmania parasitizes macrophages and evades the microbicidal consequences of phagocytosis through the inhibition of phagolysosome biogenesis. In this study, we investigated the impact of this parasite on LC3-associated phagocytosis, a non-canonical autophagic process that enhances phagosome maturation and functions. We show that whereas internalization of L. major promastigotes by macrophages promoted LC3 lipidation, recruitment of LC3 to phagosomes was inhibited through the action of the parasite surface metalloprotease GP63. Reactive oxygen species generated by the NOX2 NADPH oxidase are necessary for LC3-associated phagocytosis. We found that L. major promastigotes prevented, in a GP63-dependent manner, the recruitment of NOX2 to phagosomes through a mechanism that does not involve NOX2 cleavage. Moreover, we found that the SNARE protein VAMP8, which regulates phagosomal assembly of the NADPH oxidase NOX2, was down-modulated by GP63. In the absence of VAMP8, recruitment of LC3 to phagosomes containing GP63-deficient parasites was inhibited, indicating that VAMP8 is involved in the phagosomal recruitment of LC3. These findings reveal a role for VAMP8 in LC3-associated phagocytosis and highlight a novel mechanism exploited by L. major promastigotes to interfere with the host antimicrobial machinery. PMID:27280768

  6. Evaluation of a gp63–PCR Based Assay as a Molecular Diagnosis Tool in Canine Leishmaniasis in Tunisia

    PubMed Central

    Guerbouj, Souheila; Djilani, Fattouma; Bettaieb, Jihene; Lambson, Bronwen; Diouani, Mohamed Fethi; Ben Salah, Afif; Ben Ismail, Riadh; Guizani, Ikram

    2014-01-01

    A gp63PCR method was evaluated for the detection and characterization of Leishmania (Leishmania) (L.) parasites in canine lymph node aspirates. This tool was tested and compared to other PCRs based on the amplification of 18S ribosomal genes, a L. infantum specific repetitive sequence and kinetoplastic DNA minicircles, and to classical parasitological (smear examination and/or culture) or serological (IFAT) techniques on a sample of 40 dogs, originating from different L. infantum endemic regions in Tunisia. Sensitivity and specificity of all the PCR assays were evaluated on parasitologically confirmed dogs within this sample (N = 18) and control dogs (N = 45) originating from non–endemic countries in northern Europe and Australia. The gp63 PCR had 83.5% sensitivity and 100% specificity, a performance comparable to the kinetoplast PCR assay and better than the other assays. These assays had comparable results when the gels were southern transferred and hybridized with a radioactive probe. As different infection rates were found according to the technique, concordance of the results was estimated by (κ) test. Best concordance values were between the gp63PCR and parasitological methods (74.6%, 95% confidence intervals CI: 58.8–95.4%) or serology IFAT technique (47.4%, 95% CI: 23.5–71.3%). However, taken together Gp63 and Rib assays covered most of the samples found positive making of them a good alternative for determination of infection rates. Potential of the gp63PCR-RFLP assay for analysis of parasite genetic diversity within samples was also evaluated using 5 restriction enzymes. RFLP analysis confirmed assignment of the parasites infecting the dogs to L. infantum species and illustrated occurrence of multiple variants in the different endemic foci. Gp63 PCR assay thus constitutes a useful tool in molecular diagnosis of L. infantum infections in dogs in Tunisia. PMID:25153833

  7. Novel peptide inhibitors of Leishmania gp63 based on the cleavage site of MARCKS (myristoylated alanine-rich C kinase substrate)-related protein.

    PubMed Central

    Corradin, Sally; Ransijn, Adriana; Corradin, Giampietro; Bouvier, Jacques; Delgado, Maria Belen; Fernandez-Carneado, Jimena; Mottram, Jeremy C; Vergères, Guy; Mauël, Jacques

    2002-01-01

    The zinc metalloprotease gp63 (leishmanolysin; promastigote surface protease) is expressed at high density at the surface of Leishmania promastigotes. Efficient non-toxic inhibitors of gp63 do not exist, and its precise role in parasite physiology remains unknown. MARCKS (myristoylated alanine-rich C kinase substrate) and MARCKS-related protein (MRP; MacMARCKS) are protein kinase C substrates in various cells, including macrophages. We reported previously that MRP is an excellent substrate for gp63. A major cleavage site was identified within the MRP effector domain (ED), a highly basic 24-amino-acid sequence, and the synthetic ED peptide (MRP(ED)) was shown to inhibit MRP hydrolysis. In the present study, MRP cleavage was used as an assay to measure the capacity of various MRP or MARCKS ED peptides to block gp63 activity. On a molar basis, MRP(ED) inhibited gp63 to a greater extent than two previously described gp63 inhibitors, o -phenanthroline and benzyloxycarbonyl-Tyr-Leu-NHOH. MARCKS(ED) analogues containing modifications in the gp63 consensus cleavage site showed significant differences in inhibitory capacity. As phosphorylation of ED serine residues prevented gp63-mediated MRP degradation, we synthesized a pseudophosphorylated peptide in which serine residues were substituted by aspartate (3DMRP(ED)). 3DMRP(ED) was a highly effective inhibitor of both soluble and parasite-associated gp63. Finally, MRP ED peptides were synthesized together with an N-terminal HIV-1 Tat transduction domain (TD) to obtain cell-permeant peptide constructs. Such peptides retained gp63 inhibitory activity and efficiently entered both macrophages and parasites in a Tat TD-dependent manner. These studies may provide the basis for developing potent cell-permeant inhibitors of gp63. PMID:12137567

  8. Specific pseudorabies virus infection of the rat visual system requires both gI and gp63 glycoproteins.

    PubMed Central

    Whealy, M E; Card, J P; Robbins, A K; Dubin, J R; Rziha, H J; Enquist, L W

    1993-01-01

    Transneuronal transport of pseudorabies virus (PRV) from the retina to visual centers that mediate visual discrimination and reflexes requires specific genes in the unique short region of the PRV genome. In contrast, these same viral genes are not required to infect retinorecipient areas of the brain involved in circadian rhythm regulation. In this report, we demonstrate that viral mutants carrying defined deletions of the genes encoding glycoprotein gI or gp63, or both, result in the same dramatic transport defect. Efficient export of either gI or gp63 from the endoplasmic reticulum to the Golgi apparatus in a fibroblast cell line requires the presence of both proteins. We also show that gI and gp63 physically interact, as demonstrated by pulse-chase and sucrose gradient sedimentation experiments. Complex formation is rapid compared with homodimerization of PRV glycoprotein gII. We suggest that gI and gp63 function in concert to affect neurotropism in the rat visual circuitry and that a heterodimer is likely to be the unit of function. Images PMID:8389905

  9. Differential expression of cruzipain- and gp63-like molecules in the phytoflagellate trypanosomatid Phytomonas serpens induced by exogenous proteins.

    PubMed

    Elias, Camila G R; Chagas, Michel G; Souza-Gonçalves, Ana Luiza; Pascarelli, Bernardo M O; d'Avila-Levy, Claudia M; Branquinha, Marta H; Santos, André L S

    2012-01-01

    Phytomonas serpens synthesizes metallo- and cysteine-proteases that are related to gp63 and cruzipain, respectively, two virulence factors produced by pathogenic trypanosomatids. Here, we described the cellular distribution of gp63- and cruzipain-like molecules in P. serpens through immunocytochemistry and confocal fluorescence microscopy. Both proteases were detected in distinct cellular compartments, presenting co-localization in membrane domains and intracellular regions. Subsequently, we showed that exogenous proteins modulated the production of both protease classes, but in different ways. Regarding the metalloprotease, only fetal bovine serum (FBS) influenced the gp63 expression, reducing its surface exposition (≈30%). Conversely, the cruzipain-like molecule was differentially modulated according to the proteins: human and bovine albumins reduced its expression around 50% and 35%, respectively; mucin and FBS did not alter its production, while IgG and hemoglobin drastically enhanced its surface exposition around 7- and 11-fold, respectively. Additionally, hemoglobin induced an augmentation in the cell-associated cruzipain-like activity in a dose-dependent manner. A twofold increase of the secreted cruzipain-like protein was detected after parasite incubation with 1% hemoglobin compared to the parasites incubated in PBS-glucose. The results showed the ability of P. serpens in modulating the expression and the activity of proteolytic enzymes after exposition to exogenous proteins, with emphasis in its cruzipain-like molecules. PMID:22033075

  10. Single-Antigen Serological Testing for Bovine Tuberculosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antibody responses are useful indicators of Mycobacterium bovis infection of cattle. Tests for serological responses often use panels of multiple M. bovis antigens as detection probes. This is recommended because responses to single antigens may be too variable for consistent diagnosis. However, the...

  11. Antigenic composition of single nano-sized extracellular blood vesicles.

    PubMed

    Arakelyan, Anush; Ivanova, Oxana; Vasilieva, Elena; Grivel, Jean-Charles; Margolis, Leonid

    2015-04-01

    Extracellular vesicles (EVs) are important in normal physiology and are altered in various pathologies. EVs produced by different cells are antigenically different. Since the majority of EVs are too small for routine flow cytometry, EV composition is studied predominantly in bulk, thus not addressing their antigenic heterogeneity. Here, we describe a nanoparticle-based technique for analyzing antigens on single nano-sized EVs. The technique consists of immuno-capturing of EVs with 15-nm magnetic nanoparticles, staining captured EVs with antibodies against their antigens, and separating them from unbound EVs and free antibodies in a magnetic field, followed by flow analysis. This technique allows us to characterize EVs populations according to their antigenic distribution, including minor EV fractions. We demonstrated that the individual blood EVs carry different sets of antigens, none being ubiquitous, and quantified their distribution. The physiological significance of antigenically different EVs and their correlation with different pathologies can now be directly addressed. From the clinical editor: This study reports a nanoparticle-based technique for analyzing antigens on single nano-sized extracellular vehicles (EV). The technique consists of immuno-capturing of EVs with 15-nm magnetic nanoparticles, followed by staining the captured EVs with antibodies and separating them via a magnetic field, followed by flow analysis. This technique enables studies of antigenic properties of individual EVs that conventionally can only be studied in bulk. PMID:25481806

  12. [Antigenic response against PPD and antigen 60 in tubercular patients: single antigen versus the combined test].

    PubMed

    Máttar, S; Broquetas, J M; Gea, J; Aran, X; el-Banna, N; Sauleda, J; Torres, J M

    1992-05-01

    We analyze serum samples from 70 patients with pulmonary tuberculosis and 50 healthy individuals. The antigenic activity (IgG) against protein purified antigen (PPD) and antigen 60 (A60) from M. tuberculosis. Thirteen patients were also HIV infected, and three patients had AIDS defined by the presence of disseminated tuberculosis. The test using antigen alone showed a 77% sensitivity and 74% specificity when PPD is used. When A60 was used, both values improved (81% sensitivity, 94% specificity). The use of a combined test (PPD and A60) improves the sensitivity (89%) but reduces the specificity (82%). The HIV infected patients showed similar responses to those of other patients. The combined use of different antigens might be useful for diagnosing tuberculosis. PMID:1390996

  13. Deep Sequencing of the Trypanosoma cruzi GP63 Surface Proteases Reveals Diversity and Diversifying Selection among Chronic and Congenital Chagas Disease Patients

    PubMed Central

    Llewellyn, Martin S.; Messenger, Louisa A.; Luquetti, Alejandro O.; Garcia, Lineth; Torrico, Faustino; Tavares, Suelene B. N.; Cheaib, Bachar; Derome, Nicolas; Delepine, Marc; Baulard, Céline; Deleuze, Jean-Francois; Sauer, Sascha; Miles, Michael A.

    2015-01-01

    Background Chagas disease results from infection with the diploid protozoan parasite Trypanosoma cruzi. T. cruzi is highly genetically diverse, and multiclonal infections in individual hosts are common, but little studied. In this study, we explore T. cruzi infection multiclonality in the context of age, sex and clinical profile among a cohort of chronic patients, as well as paired congenital cases from Cochabamba, Bolivia and Goias, Brazil using amplicon deep sequencing technology. Methodology/ Principal Findings A 450bp fragment of the trypomastigote TcGP63I surface protease gene was amplified and sequenced across 70 chronic and 22 congenital cases on the Illumina MiSeq platform. In addition, a second, mitochondrial target—ND5—was sequenced across the same cohort of cases. Several million reads were generated, and sequencing read depths were normalized within patient cohorts (Goias chronic, n = 43, Goias congenital n = 2, Bolivia chronic, n = 27; Bolivia congenital, n = 20), Among chronic cases, analyses of variance indicated no clear correlation between intra-host sequence diversity and age, sex or symptoms, while principal coordinate analyses showed no clustering by symptoms between patients. Between congenital pairs, we found evidence for the transmission of multiple sequence types from mother to infant, as well as widespread instances of novel genotypes in infants. Finally, non-synonymous to synonymous (dn:ds) nucleotide substitution ratios among sequences of TcGP63Ia and TcGP63Ib subfamilies within each cohort provided powerful evidence of strong diversifying selection at this locus. Conclusions/Significance Our results shed light on the diversity of parasite DTUs within each patient, as well as the extent to which parasite strains pass between mother and foetus in congenital cases. Although we were unable to find any evidence that parasite diversity accumulates with age in our study cohorts, putative diversifying selection within members of the TcGP63I

  14. Evaluation of swinepox virus as a vaccine vector in pigs using an Aujeszky's disease (pseudorabies) virus gene insert coding for glycoproteins gp50 and gp63.

    PubMed

    van der Leek, M L; Feller, J A; Sorensen, G; Isaacson, W; Adams, C L; Borde, D J; Pfeiffer, N; Tran, T; Moyer, R W; Gibbs, E P

    1994-01-01

    Pigs were vaccinated by scarification or intramuscular injection with a swinepox virus-Aujeszky's disease (pseudorabies) recombinant (rSPV-AD) constructed by inserting the linked Aujeszky's disease virus genes coding for glycoproteins gp50 and gp63, attached to a vaccinia virus p7.5 promoter, into the thymidine kinase gene of swinepox virus. By 21 days after vaccination, 90 and 100 per cent of the animals vaccinated by scarification or intramuscular injection, respectively, had developed serum neutralising antibodies to Aujeszky's disease virus. Upon challenge with virulent virus, significantly fewer vaccinated pigs developed clinical Aujeszky's disease, nasal shedding of challenge virus was markedly reduced, and the vaccinated groups of pigs maintained or gained weight during the week after challenge whereas the unvaccinated control group lost weight. No transmission of rSPV-AD to in-contact controls was detected during the three weeks before challenge. In a second experiment, serum neutralising antibodies to Aujeszky's disease virus persisted for 150 days after the pigs were vaccinated with rSPV-AD by scarification or intramuscular injection and all the pigs showed an anamnestic response when they were revaccinated. PMID:8128561

  15. Antigen

    MedlinePlus

    An antigen is any substance that causes your immune system to produce antibodies against it. This means your immune ... and is trying to fight it off. An antigen may be a substance from the environment, such ...

  16. Immune overload: Parental attitudes toward combination and single antigen vaccines.

    PubMed

    Hulsey, Ella; Bland, Tami

    2015-05-21

    Parental concerns have led to a recent decline in immunization coverage, resulting in outbreaks of diseases that were once under control in the US. As the CDC vaccination schedule continues to increase in complexity, the number of required injections per office visit increases as well. Some parents perceive that there is trauma associated with the administration of multiple injections, and research shows that having multiple vaccines due in a single visit is associated with delays and lower immunization rates. Combination vaccines make vaccination more efficient by incorporating the antigens of several different diseases into a single injection, but many parents worry that they may overload the child's developing immune system and leave him or her susceptible to secondary infections. This literature review synthesizes current evidence regarding the parental fear of vaccine-induced immune system overload and the fear of vaccine-associated trauma, in an attempt to understand the scope and nature of these fears. Despite the wealth of knowledge about each of these fears individually, it is still unknown which is of greater concern and how this affects parental decision-making. PMID:25891399

  17. Single antigen flow beads for identification of human leukocyte antigen antibody specificities in hypersensitized patients with chronic renal failure

    PubMed Central

    Kılıçaslan-Ayna, Tülay; Özkızılcık-Koçyiğit, Aslı; Güleç, Derya; Pirim, İbrahim

    2016-01-01

    Aims of this study Aims of this study were to identify class I and class II antibodies in highly sensitized patients by flow cytometry single antigen bead (FC-SAB) assay and to evaluate according to donor HLA type in order to increase their kidney transplantation chance. Material and methods We analyzed 60 hypersensitive patients of 351 individuals, who applied to our laboratory for PRA test in November 2013-December 2014. Flow cytometric PRA screening and single antigen bead commercial kits were used for these analyses. Results In our study group, 19 (31.7%) of these patients were male while 41 (68.3%) patients were female. The most common acceptable antigens were A*02 (10.11%), HLA-A*23 (10.11%), HLA-B*38 (8.79%) and HLA-DRB1*03 (7.83%) in hypersensitive patients. The highest antibody reactivity on SAB was observed against HLA-A*25, HLA-B*45, HLA-DRB1*04 and HLA-DRB1*08 antigens. Conclusions The determination of these acceptable and unacceptable antigens may increase their transplantation chance. Pre-transplant HLA antibody identifications provide prognostic information with respect to the determination of patients who are at increased risk of graft loss. PMID:27095928

  18. Haplotyping the human leukocyte antigen system from single chromosomes

    PubMed Central

    Murphy, Nicholas M.; Burton, Matthew; Powell, David R.; Rossello, Fernando J.; Cooper, Don; Chopra, Abha; Hsieh, Ming Je; Sayer, David C.; Gordon, Lavinia; Pertile, Mark D; Tait, Brian D.; Irving, Helen R.; Pouton, Colin W.

    2016-01-01

    We describe a method for determining the parental HLA haplotypes of a single individual without recourse to conventional segregation genetics. Blood samples were cultured to identify and sort chromosome 6 by bivariate flow cytometry. Single chromosome 6 amplification products were confirmed with a single nucleotide polymorphism (SNP) array and verified by deep sequencing to enable assignment of both alleles at the HLA loci, defining the two haplotypes. This study exemplifies a rapid and efficient method of haplotyping that can be applied to any chromosome pair, or indeed all chromosome pairs, using a single sorting operation. The method represents a cost-effective approach to complete phasing of SNPs, which will facilitate a deeper understanding of the links between SNPs, gene regulation and protein function. PMID:27461731

  19. Haplotyping the human leukocyte antigen system from single chromosomes.

    PubMed

    Murphy, Nicholas M; Burton, Matthew; Powell, David R; Rossello, Fernando J; Cooper, Don; Chopra, Abha; Hsieh, Ming Je; Sayer, David C; Gordon, Lavinia; Pertile, Mark D; Tait, Brian D; Irving, Helen R; Pouton, Colin W

    2016-01-01

    We describe a method for determining the parental HLA haplotypes of a single individual without recourse to conventional segregation genetics. Blood samples were cultured to identify and sort chromosome 6 by bivariate flow cytometry. Single chromosome 6 amplification products were confirmed with a single nucleotide polymorphism (SNP) array and verified by deep sequencing to enable assignment of both alleles at the HLA loci, defining the two haplotypes. This study exemplifies a rapid and efficient method of haplotyping that can be applied to any chromosome pair, or indeed all chromosome pairs, using a single sorting operation. The method represents a cost-effective approach to complete phasing of SNPs, which will facilitate a deeper understanding of the links between SNPs, gene regulation and protein function. PMID:27461731

  20. A simple and safe method for single HLA-antigen-typing by a solid phase assay.

    PubMed

    Häcker-Shahin, B; Giannitsis, D J

    1991-01-01

    A rapid solid phase assay for detection of single HLA-antigens on platelets was developed. The platelets were attached to the surface of polystyrene microtitre plate wells by means of a sodium carbonate buffer and centrifugation. Uncovered areas were blocked by a gelatin blocking buffer. After incubation with commercially available anti-HLA-sera the bound anti-HLA-specific antibodies directed against HLA-antigens present on the platelets were made visible by anti-IgG-coated indicator red cells and a brief centrifugation. A positive result, meaning the presence of an HLA-antigen, was indicated by a slight red cell adherence over the reaction surface. In the absence of the HLA-antigen no binding occurred and the indicator red cells formed a small red disc-like pellet. PMID:1954783

  1. Functional TCR retrieval from single antigen-specific human T cells reveals multiple novel epitopes.

    PubMed

    Simon, Petra; Omokoko, Tana A; Breitkreuz, Andrea; Hebich, Lisa; Kreiter, Sebastian; Attig, Sebastian; Konur, Abdo; Britten, Cedrik M; Paret, Claudia; Dhaene, Karl; Türeci, Özlem; Sahin, Ugur

    2014-12-01

    The determination of the epitope specificity of disease-associated T-cell responses is relevant for the development of biomarkers and targeted immunotherapies against cancer, autoimmune, and infectious diseases. The lack of known T-cell epitopes and corresponding T-cell receptors (TCR) for novel antigens hinders the efficient development and monitoring of new therapies. We developed an integrated approach for the systematic retrieval and functional characterization of TCRs from single antigen-reactive T cells that includes the identification of epitope specificity. This is accomplished through the rapid cloning of full-length TCR-α and TCR-β chains directly from single antigen-specific CD8(+) or CD4(+) T lymphocytes. The functional validation of cloned TCRs is conducted using in vitro-transcribed RNA transfer for expression of TCRs in T cells and HLA molecules in antigen-presenting cells. This method avoids the work and bias associated with repetitive cycles of in vitro T-cell stimulation, and enables fast characterization of antigen-specific T-cell responses. We applied this strategy to viral and tumor-associated antigens (TAA), resulting in the retrieval of 56 unique functional antigen-specific TCRs from human CD8(+) and CD4(+) T cells (13 specific for CMV-pp65, 16 specific for the well-known TAA NY-ESO-1, and 27 for the novel TAA TPTE), which are directed against 39 different epitopes. The proof-of-concept studies with TAAs NY-ESO-1 and TPTE revealed multiple novel TCR specificities. Our approach enables the rational development of immunotherapy strategies by providing antigen-specific TCRs and immunogenic epitopes. PMID:25245536

  2. Development and Evaluation of Single Domain Antibodies for Vaccinia and the L1 Antigen

    PubMed Central

    Walper, Scott A.; Liu, Jinny L.; Zabetakis, Daniel; Anderson, George P.; Goldman, Ellen R.

    2014-01-01

    There is ongoing interest to develop high affinity, thermal stable recognition elements to replace conventional antibodies in biothreat detection assays. As part of this effort, single domain antibodies that target vaccinia virus were developed. Two llamas were immunized with killed viral particles followed by boosts with the recombinant membrane protein, L1, to stimulate the immune response for envelope and membrane proteins of the virus. The variable domains of the induced heavy chain antibodies were selected from M13 phage display libraries developed from isolated RNA. Selection via biopanning on the L1 antigen produced single domain antibodies that were specific and had affinities ranging from 4×10−9 M to 7.0×10−10 M, as determined by surface plasmon resonance. Several showed good ability to refold after heat denaturation. These L1-binding single domain antibodies, however, failed to recognize the killed vaccinia antigen. Useful vaccinia binding single domain antibodies were isolated by a second selection using the killed virus as the target. The virus binding single domain antibodies were incorporated in sandwich assays as both capture and tracer using the MAGPIX system yielding limits of detection down to 4×105 pfu/ml, a four-fold improvement over the limit obtained using conventional antibodies. This work demonstrates the development of anti-vaccinia single domain antibodies and their incorporation into sandwich assays for viral detection. It also highlights the properties of high affinity and thermal stability that are hallmarks of single domain antibodies. PMID:25211488

  3. Detecting Antigen-Specific T Cell Responses: From Bulk Populations to Single Cells

    PubMed Central

    Phetsouphanh, Chansavath; Zaunders, John James; Kelleher, Anthony Dominic

    2015-01-01

    A new generation of sensitive T cell-based assays facilitates the direct quantitation and characterization of antigen-specific T cell responses. Single-cell analyses have focused on measuring the quality and breadth of a response. Accumulating data from these studies demonstrate that there is considerable, previously-unrecognized, heterogeneity. Standard assays, such as the ICS, are often insufficient for characterization of rare subsets of cells. Enhanced flow cytometry with imaging capabilities enables the determination of cell morphology, as well as the spatial localization of the protein molecules within a single cell. Advances in both microfluidics and digital PCR have improved the efficiency of single-cell sorting and allowed multiplexed gene detection at the single-cell level. Delving further into the transcriptome of single-cells using RNA-seq is likely to reveal the fine-specificity of cellular events such as alternative splicing (i.e., splice variants) and allele-specific expression, and will also define the roles of new genes. Finally, detailed analysis of clonally related antigen-specific T cells using single-cell TCR RNA-seq will provide information on pathways of differentiation of memory T cells. With these state of the art technologies the transcriptomics and genomics of Ag-specific T cells can be more definitively elucidated. PMID:26274954

  4. Citrinin detection using phage-displayed anti-idiotypic single-domain antibody for antigen mimicry.

    PubMed

    Xu, Yang; Xiong, Liang; Li, Yanping; Xiong, Yonghua; Tu, Zhui; Fu, Jinheng; Tang, Xiao

    2015-06-15

    Anti-idiotypic antibodies (AIds) can mimic antigen molecules and can thus offer an alternative to conventional antigens in immunoassays. In this study, citrinin (CIT) was chosen as a target analyte, and an anti-idiotypic single-domain antibody (VHH) was selected from a naïve alpaca VHHs library to serve as a surrogate for CIT hapten. The phage-displayed VHH was used as a signal-amplification carrier to develop an indirect competitive phage enzyme-linked immunosorbent assay (P-ELISA) for the sensitive detection of CIT. The half-inhibition concentration (IC50) of P-ELISA was 10.9 μg/kg, which was 9-fold better than that of conventional ELISA (IC50=102.1 μg/kg). Results on P-ELISA analysis of naturally contaminated samples were also consistent with those obtained by conventional ELISA. In conclusion, the proposed P-ELISA demonstrates the potential use of phage-displayed anti-idiotypic VHH as surrogate for small molecules and signal-amplification carrier to improve assay performance for more sensitive analyte detection in food safety monitoring. PMID:25660863

  5. A critical examination of the numerology of antigen-binding cells: evidence for multiple receptor specificities on single cells.

    PubMed

    Miller, A

    1977-01-01

    The data available from other laboratories as well as our own on the frequency of cells recognizing major histocompatibility antigens or conventional protein and hapten antigens is critically evaluated. The frequency of specific binding for a large number of antigens is sufficiently high to support the idea that at least part of the antigen-binding cell population must have multiple specificities. Our results suggest that these multiple specific cells result from single cells synthesizing and displaying as many as 50-100 species of receptor, each at a frequency of 10(4) per cell. A model involving gene expansion of constant-region genes is suggested and some auxilliary evidence consistent with such C-gene expansion is presented. PMID:68706

  6. Reverse phase passive haemagglutination and single radial immunodiffusion to detect epsilon antigen of Clostridium perfringens type D.

    PubMed

    Beh, K J; Buttery, S H

    1978-11-01

    Two in vitro immunological assays were developed for detection of the epsilon (epsilon) antigen of Cl. perfringens type D. It was found that the reverse phase passive haemagglutination assay (RPHA) was able to detect concentrations of epsilon-antigen as low as 6 x 10-7 mg/ml whereas the single radial immunodiffusion techniques (SRID) was capable of detecting concentrations of epsilon-antigen above 0.01 mg/ml. When applied to gut contents from freshly dead infected sheep the RPHA test was found to be more sensitive than mouse toxicity assay in detecting the presence of epsilon-antigen. However, very low titres were detected in gut contents from normal sheep which meant that in a diagnostic situation interpretation of RPHA titres would be difficult. No epsilon-antigen was detected by SRID in gut contents from normal sheep or in gut contents from freshly dead infected sheep. The SRID assay could detect epsilon-antigen in gut contents from infected sheep allowed to decompose for 20 h post-mortem. PMID:223537

  7. Single-dilution enzyme-linked immunosorbent assay for quantification of antigen-specific salmonid antibody

    USGS Publications Warehouse

    Alcorn, S.W.; Pascho, R.J.

    2000-01-01

    An enzyme-linked immunosorbent assay (ELISA) was developed on the basis of testing a single dilution of serum to quantify the level of antibody to the p57 protein of Renibaclerium salmoninarum in sockeye salmon (Oncorhynchus nerka). The levels of antibody were interpolated from a standard curve constructed by relating the optical densities (OD) produced by several dilutions of a high-titer rainbow trout (O. mykiss) antiserum to the p57 protein. The ELISA OD values produced by as many as 36 test sera on each microplate were compared with the standard curve to calculate the antigen-specific antibody activity. Repeated measurements of 36 samples on 3 microplates on each of 6 assay dates indicated that the mean intraassay coefficient of variation (CV) was 6.68% (range, 0-23%) and the mean interassay CV was 8.29% (range, 4-16%). The antibody levels determined for the serum sample from 24 sockeye salmon vaccinated with a recombinant p57 protein generally were correlated with the levels determined by endpoint titration (r2 = 0.936) and with results from another ELISA that was based on extrapolation of antibody levels from a standard curve (r2 = 0.956). The single-dilution antibody ELISA described here increases the number of samples that can be tested on each microplate compared with immunoassays based on analysis of several dilutions of each test serum. It includes controls for interassay standardization and can be used to test fish weighing <3 g.

  8. Single-dilution enzyme-linked immunosorbent assay for quantification of antigen-specific salmonid antibody.

    PubMed

    Alcorn, S W; Pascho, R J

    2000-05-01

    An enzyme-linked immunosorbent assay (ELISA) was developed on the basis of testing a single dilution of serum to quantify the level of antibody to the p57 protein of Renibacterium salmoninarum in sockeye salmon (Oncorhynchus nerka). The levels of antibody were interpolated from a standard curve constructed by relating the optical densities (OD) produced by several dilutions of a high-titer rainbow trout (O. mykiss) antiserum to the p57 protein. The ELISA OD values produced by as many as 36 test sera on each microplate were compared with the standard curve to calculate the antigen-specific antibody activity. Repeated measurements of 36 samples on 3 microplates on each of 6 assay dates indicated that the mean intraassay coefficient of variation (CV) was 6.68% (range, 0-23%) and the mean interassay CV was 8.29% (range, 4-16%). The antibody levels determined for the serum sample from 24 sockeye salmon vaccinated with a recombinant p57 protein generally were correlated with the levels determined by endpoint titration (r2 = 0.936) and with results from another ELISA that was based on extrapolation of antibody levels from a standard curve (r2 = 0.956). The single-dilution antibody ELISA described here increases the number of samples that can be tested on each microplate compared with immunoassays based on analysis of several dilutions of each test serum. It includes controls for interassay standardization and can be used to test fish weighing <3 g. PMID:10826838

  9. Refocusing of B-cell responses following a single amino acid substitution in an antigen

    PubMed Central

    Chiesa, Marta Dalla; Martensen, Pia M; Simmons, Cameron; Porakishvili, Nino; Justesen, Just; Dougan, Gordon; Roitt, Ivan M; Delves, Peter J; Lund, Torben

    2001-01-01

    Intranasal immunization of BALB/c strain mice was carried out using baculovirus-derived human chorionic gonadotrophin (hCG) β-chain, together with Escherichia coli heat-labile enterotoxin. Gonadotrophin-reactive immunoglobulin A (IgA) was induced in a remote mucosal site, the lung, in addition to a systemic IgG response. The extensive sequence homology with luteinizing hormone (LH) results in the production of LH cross-reactive antibodies when holo-hCG is used as an immunogen. In contrast to wild-type hCGβ, a mutated hCGβ-chain containing an arginine to glutamic acid substitution at position 68 did not induce the production of antibodies which cross-react with LH. Furthermore, the epitopes utilized in the B-cell response to the mutated hCGβ shifted away from the immunodominant region of the parent wild-type molecule towards epitopes within the normally weakly immunogenic C terminus. This shift in epitope usage was also seen following intramuscular immunization of rabbits. Thus, a single amino acid change, which does not disrupt the overall structure of the molecule, refocuses the immune response away from a disadvantageous cross-reactive epitope region and towards a normally weakly immunogenic but antigen-unique area. Similar mutational strategies for epitope-refocusing may be applicable to other vaccine candidate molecules. PMID:11412304

  10. A Single Subset of Dendritic Cells Controls the Cytokine Bias of Natural Killer T Cell Responses to Diverse Glycolipid Antigens

    PubMed Central

    Arora, Pooja; Baena, Andres; Yu, Karl O.A.; Saini, Neeraj K.; Kharkwal, Shalu S.; Goldberg, Michael F.; Kunnath-Velayudhan, Shajo; Carreño, Leandro J.; Venkataswamy, Manjunatha M.; Kim, John; Lazar-Molnar, Eszter; Lauvau, Gregoire; Chang, Young-tae; Liu, Zheng; Bittman, Robert; Al-Shamkhani, Aymen; Cox, Liam R.; Jervis, Peter J.; Veerapen, Natacha; Besra, Gurdyal S.; Porcelli, Steven A.

    2014-01-01

    Summary Many hematopoietic cell types express CD1d and are capable of presenting glycolipid antigens to invariant natural killer T cells (iNKT cells). However, the question of which cells are the principal presenters of glycolipid antigens in vivo remains controversial, and it has been suggested that this might vary depending on the structure of a particular glycolipid antigen. Here we have shown that a single type of cell, the CD8α+ DEC-205+ dendritic cell, was mainly responsible for capturing and presenting a variety of different glycolipid antigens, including multiple forms of α-galactosylceramide that stimulate widely divergent cytokine responses. After glycolipid presentation, these dendritic cells rapidly altered their expression of various costimulatory and coinhibitory molecules in a manner that was dependent on the structure of the antigen. These findings show flexibility in the outcome of two-way communication between CD8α+ dendritic cells and iNKT cells, providing a mechanism for biasing toward either proinflammatory or anti-inflammatory responses. PMID:24412610

  11. A novel T cell receptor single-chain signaling complex mediates antigen-specific T cell activity and tumor control

    PubMed Central

    Stone, Jennifer D.; Harris, Daniel T.; Soto, Carolina M.; Chervin, Adam S.; Aggen, David H.; Roy, Edward J.; Kranz, David M.

    2014-01-01

    Adoptive transfer of genetically modified T cells to treat cancer has shown promise in several clinical trials. Two main strategies have been applied to redirect T cells against cancer: 1) introduction of a full-length T cell receptor (TCR) specific for a tumor-associated peptide-MHC, or 2) introduction of a chimeric antigen receptor (CAR), including an antibody fragment specific for a tumor cell surface antigen, linked intracellularly to T cell signaling domains. Each strategy has advantages and disadvantages for clinical applications. Here, we present data on the in vitro and in vivo effectiveness of a single-chain signaling receptor incorporating a TCR variable fragment as the targeting element (referred to as TCR-SCS). This receptor contained a single-chain TCR (Vβ-linker-Vα) from a high-affinity TCR called m33, linked to the intracellular signaling domains of CD28 and CD3ζ. This format avoided mispairing with endogenous TCR chains, and mediated specific T cell activity when expressed in either CD4 or CD8 T cells. TCR-SCS-transduced CD8-negative cells showed an intriguing sensitivity, compared to full-length TCRs, to higher densities of less stable pepMHC targets. T cells that expressed this peptide-specific receptor persisted in vivo, and exhibited polyfunctional responses. Growth of metastatic antigen-positive tumors was significantly inhibited by T cells that expressed this receptor, and tumor cells that escaped were antigen loss variants. TCR-SCS receptors represent an alternative targeting receptor strategy that combines the advantages of single-chain expression, avoidance of TCR chain mispairing, and targeting of intracellular antigens presented in complex with MHC proteins. PMID:25082071

  12. Multiscale sensing of antibody-antigen interactions by organic transistors and single-molecule force spectroscopy.

    PubMed

    Casalini, Stefano; Dumitru, Andra C; Leonardi, Francesca; Bortolotti, Carlo A; Herruzo, Elena T; Campana, Alessandra; de Oliveira, Rafael F; Cramer, Tobias; Garcia, Ricardo; Biscarini, Fabio

    2015-05-26

    Antibody-antigen (Ab-Ag) recognition is the primary event at the basis of many biosensing platforms. In label-free biosensors, these events occurring at solid-liquid interfaces are complex and often difficult to control technologically across the smallest length scales down to the molecular scale. Here a molecular-scale technique, such as single-molecule force spectroscopy, is performed across areas of a real electrode functionalized for the immunodetection of an inflammatory cytokine, viz. interleukin-4 (IL4). The statistical analysis of force-distance curves allows us to quantify the probability, the characteristic length scales, the adhesion energy, and the time scales of specific recognition. These results enable us to rationalize the response of an electrolyte-gated organic field-effect transistor (EGOFET) operated as an IL4 immunosensor. Two different strategies for the immobilization of IL4 antibodies on the Au gate electrode have been compared: antibodies are bound to (i) a smooth film of His-tagged protein G (PG)/Au; (ii) a 6-aminohexanethiol (HSC6NH2) self-assembled monolayer on Au through glutaraldehyde. The most sensitive EGOFET (concentration minimum detection level down to 5 nM of IL4) is obtained with the first functionalization strategy. This result is correlated to the highest probability (30%) of specific binding events detected by force spectroscopy on Ab/PG/Au electrodes, compared to 10% probability on electrodes with the second functionalization. Specifically, this demonstrates that Ab/PG/Au yields the largest areal density of oriented antibodies available for recognition. More in general, this work shows that specific recognition events in multiscale biosensors can be assessed, quantified, and optimized by means of a nanoscale technique. PMID:25868724

  13. Retrieval of functional TCRs from single antigen-specific T cells: Toward individualized TCR-engineered therapies

    PubMed Central

    Omokoko, Tana; Simon, Petra; Türeci, Özlem; Sahin, Ugur

    2015-01-01

    We have developed a highly versatile platform for the systematic retrieval of T-cell receptors (TCRs) from single-antigen-reactive T cells and for characterization of their function and specificity. This approach enables rapid extraction of multiple TCRs from repertoires in individuals and not only broadens the diversity of TCRs suitable for clinical use, but also sets the stage for actively personalized immunotherapeutic strategies. PMID:26140230

  14. A single- and a dual-fractal analysis of antigen-antibody binding kinetics for different biosensor applications.

    PubMed

    Sadana, A

    1999-06-30

    The diffusion-limited binding kinetics of antigen (or antibody) in solution to antibody (or antigen) immobilized on a biosensor surface is analyzed within a fractal framework. The data is adequately described by a single- or a dual-fractal analysis. Initially, the data was modelled by a single-fractal analysis. If an inadequate fit was obtained then a dual-fractal analysis was utilized. The regression analysis provided by Sigmaplot, 1993 (Scientific Graphing Software: User's Manual. Jandel Scientific, San Rafael, CA) was utilized to determine if a single-fractal analysis is sufficient, or a dual-fractal analysis is required. In general, it is of interest to note that the binding rate coefficient and the fractal dimension exhibit changes in the same direction (except for a single example) for the antigen-antibody systems analyzed. Binding rate coefficient expressions as a function of the fractal dimension developed for the antigen-antibody binding systems indicate a high sensitivity of the binding rate coefficient on the fractal dimension when both a single -as well as a dual-fractal analysis is used. For example, for a single-fractal analysis and for the binding of human endothelin-1 (ET-1) antibody in solution to ET-1(15-21) x BSA (bovine serum albumin) immobilised on a surface plasmon resonance surface, the order of dependence of the binding rate coefficient, k on the fractal dimension, Df is 7.0945. Similarly, for a dual-fractal analysis and for the binding of parasite L. donovani diluted pooled sera in solution to fluorescein isothiocyanate-labeled anti-human immunoglobulin IgG immobilized on an optical fibre, the order of dependence of k1 and k2 on Df1 and Df2 were 6.8018 and -4.393, respectively. Binding rate coefficient expressions are also developed as a function of the analyte (antigen or antibody) concentration in solution. The binding rate coefficient expressions developed as a function of the fractal dimension(s) are of particular value since they

  15. Single-molecule detection of proteins with antigen-antibody interaction using resistive-pulse sensing of submicron latex particles

    NASA Astrophysics Data System (ADS)

    Takakura, T.; Yanagi, I.; Goto, Y.; Ishige, Y.; Kohara, Y.

    2016-03-01

    We developed a resistive-pulse sensor with a solid-state pore and measured the latex agglutination of submicron particles induced by antigen-antibody interaction for single-molecule detection of proteins. We fabricated the pore based on numerical simulation to clearly distinguish between monomer and dimer latex particles. By measuring single dimers agglutinated in the single-molecule regime, we detected single human alpha-fetoprotein molecules. Adjusting the initial particle concentration improves the limit of detection (LOD) to 95 fmol/l. We established a theoretical model of the LOD by combining the reaction kinetics and the counting statistics to explain the effect of initial particle concentration on the LOD. The theoretical model shows how to improve the LOD quantitatively. The single-molecule detection studied here indicates the feasibility of implementing a highly sensitive immunoassay by a simple measurement method using resistive-pulse sensing.

  16. Single Molecule Fluorescence Microscopy and Machine Learning for Rhesus D Antigen Classification

    PubMed Central

    Borgmann, Daniela M.; Mayr, Sandra; Polin, Helene; Schaller, Susanne; Dorfer, Viktoria; Obritzberger, Lisa; Endmayr, Tanja; Gabriel, Christian; Winkler, Stephan M.; Jacak, Jaroslaw

    2016-01-01

    In transfusion medicine, the identification of the Rhesus D type is important to prevent anti-D immunisation in Rhesus D negative recipients. In particular, the detection of the very low expressed DEL phenotype is crucial and hence constitutes the bottleneck of standard immunohaematology. The current method of choice, adsorption-elution, does not provide unambiguous results. We have developed a complementary method of high sensitivity that allows reliable identification of D antigen expression. Here, we present a workflow composed of high-resolution fluorescence microscopy, image processing, and machine learning that - for the first time - enables the identification of even small amounts of D antigen on the cellular level. The high sensitivity of our technique captures the full range of D antigen expression (including D+, weak D, DEL, D−), allows automated population analyses, and results in classification test accuracies of up to 96%, even for very low expressed phenotypes. PMID:27580632

  17. Single Molecule Fluorescence Microscopy and Machine Learning for Rhesus D Antigen Classification.

    PubMed

    Borgmann, Daniela M; Mayr, Sandra; Polin, Helene; Schaller, Susanne; Dorfer, Viktoria; Obritzberger, Lisa; Endmayr, Tanja; Gabriel, Christian; Winkler, Stephan M; Jacak, Jaroslaw

    2016-01-01

    In transfusion medicine, the identification of the Rhesus D type is important to prevent anti-D immunisation in Rhesus D negative recipients. In particular, the detection of the very low expressed DEL phenotype is crucial and hence constitutes the bottleneck of standard immunohaematology. The current method of choice, adsorption-elution, does not provide unambiguous results. We have developed a complementary method of high sensitivity that allows reliable identification of D antigen expression. Here, we present a workflow composed of high-resolution fluorescence microscopy, image processing, and machine learning that - for the first time - enables the identification of even small amounts of D antigen on the cellular level. The high sensitivity of our technique captures the full range of D antigen expression (including D+, weak D, DEL, D-), allows automated population analyses, and results in classification test accuracies of up to 96%, even for very low expressed phenotypes. PMID:27580632

  18. Linking the T cell receptor to the single cell transcriptome in antigen-specific human T cells.

    PubMed

    Eltahla, Auda A; Rizzetto, Simone; Pirozyan, Mehdi R; Betz-Stablein, Brigid D; Venturi, Vanessa; Kedzierska, Katherine; Lloyd, Andrew R; Bull, Rowena A; Luciani, Fabio

    2016-07-01

    Heterogeneity of T cells is a hallmark of a successful adaptive immune response, harnessing the vast diversity of antigen-specific T cells into a coordinated evolution of effector and memory outcomes. The T cell receptor (TCR) repertoire is highly diverse to account for the highly heterogeneous antigenic world. During the response to a virus multiple individual clones of antigen specific CD8+ (Ag-specific) T cells can be identified against a single epitope and multiple epitopes are recognised. Advances in single-cell technologies have provided the potential to study Ag-specific T cell heterogeneity at both surface phenotype and transcriptome levels, thereby allowing investigation of the diversity within the same apparent sub-population. We propose a new method (VDJPuzzle) to reconstruct the native TCRαβ from single cell RNA-seq data of Ag-specific T cells and then to link these with the gene expression profile of individual cells. We applied this method using rare Ag-specific T cells isolated from peripheral blood of a subject who cleared hepatitis C virus infection. We successfully reconstructed productive TCRαβ in 56 of a total of 63 cells (89%), with double α and double β in 18, and 7% respectively, and double TCRαβ in 2 cells. The method was validated via standard single cell PCR sequencing of the TCR. We demonstrate that single-cell transcriptome analysis can successfully distinguish Ag-specific T cell populations sorted directly from resting memory cells in peripheral blood and sorted after ex vivo stimulation. This approach allows a detailed analysis of the TCR diversity and its relationship with the transcriptional profile of different clones. PMID:26860370

  19. A dual-targeting triplebody mediates preferential redirected lysis of antigen double-positive over single-positive leukemic cells

    PubMed Central

    Schubert, Ingo; Saul, Domenica; Nowecki, Stefanie; Mackensen, Andreas; Fey, Georg H; Oduncu, Fuat S

    2014-01-01

    The single-chain triplebody HLA-ds16-hu19 consists of three single-chain Fv (scFv) antibody fragments connected in a single polypeptide chain. This protein with dual-targeting capacity mediated preferential lysis of antigen double-positive (dp) over single-positive (sp) leukemic cells by recruitment of natural killer (NK) cells as effectors. The two distal scFv modules were specific for the histocompatibility protein HLA-DR and the lymphoid antigen CD19, the central one for the Fc gamma receptor CD16. In antibody-dependent cellular cytotoxicity (ADCC) experiments with a mixture of leukemic target cells comprising both HLA-DR sp HuT-78 or Kasumi-1 cells and (HLA-DR plus CD19) dp SEM cells, the triplebody mediated preferential lysis of the dp cells even when the sp cells were present in ≤20-fold numerical excess. The triplebody promoted equal lysis of SEM cells at 2.5-fold and 19.5-fold lower concentrations than the parental antibodies specific for HLA-DR and CD19, respectively. Finally, the triplebody also eliminated primary leukemic cells at lower concentrations than an equimolar mixture of bispecific single-chain Fv fragments (bsscFvs) separately addressing each target antigen (hu19-ds16 and HLA-ds16). The increased selectivity of targeting and the preferential lysis of dp over sp cells achieved by dual-targeting open attractive new perspectives for the use of dual-targeting agents in cancer therapy. PMID:24135631

  20. A reliable method for avoiding false negative results with Luminex single antigen beads; evidence of the prozone effect.

    PubMed

    Carey, B Sean; Boswijk, Kim; Mabrok, Mazen; Rowe, Peter A; Connor, Andrew; Saif, Imran; Poles, Anthony

    2016-07-01

    Luminex single antigen bead (SAB) assays have become an essential tool in monitoring the status of antibody to the Human Leucocyte Antigen (HLA) of patients both before and after transplantation. In addition SAB data is used to aid risk stratification to assess immunological risk of humoral rejection in solid organ transplantation (CTAG/BTAG guidelines) [1]. Increasingly laboratories are reporting false negative results at high antibody titre due to a prozone effect. Here we report a case study where the prozone effect led to a false negative antibody result that could have resulted in adverse outcome. We describe a method to reliably remove the prozone effect through heat inactivation and the addition of Ethylenediaminetetraacetic acid (EDTA) to the Luminex wash buffer. PMID:27109036

  1. Heterologous Antigen Selection of Camelid Heavy Chain Single Domain Antibodies against Tetrabromobisphenol A

    PubMed Central

    2015-01-01

    Tetrabromobisphenol A (TBBPA) is a ubiquitous flame retardant. A high-throughput immunoassay would allow for monitoring of human and environmental exposures as a part of risk assessment. Naturally occurring antibodies in camelids that are devoid of light chain, show great promise as an efficient tool in monitoring environmental contaminants, but they have been rarely used for small molecules. An alpaca was immunized with a TBBPA hapten coupled to thyroglobulin and a variable domain of heavy chain antibody (VHH) T3–15 highly selective for TBBPA was isolated from a phage displayed VHH library using heterologous coating antigens. Compared to the VHHs isolated using homologous antigens, VHH T3–15 had about a 10-fold improvement in sensitivity in an immunoassay. This assay, under the optimized conditions of 10% methanol in the assay buffer (pH 7.4), had an IC50 for TBBPA of 0.40 ng mL–1 and negligible cross reactivity (<0.1%) with other tested analogues. After heating the VHH at 90 °C for 90 min about 20% of the affinity for coating antigen T3-BSA remained. The recoveries of TBBPA from spiked soil and fetal bovine serum samples ranged from 90.3% to 110.7% by ELISA and agreed well with a liquid chromatography–tandem mass spectrometry method. We conclude the many advantages of VHH make them attractive for the development of immunoassays to small molecules. PMID:25068372

  2. Use of antibody gene library for the isolation of specific single chain antibodies by ampicillin-antigen conjugates.

    PubMed

    Neumann-Schaal, Meina; Messerschmidt, Katrin; Grenz, Nicole; Heilmann, Katja

    2013-03-01

    Isolation of recombinant antibodies from antibody libraries is commonly performed by different molecular display formats including phage display and ribosome display or different cell-surface display formats. We describe a new method which allows the selection of Escherichia coli cells producing the required single chain antibody by cultivation in presence of ampicillin conjugated to the antigen of interest. The method utilizes the neutralization of the conjugate by the produced single chain antibody which is secreted to the periplasm. Therefore, a new expression system based on the pET26b vector was designed and a library was constructed. The method was successfully established first for the selection of E. coli BL21 Star (DE3) cells expressing a model single chain antibody (anti-fluorescein) by a simple selection assay on LB-agar plates. Using this selection assay, we could identify a new single chain antibody binding biotin by growing E. coli BL21 Star (DE3) containing the library in presence of a biotin-ampicillin conjugate. In contrast to methods as molecular or cell surface display our selection system applies the soluble single chain antibody molecule and thereby avoids undesired effects, e.g. by the phage particle or the yeast fusion protein. By selecting directly in an expression strain, production and characterization of the selected single chain antibody is possible without any further cloning or transformation steps. PMID:23453960

  3. Antigenic role of single residues within the main immunogenic region of the nicotinic acetylcholine receptor.

    PubMed Central

    Papadouli, I; Potamianos, S; Hadjidakis, I; Bairaktari, E; Tsikaris, V; Sakarellos, C; Cung, M T; Marraud, M; Tzartos, S J

    1990-01-01

    The target of most of the autoantibodies against the acetylcholine receptor (AChR) in myasthenic sera is the main immunogenic region (MIR) on the extracellular side of the AChR alpha-subunit. Binding of anti-MIR monoclonal antibodies (mAbs) has been recently localized between residues alpha 67 and alpha 76 of Torpedo californica electric organ (WNPADYGGIK) and human muscle (WNPDDYGGVK) AChR. In order to evaluate the contribution of each residue to the antigenicity of the MIR, we synthesized peptides corresponding to residues alpha 67-76 from Torpedo and human AChRs, together with 13 peptide analogues. Nine of these analogues had one residue of the Torpedo decapeptide replaced by L-alanine, three had a structure which was intermediate between those of the Torpedo and human alpha 67-76 decapeptides, and one had D-alanine in position 73. Binding studies employing six anti-MIR mAbs and all 15 peptides revealed that some residues (Asn68 and Asp71) are indispensable for binding by all mAbs tested, whereas others are important only for binding by some mAbs. Antibody binding was mainly restricted to residues alpha 68-74, the most critical sequence being alpha 68-71. Fish electric organ and human MIR form two distinct groups of strongly overlapping epitopes. Some peptide analogues enhanced mAb binding compared with Torpedo and human peptides, suggesting that the construction of a very antigenic MIR is feasible. PMID:1695844

  4. Single cell tuning of Myc expression by antigen receptor signal strength and interleukin-2 in T lymphocytes

    PubMed Central

    Preston, Gavin C; Sinclair, Linda V; Kaskar, Aneesa; Hukelmann, Jens L; Navarro, Maria N; Ferrero, Isabel; MacDonald, H Robson; Cowling, Victoria H; Cantrell, Doreen A

    2015-01-01

    Myc controls the metabolic reprogramming that supports effector T cell differentiation. The expression of Myc is regulated by the T cell antigen receptor (TCR) and pro-inflammatory cytokines such as interleukin-2 (IL-2). We now show that the TCR is a digital switch for Myc mRNA and protein expression that allows the strength of the antigen stimulus to determine the frequency of T cells that express Myc. IL-2 signalling strength also directs Myc expression but in an analogue process that fine-tunes Myc quantity in individual cells via post-transcriptional control of Myc protein. Fine-tuning Myc matters and is possible as Myc protein has a very short half-life in T cells due to its constant phosphorylation by glycogen synthase kinase 3 (GSK3) and subsequent proteasomal degradation. We show that Myc only accumulates in T cells exhibiting high levels of amino acid uptake allowing T cells to match Myc expression to biosynthetic demands. The combination of digital and analogue processes allows tight control of Myc expression at the population and single cell level during immune responses. PMID:26136212

  5. Monitoring human leukocyte antigen class I molecules by micro-Raman spectroscopy at single-cell level

    NASA Astrophysics Data System (ADS)

    Das, Gobind; La Rocca, Rosanna; Lakshmikanth, Tadepally; Gentile, Francesco; Tallerico, Rossana; Zambetti, Lia P.; Devitt, J.; Candeloro, Patrizio; de Angelis, Francesco; Carbone, Ennio; di Fabrizio, Enzo

    2010-03-01

    Human leukocyte antigen (HLA) class I molecules are formed by three immunoglobulin-like domains (α1, α2, and α3) once folded by peptide and β2-microglobulin show the presence of two α-helix streams and one β-sheet limiting the pocket for the antigenic peptide. The loss of HLA class I expression in tumors and virus-infected cells, on one hand, prevents T cell recognition, while on the other hand, it leads to natural killer (NK) cell mediated cytotoxicity. We propose the possibility of using Raman spectroscopy to measure the relative expression of HLA class I molecules at the single-cell level. Raman spectra are recorded for three cell lines (K562, T2, and T3) and monomers (HLA class I folded, unfolded and peptide+β2-microlobulin refolded) using 830 nm laser line. Our data are consistent with the hypothesis that in the Raman spectra, ranging from 1600 to 1800 cm-1, the intensity variation of cells associated with HLA class I molecules could be measured.

  6. Surface co-expression of two different PfEMP1 antigens on single plasmodium falciparum-infected erythrocytes facilitates binding to ICAM1 and PECAM1.

    PubMed

    Joergensen, Louise; Bengtsson, Dominique C; Bengtsson, Anja; Ronander, Elena; Berger, Sanne S; Turner, Louise; Dalgaard, Michael B; Cham, Gerald K K; Victor, Michala E; Lavstsen, Thomas; Theander, Thor G; Arnot, David E; Jensen, Anja T R

    2010-01-01

    The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) antigens play a major role in cytoadhesion of infected erythrocytes (IE), antigenic variation, and immunity to malaria. The current consensus on control of variant surface antigen expression is that only one PfEMP1 encoded by one var gene is expressed per cell at a time. We measured var mRNA transcript levels by real-time Q-PCR, analysed var gene transcripts by single-cell FISH and directly compared these with PfEMP1 antigen surface expression and cytoadhesion in three different antibody-selected P. falciparum 3D7 sub-lines using live confocal microscopy, flow cytometry and in vitro adhesion assays. We found that one selected parasite sub-line simultaneously expressed two different var genes as surface antigens, on single IE. Importantly, and of physiological relevance to adhesion and malaria pathogenesis, this parasite sub-line was found to bind both CD31/PECAM1 and CD54/ICAM1 and to adhere twice as efficiently to human endothelial cells, compared to infected cells having only one PfEMP1 variant on the surface. These new results on PfEMP1 antigen expression indicate that a re-evaluation of the molecular mechanisms involved in P. falciparum adhesion and of the accepted paradigm of absolutely mutually exclusive var gene transcription is required. PMID:20824088

  7. A functional recombinant single-chain T cell receptor fragment capable of selectively targeting antigen-presenting cells.

    PubMed

    Epel, Malka; Ellenhorn, Joshua D; Diamond, Don J; Reiter, Yoram

    2002-11-01

    Specificity in the immune system is dictated and regulated by specific recognition of peptide/major histocompatibility complexes (MHC) by the T cell receptor (TCR). Such peptide/MHC complexes are a desirable target for novel approaches in immunotherapy because of their highly restricted fine specificity. Recently a potent anti-human p53 CD8(+) cytotoxic T lymphocyte (CTL) response has been developed in HLA-A2 transgenic mice after immunization with peptides corresponding to HLA-A2 motifs from human p53. An alpha/beta T-cell receptor was cloned from such CTL which exhibited a moderately high affinity to the human p53(149-157) peptide. In this report, we investigated the possibility of using a recombinant tumor-specific TCR for antigen-specific elimination of cells that express the specific MHC-peptide complex. To this end, we constructed a functional single-chain Fv fragment from the cloned TCR and fused it to a very potent cytotoxic molecule, a truncated form of Pseudomonas exotoxin A (PE38). The p53 TCR scFv-P38 fusion protein was generated by in vitro refolding from bacterially-expressed inclusion bodies, and was found to be functional by its ability to bind antigen-presenting cells (APC) which express the specific p53-derived peptide. Moreover, we have shown that the p53-specific TCR scFv-PE38 molecule specifically kills APC in a peptide-dependent manner. These results represent the first time that a TCR-derived recombinant single-chain Fv fragment has been used as a targeting moiety to deliver a cytotoxic effector molecule to cells and has been able to mediate the efficient killing of the particular cell population that expresses the specific MHC/peptide complex. Similarly to antibody-based targeting approaches, TCR with tumor cell specificity represent attractive candidates for generating new, very specific targeting moieties for various modes of cancer immunotherapy. PMID:12384808

  8. Single-round of antigen receptor signaling programs naïve B cells to receive T cell help

    PubMed Central

    Damdinsuren, Bazarragchaa; Zhang, Yongqing; Khalil, Ashraf; Wood, William H.; Becker, Kevin G.; Shlomchik, Mark J.; Sen, Ranjan

    2010-01-01

    SUMMARY To simulate transient B cell activation that is the likely initiator of T-dependent responses, we examined the molecular and functional consequences of a single-round of immunoglobulin M (IgM) signaling. This form of activation triggered early cytosolic signaling and the transcription factor NF-κB activation indistinguishably from conventional continuous IgM cross-linking, but did not induce G1 progression. However, single-round IgM signaling changed the expression of chemokine and chemokine receptor genes implicated in initiating T-dependent responses, as well as accentuated responsiveness to CD40 signaling. Several features of single-round IgM signaling in vitro were recapitulated in B cells after short-term exposure to antigen in vivo. We propose that transient BCR signals prime B cells to receive T cell help by increasing the probability of B-T encounter and creating a cellular environment that is hyper-responsive to CD40 signaling. PMID:20226693

  9. Human Leukocyte Antigen Class I Region Single-Nucleotide Polymorphisms are Associated with Leprosy Susceptibility in Vietnam and India

    PubMed Central

    Alter, Andrea; Huong, Nguyen Thu; Singh, Meenakshi; Orlova, Marianna; Van Thuc, Nguyen; Katoch, Kiran; Gao, Xiaojiang; Thai, Vu Hong; Ba, Nguyen Ngoc; Carrington, Mary; Abel, Laurent; Mehra, Narinder; Alcaïs, Alexandre

    2011-01-01

    Experimental evidence suggested the existence of unidentified leprosy susceptibility loci in the human leukocyte antigen (HLA) complex. To identify such genetic risk factors, a high-density association scan of a 1.9-mega-base (Mb) region in the HLA complex was performed. Among 682 single-nucleotide polymorphisms (SNPs), 59 were associated with leprosy (P <.01) in 198 Vietnamese single-case leprosy families. Genotyping of these SNPs in an independent sample of 292 Vietnamese single-case leprosy families replicated the association of 12 SNPs (P <.01). Multivariate analysis of these 12 SNPs showed that the association information could be captured by 2 intergenic HLA class I region SNPs (P = 9.4 × 10−9)—rs2394885 and rs2922997 (marginal multivariate P = 2.1 × 10−7 and P = .0016, respectively). SNP rs2394885 tagged the HLA-C*15:05 allele in the Vietnamese population. The identical associations were validated in a third sample of 364 patients with leprosy and 371 control subjects from North India. These results implicated class I alleles in leprosy pathogenesis. PMID:21459816

  10. Purification and refolding of anti-T-antigen single chain antibodies (scFvs) expressed in Escherichia coli as inclusion bodies.

    PubMed

    Yuasa, Noriyuki; Koyama, Tsubasa; Fujita-Yamaguchi, Yoko

    2014-02-01

    T-antigen (Galβ1-3GalNAcα-1-Ser/Thr) is an oncofetal antigen that is commonly expressed as a carbohydrate determinant in many adenocarcinomas. Since it is associated with tumor progression and metastasis, production of recombinant antibodies specific for T-antigen could lead to the development of cancer diagnostics and therapeutics. Previously, we isolated and characterized 11 anti-T-antigen phage clones from a phage library displaying human single-chain antibodies (scFvs) and purified one scFv protein, 1G11. More recently, we purified and characterized 1E8 scFv protein using a Drosophila S2 expression system. In the current study, four anti-T-antigen scFv genes belonging to Groups 1-4 were purified from inclusion bodies expressed in Escherichia coli cells. Inclusion bodies isolated from E. coli cells were denatured in 3.5 M Gdn-HCl. Solubilized His-tagged scFv proteins were purified using Ni(2+)-Sepharose column chromatography in the presence of 3.5 M Gdn-HCl. Purified scFv proteins were refolded according to a previously published method of step-wise dialysis. Two anti-T-antigen scFv proteins, 1E6 and 1E8 that belong to Groups 1 and 2, respectively, were produced in sufficient amounts, thus allowing further characterization of their binding activity with T-antigen. Specificity and affinity constants determined using enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR), respectively, provided evidence that both 1E8 and 1E6 scFv proteins are T-antigen specific and suggested that 1E8 scFv protein has a higher affinity for T-antigen than 1E6 scFv protein. PMID:24647109

  11. Label-free Screening of Multiple Cell-surface Antigens Using a Single Pore

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Karthik; Chapman, Matthew; Kesavaraju, Anand; Sohn, Lydia

    2012-02-01

    Microfluidic pores have emerged as versatile tools for performing highly sensitive measurements. Pore functionalization can result in slower particle transit rates, thereby providing insight into the properties of particles that travel through a pore. While enhancing utility, functionalizing with only one species limits the broader applicability of pores for biosensing by restricting the insight gained in a single run. We have developed a method of using variable cross-section pores to create unique electronic signatures for reliable detection and automated data analysis. By defining a single pore into sections using common lithography techniques, we can detect when a cell passes through a given pore segment using resistive-pulse sensing. This offers such advantages as 1) the ability to functionalize each portion of a pore with a different antibody that corresponds to different cell surface receptors, enabling label-free multianalyte detection in a single run; and 2) a unique electronic signature that allows for both an accelerated real-time analysis and an additional level of precision to testing. This is particularly critical for clinical diagnostics where accuracy and reliability of results are crucial for healthcare professionals upon which to act.

  12. Quantifying Biomass Changes of Single CD8+ T Cells during Antigen Specific Cytotoxicity

    PubMed Central

    Mathis, Colleen; Witte, Owen N.; Teitell, Michael A.

    2013-01-01

    Existing approaches that quantify cytotoxic T cell responses rely on bulk or surrogate measurements which impede the direct identification of single activated T cells of interest. Single cell microscopy or flow cytometry methodologies typically rely on fluorescent labeling, which limits applicability to primary cells such as human derived T lymphocytes. Here, we introduce a quantitative method to track single T lymphocyte mediated cytotoxic events within a mixed population of cells using live cell interferometry (LCI), a label-free microscopy technique that maintains cell viability. LCI quantifies the mass distribution within individual cells by measuring the phase shift caused by the interaction of light with intracellular biomass. Using LCI, we imaged cytotoxic T cells killing cognate target cells. In addition to a characteristic target cell mass decrease of 20–60% over 1–4 h following attack by a T cell, there was a significant 4-fold increase in T cell mass accumulation rate at the start of the cytotoxic event and a 2–3 fold increase in T cell mass relative to the mass of unresponsive T cells. Direct, label-free measurement of CD8+ T and target cell mass changes provides a kinetic, quantitative assessment of T cell activation and a relatively rapid approach to identify specific, activated patient-derived T cells for applications in cancer immunotherapy. PMID:23935904

  13. Resolving protein interactions and organization downstream the T cell antigen receptor using single-molecule localization microscopy: a review

    NASA Astrophysics Data System (ADS)

    Sherman, Eilon

    2016-06-01

    Signal transduction is mediated by heterogeneous and dynamic protein complexes. Such complexes play a critical role in diverse cell functions, with the important example of T cell activation. Biochemical studies of signalling complexes and their imaging by diffraction limited microscopy have resulted in an intricate network of interactions downstream the T cell antigen receptor (TCR). However, in spite of their crucial roles in T cell activation, much remains to be learned about these signalling complexes, including their heterogeneous contents and size distribution, their complex arrangements in the PM, and the molecular requirements for their formation. Here, we review how recent advancements in single molecule localization microscopy have helped to shed new light on the organization of signalling complexes in single molecule detail in intact T cells. From these studies emerges a picture where cells extensively employ hierarchical and dynamic patterns of nano-scale organization to control the local concentration of interacting molecular species. These patterns are suggested to play a critical role in cell decision making. The combination of SMLM with more traditional techniques is expected to continue and critically contribute to our understanding of multimolecular protein complexes and their significance to cell function.

  14. An ultrasensitive squamous cell carcinoma antigen biosensing platform utilizing double-antibody single-channel amplification strategy.

    PubMed

    Ren, Xiang; Wu, Dan; Wang, Yuhuan; Zhang, Yunhui; Fan, Dawei; Pang, Xuehui; Li, Yueyun; Du, Bin; Wei, Qin

    2015-10-15

    A novel electrochemical immunosensor was developed for ultrasensitive detection of squamous cell carcinoma antigen (SCCA), which was based on the double-antibody single-channel amplification strategy. For the first time, human immunoglobulin antibody (anti-HIgG) was used as the supporting framework to amplify the loading quantity of SCCA antibody (anti-SCCA). In this strategy, SCCA can be detected without using mesoporous nanometers to amplify the signal. In addition, Pd icosahedrons were first used as the connecter to immobilize the antibodies and strengthen the sensitivity. Only one touch point exists under the limited condition between a sphere and another shape in geometry, thus the Pd icosahedron is an excellent candidate as the role of connecter. Gold nanoparticles (Au NPs) decorated with mercapto-functionalized graphene sheets (Au@GS) were synthesized as the transducing materials. The fabricated immunosensor exhibited an excellent detection limit of 2.8 pg/mL and wide linear range of 0.01-5 ng/mL. This kind of immunosensor would provide a potential application in clinical diagnosis. PMID:25982722

  15. Rapid isolation of dengue-neutralizing antibodies from single cell-sorted human antigen-specific memory B-cell cultures

    PubMed Central

    Cox, Kara S.; Tang, Aimin; Chen, Zhifeng; Horton, Melanie S.; Yan, Hao; Wang, Xin-Min; Dubey, Sheri A.; DiStefano, Daniel J.; Ettenger, Andrew; Fong, Rachel H.; Doranz, Benjamin J.; Casimiro, Danilo R.; Vora, Kalpit A.

    2016-01-01

    Monitoring antigen-specific memory B cells and the antibodies they encode is important for understanding the specificity, breadth and duration of immune response to an infection or vaccination. The antibodies isolated could further help design vaccine antigens for raising relevant protective immune responses. However, developing assays to measure and isolate antigen-specific memory B cells is technically challenging due to the low frequencies of these cells that exist in the circulating blood. Here, we describe a flow cytometry method to identify and isolate dengue envelope-specific memory B cells using a labeled dengue envelope protein. We enumerated dengue-envelope specific memory B cells from a cohort of dengue seropositive donors using this direct flow cytometry assay. A more established and conventional assay, the cultured B ELISPOT, was used as a benchmark comparator. Furthermore, we were able to confirm the single-sorted memory B-cell specificity by culturing B cells and differentiating them into plasma cells using cell lines expressing CD40L. The culture supernatants were assayed for antigen binding and the ability of the antibodies to neutralize the cognate dengue virus. Moreover, we successfully isolated the heavy and light Ig sequences and expressed them as full-length recombinant antibodies to reproduce the activity seen in culture supernatants. Mapping of these antibodies revealed a novel epitope for dengue 2 virus serotype. In conclusion, we established a reproducible methodology to enumerate antigen-specific memory B cells and assay their encoded antibodies for functional characterization. PMID:26491897

  16. Construction and bacterial expression of a recombinant single-chain antibody fragment against Wuchereria bancrofti SXP-1 antigen for the diagnosis of lymphatic filariasis.

    PubMed

    Kamatchi, R; Charumathi, J; Ravishankaran, R; Kaliraj, P; Meenakshisundaram, S

    2016-01-01

    Global programmes to eliminate lymphatic filariasis (GPELF) require mapping, monitoring and evaluation using filarial antigen diagnostic kits. To meet this objective, a functional single-chain fragment variable (ScFv) specific for filarial Wuchereria bancrofti SXP-1 (Wb-SXP-1) antigen was constructed for the diagnosis of active filarial infection, an alternative to the production of complete antibodies using hybridomas. The variable heavy chain (VH) and the variable light chain (kappa) (Vκ) genes were amplified from the mouse hybridoma cell line and were linked together with a flexible linker by overlap extension polymerase chain reaction (PCR). The ScFv construct (Vκ-Linker-VH) was expressed as a fusion protein with N-terminal His tag in Escherichia coli and purified using immobilized metal affinity chromatography (IMAC) without the addition of reducing agents. Immunoblotting and sandwich enzyme-linked immunosorbent assay (ELISA) were used to analyse the antigen binding affinity of purified ScFv. The purified ScFv was found to recognize recombinant and native Wb-SXP-1 antigen in microfilariae (Mf)-positive patient sera. The affinity of ScFv was comparable with that of the monoclonal antibody. The development of recombinant ScFv to replace monoclonal antibody for detection of filarial antigen was achieved. The recombinant ScFv was purified, on-column refolded and its detection ability validated using field samples. PMID:26693887

  17. A novel, rapid and efficient method of cloning functional antigen-specific T-cell receptors from single human and mouse T-cells.

    PubMed

    Hamana, Hiroshi; Shitaoka, Kiyomi; Kishi, Hiroyuki; Ozawa, Tatsuhiko; Muraguchi, Atsushi

    2016-06-10

    T-cell receptor (TCR) gene therapy is a promising approach for the treatment of infectious diseases and cancers. However, the paired cloning and functional assays of antigen-specific TCRα and TCRβ is time-consuming and laborious. In this study, we developed a novel, rapid and efficient antigen-specific TCR-cloning system by combining three technologies: multiplex one-step RT-PCR, transcriptionally active PCR (TAP) and luciferase reporter assays. Multiplex one-step RT-PCR with leader primers designed from leader peptide sequences of TCRs enabled us to amplify cDNAs of TCRα and β pairs from single T-cells with remarkably high efficiency. The combination of TAP fragments and HEK293T-based NFAT-luciferase reporter cells allowed for a rapid functional assay without the need to construct expression vectors. Using this system, we cloned human TCRs specific for Epstein-Barr virus BRLF-1-derived peptide as well as mouse TCRs specific for melanoma-associated antigen tyrosinase-related protein 2 (TRP-2) within four days. These results suggest that our system provides rapid and efficient cloning of functional antigen-specific human and mouse TCRs and contributes to TCR-based immunotherapy for cancers and infectious diseases. PMID:27155153

  18. Cytokine switch and bystander suppression of autoimmune responses to multiple antigens in experimental autoimmune encephalomyelitis by a single recombinant T-cell receptor ligand.

    PubMed

    Sinha, Sushmita; Subramanian, Sandhya; Miller, Lisa; Proctor, Thomas M; Roberts, Chris; Burrows, Gregory G; Vandenbark, Arthur A; Offner, Halina

    2009-03-25

    Recombinant T-cell receptor ligands (RTLs) can reverse clinical and histological signs of experimental autoimmune encephalomyelitis (EAE) in an antigen-specific manner, and are currently in clinical trials for treatment of subjects with multiple sclerosis (MS). Antigen specificity of RTL raises the question as to whether this treatment would be successful in MS patients where target antigens are unknown. Using spinal cord homogenate or combinations of two different peptides to induce disease, we found that treatment with single RTL could reverse EAE as long as targeted T-cells were present. Therapy with three different RTLs each caused a significant reduction in IL-17 and increases in IL-10 and IL-13 in peptide-activated splenocytes, reduced proliferation of both cognate and bystander specificities of lymph node cells, and reduced inflammatory lesions and secreted IL-17 and IL-2 from peptide-activated spinal cord cells. These results show that treatment with single RTLs can induce a cytokine switch in cognate T-cells that inhibits both the target and bystander T-cells, providing new evidence for the potential applicability of RTL therapy in MS. PMID:19321778

  19. Cytokine Switch and Bystander Suppression of Autoimmune Responses to Multiple Antigens in Experimental Autoimmune Encephalomyelitis by a Single Recombinant T-Cell Receptor Ligand

    PubMed Central

    Sinha, Sushmita; Subramanian, Sandhya; Miller, Lisa; Proctor, Thomas M.; Roberts, Chris; Burrows, Gregory G.; Vandenbark, Arthur A.; Offner, Halina

    2009-01-01

    Recombinant T-cell receptor ligands (RTLs) can reverse clinical and histological signs of experimental autoimmune encephalomyelitis (EAE) in an antigen-specific manner, and are currently in clinical trials for treatment of subjects with multiple sclerosis (MS). Antigen specificity of RTL raises the question as to whether this treatment would be successful in MS patients where target antigens are unknown. Using spinal cord homogenate or combinations of two different peptides to induce disease,we found that treatment with single RTL could reverse EAE as long as targeted T-cells were present. Therapy with three different RTLs each caused a significant reduction in IL-17 and increases in IL-10 and IL-13 in peptide-activated splenocytes, reduced proliferation of both cognate and bystander specificities of lymph node cells, and reduced inflammatory lesions and secreted IL-17 and IL-2 from peptide-activated spinal cord cells. These results show that treatment with single RTLs can induce a cytokine switch in cognate T-cells that inhibits both the target and bystander T-cells, providing new evidence for the potential applicability of RTL therapy in MS. PMID:19321778

  20. DC-expressed MHC class I single-chain trimer-based vaccines prime cytotoxic T lymphocytes against exogenous but not endogenous antigens.

    PubMed

    Ordaz, Maria L; Larmonier, Nicolas; Lybarger, Lonnie

    2010-01-01

    The poor immunogenicity of many tumors can be partly explained by the inefficiency of the MHC class I peptide presentation pathway. MHC-I-based single-chain trimers (SCT) represent a new class of molecules with the potential to overcome this limitation. We here evaluated the ability of SCT presenting a melanoma antigen peptide (TRP-2) to prime cytotoxic T lymphocyte (CTL) responses in mice when given as DNA vaccines via Gene Gun or when expressed by dendritic cells. The SCT was unable to induce detectable priming or significant anti-tumor activity of CTL using either vaccination strategy, whereas control SCT (with an exogenous peptide) primed strong responses. This study thus provides the first data related to the use of SCT in combination with DC and their application toward self antigens and suggest this potent technology, alone, is insufficient to overcome self tolerance. PMID:20199770

  1. Single immunization with a suboptimal antigen dose encapsulated into polyanhydride microparticles promotes high titer and avid antibody responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microparticle adjuvants based on biodegradable polyanhydrides were used to provide controlled delivery of a model antigen, ovalbumin (Ova), to mice. Ova was encapsulated into two different polyanhydride microparticle formulations to evaluate the influence of polymer chemistry on the nature and magn...

  2. Dengue Virus prM-Specific Human Monoclonal Antibodies with Virus Replication-Enhancing Properties Recognize a Single Immunodominant Antigenic Site

    PubMed Central

    Smith, Scott A.; Nivarthi, Usha K.; de Alwis, Ruklanthi; Kose, Nurgun; Sapparapu, Gopal; Bombardi, Robin; Kahle, Kristen M.; Pfaff, Jennifer M.; Lieberman, Sherri; Doranz, Benjamin J.

    2015-01-01

    ABSTRACT The proposed antibody-dependent enhancement (ADE) mechanism for severe dengue virus (DENV) disease suggests that non-neutralizing serotype cross-reactive antibodies generated during a primary infection facilitate entry into Fc receptor bearing cells during secondary infection, resulting in enhanced viral replication and severe disease. One group of cross-reactive antibodies that contributes considerably to this serum profile target the premembrane (prM) protein. We report here the isolation of a large panel of naturally occurring human monoclonal antibodies (MAbs) obtained from subjects following primary DENV serotype 1, 2, or 3 or secondary natural DENV infections or following primary DENV serotype 1 live attenuated virus vaccination to determine the antigenic landscape on the prM protein that is recognized by human antibodies. We isolated 25 prM-reactive human MAbs, encoded by diverse antibody-variable genes. Competition-binding studies revealed that all of the antibodies bound to a single major antigenic site on prM. Alanine scanning-based shotgun mutagenesis epitope mapping studies revealed diverse patterns of fine specificity of various clones, suggesting that different antibodies use varied binding poses to recognize several overlapping epitopes within the immunodominant site. Several of the antibodies interacted with epitopes on both prM and E protein residues. Despite the diverse genetic origins of the antibodies and differences in the fine specificity of their epitopes, each of these prM-reactive antibodies was capable of enhancing the DENV infection of Fc receptor-bearing cells. IMPORTANCE Antibodies may play a critical role in the pathogenesis of enhanced DENV infection and disease during secondary infections. A substantial proportion of enhancing antibodies generated in response to natural dengue infection are directed toward the prM protein. The fine specificity of human prM antibodies is not understood. Here, we isolated a panel of dengue pr

  3. A spliced antigenic peptide comprising a single spliced amino acid is produced in the proteasome by reverse splicing of a longer peptide fragment followed by trimming.

    PubMed

    Michaux, Alexandre; Larrieu, Pierre; Stroobant, Vincent; Fonteneau, Jean-François; Jotereau, Francine; Van den Eynde, Benoît J; Moreau-Aubry, Agnès; Vigneron, Nathalie

    2014-02-15

    Peptide splicing is a novel mechanism of production of peptides relying on the proteasome and involving the linkage of fragments originally distant in the parental protein. Peptides produced by splicing can be presented on class I molecules of the MHC and recognized by CTLs. In this study, we describe a new antigenic peptide, which is presented by HLA-A3 and comprises two noncontiguous fragments of the melanoma differentiation Ag gp100(PMEL17) spliced together in the reverse order to that in which they appear in the parental protein. Contrary to the previously described spliced peptides, which are produced by the association of fragments of 3-6 aa, the peptide described in this work results from the ultimate association of an 8-aa fragment with a single arginine residue. As described before, peptide splicing takes place in the proteasome by transpeptidation involving an acyl-enzyme intermediate linking one of the peptide fragment to a catalytic subunit of the proteasome. Interestingly, we observe that the peptide causing the nucleophilic attack on the acyl-enzyme intermediate must be at least 3 aa long to give rise to a spliced peptide. The spliced peptide produced from this reaction therefore bears an extended C terminus that needs to be further trimmed to produce the final antigenic peptide. We show that the proteasome is able to perform the final trimming step required to produce the antigenic peptide described in this work. PMID:24453253

  4. Development of a single-antigen magnetic bead assay (SAMBA) for the sensitive detection of HPA-1a alloantibodies using tag-engineered recombinant soluble β3 integrin.

    PubMed

    Skaik, Younis; Battermann, Anja; Hiller, Oliver; Meyer, Oliver; Figueiredo, Constanca; Salama, Abdulgabar; Blasczyk, Rainer

    2013-05-31

    Timely and accurate testing for human platelet antigen 1a (HPA-1a) alloantibodies is vital for clinical diagnosis of neonatal alloimmune thrombocytopenia (NAIT). Current antigen-specific assays used for the detection of HPA-1 alloantibodies are technically very complex and cumbersome for most diagnostic laboratories. Hence, we designed and applied recombinant soluble (rs) β3 integrins displaying HPA-1a or HPA-1b epitopes for the development of a single-antigen magnetic bead assay (SAMBA). Soluble HPA-1a and HPA-1b were produced recombinantly in human embryonic kidney 293 (HEK293) cells and differentially tagged. The recombinant soluble proteins were then immobilized onto paramagnetic beads and used for analysis of HPA-1 alloantibodies by enzyme-linked immunosorbent assay (ELISA). HPA-1a serum samples (n=7) from NAIT patients, inert sera and sera containing non-HPA-1a antibodies were used to evaluate the sensitivity and specificity of the SAMBA. Fusion of V5-His or GS-SBP-His tags to the rsβ3 integrins resulted in high-yield expression. SAMBA was able to detect all HPA-1a and -1b alloantibodies recognized by monoclonal antibody-specific immobilization of platelet antigens assay (MAIPA). No cross-reactions between the sera were observed. Two out of seven of the HPA-1a alloantibody-containing sera demonstrated weak to moderate reactivity in MAIPA but strong signals in SAMBA. SAMBA provides a very reliable method for the detection of HPA-1 antibodies with high specificity and sensitivity. This simple and rapid assay can be adapted for use in any routine laboratory and can be potentially adapted for use on automated systems. PMID:23454035

  5. Antigen delivery by filamentous bacteriophage fd displaying an anti-DEC-205 single-chain variable fragment confers adjuvanticity by triggering a TLR9-mediated immune response

    PubMed Central

    Sartorius, Rossella; D'Apice, Luciana; Trovato, Maria; Cuccaro, Fausta; Costa, Valerio; De Leo, Maria Giovanna; Marzullo, Vincenzo Manuel; Biondo, Carmelo; D'Auria, Sabato; De Matteis, Maria Antonietta; Ciccodicola, Alfredo; De Berardinis, Piergiuseppe

    2015-01-01

    Filamentous bacteriophage fd particles delivering antigenic determinants via DEC-205 (fdsc-αDEC) represent a powerful delivery system that induces CD8+ T-cell responses even when administered in the absence of adjuvants or maturation stimuli for dendritic cells. In order to investigate the mechanisms of this activity, RNA-Sequencing of fd-pulsed dendritic cells was performed. A significant differential expression of genes involved in innate immunity, co-stimulation and cytokine production was observed. In agreement with these findings, we demonstrate that induction of proinflammatory cytokines and type I interferon by fdsc-αDEC was MYD88 mediated and TLR9 dependent. We also found that fdsc-αDEC is delivered into LAMP-1-positive compartments and co-localizes with TLR9. Thus, phage particles containing a single-strand DNA genome rich in CpG motifs delivered via DEC-205 are able to intercept and trigger the active TLR9 innate immune receptor into late endosome/lysosomes and to enhance the immunogenicity of the displayed antigenic determinants. These findings make fd bacteriophage a valuable tool for immunization without administering exogenous adjuvants. PMID:25888235

  6. Structural and Biochemical Analysis of a Single Amino-Acid Mutant of WzzBSF That Alters Lipopolysaccharide O-Antigen Chain Length in Shigella flexneri.

    PubMed

    Chang, Chiung-Wen; Tran, Elizabeth N H; Ericsson, Daniel J; Casey, Lachlan W; Lonhienne, Thierry; Benning, Friederike; Morona, Renato; Kobe, Bostjan

    2015-01-01

    Lipopolysaccharide (LPS), a surface polymer of Gram-negative bacteria, helps bacteria survive in different environments and acts as a virulence determinant of host infection. The O-antigen (Oag) component of LPS exhibits a modal chain-length distribution that is controlled by polysaccharide co-polymerases (PCPs). The molecular basis of the regulation of Oag chain-lengths remains unclear, despite extensive mutagenesis and structural studies of PCPs from Escherichia coli and Shigella. Here, we identified a single mutation (A107P) of the Shigella flexneri WzzBSF, by a random mutagenesis approach, that causes a shortened Oag chain-length distribution in bacteria. We determined the crystal structures of the periplasmic domains of wild-type WzzBSF and the A107P mutant. Both structures form a highly similar open trimeric assembly in the crystals, and show a similar tendency to self-associate in solution. Binding studies by bio-layer interferometry reveal cooperative binding of very short (VS)-core-plus-O-antigen polysaccharide (COPS) to the periplasmic domains of both proteins, but with decreased affinity for the A107P mutant. Our studies reveal that subtle and localized structural differences in PCPs can have dramatic effects on LPS chain-length distribution in bacteria, for example by altering the affinity for the substrate, which supports the role of the structure of the growing Oag polymer in this process. PMID:26378781

  7. Structural and Biochemical Analysis of a Single Amino-Acid Mutant of WzzBSF That Alters Lipopolysaccharide O-Antigen Chain Length in Shigella flexneri

    PubMed Central

    Casey, Lachlan W.; Lonhienne, Thierry; Benning, Friederike; Morona, Renato; Kobe, Bostjan

    2015-01-01

    Lipopolysaccharide (LPS), a surface polymer of Gram-negative bacteria, helps bacteria survive in different environments and acts as a virulence determinant of host infection. The O-antigen (Oag) component of LPS exhibits a modal chain-length distribution that is controlled by polysaccharide co-polymerases (PCPs). The molecular basis of the regulation of Oag chain-lengths remains unclear, despite extensive mutagenesis and structural studies of PCPs from Escherichia coli and Shigella. Here, we identified a single mutation (A107P) of the Shigella flexneri WzzBSF, by a random mutagenesis approach, that causes a shortened Oag chain-length distribution in bacteria. We determined the crystal structures of the periplasmic domains of wild-type WzzBSF and the A107P mutant. Both structures form a highly similar open trimeric assembly in the crystals, and show a similar tendency to self-associate in solution. Binding studies by bio-layer interferometry reveal cooperative binding of very short (VS)-core-plus-O-antigen polysaccharide (COPS) to the periplasmic domains of both proteins, but with decreased affinity for the A107P mutant. Our studies reveal that subtle and localized structural differences in PCPs can have dramatic effects on LPS chain-length distribution in bacteria, for example by altering the affinity for the substrate, which supports the role of the structure of the growing Oag polymer in this process. PMID:26378781

  8. Simultaneous multicolor detection system of the single-molecular microbial antigen by total internal reflection fluorescence microscopy with fluorescent nanocrystal quantum dots

    NASA Astrophysics Data System (ADS)

    Hoshino, Akiyoshi; Fujioka, Kouki; Yamamoto, Mayu; Manabe, Noriyoshi; Yasuhara, Masato; Suzuki, Kazuo; Yamamoto, Kenji

    2005-11-01

    Immunological diagnostic methods have been widely performed and showed high performance in molecular and cellular biology, molecular imaging, and medical diagnostics. We have developed novel methods for the fluorescent labeling of several antibodies coupled with fluorescent nanocrystals QDs. In this study we demonstrated that two bacterial toxins, diphtheria toxin and tetanus toxin, were detected simultaneously in the same view field of a cover slip by using directly QD-conjugated antibodies. We have succeeded in detecting bacterial toxins by counting luminescent spots on the evanescent field with using primary antibody conjugated to QDs. In addition, each bacterial toxin in the mixture can be separately detected by single excitation laser with emission band pass filters, and simultaneously in situ pathogen quantification was performed by calculating the luminescent density on the surface of the cover slip. Our results demonstrate that total internal reflection fluorescence microscopy (TIRFM) enables us to distinguish each antigen from mixed samples and can simultaneously quantitate multiple antigens by QD-conjugated antibodies. Bioconjugated QDs could have great potentialities for in practical biomedical applications to develop various high-sensitivity detection systems.

  9. Isolation of antibodies specific to a single conformation-dependant antigenic determinant on the EG95 hydatid vaccine

    PubMed Central

    Read, A.J.; Casey, J.L.; Coley, A.M.; Foley, M.; Gauci, C.G.; Jackson, D.C.; Lightowlers, M.W.

    2009-01-01

    EG95 is a recombinant vaccine protein that elicits protection against hydatid disease in sheep. Previous studies have shown that the host-protective epitopes on EG95 depend on correct conformation and cannot be represented by simple “linear” peptides. By screening random peptide phage display libraries with polyclonal antibodies directed against conformation-dependant epitopes of EG95, we have selected a number of peptides that mimic these epitopes. The selected peptides did not show sequence homology to EG95. Antigen binding assays involving these peptides have provided evidence of at least four conformationally-dependant epitope regions on EG95. One of the selected peptides, E100, has been used to purify antibodies from anti-sera raised in sheep vaccinated with EG95. This yielded monospecific antibodies capable of recognizing recombinant EG95 in ELISA and native EG95 in Western blot assays. This antibody was demonstrated to be effective in antibody-dependant complement-mediated in vitro killing of Echinococcus granulosus oncospheres. Peptide E100 may represent the basis for a quality control assay for EG95 production, and has the potential to become a component of a synthetic peptide-based vaccine against E. granulosus. PMID:19095030

  10. A novel flow cytometry single tube bead assay for quantitation of von Willebrand factor antigen and collagen-binding.

    PubMed

    Mina, Ashraf; Favaloro, Emmanuel J; Koutts, Jerry

    2012-11-01

    Deficiency of or defects in the plasma protein von Willebrand factor (VWF) lead to bleeding and von Willebrand disease (VWD), which may be congenital or acquired. VWD is considered the most common inherited bleeding disorder and laboratory testing for VWF level and activity is critical for appropriate diagnosis and management. We have designed and established a novel Flow Cytometry (FC) based method for measuring VWF antigen (VWF:Ag) and collagen binding (VWF:CB), together in the same tube and at the same time. The results of the novel FC method have been compared against existing reference methods using a range of normal and pathological material. Methods correlated well (VWF:Ag, r=0.866; VWF:CB, r=0.888) and generally permitted similar discrimination of quantitative versus qualitative VWD types (e.g. type 1 vs type 2A or 2B VWD). The novel procedure is expected to permit future streamlined performance of VWD screening, either using stand-alone FC systems or potentially incorporated into FC-capable automated blood cell and particle counters to allow for improved, automated and faster identification or exclusion of VWD. PMID:23014972

  11. A single amino acid substitution (R441A) in the receptor-binding domain of SARS coronavirus spike protein disrupts the antigenic structure and binding activity

    SciTech Connect

    He Yuxian . E-mail: yhe@nybloodcenter.org; Li Jingjing; Jiang Shibo

    2006-05-26

    The spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) has two major functions: interacting with the receptor to mediate virus entry and inducing protective immunity. Coincidently, the receptor-binding domain (RBD, residues 318-510) of SAR-CoV S protein is a major antigenic site to induce neutralizing antibodies. Here, we used RBD-Fc, a fusion protein containing the RBD and human IgG1 Fc, as a model in the studies and found that a single amino acid substitution in the RBD (R441A) could abolish the immunogenicity of RBD to induce neutralizing antibodies in immunized mice and rabbits. With a panel of anti-RBD mAbs as probes, we observed that R441A substitution was able to disrupt the majority of neutralizing epitopes in the RBD, suggesting that this residue is critical for the antigenic structure responsible for inducing protective immune responses. We also demonstrated that the RBD-Fc bearing R441A mutation could not bind to soluble and cell-associated angiotensin-converting enzyme 2 (ACE2), the functional receptor for SARS-CoV and failed to block S protein-mediated pseudovirus entry, indicating that this point mutation also disrupted the receptor-binding motif (RBM) in the RBD. Taken together, these data provide direct evidence to show that a single amino acid residue at key position in the RBD can determine the major function of SARS-CoV S protein and imply for designing SARS vaccines and therapeutics.

  12. Amino-functionalized poly(l-lactide) lamellar single crystals as a valuable substrate for delivery of HPV16-E7 tumor antigen in vaccine development

    PubMed Central

    Di Bonito, Paola; Petrone, Linda; Casini, Gabriele; Francolini, Iolanda; Ammendolia, Maria Grazia; Accardi, Luisa; Piozzi, Antonella; D’Ilario, Lucio; Martinelli, Andrea

    2015-01-01

    Background Poly(l-lactide) (PLLA) is a biodegradable polymer currently used in many biomedical applications, including the production of resorbable surgical devices, porous scaffolds for tissue engineering, nanoparticles and microparticles for the controlled release of drugs or antigens. The surfaces of lamellar PLLA single crystals (PLLAsc) were provided with amino groups by reaction with a multifunctional amine and used to adsorb an Escherichia coli-produced human papillomavirus (HPV)16-E7 protein to evaluate its possible use in antigen delivery for vaccine development. Methods PLLA single crystals were made to react with tetraethylenepentamine to obtain amino-functionalized PLLA single crystals (APLLAsc). Pristine and amino-functionalized PLLAsc showed a two-dimensional microsized and one-dimensional nanosized lamellar morphology, with a lateral dimension of about 15–20 μm, a thickness of about 12 nm, and a surface specific area of about 130 m2/g. Both particles were characterized and loaded with HPV16-E7 before being administered to C57BL/6 mice for immunogenicity studies. The E7-specific humoral-mediated and cell-mediated immune response as well as tumor protective immunity were analyzed in mice challenged with TC-1 cancer cells. Results Pristine and amino-functionalized PLLAsc adsorbed similar amounts of E7 protein, but in protein-release experiments E7-PLLAsc released a higher amount of protein than E7-APLLAsc. When the complexes were dried for observation by scanning electron microscopy, both samples showed a compact layer, but E7-APLLAsc showed greater roughness than E7-PLLAsc. Immunization experiments in mice showed that E7-APLLAsc induced a stronger E7-specific immune response when compared with E7-PLLAsc. Immunoglobulin G isotyping and interferon gamma analysis suggested a mixed Th1/Th2 immune response in both E7-PLLAsc-immunized and E7-APLLAsc-immunized mice. However, only the mice receiving E7-APLLAsc were fully protected from TC-1 tumor growth

  13. Structure-Based Analysis of the Interaction between the Simian Virus 40 T-Antigen Origin Binding Domain and Single-Stranded DNA

    SciTech Connect

    G Meinke; P Phelan; A Fradet-Turcotte; A Bohm; J Archambault; P Bullock

    2011-12-31

    The origin-binding domain (OBD) of simian virus 40 (SV40) large T-antigen (T-Ag) is essential for many of T-Ag's interactions with DNA. Nevertheless, many important issues related to DNA binding, for example, how single-stranded DNA (ssDNA) transits along the T-Ag OBD, have yet to be established. Therefore, X-ray crystallography was used to determine the costructure of the T-Ag OBD bound to DNA substrates such as the single-stranded region of a forked oligonucleotide. A second structure of the T-Ag OBD crystallized in the presence of poly(dT){sub 12} is also reported. To test the conclusions derived from these structures, residues identified as being involved in binding to ssDNA by crystallography or by an earlier nuclear magnetic resonance study were mutated, and their binding to DNA was characterized via fluorescence anisotropy. In addition, these mutations were introduced into full-length T-Ag, and these mutants were tested for their ability to support replication. When considered in terms of additional homology-based sequence alignments, our studies refine our understanding of how the T-Ag OBDs encoded by the polyomavirus family interact with ssDNA, a critical step during the initiation of DNA replication.

  14. Single-Chain Soluble BG505.SOSIP gp140 Trimers as Structural and Antigenic Mimics of Mature Closed HIV-1 Env

    PubMed Central

    Georgiev, Ivelin S.; Joyce, M. Gordon; Yang, Yongping; Sastry, Mallika; Zhang, Baoshan; Baxa, Ulrich; Chen, Rita E.; Druz, Aliaksandr; Lees, Christopher R.; Narpala, Sandeep; Schön, Arne; Van Galen, Joseph; Chuang, Gwo-Yu; Gorman, Jason; Harned, Adam; Pancera, Marie; Stewart-Jones, Guillaume B. E.; Cheng, Cheng; Freire, Ernesto; McDermott, Adrian B.; Mascola, John R.

    2015-01-01

    ABSTRACT Similar to other type I fusion machines, the HIV-1 envelope glycoprotein (Env) requires proteolytic activation; specifically, cleavage of a gp160 precursor into gp120 and gp41 subunits creates an N-terminal gp41 fusion peptide and permits folding from an immature uncleaved state to a mature closed state. While the atomic-level consequences of cleavage for HIV-1 Env are still being determined, the uncleaved state is antigenically distinct from the mature closed state, and cleavage has been reported to be essential for mimicry of the mature viral spike by soluble versions of Env. Here we report the redesign of a current state-of-the-art soluble Env mimic, BG505.SOSIP, to make it cleavage independent. Specifically, we replaced the furin cleavage site between gp120 and gp41 with Gly-Ser linkers of various lengths. The resultant linked gp120-gp41 constructs, termed single-chain gp140 (sc-gp140), exhibited different levels of structural and antigenic mimicry of the parent cleaved BG505.SOSIP. When constructs were subjected to negative selection to remove subspecies recognized by poorly neutralizing antibodies, trimers of high antigenic mimicry of BG505.SOSIP could be obtained; negative-stain electron microscopy indicated these to resemble the mature closed state. Higher proportions of BG505.SOSIP-trimer mimicry were observed in sc-gp140s with linkers of 6 or more residues, with a linker length of 15 residues exhibiting especially promising traits. Overall, flexible linkages between gp120 and gp41 in BG505.SOSIP can thus substitute for cleavage, and sc-gp140s that closely mimicked the vaccine-preferred mature closed state of Env could be obtained. IMPORTANCE The trimeric HIV-1 envelope glycoprotein (Env) is the sole target of virus-directed neutralizing antibody responses and a primary focus of vaccine design. Soluble mimics of Env have proven challenging to obtain and have been thought to require proteolytic cleavage into two-component subunits, gp120 and gp41

  15. Association of Single Nucleotide Polymorphisms in the ST3GAL4 Gene with VWF Antigen and Factor VIII Activity.

    PubMed

    Song, Jaewoo; Xue, Cheng; Preisser, John S; Cramer, Drake W; Houck, Katie L; Liu, Guo; Folsom, Aaron R; Couper, David; Yu, Fuli; Dong, Jing-Fei

    2016-01-01

    VWF is extensively glycosylated with biantennary core fucosylated glycans. Most N-linked and O-linked glycans on VWF are sialylated. FVIII is also glycosylated, with a glycan structure similar to that of VWF. ST3GAL sialyltransferases catalyze the transfer of sialic acids in the α2,3 linkage to termini of N- and O-glycans. This sialic acid modification is critical for VWF synthesis and activity. We analyzed genetic and phenotypic data from the Atherosclerosis Risk in Communities (ARIC) study for the association of single nucleotide polymorphisms (SNPs) in the ST3GAL4 gene with plasma VWF levels and FVIII activity in 12,117 subjects. We also analyzed ST3GAL4 SNPs found in 2,535 subjects of 26 ethnicities from the 1000 Genomes (1000G) project for ethnic diversity, SNP imputation, and ST3GAL4 haplotypes. We identified 14 and 1,714 ST3GAL4 variants in the ARIC GWAS and 1000G databases respectively, with 46% being ethnically diverse in their allele frequencies. Among the 14 ST3GAL4 SNPs found in ARIC GWAS, the intronic rs2186717, rs7928391, and rs11220465 were associated with VWF levels and with FVIII activity after adjustment for age, BMI, hypertension, diabetes, ever-smoking status, and ABO. This study illustrates the power of next-generation sequencing in the discovery of new genetic variants and a significant ethnic diversity in the ST3GAL4 gene. We discuss potential mechanisms through which these intronic SNPs regulate ST3GAL4 biosynthesis and the activity that affects VWF and FVIII. PMID:27584569

  16. Single-step cycle pulse operation of the label-free electrochemiluminescence immunosensor based on branched polypyrrole for carcinoembryonic antigen detection.

    PubMed

    Zhu, Wenjuan; Wang, Qi; Ma, Hongmin; Lv, Xiaohui; Wu, Dan; Sun, Xu; Du, Bin; Wei, Qin

    2016-01-01

    A novel label-free electrochemiluminescence (ECL) immunosensor based on luminol functional-Au NPs@polypyrrole has been developed for the detection of carcinoembryonic antigen (CEA). In this work, polypyrrole prepared by chemical polymerization provided a large surface area to load amounts of gold nanoparticles (Au NPs). Au NPs could not only attach abundant luminol for the enhancement of ECL signal, but also provide a friendly microenvironment for the immobilization of antibodies. Moreover, 1-butylpyridinium tetrafluroborate ([BPy]BF4) were used to disperse luminol functional-Au NPs@polypyrrole nanocomposites, resulting in the film-formation of composites on the electrode, which could improve the stability of immunosensor. In particular, employment of single-step cycle pulse could limit the consecutive reaction between luminol and H2O2 efficiently, thus leading to stable and strong signals. The proposed method presents good ECL response for the detection of CEA allowing a wide linear range from 0.01 pg/mL to 10 ng/mL and a limit of detection as low as 3 fg/mL. The immunosensor would be a promising tool in the early diagnosis of CEA due to its high sensitivity, simplicity and cost-effective. PMID:27091590

  17. Single-step cycle pulse operation of the label-free electrochemiluminescence immunosensor based on branched polypyrrole for carcinoembryonic antigen detection

    PubMed Central

    Zhu, Wenjuan; Wang, Qi; Ma, Hongmin; Lv, Xiaohui; Wu, Dan; Sun, Xu; Du, Bin; Wei, Qin

    2016-01-01

    A novel label-free electrochemiluminescence (ECL) immunosensor based on luminol functional-Au NPs@polypyrrole has been developed for the detection of carcinoembryonic antigen (CEA). In this work, polypyrrole prepared by chemical polymerization provided a large surface area to load amounts of gold nanoparticles (Au NPs). Au NPs could not only attach abundant luminol for the enhancement of ECL signal, but also provide a friendly microenvironment for the immobilization of antibodies. Moreover, 1-butylpyridinium tetrafluroborate ([BPy]BF4) were used to disperse luminol functional-Au NPs@polypyrrole nanocomposites, resulting in the film-formation of composites on the electrode, which could improve the stability of immunosensor. In particular, employment of single-step cycle pulse could limit the consecutive reaction between luminol and H2O2 efficiently, thus leading to stable and strong signals. The proposed method presents good ECL response for the detection of CEA allowing a wide linear range from 0.01 pg/mL to 10 ng/mL and a limit of detection as low as 3 fg/mL. The immunosensor would be a promising tool in the early diagnosis of CEA due to its high sensitivity, simplicity and cost-effective. PMID:27091590

  18. Development of an enhanced bovine viral diarrhea virus subunit vaccine based on E2 glycoprotein fused to a single chain antibody which targets to antigen-presenting cells.

    PubMed

    Pecora, Andrea; Malacari, Darío A; Pérez Aguirreburualde, María S; Bellido, Demian; Escribano, José M; Dus Santos, María J; Wigdorovitz, Andrés

    2015-01-01

    Bovine viral diarrhea virus (BVDV) is an important cause of economic losses worldwide. E2 is an immunodominant protein and a promising candidate to develop subunit vaccines. To improve its immunogenicity, a truncated E2 (tE2) was fused to a single chain antibody named APCH, which targets to antigen-presenting cells. APCH-tE2 and tE2 proteins were expressed in the baculovirus system and their immunogenicity was firstly compared in guinea pigs. APCH-tE2 vaccine was the best one to evoke a humoral response, and for this reason, it was selected for a cattle vaccination experiment. All the bovines immunized with 1.5 μg of APCH-tE2 developed high levels of neutralizing antibodies against BVDV up to a year post-immunization, demonstrating its significant potential as a subunit vaccine. This novel vaccine is undergoing scale-up and was transferred to the private sector. Nowadays, it is being evaluated for registration as the first Argentinean subunit vaccine for cattle. PMID:25697468

  19. Single domain antibody-alkaline phosphatase fusion proteins for antigen detection--analysis of affinity and thermal stability of single domain antibody.

    PubMed

    Liu, Jinny L; Zabetakis, Dan; Lee, Audrey Brozozog; Goldman, Ellen R; Anderson, George P

    2013-07-31

    Single domain antibody (sdAb)-alkaline phosphatase (AP) fusion proteins have been demonstrated to be useful immunodiagnostic reagents for bio-threat agent detection. The bivalent nature of sdAb-AP fusion proteins significantly increases effective affinity and thus the sensitivity of detection, but the thermal stability of the fusion protein had not been explored. This property is critical for the development of immunoassays for use in austere environments. In this study four sdAbs with specificity for MS2 phage coat protein (CP) were expressed as fusions with AP in order to evaluate the thermal stability and affinity of the resulting constructs. The melting temperature (Tm) of the sdAb and sdAb-AP fusion proteins was measured by a combination of Circular Dichroism (CD), differential scanning calorimetry (DSC) and Fluorescence-based Thermal Shift assay. Binding kinetics were assessed using surface plasmon resonance (SPR). Our results indicated that the AP fusion protein did not increase the Tm or enhance thermal stability of the sdAb, but did provide the expected increase in binding affinity as compared to the original sdAb. PMID:23570946

  20. Development of (99m)Tc-labeled asymmetric urea derivatives that target prostate-specific membrane antigen for single-photon emission computed tomography imaging.

    PubMed

    Kimura, Hiroyuki; Sampei, Sotaro; Matsuoka, Daiko; Harada, Naoya; Watanabe, Hiroyuki; Arimitsu, Kenji; Ono, Masahiro; Saji, Hideo

    2016-05-15

    Prostate-specific membrane antigen (PSMA) is expressed strongly in prostate cancers and is, therefore, an attractive diagnostic and radioimmunotherapeutic target. In contrast to previous reports of PMSA-targeting (99m)Tc-tricarbonyl complexes that are cationic or lack a charge, no anionic (99m)Tc-tricarbonyl complexes have been reported. Notably, the hydrophilicity conferred by both cationic and anionic charges leads to rapid hepatobiliary clearance, whereas an anionic charge might better enhance renal clearance relative to a cationic charge. Therefore, an improvement in rapid clearance would be expected with either cationic or anionic charges, particularly anionic charges. In this study, we designed and synthesized a novel anionic (99m)Tc-tricarbonyl complex ([(99m)Tc]TMCE) and evaluated its use as a single-photon emission computed tomography (SPECT) imaging probe for PSMA detection. Direct synthesis of [(99m)Tc]TMCE from dimethyl iminodiacetate, which contains both the asymmetric urea and succinimidyl moiety important for PSMA binding, was performed using our microwave-assisted one-pot procedure. The chelate formation was successfully achieved even though the precursor included a complicated bioactive moiety. The radiochemical yield of [(99m)Tc]TMCE was 12-17%, with a radiochemical purity greater than 98% after HPLC purification. [(99m)Tc]TMCE showed high affinity in vitro, with high accumulation in LNCaP tumors and low hepatic retention in biodistribution and SPECT/CT studies. These findings warrant further evaluation of [(99m)Tc]TMCE as an imaging agent and support the benefit of this strategy for the design of other PSMA imaging probes. PMID:27073053

  1. Control of Established Colon Cancer Xenografts Using a Novel Humanized Single Chain Antibody-Streptococcal Superantigen Fusion Protein Targeting the 5T4 Oncofetal Antigen

    PubMed Central

    Patterson, Kelcey G.; Dixon Pittaro, Jennifer L.; Bastedo, Peter S.; Hess, David A.; Haeryfar, S. M. Mansour; McCormick, John K.

    2014-01-01

    Superantigens (SAgs) are microbial toxins that cross-link T cell receptors with major histocompatibility class II (MHC-II) molecules leading to the activation of large numbers of T cells. Herein, we describe the development and preclinical testing of a novel tumor-targeted SAg (TTS) therapeutic built using the streptococcal pyrogenic exotoxin C (SpeC) SAg and targeting cancer cells expressing the 5T4 tumor-associated antigen (TAA). To inhibit potentially harmful widespread immune cell activation, a SpeC mutation within the high-affinity MHC-II binding interface was generated (SpeCD203A) that demonstrated a pronounced reduction in mitogenic activity, yet this mutant could still induce immune cell-mediated cancer cell death in vitro. To target 5T4+ cancer cells, we engineered a humanized single chain variable fragment (scFv) antibody to recognize 5T4 (scFv5T4). Specific targeting of scFv5T4 was verified. SpeCD203A fused to scFv5T4 maintained the ability to activate and induce immune cell-mediated cytotoxicity of colorectal cancer cells. Using a xenograft model of established human colon cancer, we demonstrated that the SpeC-based TTS was able to control the growth and spread of large tumors in vivo. This required both TAA targeting by scFv5T4 and functional SAg activity. These studies lay the foundation for the development of streptococcal SAgs as ‘next-generation’ TTSs for cancer immunotherapy. PMID:24736661

  2. Control of established colon cancer xenografts using a novel humanized single chain antibody-streptococcal superantigen fusion protein targeting the 5T4 oncofetal antigen.

    PubMed

    Patterson, Kelcey G; Dixon Pittaro, Jennifer L; Bastedo, Peter S; Hess, David A; Haeryfar, S M Mansour; McCormick, John K

    2014-01-01

    Superantigens (SAgs) are microbial toxins that cross-link T cell receptors with major histocompatibility class II (MHC-II) molecules leading to the activation of large numbers of T cells. Herein, we describe the development and preclinical testing of a novel tumor-targeted SAg (TTS) therapeutic built using the streptococcal pyrogenic exotoxin C (SpeC) SAg and targeting cancer cells expressing the 5T4 tumor-associated antigen (TAA). To inhibit potentially harmful widespread immune cell activation, a SpeC mutation within the high-affinity MHC-II binding interface was generated (SpeCD203A) that demonstrated a pronounced reduction in mitogenic activity, yet this mutant could still induce immune cell-mediated cancer cell death in vitro. To target 5T4+ cancer cells, we engineered a humanized single chain variable fragment (scFv) antibody to recognize 5T4 (scFv5T4). Specific targeting of scFv5T4 was verified. SpeCD203A fused to scFv5T4 maintained the ability to activate and induce immune cell-mediated cytotoxicity of colorectal cancer cells. Using a xenograft model of established human colon cancer, we demonstrated that the SpeC-based TTS was able to control the growth and spread of large tumors in vivo. This required both TAA targeting by scFv5T4 and functional SAg activity. These studies lay the foundation for the development of streptococcal SAgs as 'next-generation' TTSs for cancer immunotherapy. PMID:24736661

  3. Hepatitis B virus core antigen epitopes presented by HLA-A2 single-chain trimers induce functional epitope-specific CD8+ T-cell responses in HLA-A2.1/Kb transgenic mice.

    PubMed

    Zhang, Yuxia; Li, Shu; Shan, Ming; Pan, Xuwen; Zhuang, Ke; He, Lihua; Gould, Keith; Tien, Po

    2007-05-01

    The potency of CD8+ cytotoxic T lymphocyte (CTL) responses toward core antigen has been shown to affect the outcomes of hepatitis B virus (HBV) infection. Since single-chain trimers (SCT) composed of peptide epitope beta2-microglobulin (beta2m) and major histocompatibility complex (MHC) class I heavy chain covalently linked together in a single molecule have been shown to stimulate efficient CTL responses, we investigated the properties of human leucocyte antigen (HLA)-A2 SCTs encoding the HBV core antigen (HBcAg) epitopes C(18-27) and C(107-115). Transfection of NIH-3T3 cells with pcDNA3.0-SCT-C(18-27) and SCT-C(107-115) leads to stable presentation of HBcAg epitopes at the cell surface. HLA-A2.1/Kb transgenic mice vaccinated with the SCT constructs, either as a DNA vaccine alone or followed by a boost with recombinant vaccinia virus, were shown to generate HBcAg-specific CTL responses by enzyme-linked immunospot assay (ELISPOT) and in vitro interferon-gamma release experiments. HBcAg-specific CTLs from vaccinated HLA-A2.1/Kb transgenic mice were able to inhibit HBV surface and e antigen expression as indicated by HepG2.2.15 cells. Our data indicate that a DNA vaccine encoding a human HLA-A2 SCT with HBV epitopes can lead to stable, enhanced HBV core antigen presentation, and may be useful for the control of HBV infection in HLA-A2-positive HBV carriers. PMID:17244158

  4. Recombinant hepatitis B triple antigen vaccine: Hepacare.

    PubMed

    Zuckerman, Jane N; Zuckerman, Arie J

    2002-08-01

    Infection with hepatitis B virus is a public health problem throughout the world. Hepatitis B vaccines are now included in national immunization programmes of infants and/or adolescents in 129 countries. Current single antigen vaccines, that are plasma-derived or produced by recombinant DNA technology are highly effective, but between 5-10% or more of healthy immunocompetent subjects do not mount an antihepatitis B surface antibody protective response and others respond poorly (hyporesponders). The inclusion of pre-S1 and -S2 components of hepatitis B surface antigen in addition to the single antigen (triple antigen) in a novel vaccine, Hepacare, Medeva Pharma Plc, Speke, UK, overcomes nonresponsiveness and hyporesponsiveness in a significant number of individuals. The triple antigen is indicated for vaccination of nonresponders (and hyporesponders) to the current single antigen vaccines and for persons who require rapid protection against hepatitis B infection. PMID:12901552

  5. Protection against Invasive Amebiasis by a Single Monoclonal Antibody Directed against a Lipophosphoglycan Antigen Localized on the Surface of Entamoeba histolytica

    PubMed Central

    Marinets, Alexandra; Zhang, Tonghai; Guillén, Nancy; Gounon, Pierre; Bohle, Barbara; Vollmann, Ute; Scheiner, Otto; Wiedermann, Gerhard; Stanley, Samuel L.; Duchêne, Michael

    1997-01-01

    A panel of monoclonal antibodies was raised from mice immunized with a membrane preparation from Entamoeba histolytica, the pathogenic species causing invasive amebiasis in humans. Antibody EH5 gave a polydisperse band in immunoblots from membrane preparations from different E. histolytica strains, and a much weaker signal from two strains of the nonpathogenic species Entamoeba dispar. Although the exact chemical structure of the EH5 antigen is not yet known, the ability of the antigen to be metabolically radiolabeled with [32P]phosphate or [3H]glucose, its sensitivity to digestion by mild acid and phosphatidylinositol-specific phospholipase C, and its specific extraction from E. histolytica trophozoites by a method used to prepare lipophosphoglycans from Leishmania showed that it could be classified as an amebal lipophosphoglycan. Confocal immunofluorescence and immunogold labeling of trophozoites localized the antigen on the outer face of the plasma membrane and on the inner face of internal vesicle membranes. Antibody EH5 strongly agglutinated amebas in a similar way to concanavalin A (Con A), and Con A bound to immunoaffinity-purified EH5 antigen. Therefore, surface lipophosphoglycans may play an important role in the preferential agglutination of pathogenic amebas by Con A. The protective ability of antibody EH5 was tested in a passive immunization experiment in a severe combined immunodeficient (SCID) mouse model. Intrahepatic challenge of animals after administration of an isotype-matched control antibody or without treatment led to the development of a liver abscess in all cases, whereas 11 out of 12 animals immunized with the EH5 antibody developed no liver abscess. Our results demonstrate the importance and, for the first time, the protective capacity of glycan antigens on the surface of the amebas. PMID:9348313

  6. Altering the antigenicity of proteins.

    PubMed Central

    Alexander, H; Alexander, S; Getzoff, E D; Tainer, J A; Geysen, H M; Lerner, R A

    1992-01-01

    To better understand the binding interaction between antigen and antibody we need to distinguish protein residues critical to the binding energy and mechanism from residues merely localized in the interface. By analyzing the binding of monoclonal antibodies to recombinant wild-type and mutant myohemerythrin (MHr) proteins, we were able to test the role of individual critical residues at the highly antigenic site MHr-(79-84), within the context of the folded protein. The results directly show the existence of antigenically critical residues, whose mutations significantly reduce antibody binding to the folded protein, thus verifying peptide-based assignments of these critical residues and demonstrating the ability of buried side chains to influence antigenicity. Taken together, these results (i) distinguish the antigenic surface from the solvent-exposed protein surface before binding, (ii) support a two-stage interaction mechanism allowing inducible changes in protein antigens by antibody binding, and (iii) show that protein antigenicity can be significantly reduced by alteration of single critical residues without destroying biological activity. Images PMID:1373498

  7. Antigenic sites in carcinoembryonic antigen.

    PubMed

    Hammarstrom, S; Shively, J E; Paxton, R J; Beatty, B G; Larsson, A; Ghosh, R; Bormer, O; Buchegger, F; Mach, J P; Burtin, P

    1989-09-01

    The epitope reactivities of 52 well-characterized monoclonal antibodies (Mabs) against carcinoembryonic antigen from 11 different research groups were studied using competitive solid-phase immunoassays. About 60% of all possible combinations of Mabs as inhibitors and as the primary binding antibody were investigated. The inhibition data were analyzed by a specially developed computer program "EPITOPES" which measures concordance and discordance in inhibition patterns between Mabs. The analysis showed that 43 of the 52 Mabs (83%) could be classified into one of five essentially noninteracting epitope groups (GOLD 1-5) containing between four and 15 Mabs each. The epitopes recognized by the Mabs belonging to groups 1 to 5 were peptide in nature. With one or two possible exceptions non-classifiable Mabs were either directed against carbohydrate epitopes (4 Mabs) or were inactive in the tests used. Within epitope groups GOLD 1, 4, and 5 two partially overlapping subgroups were distinguished. Mabs with a high degree of carcinoembryonic antigen specificity generally belonged to epitope groups GOLD 1 and 3. PMID:2474375

  8. Evaluation of a new syringe presentation of reduced-antigen content diphtheria, tetanus, and acellular pertussis vaccine in healthy adolescents - A single blind randomized trial

    PubMed Central

    Pavia-Ruz, Noris; Abarca, Katia; Lepetic, Alejandro; Cervantes-Apolinar, Maria Yolanda; Hardt, Karin; Jayadeva, Girish; Kuriyakose, Sherine; Han, Htay Htay; de la O, Manuel

    2015-01-01

    Reduced-antigen-content diphtheria-tetanus-acellular pertussis (dTpa) vaccine, Boostrix™, is indicated for booster vaccination of children, adolescents and adults. The original prefilled disposable dTpa syringe presentation was recently replaced by another prefilled-syringe presentation with latex-free tip-caps and plunger-stoppers. 671 healthy adolescents aged 10–15 years who had previously received 5 or 6 previous DT(P)/dT(pa) vaccine doses, were randomized (1:1) to receive dTpa booster, injected using the new (dTpa-new) or previous syringe (dTpa-previous) presentations. Immunogenicity was assessed before and 1-month post-booster vaccination; safety/reactogenicity were assessed during 31-days post-vaccination. Non-inferiority of dTpa-new versus dTpa-previous was demonstrated for all antigens (ULs 95% CIs for GMC ratios ranged between 1.03-1.13). 1-month post-booster, immune responses were in similar ranges for all antigens with both syringe presentations. dTpa delivered using either syringe presentation was well-tolerated. These clinical results complement the technical data and support the use of the new syringe presentation to deliver the dTpa vaccine. PMID:26075317

  9. Evaluation of a new syringe presentation of reduced-antigen content diphtheria, tetanus, and acellular pertussis vaccine in healthy adolescents--A single blind randomized trial.

    PubMed

    Pavia-Ruz, Noris; Abarca, Katia; Lepetic, Alejandro; Cervantes-Apolinar, Maria Yolanda; Hardt, Karin; Jayadeva, Girish; Kuriyakose, Sherine; Han, Htay Htay; de la O, Manuel

    2015-01-01

    Reduced-antigen-content diphtheria-tetanus-acellular pertussis (dTpa) vaccine, Boostrix™, is indicated for booster vaccination of children, adolescents and adults. The original prefilled disposable dTpa syringe presentation was recently replaced by another prefilled-syringe presentation with latex-free tip-caps and plunger-stoppers. 671 healthy adolescents aged 10-15 years who had previously received 5 or 6 previous DT(P)/dT(pa) vaccine doses, were randomized (1:1) to receive dTpa booster, injected using the new (dTpa-new) or previous syringe (dTpa-previous) presentations. Immunogenicity was assessed before and 1-month post-booster vaccination; safety/reactogenicity were assessed during 31-days post-vaccination. Non-inferiority of dTpa-new versus dTpa-previous was demonstrated for all antigens (ULs 95% CIs for GMC ratios ranged between 1.03-1.13). 1-month post-booster, immune responses were in similar ranges for all antigens with both syringe presentations. dTpa delivered using either syringe presentation was well-tolerated. These clinical results complement the technical data and support the use of the new syringe presentation to deliver the dTpa vaccine. PMID:26075317

  10. The novel anti-CD19 chimeric antigen receptors with humanized scFv (single-chain variable fragment) trigger leukemia cell killing.

    PubMed

    Qian, Liren; Li, Dan; Ma, Lie; He, Ting; Qi, Feifei; Shen, Jianliang; Lu, Xin-An

    2016-01-01

    The molecular design of CARs (Chimeric Antigen Receptors), especially the scFv, has been a major part to use of CAR-T cells for targeted adoptive immunotherapy. To address this issue, we chose a vector backbone encoding a second-generation CAR based on efficacy of a murine scFv-based CAR. Next, we generated a panel of humanized scFvs and tested in vitro for their ability to direct CAR-T cells to specifically lyse, proliferate, and secrete cytokines in response to antigen-bearing targets. Furthermore, in a xenograft model of lymphoma, human T cells expressing humanized scFvs exhibited the same anti-tumor efficacy as those expressing murine scFv and prolonged survival compared with cells expressing control CAR. Therefore, we uncovered CARs expressing humanized scFv domain that contribute the similar enhanced antileukemic efficacy and survival in tumor bearing mice. These results provide the basis for the future clinical studies of CAR-T cells transduced with humanized scFv directed to CD19. PMID:26996927

  11. Selecting soluble/foldable protein domains through single-gene or genomic ORF filtering: structure of the head domain of Burkholderia pseudomallei antigen BPSL2063.

    PubMed

    Gourlay, Louise J; Peano, Clelia; Deantonio, Cecilia; Perletti, Lucia; Pietrelli, Alessandro; Villa, Riccardo; Matterazzo, Elena; Lassaux, Patricia; Santoro, Claudio; Puccio, Simone; Sblattero, Daniele; Bolognesi, Martino

    2015-11-01

    The 1.8 Å resolution crystal structure of a conserved domain of the potential Burkholderia pseudomallei antigen and trimeric autotransporter BPSL2063 is presented as a structural vaccinology target for melioidosis vaccine development. Since BPSL2063 (1090 amino acids) hosts only one conserved domain, and the expression/purification of the full-length protein proved to be problematic, a domain-filtering library was generated using β-lactamase as a reporter gene to select further BPSL2063 domains. As a result, two domains (D1 and D2) were identified and produced in soluble form in Escherichia coli. Furthermore, as a general tool, a genomic open reading frame-filtering library from the B. pseudomallei genome was also constructed to facilitate the selection of domain boundaries from the entire ORFeome. Such an approach allowed the selection of three potential protein antigens that were also produced in soluble form. The results imply the further development of ORF-filtering methods as a tool in protein-based research to improve the selection and production of soluble proteins or domains for downstream applications such as X-ray crystallography. PMID:26527140

  12. Association of cytotoxic T lymphocyte-associated antigen 4 gene single nucleotide polymorphism with type 1 diabetes mellitus in Madurai population of Southern India

    PubMed Central

    Philip, Beatrice; Isabel, W.

    2011-01-01

    Type 1 diabetes mellitus formerly called juvenile diabetes, is an organ specific T-cell mediated autoimmune disease characterized by the progressive loss of function of the insulin producing beta–cells of the islets of Langerhans. Cytotoxic T lymphocyte-associated antigen 4 gene (CTLA-4) has been proposed as a candidate gene for conferring susceptibility to autoimmunity. Association of CTLA-4 gene polymorphism is well established in autoimmune endocrinopathies across world population. The present study was conducted to investigate the association of CTLA-4 exon 1 49A/G polymorphism with TIDM in Madurai, a city in Southern India. Fifty three clinically proven T1DM patients and 53 control subjects with no history of autoimmune disease were recruited for the study. Genomic DNA was extracted from peripheral blood. CTLA-4 exon 1 49 A/G polymorphism was assessed using PCR-RFLP methods. Our findings revealed a significant association of CTLA-4 exon 1 49 A/G polymorphism with T1DM in Madurai population. PMID:22090719

  13. A single amino acid substitution in the DNA-binding domain of Aeropyrum pernix DNA ligase impairs its interaction with proliferating cell nuclear antigen.

    PubMed

    Kiyonari, Shinichi; Kamigochi, Toru; Ishino, Yoshizumi

    2007-09-01

    Proliferating cell nuclear antigen (PCNA) is known as a DNA sliding clamp that acts as a platform for the assembly of enzymes involved in DNA replication and repair. Previously, it was reported that a crenarchaeal PCNA formed a heterotrimeric structure, and that each PCNA subunit has distinct binding specificity to PCNA-binding proteins. Here we describe the PCNA-binding properties of a DNA ligase from the hyperthermophilic crenarchaeon Aeropyrum pernix K1. Based on our findings on the Pyrococcus furiosus DNA ligase-PCNA interaction, we predicted that the aromatic residue, Phe132, in the DNA-binding domain of A. pernix DNA ligase (ApeLig) would play a critical role in binding to A. pernix PCNA (ApePCNA). Surface plasmon resonance analyses revealed that the ApeLig F132A mutant does not interact with an immobilized subunit of ApePCNA. Furthermore, we could not detect any stimulation of the ligation activity of the ApeLig F132A protein by ApePCNA in vitro. These results indicated that the phenylalanine, which is located in our predicted PCNA-binding region in ApeLig, has a critical role for the physical and functional interaction with ApePCNA. PMID:17487442

  14. Rotavirus antigen test

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003349.htm Rotavirus antigen test To use the sharing features on this page, please enable JavaScript. The rotavirus antigen test detects rotavirus in the feces. This ...

  15. Separation of uncompromised whole blood mixtures for single source STR profiling using fluorescently-labeled human leukocyte antigen (HLA) probes and fluorescence activated cell sorting (FACS).

    PubMed

    Dean, Lee; Kwon, Ye Jin; Philpott, M Katherine; Stanciu, Cristina E; Seashols-Williams, Sarah J; Dawson Cruz, Tracey; Sturgill, Jamie; Ehrhardt, Christopher J

    2015-07-01

    Analysis of biological mixtures is a significant problem for forensic laboratories, particularly when the mixture contains only one cell type. Contributions from multiple individuals to biologic evidence can complicate DNA profile interpretation and often lead to a reduction in the probative value of DNA evidence or worse, its total loss. To address this, we have utilized an analytical technique that exploits the intrinsic immunological variation among individuals to physically separate cells from different sources in a mixture prior to DNA profiling. Specifically, we applied a fluorescently labeled antibody probe to selectively bind to one contributor in a mixture through allele-specific interactions with human leukocyte antigen (HLA) proteins that are expressed on the surfaces of most nucleated cells. Once the contributor's cells were bound to the probe, they were isolated from the mixture using fluorescence activated cell sorting (FACS)-a high throughput technique for separating cell populations based on their optical properties-and then subjected to STR analysis. We tested this approach on two-person and four-person whole blood mixtures where one contributor possessed an HLA allele (A*02) that was not shared by other contributors to the mixture. Results showed that hybridization of the mixture with a fluorescently-labeled antibody probe complimentary to the A*02 allele's protein product created a cell population with a distinct optical profile that could be easily differentiated from other cells in the mixture. After sorting the cells with FACS, genetic analysis showed that the STR profile of this cell population was consistent with that of the contributor who possessed the A*02 allele. Minor peaks from the A*02 negative contributor(s) were observed but could be easily distinguished from the profile generated from A*02 positive cells. Overall, this indicates that HLA antibody probes coupled to FACS may be an effective approach for generating STR profiles of

  16. THE MAJOR SURFACE PROTEASE (MSP OR GP63) IN THE INTRACELLULAR AMASTIGOTE STAGE OF LEISHMANIA CHAGASI

    PubMed Central

    Christine Hsiao, Chia-Hung; Yao, Chaoqun; Storlie, Patricia; Donelson, John E; Wilson, Mary E

    2009-01-01

    The Leishmania spp. protozoa have an abundant surface metalloprotease called MSP (major surface protease), which in Leishmania chagasi is encoded by three distinct gene classes (MSPS, MSPL, MSPC). Although MSP has been characterized primarily in extracellular promastigotes, it also facilitates survival of intracellular amastigotes. Promastigotes express MSPS and MSPL RNAs, and two forms of MSPC RNA, whereas amastigotes express only MSPL RNA and one MSPC transcript. We confirmed the presence of MSPC protein in both promastigotes and amastigotes by Liquid Chromatography-tandem Mass Spectrometry (LC-MS/MS). More than 10 MSP isoforms were visualized in both amastigotes and promastigotes using two-dimensional immunoblots, but amastigote MSPs migrated at a more acidic pI. Promastigote MSPs were N-glycosylated, whereas most amastigote MSPs were not. Immuno-electron microscopy showed that two-thirds of the promastigote MSP is distributed along the cell surface. In contrast, most amastigote MSP localized at the flagellar pocket, the major site of leishmania endocytosis/exocytosis. Biochemical analyses indicated that most amastigote MSP is soluble in the cytosol, vesicles or organelles, whereas most promastigote MSP is membrane-associated and GPI anchored. Activity gels and immunoblots confirmed the presence of a novel proteolytically active amastigote MSP of higher Mr than the promastigote MSPs. Furthermore, promastigote MSP is shed extracellularly whereas MSP is not shed from axenic amastigotes. We conclude that amastigote and promastigotes both express multiple MSP isoforms, but these MSPs differ biochemically and localize differently between the parasite stages. We hypothesize that MSP plays different roles in the extracellular versus intracellular forms of Leishmania spp. PMID:18067978

  17. Surface antigens of smooth brucellae.

    PubMed

    Diaz, R; Jones, L M; Leong, D; Wilson, J B

    1968-10-01

    Surface antigens of smooth brucellae were extracted by ether-water, phenol-water, trichloroacetic acid, and saline and examined by immunoelectrophoresis and gel diffusion with antisera from infected and immunized rabbits. Ether-water extracts of Brucella melitensis contained a lipopolysaccharide protein component, which was specific for the surface of smooth brucellae and was correlated with the M agglutinogen of Wilson and Miles, a polysaccharide protein component devoid of lipid which was not restricted to the surface of smooth brucellae and was not correlated with the smooth agglutinogen (component 1), and several protein components which were associated with internal antigens of rough and smooth brucellae. Immunoelectrophoretic analysis of ether-water extracts of B. abortus revealed only two components, a lipopolysaccharide protein component, which was correlated with the A agglutinogen, and component 1. Component 1 from B. melitensis and B. abortus showed identity in gel diffusion tests, whereas component M from B. melitensis and component A from B. abortus showed partial identity with unabsorbed antisera and no cross-reactions with monospecific sera. Attempts to prepare monospecific sera directly by immunization of rabbits with cell walls or ether-water extracts were unsuccessful. Absorption of antisera with heavy fraction of ether-water extracts did not always result in monospecific sera. It was concluded (as has been described before) that the A and M antigens are present on a single antigenic complex, in different proportions depending upon the species and biotype, and that this component is a lipopolysaccharide protein complex of high molecular weight that diffuses poorly through agar gel. Components 1, A, and M were also demonstrated in trichloroacetic acid and phenol-water extracts. With all extracts, B. melitensis antigen showed greater diffusibility in agar than B. abortus antigens. After mild acid hydrolysis, B. abortus ether-water extract was able

  18. Novel Single-Tube Agar-Based Test System for Motility Enhancement and Immunocapture of Escherichia coli O157:H7 by H7 Flagellar Antigen-Specific Antibodies

    PubMed Central

    Murinda, Shelton E.; Nguyen, Lien T.; Ivey, Susan J.; Almeida, Raul A.; Oliver, Stephen P.

    2002-01-01

    This paper describes a novel single-tube agar-based technique for motility enhancement and immunoimmobilization of Escherichia coli O157:H7. Motility indole ornithine medium and agar (0.4%, wt/vol) media containing either nutrient broth, tryptone broth, or tryptic soy broth (TSBA) were evaluated for their abilities to enhance bacterial motility. Twenty-six E. coli strains, including 19 O157:H7 strains, 1 O157:H− strain, and 6 generic E. coli strains, were evaluated. Test bacteria were stab inoculated in the center of the agar column, and tubes were incubated at 37°C for 18 to 96 h. Nineteen to 24 of the 26 test strains (73.1 to 92.3%) were motile in the different media. TSBA medium performed best and was employed in subsequent studies of motility enhancement and H7 flagellar immunocapture. H7 flagellar antiserum (30 and 60 μl) mixed with TSBA was placed as a band (1 ml) in the middle of an agar column separating the top (3-ml) and bottom (3-ml) agar layers. The top agar layer was inoculated with the test bacterial strains. The tubes were incubated at 37°C for 12 to 18 h and for 18 to 96 h. The specificity and sensitivity of the H7 flagellar immunocapture tests were 75 and 100%, respectively. The procedure described is simple and sensitive and could be adapted easily for routine use in laboratories that do not have sophisticated equipment and resources for confirming the presence of H7 flagellar antigens. Accurate and rapid identification of H7 flagellar antigen is critical for the complete characterization of E. coli O157:H7, owing to the immense clinical, public health, and economic significance of this food-borne pathogen. PMID:12454173

  19. A CpG-Ficoll Nanoparticle Adjuvant for Anthrax Protective Antigen Enhances Immunogenicity and Provides Single-Immunization Protection against Inhaled Anthrax in Monkeys.

    PubMed

    Kachura, Melissa A; Hickle, Colin; Kell, Sariah A; Sathe, Atul; Calacsan, Carlo; Kiwan, Radwan; Hall, Brian; Milley, Robert; Ott, Gary; Coffman, Robert L; Kanzler, Holger; Campbell, John D

    2016-01-01

    Nanoparticulate delivery systems for vaccine adjuvants, designed to enhance targeting of secondary lymphoid organs and activation of APCs, have shown substantial promise for enhanced immunopotentiation. We investigated the adjuvant activity of synthetic oligonucleotides containing CpG-rich motifs linked to the sucrose polymer Ficoll, forming soluble 50-nm particles (DV230-Ficoll), each containing >100 molecules of the TLR9 ligand, DV230. DV230-Ficoll was evaluated as an adjuvant for a candidate vaccine for anthrax using recombinant protective Ag (rPA) from Bacillus anthracis. A single immunization with rPA plus DV230-Ficoll induced 10-fold higher titers of toxin-neutralizing Abs in cynomolgus monkeys at 2 wk compared with animals immunized with equivalent amounts of monomeric DV230. Monkeys immunized either once or twice with rPA plus DV230-Ficoll were completely protected from challenge with 200 LD50 aerosolized anthrax spores. In mice, DV230-Ficoll was more potent than DV230 for the induction of innate immune responses at the injection site and draining lymph nodes. DV230-Ficoll was preferentially colocalized with rPA in key APC populations and induced greater maturation marker expression (CD69 and CD86) on these cells and stronger germinal center B and T cell responses, relative to DV230. DV230-Ficoll was also preferentially retained at the injection site and draining lymph nodes and produced fewer systemic inflammatory responses. These findings support the development of DV230-Ficoll as an adjuvant platform, particularly for vaccines such as for anthrax, for which rapid induction of protective immunity and memory with a single injection is very important. PMID:26608924

  20. Recognition of a single amino acid change on the surface of a major transplantation antigen is in the context of self peptide.

    PubMed

    Pullen, J K; Tallquist, M D; Melvold, R W; Pease, L R

    1994-04-01

    The transcripts encoding two strongly alloantigenic class I mutant molecules, Kdm4 and Kdm5, were characterized and found to encode products that differ from the parental Kd glycoprotein by single amino acid substitutions. The Kdm4 molecule has an amino acid change at position 114, an integral component of a beta-sheet associated with pockets D and E of the peptide binding site. The basis for strong alloantigenicity of the variant molecule can be attributed to differences in peptide binding that were visualized by HPLC analysis of eluted peptides. In contrast, the Kdm5 molecule differs from the parent at position 158, a component of the alpha-helix that is not associated with any of the pockets of the peptide binding site. No differences in peptide binding by Kdm5 in comparison with the parent Kd molecule were seen by HPLC, suggesting that the variant and parent molecules bind the same set of peptides. The ability of (dm4 x dm5) F1 hybrid mice to recognize and lyse BALB/c stimulator cells indicates that the alloantigenic properties determined by the 158 substitution result from the interactions of the alpha-helix regions (changed in dm5) with the pockets of the binding site (changed in dm4). We conclude that self peptides shared by the F1 hybrid and the BALB/c stimulator cells are recognized in the context of structural features of the helices of the Ag-presenting molecule as alloantigenic determinants. PMID:8144927

  1. Mapping epitopes and antigenicity by site-directed masking

    NASA Astrophysics Data System (ADS)

    Paus, Didrik; Winter, Greg

    2006-06-01

    Here we describe a method for mapping the binding of antibodies to the surface of a folded antigen. We first created a panel of mutant antigens (-lactamase) in which single surface-exposed residues were mutated to cysteine. We then chemically tethered the cysteine residues to a solid phase, thereby masking a surface patch centered on each cysteine residue and blocking the binding of antibodies to this region of the surface. By these means we mapped the epitopes of several mAbs directed to -lactamase. Furthermore, by depleting samples of polyclonal antisera to the masked antigens and measuring the binding of each depleted sample of antisera to unmasked antigen, we mapped the antigenicity of 23 different epitopes. After immunization of mice and rabbits with -lactamase in Freund's adjuvant, we found that the antisera reacted with both native and denatured antigen and that the antibody response was mainly directed to an exposed and flexible loop region of the native antigen. By contrast, after immunization in PBS, we found that the antisera reacted only weakly with denatured antigen and that the antibody response was more evenly distributed over the antigenic surface. We suggest that denatured antigen (created during emulsification in Freund's adjuvant) elicits antibodies that bind mainly to the flexible regions of the native protein and that this explains the correlation between antigenicity and backbone flexibility. Denaturation of antigen during vaccination or natural infections would therefore be expected to focus the antibody response to the flexible loops. backbone flexibility | Freund's adjuvant | conformational epitope | antisera

  2. Recognition of distinct HLA-DQA1 promoter elements by a single nuclear factor containing Jun and Fos or antigenically related proteins.

    PubMed Central

    Neve Ombra, M; Autiero, M; DeLerma Barbaro, A; Barretta, R; Del Pozzo, G; Guardiola, J

    1993-01-01

    The activity of MHC class II promoters depends upon conserved regulatory signals one of which, the extended X-box, contains in its X2 subregion a sequence related to the cAMP response element, CRE and to the TPA response element, TRE. Accordingly, X2 is recognized by the AP-1 factor and by other c-Jun or c-Fos containing heterodimers. We report that the X-box dependent promoter activity of the HLA-DQA1 gene is down-modulated by an array of DNA elements each of which represented twice either in an invertedly or directly repeated orientation. In this frame, we describe a nuclear binding factor, namely DBF, promiscuously interacting with two of these additional signals, delta and sigma, and with a portion of the X-box, namely the X-core, devoid of X2. The presence of a single factor recognizing divergent DNA sequences was indicated by the finding that these activities were co-eluted from a heparin-Sepharose column and from DNA affinity columns carrying different DNA binding sites as ligands. Competition experiments made with oligonucleotides representing wild type and mutant DNA elements showed that each DNA element specifically inhibited the binding of the others, supporting the contention that DBF is involved in recognition of different targets. Furthermore, we found that DBF also exhibits CRE/TRE binding activity and that this activity can be competed out by addition of an excess of sigma, delta and X-core oligonucleotides. Anti-Jun peptide and anti-Fos peptide antibodies blocked not only the binding activity of DBF, but also its X-core and sigma binding; this blockade was removed by the addition of the Jun or Fos peptides against which the antibodies had been raised. In vitro synthesized Jun/Fos was able to bind to all these boxes, albeit with seemingly different affinities. The cooperativity of DBF interactions may explain the modulation of the X-box dependent promoter activity mediated by the accessory DNA elements described here. Images PMID:8493100

  3. Analyses of the Interaction between the Origin Binding Domain from Simian Virus 40 T Antigen and Single-Stranded DNA Provide Insights into DNA Unwinding and Initiation of DNA Replication▿

    PubMed Central

    Reese, Danielle K.; Meinke, Gretchen; Kumar, Anuradha; Moine, Stephanie; Chen, Kathleen; Sudmeier, James L.; Bachovchin, William; Bohm, Andrew; Bullock, Peter A.

    2006-01-01

    DNA helicases are essential for DNA metabolism; however, at the molecular level little is known about how they assemble or function. Therefore, as a model for a eukaryotic helicase, we are analyzing T antigen (T-ag) the helicase encoded by simian virus 40. In this study, nuclear magnetic resonance (NMR) methods were used to investigate the transit of single-stranded DNA (ssDNA) through the T-ag origin-binding domain (T-ag OBD). When the residues that interact with ssDNA are viewed in terms of the structure of a hexamer of the T-ag OBD, comprised of residues 131 to 260, they indicate that ssDNA passes over one face of the T-ag OBD and then transits through a gap in the open ring structure. The NMR-based conclusions are supported by an analysis of previously described mutations that disrupt critical steps during the initiation of DNA replication. These and related observations are discussed in terms of the threading of DNA through T-ag hexamers and the initiation of viral DNA replication. PMID:17005644

  4. Analyses of the interaction between the origin binding domain from simian virus 40 T antigen and single-stranded DNA provide insights into DNA unwinding and initiation of DNA replication.

    PubMed

    Reese, Danielle K; Meinke, Gretchen; Kumar, Anuradha; Moine, Stephanie; Chen, Kathleen; Sudmeier, James L; Bachovchin, William; Bohm, Andrew; Bullock, Peter A

    2006-12-01

    DNA helicases are essential for DNA metabolism; however, at the molecular level little is known about how they assemble or function. Therefore, as a model for a eukaryotic helicase, we are analyzing T antigen (T-ag) the helicase encoded by simian virus 40. In this study, nuclear magnetic resonance (NMR) methods were used to investigate the transit of single-stranded DNA (ssDNA) through the T-ag origin-binding domain (T-ag OBD). When the residues that interact with ssDNA are viewed in terms of the structure of a hexamer of the T-ag OBD, comprised of residues 131 to 260, they indicate that ssDNA passes over one face of the T-ag OBD and then transits through a gap in the open ring structure. The NMR-based conclusions are supported by an analysis of previously described mutations that disrupt critical steps during the initiation of DNA replication. These and related observations are discussed in terms of the threading of DNA through T-ag hexamers and the initiation of viral DNA replication. PMID:17005644

  5. Transcutaneous antigen delivery system

    PubMed Central

    Lee, Mi-Young; Shin, Meong-Cheol; Yang, Victor C.

    2013-01-01

    Transcutaneous immunization refers to the topical application of antigens onto the epidermis. Transcutaneous immunization targeting the Langerhans cells of the skin has received much attention due to its safe, needle-free, and noninvasive antigen delivery. The skin has important immunological functions with unique roles for antigen-presenting cells such as epidermal Langerhans cells and dermal dendritic cells. In recent years, novel vaccine delivery strategies have continually been developed; however, transcutaneous immunization has not yet been fully exploited due to the penetration barrier represented by the stratum corneum, which inhibits the transport of antigens and adjuvants. Herein we review recent achievements in transcutaneous immunization, focusing on the various strategies for the enhancement of antigen delivery and vaccination efficacy. [BMB Reports 2013; 46(1): 17-24] PMID:23351379

  6. Expression, purification and characterization of a human single-chain Fv antibody fragment fused with the Fc of an IgG1 targeting a rabies antigen in Pichia pastoris.

    PubMed

    Wang, Ding-ding; Su, Man-man; Sun, Yan; Huang, Shu-lin; Wang, Ju; Yan, Wei-qun

    2012-11-01

    Because the demand for rabies post exposure prophylaxis (PEP) treatment has increased exponentially in recent years, the limited supply of human and equine rabies immunoglobulin (HRIG and ERIG) has failed to provide an adequate amount of the required passive immune component in PEP in countries where canine rabies is endemic. The replacement of HRIG and ERIG with a potentially cheaper and efficacious alternative biological for the treatment of rabies in humans, therefore, remains a high priority. In this study, we set out to assess a human single-chain Fv antibody fragment fused with the Fc of an IgG1 targeting a rabies antigen to develop a product that can be used as a component of the PEP cocktail. We cloned the ScFv fragment from a human ScFv library that was established previously and inserted this fragment into the expression vector pPICZαC/Fc. An active recombinant ScFv-Fc fusion protein was successfully expressed in Pichia pastoris. The production of ScFv-Fc was optimized and scaled up in an 80L fermentor with yields exceeding 60mg/L. The ScFv-Fc protein was purified to more than 95% purity using a two-step scheme: ammonium sulfate fractionation and Protein A Sepharose CL-4B. The ScFv-Fc fusion protein neutralized rabies virus in a standard in vivo neutralization assay in which the virus was incubated with the ScFv-Fc molecules before intracranial inoculation in mice. Our results suggest that functional antibodies can be produced in P. pastoris and that ScFv-Fc fusion proteins have the potential to serve as therapeutic candidates. PMID:22982755

  7. A single Ala139-to-Glu substitution in the Renibacterium salmoninarum virulence-associated protein p57 results in antigenic variation and is associated with enhanced p57 binding to chinook salmon leukocytes.

    PubMed

    Wiens, Gregory D; Pascho, Ron; Winton, James R

    2002-08-01

    The gram-positive bacterium Renibacterium salmoninarum produces relatively large amounts of a 57-kDa protein (p57) implicated in the pathogenesis of salmonid bacterial kidney disease. Antigenic variation in p57 was identified by using monoclonal antibody 4C11, which exhibited severely decreased binding to R. salmoninarum strain 684 p57 and bound robustly to the p57 proteins of seven other R. salmoninarum strains. This difference in binding was not due to alterations in p57 synthesis, secretion, or bacterial cell association. The molecular basis of the 4C11 epitope loss was determined by amplifying and sequencing the two identical genes encoding p57, msa1 and msa2. The 5' and coding sequences of the 684 msa1 and msa2 genes were identical to those of the ATCC 33209 msa1 and msa2 genes except for a single C-to-A nucleotide mutation. This mutation was identified in both the msa1 and msa2 genes of strain 684 and resulted in an Ala(139)-to-Glu substitution in the amino-terminal region of p57. We examined whether this mutation in p57 altered salmonid leukocyte and rabbit erythrocyte binding activities. R. salmoninarum strain 684 extracellular protein exhibited a twofold increase in agglutinating activity for chinook salmon leukocytes and rabbit erythrocytes compared to the activity of the ATCC 33209 extracellular protein. A specific and quantitative p57 binding assay confirmed the increased binding activity of 684 p57. Monoclonal antibody 4C11 blocked the agglutinating activity of the ATCC 33209 extracellular protein but not the agglutinating activity of the 684 extracellular protein. These results indicate that the Ala139-to-Glu substitution altered immune recognition and was associated with enhanced biological activity of R. salmoninarum 684 p57. PMID:12147498

  8. A Single Ala139-to-Glu Substitution in the Renibacterium salmoninarum Virulence-Associated Protein p57 Results in Antigenic Variation and Is Associated with Enhanced p57 Binding to Chinook Salmon Leukocytes

    PubMed Central

    Wiens, Gregory D.; Pascho, Ron; Winton, James R.

    2002-01-01

    The gram-positive bacterium Renibacterium salmoninarum produces relatively large amounts of a 57-kDa protein (p57) implicated in the pathogenesis of salmonid bacterial kidney disease. Antigenic variation in p57 was identified by using monoclonal antibody 4C11, which exhibited severely decreased binding to R. salmoninarum strain 684 p57 and bound robustly to the p57 proteins of seven other R. salmoninarum strains. This difference in binding was not due to alterations in p57 synthesis, secretion, or bacterial cell association. The molecular basis of the 4C11 epitope loss was determined by amplifying and sequencing the two identical genes encoding p57, msa1 and msa2. The 5′ and coding sequences of the 684 msa1 and msa2 genes were identical to those of the ATCC 33209 msa1 and msa2 genes except for a single C-to-A nucleotide mutation. This mutation was identified in both the msa1 and msa2 genes of strain 684 and resulted in an Ala139-to-Glu substitution in the amino-terminal region of p57. We examined whether this mutation in p57 altered salmonid leukocyte and rabbit erythrocyte binding activities. R. salmoninarum strain 684 extracellular protein exhibited a twofold increase in agglutinating activity for chinook salmon leukocytes and rabbit erythrocytes compared to the activity of the ATCC 33209 extracellular protein. A specific and quantitative p57 binding assay confirmed the increased binding activity of 684 p57. Monoclonal antibody 4C11 blocked the agglutinating activity of the ATCC 33209 extracellular protein but not the agglutinating activity of the 684 extracellular protein. These results indicate that the Ala139-to-Glu substitution altered immune recognition and was associated with enhanced biological activity of R. salmoninarum 684 p57. PMID:12147498

  9. A single Alal 39-to-Glu substitution in the Renibacterium salmoninarum virulence-associated protein p57 results in antigenic variation and is associated with enhanced p57 binding to Chinook salmon leukocytes

    USGS Publications Warehouse

    Wiens, Gregory D.; Pascho, Ron; Winton, James R.

    2002-01-01

    The gram-positive bacterium Renibacterium salmoninarum produces relatively large amounts of a 57-kDa protein (p57) implicated in the pathogenesis of salmonid bacterial kidney disease. Antigenic variation in p57 was identified by using monoclonal antibody 4C11, which exhibited severely decreased binding to R. salmoninarum strain 684 p57 and bound robustly to the p57 proteins of seven other R. salmoninarum strains. This difference in binding was not due to alterations in p57 synthesis, secretion, or bacterial cell association. The molecular basis of the 4C11 epitope loss was determined by amplifying and sequencing the two identical genes encoding p57, msa1 and msa2. The 5′ and coding sequences of the 684 msa1 and msa2 genes were identical to those of the ATCC 33209 msa1and msa2 genes except for a single C-to-A nucleotide mutation. This mutation was identified in both the msa1 and msa2 genes of strain 684 and resulted in an Ala139-to-Glu substitution in the amino-terminal region of p57. We examined whether this mutation in p57 altered salmonid leukocyte and rabbit erythrocyte binding activities. R. salmoninarum strain 684 extracellular protein exhibited a twofold increase in agglutinating activity for chinook salmon leukocytes and rabbit erythrocytes compared to the activity of the ATCC 33209 extracellular protein. A specific and quantitative p57 binding assay confirmed the increased binding activity of 684 p57. Monoclonal antibody 4C11 blocked the agglutinating activity of the ATCC 33209 extracellular protein but not the agglutinating activity of the 684 extracellular protein. These results indicate that the Ala139-to-Glu substitution altered immune recognition and was associated with enhanced biological activity of R. salmoninarum 684 p57.

  10. Presentation of hepatocellular antigens

    PubMed Central

    Grakoui, Arash; Crispe, Ian Nicholas

    2016-01-01

    The liver is an organ in which antigen-specific T-cell responses manifest a bias toward immune tolerance. This is clearly seen in the rejection of allogeneic liver transplants, and multiple other phenomena suggest that this effect is more general. These include tolerance toward antigens introduced via the portal vein, immune failure to several hepatotropic viruses, the lack of natural liver-stage immunity to malaria parasites, and the frequent metastasis of cancers to the liver. Here we review the mechanisms by which T cells engage with hepatocellular antigens, the context in which such encounters occur, and the mechanisms that act to suppress a full T-cell response. While many mechanisms play a role, we will argue that two important processes are the constraints on the cross-presentation of hepatocellular antigens, and the induction of negative feedback inhibition driven by interferons. The constant exposure of the liver to microbial products from the intestine may drive innate immunity, rendering the local environment unfavorable for specific T-cell responses through this mechanism. Nevertheless, tolerance toward hepatocellular antigens is not monolithic and under specific circumstances allows both effective immunity and immunopathology. PMID:26924525

  11. Pathways of Antigen Processing

    PubMed Central

    Blum, Janice S.; Wearsch, Pamela A.; Cresswell, Peter

    2014-01-01

    T cell recognition of antigen presenting cells depends on their expression of a spectrum of peptides bound to Major Histocompatibility Complex class I (MHC-I) and class II (MHC-II) molecules. Conversion of antigens from pathogens or transformed cells into MHC-I and MHC-II-bound peptides is critical for mounting protective T cell responses, and similar processing of self proteins is necessary to establish and maintain tolerance. Cells use a variety of mechanisms to acquire protein antigens, from translation in the cytosol to variations on the theme of endocytosis, and to degrade them once acquired. In this review we highlight the aspects of MHC-I and MHC-II biosynthesis and assembly that have evolved to intersect these pathways and sample the peptides that are produced. PMID:23298205

  12. Lipid antigens in immunity

    PubMed Central

    Dowds, C. Marie; Kornell, Sabin-Christin

    2014-01-01

    Lipids are not only a central part of human metabolism but also play diverse and critical roles in the immune system. As such, they can act as ligands of lipid-activated nuclear receptors, control inflammatory signaling through bioactive lipids such as prostaglandins, leukotrienes, lipoxins, resolvins, and protectins, and modulate immunity as intracellular phospholipid- or sphingolipid-derived signaling mediators. In addition, lipids can serve as antigens and regulate immunity through the activation of lipid-reactive T cells, which is the topic of this review. We will provide an overview of the mechanisms of lipid antigen presentation, the biology of lipid-reactive T cells, and their contribution to immunity. PMID:23999493

  13. Antigenic variation in African trypanosomes

    PubMed Central

    Horn, David

    2014-01-01

    Studies on Variant Surface Glycoproteins (VSGs) and antigenic variation in the African trypanosome, Trypanosoma brucei, have yielded a remarkable range of novel and important insights. The features first identified in T. brucei extend from unique to conserved-among-trypanosomatids to conserved-among-eukaryotes. Consequently, much of what we now know about trypanosomatid biology and much of the technology available has its origin in studies related to VSGs. T. brucei is now probably the most advanced early branched eukaryote in terms of experimental tractability and can be approached as a pathogen, as a model for studies on fundamental processes, as a model for studies on eukaryotic evolution or often all of the above. In terms of antigenic variation itself, substantial progress has been made in understanding the expression and switching of the VSG coat, while outstanding questions continue to stimulate innovative new approaches. There are large numbers of VSG genes in the genome but only one is expressed at a time, always immediately adjacent to a telomere. DNA repair processes allow a new VSG to be copied into the single transcribed locus. A coordinated transcriptional switch can also allow a new VSG gene to be activated without any detectable change in the DNA sequence, thereby maintaining singular expression, also known as allelic exclusion. I review the story behind VSGs; the genes, their expression and switching, their central role in T. brucei virulence, the discoveries that emerged along the way and the persistent questions relating to allelic exclusion in particular. PMID:24859277

  14. Mapping epitopes and antigenicity by site-directed masking

    PubMed Central

    Paus, Didrik; Winter, Greg

    2006-01-01

    Here we describe a method for mapping the binding of antibodies to the surface of a folded antigen. We first created a panel of mutant antigens (β-lactamase) in which single surface-exposed residues were mutated to cysteine. We then chemically tethered the cysteine residues to a solid phase, thereby masking a surface patch centered on each cysteine residue and blocking the binding of antibodies to this region of the surface. By these means we mapped the epitopes of several mAbs directed to β-lactamase. Furthermore, by depleting samples of polyclonal antisera to the masked antigens and measuring the binding of each depleted sample of antisera to unmasked antigen, we mapped the antigenicity of 23 different epitopes. After immunization of mice and rabbits with β-lactamase in Freund’s adjuvant, we found that the antisera reacted with both native and denatured antigen and that the antibody response was mainly directed to an exposed and flexible loop region of the native antigen. By contrast, after immunization in PBS, we found that the antisera reacted only weakly with denatured antigen and that the antibody response was more evenly distributed over the antigenic surface. We suggest that denatured antigen (created during emulsification in Freund’s adjuvant) elicits antibodies that bind mainly to the flexible regions of the native protein and that this explains the correlation between antigenicity and backbone flexibility. Denaturation of antigen during vaccination or natural infections would therefore be expected to focus the antibody response to the flexible loops. PMID:16754878

  15. Antigen detection systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infectious agents or their constituent parts (antigens or nucleic acids) can be detected in fresh, frozen, or fixed tissue using a variety of direct or indirect assays. The assays can be modified to yield the greatest sensitivity and specificity but in most cases a particular methodology is chosen ...

  16. Antigen smuggling in tuberculosis.

    PubMed

    Hudrisier, Denis; Neyrolles, Olivier

    2014-06-11

    The importance of CD4 T lymphocytes in immunity to M. tuberculosis is well established; however, how dendritic cells activate T cells in vivo remains obscure. In this issue of Cell Host & Microbe, Srivastava and Ernst (2014) report a mechanism of antigen transfer for efficient activation of antimycobacterial T cells. PMID:24922567

  17. Antigen detection systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infectious agents or their constituent parts (antigens or nucleic acids) can be detected in fresh, frozen, or fixed tissues or other specimens, using a variety of direct or indirect assays. The assays can be modified to yield the greatest sensitivity and specificity but in most cases a particular m...

  18. Aspergillus antigen skin test (image)

    MedlinePlus

    The aspergillus antigen skin test determines whether or not a person has been exposed to the mold aspergillus. It is performed by injecting an aspergillus antigen under the skin with a needle. After 48 ...

  19. Recognition of Antigen-Specific B Cell Receptors From Chronic Lymphocytic Leukemia Patients By Synthetic Antigen Surrogates

    PubMed Central

    Sarkar, Mohosin; Liu, Yun; Morimoto, Jumpei; Peng, Haiyong; Aquino, Claudio; Rader, Christoph; Chiorazzi, Nicholas

    2014-01-01

    In patients with chronic lymphocytic leukemia (CLL), a single neoplastic antigen-specific B cell accumulates and overgrows other B cells, leading to immune deficiency. CLL is often treated with drugs that ablate all B cells, leading to further weakening of humoral immunity, and a more focused therapeutic strategy capable of targeting only the pathogenic B cells would represent a significant advance. One approach to this would be to develop synthetic surrogates of the CLL antigens allowing differentiation of the CLL cells and healthy B cells in a patient. Here, we describe discovery of non-peptidic molecules capable of targeting antigen-specific B cell receptors with good affinity and selectivity using a combinatorial library screen. We demonstrate that our hit compounds act as synthetic antigen surrogates and recognize CLL cells and not healthy B cells. Additionally, we argue that the technology we developed can be used for discovery of other classes of antigen surrogates. PMID:25467125

  20. Cancer testis antigen and immunotherapy

    PubMed Central

    Krishnadas, Deepa Kolaseri; Bai, Fanqi; Lucas, Kenneth G

    2013-01-01

    The identification of cancer testis (CT) antigens has been an important advance in determining potential targets for cancer immunotherapy. Multiple previous studies have shown that CT antigen vaccines, using both peptides and dendritic cell vaccines, can elicit clinical and immunologic responses in several different tumors. This review details the expression of melanoma antigen family A, 1 (MAGE-A1), melanoma antigen family A, 3 (MAGE-A3), and New York esophageal squamous cell carcinoma-1 (NY-ESO-1) in various malignancies, and presents our current understanding of CT antigen based immunotherapy.

  1. An experimental subunit vaccine based on Bluetongue virus 4 VP2 protein fused to an antigen-presenting cells single chain antibody elicits cellular and humoral immune responses in cattle, guinea pigs and IFNAR(-/-) mice.

    PubMed

    Legisa, D M; Perez Aguirreburualde, M S; Gonzalez, F N; Marin-Lopez, A; Ruiz, V; Wigdorovitz, A; Martinez-Escribano, J A; Ortego, J; Dus Santos, M J

    2015-05-21

    Bluetongue virus (BTV), the causative agent of bluetongue disease (BT) in domestic and wild ruminants, is worldwide distributed. A total of 27 serotypes have been described so far, and several outbreaks have been reported. Vaccination is critical for controlling the spread of BTV. In the last years, subunit vaccines, viral vector vaccines and reverse genetic-based vaccines have emerged as new alternatives to conventional ones. In this study, we developed an experimental subunit vaccine against BTV4, with the benefit of targeting the recombinant protein to antigen-presenting cells. The VP2 protein from an Argentine BTV4 isolate was expressed alone or fused to the antigen presenting cell homing (APCH) molecule, in the baculovirus insect cell expression system. The immunogenicity of both proteins was evaluated in guinea pigs and cattle. Titers of specific neutralizing antibodies in guinea pigs and cattle immunized with VP2 or APCH-VP2 were high and similar to those induced by a conventional inactivated vaccine. The immunogenicity of recombinant proteins was further studied in the IFNAR(-/-) mouse model where the fusion of VP2 to APCH enhanced the cellular immune response and the neutralizing activity induced by VP2. PMID:25858859

  2. Human leucocyte antigens in tympanosclerosis.

    PubMed

    Dursun, G; Acar, A; Turgay, M; Calgüner, M

    1997-02-01

    This study was designed to evaluate the association between certain HLA antigens and tympanosclerosis. The serum concentrations of HLA antigens were measured by a microlymphocytotoxicity technique in patients with tympanosclerosis and compared with a healthy control group. The serum levels of HLA-B35 and -DR3 were significantly higher in the patients with tympanosclerosis. This result suggests that certain types of HLA antigens may play an important role as an indicator or mediator in the pathogenesis of tympanosclerosis. PMID:9088683

  3. Novel antigen delivery systems.

    PubMed

    Trovato, Maria; De Berardinis, Piergiuseppe

    2015-08-12

    Vaccines represent the most relevant contribution of immunology to human health. However, despite the remarkable success achieved in the past years, many vaccines are still missing in order to fight important human pathologies and to prevent emerging and re-emerging diseases. For these pathogens the known strategies for making vaccines have been unsuccessful and thus, new avenues should be investigated to overcome the failure of clinical trials and other important issues including safety concerns related to live vaccines or viral vectors, the weak immunogenicity of subunit vaccines and side effects associated with the use of adjuvants. A major hurdle of developing successful and effective vaccines is to design antigen delivery systems in such a way that optimizes antigen presentation and induces broad protective immune responses. Recent advances in vector delivery technologies, immunology, vaccinology and system biology, have led to a deeper understanding of the molecular and cellular mechanisms by which vaccines should stimulate both arms of the adaptive immune responses, offering new strategies of vaccinations. This review is an update of current strategies with respect to live attenuated and inactivated vaccines, DNA vaccines, viral vectors, lipid-based carrier systems such as liposomes and virosomes as well as polymeric nanoparticle vaccines and virus-like particles. In addition, this article will describe our work on a versatile and immunogenic delivery system which we have studied in the past decade and which is derived from a non-pathogenic prokaryotic organism: the "E2 scaffold" of the pyruvate dehydrogenase complex from Geobacillus stearothermophilus. PMID:26279977

  4. Antigenic heterogeneity in Mycoplasma iowae demonstrated with monoclonal antibodies.

    PubMed

    Panangala, V S; Gresham, M M; Morsy, M A

    1992-01-01

    Western blots of proteins of 14 Mycoplasma iowae strains and isolates resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were probed with three monoclonal antibodies (MAbs), MI6, MI7, and MI8. MAb MI6 reacted with one or more antigens with apparent molecular weights of 60,000, 70,000, and 94,000. In three strains (N-PHN-D13, R-D2497, and K 1805), antigens located on a single peptide band were recognized, while in others additional epitopes at different molecular-weight positions were revealed. A similar pattern was observed with MAb MI7, although it reacted with fewer antigens than did MAb MI6 and failed to recognize antigens in strains N-PHN-D13 and R-D2497. MAb MI8 reacted with an antigen at an apparent molecular-weight position of 28,000 in four of the 14 strains and isolates. The diverse reaction patterns observed with the MAbs in the 14 M. iowae strains and isolates confirms the occurrence of antigenic variation within this species. Antigenic variation in M. iowae may be pivotal in determining host-parasite interactions, pathogenesis, and the outcome of disease. PMID:1373600

  5. Stool Test: H. Pylori Antigen

    MedlinePlus

    ... Things to Know About Zika & Pregnancy Stool Test: H. Pylori Antigen KidsHealth > For Parents > Stool Test: H. Pylori Antigen Print A A A Text Size ... en español Muestra de materia fecal: antígeno de H. pylori What It Is Helicobacter pylori ( H. pylori ) ...

  6. Novel antigen delivery systems

    PubMed Central

    Trovato, Maria; Berardinis, Piergiuseppe De

    2015-01-01

    Vaccines represent the most relevant contribution of immunology to human health. However, despite the remarkable success achieved in the past years, many vaccines are still missing in order to fight important human pathologies and to prevent emerging and re-emerging diseases. For these pathogens the known strategies for making vaccines have been unsuccessful and thus, new avenues should be investigated to overcome the failure of clinical trials and other important issues including safety concerns related to live vaccines or viral vectors, the weak immunogenicity of subunit vaccines and side effects associated with the use of adjuvants. A major hurdle of developing successful and effective vaccines is to design antigen delivery systems in such a way that optimizes antigen presentation and induces broad protective immune responses. Recent advances in vector delivery technologies, immunology, vaccinology and system biology, have led to a deeper understanding of the molecular and cellular mechanisms by which vaccines should stimulate both arms of the adaptive immune responses, offering new strategies of vaccinations. This review is an update of current strategies with respect to live attenuated and inactivated vaccines, DNA vaccines, viral vectors, lipid-based carrier systems such as liposomes and virosomes as well as polymeric nanoparticle vaccines and virus-like particles. In addition, this article will describe our work on a versatile and immunogenic delivery system which we have studied in the past decade and which is derived from a non-pathogenic prokaryotic organism: the “E2 scaffold” of the pyruvate dehydrogenase complex from Geobacillus stearothermophilus. PMID:26279977

  7. Radioimmunoassays of hidden viral antigens

    SciTech Connect

    Neurath, A.R.; Strick, N.; Baker, L.; Krugman, S.

    1982-07-01

    Antigens corresponding to infectious agents may be present in biological specimens only in a cryptic form bound to antibodies and, thus, may elude detection. We describe a solid-phase technique for separation of antigens from antibodies. Immune complexes are precipitated from serum by polyethylene glycol, dissociated with NaSCN, and adsorbed onto nitrocellulose or polystyrene supports. Antigens remain topographically separated from antibodies after removal of NaSCN and can be detected with radiolabeled antibodies. Genomes from viruses immobilized on nitrocellulose can be identified by nucleic acid hybridization. Nanogram quantities of sequestered hepatitis B surface and core antigens and picogram amounts of hepatitis B virus DNA were detected. Antibody-bound adenovirus, herpesvirus, and measles virus antigens were discerned by the procedure.

  8. Pentabody-mediated antigen delivery induces antigen-specific mucosal immune response.

    PubMed

    Li, Shenghua; Zheng, Wenju; Kuolee, Rhonda; Hirama, Tomoko; Henry, Matthew; Makvandi-Nejad, Shokouh; Fjällman, Ted; Chen, Wangxue; Zhang, Jianbing

    2009-05-01

    An efficient immunization system is essential for the development of mucosal vaccine. Cholera toxin (CT) and Escherichia coli heat labile toxin (LT) are among the strongest adjuvants tested in experimental animals but their use in humans has been hindered by their toxicity. On the other hand, the role of their non-toxic B-subunits, CTB or LTB, in enhancing mucosal immune response is not clear. We propose here a novel strategy for the induction of mucosal immune responses. Single domain antibodies (sdAbs) against a model antigen bovine serum albumin (BSA) were raised from the antibody repertoire of a llama immunized with BSA, pentamerized by fusing the sdAbs to CTB, generating the so-called pentabodies. These pentabodies were used to deliver the antigen by mixing the two components and administering the mixture to mice intranasally. One construct was equivalent to CT in helping induce mucosal immune response. It was also found that this ability was probably due to its high affinity to BSA, providing some insight into the controversial role of CTB in mucosal immunization: at least for BSA, the model antigen BSA employed in this study, CTB has to be tightly linked to the antigen to have adjuvant/immune-enhancing effect. PMID:19269688

  9. Generation of a naïve human single chain variable fragment (scFv) library for the identification of monoclonal scFv against Salmonella Typhi Hemolysin E antigen.

    PubMed

    Lim, Bee Nar; Chin, Chai Fung; Choong, Yee Siew; Ismail, Asma; Lim, Theam Soon

    2016-07-01

    Antibody phage display is a useful tool for the isolation and identification of monoclonal antibodies. Naive antibody libraries are able to overcome the limitations associated with the traditional hybridoma method for monoclonal antibody generation. Antibody phage display is also a preferred method for antibody generation against toxins as it does not suffer from toxicity mediated complications. Here, we describe a naïve multi ethnic scFv antibody library generated via two-step cloning with an estimated diversity of 2 × 10(9). The antibody library was used to screen for monoclonal antibodies against Hemolysin E antigen, a pore forming toxin produced by Salmonella enterica serovar Typhi. A soluble monoclonal scFv antibody against the HlyE toxin (IgM scFv D7 anti-hlyE) was isolated from the library. This shows the value of the naïve library to generate antibodies against toxin targets in addition to the potential use of the library to isolate antibodies against other immunogenic targets. PMID:27090555

  10. Human platelet antigen 1 (HPA 1) genotyping with 5' nuclease assay and sequence-specific primers reveals a single nucleotide deletion in intron 2 of the HPA 1a allele of platelet glycoprotein IIIa.

    PubMed

    Kjaer, Killie Mette; Jaegtvik, Sissel; Husebekk, Anne; Skogen, Bjorn

    2002-05-01

    We have established a 5' nuclease assay (5' NA) for human platelet antigen (HPA) 1a/b allelic discrimination. The assay is based on the simultaneous amplification and detection of the two targets in a one-tube system. The results are read optically, immediately after termination of the polymerase chain reaction (PCR), and no post-PCR processing is necessary. This genotyping procedure is less time-consuming and cheaper than our conventional sequence-specific primer PCR (SSP-PCR), which is run as a two-tube test, with verification of the results after electrophoresis in agarose gel. The reduction of analytical steps, simplification of the procedure and potential for automation were important advantages for our choice of system. This test system is more suitable for large-scale testing and fits better for our screening programme for HPA 1bb determination. DNA from 1093 individuals were tested in parallel with the SSP-PCR and the 5' NA. One thousand and ninety-one samples gave identical results in SSP-PCR and 5' NA. Upon repeated testing, two samples consistently came out as HPA 1bb in SSP-PCR and HPA 1ab in 5' NA. DNA sequencing revealed a defect located in an intronic area that corresponds to the consensus primer used for the SSP-PCR HPA 1a typing. PMID:11972525

  11. Specificity of antibodies to immunodominant mycobacterial antigens in pulmonary tuberculosis.

    PubMed Central

    Jackett, P S; Bothamley, G H; Batra, H V; Mistry, A; Young, D B; Ivanyi, J

    1988-01-01

    A serological survey was performed in groups of patients with active sputum smear-positive or smear-negative pulmonary tuberculosis, healthy household contacts, and controls. Sera were tested for titers of antibodies which bound to each of five purified mycobacterial antigens by enzyme immunoassay and for competition of binding to single epitopes, using six radiolabeled monoclonal antibodies directed toward corresponding molecules. The evaluation of diagnostic specificity was based on a positive score represented by titers above the cutoff point of 2 standard deviations above the mean titer of a control group. For smear-positive samples, the best sensitivity (83%) was achieved by exclusive use of the 38-kilodalton (kDa) antigen or its corresponding monoclonal antibodies. For smear-negative samples, levels of antibodies binding to the 19-kDa antigen showed a lower sensitivity of 62% compared with the control group or 38% compared with the contact group. Titers of antibody binding to the 14-kDa antigen were raised in Mycobacterium bovis BCG-vaccinated contacts, indicating that the greatest potential of this antigen may be in the detection of infection in a population for which tuberculin testing is unreliable. The results demonstrated the differing antibody responses to each of the tested antigens and distinct associations with the stage of infection or disease. PMID:2466869

  12. Antigen Retrieval Immunohistochemistry

    PubMed Central

    Shi, Shan-Rong; Shi, Yan; Taylor, Clive R.

    2011-01-01

    As a review for the 20th anniversary of publishing the antigen retrieval (AR) technique in this journal, the authors intend briefly to summarize developments in AR-immunohistochemistry (IHC)–based research and diagnostics, with particular emphasis on current challenges and future research directions. Over the past 20 years, the efforts of many different investigators have coalesced in extending the AR approach to all areas of anatomic pathology diagnosis and research and further have led to AR-based protein extraction techniques and tissue-based proteomics. As a result, formalin-fixed paraffin-embedded (FFPE) archival tissue collections are now seen as a literal treasure of materials for clinical and translational research to an extent unimaginable just two decades ago. Further research in AR-IHC is likely to focus on tissue proteomics, developing a more efficient protocol for protein extraction from FFPE tissue based on the AR principle, and combining the proteomics approach with AR-IHC to establish a practical, sophisticated platform for identifying and using biomarkers in personalized medicine. PMID:21339172

  13. Construction and Screening of Antigen Targeted Immune Yeast Surface Display Antibody Libraries

    SciTech Connect

    Miller, Keith D.; Pefaur, Noah B.; Baird, Cheryl L.

    2008-07-01

    These protocols describe a yeast surface display-based process for the rapid selection of antibodies from immunized mice, eliminating the need for creating and screening hybridoma fusions. A yeast surface display library of single-chain antibody fragments (scFvs) is created from antigen-binding B cells from the splenocytes of immunized mice. The antigen targeted library is then screened for antigen specific scFv by magnetic activated cell sorting (MACS) and fluorescence activated cell sorting (FACS). Library construction and screening can be accomplished in as little as 2 weeks resulting in a panel of scFvs specific for the target antigen.

  14. Construction and Screening of Antigen Targeted Immune Yeast Surface Display Antibody Libraries

    SciTech Connect

    Miller, Keith D.; Pefaur, Noah B.; Baird, Cheryl L.

    2009-08-02

    These protocols describe a yeast surface display-based process for the rapid selection of antibodies from immunized mice, eliminating the need for creating and screening hybridoma fusions. A yeast surface display library of single-chain antibody fragments (scFvs) is created from antigen-binding B cells from the splenocytes of immunized mice. The antigen targeted library is then screened for antigen specific scFv by magneticactivated cell sorting (MACS) and fluorescence-activated cell sorting (FACS). Library construction and screening can be accomplished in as little as 2 weeks, resulting in a panel of scFvs specific for the target antigen.

  15. Malignant Glial Neoplasms: Definition of a Humoral Host Response to Tumor-Associated Antigen(s)

    PubMed Central

    Sheikh, Khalid M.A.; Apuzzo, Michael L.J.; Kochsiek, Kim R.; Weiss, Martin H.

    1977-01-01

    There is increasing evidence that human tumors possess tumor-associated neo-antigens. The host mounts an immunological response to these antigens, as evidenced by the detection of circulating humoral antibodies in a variety of human neoplasia. An indirect immunofluorescent antibody technique was employed to detect antibodies to tumor-associated antigens in the sera of patients with malignant gliomas. Viable single cell suspensions were used to demonstrate antibodies to surface contents of tumor cells and cell preparations were snap-frozen at −160° C to demonstrate antibodies to cytoplasmic components of tumor cells. After incubation with serum, the preparations were treated with polyvalent sheep antihuman globulin conjugated to isomer-1-fluorescein isothiocyanate, washed, and examined with a Leitz incident fluorescent microscope. Of the 17 sera from histologically proven malignant glial neoplasm patients, 2 (11%) were positive for an autologous surface antibody reaction. Five (23%) of 21 were positive for an autologus cytoplasmic antibody, however, 10 (47%) of 21 of the sera gave a positive reaction for cross-reacting cytoplasmic antibodies when tested with a battery of tumor cells obtained from different patients with malignant glial tumors. No reaction was observed with normal brain tissue. Absorption studies indicated the presence of a tumor-associated antigen. This study demonstrated that certain patients with malignant gliomas possess circulating antibodies to cytoplasmic components of their own tumor cells. The fact that a number of sera cross-reacted with tumor cells obtained from different patients suggests that antigenic cross-reactivity exists between malignant glioma cells from different patients. It is suggested that with further refinement, immunofluorescent detection of antibodies could evolve as a useful diagnostic adjunct in malignant glioma. ImagesFIG. 1 PMID:333792

  16. Antigenic differences of NDV vaccines affect viral shedding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Strains of Newcastle disease virus (NDV) can be separated into genotypes based on genome differences even though they are antigenically considered to be of a single serotype. It is widely recognized that an efficacious Newcastle disease (ND) vaccine made with any NDV does induce protection against ...

  17. Natural Selection Promotes Antigenic Evolvability

    PubMed Central

    Graves, Christopher J.; Ros, Vera I. D.; Stevenson, Brian; Sniegowski, Paul D.; Brisson, Dustin

    2013-01-01

    The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide an experimentally tractable system to test whether natural selection has favored mechanisms that increase evolvability. Many antigenic variation systems consist of paralogous unexpressed ‘cassettes’ that recombine into an expression site to rapidly alter the expressed protein. Importantly, the magnitude of antigenic change is a function of the genetic diversity among the unexpressed cassettes. Thus, evidence that selection favors among-cassette diversity is direct evidence that natural selection promotes antigenic evolvability. We used the Lyme disease bacterium, Borrelia burgdorferi, as a model to test the prediction that natural selection favors amino acid diversity among unexpressed vls cassettes and thereby promotes evolvability in a primary surface antigen, VlsE. The hypothesis that diversity among vls cassettes is favored by natural selection was supported in each B. burgdorferi strain analyzed using both classical (dN/dS ratios) and Bayesian population genetic analyses of genetic sequence data. This hypothesis was also supported by the conservation of highly mutable tandem-repeat structures across B. burgdorferi strains despite a near complete absence of sequence conservation. Diversification among vls cassettes due to natural selection and mutable repeat structures promotes long-term antigenic evolvability of VlsE. These findings provide a direct demonstration that molecular mechanisms that enhance evolvability of surface antigens are an evolutionary adaptation. The molecular evolutionary processes identified here can serve as a model for the evolution of antigenic evolvability in many pathogens which utilize similar strategies to establish chronic infections

  18. Precision Tumor Recognition by T Cells With Combinatorial Antigen-Sensing Circuits.

    PubMed

    Roybal, Kole T; Rupp, Levi J; Morsut, Leonardo; Walker, Whitney J; McNally, Krista A; Park, Jason S; Lim, Wendell A

    2016-02-11

    T cells can be re-directed to kill cancer cells using chimeric antigen receptors (CARs) or T cell receptors (TCRs). This approach, however, is constrained by the rarity of tumor-specific single antigens. Targeting antigens also found on bystander tissues can cause life-threatening adverse effects. A powerful way to enhance ON-target activity of therapeutic T cells is to engineer them to require combinatorial antigens. Here, we engineer a combinatorially activated T cell circuit in which a synthetic Notch receptor for one antigen induces the expression of a CAR for a second antigen. These dual-receptor AND-gate T cells are only armed and activated in the presence of dual antigen tumor cells. These T cells show precise therapeutic discrimination in vivo-sparing single antigen "bystander" tumors while efficiently clearing combinatorial antigen "disease" tumors. This type of precision dual-receptor circuit opens the door to immune recognition of a wider range of tumors. VIDEO ABSTRACT. PMID:26830879

  19. Aptamer-targeted Antigen Delivery

    PubMed Central

    Wengerter, Brian C; Katakowski, Joseph A; Rosenberg, Jacob M; Park, Chae Gyu; Almo, Steven C; Palliser, Deborah; Levy, Matthew

    2014-01-01

    Effective therapeutic vaccines often require activation of T cell-mediated immunity. Robust T cell activation, including CD8 T cell responses, can be achieved using antibodies or antibody fragments to direct antigens of interest to professional antigen presenting cells. This approach represents an important advance in enhancing vaccine efficacy. Nucleic acid aptamers present a promising alternative to protein-based targeting approaches. We have selected aptamers that specifically bind the murine receptor, DEC205, a C-type lectin expressed predominantly on the surface of CD8α+ dendritic cells (DCs) that has been shown to be efficient at facilitating antigen crosspresentation and subsequent CD8+ T cell activation. Using a minimized aptamer conjugated to the model antigen ovalbumin (OVA), DEC205-targeted antigen crosspresentation was verified in vitro and in vivo by proliferation and cytokine production by primary murine CD8+ T cells expressing a T cell receptor specific for the major histocompatibility complex (MHC) I-restricted OVA257–264 peptide SIINFEKL. Compared with a nonspecific ribonucleic acid (RNA) of similar length, DEC205 aptamer-OVA-mediated antigen delivery stimulated strong proliferation and production of interferon (IFN)-γ and interleukin (IL)-2. The immune responses elicited by aptamer-OVA conjugates were sufficient to inhibit the growth of established OVA-expressing B16 tumor cells. Our results demonstrate a new application of aptamer technology for the development of effective T cell-mediated vaccines. PMID:24682172

  20. Microfluidic squeezing for intracellular antigen loading in polyclonal B-cells as cellular vaccines.

    PubMed

    Szeto, Gregory Lee; Van Egeren, Debra; Worku, Hermoon; Sharei, Armon; Alejandro, Brian; Park, Clara; Frew, Kirubel; Brefo, Mavis; Mao, Shirley; Heimann, Megan; Langer, Robert; Jensen, Klavs; Irvine, Darrell J

    2015-01-01

    B-cells are promising candidate autologous antigen-presenting cells (APCs) to prime antigen-specific T-cells both in vitro and in vivo. However to date, a significant barrier to utilizing B-cells as APCs is their low capacity for non-specific antigen uptake compared to "professional" APCs such as dendritic cells. Here we utilize a microfluidic device that employs many parallel channels to pass single cells through narrow constrictions in high throughput. This microscale "cell squeezing" process creates transient pores in the plasma membrane, enabling intracellular delivery of whole proteins from the surrounding medium into B-cells via mechano-poration. We demonstrate that both resting and activated B-cells process and present antigens delivered via mechano-poration exclusively to antigen-specific CD8(+)T-cells, and not CD4(+)T-cells. Squeezed B-cells primed and expanded large numbers of effector CD8(+)T-cells in vitro that produced effector cytokines critical to cytolytic function, including granzyme B and interferon-γ. Finally, antigen-loaded B-cells were also able to prime antigen-specific CD8(+)T-cells in vivo when adoptively transferred into mice. Altogether, these data demonstrate crucial proof-of-concept for mechano-poration as an enabling technology for B-cell antigen loading, priming of antigen-specific CD8(+)T-cells, and decoupling of antigen uptake from B-cell activation. PMID:25999171

  1. Microfluidic squeezing for intracellular antigen loading in polyclonal B-cells as cellular vaccines

    PubMed Central

    Lee Szeto, Gregory; Van Egeren, Debra; Worku, Hermoon; Sharei, Armon; Alejandro, Brian; Park, Clara; Frew, Kirubel; Brefo, Mavis; Mao, Shirley; Heimann, Megan; Langer, Robert; Jensen, Klavs; Irvine, Darrell J

    2015-01-01

    B-cells are promising candidate autologous antigen-presenting cells (APCs) to prime antigen-specific T-cells both in vitro and in vivo. However to date, a significant barrier to utilizing B-cells as APCs is their low capacity for non-specific antigen uptake compared to “professional” APCs such as dendritic cells. Here we utilize a microfluidic device that employs many parallel channels to pass single cells through narrow constrictions in high throughput. This microscale “cell squeezing” process creates transient pores in the plasma membrane, enabling intracellular delivery of whole proteins from the surrounding medium into B-cells via mechano-poration. We demonstrate that both resting and activated B-cells process and present antigens delivered via mechano-poration exclusively to antigen-specific CD8+T-cells, and not CD4+T-cells. Squeezed B-cells primed and expanded large numbers of effector CD8+T-cells in vitro that produced effector cytokines critical to cytolytic function, including granzyme B and interferon-γ. Finally, antigen-loaded B-cells were also able to prime antigen-specific CD8+T-cells in vivo when adoptively transferred into mice. Altogether, these data demonstrate crucial proof-of-concept for mechano-poration as an enabling technology for B-cell antigen loading, priming of antigen-specific CD8+T-cells, and decoupling of antigen uptake from B-cell activation. PMID:25999171

  2. Microfluidic squeezing for intracellular antigen loading in polyclonal B-cells as cellular vaccines

    NASA Astrophysics Data System (ADS)

    Lee Szeto, Gregory; van Egeren, Debra; Worku, Hermoon; Sharei, Armon; Alejandro, Brian; Park, Clara; Frew, Kirubel; Brefo, Mavis; Mao, Shirley; Heimann, Megan; Langer, Robert; Jensen, Klavs; Irvine, Darrell J.

    2015-05-01

    B-cells are promising candidate autologous antigen-presenting cells (APCs) to prime antigen-specific T-cells both in vitro and in vivo. However to date, a significant barrier to utilizing B-cells as APCs is their low capacity for non-specific antigen uptake compared to “professional” APCs such as dendritic cells. Here we utilize a microfluidic device that employs many parallel channels to pass single cells through narrow constrictions in high throughput. This microscale “cell squeezing” process creates transient pores in the plasma membrane, enabling intracellular delivery of whole proteins from the surrounding medium into B-cells via mechano-poration. We demonstrate that both resting and activated B-cells process and present antigens delivered via mechano-poration exclusively to antigen-specific CD8+T-cells, and not CD4+T-cells. Squeezed B-cells primed and expanded large numbers of effector CD8+T-cells in vitro that produced effector cytokines critical to cytolytic function, including granzyme B and interferon-γ. Finally, antigen-loaded B-cells were also able to prime antigen-specific CD8+T-cells in vivo when adoptively transferred into mice. Altogether, these data demonstrate crucial proof-of-concept for mechano-poration as an enabling technology for B-cell antigen loading, priming of antigen-specific CD8+T-cells, and decoupling of antigen uptake from B-cell activation.

  3. The antigenic structure of the influenza B virus hemagglutinin: operational and topological mapping with monoclonal antibodies.

    PubMed

    Berton, M T; Webster, R G

    1985-06-01

    We have probed the antigenic structure of the influenza B virus hemagglutinin (HA) with monoclonal antibodies specific for the HA of influenza B virus, B/Oregon/5/80. Seventeen laboratory-selected antigenic variants of this virus were analyzed by hemagglutination-inhibition (HI) assays or ELISA and an operational antigenic map was constructed. In addition, the monoclonal antibodies were tested in a competitive binding assay to construct a topological map of the antigenic sites. In contrast to the influenza A virus HA, only a single immunodominant antigenic site composed of several overlapping clusters of epitopes was defined by the HI-positive antibodies. Three variants could be distinguished from the parental virus with polyclonal antisera by HI and infectivity reduction assays suggesting that changes in this antigenic site may be sufficient to provide an epidemiological advantage to influenza B viruses in nature. In addition, two nonoverlapping epitopes of unknown biological significance were identified in the competitive binding analysis by two monoclonal antibodies with no HI activity and little or no neutralizing activity. We previously identified single amino acid substitutions in the HAs of the antigenic variants used in this study (M. T. Berton, C. W. Naeve, and R. G. Webster (1984), J. Virol. 52, 919-927). These changes occurred in regions of the molecule which, by amino acid sequence alignment, appeared to correspond to proposed antigenic sites A and B on the H3 HA of influenza A virus. Correlation with the antigenic map established in this report, however, demonstrates that the amino acid residues actually contribute to a single antigenic site on the influenza B virus HA and suggests significant differences in the antigenic structures of the influenza A and B virus HAs. PMID:2414911

  4. Immunochemistry of sea anemone toxins: structure-antigenicity relationships and toxin-receptor interactions probed by antibodies specific for one antigenic

    SciTech Connect

    Ayeb, M.E.; Bahraoui, E.M.; Granier, C.; Beress, L.; Rochat, H.

    1986-11-04

    Two antibody subpopulations directed against Anemonia sulcata toxin I or II have been purified by immunoaffinity chromatography. These antibodies are specific for a single antigenic region and were used in a structure-antigenicity relationship study using homologous toxins and chemically modified derivatives of A. sulcata toxin II. Asp-7 and/or Asp=9 and Gln-47 of toxin II were found to be implicated in the antigenic region recognized by the two antibody subpopulations. On the contrary, Arg-14, Lys-35, -36, and -46, and ..cap alpha..-NH/sub 2/ of the glycine residue of A. sulcata toxin II are not involved in the corresponding antigenic region. When assayed for interaction with the sodium channel, the antigenic region of toxin II, including Asp-9 and Gln-47, appeared fully accessible to its specific antibodies, suggesting that it is not involved in the binding of the toxin to its receptor.

  5. Filamentous Bacteriophage Fd as an Antigen Delivery System in Vaccination

    PubMed Central

    Prisco, Antonella; De Berardinis, Piergiuseppe

    2012-01-01

    Peptides displayed on the surface of filamentous bacteriophage fd are able to induce humoral as well as cell-mediated immune responses, which makes phage particles an attractive antigen delivery system to design new vaccines. The immune response induced by phage-displayed peptides can be enhanced by targeting phage particles to the professional antigen presenting cells, utilizing a single-chain antibody fragment that binds dendritic cell receptor DEC-205. Here, we review recent advances in the use of filamentous phage fd as a platform for peptide vaccines, with a special focus on the use of phage fd as an antigen delivery platform for peptide vaccines in Alzheimer’s Disease and cancer. PMID:22606037

  6. [Autoantibody diagnostics in neurology using native and recombinant antigenic substrates].

    PubMed

    Stöcker, W; Saschenbrecker, S; Rentzsch, K; Komorowski, L; Probst, C

    2013-04-01

    Modern diagnostics for the determination of neurologically relevant autoantibodies are based on indirect immunofluorescence using tissue sections of the hippocampus, cerebellum and other tissues. For monospecific detection human embryonic kidney (HEK) cells transfected with different neurological antigens are used. Biochip mosaics are designed to give a quick overview and contain 20 or more substances positioned next to each other on a reaction field, which are incubated with the serum or cerebrospinal fluid (CSF) sample. Western blots based on cerebellum or hippocampus extracts or line blots containing defined recombinant antigens are used additionally. Initial investigations should always comprise the parallel analysis of all major antineural autoantibodies instead of performing only single parameter tests. Up until a few years ago autoantibodies against intracellular neuronal antigens were mainly investigated. Antibodies against structures of the neural cell surface, however, are much more frequently found, especially those against glutamate receptors (type NMDA). PMID:23568169

  7. A neuronal antigen in the brains of Alzheimer patients.

    PubMed

    Wolozin, B L; Pruchnicki, A; Dickson, D W; Davies, P

    1986-05-01

    A monoclonal antibody was prepared against pooled homogenates of brain tissue from patients with Alzheimer's disease. This antibody recognizes an antigen present in much higher concentration in certain brain regions of Alzheimer patients than in normal brain. The antigen appears to be a protein present in neurons involved in the formation of neuritic plaques and neurofibrillary tangles, and in some morphologically normal neurons in sections from Alzheimer brains. Partial purification and Western blot analysis revealed the antigen from Alzheimer brain to be a single protein with a molecular weight of 68,000. Application of the same purification procedure to normal brain tissue results in the detection of small amounts of a protein of lower molecular weight. PMID:3083509

  8. Functional Development of the T Cell Receptor for Antigen

    PubMed Central

    Ebert, Peter J.R.; Li, Qi-Jing; Huppa, Johannes B.; Davis, Mark M.

    2016-01-01

    For over three decades now, the T cell receptor (TCR) for antigen has not ceased to challenge the imaginations of cellular and molecular immunologists alike. T cell antigen recognition transcends every aspect of adaptive immunity: it shapes the T cell repertoire in the thymus and directs T cell-mediated effector functions in the periphery, where it is also central to the induction of peripheral tolerance. Yet, despite its central position, there remain many questions unresolved: how can one TCR be specific for one particular peptide-major histocompatibility complex (pMHC) ligand while also binding other pMHC ligands with an immunologically relevant affinity? And how can a T cell’s extreme specificity (alterations of single methyl groups in their ligand can abrogate a response) and sensitivity (single agonist ligands on a cell surface are sufficient to trigger a measurable response) emerge from TCR–ligand interactions that are so low in affinity? Solving these questions is intimately tied to a fundamental understanding of molecular recognition dynamics within the many different contexts of various T cell–antigen presenting cell (APC) contacts: from the thymic APCs that shape the TCR repertoire and guide functional differentiation of developing T cells to the peripheral APCs that support homeostasis and provoke antigen responses in naïve, effector, memory, and regulatory T cells. Here, we discuss our recent findings relating to T cell antigen recognition and how this leads to the thymic development of foreign-antigen-responsive αβT cells. PMID:20800817

  9. Comparative vaccination of cattle against Boophilus microplus with recombinant antigen Bm86 alone or in combination with recombinant Bm91.

    PubMed

    Willadsen, P; Smith, D; Cobon, G; McKenna, R V

    1996-05-01

    Cattle were vaccinated either with a single recombinant tick antigen, Bm86 or with a combination of two recombinant antigens, Bm86 and Bm91 from the tick Boophilus microplus. In three experiments, the responses of cattle to subsequent challenge with the tick were assessed. The addition of the Bm91 antigen enhanced the efficacy of the vaccination over that with Bm86 alone to a statistically significant degree. Moreover, co-vaccination with two antigens did not impair the response of cattle to the Bm86 antigen. Finally, responses of individual cattle to the two antigens were independent. All of these results may be relevant to the increase in efficacy expected from a dual antigen vaccine. PMID:9229376

  10. Characterisation of Sarcoptes scabiei antigens.

    PubMed

    Hejduk, Gloria; Hofstätter, Katja; Löwenstein, Michael; Peschke, Roman; Miller, Ingrid; Joachim, Anja

    2011-02-01

    In pig herds, the status of Sarcoptes scabiei infections is routinely monitored by serodiagnosis. Crude antigen for ELISA is usually prepared from S. scabiei var. canis or other variations and may lead to variations in the outcome of different tests, making assay standardisation difficult. This study was performed to investigate the antigen profiles of S. scabiei, including differences between hydrophilic and more hydrophobic protein fractions, by Western blotting with sera from pigs with defined infection status. Potential cross-reactivity among S. scabiei (var. canis, suis and bovis), Dermatophagoides farinae and Tyrophagus putrescentiae was also analysed. Hydrophobic S. scabiei antigens were detectable in the range of 40-50 kDa, whilst the hydrophilic fraction showed no specific antigenicity. In the hydrophobic fractions of D. farinae and T. putrescentiae, two major protein fractions in a similar size range could be identified, but no cross-reactivity with Sarcoptes-positive sera was detectable. However, examination of the hydrophilic fractions revealed cross-reactivity between Sarcoptes-positive sera and both the house dust mite and the storage mite in the range of 115 and 28/38 kDa. Specific bands in the same range (42 and 48 kDa) could be detected in blots from hydrophobic fractions of all three tested variations of S. scabiei (var. canis, bovis and suis). These results show that there are considerable differences in mange antibody reactivity, including reactions with proteins from free-living mites, which may interfere with tests based on hydrophilic antigens. Further refinement of antigen and the use of specific hydrophobic proteins could improve ELISA performance and standardisation. PMID:20865427

  11. An antigen-specific, four-color, B-cell FluoroSpot assay utilizing tagged antigens for detection.

    PubMed

    Jahnmatz, Peter; Bengtsson, Theresa; Zuber, Bartek; Färnert, Anna; Ahlborg, Niklas

    2016-06-01

    The FluoroSpot assay, a variant of ELISpot utilizing fluorescent detection, has so far been used primarily for assessment of T cells, where simultaneous detection of several cytokines has allowed a more qualitative analysis of functionally distinct T cells. The potential to measure multiple analytes also presents several advantages when analyzing B cells. Our aim was to develop a B-cell FluoroSpot assay adaptable to studies of a variety of antigens. The assay utilizes anti-IgG antibodies immobilized in 96-well filter membrane plates. During cell culture, IgG antibodies secreted by antibody-secreting cells (ASCs) are captured in the vicinity of each of these cells and the specificity of single ASCs is defined using antigens for detection. The antigens were labeled with biotin or peptide tags enabling secondary detection with fluorophore-conjugated streptavidin or tag-specific antibodies. The assay, utilizing up to four different tag systems and fluorophores simultaneously, was evaluated using hybridomas and immunized splenocytes as ASCs. Assay variants were developed that could: i) identify multiple ASCs with different antigen specificities; ii) detect ASCs showing cross-reactivity with different but related antigens; and iii) define the antigen-specificity and, by including anti-IgG subclass detection reagents, simultaneously determine the IgG subclass of antibodies secreted by ASCs. As demonstrated here, the B-cell FluoroSpot assay using tag-based detection systems provides a versatile and powerful tool to investigate antibody responses by individual cells that can be readily adapted to studies of a variety of antigen-specific ASCs. PMID:26930550

  12. [Farmer's lung antigens in Germany].

    PubMed

    Sennekamp, J; Joest, M; Sander, I; Engelhart, S; Raulf-Heimsoth, M

    2012-05-01

    Recent studies suggest that besides the long-known farmer's lung antigen sources Saccharopolyspora rectivirgula (Micropolyspora faeni), Thermoactinomyces vulgaris, and Aspergillus fumigatus, additionally the mold Absidia (Lichtheimia) corymbifera as well as the bacteria Erwinia herbicola (Pantoea agglomerans) and Streptomyces albus may cause farmer's lung in Germany. In this study the sera of 64 farmers with a suspicion of farmer's lung were examined for the following further antigens: Wallemia sebi, Cladosporium herbarum, Aspergillus versicolor, and Eurotium amstelodami. Our results indicate that these molds are not frequent causes of farmer's lung in Germany. PMID:22477566

  13. T Cells Expressing CD19/CD20 Bispecific Chimeric Antigen Receptors Prevent Antigen Escape by Malignant B Cells.

    PubMed

    Zah, Eugenia; Lin, Meng-Yin; Silva-Benedict, Anne; Jensen, Michael C; Chen, Yvonne Y

    2016-06-01

    The adoptive transfer of T cells expressing anti-CD19 chimeric antigen receptors (CARs) has shown remarkable curative potential against advanced B-cell malignancies, but multiple trials have also reported patient relapses due to the emergence of CD19-negative leukemic cells. Here, we report the design and optimization of single-chain, bispecific CARs that trigger robust cytotoxicity against target cells expressing either CD19 or CD20, two clinically validated targets for B-cell malignancies. We determined the structural parameters required for efficient dual-antigen recognition, and we demonstrate that optimized bispecific CARs can control both wild-type B-cell lymphoma and CD19(-) mutants with equal efficiency in vivo To our knowledge, this is the first bispecific CAR capable of preventing antigen escape by performing true OR-gate signal computation on a clinically relevant pair of tumor-associated antigens. The CD19-OR-CD20 CAR is fully compatible with existing T-cell manufacturing procedures and implementable by current clinical protocols. These results present an effective solution to the challenge of antigen escape in CD19 CAR T-cell therapy, and they highlight the utility of structure-based rational design in the development of receptors with higher-level complexity. Cancer Immunol Res; 4(6); 498-508. ©2016 AACRSee related Spotlight by Sadelain, p. 473. PMID:27059623

  14. Proteolysis, proteasomes and antigen presentation

    NASA Technical Reports Server (NTRS)

    Goldberg, A. L.; Rock, K. L.

    1992-01-01

    Proteins presented to the immune system must first be cleaved to small peptides by intracellular proteinases. Proteasomes are proteolytic complexes that degrade cytosolic and nuclear proteins. These particles have been implicated in ATP-ubiquitin-dependent proteolysis and in the processing of intracellular antigens for cytolytic immune responses.

  15. Detection of O antigens in Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipopolysaccharide on the surface of Escherichia coli constitute the O antigens, which are important virulence factors that are targets of both the innate and adaptive immune system and play a major role in host-pathogen interactions. O antigens that are responsible for antigenic specificity of the ...

  16. Antigenic determinants and functional domains in core antigen and e antigen from hepatitis B virus

    SciTech Connect

    Salfeld, J.; Pfaff, E.; Noah, M.; Schaller, H.

    1989-02-01

    The precore/core gene of hepatitis B virus directs the synthesis of two polypeptides, the 21-kilodalton subunit (p21c) forming the viral nucleocapsid (serologically defined as core antigen (HBcAg)) and a secreted processed protein (p17e, serologically defined as HBe antigen (HBeAg)). Although most of their primary amino acid sequences are identical, HBcAg and HBeAg display different antigenic properties that are widely used in hepatitis B virus diagnosis. To locate and to characterize the corresponding determinants, segments of the core gene were expressed in Escherichia coli and probed with a panel of polyclonal or monoclonal antibodies in radioimmunoassays or enzyme-linked immunosorbent assays, Western blots, and competition assays. Three distinct major determinants were characterized. It is postulated that HBcAg and HBeAg share common basic three-dimensional structure exposing the common linear determinant HBe1 but that they differ in the presentation of two conformational determinants that are either introduced (HBc) or masked (HBe2) in the assembled core. The simultaneous presentation of HBe1 and HBc, two distinctly different antigenic determinants with overlapping amino acid sequences, is interpreted to indicate the presence of slightly differently folded, stable conformational states of p21c in the hepatitis virus nucleocapsid.

  17. Two-colour immunoenzymatic technique using sequential staining by APAAP to evaluate two cell antigens.

    PubMed Central

    Burgess, R.; Hyde, K.; Maguire, P. J.; Kelsey, P. R.; Yin, J. A.; Geary, C. G.

    1992-01-01

    AIMS: To extend the alkaline phosphatase-antialkaline phosphatase (APAAP) immunoenzyme single stain method to a more generally applicable double stain technique. This will allow two primary antibodies of the same isotype of IgG and specifically the nuclear antigen bromodeoxyuridine (BRdU) to be evaluated with a cell surface antigen identifier. METHOD: Sequential applications of the APAAP method showed two antigen sites by different dye couplings to a common alkaline phosphatase substrate, producing blue and red reaction products on the same slide. Antigens on different cell populations as well as those in different compartments of the same cell were analysed. The method allowed a surface antigen monoclonal to be revealed first, using an optimal fixative, before alcohol/gluteraldehyde fixation was used to start the second (BRdU) staining sequence. RESULTS: An analysis of double staining of T lymphocyte subsets (CD4 and CD8) showed no significant difference in the order of application of the primaries (n = 10) and no significant difference from their corresponding single stain results (n = 50), confirming the validity of the technique where antigens are exclusively distributed. Other examples, including antigens distributed in different compartments of the same cell, displayed discrete staining which implied validity. CONCLUSION: Double staining by APAAP with this technique seems to be applicable to those cases where antigens are exclusively distributed and includes cases where different compartments of the same cell are stained. It is especially useful in revealing antigens that require different fixation and preparation--that is DNA incorporated BRdU with a surface antigen. But it does seem to have a limited ability to produce a dual colour at a common site. Images PMID:1372917

  18. Antigen Export Reduces Antigen Presentation and Limits T Cell Control of M. tuberculosis.

    PubMed

    Srivastava, Smita; Grace, Patricia S; Ernst, Joel D

    2016-01-13

    Persistence of Mycobacterium tuberculosis results from bacterial strategies that manipulate host adaptive immune responses. Infected dendritic cells (DCs) transport M. tuberculosis to local lymph nodes but activate CD4 T cells poorly, suggesting bacterial manipulation of antigen presentation. However, M. tuberculosis antigens are also exported from infected DCs and taken up and presented by uninfected DCs, possibly overcoming this blockade of antigen presentation by infected cells. Here we show that the first stage of this antigen transfer, antigen export, benefits M. tuberculosis by diverting bacterial proteins from the antigen presentation pathway. Kinesin-2 is required for antigen export and depletion of this microtubule-based motor increases activation of antigen-specific CD4 T cells by infected cells and improves control of intracellular infection. Thus, although antigen transfer enables presentation by bystander cells, it does not compensate for reduced antigen presentation by infected cells and represents a bacterial strategy for CD4 T cell evasion. PMID:26764596

  19. Identification of novel Mycobacterium tuberculosis CD4 T-cell antigens via high throughput proteome screening

    PubMed Central

    Nayak, Kaustuv; Jing, Lichen; Russell, Ronnie M.; Davies, D. Huw; Hermanson, Gary; Molina, Douglas M.; Liang, Xiaowu; Sherman, David R.; Kwok, William W.; Yang, Junbao; Kenneth, John; Ahamed, Syed F.; Chandele, Anmol; Kaja, Murali-Krishna; Koelle, David M.

    2015-01-01

    Elicitation of CD4 IFN-gamma T cell responses to Mycobacterium tuberculosis (MTB) is a rational vaccine strategy to prevent clinical tuberculosis. Diagnosis of MTB infection is based on T-cell immune memory to MTB antigens. The MTB proteome contains over four thousand open reading frames (ORFs). We conducted a pilot antigen identification study using 164 MTB proteins and MTB-specific T-cells expanded in vitro from 12 persons with latent MTB infection. Enrichment of MTB-reactive T-cells from PBMC used cell sorting or an alternate system compatible with limited resources. MTB proteins were used as single antigens or combinatorial matrices in proliferation and cytokine secretion readouts. Overall, our study found that 44 MTB proteins were antigenic, including 27 not previously characterized as CD4 T-cell antigens. Antigen truncation, peptide, NTM homology, and HLA class II tetramer studies confirmed malate synthase G (encoded by gene Rv1837) as a CD4 T-cell antigen. This simple, scalable system has potential utility for the identification of candidate MTB vaccine and biomarker antigens. PMID:25857935

  20. [Polyagglutinability due to Hempas antigen].

    PubMed

    Rochant, H; Gerbal, A

    1976-03-01

    A new antigen has been recently discoverd in patients with congenital dyserythropoietic anemia type II. The acronyme Hempas was proposed for this disease as a remind of the main morphological feature of erythroblasts (hereditary erythroblastic multinuclearity) and the characteristic serological findings (positive acidified serum test). The patients red cells are agglutinated and lysed by an IgM cold reacting antibody present in the serum of most normal subjects and not previously recognized. This behaviour is thus reminding of cells carrying antigens such as T, Tn, Cad or acquired B. As for T and Tn cells, sialic acid and electrophoretic mobility are reduced, but in contrast, agglutinability of Hempas cells is enhanced by enzyme treatment. Agglutination by anti H and anti Pr specific reagents is reduced. I and mainly i activity are strongly increased. The relationship between the membrane abnormalities of Hempas red cells and the failure of normoblasts to divide their cytoplasm i still largely unknown. PMID:788106

  1. Common antigens between hydatid cyst and cancers

    PubMed Central

    Daneshpour, Shima; Bahadoran, Mehran; Hejazi, Seyed Hossein; Eskandarian, Abas Ali; Mahmoudzadeh, Mehdi; Darani, Hossein Yousofi

    2016-01-01

    Background: Different research groups reported a negative correlation between cancers and parasitical infections. As an example, the prevalence of a hydatid cyst among patients with cancer was significantly lower than its prevalence among normal population. Tn antigens exist both in cancer and hydatid cyst. This common antigen may be involved in the effect of parasite on cancer growth. So in this work, common antigens between hydatid cyst and cancers have been investigated. Materials and Methods: Different hydatid cyst antigens including hydatid fluid, laminated and germinal layer antigens, and excretory secretory antigens of protoscolices were run in SDS PAGE and transferred to NCP paper. In western immunoblotting, those antigens were probed with sera of patients with different cancer and also sera of non-cancer patients. Also, cross reaction among excretory secretory products of cancer cells and antisera raised against different hydatid cyst antigen was investigated. Results: In western immunoblotting, antisera raised against laminated and germinal layers of hydatid cyst reacted with excretory secretory products of cancer cells. Also, a reaction was detected between hydatid cyst antigens and sera of patients with some cancers. Conclusion: Results of this work emphasize existence of common antigens between hydatid cyst and cancers. More investigation about these common antigens is recommended. PMID:26962511

  2. Focused antibody response to influenza linked to antigenic drift

    PubMed Central

    Huang, Kuan-Ying A.; Rijal, Pramila; Schimanski, Lisa; Powell, Timothy J.; Lin, Tzou-Yien; McCauley, John W.; Daniels, Rodney S.; Townsend, Alain R.

    2015-01-01

    The selective pressure that drives antigenic changes in influenza viruses is thought to originate from the human immune response. Here, we have characterized the B cell repertoire from a previously vaccinated donor whose serum had reduced neutralizing activity against the recently evolved clade 6B H1N1pdm09 viruses. While the response was markedly polyclonal, 88% of clones failed to recognize clade 6B viruses; however, the ability to neutralize A/USSR/90/1977 influenza, to which the donor would have been exposed in childhood, was retained. In vitro selection of virus variants with representative monoclonal antibodies revealed that a single amino acid replacement at residue K163 in the Sa antigenic site, which is characteristic of the clade 6B viruses, was responsible for resistance to neutralization by multiple monoclonal antibodies and the donor serum. The K163 residue lies in a part of a conserved surface that is common to the hemagglutinins of the 1977 and 2009 H1N1 viruses. Vaccination with the 2009 hemagglutinin induced an antibody response tightly focused on this common surface that is capable of selecting current antigenic drift variants in H1N1pdm09 influenza viruses. Moreover, amino acid replacement at K163 was not highlighted by standard ferret antisera. Human monoclonal antibodies may be a useful adjunct to ferret antisera for detecting antigenic drift in influenza viruses. PMID:26011643

  3. Focused antibody response to influenza linked to antigenic drift.

    PubMed

    Huang, Kuan-Ying A; Rijal, Pramila; Schimanski, Lisa; Powell, Timothy J; Lin, Tzou-Yien; McCauley, John W; Daniels, Rodney S; Townsend, Alain R

    2015-07-01

    The selective pressure that drives antigenic changes in influenza viruses is thought to originate from the human immune response. Here, we have characterized the B cell repertoire from a previously vaccinated donor whose serum had reduced neutralizing activity against the recently evolved clade 6B H1N1pdm09 viruses. While the response was markedly polyclonal, 88% of clones failed to recognize clade 6B viruses; however, the ability to neutralize A/USSR/90/1977 influenza, to which the donor would have been exposed in childhood, was retained. In vitro selection of virus variants with representative monoclonal antibodies revealed that a single amino acid replacement at residue K163 in the Sa antigenic site, which is characteristic of the clade 6B viruses, was responsible for resistance to neutralization by multiple monoclonal antibodies and the donor serum. The K163 residue lies in a part of a conserved surface that is common to the hemagglutinins of the 1977 and 2009 H1N1 viruses. Vaccination with the 2009 hemagglutinin induced an antibody response tightly focused on this common surface that is capable of selecting current antigenic drift variants in H1N1pdm09 influenza viruses. Moreover, amino acid replacement at K163 was not highlighted by standard ferret antisera. Human monoclonal antibodies may be a useful adjunct to ferret antisera for detecting antigenic drift in influenza viruses. PMID:26011643

  4. Antigenic typing of canine parvovirus using differential PCR.

    PubMed

    Kaur, Gurpreet; Chandra, Mudit; Dwivedi, P N; Sharma, N S

    2014-12-01

    Canine parvovirus (CPV) is an enteric pathogen causing hemorrhagic enteritis in pups of 3-6 months of age and is mainly transmitted via feco-oral route. In the present study, a total of 85 animals rectal swabs suspected of CPV were tested using a PCR, nested PCR and a newly designed differential PCR. Using PCR 7 (8.23 %) animals were positive whereas 39 (45.88 %) were positive by using nested PCR and 40 (47.05 %) were positive for either one or more than one antigenic types of CPV using differential PCR. Using differential PCR it was found that CPV-2a and CPV-2b were the most prevailing antigenic types. Also it was found that dogs that were vaccinated too yielded positive CPV indicating a possible presence of additional CPV antigenic types. Thus, the primers used in differential PCR can be used in a single PCR reaction to detect various antigenic types of CPV. PMID:25674626

  5. Antigen-Responsive, Microfluidic Valves for Single Use Diagnostics

    PubMed Central

    Berron, Brad J.; May, Allison M.; Zheng, Zheng; Balasubramaniam, Vivek

    2014-01-01

    The growing need for medical diagnostics in resource limited settings is driving the development of simple, standalone immunoassay devices. A capillary flow device using polymerization based amplification is capable of blocking a microfluidic channel in response to target biomaterials, enabling multiple modes of detection that require little or no supplemental instrumentation. PMID:22218407

  6. Viruses, cytokines, antigens, and autoimmunity.

    PubMed Central

    Gianani, R; Sarvetnick, N

    1996-01-01

    To explain the pathogenesis of autoimmunity, we hypothesize that following an infection the immune response spreads to tissue-specific autoantigens in genetically predisposed individuals eventually determining progression to disease. Molecular mimicry between viral and self antigens could, in some instances, initiate autoimmunity. Local elicitation of inflammatory cytokines following infection probably plays a pivotal role in determining loss of functional tolerance to self autoantigens and the destructive activation of autoreactive cells. We also describe the potential role of interleukin 10, a powerful B-cell activator, in increasing the efficiency of epitope recognition, that could well be crucial to the progression toward disease. PMID:8637859

  7. Antigen-Specific Antibody Glycosylation Is Regulated via Vaccination

    PubMed Central

    Suscovich, Todd; Dionne, Kendall; Tedesco, Jacquelynne; Chung, Amy W.; Streeck, Hendrik; Pau, Maria; Schuitemaker, Hanneke; Francis, Don; Fast, Patricia; Laufer, Dagna; Walker, Bruce D.; Baden, Lindsey; Barouch, Dan H.; Alter, Galit

    2016-01-01

    Antibody effector functions, such as antibody-dependent cellular cytotoxicity, complement deposition, and antibody-dependent phagocytosis, play a critical role in immunity against multiple pathogens, particularly in the absence of neutralizing activity. Two modifications to the IgG constant domain (Fc domain) regulate antibody functionality: changes in antibody subclass and changes in a single N-linked glycan located in the CH2 domain of the IgG Fc. Together, these modifications provide a specific set of instructions to the innate immune system to direct the elimination of antibody-bound antigens. While it is clear that subclass selection is actively regulated during the course of natural infection, it is unclear whether antibody glycosylation can be tuned, in a signal-specific or pathogen-specific manner. Here, we show that antibody glycosylation is determined in an antigen- and pathogen-specific manner during HIV infection. Moreover, while dramatic differences exist in bulk IgG glycosylation among individuals in distinct geographical locations, immunization is able to overcome these differences and elicit antigen-specific antibodies with similar antibody glycosylation patterns. Additionally, distinct vaccine regimens induced different antigen-specific IgG glycosylation profiles, suggesting that antibody glycosylation is not only programmable but can be manipulated via the delivery of distinct inflammatory signals during B cell priming. These data strongly suggest that the immune system naturally drives antibody glycosylation in an antigen-specific manner and highlights a promising means by which next-generation therapeutics and vaccines can harness the antiviral activity of the innate immune system via directed alterations in antibody glycosylation in vivo.   PMID:26982805

  8. Antigen-Specific Antibody Glycosylation Is Regulated via Vaccination.

    PubMed

    Mahan, Alison E; Jennewein, Madeleine F; Suscovich, Todd; Dionne, Kendall; Tedesco, Jacquelynne; Chung, Amy W; Streeck, Hendrik; Pau, Maria; Schuitemaker, Hanneke; Francis, Don; Fast, Patricia; Laufer, Dagna; Walker, Bruce D; Baden, Lindsey; Barouch, Dan H; Alter, Galit

    2016-03-01

    Antibody effector functions, such as antibody-dependent cellular cytotoxicity, complement deposition, and antibody-dependent phagocytosis, play a critical role in immunity against multiple pathogens, particularly in the absence of neutralizing activity. Two modifications to the IgG constant domain (Fc domain) regulate antibody functionality: changes in antibody subclass and changes in a single N-linked glycan located in the CH2 domain of the IgG Fc. Together, these modifications provide a specific set of instructions to the innate immune system to direct the elimination of antibody-bound antigens. While it is clear that subclass selection is actively regulated during the course of natural infection, it is unclear whether antibody glycosylation can be tuned, in a signal-specific or pathogen-specific manner. Here, we show that antibody glycosylation is determined in an antigen- and pathogen-specific manner during HIV infection. Moreover, while dramatic differences exist in bulk IgG glycosylation among individuals in distinct geographical locations, immunization is able to overcome these differences and elicit antigen-specific antibodies with similar antibody glycosylation patterns. Additionally, distinct vaccine regimens induced different antigen-specific IgG glycosylation profiles, suggesting that antibody glycosylation is not only programmable but can be manipulated via the delivery of distinct inflammatory signals during B cell priming. These data strongly suggest that the immune system naturally drives antibody glycosylation in an antigen-specific manner and highlights a promising means by which next-generation therapeutics and vaccines can harness the antiviral activity of the innate immune system via directed alterations in antibody glycosylation in vivo.  . PMID:26982805

  9. Antigen Recognition By Variable Lymphocyte Receptors

    SciTech Connect

    Han, B.W.; Herrin, B.R.; Cooper, M.D.; Wilson, I.A.

    2009-05-18

    Variable lymphocyte receptors (VLRs) rather than antibodies play the primary role in recognition of antigens in the adaptive immune system of jawless vertebrates. Combinatorial assembly of leucine-rich repeat (LRR) gene segments achieves the required repertoire for antigen recognition. We have determined a crystal structure for a VLR-antigen complex, VLR RBC36 in complex with the H-antigen trisaccharide from human blood type O erythrocytes, at 1.67 angstrom resolution. RBC36 binds the H-trisaccharide on the concave surface of the LRR modules of the solenoid structure where three key hydrophilic residues, multiple van der Waals interactions, and the highly variable insert of the carboxyl-terminal LRR module determine antigen recognition and specificity. The concave surface assembled from the most highly variable regions of the LRRs, along with diversity in the sequence and length of the highly variable insert, can account for the recognition of diverse antigens by VLRs.

  10. Persistence of antigen in nonarthritic joints.

    PubMed Central

    Fox, A; Glynn, L E

    1975-01-01

    The presence of antigen, IgG and C3 was shown by radioautography and immunofluorescence in the collagenous tissues of the joints of animals injected intra-articularly with antigen after having been previously immunized with that antigen in Freund's incomplete adjuvant. Since these joints were shown to be virtually free of inflammatory reactions, we suggest that the persistence of immune complexes activating complement cannot fully explain the chronicity of experimental allergic arthritis. Images PMID:769709

  11. Constraints on the Genetic and Antigenic Variability of Measles Virus

    PubMed Central

    Beaty, Shannon M.; Lee, Benhur

    2016-01-01

    Antigenic drift and genetic variation are significantly constrained in measles virus (MeV). Genetic stability of MeV is exceptionally high, both in the lab and in the field, and few regions of the genome allow for rapid genetic change. The regions of the genome that are more tolerant of mutations (i.e., the untranslated regions and certain domains within the N, C, V, P, and M proteins) indicate genetic plasticity or structural flexibility in the encoded proteins. Our analysis reveals that strong constraints in the envelope proteins (F and H) allow for a single serotype despite known antigenic differences among its 24 genotypes. This review describes some of the many variables that limit the evolutionary rate of MeV. The high genomic stability of MeV appears to be a shared property of the Paramyxovirinae, suggesting a common mechanism that biologically restricts the rate of mutation. PMID:27110809

  12. Identification of sperm immunoreactive antigens for immunocontraceptive purposes: a review

    PubMed Central

    Domagala, Alina; Kurpisz, Maciej

    2004-01-01

    Antisperm antibodies (ASA) may be a reason of infertility in some individuals. They may affect pre- as well as post-fertilization stages of the reproductive process. There is ongoing progress in the identification of sperm antigens related to fertilization. The employed methods for this purpose include recombinant DNA technology and the most advanced proteomic analysis. This paper enlists the different approaches undertaken in order to identify and characterize the immunoreactive sperm antigens. We have mainly focused on those, which have been already studied in regard of their immunocontraceptive potential, although it has been impossible to include all published data concerning the topic in a single article. Few novel sperm auto- and isoantigens, discovered recently, have also been reviewed even if their role in fertilization has not been yet established. PMID:15035665

  13. HLA antigens in cardiomyopathic Chilean chagasics.

    PubMed Central

    Llop, E; Rothhammer, F; Acuña, M; Apt, W

    1988-01-01

    The distribution of HLA antigens in a sample of 124 Chagas serologically positive Chilean individuals was studied. The sample was subdivided according to the presence or absence of chagasic cardiomyopathy, in order to search for genetic differences associated with this pathological condition. The frequency of antigen B40 in the presence of antigen Cw3 was found to be significantly lower in subjects with cardiomyopathy. We tentatively suggest that the presence of these antigens among noncardiomyopathics is associated with a decreased susceptibility to develop chagasic cardiomyopathy in the Chilean population. PMID:3189340

  14. Integrating influenza antigenic dynamics with molecular evolution

    PubMed Central

    Bedford, Trevor; Suchard, Marc A; Lemey, Philippe; Dudas, Gytis; Gregory, Victoria; Hay, Alan J; McCauley, John W; Russell, Colin A; Smith, Derek J; Rambaut, Andrew

    2014-01-01

    Influenza viruses undergo continual antigenic evolution allowing mutant viruses to evade host immunity acquired to previous virus strains. Antigenic phenotype is often assessed through pairwise measurement of cross-reactivity between influenza strains using the hemagglutination inhibition (HI) assay. Here, we extend previous approaches to antigenic cartography, and simultaneously characterize antigenic and genetic evolution by modeling the diffusion of antigenic phenotype over a shared virus phylogeny. Using HI data from influenza lineages A/H3N2, A/H1N1, B/Victoria and B/Yamagata, we determine patterns of antigenic drift across viral lineages, showing that A/H3N2 evolves faster and in a more punctuated fashion than other influenza lineages. We also show that year-to-year antigenic drift appears to drive incidence patterns within each influenza lineage. This work makes possible substantial future advances in investigating the dynamics of influenza and other antigenically-variable pathogens by providing a model that intimately combines molecular and antigenic evolution. DOI: http://dx.doi.org/10.7554/eLife.01914.001 PMID:24497547

  15. Purification and characterization of an 80-kilodalton Trypanosoma cruzi urinary antigen.

    PubMed Central

    Corral, R S; Orn, A; Freilij, H L; Bergman, T; Grinstein, S

    1989-01-01

    A Trypanosoma cruzi antigen eliminated in the urine of experimentally infected dogs was detected by enzyme-linked immunosorbent assay between 9 and 28 days after infection. The parasite urinary antigen (UAg) was purified by affinity chromatography with polyclonal antibodies to T. cruzi. The eluate of the antibody column was subjected to high-performance liquid chromatography and showed a single peak of A280. This antigen was the only parasite component found in the urine of infected dogs during the course of acute T. cruzi infection. Antigen characterization was performed by two-dimensional gel electrophoresis, lectin affinity chromatography, proteolytic digestion, and Western blotting (immunoblotting). The isolated UAg exhibited a relative molecular size of 80 kilodaltons (kDa), an isoelectric point of 6.2 to 6.8, binding to concanavalin A, and sensitivity to trypsin. The parasite antigen was electroeluted from polyacrylamide gels and subjected to acid hydrolysis and amino acid analysis by reverse-phase high-performance liquid chromatography. The 80-kDa glycoprotein was recognized by serum antibodies from a wide variety of T. cruzi-infected hosts. The UAg proved to be a highly antigenic component present in different strains of T. cruzi. This 80-kDa polypeptide resembles one of the parasite antigens previously found in the urine of patients with acute Chagas' disease. Images PMID:2643616

  16. Antigenically Modified Human Pluripotent Stem Cells Generate Antigen-Presenting Dendritic Cells

    PubMed Central

    Zeng, Jieming; Wu, Chunxiao; Wang, Shu

    2015-01-01

    Human pluripotent stem cells (hPSCs) provide a promising platform to produce dendritic cell (DC) vaccine. To streamline the production process, we investigated a unique antigen-loading strategy that suits this novel platform. Specifically, we stably modified hPSCs using tumour antigen genes in the form of a full-length tumour antigen gene or an artificial tumour antigen epitope-coding minigene. Such antigenically modified hPSCs were able to differentiate into tumour antigen-presenting DCs. Without conventional antigen-loading, DCs derived from the minigene-modified hPSCs were ready to prime a tumour antigen-specific T cell response and further expand these specific T cells in restimulation processes. These expanded tumour antigen-specific T cells were potent effectors with central memory or effector memory phenotype. Thus, we demonstrated that immunocompetent tumour antigen-loaded DCs can be directly generated from antigenically modified hPSCs. Using such strategy, we can completely eliminate the conventional antigen-loading step and significantly simplify the production of DC vaccine from hPSCs. PMID:26471005

  17. Evidence for horizontal gene transfer of two antigenically distinct O antigens in Bordetella bronchiseptica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antigenic variation is one mechanism pathogens use to avoid immune-mediated competition between closely related strains. Here, we show that two Bordetella bronchiseptica strains, RB50 and 1289, express two antigenically distinct O-antigen serotypes (O1 and O2 respectively). When 18 additional B. b...

  18. Antigenic and genetic evolution of equine influenza A (H3N8) virus from 1968 to 2007.

    PubMed

    Lewis, N S; Daly, J M; Russell, C A; Horton, D L; Skepner, E; Bryant, N A; Burke, D F; Rash, A S; Wood, J L N; Chambers, T M; Fouchier, R A M; Mumford, J A; Elton, D M; Smith, D J

    2011-12-01

    Equine influenza virus is a major respiratory pathogen in horses, and outbreaks of disease often lead to substantial disruption to and economic losses for equestrian industries. The hemagglutinin (HA) protein is of key importance in the control of equine influenza because HA is the primary target of the protective immune response and the main component of currently licensed influenza vaccines. However, the influenza virus HA protein changes over time, a process called antigenic drift, and vaccine strains must be updated to remain effective. Antigenic drift is assessed primarily by the hemagglutination inhibition (HI) assay. We have generated HI assay data for equine influenza A (H3N8) viruses isolated between 1968 and 2007 and have used antigenic cartography to quantify antigenic differences among the isolates. The antigenic evolution of equine influenza viruses during this period was clustered: from 1968 to 1988, all isolates formed a single antigenic cluster, which then split into two cocirculating clusters in 1989, and then a third cocirculating cluster appeared in 2003. Viruses from all three clusters were isolated in 2007. In one of the three clusters, we show evidence of antigenic drift away from the vaccine strain over time. We determined that a single amino acid substitution was likely responsible for the antigenic differences among clusters. PMID:21937642

  19. Antigenic Relationships of Equine Herpesvirus Strains Demonstrated by the Plaque Reduction and Neutralization Kinetics Test

    PubMed Central

    Kemeny, L. J.

    1971-01-01

    The antigenic relationships among 50 strains of equine herpesvirus (EHV) were studied by neutralization tests using antisera prepared in rabbits against four EHV reference strains: types 2 and 3, cytomegalo-like virus 82-A, and our leukocyte isolant H-40. No distinctive antigenic differences among reference strains were demonstrated in reciprocal neutralization tests but each antiserum neutralized its homologous virus more rapidly than any heterologous strain. Forty-six EHV strains isolated from peripheral blood leukocytes of apparently healthy horses were antigenically indistinguishable from each other and from the four reference strains. Their high degree of antigenic relatedness suggests that these viruses are isolants of a single, widely distributed serotype of which type 2 (LK) strain is a typical representative. PMID:4338672

  20. Somatic antigens of Streptococcus group E. I. Comparison of extraction techniques.

    PubMed

    Payne, J B; Armstrong, C H

    1970-05-01

    Eleven Streptococcus group E strains, representing serotypes I, II, III, IV, V, and "untypable" isolates, were extracted by formamide, trichloroacetic acid, and hydrochloric acid under various conditions in an effort to determine the best method for recovering maximum amounts of group and type antigens. The group antigen was found to be relatively stable, and adequate amounts for identification purposes were recovered by a wide spectrum of conditions. Type-specific antigens were relatively labile, and were destroyed at low pH in acid hydrolysis or by prolonged heating in formamide hydrolysis. The best single procedure for recovering both type and group antigens from Streptococcus group E was formamide hydrolysis for 30 min at 180 C. PMID:5463578

  1. Diagnotic value of some Fasciola gigantica antigens.

    PubMed

    Shalaby, Said; El-Bahy, Mohammad; Hassan, Ali; Shalaby, Hatem; Gupta, Neelima

    2015-09-01

    The present study was aimed to select the specificity of antigens for Fasciola gigantica depending on its diagnostic utility and field applications. The tested antigens were coproantigen, excretory-secretory (ES) antigen and egg antigen. Coproantigen and Copro Hyperimmune serum were able to reflect the lowest level of cross-reaction with other tested F. gigantica antigens. By using SDS-PAGE, a structural homology was observed in F. gigantica ES and egg antigens. Intense cross reaction was observed between ES and egg antigens by ELISA technique even when there was no cross-reaction with coproantigen. The 27.6 kDa band proved to be the most specific in F. gigantica coproantigen and was different from the band at the same molecular weight by ES antigen. The results conclude that coproantigens show specific diagnostic ability for Fasciola and have low numbers of cross-reaction proteins reflecting its high specificity. Moreover, detection of coproantigen in faeces offers a new potential for diagnostics as compared to serum samples. This fact holds promise for a more accurate diagnostic technique in the near future for suspected Fasciola infection. PMID:26345056

  2. Antigenic composition of Litomosoides carini.

    PubMed

    Enayat, M S

    1976-07-01

    Three different phosphate buffered saline extracts of Litomosoides carini were prepared and examined by gel diffusion, immunoelectrophoresis and disc polyacrylamide gel electrophoresis using sera from infected cotton rats and antisera from hyperimmunized rabbits. Using disc polyacrylamide gel electrophoresis, up to 22 protein, 6 lipoprotein and 4 glycoprotein bands were identified. A minimum of 8 precipitin lines were detected by gel diffusion and a maximum of 11 precipitin arcs by immunoelectrophoresis when pooled rabbit antiserum was used. Using infected cotton rat sera, fewer number of precipitin lines and arcs were detected. Two precipitin arcs did not have a counterpart on examination against pooled rabbit antiserum. The importance of these two specific antigenic components for use in immunodiagnosis of human filariasis has been discussed. PMID:823514

  3. Antigen-induced suppression of the in vitro lymphocyte response to different antigens and mitogens

    PubMed Central

    Möller, Göran; Kashiwagi, Noboru

    1972-01-01

    Certain concentrations of antigen stimulated DNA synthesis in sensitized human lymphocytes cultivated in vitro, higher and lower concentrations being less stimulatory. The simultaneous addition of two antigens in low concentrations to the same cells caused an additive response. The decreased response to a high antigen dose did not affect the capacity of the cells to respond to the simultaneous addition of another antigen, as determined at the population level as well as at the cellular level by autoradiography. Presumably specific immunological paralysis was induced by high antigen doses. Addition of low antigen doses for 1–3 days to human sensitized lymphocytes cultivated in vitro resulted in decreased DNA synthesis as a response to the same antigen added in an optimal dose. Suppression of DNA synthesis was not caused by induction of tolerance or antibody suppression, because the cells also failed to respond to an unrelated antigen and to non-specific mitogens, such as PHA and ALS. Most likely the suppressed response after antigen pretreatment represents a phenomenon analogous to antigenic competition, although this term is not appropriate, since there need not be competition between antigens for a detectable effect. No soluble mediators of suppression could be demonstrated in the supernatant of suppressed cultures. PMID:5026855

  4. Calcium-dependent antigen binding as a novel modality for antibody recycling by endosomal antigen dissociation

    PubMed Central

    Hironiwa, N; Ishii, S; Kadono, S; Iwayanagi, Y; Mimoto, F; Habu, K; Igawa, T; Hattori, K

    2016-01-01

    The pH-dependent antigen binding antibody, termed a recycling antibody, has recently been reported as an attractive type of second-generation engineered therapeutic antibody. A recycling antibody can dissociate antigen in the acidic endosome, and thus bind to its antigen multiple times. As a consequence, a recycling antibody can neutralize large amounts of antigen in plasma. Because this approach relies on histidine residues to achieve pH-dependent antigen binding, which could limit the epitopes that can be targeted and affect the rate of antigen dissociation in the endosome, we explored an alternative approach for generating recycling antibodies. Since calcium ion concentration is known to be lower in endosome than in plasma, we hypothesized that an antibody with antigen-binding properties that are calcium-dependent could be used as recycling antibody. Here, we report a novel anti-interleukin-6 receptor (IL-6R) antibody, identified from a phage library that binds to IL-6R only in the presence of a calcium ion. Thermal dynamics and a crystal structure study revealed that the calcium ion binds to the heavy chain CDR3 region (HCDR3), which changes and possibly stabilizes the structure of HCDR3 to make it bind to antigen calcium dependently (PDB 5AZE). In vitro and in vivo studies confirmed that this calcium-dependent antigen-binding antibody can dissociate its antigen in the endosome and accelerate antigen clearance from plasma, making it a novel approach for generating recycling antibody. PMID:26496237

  5. Tiny T antigen: an autonomous polyomavirus T antigen amino-terminal domain.

    PubMed Central

    Riley, M I; Yoo, W; Mda, N Y; Folk, W R

    1997-01-01

    Three mRNAs from the murine polyomavirus early region encode the three well-characterized tumor antigens. We report the existence of a fourth alternatively spliced mRNA which encodes a fourth tumor antigen, tiny T antigen, which comprises the amino-terminal domain common to all of the T antigens but is extended by six unique amino acid residues. The amount of tiny T antigen in infected cells is small because of its short half-life. Tiny T antigen stimulates the ATPase activity of Hsc70, most likely because of its DnaJ-like motif. The common amino-terminal domain may interface with chaperone complexes to assist the T antigens in carrying out their diverse functions of replication, transcription, and transformation in the appropriate cellular compartments. PMID:9223500

  6. Co-Localization of Multiple Antigens and Specific DNA

    PubMed Central

    Mueller, Marcus; Wacker, Karin; Hickey, William F.; Ringelstein, Erich B.; Kiefer, Reinhard

    2000-01-01

    Co-localization of proteins and nucleic acid sequences by in situ hybridization and immunohistochemistry is frequently difficult as the process necessary to detect the target structure of one technique may negatively affect the target of the other. Morphological impairment may also limit the application of the two techniques on sensitive tissue. To overcome these problems we developed a method to perform in situ hybridization and immunohistochemistry on semithin sections of methyl methacrylate-embedded tissue. Microwave-stimulated antigen retrieval, signal amplification by catalyzed reporter deposition, and fluorescent dyes were used for both techniques, yielding high sensitivity and excellent morphological preservation compared to conventional paraffin sections. Co-localization of in situ hybridization and immunohistochemistry signals with high morphological resolution was achieved on single sections as well as on adjacent multiple serial sections, using computerized image processing. The latter allowed for the co-localization of multiple antigens and a specific DNA sequence at the same tissue level. The method was successfully applied to radiation bone marrow chimeric rats created by transplanting wild-type Lewis rat bone marrow into TK-tsa transgenic Lewis rats, in an attempt to trace and characterize TK-tsa transgenic cells. It also proved useful in the co-localization of multiple antigens in peripheral nerve biopsies. PMID:11106556

  7. Antigenic variation: Molecular and genetic mechanisms of relapsing disease

    SciTech Connect

    Cruse, J.M.; Lewis, R.E.

    1987-01-01

    This book contains 10 chapters. They are: Contemporary Concepts of Antigenic Variation; Antigenic Variation in the Influenza Viruses; Mechanisms of Escape of Visna Lentiviruses from Immunological Control; A Review of Antigenic Variation by the Equine Infectious Anemia Virus; Biologic and Molecular Variations in AIDS Retrovirus Isolates; Rabies Virus Infection: Genetic Mutations and the Impact on Viral Pathogenicity and Immunity; Immunobiology of Relapsing Fever; Antigenic Variation in African Trypanosomes; Antigenic Variation and Antigenic Diversity in Malaria; and Mechanisms of Immune Evasion in Schistosomiasis.

  8. Non-antigenic and antigenic interventions in type 1 diabetes

    PubMed Central

    Rydén, Anna KE; Wesley, Johnna D; Coppieters, Ken T; Von Herrath, Matthias G

    2014-01-01

    Type 1 diabetes (T1D) results from autoimmune destruction of the pancreatic β-cells. Current T1D therapies are exclusively focused on regulating glycemia rather than the underlying immune response. A handful of trials have sought to alter the clinical course of T1D using various broad immune-suppressors, e.g., cyclosporine A and azathioprine.1–3 The effect on β-cell preservation was significant, however, these therapies were associated with unacceptable side-effects. In contrast, more recent immunomodulators, such as anti-CD3 and antigenic therapies such as DiaPep277, provide a more targeted immunomodulation and have been generally well-tolerated and safe; however, as a monotherapy there appear to be limitations in terms of therapeutic benefit. Therefore, we argue that this new generation of immune-modifying agents will likely work best as part of a combination therapy. This review will summarize current immune-modulating therapies under investigation and discuss how to move the field of immunotherapy in T1D forward. PMID:24165565

  9. Further characterization of filarial antigens by SDS polyacrylamide gel electrophoresis

    PubMed Central

    Dissanayake, S.; Galahitiyawa, S. C.; Ismail, M. M.

    1983-01-01

    SDS (sodium dodecyl sulfate)-polyacrylamide gel electrophoresis of an antigen isolated from sera of Wuchereria bancrofti-infected patients and Setaria digitata antigen SD2-4 is reported. Both antigens showed carbohydrate (glycoprotein) staining. The W. bancrofti antigen had an apparent relative molecular mass of 35 000 while the S. digitata antigen SD2-4 migrated at the marker dye position on SDS-polyacrylamide gel electrophoresis. SDS treatment of these antigens did not abolish the precipitation reaction with antibody. In the case of W. bancrofti antigen, SDS treatment probably exposed hitherto hidden antigen epitopes. PMID:6354508

  10. Cyclosporine inhibits macrophage-mediated antigen presentation

    SciTech Connect

    Ziegler, H.K.; Palay, D.; Wentworth, P.; Cluff, C.

    1986-03-01

    The influence of cyclosporine on antigen-specific, macrophage-dependent T cell activation was analyzed in vitro. Murine T cell activation by antigens derived from Listeria monocytogenes was monitored by the production of interleukin-2. Pretreatment (2 hrs., 37/sup 0/C) of macrophages with cyclosporine resulted in a population of macrophages with a markedly diminished capacity to support the activation of T lymphocytes. When cyclosporine-pretreated macrophages were added to cultures of antigen and untreated T cells, the dose of cyclosporine which produced 50% inhibition was 1.5 ..mu..g/ml. Appropriate control experiments indicated that cyclosporine was indeed inhibiting at the macrophage level. The addition of interleukin-1 or indomethacin to the cultures did not alter the inhibitory effect of cyclosporine. Under conditions which produced >90% inhibition of antigen presentation, macrophage surface Ia expression was not altered, and the uptake and catabolism of radiolabelled antigen was normal. Thus, cyclosporine inhibits antigen presentation by a mechanism which appears unrelated to changes in Il-1 elaboration, prostaglandin production, Ia expression, or antigen uptake and catabolism.

  11. Meningococcal vaccine antigen diversity in global databases

    PubMed Central

    Brehony, C; Hill, DM; Lucidarme, J; Borrow, R; Maiden, MC

    2016-01-01

    The lack of an anti-capsular vaccine against serogroup B meningococcal disease has necessitated the exploration of alternative vaccine candidates, mostly proteins exhibiting varying degrees of antigenic variation. Analysis of variants of antigen-encoding genes is facilitated by publicly accessible online sequence repositories, such as the Neisseria PubMLST database and the associated Meningitis Research Foundation Meningococcus Genome Library (MRF-MGL). We investigated six proposed meningococcal vaccine formulations by deducing the prevalence of their components in the isolates represented in these repositories. Despite high diversity, a limited number of antigenic variants of each of the vaccine antigens were prevalent, with strong associations of particular variant combinations with given serogroups and genotypes. In the MRF-MGL and globally, the highest levels of identical sequences were observed with multicomponent/multivariant vaccines. Our analyses further demonstrated that certain combinations of antigen variants were prevalent over periods of decades in widely differing locations, indicating that vaccine formulations containing a judicious choice of antigen variants have potential for long-term protection across geographic regions. The data further indicated that formulations with multiple variants would be especially relevant at times of low disease incidence, as relative diversity was higher. Continued surveillance is required to monitor the changing prevalence of these vaccine antigens. PMID:26676305

  12. Acanthocheilonema viteae: Vaccination of jirds with irradiation-attenuated stage-3 larvae and with exported larval antigens

    SciTech Connect

    Lucius, R.; Textor, G.; Kern, A.; Kirsten, C. )

    1991-08-01

    Jirds (Meriones unguiculatus) were immunized with irradiated (35 krad) stage-3 larvae (L3) of Acanthocheilonema viteae. The induced resistance against homologous challenge infection and the antibody response of the animals were studied. Immunization with 3, 2, or 1 dose of 50 irradiated L3 induced approximately 90% resistance. Immunization with a single dose of only 5 irradiated L3 resulted in 60.8% protection while immunization with a single dose of 25 L3 induced 94.1% protection. The protection induced with 3 doses of 50 irradiated L3 did not decrease significantly during a period of 6 months. Sera of a proportion, but not all resistant jirds, contained antibodies against the surface of vector derived L3 as defined by IFAT. No surface antigens of microfilariae or adult worms were recognized by the sera. Vaccinated animals had antibody responses against antigens in the inner organs of L3 and in the cuticle and reproductive organs of adult worms as shown by IFAT. Immunoblotting with SDS-PAGE-separated L3 antigens and L3-CSN revealed that all sera contained antibodies against two exported antigens of 205 and 68 kDa, and against a nonexported antigen of 18 kDa. The 205-kDa antigen easily degraded into fragments of 165, 140, 125, and 105 kDa which were recognized by resistant jird sera. Various antigens of adult worms, but relatively few antigens of microfilariae, were also recognized. To test the relevance of exported antigens of L3 to resistance, jirds were immunized with L3-CSN together with a mild adjuvant. This immunization induced 67.7% resistance against challenge infection and sera of the immunized animals recognized the 205- and 68-kDa antigens of L3.

  13. Antigen clasping by two antigen-binding sites of an exceptionally specific antibody for histone methylation

    PubMed Central

    Hattori, Takamitsu; Lai, Darson; Dementieva, Irina S.; Montaño, Sherwin P.; Kurosawa, Kohei; Zheng, Yupeng; Akin, Louesa R.; Świst-Rosowska, Kalina M.; Grzybowski, Adrian T.; Koide, Akiko; Krajewski, Krzysztof; Strahl, Brian D.; Kelleher, Neil L.; Ruthenburg, Alexander J.; Koide, Shohei

    2016-01-01

    Antibodies have a well-established modular architecture wherein the antigen-binding site residing in the antigen-binding fragment (Fab or Fv) is an autonomous and complete unit for antigen recognition. Here, we describe antibodies departing from this paradigm. We developed recombinant antibodies to trimethylated lysine residues on histone H3, important epigenetic marks and challenging targets for molecular recognition. Quantitative characterization demonstrated their exquisite specificity and high affinity, and they performed well in common epigenetics applications. Surprisingly, crystal structures and biophysical analyses revealed that two antigen-binding sites of these antibodies form a head-to-head dimer and cooperatively recognize the antigen in the dimer interface. This “antigen clasping” produced an expansive interface where trimethylated Lys bound to an unusually extensive aromatic cage in one Fab and the histone N terminus to a pocket in the other, thereby rationalizing the high specificity. A long-neck antibody format with a long linker between the antigen-binding module and the Fc region facilitated antigen clasping and achieved both high specificity and high potency. Antigen clasping substantially expands the paradigm of antibody–antigen recognition and suggests a strategy for developing extremely specific antibodies. PMID:26862167

  14. Effect of heparin on antigen-induced airway responses and pulmonary leukocyte accumulation in neonatally immunized rabbits

    PubMed Central

    Preuss, Janet M H; Page, Clive P

    2000-01-01

    The effect of single administrations of aerosolized heparin, low molecular weight heparin (LMWH) and the linear polyanionic molecule, polyglutamic acid (PGA) were examined on antigen-induced airway hyperresponsiveness and leukocyte accumulation in neonatally immunized rabbits.Adult litter-matched NZW rabbits immunized within 24 h of birth with Alternaria tenuis antigen were treated with heparin, LMWH or PGA prior to or following antigen challenge (Alternaria tenuis). For each drug-treated group, a parallel group of rabbits were treated with the appropriate vehicle. In all groups, airway responsiveness to inhaled histamine and bronchoalveolar lavage (BAL) was performed 24 h prior to and following antigen challenge.Basal lung function in terms of resistance (RL) and dynamic compliance (Cdyn) and acute bronchoconstriction was unaltered by pre-treatment with heparin, LMWH or PGA compared to their respective vehicles 24 h prior to or following antigen challenge.In vehicle-treated animals, airway hyperresponsiveness to inhaled histamine was indicated by an increase in the maximal responses of the cumulative concentration-effect curves to histamine and reductions in RLPC50 and CdynPC35 values 24 h following antigen challenge.Heparin and LMWH given prior to antigen challenge significantly inhibited the development of airway hyperresponsiveness, whereas PGA did not. When given following antigen challenge, all three drugs failed to inhibit the development of airway hyperresponsiveness.Eosinophil and neutrophil cell numbers in BAL fluid increased significantly 24 h following antigen challenge. Heparin, LMWH and PGA failed to inhibit the increase in cell numbers following antigen challenge whether given prior to or following antigen challenge. PMID:10780962

  15. Human immune response to Mycobacterium tuberculosis antigens.

    PubMed Central

    Havlir, D V; Wallis, R S; Boom, W H; Daniel, T M; Chervenak, K; Ellner, J J

    1991-01-01

    Little is known about the immunodominant or protective antigens of Mycobacterium tuberculosis in humans. Cell-mediated immunity is necessary for protection, and healthy tuberculin-positive individuals are relatively resistant to exogenous reinfection. We compared the targets of the cell-mediated immune response in healthy tuberculin-positive individuals to those of tuberculosis patients and tuberculin-negative persons. By using T-cell Western blotting (immunoblotting) of nitrocellulose-bound M. tuberculosis culture filtrate, peaks of T-cell blastogenic activity were identified in the healthy tuberculin reactors at 30, 37, 44, 57, 64, 71 and 88 kDa. Three of these fractions (30, 64, and 71 kDa) coincided with previously characterized proteins: antigen 6/alpha antigen, HSP60, and HSP70, respectively. The blastogenic responses to purified M. tuberculosis antigen 6/alpha antigen and BCG HSP60 were assessed. When cultured with purified antigen 6/alpha antigen, lymphocytes of healthy tuberculin reactors demonstrated greater [3H]thymidine incorporation than either healthy tuberculin-negative controls or tuberculous patients (8,113 +/- 1,939 delta cpm versus 645 +/- 425 delta cpm and 1,019 +/- 710 delta cpm, respectively; P less than 0.01). Healthy reactors also responded to HSP60, although to a lesser degree than antigen 6/alpha antigen (4,276 +/- 1,095 delta cpm; P less than 0.05). Partially purified HSP70 bound to nitrocellulose paper elicited a significant lymphocyte blastogenic response in two of six of the tuberculous patients but in none of the eight healthy tuberculin reactors. Lymphocytes of none of five tuberculin-negative controls responded to recombinant antigens at 14 or 19 kDa or to HSP70. Antibody reactivity generally was inversely correlated with blastogenic response: tuberculous sera had high titer antibody to M. tuberculosis culture filtrate in a range from 35 to 180 kDa. This is the first systematic evaluation of the human response to a panel of native

  16. Development of an algorithm for production of inactivated arbovirus antigens in cell culture

    PubMed Central

    Goodman, C.H.; Russell, B.J.; Velez, J.O.; Laven, J.J.; Nicholson, W.L; Bagarozzi, D.A.; Moon, J.L.; Bedi, K.; Johnson, B.W.

    2015-01-01

    Arboviruses are medically important pathogens that cause human disease ranging from a mild fever to encephalitis. Laboratory diagnosis is essential to differentiate arbovirus infections from other pathogens with similar clinical manifestations. The Arboviral Diseases Branch (ADB) reference laboratory at the CDC Division of Vector-Borne Diseases (DVBD) produces reference antigens used in serological assays such as the virus-specific immunoglobulin M antibody-capture enzyme-linked immunosorbent assay (MAC-ELISA). Antigen production in cell culture has largely replaced the use of suckling mice; however, the methods are not directly transferable. The development of a cell culture antigen production algorithm for nine arboviruses from the three main arbovirus families, Flaviviridae, Togaviridae, and Bunyaviridae, is described here. Virus cell culture growth and harvest conditions were optimized, inactivation methods were evaluated, and concentration procedures were compared for each virus. Antigen performance was evaluated by the MAC-ELISA at each step of the procedure. The antigen production algorithm is a framework for standardization of methodology and quality control; however, a single antigen production protocol was not applicable to all arboviruses and needed to be optimized for each virus. PMID:25102428

  17. Development of an algorithm for production of inactivated arbovirus antigens in cell culture.

    PubMed

    Goodman, C H; Russell, B J; Velez, J O; Laven, J J; Nicholson, W L; Bagarozzi, D A; Moon, J L; Bedi, K; Johnson, B W

    2014-11-01

    Arboviruses are medically important pathogens that cause human disease ranging from a mild fever to encephalitis. Laboratory diagnosis is essential to differentiate arbovirus infections from other pathogens with similar clinical manifestations. The Arboviral Diseases Branch (ADB) reference laboratory at the CDC Division of Vector-Borne Diseases (DVBD) produces reference antigens used in serological assays such as the virus-specific immunoglobulin M antibody-capture enzyme-linked immunosorbent assay (MAC-ELISA). Antigen production in cell culture has largely replaced the use of suckling mice; however, the methods are not directly transferable. The development of a cell culture antigen production algorithm for nine arboviruses from the three main arbovirus families, Flaviviridae, Togaviridae, and Bunyaviridae, is described here. Virus cell culture growth and harvest conditions were optimized, inactivation methods were evaluated, and concentration procedures were compared for each virus. Antigen performance was evaluated by the MAC-ELISA at each step of the procedure. The antigen production algorithm is a framework for standardization of methodology and quality control; however, a single antigen production protocol was not applicable to all arboviruses and needed to be optimized for each virus. PMID:25102428

  18. Anti-HCV immunoassays based on a multiepitope antigen and fluorescent lanthanide chelate reporters.

    PubMed

    Salminen, Teppo; Juntunen, Etvi; Khanna, Navin; Pettersson, Kim; Talha, Sheikh M

    2016-02-01

    There is a need for simple to produce immunoassays for hepatitis C virus (HCV) antibody capable of detecting all genotypes worldwide. Current commonly used third generation immunoassays use three to six separate recombinant proteins or synthetic peptides. We have developed and expressed in Escherichia coli a single recombinant antigen incorporating epitopes from different HCV proteins. This multiepitope protein (MEP) was used to develop two types of HCV antibody immunoassays: a traditional antibody immunoassay using a labeled secondary antibody (indirect assay) and a double-antigen assay with the same MEP used as capture binder and labeled binder. The secondary antibody assay was evaluated with 171 serum/plasma samples and double-antigen assay with 148 samples. These samples included an in-house patient sample panel, two panels of samples with different HCV genotypes and a seroconversion panel. The secondary antibody immunoassay showed 95.6% sensitivity and 100% specificity while the double-antigen assay showed 91.4% sensitivity and 100% specificity. Both assays detected samples from all six HCV genotypes. The results showed that combining a low-cost recombinant MEP binder antigen with a high sensitivity fluorescent lanthanide reporter can provide a sensitive and specific immunoassay for HCV serology. The results also showed that the sensitivity of HCV double-antigen assays may suffer from the low avidity immune response of acute infections. PMID:26615808

  19. Development of an immunochromatography strip test based on truncated nucleocapsid antigens of three representative hantaviruses

    PubMed Central

    2014-01-01

    Background Hantaviruses are causative agents of hemorrhagic fever with renal syndrome (HFRS) and nephropathia epidemica (NE) in the Old World and hantavirus pulmonary syndrome (HPS) in the New World. There is a need for time-saving diagnostic methods. In the present study, recombinant N antigens were used as antigens in an immunochromatography strip (ICG) test to detect specific IgG antibodies. Methods The N-terminal 103 amino acids (aa) of Hantaan virus (HTNV), Puumala virus (PUUV) and Andes virus (ANDV) nucleocapsid (N) protein were expressed in E. coli as representative antigens of three groups (HFRS, NE and HPS-causing viruses) of hantavirus. Five different types of ICG test strips, one antigen line on one strip for each of the three selected hantaviruses (HTNV, PUUV and ANDV), three antigen lines on one strip and a mixed antigen line on one strip, were developed and sensitivities were compared. Results A total of 87 convalescent-phase patient sera, including sera from 35 HFRS patients, 36 NE patients and 16 HPS patients, and 25 sera from healthy seronegative people as negative controls were used to evaluate the ICG test. Sensitivities of the three-line strip and mixed-line strip were similar to those of the single antigen strip (97.2 to 100%). On the other hand, all of the ICG test strips showed high specificities to healthy donors. Conclusion These results indicated that the ICG test with the three representative antigens is an effective serodiagnostic tool for screening and typing of hantavirus infection in humans. PMID:24885901

  20. Sterile Protective Immunity to Malaria is Associated with a Panel of Novel P. falciparum Antigens*

    PubMed Central

    Trieu, Angela; Kayala, Matthew A.; Burk, Chad; Molina, Douglas M.; Freilich, Daniel A.; Richie, Thomas L.; Baldi, Pierre; Felgner, Philip L.; Doolan, Denise L.

    2011-01-01

    The development of an effective malaria vaccine remains a global public health priority. Less than 0.5% of the Plasmodium falciparum genome has been assessed as potential vaccine targets and candidate vaccines have been based almost exclusively on single antigens. It is possible that the failure to develop a malaria vaccine despite decades of effort might be attributed to this historic focus. To advance malaria vaccine development, we have fabricated protein microarrays representing 23% of the entire P. falciparum proteome and have probed these arrays with plasma from subjects with sterile protection or no protection after experimental immunization with radiation attenuated P. falciparum sporozoites. A panel of 19 pre-erythrocytic stage antigens was identified as strongly associated with sporozoite-induced protective immunity; 16 of these antigens were novel and 85% have been independently identified in sporozoite and/or liver stage proteomic or transcriptomic data sets. Reactivity to any individual antigen did not correlate with protection but there was a highly significant difference in the cumulative signal intensity between protected and not protected individuals. Functional annotation indicates that most of these signature proteins are involved in cell cycle/DNA processing and protein synthesis. In addition, 21 novel blood-stage specific antigens were identified. Our data provide the first evidence that sterile protective immunity against malaria is directed against a panel of novel P. falciparum antigens rather than one antigen in isolation. These results have important implications for vaccine development, suggesting that an efficacious malaria vaccine should be multivalent and targeted at a select panel of key antigens, many of which have not been previously characterized. PMID:21628511

  1. Tandem CAR T cells targeting HER2 and IL13Rα2 mitigate tumor antigen escape.

    PubMed

    Hegde, Meenakshi; Mukherjee, Malini; Grada, Zakaria; Pignata, Antonella; Landi, Daniel; Navai, Shoba A; Wakefield, Amanda; Fousek, Kristen; Bielamowicz, Kevin; Chow, Kevin K H; Brawley, Vita S; Byrd, Tiara T; Krebs, Simone; Gottschalk, Stephen; Wels, Winfried S; Baker, Matthew L; Dotti, Gianpietro; Mamonkin, Maksim; Brenner, Malcolm K; Orange, Jordan S; Ahmed, Nabil

    2016-08-01

    In preclinical models of glioblastoma, antigen escape variants can lead to tumor recurrence after treatment with CAR T cells that are redirected to single tumor antigens. Given the heterogeneous expression of antigens on glioblastomas, we hypothesized that a bispecific CAR molecule would mitigate antigen escape and improve the antitumor activity of T cells. Here, we created a CAR that joins a HER2-binding scFv and an IL13Rα2-binding IL-13 mutein to make a tandem CAR exodomain (TanCAR) and a CD28.ζ endodomain. We determined that patient TanCAR T cells showed distinct binding to HER2 or IL13Rα2 and had the capability to lyse autologous glioblastoma. TanCAR T cells exhibited activation dynamics that were comparable to those of single CAR T cells upon encounter of HER2 or IL13Rα2. We observed that TanCARs engaged HER2 and IL13Rα2 simultaneously by inducing HER2-IL13Rα2 heterodimers, which promoted superadditive T cell activation when both antigens were encountered concurrently. TanCAR T cell activity was more sustained but not more exhaustible than that of T cells that coexpressed a HER2 CAR and an IL13Rα2 CAR, T cells with a unispecific CAR, or a pooled product. In a murine glioblastoma model, TanCAR T cells mitigated antigen escape, displayed enhanced antitumor efficacy, and improved animal survival. Thus, TanCAR T cells show therapeutic potential to improve glioblastoma control by coengaging HER2 and IL13Rα2 in an augmented, bivalent immune synapse that enhances T cell functionality and reduces antigen escape. PMID:27427982

  2. Identification of novel tumor antigens with patient-derived immune-selected antibodies

    PubMed Central

    Rodriguez-Pinto, Daniel; Sparkowski, Jason; Keough, Martin P.; Phoenix, Kathryn N.; Vumbaca, Frank; Han, David K.; Gundelfinger, Eckart D.; Beesley, Philip

    2010-01-01

    The identification of tumor antigens capable of eliciting an immune response in vivo may be an effective method to identify therapeutic cancer targets. We have developed a method to identify such antigens using frozen tumor-draining lymph node samples from breast cancer patients. Immune responses in tumor-draining lymph nodes were identified by immunostaining lymph node sections for B-cell markers (CD20&CD23) and Ki67 which revealed cell proliferation in germinal center zones. Antigen-dependent somatic hypermutation (SH) and clonal expansion (CE) were present in heavy chain variable (VH) domain cDNA clones obtained from these germinal centers, but not from Ki67 negative germinal centers. Recombinant VH single-domain antibodies were used to screen tumor proteins and affinity select potential tumor antigens. Neuroplastin (NPTN) was identified as a candidate breast tumor antigen using proteomic identification of affinity selected tumor proteins with a recombinant VH single chain antibody. NPTN was found to be highly expressed in approximately 20% of invasive breast carcinomas and 50% of breast carcinomas with distal metastasis using a breast cancer tissue array. Additionally, NPTN over-expression in a breast cancer cell line resulted in a significant increase in tumor growth and angiogenesis in vivo which was related to increased VEGF production in the transfected cells. These results validate NPTN as a tumor-associated antigen which could promote breast tumor growth and metastasis if aberrantly expressed. These studies also demonstrate that humoral immune responses in tumor-draining lymph nodes can provide antibody reagents useful in identifying tumor antigens with applications for biomarker screening, diagnostics and therapeutic interventions. PMID:18568347

  3. Overexpressed oncogenic tumor-self antigens

    PubMed Central

    Bright, Robert K; Bright, Jennifer D; Byrne, Jennifer A

    2014-01-01

    Overexpressed tumor-self antigens represent the largest group of candidate vaccine targets. Those exhibiting a role in oncogenesis may be some of the least studied but perhaps most promising. This review considers this subset of self antigens by highlighting vaccine efforts for some of the better known members and focusing on TPD52, a new promising vaccine target. We shed light on the importance of both preclinical and clinical vaccine studies demonstrating that tolerance and autoimmunity (presumed to preclude this class of antigens from vaccine development) can be overcome and do not present the obstacle that might have been expected. The potential of this class of antigens for broad application is considered, possibly in the context of low tumor burden or adjuvant therapy, as is the need to understand mechanisms of tolerance that are relatively understudied. PMID:25483660

  4. Performance of calibration standards for antigen quantitation with flow cytometry.

    PubMed

    Lenkei, R; Gratama, J W; Rothe, G; Schmitz, G; D'hautcourt, J L; Arekrans, A; Mandy, F; Marti, G

    1998-10-01

    In the frame of the activities initiated by the Task Force for Antigen Quantitation of the European Working Group on Clinical Cell Analysis (EWGCCA), an experiment was conducted to evaluate microbead standards used for quantitative flow cytometry (QFCM). An unified window of analysis (UWA) was established on three different instruments (EPICS XL [Coulter Corporation, Miami, FL], FACScan and FACS Calibur [Becton Dickinson, San Jose, CA]) with QC3 microbeads (FCSC, PR). By using this defined fluorescence intensity scale, the performance of several monoclonal antibodies directed to CD3, CD4, and CD8 (conjugated and unconjugated), from three manufacturers (BDIS, Coulter [Immunotech], and DAKO) was tested. In addition, the QIFI system (DAKO) and QuantiBRITE (BDIS), and a method of relative fluorescence intensity (RFI, method of Giorgi), were compared. mAbs reacting with three more antigens, CD16, CD19, and CD38 were tested on the FACScan instrument. Quantitation was carried out using a single batch of cryopreserved peripheral blood leukocytes, and all tests were performed as single color analyses. Significant correlations were observed between the antibody-binding capacity (ABC) values of the same CD antigen measured with various calibrators and with antibodies differing in respect to vendor, labeling and possible epitope recognition. Despite the significant correlations, the ABC values of most monoclonal antibodies differed by 20-40% when determined by the different fluorochrome conjugates and different calibrators. The results of this study indicate that, at the present stage of QFCM consistent ABC values may be attained between laboratories provided that a specific calibration system is used including specific calibrators, reagents, and protocols. PMID:9773879

  5. Mapping Epitopes on a Protein Antigen by the Proteolysis of Antigen-Antibody Complexes

    NASA Astrophysics Data System (ADS)

    Jemmerson, Ronald; Paterson, Yvonne

    1986-05-01

    A monoclonal antibody bound to a protein antigen decreases the rate of proteolytic cleavage of the antigen, having the greatest effect on those regions involved in antibody contact. Thus, an epitope can be identified by the ability of the antibody to protect one region of the antigen more than others from proteolysis. By means of this approach, two distinct epitopes, both conformationally well-ordered, were characterized on horse cytochrome c.

  6. Tales of Antigen Evasion from CAR Therapy.

    PubMed

    Sadelain, Michel

    2016-06-01

    Both T cells bearing chimeric antigen receptors and tumor-specific antibodies can successfully target some malignancies, but antigen escape can lead to relapse. Two articles in this issue of Cancer Immunology Research explore what effective countermeasures may prevent it. Cancer Immunol Res; 4(6); 473-473. ©2016 AACRSee articles by Zah et al., p. 498, and Rufener et al., p. 509. PMID:27252092

  7. Vertebrate Cells Express Protozoan Antigen after Hybridization

    NASA Astrophysics Data System (ADS)

    Crane, Mark St. J.; Dvorak, James A.

    1980-04-01

    Epimastigotes, the invertebrate host stage of Trypanosoma cruzi, the protozoan parasite causing Chagas' disease in man, were fused with vertebrate cells by using polyethylene glycol. Hybrid cells were selected on the basis of T. cruzi DNA complementation of biochemical deficiencies in the vertebrate cells. Some clones of the hybrid cells expressed T. cruzi-specific antigen. It might be possible to use selected antigens obtained from the hybrids as vaccines for immunodiagnosis or for elucidation of the pathogenesis of Chagas' disease.

  8. The effects of multiple dosing with zileuton on antigen-induced responses in sheep.

    PubMed

    Scuri, M; Allegra, L; Abraham, W M

    1998-01-01

    In a previous study, a single dose of zileuton (10 mg/kg, po) given 2 h before antigen challenge, had a minimal effect on the antigen-induced early airway response (EAR), although it was effective in blocking the late airway response (LAR). Because our previous data indicated that 5-lipoxygenase (5-LO) products contribute to the severity of the antigen-induced EAR in these animals, we hypothesized that the lack of effect of zileuton on the EAR may have had to do with inadequate tissue levels. Therefore, in this study, we determined if multiple dosing with zileuton, which theoretically could improve tissue levels, would provide protection against the antigen-induced EAR as well as the LAR. Each sheep was used in each of the three trials (> or = 15 days apart), the order of which was randomized. For trial 1, the sheep were treated with zileuton (10 mg/kg in 0.1% methylcellulose, p.o.) once a day for 4 days; for trials 2, the sheep were treated with zileuton (10 mg/kg, p.o.) for 2 days; and, for trial 3, the animals were treated with vehicle (0.1% methylcellulose) for 4 days as in trial 1. In all trials, antigen challenge followed 1 h after the last treatment. In the placebo trial, antigen challenge resulted in characteristic EAR (407 +/- 102%, increase over baseline) and LAR (335 +/- 75%, increase over baseline). The antigen-induced effects were completely blocked by the 4-day treatment (EAR = 24 +/- 3%; LAR = 17 +/- 3%, P < 0.05 vs. placebo). In the 2-day trial, the immediate increase in R1, after antigen challenge was only partially blocked (EAR = 163 +/- 16%, P < 0.10 vs. placebo and P < 0.05 vs. 4-day trial), but the late response was completely blocked (24 +/- 3%). The protection against the EAR obtained with the 4-day treatment was significantly better (P < 0.05) than that obtained with the 2-day treatment. The results of this study show that multiple dosing with the 5-LO inhibitor, zileuton, provides protection against the antigen-induced EAR as well as LAR

  9. Safety of targeting tumor endothelial cell antigens.

    PubMed

    Wagner, Samuel C; Riordan, Neil H; Ichim, Thomas E; Szymanski, Julia; Ma, Hong; Perez, Jesus A; Lopez, Javier; Plata-Munoz, Juan J; Silva, Francisco; Patel, Amit N; Kesari, Santosh

    2016-01-01

    The mechanisms underlying discrimination between "self" and "non-self", a central immunological principle, require careful consideration in immune oncology therapeutics where eliciting anti-cancer immunity must be weighed against the risk of autoimmunity due to the self origin of tumors. Whole cell vaccines are one promising immunotherapeutic avenue whereby a myriad of tumor antigens are introduced in an immunogenic context with the aim of eliciting tumor rejection. Despite the possibility collateral damage to healthy tissues, cancer immunotherapy can be designed such that off target autoimmunity remains limited in scope and severity or completely non-existent. Here we provide an immunological basis for reconciling the safety of cancer vaccines, focusing on tumor endothelial cell vaccines, by discussing the following topics: (a) Antigenic differences between neoplastic and healthy tissues that can be leveraged in cancer vaccine design; (b) The layers of tolerance that control T cell responses directed against antigens expressed in healthy tissues and tumors; and, (c) The hierarchy of antigenic epitope selection and display in response to whole cell vaccines, and how antigen processing and presentation can afford a degree of selectivity against tumors. We conclude with an example of early clinical data utilizing ValloVax™, an immunogenic placental endothelial cell vaccine that is being advanced to target the tumor endothelium of diverse cancers, and we report on the safety and efficacy of ValloVax™ for inducing immunity against tumor endothelial antigens. PMID:27071457

  10. The 65-kilodalton antigen of Mycobacterium tuberculosis.

    PubMed Central

    Shinnick, T M

    1987-01-01

    The immune response of the host to the antigens of Mycobacterium tuberculosis plays the key role in determining immunity from infection with as well as the pathogenicity of this organism. A 65-kilodalton (kDa) protein has been identified as one of the medically important antigens of M. tuberculosis. The gene encoding this antigen was isolated from a lambda gt11-M. tuberculosis recombinant DNA library using monoclonal antibodies directed against the 65-kDa antigen as the specific probes. The nucleotide sequence of this gene was determined, and a 540-amino-acid sequence was deduced. This sequence was shown to correspond to that of the 65-kDa antigen by constructing a plasmid in which this open reading frame was fused to the lacZ gene. The resulting fusion protein reacted specifically with the anti-65-kDa protein antibodies. A second long open reading frame was found downstream of the 65-kDa antigen gene which could encode a protein of 517 amino acids. This putative protein contained 29 tandemly arranged partial or complete matches to a pentapeptide sequence. Images PMID:3029018

  11. Novel methods for expression of foreign antigens in live vector vaccines

    PubMed Central

    Wang, Jin Yuan; Harley, Regina H.; Galen, James E.

    2013-01-01

    Bacterial live vector vaccines represent a vaccine development strategy that offers exceptional flexibility. In this approach, genes encoding protective antigens of unrelated bacterial, viral or parasitic pathogens are expressed in an attenuated bacterial vaccine strain that delivers these foreign antigens to the immune system, thereby eliciting relevant immune responses. Rather than expressing these antigens using low copy expression plasmids, here we pursue expression of foreign proteins from the live vector chromosome. Our strategy is designed to compensate for the inherent disadvantage of loss of gene dosage (vs. plasmid-based expression) by integrating antigen-encoding gene cassettes into multiple chromosomal sites already inactivated in an attenuated Salmonella enterica serovar Typhi vaccine candidate. We tested expression of a cassette encoding the green fluorescent protein (GFPuv) integrated separately into native guaBA, htrA or clyA chromosomal loci. Using single integrations, we show that expression levels of GFPuv are significantly affected by the site of integration, regardless of the inclusion of additional strong promoters within the incoming cassette. Using cassettes integrated into both guaBA and htrA, we observe cumulative synthesis levels from two integration sites superior to single integrations. Most importantly, we observe that GFPuv expression increases in a growth phase-dependent manner, suggesting that foreign antigen synthesis may be “tuned” to the physiology of the live vaccine. We expect this novel platform expression technology to prove invaluable in the development of a wide variety of multivalent live vector vaccines, capable of expressing multiple antigens from both chromosomal and plasmid-based expression systems within a single strain. PMID:23406777

  12. Chromatographic purification and characterization of antigens A and D from Mycobacterium paratuberculosis and their use in enzyme-linked immunosorbent assays for diagnosis of paratuberculosis in sheep.

    PubMed Central

    Sugden, E A; Brooks, B W; Young, N M; Watson, D C; Nielsen, K H; Corner, A H; Turcotte, C; Michaelides, A; Stewart, R B

    1991-01-01

    The protein antigens A and D were purified from culture filtrates and sonic extracts of laboratory strains of Mycobacterium paratuberculosis by salt precipitation and chromatography. The characterization of antigen A is shown here, and both antigens were evaluated along with lipoarabinomannan antigen in indirect enzyme-linked immunosorbent assays (ELISA) for the serodiagnosis of ovine paratuberculosis. After anion-exchange (DEAE-5PW) and hydrophobic (phenyl-5PW) chromatography using high-performance liquid chromatography, antigen A showed a prominant band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) at 31 kDa with small amounts of low-molecular-mass proteins but with no evidence of antigen D. A single precipitin arc was evident with purified antigen A in crossed immunoelectrophoresis. The determination of the N-terminal amino acid sequence showed a high degree of homology between the 31-kDa component of antigen A and antigens of the BCG85 complex of Mycobacterium bovis BCG, a total of 24 of 26 residues being identical to those of BCG85C. A prominant SDS-PAGE band at 400 kDa and a single crossed-immunoelectrophoresis arc was also evident for antigen D after gel filtration (Sephacryl S-200), anion-exchange (DEAE-Sephacel), and concanavalin A-Sepharose affinity chromatography. By ELISA, purified antigen A detected antibody in the sera of 18 of 22 paratuberculosis-infected sheep (82% sensitivity), whereas the purified antigen D detected antibody in all 22 infected animals (100% sensitivity). Combined ELISA results showed increased specificity with some loss in sensitivity. Images PMID:1761688

  13. SCREENING OF PHOTOSYNTHETIC O2 -EVOLVING PROKARYOTES FOR AN INSULIN-LIKE ANTIGEN(1).

    PubMed

    Khursheed, Saima; Anwer, Razique; Zutshi, Sunaina; Fatma, Tasneem

    2012-02-01

    Diabetes mellitus (DM), a metabolic disorder, is becoming a major health problem worldwide. Insulin is the single hope for management of type 1 diabetes, but it is not always available or suitable. For finding additional bioresources, the present study was performed. ELISA-based preliminary screening of cyanobacterial biomass using antihuman insulin antibody have detected an insulin-like antigen in Spirulina platensis S-5, Spirulina NCCU-482, and Spirulina NCCU-483. Their similarity with insulin-like antigen was further confirmed by electrophoretic mobility using bovine insulin as marker. PMID:27009668

  14. Do lymphocytes from Chagasic patients respond to heart antigens?

    PubMed Central

    Todd, C W; Todd, N R; Guimaraes, A C

    1983-01-01

    Lymphocyte transformation studies of nonadherent lymphocytes from chronic Chagasic and uninfected persons demonstrated that responses of all individuals to a mouse heart homogenate showed a correlation with responses to streptococcal antigens. Considering the known cross-reactions between streptococcal and cardiac antigens and the high reactivity of Chagasic patients to streptococcal antigens, it is possible that positive lymphocyte transformation to unfractionated heart antigen preparations may not represent specific reactivity to heart antigens. PMID:6404836

  15. New Skin Test for Detection of Bovine Tuberculosis on the Basis of Antigen-Displaying Polyester Inclusions Produced by Recombinant Escherichia coli

    PubMed Central

    Chen, Shuxiong; Parlane, Natalie A.; Lee, Jason; Wedlock, D. Neil; Buddle, Bryce M.

    2014-01-01

    The tuberculin skin test for diagnosing tuberculosis (TB) in cattle lacks specificity if animals are sensitized to environmental mycobacteria, as some antigens in purified protein derivative (PPD) prepared from Mycobacterium bovis are present in nonpathogenic mycobacteria. Three immunodominant TB antigens, ESAT6, CFP10, and Rv3615c, are present in members of the pathogenic Mycobacterium tuberculosis complex but absent from the majority of environmental mycobacteria. These TB antigens have the potential to enhance skin test specificity. To increase their immunogenicity, these antigens were displayed on polyester beads by translationally fusing them to a polyhydroxyalkanoate (PHA) synthase which mediated formation of antigen-displaying inclusions in recombinant Escherichia coli. The most common form of these inclusions is poly(3-hydroxybutyric acid) (PHB). The respective fusion proteins displayed on these PHB inclusions (beads) were identified using tryptic peptide fingerprinting analysis in combination with matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS). The surface exposure and accessibility of antigens were assessed by enzyme-linked immunosorbent assay (ELISA). Polyester beads displaying all three TB antigens showed greater reactivity with TB antigen-specific antibody than did beads displaying only one TB antigen. This was neither due to cross-reactivity of antibodies with the other two antigens nor due to differences in protein expression levels between beads displaying single or three TB antigens. The triple-antigen-displaying polyester beads were used for skin testing of cattle and detected all cattle experimentally infected with M. bovis with no false-positive reactions observed in those sensitized to environmental mycobacteria. The results suggested applicability of TB antigen-displaying polyester inclusions as diagnostic reagents for distinguishing TB-infected from noninfected animals. PMID:24532066

  16. Antigen-antibody binding kinetics for biosensor applications. A dual-fractal analysis.

    PubMed

    Sadana, A; Suturia, M

    1997-01-01

    The diffusion-limited binding kinetics of antigen (or antibody) in solution to antibody (or antigen) immobilized on a biosensor surface is analyzed within a fractal framework. The fit obtained by a dual-fractal analysis is compared with that obtained from a single-fractal analysis. In some cases, the dual-fractal analysis provides an improved fit when compared with a single-fractal analysis. This was indicated by the regression analysis provided by Sigmaplot (San Rafael, CA). These examples are presented. It is of interest to note that the state of disorder (or the fractal dimension) and the binding rate coefficient both increase (or decrease, a single example is presented for this case) as the reaction progresses on the biosensor surface. For example, for the binding of monoclonal antibody MAb 49 in solution to surface-immobilized antigen, a 90.4% increase in the fractal dimension (Df1 to Df2) from 1.327 to 2.527 leads to an increase in the binding rate coefficient (k1 to k2) by a factor of 9.4 from 11.74 to 110.3. The different examples analyzed and presented together provide a means by which the antigen-antibody reactions may be better controlled by noting the magnitude of the changes in the fractal dimension and in the binding rate coefficient as the reaction progresses on the biosensor surface. PMID:9170257

  17. Tresyl-Based Conjugation of Protein Antigen to Lipid Nanoparticles Increases Antigen Immunogencity

    PubMed Central

    Jain, Anekant; Yan, Weili; Miller, Keith R.; O'Carra, Ronan; Woodward, Jerold G.; Mumper, Russell J.

    2010-01-01

    The present studies were aimed at investigating the engineering of NPs with protein-conjugated-surfactant at their surface. In order to increase the immunogenicity of a protein antigen, Brij 78 was functionalized by tresyl chloride and then further reacted with the primary amine of the model proteins ovalbumin (OVA) or horseradish peroxide (HRP). The reaction yielded Brij 78-OVA and Brij 78-HRP conjugates which were then used directly to form NP-OVA or NP-HRP using a one-step warm oil-in-water microemulsion precursor method with emulsifying wax as the oil phase, and Brij 78 and the Brij 78-OVA or Brij 78-HRP conjugate as surfactants. Similarly, Brij 700 was conjugated to HIV p24 antigen to yield Brij 700-p24 conjugate. The utility of these NPs for enhancing the immune responses to protein-based vaccines was evaluated in vivo using ovalbumin (OVA) as model protein and p24 as a relevant HIV antigen. In separate in vivo studies, female BALB/c mice were immunized by subcutaneous (s.c.) injection with NP-OVA and NP-p24 formulations along with several control formulations. These results suggested that with multiple antigens, covalent attachment of the antigen to the NP significantly enhanced antigen-specific immune responses. This facile covalent conjugation and incorporation method may be utilized to further incorporate other protein antigens, even multiple antigens, into an enhanced vaccine delivery system. PMID:20837122

  18. Serological response to in vitro-shed antigen(s) of Tritrichomonas foetus in cattle.

    PubMed Central

    Bondurant, R H; van Hoosear, K A; Corbeil, L B; Bernoco, D

    1996-01-01

    We developed a serological assay for detection of (l) an erythrocyte-adhering molecule(s) shed by the bovine venereal pathogen Tritrichomonas foetus and (II) serum antibodies to this antigen(s) in exposed cattle. Sera from exposed and unexposed cattle were tested for their ability to induce complement-mediated lysis of bovine erythrocytes that had been previously incubated overnight at room temperature in pH-adjusted supernatants of T. foetus culture media. Eight of 180 serum specimens from six groups of presumably unexposed cows or heifers showed a positive (> or = 1:2) hemolytic titer (specificity = 95.6%). Thirteen of 14 females in two experimentally infected groups showed a positive hemolytic titer following infection (sensitivity = 94%). In experimentally infected heifers, there was little correlation (r2 = 0.33) between serum hemolytic titers with respect to shed antigen and titers obtained in serum enzyme-linked immunosorbent assays in which whole T. foetus served as the antigen. Serum hemolytic titers rose 3 to 4 weeks sooner than did previously described vaginal mucus immunoglobulin G1 or immunoglobulin A titers with respect to whole-cell antigen or TF1.17 subunit antigen, respectively. Among 14 chronically infected bulls, only 6 (43%) showed a positive hemolytic titer. This study is the first, to our knowledge, to show a specific serological response in the host to an in vitro-shed antigen(s) of T. foetus and suggests a useful diagnostic test for potentially exposed herds. PMID:8807209

  19. Atypical antigen recognition mode of a shark immunoglobulin new antigen receptor (IgNAR) variable domain characterized by humanization and structural analysis.

    PubMed

    Kovalenko, Oleg V; Olland, Andrea; Piché-Nicholas, Nicole; Godbole, Adarsh; King, Daniel; Svenson, Kristine; Calabro, Valerie; Müller, Mischa R; Barelle, Caroline J; Somers, William; Gill, Davinder S; Mosyak, Lidia; Tchistiakova, Lioudmila

    2013-06-14

    The immunoglobulin new antigen receptors (IgNARs) are a class of Ig-like molecules of the shark immune system that exist as heavy chain-only homodimers and bind antigens by their single domain variable regions (V-NARs). Following shark immunization and/or in vitro selection, V-NARs can be generated as soluble, stable, and specific high affinity monomeric binding proteins of ∼12 kDa. We have previously isolated a V-NAR from an immunized spiny dogfish shark, named E06, that binds specifically and with high affinity to human, mouse, and rat serum albumins. Humanization of E06 was carried out by converting over 60% of non-complementarity-determining region residues to those of a human germ line Vκ1 sequence, DPK9. The resulting huE06 molecules have largely retained the specificity and affinity of antigen binding of the parental V-NAR. Crystal structures of the shark E06 and its humanized variant (huE06 v1.1) in complex with human serum albumin (HSA) were determined at 3- and 2.3-Å resolution, respectively. The huE06 v1.1 molecule retained all but one amino acid residues involved in the binding site for HSA. Structural analysis of these V-NARs has revealed an unusual variable domain-antigen interaction. E06 interacts with HSA in an atypical mode that utilizes extensive framework contacts in addition to complementarity-determining regions that has not been seen previously in V-NARs. On the basis of the structure, the roles of various elements of the molecule are described with respect to antigen binding and V-NAR stability. This information broadens the general understanding of antigen recognition and provides a framework for further design and humanization of shark IgNARs. PMID:23632026

  20. Phase I study utilizing a novel antigen-presenting cell-targeted vaccine with Toll-like receptor stimulation to induce immunity to self antigens in cancer patients

    PubMed Central

    Morse, Michael A.; Chapman, Robert; Powderly, John; Blackwell, Kimberly; Keler, Tibor; Green, Jennifer; Riggs, Renee; He, Li-Zhen; Ramakrishna, Venky; Vitale, Laura; Zhao, Biwei; Butler, Stephen A.; Hobeika, Amy; Osada, Takuya; Davis, Thomas; Clay, Timothy; Lyerly, H. Kim

    2011-01-01

    Purpose The use of tumor-derived proteins as cancer vaccines is complicated by tolerance to these self antigens. Tolerance may be broken by immunization with activated, autologous, ex vivo generated and antigen-loaded, antigen-presenting cells (APC); however, targeting tumor antigen directly to APC in vivo would be a less complicated strategy. We wished to test whether targeted delivery of an otherwise poorly immunogenic, soluble antigen to APC through their mannose receptors (MR) would induce clinically relevant immunity. Experimental Design Two phase I studies were performed with CDX-1307, a vaccine composed of human chorionic gonadotropin beta chain (hCG-β) fused to a MR-specific monoclonal antibody, administered either locally (intradermally) or systemically (intravenously) in patients with advanced epithelial malignancies. An initial dose-escalation of single agent CDX-1307 was followed by additional cohorts of CDX-1307 combined with GM-CSF and the Toll-like receptor (TLR)-3 agonist poly-ICLC and TLR7/8 agonist resiquimod to activate the APC. Results CDX-1307 induced consistent humoral and T cell responses to hCG-β when co-administered with TLR agonists. Greater immune responses and clinical benefit, including the longest duration of stable disease, were observed with immunization combined with local TLR agonists. Immune responses were induced equally efficiently in patients with elevated and non-elevated levels of serum hCG-β. Antibodies within the serum of vaccinated participants had tumor suppressive function in vitro. Toxicity consisted chiefly of mild injection site reactions. Conclusions APC targeting and activation induce adaptive immunity against poorly immunogenic self antigens which has implications for enhancing the efficacy of cancer immunotherapy. PMID:21632857

  1. ERAP1 functions override the intrinsic selection of specific antigens as immunodominant peptides, thereby altering the potency of antigen-specific cytolytic and effector memory T-cell responses.

    PubMed

    Rastall, David P W; Aldhamen, Yasser A; Seregin, Sergey S; Godbehere, Sarah; Amalfitano, Andrea

    2014-12-01

    Endoplasmic reticulum aminopeptidase 1 (ERAP1) is a critical component of the adaptive immune system that has been shown to increase or decrease the presentation of specific peptides on MHC class I molecules. Here, we have demonstrated that ERAP1 functions are not only important during the presentation of antigen-derived peptides, but these functions can also completely change which antigen-derived peptides ultimately become selected as immunodominant T-cell epitopes. Our results suggest that ERAP1 may do this by destroying epitopes that would otherwise become immunodominant in the absence of adequate ERAP1 functionality. We further establish that ERAP1-mediated influences on T-cell functions are both qualitative and quantitative, by demonstrating that loss of ERAP1 function redirects CTL killing toward a different set of antigen-derived epitopes and increases the percent of antigen-specific memory T cells elicited by antigen exposure. As a result, our studies suggest that normal ERAP1 activity can act to suppress the numbers of T effector memory cells that respond to a given antigen. This unique finding may shed light on why certain ERAP1 single nucleotide polymorphisms are associated with several autoimmune diseases, for example, by significantly altering the robustness and quality of CD8+ T-cell memory responses to antigen-derived peptides. PMID:25087231

  2. Genetic and antigenic changes in porcine rubulavirus

    PubMed Central

    Sánchez-Betancourt, José I.; Trujillo, María E.; Mendoza, Susana E.; Reyes-Leyva, Julio; Alonso, Rogelio A.

    2012-01-01

    Blue eye disease, caused by a porcine rubulavirus (PoRV), is an emergent viral swine disease that has been endemic in Mexico since 1980. Atypical outbreaks were detected in 1990 and 2003. Growing and adult pigs presented neurological signs, mild neurological signs were observed in piglets, and severe reproductive problems were observed in adults. Amino acid sequence comparisons and phylogenetic analysis of the hemagglutinin-neuraminidase (HN) protein revealed genetically different lineages. We used cross-neutralization assays, with homologous and heterologous antisera, to determine the antigenic relatedness values for the PoRV isolates. We found antigenic changes among several strains and identified a highly divergent one, making up a new serogroup. It seems that genetically and antigenically different PoRV strains are circulating simultaneously in the swine population in the geographical region studied. The cross neutralization studies suggest that the HN is not the only antigenic determinant participating in the antigenic changes among the different PoRV strains. PMID:22754092

  3. Beyond antigens and adjuvants: formulating future vaccines.

    PubMed

    Moyer, Tyson J; Zmolek, Andrew C; Irvine, Darrell J

    2016-03-01

    The need to optimize vaccine potency while minimizing toxicity in healthy recipients has motivated studies of the formulation of vaccines to control how, when, and where antigens and adjuvants encounter immune cells and other cells/tissues following administration. An effective subunit vaccine must traffic to lymph nodes (LNs), activate both the innate and adaptive arms of the immune system, and persist for a sufficient time to promote a mature immune response. Here, we review approaches to tailor these three aspects of vaccine function through optimized formulations. Traditional vaccine adjuvants activate innate immune cells, promote cell-mediated transport of antigen to lymphoid tissues, and promote antigen retention in LNs. Recent studies using nanoparticles and other lymphatic-targeting strategies suggest that direct targeting of antigens and adjuvant compounds to LNs can also enhance vaccine potency without sacrificing safety. The use of formulations to regulate biodistribution and promote antigen and inflammatory cue co-uptake in immune cells may be important for next-generation molecular adjuvants. Finally, strategies to program vaccine kinetics through novel formulation and delivery strategies provide another means to enhance immune responses independent of the choice of adjuvant. These technologies offer the prospect of enhanced efficacy while maintaining high safety profiles necessary for successful vaccines. PMID:26928033

  4. Genetic and antigenic changes in porcine rubulavirus.

    PubMed

    Sánchez-Betancourt, José I; Trujillo, María E; Mendoza, Susana E; Reyes-Leyva, Julio; Alonso, Rogelio A

    2012-01-01

    Blue eye disease, caused by a porcine rubulavirus (PoRV), is an emergent viral swine disease that has been endemic in Mexico since 1980. Atypical outbreaks were detected in 1990 and 2003. Growing and adult pigs presented neurological signs, mild neurological signs were observed in piglets, and severe reproductive problems were observed in adults. Amino acid sequence comparisons and phylogenetic analysis of the hemagglutinin-neuraminidase (HN) protein revealed genetically different lineages. We used cross-neutralization assays, with homologous and heterologous antisera, to determine the antigenic relatedness values for the PoRV isolates. We found antigenic changes among several strains and identified a highly divergent one, making up a new serogroup. It seems that genetically and antigenically different PoRV strains are circulating simultaneously in the swine population in the geographical region studied. The cross neutralization studies suggest that the HN is not the only antigenic determinant participating in the antigenic changes among the different PoRV strains. PMID:22754092

  5. Antigen-specific vaccines for cancer treatment

    PubMed Central

    Tagliamonte, Maria; Petrizzo, Annacarmen; Tornesello, Maria Lina; Buonaguro, Franco M; Buonaguro, Luigi

    2014-01-01

    Vaccines targeting pathogens are generally effective and protective because based on foreign non-self antigens which are extremely potent in eliciting an immune response. On the contrary, efficacy of therapeutic cancer vaccines is still disappointing. One of the major reasons for such poor outcome, among others, is the difficulty of identifying tumor-specific target antigens which should be unique to the tumors or, at least, overexpressed on the tumors as compared to normal cells. Indeed, this is the only option to overcome the peripheral immune tolerance and elicit a non toxic immune response. New and more potent strategies are now available to identify specific tumor-associated antigens for development of cancer vaccine approaches aiming at eliciting targeted anti-tumor cellular responses. In the last years this aspect has been addressed and many therapeutic vaccination strategies based on either whole tumor cells or specific antigens have been and are being currently evaluated in clinical trials. This review summarizes the current state of cancer vaccines, mainly focusing on antigen-specific approaches. PMID:25483639

  6. Antigenic Properties of N Protein of Hantavirus

    PubMed Central

    Yoshimatsu, Kumiko; Arikawa, Jiro

    2014-01-01

    Hantavirus causes two important rodent-borne viral zoonoses, hemorrhagic fever with renal syndrome (HFRS) in Eurasia and hantavirus pulmonary syndrome (HPS) in North and South America. Twenty-four species that represent sero- and genotypes have been registered within the genus Hantavirus by the International Committee on Taxonomy of Viruses (ICTV). Among the viral proteins, nucleocapsid (N) protein possesses an immunodominant antigen. The antigenicitiy of N protein is conserved compared with that of envelope glycoproteins. Therefore, N protein has been used for serological diagnoses and seroepidemiological studies. An understanding of the antigenic properties of N protein is important for the interpretation of results from serological tests using N antigen. N protein consists of about 430 amino acids and possesses various epitopes. The N-terminal quarter of N protein bears linear and immunodominant epitopes. However, a serotype-specific and multimerization-dependent antigenic site was found in the C-terminal half of N protein. In this paper, the structure, function, and antigenicity of N protein are reviewed. PMID:25123683

  7. Antigenic variation in African trypanosomes: the importance of chromosomal and nuclear context in VSG expression control

    PubMed Central

    Glover, Lucy; Hutchinson, Sebastian; Alsford, Sam; McCulloch, Richard; Field, Mark C; Horn, David

    2013-01-01

    African trypanosomes are lethal human and animal parasites that use antigenic variation for evasion of host adaptive immunity. To facilitate antigenic variation, trypanosomes dedicate approximately one third of their nuclear genome, including many minichromosomes, and possibly all sub-telomeres, to variant surface glycoprotein (VSG) genes and associated sequences. Antigenic variation requires transcription of a single VSG by RNA polymerase I (Pol-I), with silencing of other VSGs, and periodic switching of the expressed gene, typically via DNA recombination with duplicative translocation of a new VSG to the active site. Thus, telomeric location, epigenetic controls and monoallelic transcription by Pol-I at an extranucleolar site are prominent features of VSGs and their expression, with telomeres, chromatin structure and nuclear organization all making vitally important contributions to monoallelic VSG expression control and switching. We discuss VSG transcription, recombination and replication control within this chromosomal and sub-nuclear context. PMID:24047558

  8. Correlated analysis of cellular DNA, membrane antigens and light scatter of human lymphoid cells

    SciTech Connect

    Braylan, R.C.; Benson, N.A.; Nourse, V.; Kruth, H.S.

    1982-03-01

    Flow cytometric correlated analysis of membrane antigens, DNA, and light scatter was performed on human lymphoid cells using fluorescein (FITC)-conjugated antibodies to label B- and T-cell antigens and propidium iodide (PI) to stain DNA after ethanol fixation and RNase treatment. A FACS II flow cytometer was modified to obtain digitized measurements of two color fluorescence and light scatter emissions, simultaneously. Software was written to allow single parameter analysis or correlated analysis of any two of the three parameters acquired. Ethanol fixation preserved FITC surface labeling for at least 15 weeks, but produced marked changes in light scatter. No changes in FITC distributions were observed after RNase treatment and PI staining, and the presence of FITC labeling did not affect DNA distributions. Within heterogeneous cell populations, the DNA distribution of cell subpopulations identified by a membrane antigen was clearly demonstrated.

  9. B1b cells recognize protective antigens after natural infection and vaccination.

    PubMed

    Cunningham, Adam F; Flores-Langarica, Adriana; Bobat, Saeeda; Dominguez Medina, Carmen C; Cook, Charlotte N L; Ross, Ewan A; Lopez-Macias, Constantino; Henderson, Ian R

    2014-01-01

    There are multiple, distinct B-cell populations in human beings and other animals such as mice. In the latter species, there is a well-characterized subset of B-cells known as B1 cells, which are enriched in peripheral sites such as the peritoneal cavity but are rare in the blood. B1 cells can be further subdivided into B1a and B1b subsets. There may be additional B1 subsets, though it is unclear if these are distinct populations or stages in the developmental process to become mature B1a and B1b cells. A limitation in understanding B1 subsets is the relative paucity of specific surface markers. In contrast to mice, the existence of B1 cells in human beings is controversial and more studies are needed to investigate the nature of these enigmatic cells. Examples of B1b antigens include pneumococcal polysaccharide and the Vi antigen from Salmonella Typhi, both used routinely as vaccines in human beings and experimental antigens such as haptenated-Ficoll. In addition to inducing classical T-dependent responses some proteins are B1b antigens and can induce T-independent (TI) immunity, examples include factor H binding protein from Borrelia hermsii and porins from Salmonella. Therefore, B1b antigens can be proteinaceous or non-proteinaceous, induce TI responses, memory, and immunity, they exist in a diverse range of pathogenic bacteria, and a single species can contain multiple B1b antigens. An unexpected benefit to studying B1b cells is that they appear to have a propensity to recognize protective antigens in bacteria. This suggests that studying B1b cells may be rewarding for vaccine design as immunoprophylactic and immunotherapeutic interventions become more important due to the decreasing efficacy of small molecule antimicrobials. PMID:25400633

  10. Preexposure to ozone blocks the antigen-induced late asthmatic response of the canine peripheral airways

    SciTech Connect

    Turner, C.R.; Kleeberger, S.R.; Spannhake, E.W. )

    1989-01-01

    The influence of exposure of the airways to ozone on acute allergic responsiveness has been investigated in several species. Little is known, however, about the effect of this environmental pollutant on the late asthmatic response (LAR) in animals in which it is exhibited. The purpose of this study was to evaluate this effect in the canine peripheral airways and to assess the potential role of mast cells in modulating the effect. A series of experiments on seven mongrel dogs demonstrated that the numbers of mast cells at the base of the epithelial region of small subsegmental airways exposed to 1 ppm ozone for 5 min were significantly (p less than .01) increased 3 h following exposure compared to air exposed or nonexposed control airways. In a second series of experiments performed on eight additional mongrel dogs with inherent sensitivity to Ascaris suum antigen, antigen aerosol was administered to the sublobar segment 3 h following ozone preexposure when mast cell numbers were presumed to be increased. These experiments were performed to determine whether ozone preexposure could enhance the late-phase response to antigen by virtue of acutely increasing the number of mast cells available to bind the antigen. Four of the eight dogs tested displayed a late-phase response to antigen following air-sham preexposure. In these four dogs, simultaneous ozone preexposure of a contralateral lobe completely blocked the late-phase response to antigen. These results indicate that the consequences of a single exposure to ozone persist beyond its effects on acute antigen-induced bronchoconstriction and extend to the complex processes involved with the late response. This attenuating effect of ozone is seen under conditions where mast-cell numbers in the airways are increased above baseline levels.

  11. B1b Cells Recognize Protective Antigens after Natural Infection and Vaccination

    PubMed Central

    Cunningham, Adam F.; Flores-Langarica, Adriana; Bobat, Saeeda; Dominguez Medina, Carmen C.; Cook, Charlotte N. L.; Ross, Ewan A.; Lopez-Macias, Constantino; Henderson, Ian R.

    2014-01-01

    There are multiple, distinct B-cell populations in human beings and other animals such as mice. In the latter species, there is a well-characterized subset of B-cells known as B1 cells, which are enriched in peripheral sites such as the peritoneal cavity but are rare in the blood. B1 cells can be further subdivided into B1a and B1b subsets. There may be additional B1 subsets, though it is unclear if these are distinct populations or stages in the developmental process to become mature B1a and B1b cells. A limitation in understanding B1 subsets is the relative paucity of specific surface markers. In contrast to mice, the existence of B1 cells in human beings is controversial and more studies are needed to investigate the nature of these enigmatic cells. Examples of B1b antigens include pneumococcal polysaccharide and the Vi antigen from Salmonella Typhi, both used routinely as vaccines in human beings and experimental antigens such as haptenated-Ficoll. In addition to inducing classical T-dependent responses some proteins are B1b antigens and can induce T-independent (TI) immunity, examples include factor H binding protein from Borrelia hermsii and porins from Salmonella. Therefore, B1b antigens can be proteinaceous or non-proteinaceous, induce TI responses, memory, and immunity, they exist in a diverse range of pathogenic bacteria, and a single species can contain multiple B1b antigens. An unexpected benefit to studying B1b cells is that they appear to have a propensity to recognize protective antigens in bacteria. This suggests that studying B1b cells may be rewarding for vaccine design as immunoprophylactic and immunotherapeutic interventions become more important due to the decreasing efficacy of small molecule antimicrobials. PMID:25400633

  12. One-step spray-dried polyelectrolyte microparticles enhance the antigen cross-presentation capacity of porcine dendritic cells.

    PubMed

    Devriendt, Bert; Baert, Kim; Dierendonck, Marijke; Favoreel, Herman; De Koker, Stefaan; Remon, Jean Paul; De Geest, Bruno G; Cox, Eric

    2013-06-01

    Vaccination is regarded as the most efficient and cost-effective way to prevent infectious diseases. Vaccine design nowadays focuses on the implementation of safer recombinant subunit vaccines. However, these recombinant subunit antigens are often poor immunogens and several strategies are currently under investigation to enhance their immunogenicity. The encapsulation of antigens in biodegradable microparticulate delivery systems seems a promising strategy to boost their immunogenicity. Here, we evaluate the capacity of polyelectrolyte complex microparticles (PECMs), fabricated by single step spray-drying, to deliver antigens to porcine dendritic cells and how these particles affect the functional maturation of dendritic cells (DCs). As clinically relevant model antigen F4 fimbriae, a bacterial adhesin purified from a porcine-specific enterotoxigenic Escherichia coli strain was chosen. The resulting antigen-loaded PECMs are efficiently internalised by porcine monocyte-derived DCs. F4 fimbriae-loaded PECMs (F4-PECMs) enhanced CD40 and CD25 surface expression by DCs and this phenotypical maturation correlated with an increased secretion of IL-6 and IL-1β. More importantly, F4-PECMs enhance both the T cell stimulatory and antigen presentation capacity of DCs. Moreover, PECMs efficiently promoted the CD8(+) T cell stimulatory capacity of dendritic cells, indicating an enhanced ability to cross-present the encapsulated antigens. These results could accelerate the development of veterinary and human subunit vaccines based on polyelectrolyte complex microparticles to induce protective immunity against a variety of extra- and intracellular pathogens. PMID:23207327

  13. Evaluation of immune response elicited by inulin as an adjuvant with filarial antigens in mice model.

    PubMed

    Mahalakshmi, N; Aparnaa, R; Kaliraj, P

    2014-10-01

    Filariasis caused by infectious parasitic nematodes has been identified as the second leading source of permanent and long-term disability in Sub-Saharan Africa, Asia and Latin America. Several vaccine candidates were identified from infective third-stage larvae (L3) which involves in the critical transition from arthropod to human. Hitherto studies of these antigens in combination with alum adjuvant have shown to elicit its characteristic Th2 responses. Inulin is a safe, non-toxic adjuvant that principally stimulates the innate immune response through the alternative complement pathway. In the present study, the immune response elicited by inulin and alum as adjuvants were compared with filarial antigens from different aetiological agents: secreted larval acidic protein 1 (SLAP1) from Onchocerca volvulus and venom allergen homologue (VAH) from Brugia malayi as single or as cocktail vaccines in mice model. The study revealed that inulin can induce better humoral response against these antigens than alum adjuvant. Antibody isotyping disclosed inulin's ability to elevate the levels of IgG2a and IgG3 antibodies which mediates in complement-dependent cytotoxicity and antibody-dependent cell-mediated cytotoxicity (ADCC), respectively, in mice. Splenocyte analysis showed that T cells prestimulated with inulin have higher stimulation index (P < 0.05) than alum except for BmVAH antigen. In vitro ADCC assay showed that inulin formulation had induced higher cytotoxicity with filarial antigens (as single P < 0.01 and as cocktail P < 0.05, respectively) than alum. The results had confirmed the capability of inulin to deplete the levels of Treg and brought a balance in Th1/Th2 arms against filarial antigens in mice. PMID:25041426

  14. Separation of soluble Brucella antigens by gel-filtration chromatography.

    PubMed

    McGhee, J R; Freeman, B A

    1970-07-01

    Soluble precipitating antigens of Brucella suis have been, in various degrees, purified by filtration on Sephadex gels. The most useful gels employed were Sephadex G-150, Sephadex G-200, and Sepharose 4B. Although not all fractions proved to be immunologically pure, some crude molecular-size estimates of most of the 13 soluble antigens of the Brucella cell could be given. In addition, monospecific antisera to three purified Brucella antigens have been prepared. By using purified preparations, physical and chemical data were obtained on two major antigens, E and 1, and a minor antigen, f. Antigen E is not an agglutinogen and may be toxic. Antigen 1 is of low molecular weight and is neither toxic nor agglutinogenic. The minor antigen f is an agglutinogen as well as a precipitinogen and is found on the cell surface. Both major antigens, when purified, were immunogenic in rabbits. PMID:16557798

  15. Podosomes of dendritic cells facilitate antigen sampling

    PubMed Central

    Reinieren-Beeren, Inge; Cambi, Alessandra; Figdor, Carl G.; van den Bogaart, Geert

    2014-01-01

    Summary Dendritic cells sample the environment for antigens and play an important role in establishing the link between innate and acquired immunity. Dendritic cells contain mechanosensitive adhesive structures called podosomes that consist of an actin-rich core surrounded by integrins, adaptor proteins and actin network filaments. They facilitate cell migration via localized degradation of extracellular matrix. Here we show that podosomes of human dendritic cells locate to spots of low physical resistance in the substrate (soft spots) where they can evolve into protrusive structures. Pathogen recognition receptors locate to these protrusive structures where they can trigger localized antigen uptake, processing and presentation to activate T-cells. Our data demonstrate a novel role in antigen sampling for podosomes of dendritic cells. PMID:24424029

  16. Polyomavirus T Antigens Activate an Antiviral State

    PubMed Central

    Giacobbi, Nicholas S.; Gupta, Tushar; Coxon, Andrew; Pipas, James M.

    2014-01-01

    Ectopic expression of Simian Virus 40 (SV40) large T antigen (LT) in mouse embryonic fibroblasts (MEFs) increased levels of mRNAs encoding interferon stimulated genes (ISGs). The mechanism by which T antigen increases levels of ISGs in MEFs remains unclear. We present evidence that expression of T antigen from SV40, Human Polyomaviruses BK (BKV) or JC (JCV) upregulate production of ISGs in MEFs, and subsequently result in an antiviral state, as determined by inhibition of VSV or EMCV growth. The first 136 amino acids of LT are sufficient for these activities. Furthermore, increased ISG expression and induction of the antiviral state requires STAT1. Finally, the RB binding motif of LT is necessary for activation of STAT1. We conclude that the induction of the STAT1 mediated innate immune response in MEFs is a common feature shared by SV40, BKV and JCV. PMID:25589241

  17. Immunochemical characterization of Ancylostoma caninum antigens.

    PubMed

    Schnieder, T; Kohlmetz, C; Epe, C; Stoye, M

    1996-06-01

    Adult worms of Ancylostoma caninum were dissected and manually separated into cephalic glands, cervical glands, intestine, esophagus and cuticula. These fractions as well as third stage larvae were fractionated with Triton X-114 into water soluble (hydrophilic), Triton soluble (hydrophobic) and unsoluble proteins. These fractions were characterized by immunoblotting with serum from rabbits immunized either with a pool of cervical, cephalic glands and intestine, or the esophagus fraction as well as with sera from percutaneously infected dogs and rabbits. Immunodominant antigens were found that reacted with dog or rabbit post infection sera and could be suited as antigens in serodiagnostic tests. Hidden antigens were found in the several fractions. Those from esophagus and intestine could be vaccine candidates that will be tested in immunization trials. PMID:8688863

  18. Antigen sampling in the fish intestine.

    PubMed

    Løkka, Guro; Koppang, Erling Olaf

    2016-11-01

    Antigen uptake in the gastrointestinal tract may induce tolerance, lead to an immune response and also to infection. In mammals, most pathogens gain access to the host though the gastrointestinal tract, and in fish as well, this route seems to be of significant importance. The epithelial surface faces a considerable challenge, functioning both as a barrier towards the external milieu but simultaneously being the site of absorption of nutrients and fluids. The mechanisms allowing antigen uptake over the epithelial barrier play a central role for maintaining the intestinal homeostasis and regulate appropriate immune responses. Such uptake has been widely studied in mammals, but also in fish, a number of experiments have been reported, seeking to reveal cells and mechanisms involved in antigen sampling. In this paper, we review these studies in addition to addressing our current knowledge of the intestinal barrier in fish and its anatomical construction. PMID:26872546

  19. Method for preparation of single chain antibodies

    SciTech Connect

    Cheung, Nai-Kong V.; Guo, Hong-fen

    2012-04-03

    This invention provides a method for identifying cells expressing a target single chain antibody (scFv) directed against a target antigen from a collection of cells that includes cells that do not express the target scFv, comprising the step of combining the collection of cells with an anti-idiotype directed to an antibody specific for the target antigen and detecting interaction, if any, of the anti-idiotype with the cells, wherein the occurrence of an interaction identifies the cell as one which expresses the target scFv. This invention also provides a method for making a single chain antibody (scFv) directed against an antigen, wherein the selection of clones is made based upon interaction of those clones with an appropriate anti-idiotype, and heretofore inaccessible scFv so made. This invention provides the above methods or any combination thereof. Finally, this invention provides various uses of these methods.

  20. Identification and visualization of multidimensional antigen-specific T-cell populations in polychromatic cytometry data

    PubMed Central

    Lin, Lin; Frelinger, Jacob; Jiang, Wenxin; Finak, Greg; Seshadri, Chetan; Bart, Pierre-Alexandre; Pantaleo, Giuseppe; McElrath, Julie; DeRosa, Steve; Gottardo, Raphael

    2015-01-01

    An important aspect of immune monitoring for vaccine development, clinical trials, and research is the detection, measurement, and comparison of antigen-specific T-cells from subject samples under different conditions. Antigen-specific T-cells compose a very small fraction of total T-cells. Developments in cytometry technology over the past five years have enabled the measurement of single-cells in a multivariate and high-throughput manner. This growth in both dimensionality and quantity of data continues to pose a challenge for effective identification and visualization of rare cell subsets, such as antigen-specific T-cells. Dimension reduction and feature extraction play pivotal role in both identifying and visualizing cell populations of interest in large, multi-dimensional cytometry datasets. However, the automated identification and visualization of rare, high-dimensional cell subsets remains challenging. Here we demonstrate how a systematic and integrated approach combining targeted feature extraction with dimension reduction can be used to identify and visualize biological differences in rare, antigen-specific cell populations. By using OpenCyto to perform semi-automated gating and features extraction of flow cytometry data, followed by dimensionality reduction with t-SNE we are able to identify polyfunctional sub-populations of antigen-specific T-cells and visualize treatment-specific differences between them. PMID:25908275

  1. Identification, purification and characterization of a streptococcal protein antigen with a molecular weight of 3800.

    PubMed Central

    Giasuddin, A S; Lehner, T; Evans, R W

    1983-01-01

    A small molecular weight streptococcal antigen of about 3800 was isolated from Streptococcus mutans. The peptide was obtained by gel filtration of a predominantly 185,000 mol. wt. antigen preparation, with two major antigenic determinants (I/II), on Sephacryl S-200, in the presence of sodium dodecyl sulphate (SDS). The 185,000 mol. wt. antigen was prepared from the culture supernatant of S. mutans by ammonium sulphate precipitation, DEAE cellulose chromatography and gel filtration on Sepharose 6B. The 3800 mol. wt. material gave a single band on SDS/polyacrylamide gel and reacted with antisera to streptococcal antigen I/II, I and II but not III. Furthermore, it was digested by pronase, contained only traces of carbohydrate and lipids were not detected. It is suggested that SA I/II is either synthesized in a range of molecular sizes from 185,000 to 3800 or the former is broken down by streptococcal proteases into smaller fragments. Images Figure 1 Figure 3 PMID:6197355

  2. Microencapsulation of Streptococcus equi antigens in biodegradable microspheres and preliminary immunisation studies.

    PubMed

    Azevedo, Ana F; Galhardas, Jorge; Cunha, António; Cruz, Patrícia; Gonçalves, Lídia M D; Almeida, António J

    2006-10-01

    Streptococcus equi subspecies equi is the causative agent of strangles, a bacterial infection of the respiratory tract of equidae. Current strategies to prevent strangles rely on antimicrobial therapy or immunisation with inactivated bacteria, S. equi bacterin, or M-like protein (SeM) extract. The aim of this work was to investigate whether immunisation with whole killed S. equi or a bacterial lysate entrapped in poly(lactide-co-glycolide) (PLGA) microspheres might induce protective immunity to mice. Animals were treated with a dose of antigen equivalent to 25 microg of SeM. For intranasal route animals were primed on days 1, 2 and 3 and were boosted on day 29. For intramuscular route, primary immunisation was carried out with a single injection on day 1 and animals were boosted on day 29. On day 43 animals were submitted to a challenge with a virulent strain of S. equi. Vaccination with antigen-containing microspheres induced higher serum antibody levels in mice treated by the intranasal route, whereas intramuscular immunisation did not reveal any difference between control and treatment groups. Microencapsulated antigens achieved to fully protect mice against experimental infection irrespective of the route of administration used. Following intranasal or intramuscular administration soluble antigen failed to protect mice against challenge. These studies indicate that PLGA microspheres are a potential carrier system for the delivery of S. equi antigens. PMID:16846728

  3. Immuno-PCR: Very sensitive antigen detection by means of specific antibody-DNA conjugates

    SciTech Connect

    Sano, T.; Smith, C.L.; Cantor, C.R. )

    1992-10-02

    An antigen detection system, termed immuno-polymerase chain reaction (immuno-PCR), was developed in which a specific DNA molecule is used as the marker. A streptavidin-protein A chimera that possesses tight and specific binding affinity both for biotin and immunoglobulin G was used to attach a biotinylated DNA specifically to antigen-monoclonal antibody complexes that had been immobilized on microtiter plate wells. Then, a segment of the attached DNA was amplified by PCR. Analysis of the PCR products by agarose gel electrophoresis after staining with ethidium bromide allowed as few as 580 antigen molecules to be readily and reproducibly detected. Direct comparison with enzyme-linked immunosorbent assay with the use of a chimera-alkaline phosphatase conjugate demonstrates that enhancement in detection sensitivity was obtained with the use of immuno-PCR. Given the enormous amplification capability and specificity of PCR, this immuno-PCR technology has a sensitivity greater than any existing antigen detection system and, in principle, could be applied to the detection of single antigen molecules.

  4. Specific Fluorine Labeling of the HyHEL10 Antibody Affects Antigen Binding and Dynamics

    PubMed Central

    Acchione, Mauro; Lee, Yi-Chien; DeSantis, Morgan E.; Lipschultz, Claudia A.; Wlodawer, Alexander; Li, Mi; Shanmuganathan, Aranganathan; Walter, Richard L.; Smith-Gill, Sandra; Barchi, Joseph J.

    2012-01-01

    To more fully understand the molecular mechanisms responsible for variations in binding affinity with antibody maturation, we explored the use of site specific fluorine labeling and 19F nuclear magnetic resonance (NMR). Several single-chain (scFv) antibodies, derived from an affinity-matured series of anti-hen egg white lysozyme (HEL) mouse IgG1, were constructed with either complete or individual replacement of tryptophan residues with 5-fluorotryptophan (5FW). An array of biophysical techniques was used to gain insight into the impact of fluorine substitution on the overall protein structure and antigen binding. SPR measurements indicated that 5FW incorporation lowered binding affinity for the HEL antigen. The degree of analogue impact was residue-dependent, and the greatest decrease in affinity was observed when 5FW was substituted for residues near the binding interface. In contrast, corresponding crystal structures in complex with HEL were essentially indistinguishable from the unsubstituted antibody. 19F NMR analysis showed severe overlap of signals in the free fluorinated protein that was resolved upon binding to antigen, suggesting very distinct chemical environments for each 5FW in the complex. Preliminary relaxation analysis suggested the presence of chemical exchange in the antibody–antigen complex that could not be observed by X-ray crystallography. These data demonstrate that fluorine NMR can be an extremely useful tool for discerning structural changes in scFv antibody–antigen complexes with altered function that may not be discernible by other biophysical techniques. PMID:22769726

  5. A Recombinant Raccoon Poxvirus Vaccine Expressing both Yersinia pestis F1 and Truncated V Antigens Protects Animals against Lethal Plague

    PubMed Central

    Rocke, Tonie E.; Kingstad-Bakke, Brock; Berlier, Willy; Osorio, Jorge E.

    2014-01-01

    In previous studies, we demonstrated in mice and prairie dogs that simultaneous administration of two recombinant raccoon poxviruses (rRCN) expressing Yersinia pestis antigens (F1 and V307—a truncated version of the V protein) provided superior protection against plague challenge compared to individual single antigen constructs. To reduce costs of vaccine production and facilitate implementation of a sylvatic plague vaccine (SPV) control program for prairie dogs, a dual antigen construct is more desirable. Here we report the construction and characterization of a novel RCN-vectored vaccine that simultaneously expresses both F1 and V307 antigens. This dual antigen vaccine provided similar levels of protection against plague in both mice and prairie dogs as compared to simultaneous administration of the two single antigen constructs and was also shown to protect mice against an F1 negative strain of Y. pestis. The equivalent safety, immunogenicity and efficacy profile of the dual RCN-F1/V307 construct warrants further evaluation in field efficacy studies in sylvatic plague endemic areas. PMID:26344891

  6. A recombinant raccoon poxvirus vaccine expressing both Yersinia pestis F1 and truncated V antigens protects animals against lethal plague.

    USGS Publications Warehouse

    Rocke, Tonie E.; Kingstad-Bakke, B; Berlier, W; Osorio, J.E.

    2014-01-01

    In previous studies, we demonstrated in mice and prairie dogs that simultaneous administration of two recombinant raccoon poxviruses (rRCN) expressing Yersinia pestis antigens (F1 and V307-a truncated version of the V protein) provided superior protection against plague challenge compared to individual single antigen constructs. To reduce costs of vaccine production and facilitate implementation of a sylvatic plague vaccine (SPV) control program for prairie dogs, a dual antigen construct is more desirable. Here we report the construction and characterization of a novel RCN-vectored vaccine that simultaneously expresses both F1 and V307 antigens. This dual antigen vaccine provided similar levels of protection against plague in both mice and prairie dogs as compared to simultaneous administration of the two single antigen constructs and was also shown to protect mice against an F1 negative strain of Y. pestis.. The equivalent safety, immunogenicity and efficacy profile of the dual RCN-F1/V307 construct warrants further evaluation in field efficacy studies in sylvatic plague endemic areas.

  7. A Recombinant Raccoon Poxvirus Vaccine Expressing both Yersinia pestis F1 and Truncated V Antigens Protects Animals against Lethal Plague.

    PubMed

    Rocke, Tonie E; Kingstad-Bakke, Brock; Berlier, Willy; Osorio, Jorge E

    2014-01-01

    In previous studies, we demonstrated in mice and prairie dogs that simultaneous administration of two recombinant raccoon poxviruses (rRCN) expressing Yersinia pestis antigens (F1 and V307-a truncated version of the V protein) provided superior protection against plague challenge compared to individual single antigen constructs. To reduce costs of vaccine production and facilitate implementation of a sylvatic plague vaccine (SPV) control program for prairie dogs, a dual antigen construct is more desirable. Here we report the construction and characterization of a novel RCN-vectored vaccine that simultaneously expresses both F1 and V307 antigens. This dual antigen vaccine provided similar levels of protection against plague in both mice and prairie dogs as compared to simultaneous administration of the two single antigen constructs and was also shown to protect mice against an F1 negative strain of Y. pestis. The equivalent safety, immunogenicity and efficacy profile of the dual RCN-F1/V307 construct warrants further evaluation in field efficacy studies in sylvatic plague endemic areas. PMID:26344891

  8. Human Tumor Antigens and Cancer Immunotherapy

    PubMed Central

    Vigneron, Nathalie

    2015-01-01

    With the recent developments of adoptive T cell therapies and the use of new monoclonal antibodies against the immune checkpoints, immunotherapy is at a turning point. Key players for the success of these therapies are the cytolytic T lymphocytes, which are a subset of T cells able to recognize and kill tumor cells. Here, I review the nature of the antigenic peptides recognized by these T cells and the processes involved in their presentation. I discuss the importance of understanding how each antigenic peptide is processed in the context of immunotherapy and vaccine delivery. PMID:26161423

  9. Immunostimulatory complexes containing Eimeria tenella antigens and low toxicity plant saponins induce antibody response and provide protection from challenge in broiler chickens.

    PubMed

    Berezin, V E; Bogoyavlenskyi, A P; Khudiakova, S S; Alexuk, P G; Omirtaeva, E S; Zaitceva, I A; Tustikbaeva, G B; Barfield, R C; Fetterer, R H

    2010-01-20

    Immunostimulating complexes (ISCOMs) are unique multimolecular structures formed by encapsulating antigens, lipids and triterpene saponins and are one of the most successful antigen delivery systems for microbial antigens. In the current study, both the route of administration and the antigen concentration of ISCOMs, containing Eimeria tenella antigens and saponins from native plants, were evaluated in their ability to stimulate humoral immunity and to protect chickens against a challenge infection with E. tenella. Broiler chickens were immunized with ISCOM preparations containing E. tenella antigens and the purified saponins Gg6, Ah6 and Gp7 isolated from Glycyrrhiza glabra, Aesculus hippocastanum and Gipsophila paniculata, respectively. The effects of the route of administration, dose of antigen and type of saponin used for construction of ISCOMs were evaluated for ability to stimulate serum IgG and IgM and to protect chickens against a homologous challenge. A single intranasal immunization was the most effective route for administering ISCOMs although the in ovo route was also quite effective. Dose titration experiments demonstrated efficacy after single immunization with various ISCOM doses but maximum effects were observed when ISCOMs contain 5-10mug antigen. Immunization of birds by any of the three routes with E. tenella antigens alone or antigens mixed with alum hydroxide adjuvant resulted in lower serum antibody and reduced protection to challenge relative to immunization with ISCOMs. Overall the results of this study confirm that significant immunostimulation and protection to challenge are achieved by immunization of chickens with ISCOMs containing purified saponins and native E. tenella antigens and suggest that ISCOMs may be successfully used to develop a safe and effective vaccine for prevention of avian coccidiosis. PMID:19879050

  10. Electron Microscopic Studies of the Antigen-Antibody Complex

    PubMed Central

    Easty, G. C.; Mercer, E. H.

    1958-01-01

    Electron micrographs of the ferritin antibody (rabbit) and ferritin (horse) complex have been obtained. The high iron content of the ferritin molecule (23 per cent Fe) allows its molecules to be recognized within the particles of precipitate. Three methods of visualizing the molecular distribution have been developed: (a) small particles of the precipitated complex have been dried on to electron microscope grids and either examined directly or first shadowed with metal and then examined, (b) the precipitate has been centrifuged to a plug which was embedded and thin sections cut from it for examination, (c) the bands formed by allowing antibody and antigen to diffuse together in agar gels have been fixed, embedded and sectioned. All methods have yielded pictures of the distribution of the ferritin within the complex which are broadly similar to what might have been expected from a somewhat irregular lattice as pictured in the Marrack-Heidelberger Lattice Theory. The antibody molecules are not clearly defined but appear as a halo of low density enveloping the ferritin clusters. The distance, centre to centre, between the ferritin molecules is variable, but is, on the average, in the range 200–400 Å. This is greater than the ferritin-ferritin contact distance (100 Å) and is thought to mean that the ferritin molecules are bridged by antibody molecules as pictured in the Lattice Theory. The bands produced in the gel-diffusion test contain islands of ferritin-antibody complex. When equivalent concentrations of reagents are used a single band of precipitate is formed. When excess of either antigen or antibody is used multiple bands of precipitate are formed which contain islands of ferritin antibody complex indistinguishable from those formed in the single band at equivalent concentrations, providing direct evidence for the formation of multiple bands from a single antigen. Ferritin-ferritin contacts have been observed within the complex. Under all the conditions of

  11. Carbohydrate-functionalized nanovaccines preserve HIV-1 antigen stability and activate antigen presenting cells

    PubMed Central

    Vela Ramirez, J.E.; Roychoudhury, R.; Habte, H.H.; Cho, M. W.; Pohl, N. L. B.; Narasimhan, B.

    2015-01-01

    The functionalization of polymeric nanoparticles with ligands that target specific receptors on immune cells offers the opportunity to tailor adjuvant properties by conferring pathogen mimicking attributes to the particles. Polyanhydride nanoparticles are promising vaccine adjuvants with desirable characteristics such as immunomodulation, sustained antigen release, activation of antigen presenting cells, and stabilization of protein antigens. These capabilities can be exploited to design nanovaccines against viral pathogens, such as HIV-1, due to the important role of dendritic cells and macrophages in viral spread. In this work, an optimized process was developed for carbohydrate functionalization of HIV-1 antigen-loaded polyanhydride nanoparticles. The carbohydrate-functionalized nanoparticles preserved antigenic properties upon release and also enabled sustained antigen release kinetics. Particle internalization was observed to be chemistry-dependent with positively charged nanoparticles being taken up more efficiently by dendritic cells. Up-regulation of the activation makers CD40 and CD206 was demonstrated with carboxymethyl-α-d-mannopyranosyl-(1,2)-d-mannopyranoside functionalized nanoparticles. The secretion of the cytokines IL-6 and TNF-α was shown to be chemistry-dependent upon stimulation with carbohydrate-functionalized nanoparticles. These results offer important new insights upon the interactions between carbohydrate-functionalized nanoparticles and antigen presenting cells and provide foundational information for the rational design of targeted nanovaccines against HIV-1. PMID:25068589

  12. Antigenic liposomes displaying CD22 ligands induce antigen-specific B cell apoptosis

    PubMed Central

    Macauley, Matthew S.; Pfrengle, Fabian; Rademacher, Christoph; Nycholat, Corwin M.; Gale, Andrew J.; von Drygalski, Annette; Paulson, James C.

    2013-01-01

    Antibodies confer humoral immunity but can also be harmful when they target an autoantigen, alloantigen, allergen, or biotherapeutic. New strategies are needed for antigen-specific suppression of undesired antibody responses, particularly to T cell–dependent protein antigens, because they elicit T cell help. Here we show that liposomal nanoparticles, displaying both antigen and glycan ligands of the inhibitory coreceptor CD22, induce a tolerogenic program that selectively causes apoptosis in mouse and human B cells. These SIGLEC-engaging tolerance-inducing antigenic liposomes (STALs, where SIGLEC is defined as sialic acid–binding Ig-like lectin) induced robust antigen-specific tolerance to protein antigens in mice, preventing subsequent immune response to challenge with the same antigen. Since development of inhibitory antibodies to FVIII is a serious problem in treatment of hemophilia A patients, we investigated the potential of this approach for inducing tolerance to FVIII in a hemophilia mouse model. STALs prevented formation of inhibitory FVIII antibodies, allowing for effective administration of FVIII to hemophilia mice to prevent bleeding. These findings suggest that STALs could be used to eliminate or prevent harmful B cell–mediated immune responses. PMID:23722906

  13. Cytostructural Localization of a Tumor-Associated Antigen

    NASA Astrophysics Data System (ADS)

    Howard, Donald R.; Batsakis, John G.

    1980-10-01

    Tumor cell membrane glycoproteins may be involved in the induction of tumor immunity or in the escape of tumors from immunologic defense mechanisms. Forty-four benign and malignant breast lesions were examined for the presence of a carbohydrate precursor antigen (T antigen) of the human blood group system MN. T antigen was demonstrated by means of an immunohistochemical technique to detect tissue binding of peanut agglutinin, a plant lectin, with affinity for T antigen. Malignant breast lesions showed a pattern of T antigen expression different from that of benign breast tissues. A possible role for T antigen in the modulation of the immune response to breast carcinoma is suggested.

  14. Antigen binding and capping by lymphocytes of genetic nonresponder mice.

    PubMed

    Dunham, E K; Unanue, E R; Benacerraf, B

    1972-08-01

    Radioautographic study of the binding of GAT-(125)I to spleen cells of genetic responder and nonresponder mice demonstrates that among mice not injected with antigen all strains have approximately the same number of antigen-binding cells; after injection with antigen the number of antigen-binding cells increases in responders but not in nonresponders. Nonresponders are shown to make antibody after injection with GAT complexed with an immunogenic carrier, demonstrating the presence of potentially functional B cells in responders and nonresponders alike. When incubated in the warm, antigen-binding cells of both responders and nonresponders concentrate antigen at one pole of the cell, forming caps. PMID:5043419

  15. Prevalence of hepatitis B surface antigen, hepatitis B e antigen and antibody, and antigen subtypes in atomic bomb survivors

    SciTech Connect

    Neriishi, K.; Kodama, K.; Akiba, S. |

    1995-11-01

    On the basis of previous studies showing an association between hepatitis B surface antigen (HBsAg) positivity and radiation exposure in atomic bomb (A-bomb) survivors, we investigated further the active state of hepatitis B virus (HBV) infection by incorporating tests of hepatitis B e antigen (HBeAg) and hepatitis B e antibody (anti-HBe) and HBsAg subtypes into our biennial health examinations. Among 6548 A-bomb survivors for whom HBsAg was assayed between July 1979 and July 1981, 129 persons were HBsAg positive. HBeAg and anti-HBe were measured in 104 of these persons and subtypes of HBsAg in 98 persons. Among those exposed to radiation (average liver dose 0.58 Sv), the odds ratio of HBsAg positivity tended to increase with radiation dose (P for trend = 0.024). The P values for association between the prevalence of HB e antigen and radiation dose were 0.094 and 0.17, respectively. The HB antigen subtype adr was predominant over other subtypes in both Hiroshima and Nagasaki, but the distribution of subtypes did not seem to differ in relation to radiation dose. These results suggested that A-bomb survivors remain in active state of HBV infection and that the mechanism(s) of seroconversion may be impaired. 29 refs., 6 tabs.

  16. Expression Cloning of Camelid Nanobodies Specific for Xenopus Embryonic Antigens

    PubMed Central

    Itoh, Keiji; Sokol, Sergei Y.

    2014-01-01

    Developmental biology relies heavily on the use of conventional antibodies, but their production and maintenance involves significant effort. Here we use an expression cloning approach to identify variable regions of llama single domain antibodies (known as nanobodies), which recognize specific embryonic antigens. A nanobody cDNA library was prepared from lymphocytes of a llama immunized with Xenopus embryo lysates. Pools of bacterially expressed cDNAs were sib-selected for the ability to produce specific staining patterns in gastrula embryos. Three different nanobodies were isolated: NbP1 and NbP3 stained yolk granules, while the reactivity of NbP7 was predominantly restricted to the cytoplasm and the cortex. The isolated nanobodies recognized specific protein bands in immunoblot analysis. A reverse proteomic approach identified NbP1 target antigen as EP45/Seryp, a serine protease inhibitor. Given the unique stability of nanobodies and the ease of their expression in diverse systems, we propose that nanobody cDNA libraries represent a promising resource for molecular markers for developmental biology. PMID:25285446

  17. Chimeric antigen receptor-modified T cells strike back.

    PubMed

    Frigault, Matthew J; Maus, Marcela V

    2016-07-01

    Chimeric antigen receptors (CARs) are engineered molecules designed to endow a polyclonal T-cell population with the ability to recognize tumor-associated surface antigens. In their simplest form, CARs comprise a targeting moiety in the form of a single-chain variable fragment from an antibody connected to various intracellular signaling domains allowing for T-cell activation. This powerful approach combines the specificity of an antibody with the cytotoxic ability of a T cell. There has been much excitement since early phase trials of CAR-T cells targeting CD19 expressed on B-cell malignancies demonstrated remarkable efficacy in inducing long-term, stable remissions in otherwise relapsed/refractory disease. Despite these successes, we have just begun to understand the intricacies of CAR biology with efforts underway to utilize this platform in the treatment of other, previously refractory malignancies. Challenges currently include identification of viable cancer targets, management strategies for potentially severe and irreversible toxicities and overcoming the immunosuppressive nature of the tumor microenvironment. This review will focus on basic CAR structure and function, previous success and new approaches aimed at the broader application of CAR-T-cell therapy. PMID:27021308

  18. Detection of Aspergillus antigens associated with invasive infection.

    PubMed Central

    Haynes, K A; Latge, J P; Rogers, T R

    1990-01-01

    Serial urine samples were collected from 33 neutropenic patients, 10 of whom developed invasive aspergillosis (IA) while undergoing bone marrow transplantation or remission induction therapy for leukemia. Concentrated urine samples from the infected patients were subjected to polyacrylamide gel electrophoresis, blotted, and then incubated with antiserum raised to a cell wall extract of Aspergillus fumigatus (anti-CW) or an immunoglobulin G monoclonal antibody to A. fumigatus galactomannan (EBA1). When IA patient urine blots were probed with anti-CW, major bands at 11 and 18 kilodaltons (kDa); intermediate bands at 13, 14, and 29 kDa; and minor bands at 38 and 44 kDa were seen. In contrast, EBA1 showed diffuse staining at molecular masses larger than 45 kDa and a single weak band at 21 kDa. Urine samples from the 23 patients with no evidence of IA were unreactive with both anti-CW and EBA1. These antigen bands are likely to represent immunodominant antigens which are excreted during IA and should play a valuable role in the development of rapid diagnostic tests for aspergillosis. Images PMID:2229387

  19. Expeditious chemoenzymatic synthesis of CD52 glycopeptide antigens

    PubMed Central

    Huang, Wei; Zhang, Xingyu; Ju, Tongzhong; Cummings, Richard D.; Wang, Lai-Xi

    2013-01-01

    CD52 is a GPI-anchored glycopeptide antigen found on sperm cells and human lymphocytes. Recent structural studies indicate that sperm-associated CD52 antigen carries both a complex type N-glycan and an O-glycan on the polypeptide backbone. To facilitate functional and immunological studies of distinct CD52 glycoforms, we report in this paper the first chemoenzymatic synthesis of homogeneous CD52 glycoforms carrying both N- and O-glycans. The synthetic strategy consists of two key steps: monosaccharide primers GlcNAc and GalNAc were first installed at the pre-determined N- and O-glycosylation sites by a facile solid-phase peptide synthesis, and then the N- and O-glycans were extended by respective enzymatic glycosylations. It was found that the endoglycosidase-catalyzed transglycosylation allowed efficient attachment of an intact N-glycan in a single step at the N-glycosylation site, while the recombinant human T-synthase could independently extend the O-linked GalNAc to form the core 1 O-glycan. This chemoenzymatic approach is highly convergent and permits easy construction of various homogeneous CD52 glycoforms from a common polypeptide precursor. In addition, the introduction of a latent thiol group in the form of protected cysteamine at the C-terminus of the CD52 glycoforms will enable site-specific conjugation to a carrier protein to provide immunogens for generating CD52 glycoform-specific antibodies for functional studies. PMID:20848033

  20. Human humoral responses to antigens of Mycobacterium tuberculosis: immunodominance of high-molecular-mass antigens.

    PubMed Central

    Laal, S; Samanich, K M; Sonnenberg, M G; Zolla-Pazner, S; Phadtare, J M; Belisle, J T

    1997-01-01

    The selection of antigens of Mycobacterium tuberculosis for most studies of humoral responses in tuberculosis patients has been restricted to molecules that were either immunodominant in immunized animals or amenable to biochemical purification rather than those that were reactive with the human immune system. Delineation of antigens that elicit humoral responses during the natural course of disease progression in humans has been hindered by the presence of cross-reactive antibodies to conserved regions on ubiquitous prokaryotic antigens in sera from healthy individuals and tuberculosis patients. The levels of cross-reactive antibodies in the sera were reduced by preadsorption with Escherichia coli lysates, prior to studying their reactivity against a large panel of M. tuberculosis antigens to which the human immune system may be exposed during natural infection and disease. Thus, reactivity against pools of secreted, cellular, and cell wall-associated antigens of M. tuberculosis was assessed by an enzyme-linked immunosorbent assay (ELISA). Initial results suggested that the secreted protein preparation contained antigens most frequently recognized by the humoral responses of pulmonary tuberculosis patients. The culture filtrate proteins were subsequently size fractionated by preparative polyacrylamide gel electrophoresis, characterized by reaction with murine monoclonal antibodies to known antigens of M. tuberculosis by an ELISA, and assessed for reactivity with tuberculous and nontuberculous sera. Results show that a secreted antigen of 88 kDa elicits a strong antibody response in a high percentage of patients with pulmonary tuberculosis. This and other antigens identified on the basis of their reactivity with patient sera may prove useful for developing serodiagnosis for tuberculosis. PMID:9008280

  1. Evaluating the protective efficacy of antigen combinations against Photobacterium damselae ssp. piscicida infections in cobia, Rachycentron canadum L.

    PubMed

    Ho, L-P; Chang, C-J; Liu, H-C; Yang, H-L; Lin, J H-Y

    2014-01-01

    Cobia, Rachycentron canadum L., is a very important aquatic fish that faces the risk of infection with the bacterial pathogen Photobacterium damselae ssp. piscicida, and there are few protective approaches available that use multiple antigens. In the present study, potent bivalent antigens from P. damselae ssp. piscicida showed more efficient protection than did single antigens used in isolation. In preparations of three antigens that included recombinant heat shock protein 60 (rHSP60), recombinant α-enolase (rENOLASE) and recombinant glyceraldehyde-3-phosphate dehydrogenase (rGAPDH), we analysed the doses that elicited the best immune responses and found that this occurred at a total of 30 μg of antigen per fish. Subsequently, vaccination of fish with rHSP60, rENOLASE and rGAPDH achieved 46.9, 52 and 25% relative per cent survival (RPS), respectively. In addition, bivalent subunit vaccines--combination I (rHSP60 + rENOLASE), combination II (rENOLASE + rGAPDH) and combination III (rHSP60 + rGAPDH)--were administered and the RPS in these groups (65.6, 64.0 and 48.4%, respectively), was higher than that achieved with single-antigen administration. Finally, in combination IV, the trivalent vaccine rHSP60 + rENOLASE + rGAPDH, the RPS was 1.6%. Taken together, our results suggest that combinations of two antigens may achieve a better efficiency than monovalent or trivalent antigens, and this may provide new insights into pathogen prevention strategies. PMID:24206018

  2. Structural and functional studies of a 50 kDa antigenic protein from Salmonella enterica serovar Typhi.

    PubMed

    Choong, Yee Siew; Lim, Theam Soon; Chew, Ai Lan; Aziah, Ismail; Ismail, Asma

    2011-04-01

    The high typhoid incidence rate in developing and under-developed countries emphasizes the need for a rapid, affordable and accessible diagnostic test for effective therapy and disease management. TYPHIDOT®, a rapid dot enzyme immunoassay test for typhoid, was developed from the discovery of a ∼50 kDa protein specific for Salmonella enterica serovar Typhi. However, the structure of this antigen remains unknown till today. Studies on the structure of this antigen are important to elucidate its function, which will in turn increase the efficiency of the development and improvement of the typhoid detection test. This paper described the predictive structure and function of the antigenically specific protein. The homology modeling approach was employed to construct the three-dimensional structure of the antigen. The built structure possesses the features of TolC-like outer membrane protein. Molecular docking simulation was also performed to further probe the functionality of the antigen. Docking results showed that hexamminecobalt, Co(NH(3))(6)(3+), as an inhibitor of TolC protein, formed favorable hydrogen bonds with D368 and D371 of the antigen. The single point (D368A, D371A) and double point (D368A and D371A) mutations of the antigen showed a decrease (single point mutation) and loss (double point mutations) of binding affinity towards hexamminecobalt. The architecture features of the built model and the docking simulation reinforced and supported that this antigen is indeed the variant of outer membrane protein, TolC. As channel proteins are important for the virulence and survival of bacteria, therefore this ∼50 kDa channel protein is a good specific target for typhoid detection test. PMID:21371926

  3. Evolutionary origin and human-specific expansion of a cancer/testis antigen gene family.

    PubMed

    Zhang, Qu; Su, Bing

    2014-09-01

    Cancer/testis (CT) antigens are encoded by germline genes and are aberrantly expressed in a number of human cancers. Interestingly, CT antigens are frequently involved in gene families that are highly expressed in germ cells. Here, we presented an evolutionary analysis of the CTAGE (cutaneous T-cell-lymphoma-associated antigen) gene family to delineate its molecular history and functional significance during primate evolution. Comparisons among human, chimpanzee, gorilla, orangutan, macaque, marmoset, and other mammals show a rapid and primate specific expansion of CTAGE family, which starts with an ancestral retroposition in the haplorhini ancestor. Subsequent DNA-based duplications lead to the prosperity of single-exon CTAGE copies in catarrhines, especially in humans. Positive selection was identified on the single-exon copies in comparison with functional constraint on the multiexon copies. Further sequence analysis suggests that the newly derived CTAGE genes may obtain regulatory elements from long terminal repeats. Our result indicates the dynamic evolution of primate genomes, and the recent expansion of this CT antigen family in humans may confer advantageous phenotypic traits during early human evolution. PMID:24916032

  4. Antigenic characterisation of lyssaviruses in South Africa.

    PubMed

    Ngoepe, Ernest; Fehlner-Gardiner, Christine; Wandeler, Alex; Sabeta, Claude

    2014-01-01

    There are at least six Lyssavirus species that have been isolated in Africa, which include classical rabies virus, Lagos bat virus, Mokola virus, Duvenhage virus, Shimoni bat virus and Ikoma lyssavirus. In this retrospective study, an analysis of the antigenic reactivity patterns of lyssaviruses in South Africa against a panel of 15 anti-nucleoprotein monoclonal antibodies was undertaken. A total of 624 brain specimens, collected between 2005 and 2009, confirmed as containing lyssavirus antigen by direct fluorescent antibody test, were subjected to antigenic differentiation. The lyssaviruses were differentiated into two species, namely rabies virus (99.5%) and Mokola virus (0.5%). Furthermore, rabies virus was further delineated into two common rabies biotypes in South Africa: canid and mongoose. Initially, it was found that the canid rabies biotype had two reactivity patterns; differential staining was observed with just one monoclonal antibody. This difference was likely to have been an artefact related to sample quality, as passage in cell culture restored staining. Mongoose rabies viruses were more heterogeneous, with seven antigenic reactivity patterns detected. Although Mokola viruses were identified in this study, prevalence and reservoir host species are yet to be established. These data demonstrate the usefulness of monoclonal antibody typing panels in lyssavirus surveillance with reference to emergence of new species or spread of rabies biotypes to new geographic zones. PMID:25685866

  5. Radioimmunoassay for hepatitis B core antigen

    SciTech Connect

    Sagnelli, E.; Pereira, C.; Triolo, G.; Vernace, S.; Paronetto, F.

    1982-02-01

    Serum hepatitis B core antigen (HBcAg) is an important marker of hepatitis B virus replication. We describe an easy, sensitive radioimmunoassay for determination of HBcAg in detergent-treated serum pellets containing Dane particles. Components of a commercial kit for anticore determination are used, and HBcAG is measured by competitive inhibition of binding of /sub 125/I-labeled antibodies to HBcAg with HBcAg-coated beads. We assayed for HBcAG in the sera of 49 patients with hepatitis B surface antigen (HBsAg)-positive chronic hepatitis, 50 patients with HBsAg-negative chronic hepatitis, and 30 healthy volunteers. HBcAg was detected in 41% of patients with HBsAg-positive chronic hepatitis but not in patients with HBsAg-negative chronic hepatitis. Hepatitis Be antigen (an antigen closely associated with the core of Dane particles) determined in the same sera by radioimmunoassay, was not detected in 50% of HBcAg-positive sera.

  6. Prostate-specific antigen (PSA) blood test

    MedlinePlus

    Prostate-specific antigen; Prostate cancer screening test ... special steps are needed to prepare for this test. ... Reasons for a PSA test: This test may be done to screen for prostate cancer. It is also used to follow people after prostate cancer ...

  7. The antigenic similarity of human low density lipoproteins.

    PubMed

    LEVINE, L; KAUFFMAN, D L; BROWN, R K

    1955-08-01

    THE FOLLOWING HUMAN LOW DENSITY LIPOPROTEINS WERE PREPARED: beta-lipoproteins of densities greater than 1.040 (A, B,C) a beta-lipoprotein of -S(1.063) = 5 (D), a lipoprotein of -S(1.063) = 19 (E), and a lipoprotein of -S(1.063) = 70 (F). Data are presented which show the immunochemical homogeneity of the D lipoprotein rabbit-anti-D lipoprotein system. Cross-reactions between antibody to A and D lipoproteins and the above lipoproteins have been demonstrated by quantitative precipitation, quanitative complement fixation, and single and double diffusion in agar. The antigenic similarities appear to be associated with the protein portions of the molecule. The antisera produced did not differentiate the low density lipoprotein classes. PMID:13242737

  8. Phenotypic and functional profiling of mouse intestinal antigen presenting cells.

    PubMed

    Harusato, Akihito; Flannigan, Kyle L; Geem, Duke; Denning, Timothy L

    2015-06-01

    The microbiota that populates the mammalian intestine consists of hundreds of trillions of bacteria that are separated from underlying immune cells by a single layer of epithelial cells. The intestinal immune system effectively tolerates components of the microbiota that provide benefit to the host while remaining poised to eliminate those that are harmful. Antigen presenting cells, especially macrophages and dendritic cells, play important roles in maintaining intestinal homeostasis via their ability to orchestrate appropriate responses to the microbiota. Paramount to elucidating intestinal macrophage- and dendritic cell-mediated functions is the ability to effectively isolate and identify these cells from a complex cellular environment. In this review, we summarize methodology for the isolation and phenotypic characterization of macrophages and DCs from the mouse intestine and discuss how this may be useful for gaining insight into the mechanisms by which mucosal immune tolerance is maintained. PMID:25891794

  9. Virion and soluble antigens of japanese encephalitis virus.

    PubMed Central

    Eckels, K H; Hetrick, F M; Russell, P K

    1975-01-01

    Japanese encephalitis virions contain a 58 X 10-3-molecular-weight envelope glycoprotein antigen that can be solubilized with sodium lauryl sulfate and separated from other virion structural polypeptides and viral ribonucleic acid by gel filtration chromatography. The 58 X 10-3-molecular-weight envelope protein is the major antigen responsible for cross-reactivity of the virion in complement fixation tests with other closely related arboviruses. A naturally occurring soluble complement-fixing antigen is found in Japanese encephalitis mouse brain preparations after removal of particulate antigens. After partial purification by gel filtration and isoelectric focusing, the 53 X 10-3-molecular weight soluble complement-fixing antigen is more type specific than the Japanese encephalitis envelope antigen in complement fixation tests. Further, the Japanese encephalitis soluble complement-fixing antigen is stable to treatment with sodium lauryl sulfate and 2-mercaptoethanol, whereas virion complement-fixing antigens are unstable after this treatment. Images PMID:47312

  10. Bacterial antigen detection in body fluids: methods for rapid antigen concentration and reduction of nonspecific reactions.

    PubMed Central

    Doskeland, S O; Berdal, B P

    1980-01-01

    We sought procedures which would allow a rapid concentration in high yield of bacterial antigens from tissue fluids of patients and which could be applied also to protein-rich fluids like serum. Ethanol precipitation at a subzero temperature with albumin added as an antigen coprecipitant made it possible to achieve a more than 20-fold concentration of antigen in 15 min and a 200-fold concentration in 45 min. Heat-stable antigens could be concentrated from protein-rich fluids (like serum) after the sample had been deproteinized by boiling. Such heating (100 degrees C, 3 min) also liberated bacterial polysaccharides from antibody complexes and elminated the nonspecific interference of serum in enzyme-linked immunosorbent assay. PMID:7372801

  11. Identification of genes encoding Schistosoma mansoni antigens using an antigenic sequence tag strategy.

    PubMed

    Zouain, C S; Azevedo, V A; Franco, G R; Pena, S D; Goes, A M

    1998-12-01

    Another approach for the identification of genes that code for antigenic products is described using an antigenic sequence tag (AST) strategy. A Schistosoma mansoni adult worm cDNA library was screened with affinity chromatography-purified immunoglobulins from infected human sera and a mild oxidation treatment with sodium periodate. From 1 or both ends of 30 cDNA clones, 30 ASTs were obtained. Of these, 22 were previously known Sm antigens. One clone had matches with entries for other organisms in the databases and 6 had homology with Sm-expressed sequence tags (EST) entries. These clones, together with another 1 that had no significant database matches, were considered new antigenic genes in S. mansoni. The strategy proved to be efficient for the identification of genes that could be used for immunological studies and evaluation as vaccine candidates. PMID:9920341

  12. Isolation and antigenicity of a 45-kilodalton Paracoccidioides brasiliensis immunodominant antigen.

    PubMed Central

    Ferreira-da-Cruz, M F; Galvão-Castro, B; Daniel-Ribeiro, C

    1992-01-01

    In the present study, we analyzed human antibody responses to Paracoccidioides brasiliensis cellular antigens by the immunoblot technique to identify specific cellular components and to investigate the existence of antigen profile differences among serological responses of paracoccidioidomycosis (PCM) patients. Among the 64 PCM serum samples analyzed, a relatively homogeneous immunoglobulin G response to P. brasiliensis antigens was observed. The polypeptide with a mass of 45 kDa was the most clinically important, since antibody to this antigen was detectable in 90.6% of PCM patients studied and the six individuals who did not produce antibody were either at the end of treatment or in the posttherapy period and had shown clinical recovery. These facts suggested that the presence of this antibody may be an indicator of active disease. The 45-kDa antigen was also the most specific antigen of the PCM humoral immune response, since it reacted with only 2 of 79 (2.5%) heterologous serum samples tested: 1 histoplasmosis case and 1 tuberculosis case. This polypeptide was isolated from gels by electroelution and, when tested by an immunoradiometric assay and immunoblotting, maintained its reactivity with PCM sera and also with anti-P. brasiliensis polyclonal antibodies raised in rabbits at the same sensitivity levels as those obtained in immunoblotting with a crude antigen. Since in our assays the 45-kDa polypeptide was the major P. brasiliensis antigen and seemed to be specific for PCM, its use in alternative diagnostic methods is promising, especially in patients suspected of having the juvenile clinical form of PCM often associated with negative double-immunodiffusion results. Images PMID:1612736

  13. [Identification of serological antigens in excretory-secretory antigens of Trichinella spiralis muscle larvae].

    PubMed

    Huang, Xuegui; He, Lifang; Yuan, Shishan; Liu, Hui; Wang, Xin

    2016-05-01

    Objective To isolate and identify serological antigens in the excretory-secretory antigens of Trichinella spiralis muscle larvae by the combination of co-immunoprecipitation and mass spectrometric technology. Methods The serum IgG of New Zealand rabbits infected with Trichinella spiralis was isolated by ammonium sulfate precipitation. Muscle larvaes were isolated from the infected muscle, and then purified and cultured to collect excretory-secretory antigens. Serological antigens in excretory-secretory antigens were isolated by co-immunoprecipitation and SDS-PAGE, and analyzed by Western blotting. Moreover, the protein bands in New Zealand rabbit sera infected with Trichinella spiralis were identified by mass spectrometric technology. Results Indirect ELISA showed that the titer of serum antibody of New Zealand rabbits infected with Trichinella spiralis was 1:6400. The rabbit serum IgG was effectively isolated by ammonium sulfate precipitation. A total of four clear protein bands of the excretory-secretory antigens of Trichinella spiralis were obtained by electrophoresis. Among them, three clear protein bands with relative molecular mass (Mr) being 40 kDa, 50 kDa and 83 kDa were recognized by the rabbit sera infected with Trichinella spiralis but not recognized by the normal rabbit sera. The obtained four protein molecules were confirmed as serine protease, specific serine protease of muscle larvae, 43 kDa secreted glycoprotein and 53 kDa excretory-secretory antigen. Conclusion Four proteins were obtained from the excretory-secretory antigens of Trichinella spiralis muscle larvae by combination of co-immunoprecipitation and mass spectrometric technique analysis, which provided new sources and insights for the diagnosis and vaccine candidates of Trichinellosis. PMID:27126943

  14. Natural Mutations in Streptococcus agalactiae Resulting in Abrogation of β Antigen Production

    PubMed Central

    Vasilyeva, Anastasia; Santos Sanches, Ilda; Florindo, Carlos; Dmitriev, Alexander

    2015-01-01

    Streptococcus agalactiae genome encodes 21 two-component systems (TCS) and a variety of regulatory proteins in order to control gene expression. One of the TCS, BgrRS, comprising the BgrR DNA-binding regulatory protein and BgrS sensor histidine kinase, was discovered within a putative virulence island. BgrRS influences cell metabolism and positively control the expression of bac gene, coding for β antigen at transcriptional level. Inactivation of bgrR abrogated bac gene expression and increased virulence properties of S. agalactiae. In this study, a total of 140 strains were screened for the presence of bac gene, and the TCS bgrR and bgrS genes. A total of 53 strains carried the bac, bgrR and bgrS genes. Most of them (48 strains) expressed β antigen, while five strains did not express β antigen. Three strains, in which bac gene sequence was intact, while bgrR and/or bgrS genes had mutations, and expression of β antigen was absent, were complemented with a constructed plasmid pBgrRS(P) encoding functionally active bgrR and bgrS gene alleles. This procedure restored expression of β antigen indicating the crucial regulatory role of TCS BgrRS. The complemented strain A49V/BgrRS demonstrated attenuated virulence in intraperitoneal mice model of S. agalactiae infection compared to parental strain A49V. In conclusion we showed that disruption of β antigen expression is associated with: i) insertion of ISSa4 upstream the bac gene just after the ribosomal binding site; ii) point mutation G342A resulting a stop codon TGA within the bac gene and a truncated form of β antigen; iii) single deletion (G) in position 439 of the bgrR gene resulting in a frameshift and the loss of DNA-binding domain of the BgrR protein, and iv) single base substitutions in bgrR and bgrS genes causing single amino acid substitutions in BgrR (Arg187Lys) and BgrS (Arg252Gln). The fact that BgrRS negatively controls virulent properties of S. agalactiae gives a novel clue for understanding of S

  15. Natural Mutations in Streptococcus agalactiae Resulting in Abrogation of β Antigen Production.

    PubMed

    Vasilyeva, Anastasia; Santos Sanches, Ilda; Florindo, Carlos; Dmitriev, Alexander

    2015-01-01

    Streptococcus agalactiae genome encodes 21 two-component systems (TCS) and a variety of regulatory proteins in order to control gene expression. One of the TCS, BgrRS, comprising the BgrR DNA-binding regulatory protein and BgrS sensor histidine kinase, was discovered within a putative virulence island. BgrRS influences cell metabolism and positively control the expression of bac gene, coding for β antigen at transcriptional level. Inactivation of bgrR abrogated bac gene expression and increased virulence properties of S. agalactiae. In this study, a total of 140 strains were screened for the presence of bac gene, and the TCS bgrR and bgrS genes. A total of 53 strains carried the bac, bgrR and bgrS genes. Most of them (48 strains) expressed β antigen, while five strains did not express β antigen. Three strains, in which bac gene sequence was intact, while bgrR and/or bgrS genes had mutations, and expression of β antigen was absent, were complemented with a constructed plasmid pBgrRS(P) encoding functionally active bgrR and bgrS gene alleles. This procedure restored expression of β antigen indicating the crucial regulatory role of TCS BgrRS. The complemented strain A49V/BgrRS demonstrated attenuated virulence in intraperitoneal mice model of S. agalactiae infection compared to parental strain A49V. In conclusion we showed that disruption of β antigen expression is associated with: i) insertion of ISSa4 upstream the bac gene just after the ribosomal binding site; ii) point mutation G342A resulting a stop codon TGA within the bac gene and a truncated form of β antigen; iii) single deletion (G) in position 439 of the bgrR gene resulting in a frameshift and the loss of DNA-binding domain of the BgrR protein, and iv) single base substitutions in bgrR and bgrS genes causing single amino acid substitutions in BgrR (Arg187Lys) and BgrS (Arg252Gln). The fact that BgrRS negatively controls virulent properties of S. agalactiae gives a novel clue for understanding of S

  16. Immunoediting and Antigen Loss: Overcoming the Achilles Heel of Immunotherapy with Antigen Non-Specific Therapies

    PubMed Central

    Monjazeb, Arta Monir; Zamora, Anthony E.; Grossenbacher, Steven K.; Mirsoian, Annie; Sckisel, Gail D.; Murphy, William J.

    2013-01-01

    Cancer immunotherapy has emerged as a mainstream therapy option in the battle against cancer. Pre-clinical data demonstrates the ability of immunotherapy to harness the immune system to fight disseminated malignancy. Clinical translation has failed to recapitulate the promising results of pre-clinical studies although there have been some successes. In this review we explore some of the short-comings of cancer immunotherapy that have limited successful clinical translation. We will give special consideration to what we consider the most formidable hurdle to successful cancer immunotherapy: tumor-induced immune suppression and immune escape. We will discuss the need for antigen-specific immune responses for successful immunotherapy but also consider the need for antigen specificity as an Achilles heel of immunotherapy given tumor heterogeneity, immune editing, and antigen loss. Finally, we will discuss how combinatorial strategies may overcome some of the pitfalls of antigen specificity and highlight recent studies from our lab which suggest that the induction of antigen non-specific immune responses may also produce robust anti-tumor effects and bypass the need for antigen specificity. PMID:23898464

  17. Comparison of Schistosoma mansoni Soluble Cercarial Antigens and Soluble Egg Antigens for Serodiagnosing Schistosome Infections

    PubMed Central

    Doenhoff, Mike; Aitken, Cara; Bailey, Wendi; Ji, Minjun; Dawson, Emily; Gilis, Henk; Spence, Grant; Alexander, Claire; van Gool, Tom

    2012-01-01

    A Schistosoma mansoni cercarial antigen preparation (cercarial transformation fluid – SmCTF) was evaluated for detection of anti-schistosome antibodies in human sera in 4 collaborating laboratories. The performance of SmCTF was compared with that of S. mansoni egg antigens (SmSEA) in an indirect enzyme-immunoassay (ELISA) antigen assay, the latter being used routinely in 3 of the 4 participating laboratories to diagnose S. mansoni and S. haematobium infections. In the fourth laboratory the performance of SmCTF was compared with that of S. japonicum egg antigens (SjSEA) in ELISA for detection of anti-S. japonicum antibodies. In all 4 laboratories the results given by SmCTF in ELISA were very similar to those given by the antigen preparation routinely used in the respective laboratory to detect anti-schistosome antibodies in human infection sera. In so far as the ELISA results from SmCTF are thus so little different from those given by schistosome egg antigens and also cheaper to produce, the former is a potentially useful new diagnostic aid for schistosomiasis. PMID:23029577

  18. Mapping Antigenic Motifs in the Trypomastigote Small Surface Antigen from Trypanosoma cruzi

    PubMed Central

    Balouz, Virginia; Cámara, María de los Milagros; Cánepa, Gaspar E.; Carmona, Santiago J.; Volcovich, Romina; Gonzalez, Nicolás; Altcheh, Jaime; Agüero, Fernán

    2015-01-01

    The trypomastigote small surface antigen (TSSA) is a mucin-like molecule from Trypanosoma cruzi, the etiological agent of Chagas disease, which displays amino acid polymorphisms in parasite isolates. TSSA expression is restricted to the surface of infective cell-derived trypomastigotes, where it functions as an adhesin and engages surface receptors on the host cell as a prerequisite for parasite internalization. Previous results have established TSSA-CL, the isoform encoded by the CL Brener clone, as an appealing candidate for use in serology-based diagnostics for Chagas disease. Here, we used a combination of peptide- and recombinant protein-based tools to map the antigenic structure of TSSA-CL at maximal resolution. Our results indicate the presence of different partially overlapping B-cell epitopes clustering in the central portion of TSSA-CL, which contains most of the polymorphisms found in parasite isolates. Based on these results, we assessed the serodiagnostic performance of a 21-amino-acid-long peptide that spans TSSA-CL major antigenic determinants, which was similar to the performance of the previously validated glutathione S-transferase (GST)-TSSA-CL fusion molecule. Furthermore, the tools developed for the antigenic characterization of the TSSA antigen were also used to explore other potential diagnostic applications of the anti-TSSA humoral response in Chagasic patients. Overall, our present results provide additional insights into the antigenic structure of TSSA-CL and support this molecule as an excellent target for molecular intervention in Chagas disease. PMID:25589551

  19. Carbohydrate-functionalized nanovaccines preserve HIV-1 antigen stability and activate antigen presenting cells.

    PubMed

    Vela Ramirez, J E; Roychoudhury, R; Habte, H H; Cho, M W; Pohl, N L B; Narasimhan, B

    2014-01-01

    The functionalization of polymeric nanoparticles with ligands that target specific receptors on immune cells offers the opportunity to tailor adjuvant properties by conferring pathogen mimicking attributes to the particles. Polyanhydride nanoparticles are promising vaccine adjuvants with desirable characteristics such as immunomodulation, sustained antigen release, activation of antigen presenting cells (APCs), and stabilization of protein antigens. These capabilities can be exploited to design nanovaccines against viral pathogens, such as HIV-1, due to the important role of dendritic cells (DCs) and macrophages in viral spread. In this work, an optimized process was developed for carbohydrate functionalization of HIV-1 antigen-loaded polyanhydride nanoparticles. The carbohydrate-functionalized nanoparticles preserved antigenic properties upon release and also enabled sustained antigen release kinetics. Particle internalization was observed to be chemistry-dependent with positively charged nanoparticles being taken up more efficiently by DCs. Up-regulation of the activation makers CD40 and CD206 was demonstrated with carboxymethyl-α-d-mannopyranosyl-(1,2)-d-mannopyranoside functionalized nanoparticles. The secretion of the cytokines IL-6 and TNF-α was shown to be chemistry-dependent upon stimulation with carbohydrate-functionalized nanoparticles. These results offer important new insights upon the interactions between carbohydrate-functionalized nanoparticles and APCs and provide foundational information for the rational design of targeted nanovaccines against HIV-1. PMID:25068589

  20. Immunity to Intracellular Salmonella Depends on Surface-associated Antigens

    PubMed Central

    Claudi, Beatrice; Mazé, Alain; Schemmer, Anne K.; Kirchhoff, Dennis; Schmidt, Alexander; Burton, Neil; Bumann, Dirk

    2012-01-01

    Invasive Salmonella infection is an important health problem that is worsening because of rising antimicrobial resistance and changing Salmonella serovar spectrum. Novel vaccines with broad serovar coverage are needed, but suitable protective antigens remain largely unknown. Here, we tested 37 broadly conserved Salmonella antigens in a mouse typhoid fever model, and identified antigen candidates that conferred partial protection against lethal disease. Antigen properties such as high in vivo abundance or immunodominance in convalescent individuals were not required for protectivity, but all promising antigen candidates were associated with the Salmonella surface. Surprisingly, this was not due to superior immunogenicity of surface antigens compared to internal antigens as had been suggested by previous studies and novel findings for CD4 T cell responses to model antigens. Confocal microscopy of infected tissues revealed that many live Salmonella resided alone in infected host macrophages with no damaged Salmonella releasing internal antigens in their vicinity. In the absence of accessible internal antigens, detection of these infected cells might require CD4 T cell recognition of Salmonella surface-associated antigens that could be processed and presented even from intact Salmonella. In conclusion, our findings might pave the way for development of an efficacious Salmonella vaccine with broad serovar coverage, and suggest a similar crucial role of surface antigens for immunity to both extracellular and intracellular pathogens. PMID:23093937

  1. 21 CFR 660.40 - Hepatitis B Surface Antigen.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Hepatitis B Surface Antigen. 660.40 Section 660.40...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.40 Hepatitis B Surface Antigen. (a) Proper name and definition. The proper name of this...

  2. 21 CFR 660.40 - Hepatitis B Surface Antigen.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Hepatitis B Surface Antigen. 660.40 Section 660.40...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.40 Hepatitis B Surface Antigen. (a) Proper name and definition. The proper name of this...

  3. Identification of Mycobacterium tuberculosis antigens in Seibert fractions by immunoblotting.

    PubMed Central

    Coates, S R; Hansen, D; Schecter, G; Slutkin, G; Hopewell, P; Affronti, L; Echenberg, D F

    1986-01-01

    Seibert fractions prepared from Mycobacterium tuberculosis culture filtrates were evaluated by immunoblotting with a serum pool from patients with active pulmonary tuberculosis. Antibody activity was observed primarily with antigens in the polysaccharide II and A protein fractions; these fractions were further evaluated by immunoblotting with sera from individual patients with tuberculosis, from individuals without tuberculosis and positive for the purified protein derivative antigen skin test, and from individuals negative for the purified protein derivative antigen skin test. The antigens identified in the protein A fraction, a 32,000-molecular-weight antigen and a heterogeneous high-molecular-weight antigen, reacted with antibody found in sera from all patients with tuberculosis and with antibody from over 25% of the control individuals. A 10,000-molecular-weight antigen, a 30,000- to 44,000-molecular-weight antigen, and a heterogeneous high-molecular-weight antigen were observed in the polysaccharide II fraction; these antigens reacted with serum antibody from 70% or more of the patients with tuberculosis and with antibody from 20 to 70% of the control individuals. One of the antigens, with a molecular weight ranging from 17,000 to 28,000 in the polysaccharide II fraction, reacted with antibody in 64% of the sera from patients with tuberculosis but with only 1 of 15 control normal sera. This antigen may elicit an antibody response specifically associated with tuberculosis. Images PMID:3088029

  4. 21 CFR 660.40 - Hepatitis B Surface Antigen.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Hepatitis B Surface Antigen. 660.40 Section 660.40...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.40 Hepatitis B Surface Antigen. (a) Proper name and definition. The proper name of this...

  5. 21 CFR 660.40 - Hepatitis B Surface Antigen.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Hepatitis B Surface Antigen. 660.40 Section 660.40...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.40 Hepatitis B Surface Antigen. (a) Proper name and definition. The proper name of this...

  6. 21 CFR 660.40 - Hepatitis B Surface Antigen.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Hepatitis B Surface Antigen. 660.40 Section 660.40...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.40 Hepatitis B Surface Antigen. (a) Proper name and definition. The proper name of this...

  7. Antigenic characterization of dimorphic surface protein in Mycobacterium tuberculosis.

    PubMed

    Matsuba, Takashi; Siddiqi, Umme Ruman; Hattori, Toshio; Nakajima, Chie; Fujii, Jun; Suzuki, Yasuhiko

    2016-05-01

    The Mycobacterium tuberculosis Rv0679c protein is a surface protein that contributes to host cell invasion. We previously showed that a single nucleotide transition of the Rv0679c gene leads to a single amino acid substitution from asparagine to lysine at codon 142 in the Beijing genotype family. In this study, we examined the immunological effect of this substitution. Several recombinant proteins were expressed in Escherichia coli and Mycobacterium smegmatis and characterized with antisera and two monoclonal antibodies named 5D4-C2 and 8G10-H2. A significant reduction of antibody binding was detected by enzyme-linked immunosorbent assay (ELISA) and western blot analysis in the Lys142-type protein. This reduction of 8G10-H2 binding was more significant, with the disappearance of a signal in the proteins expressed by recombinant mycobacteria in western blot analysis. In addition, epitope mapping analysis of the recombinant proteins showed a linear epitope by 5D4-C2 and a discontinuous epitope by 8G10-H2. The antibody recognizing the conformational epitope detected only mycobacterial Asn142-type recombinant protein. Our results suggest that a single amino acid substitution of Rv0679c has potency for antigenic change in Beijing genotype strains. PMID:27190237

  8. The intracellular pathway for the presentation of vitamin B-related antigens by the antigen-presenting molecule MR1.

    PubMed

    McWilliam, Hamish E G; Eckle, Sidonia B G; Theodossis, Alex; Liu, Ligong; Chen, Zhenjun; Wubben, Jacinta M; Fairlie, David P; Strugnell, Richard A; Mintern, Justine D; McCluskey, James; Rossjohn, Jamie; Villadangos, Jose A

    2016-05-01

    The antigen-presenting molecule MR1 presents vitamin B-related antigens (VitB antigens) to mucosal-associated invariant T (MAIT) cells through an uncharacterized pathway. We show that MR1, unlike other antigen-presenting molecules, does not constitutively present self-ligands. In the steady state it accumulates in a ligand-receptive conformation within the endoplasmic reticulum. VitB antigens reach this location and form a Schiff base with MR1, triggering a 'molecular switch' that allows MR1-VitB antigen complexes to traffic to the plasma membrane. These complexes are endocytosed with kinetics independent of the affinity of the MR1-ligand interaction and are degraded intracellularly, although some MR1 molecules acquire new ligands during passage through endosomes and recycle back to the surface. MR1 antigen presentation is characterized by a rapid 'off-on-off' mechanism that is strictly dependent on antigen availability. PMID:27043408

  9. Complex Minigene Library Vaccination for Discovery of Pre-Erythrocytic Plasmodium T Cell Antigens

    PubMed Central

    Stone, Brad C.; Kas, Arnold; Billman, Zachary P.; Fuller, Deborah H.; Fuller, James T.; Shendure, Jay; Murphy, Sean C.

    2016-01-01

    Development of a subunit vaccine targeting liver-stage Plasmodium parasites requires the identification of antigens capable of inducing protective T cell responses. However, traditional methods of antigen identification are incapable of evaluating T cell responses against large numbers of proteins expressed by these parasites. This bottleneck has limited development of subunit vaccines against Plasmodium and other complex intracellular pathogens. To address this bottleneck, we are developing a synthetic minigene technology for multi-antigen DNA vaccines. In an initial test of this approach, pools of long (150 bp) antigen-encoding oligonucleotides were synthesized and recombined into vectors by ligation-independent cloning to produce two DNA minigene library vaccines. Each vaccine encoded peptides derived from 36 (vaccine 1) and 53 (vaccine 2) secreted or transmembrane pre-erythrocytic P. yoelii proteins. BALB/cj mice were vaccinated three times with a single vaccine by biolistic particle delivery (gene gun) and screened for interferon-γ-producing T cell responses by ELISPOT. Library vaccination induced responses against four novel antigens. Naïve mice exposed to radiation-attenuated sporozoites mounted a response against only one of the four novel targets (PyMDH, malate dehydrogenase). The response to PyMDH could not be recalled by additional homologous sporozoite immunizations but could be partially recalled by heterologous cross-species sporozoite exposure. Vaccination against the dominant PyMDH epitope by DNA priming and recombinant Listeria boosting did not protect against sporozoite challenge. Improvements in library design and delivery, combined with methods promoting an increase in screening sensitivity, may enable complex minigene screening to serve as a high-throughput system for discovery of novel T cell antigens. PMID:27070430

  10. Complex Minigene Library Vaccination for Discovery of Pre-Erythrocytic Plasmodium T Cell Antigens.

    PubMed

    Stone, Brad C; Kas, Arnold; Billman, Zachary P; Fuller, Deborah H; Fuller, James T; Shendure, Jay; Murphy, Sean C

    2016-01-01

    Development of a subunit vaccine targeting liver-stage Plasmodium parasites requires the identification of antigens capable of inducing protective T cell responses. However, traditional methods of antigen identification are incapable of evaluating T cell responses against large numbers of proteins expressed by these parasites. This bottleneck has limited development of subunit vaccines against Plasmodium and other complex intracellular pathogens. To address this bottleneck, we are developing a synthetic minigene technology for multi-antigen DNA vaccines. In an initial test of this approach, pools of long (150 bp) antigen-encoding oligonucleotides were synthesized and recombined into vectors by ligation-independent cloning to produce two DNA minigene library vaccines. Each vaccine encoded peptides derived from 36 (vaccine 1) and 53 (vaccine 2) secreted or transmembrane pre-erythrocytic P. yoelii proteins. BALB/cj mice were vaccinated three times with a single vaccine by biolistic particle delivery (gene gun) and screened for interferon-γ-producing T cell responses by ELISPOT. Library vaccination induced responses against four novel antigens. Naïve mice exposed to radiation-attenuated sporozoites mounted a response against only one of the four novel targets (PyMDH, malate dehydrogenase). The response to PyMDH could not be recalled by additional homologous sporozoite immunizations but could be partially recalled by heterologous cross-species sporozoite exposure. Vaccination against the dominant PyMDH epitope by DNA priming and recombinant Listeria boosting did not protect against sporozoite challenge. Improvements in library design and delivery, combined with methods promoting an increase in screening sensitivity, may enable complex minigene screening to serve as a high-throughput system for discovery of novel T cell antigens. PMID:27070430

  11. Cloning of the murine counterpart of the tumor-associated antigen H-L6: Epitope mapping of the human and murine L6 antigens

    SciTech Connect

    Edwards, C.P.; Farr, A.G.; Marken, J.S. |

    1995-10-03

    The murine monoclonal antibody (mAb) L6 was raised against human lung carcinoma cells and found to recognize an antigen which is highly expressed on lung, breast, colon, and ovarian carcinomas. Promising results in phase 1 clinical studies with this antibody or its chimerized counterpart suggest the antigen recognized by mAb L6 (H-L6) is an attractive target for monoclonal antibody-based cancer therapy. Further development of L6 as an anti-tumor-targeting agent would benefit from the development of a murine model. However, initial attempts to develop such a model were hampered by our inability to generate antibodies against the murine homologue of the L6 antigen, M-L6. Here we describe the preparation of the mAb 12A8, which was raised against murine thymic epithelial cells, the tissue distribution of the murine antigen recognized by 12A8, the cloning of a cDNA encoding the 12A8 target antigen, and the demonstration that this antigen is M-L6. Using H-L6/M-L6 chimeric proteins, we show that the region of the M-L6 protein recognized by mAb 12A8 corresponds to the region of H-L6 recognized by mAb L6. There are five amino acid differences in the regions of the H-L6 and M-L6 proteins recognized by L6 and 12A8, respectively. We further mapped the protein epitope recognized by L6 by individually exchanging each of these residues in H-L6 with the corresponding residue found in M-L6. Substitution of the single H-L6 residue Leu122 with Ser resulted in the H-L6 mutant HL6-L122S which failed to bind L6. The HL6-L122S mutant also failed to bind 12A8. Substituting residue Ser122 in M-L6 with Leu did not prevent 12A8 binding and did not result in L6 binding. The availability of mAb 12A8 and the finding that it recognizes the same region of M-L6 that is recognized by L6 on H-L6 might allow the development of a murine tumor model in which the L6 antigen can be further evaluated as a therapeutic target. 31 refs., 7 figs.

  12. Crystallization and preliminary X-ray diffraction studies of antigen--antibody complexes.

    PubMed

    Chitarra-Guillon, V; Souchon, H; Boulot, G; Riottot, M M; Mariuzza, R; Tello, D; Poljak, R J

    1988-08-01

    Monoclonal antibodies of predefined specificity have been purified and crystallized as single components or complexed with their specific antigens. The intersegmental flexibility of antibody molecules has imposed the strategy of attempting to crystallize their Fab fragments separately. Intrasegmental mobility in Fabs has rarely been an obstacle to their crystallization. The immune system, however, provides a large functional and structural diversity of antibody molecules suitable for crystallization and X-ray diffraction studies. PMID:3147699

  13. The actin cytoskeleton coordinates the signal transduction and antigen processing functions of the B cell antigen receptor

    PubMed Central

    LIU, Chaohong; FALLEN, Margaret K.; MILLER, Heather; UPADHYAYA, Arpita; SONG, Wenxia

    2014-01-01

    The B cell antigen receptor (BCR) is the sensor on the B cell surface that surveys foreign molecules (antigen) in our bodies and activates B cells to generate antibody responses upon encountering cognate antigen. The binding of antigen to the BCR induces signaling cascades in the cytoplasm, which provides the first signal for B cell activation. Subsequently, BCRs internalize and target bound antigen to endosomes, where antigen is processed into T cell recognizable forms. T helper cells generate the second activation signal upon binding to antigen presented by B cells. The optimal activation of B cells requires both signals, thereby depending on the coordination of BCR signaling and antigen transport functions. Antigen binding to the BCR also induces rapid remodeling of the cortical actin network of B cells. While being initiated and controlled by BCR signaling, recent studies reveal that this actin remodeling is critical for both the signaling and antigen processing functions of the BCR, indicating a role for actin in coordinating these two pathways. Here we will review previous and recent studies on actin reorganization during BCR activation and BCR-mediated antigen processing, and discuss how actin remodeling translates BCR signaling into rapid antigen uptake and processing while providing positive and negative feedback to BCR signaling. PMID:24999354

  14. Relationship between tumour morphology, antigen and antibody distribution measured by fusion of digital phosphor and photographic images.

    PubMed

    Flynn, A A; Boxer, G M; Begent, R H; Pedley, R B

    2001-04-01

    Antibody-directed cancer therapy has achieved encouraging responses despite poor localisation in tumour. This discrepancy may be attributed to heterogeneity of antibody delivery within tumours: preferential localisation in the better perfused and more radio- and chemosensitive areas provides a therapeutic advantage. Antibody distribution depends upon the interactions of many complex mechanisms. We have started to investigate this by studying the single and combined influence of two tumour-associated parameters, morphology and antigen, on antibody distribution. Tumours were taken from mice at 24 and 48 h after 125I-labeled anti-CEA antibody injection. Images of antibody distribution, antigen distribution and tumour morphology were acquired by radioluminography, radioimmunoluminography and digitisation of morphology, respectively. Image registration allowed correlation of pixel values of antibody distribution with corresponding values of antigen distribution and morphology. At 24 h there was little correlation between antibody and antigen distribution, but strong positive correlation between antibody distribution and morphology, with preferential localisation in viable tumour areas. Correlation between antibody distribution and morphology fell significantly between 24 and 48 h, while that between antibody and antigen distribution remained low. However, the combination of morphology and antigen distribution showed the largest influence on antibody distribution. This novel technique demonstrates potential for combining multi-factor information in order to provide a greater understanding of antibody distribution in tumours, facilitating the optimisation of clinical treatments. PMID:11401028

  15. Three types of response to mycobacterial antigens.

    PubMed

    Lockwood, D N; McManus, I C; Stanford, J L; Thomas, A; Abeyagunawardana, D V

    1987-11-01

    Responses to pathogenic and environmental mycobacteria were assessed in 2680 children in India and Sri Lanka using quadruple skin-testing with new tuberculins. Statistical analysis of the results, by fitting a log-linear mixture model, confirmed the presence of three different categories of response: category 2 non-responders (about 55%) did not react to any component of the mycobacteria; category 3 responders (about 40%) were sensitive to the species-specific group iv antigens; and category 1 responders (about 5%) were sensitive to the group i antigens which are common to all mycobacteria. The proportions of the three response categories vary with age and with BCG status. BCG vaccination and increasing age act independently to decrease the proportion of category 2 non-responders and increase the proportion of category 3 individuals. BCG vaccination and increasing age interact to increase the proportion of category 1 responders. PMID:3443158

  16. Yeast retrotransposon particles as antigen delivery systems.

    PubMed

    Kingsman, A J; Burns, N R; Layton, G T; Adams, S E

    1995-05-31

    The development of technologies to produce recombinant proteins for use in the pharmaceutical industry has made substantial advances, in particular in the area of generating antigens containing multiple copies of important immunological regions. One such antigen-carrier system is based on the ability of a protein encoded by the yeast retrotransposon, Ty, to self-assemble into virus-like particles. Ty-fusion proteins retain this ability to form particles, and a range of hybrid VLPs carrying a variety of heterologous antigens have been produced and shown to induce potent immune responses. In particular, hybrid VLPs carrying the core protein p24 of HIV (p24-VLPs) have been shown to induce antibody and T-cell proliferative responses in both experimental animals and human volunteers, and immunization of rabbits with VLPs carrying the principal neutralizing determinant of HIV (V3-VLPs) resulted in the induction of neutralizing antibody responses and T-cell proliferation. Further studies with V3-VLPs have shown that this particulate antigen stimulates enhanced V3-specific lymphoproliferative responses as compared to whole recombinant gp120 or to V3 peptide conjugated to albumin. The V3-VLPs also induce potent CTL responses following immunization of mice in the absence of adjuvant. These responses are MHC class I restricted and are mediated by CD8-positive cells. These observations therefore demonstrate that hybrid Ty-VLPs induce both humoral and cellular immune responses against HIV and suggest that these immunogens may be important in combatting AIDS and other infections. PMID:7625653

  17. Murine lung immunity to a soluble antigen

    SciTech Connect

    Weissman, D.N.; Bice, D.E.; Siegel, D.W.; Schuyler, M.R. Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM )

    1990-01-01

    To test the hypothesis that soluble antigen triggers antigen-specific immunity in the respiratory tract in a fashion similar to that reported for particulate antigen, the authors examined the development of local and systemic immunity in C57BL/6 mice after intratracheal (i.t.) instillation of a soluble, large molecular weight protein neoantigen, keyhole limpet hemocyanin (KLH). Specific anti-KLH IgG and IgM first appeared in the sera of mice on day 7 after primary immunization by i.t. instillation of KLH, with specific serum antibody concentrations remaining elevated at day 11. Cultured spleen cells obtained from mice after primary immunization released only low levels of specific IgM, and no specific IgG. No specific antibody was released by cell populations derived from the lungs of animals undergoing primary immunization. When presensitized mice were given an i.t. challenge with KLH, responses differed markedly from those following primary immunization. Lung-associated lymph node cell populations from challenged mice released greater amounts of specific antibody earlier than did cell populations, which after primary immunization had not released detectable amounts of specific antibody in vitro, released easily detectable amounts of specific antibody after challenge. Thus, i.t. instillation of soluble KLH generates specific immunity in mice in a fashion similar to that reported for particulate antigen. Specific responses following primary immunization occur largely within draining lung-associated lymph nodes. In contrast, presensitized animals challenged i.t. with soluble KLH mount secondary antibody responses in both lung and lung-associated lymph nodes.

  18. Class II HLA antigens in multiple sclerosis.

    PubMed Central

    Miller, D H; Hornabrook, R W; Dagger, J; Fong, R

    1989-01-01

    HLA typing in Wellington revealed a stronger association of multiple sclerosis with DR2 than with DQw1. The association with DQw1 appeared to be due to linkage disequilibrium of this antigen with DR2. These results, when considered in conjunction with other studies, are most easily explained by the hypothesis that susceptibility to multiple sclerosis is influenced by multiple risk factors, with DR2 being an important risk factor in Caucasoid populations. PMID:2732726

  19. Antigenic differences among NDV strains of different genotypes used in vaccine formulation affects viral shedding after a virulent challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Strains of Newcastle disease virus (NDV) can be separated into genotypes based on genome differences even though they are antigenically considered to be of a single serotype. It is widely recognized that an efficacious Newcastle disease (ND) vaccine made with any NDV does induce protection against ...

  20. Antigenic Distance Measurements for Seasonal Influenza Vaccine Selection

    PubMed Central

    Cai, Zhipeng; Zhang, Tong; Wan, Xiu-Feng

    2011-01-01

    Influenza vaccination is one of the major options to counteract the effects of influenza diseases. Selection of an effective vaccine strain is the key to the success of an effective vaccination program since vaccine protection can only be achieved when the selected influenza vaccine strain matches the antigenic variants causing future outbreaks. Identification of an antigenic variant is the first step to determine whether vaccine strain needs to be updated. Antigenic distance derived from immunological assays, such as hemagglutination inhibition, is commonly used to measure the antigenic closeness between circulating strains and the current influenza vaccine strain. Thus, consensus on an explicit and robust antigenic distance measurement is critical in influenza surveillance. Based on the current seasonal influenza surveillance procedure, we propose and compare three antigenic distance measurements, including Average antigenic distance (A-distance), Mutual antigenic distance (M-distance), and Largest antigenic distance (L-distance). With the assistance of influenza antigenic cartography, our simulation results demonstrated that M-distance is a robust influenza antigenic distance measurement. Experimental results on both simulation and seasonal influenza surveillance data demonstrate that M-distance can be effectively utilized in influenza vaccine strain selection. PMID:22063385

  1. The antigenic composition of Neospora caninum.

    PubMed

    Hemphill, A; Fuchs, N; Sonda, S; Hehl, A

    1999-08-01

    Neospora caninum is an apicomplexan parasite which causes neosporosis, namely stillbirth and abortion in cattle, and neuromuscular disease in dogs. Although N. caninum is phylogenetically and biologically closely related to Toxoplasma gondii, it is antigenically clearly distinct. In analogy to T. gondii, three stages have been identified. These are: (i) asexually proliferating tachyzoites; (ii) tissue cysts harbouring slowly dividing bradyzoites; and (iii) oocysts containing sporozoites. The sexually produced stage of this parasite has only recently been identified, and has been shown to be shed with the faeces from dogs orally infected with N. caninum tissue cysts. Thus dogs are definitive hosts of N. caninum. Tachyzoites can be cultivated in vitro using similar techniques as previously described for T. gondii. Methods for generating tissue cysts containing N. caninum bradyzoites in mice, and purification of these cysts, have been developed. A number of studies have been undertaken to identify and characterise at the molecular level specific antigenic components of N. caninum in order to improve serological diagnosis and to enhance the current view on the many open questions concerning the cell biology of this parasite and its interactions with the host on the immunological and cellular level. The aim of this paper is to provide an overview on the approaches used for detection of antigens in N. caninum. The studies discussed here have had a great impact in the elucidation of the immunological and pathogenetic events during infection, as well as the development of potential new immunotherapeutic tools for future vaccination against N. caninum infection. PMID:10576569

  2. Isolation and In vivo Transfer of Antigen Presenting Cells

    PubMed Central

    Arora, Pooja; Kharkwal, Shalu Sharma; Porcelli, Steven A.

    2016-01-01

    Transfer of antigen presenting cells in vivo is a method used by immunologists to examine the potency of antigen presentation by a selected population of cells. This method is most commonly used to analyze presentation of protein antigens to MHC class I or II restricted T cells, but it can also be used for studies of nonconventional antigens such as CD1-presented lipids. In a recent study focusing on CD1d-restricted glycolipid antigen presentation to Natural Killer T cells, we compared antigen presenting properties of splenic B cells, CD8αPos dendritc cells (DCs) and CD8αNeg DCs (Arora et al., 2014). This protocol describes the detailed method used for isolation of these cell populations, and their transfer into recipient mice to analyze their antigen presenting properties. PMID:27390759

  3. Developmental expression of autoimmune target antigens during organogenesis.

    PubMed Central

    Akashi, T; Eishi, Y

    1991-01-01

    A common factor existing among autoimmune target antigens was sought in association with their developmental expression during organogenesis. Autoimmunity against a certain organ was experimentally induced in rats by deliberate immunization with whole tissue extract of the respective organ. Histopathological changes in a target organ of the immunized rats were recorded, and tissue specificity of the raised autoantibodies was immunohistologically examined with tissue sections of normal adult rats. These immune sera were also reacted with tissue sections of a target organ in each stage of organogenesis, and the time of first expression of the target antigen was determined for each immune serum. As a result, induced autoantibodies were directed only to a limited number of tissue antigens, such as thyroid follicular antigens [gestation day 17 (17 GD)], salivary ductal antigens (18 GD), anterior pituitary antigens (21 GD), gastric parietal cell antigens (22 GD), neural myelin antigens (2 days after birth), retinal photo-receptor cell antigens (3 days after birth) and testicular germ cell antigens (4 weeks after birth). They were first expressed on the day indicated in parentheses. Comparing with the development of the immune system, which was monitored by demonstrating CD4- and/or CD8-positive cells in the developing thymus and spleen, a common feature of these potential autoimmune target antigens was found to be that they were expressed either in parallel with, or after, but never before, the development of the immune system. This observation might suggest why only a limited number of self antigens can be autoimmune target antigens among the enormously large number of antigen determinants existing in the whole extract of each organ. Images Figure 1 Figure 2 Figure 3 PMID:1769700

  4. Antigenic mosaic of Methanosarcinaceae: partial characterization of Methanosarcina barkeri 227 surface antigens by monoclonal antibodies.

    PubMed Central

    Garberi, J C; Macario, A J; De Macario, E C

    1985-01-01

    Hybridomas were constructed with spleen cells from mice immunized against Methanosarcina barkeri 227. The reaction with the resulting monoclonal antibodies identified two antigenic determinants. Determinant 8A is present in M. barkeri 227, where it is accessible to antibody on whole bacterial cells. 8A is undetectable in (or absent from) M. barkeri R1M3, an immunologically closely related strain. Determinant 8C is present in both strains, but with M. barkeri 227 it is found only in extracts and cannot be demonstrated in whole cells. It therefore appears to be hidden. A soluble form of antigen 8A (antigen 227) was obtained treating whole M. barkeri 227 cells with absolute methanol. This antigen was further purified by affinity chromatography with antibody 8A. Chemical and immunochemical analyses of these preparations showed that antigen 227 is a high-molecular-weight (4 X 10(5)) structure composed mainly of one carbohydrate, glucose, and small amounts of amino acids. Its solubility properties suggest that this molecule is associated with a lipid moiety. PMID:2413005

  5. Neutrophil elastase enhances antigen presentation by upregulating human leukocyte antigen class I expression on tumor cells.

    PubMed

    Chawla, Akhil; Alatrash, Gheath; Philips, Anne V; Qiao, Na; Sukhumalchandra, Pariya; Kerros, Celine; Diaconu, Iulia; Gall, Victor; Neal, Samantha; Peters, Haley L; Clise-Dwyer, Karen; Molldrem, Jeffrey J; Mittendorf, Elizabeth A

    2016-06-01

    Neutrophil elastase (NE) is an innate immune cell-derived inflammatory mediator that we have shown increases the presentation of tumor-associated peptide antigens in breast cancer. In this study, we extend these observations to show that NE uptake has a broad effect on enhancing antigen presentation by breast cancer cells. We show that NE increases human leukocyte antigen (HLA) class I expression on the surface of breast cancer cells in a concentration and time-dependent manner. HLA class I upregulation requires internalization of enzymatically active NE. Western blots of NE-treated breast cancer cells confirm that the expression of total HLA class I as well as the antigen-processing machinery proteins TAP1, LMP2, and calnexin does not change following NE treatment. This suggests that NE does not increase the efficiency of antigen processing; rather, it mediates the upregulation of HLA class I by stabilizing and reducing membrane recycling of HLA class I molecules. Furthermore, the effects of NE extend beyond breast cancer since the uptake of NE by EBV-LCL increases the presentation of HLA class I-restricted viral peptides, as shown by their increased sensitivity to lysis by EBV-specific CD8+ T cells. Together, our results show that NE uptake increases the responsiveness of breast cancer cells to adaptive immunity by broad upregulation of membrane HLA class I and support the conclusion that the innate inflammatory mediator NE enhances tumor cell recognition and increases tumor sensitivity to the host adaptive immune response. PMID:27129972

  6. Strategic evaluation of vaccine candidate antigens for the prevention of Visceral Leishmaniasis.

    PubMed

    Duthie, Malcolm S; Favila, Michelle; Hofmeyer, Kimberley A; Tutterrow, Yeung L; Reed, Steven J; Laurance, John D; Picone, Alessandro; Guderian, Jeffrey; Bailor, H Remy; Vallur, Aarthy C; Liang, Hong; Mohamath, Raodoh; Vergara, Julie; Howard, Randall F; Coler, Rhea N; Reed, Steven G

    2016-05-27

    Infection with Leishmania parasites results in a range of clinical manifestations and outcomes, the most severe of which is visceral leishmaniasis (VL). Vaccination will likely provide the most effective long-term control strategy, as the large number of vectors and potential infectious reservoirs renders sustained interruption of Leishmania parasite transmission extremely difficult. Selection of the best vaccine is complicated because, although several vaccine antigen candidates have been proposed, they have emerged following production in different platforms. To consolidate the information that has been generated into a single vaccine platform, we expressed seven candidates as recombinant proteins in E. coli. After verifying that each recombinant protein could be recognized by VL patients, we evaluated their protective efficacy against experimental L. donovani infection of mice. Administration in formulation with the Th1-potentiating adjuvant GLA-SE indicated that each antigen could elicit antigen-specific Th1 responses that were protective. Considering the ability to reduce parasite burden along with additional factors such as sequence identity across Leishmania species, we then generated a chimeric fusion protein comprising a combination of the 8E, p21 and SMT proteins. This E. coli -expressed fusion protein was also demonstrated to protect against L. donovani infection. These data indicate a novel recombinant vaccine antigen with the potential for use in VL control programs. PMID:27142329

  7. An antibody profile of systemic lupus erythematosus detected by antigen microarray

    PubMed Central

    Fattal, Ittai; Shental, Noam; Mevorach, Dror; Anaya, Juan-Manuel; Livneh, Avi; Langevitz, Pnina; Zandman-Goddard, Gisele; Pauzner, Rachel; Lerner, Miriam; Blank, Miri; Hincapie, Maria-Eugenia; Gafter, Uzi; Naparstek, Yaakov; Shoenfeld, Yehuda; Domany, Eytan; Cohen, Irun R

    2010-01-01

    Patients with systemic lupus erythematosus (SLE) produce antibodies to many different self-antigens. Here, we investigated antibodies in SLE sera using an antigen microarray containing many hundreds of antigens, mostly self-antigens. The aim was to detect sets of antibody reactivities characteristic of SLE patients in each of various clinical states – SLE patients with acute lupus nephritis, SLE patients in renal remission, and SLE patients who had never had renal involvement. The analysis produced two novel findings: (i) an SLE antibody profile persists independently of disease activity and despite long-term clinical remission, and (ii) this SLE antibody profile includes increases in four specific immunoglobulin G (IgG) reactivities to double-stranded DNA (dsDNA), single-stranded DNA (ssDNA), Epstein–Barr virus (EBV) and hyaluronic acid; the profile also includes decreases in specific IgM reactivities to myeloperoxidase (MPO), CD99, collagen III, insulin-like growth factor binding protein 1 (IGFBP1) and cardiolipin. The reactivities together showed high sensitivity (> 93%) and high specificity for SLE (> 88%). A healthy control subject who had the SLE antibody profile was later found to develop clinical SLE. The present study did not detect antibody reactivities that differentiated among the various subgroups of SLE subjects with statistical significance. Thus, SLE is characterized by an enduring antibody profile irrespective of clinical state. The association of SLE with decreased IgM natural autoantibodies suggests that these autoantibodies might enhance resistance to SLE. PMID:20201986

  8. Extent of antigenic cross-reactivity among highly pathogenic H5N1 influenza viruses.

    PubMed

    Ducatez, Mariette F; Cai, Zhipeng; Peiris, Malik; Guan, Yi; Ye, Zhiping; Wan, Xiu-Feng; Webby, Richard J

    2011-10-01

    Highly pathogenic H5N1 avian influenza viruses emerged in 1996 and have since evolved so extensively that a single strain can no longer be used as a prepandemic vaccine or diagnostic reagent. We therefore sought to identify the H5N1 strains that may best serve as cross-reactive diagnostic reagents. We compared the cross-reactivity of 27 viruses of clades 0, 1, 2.1, 2.2, 2.3, and 4 and of four computationally designed ancestral H5N1 strains by hemagglutination inhibition (HI) and microneutralization (MN) assays. Antigenic cartography was used to analyze the large quantity of resulting data. Cartographs of HI titers with chicken red blood cells were similar to those of MN titers, but HI with horse red blood cells decreased antigenic distances among the H5N1 strains studied. Thus, HI with horse red blood cells seems to be the assay of choice for H5N1 diagnostics. Whereas clade 2.2 antigens were able to detect antibodies raised to most of the tested H5N1 viruses (and clade 2.2-specific antisera detected most of the H5N1 antigens), ancestral strain A exhibited the widest reactivity pattern and hence was the best candidate diagnostic reagent for broad detection of H5N1 strains. PMID:21832017

  9. Purification and conformational changes of bovine PEGylated β-lactoglobulin related to antigenicity.

    PubMed

    Zhong, Junzhen; Cai, Xiaofei; Liu, Chengmei; Liu, Wei; Xu, Yujia; Luo, Shunjing

    2016-05-15

    β-Lactoglobulin (β-LG) was conjugated with monomethoxy polyethylene glycol-succinimidyl carbonates (mPEG-SC, 20 kDa) to investigate the relationship between the antigenicity and conformational changes of β-LG. The effect of molar ratio of protein to mPEG-SC (1:3-1:6), pH (6-8) and time (4-24h) on the antigenicity of β-LG was investigated. The lowest antigenicity of β-LG was observed at the molar ratio of 1:3, pH 7.0, and reaction time for 8h, which was 70% lower than that of control β-LG. At the optimal modification conditions, it was indicated that two fractions obtained after purification showed the tense and single band on the SDS-PAGE at the position of approximate 78 kDa and 58 kDa, which corresponded to the tri- and di-PEGylated conjugate, respectively. As conjugated number of mPEG-SC with β-LG increased, the quenching of fluorescence and the content of β-strands were increased gradually, which may contribute to the decrease of antigenicity from two aspects. PMID:26775986

  10. Exploring the Dynamic Range of the Kinetic Exclusion Assay in Characterizing Antigen-Antibody Interactions

    PubMed Central

    Bee, Christine; Abdiche, Yasmina N.; Stone, Donna M.; Collier, Sierra; Lindquist, Kevin C.; Pinkerton, Alanna C.; Pons, Jaume; Rajpal, Arvind

    2012-01-01

    Therapeutic antibodies are often engineered or selected to have high on-target binding affinities that can be challenging to determine precisely by most biophysical methods. Here, we explore the dynamic range of the kinetic exclusion assay (KinExA) by exploiting the interactions of an anti-DKK antibody with a panel of DKK antigens as a model system. By tailoring the KinExA to each studied antigen, we obtained apparent equilibrium dissociation constants (KD values) spanning six orders of magnitude, from approximately 100 fM to 100 nM. Using a previously calibrated antibody concentration and working in a suitable concentration range, we show that a single experiment can yield accurate and precise values for both the apparent KD and the apparent active concentration of the antigen, thereby increasing the information content of an assay and decreasing sample consumption. Orthogonal measurements obtained on Biacore and Octet label-free biosensor platforms further validated our KinExA-derived affinity and active concentration determinations. We obtained excellent agreement in the apparent affinities obtained across platforms and within the KinExA method irrespective of the assay orientation employed or the purity of the recombinant or native antigens. PMID:22558410

  11. Antigen-specific serotyping of Neisseria gonorrhoeae: characterization based upon principal outer membrane protein.

    PubMed Central

    Buchanan, T M; Hildebrandt, J F

    1981-01-01

    Principal outer membrane protein (protein I) of Neisseria gonorrhoeae was prepared nearly free of lipopolysaccharide (LPS) and substantially purified from other membrane proteins by chromatography of partially purified gonococcal outer membranes over Sepharose 6B in the presence of deoxycholate at pH 9.0. This protein I of nine separate antigenic types was coated to polystyrene tubes and used in the enzyme-linked immunosorbent assay (ELISA) to measure antibody to protein I or in inhibition tests to quantitate protein I antigen. No significant inhibition of the ELISA test was produced by purified LPS from the strain used to prepare each of the protein I types or by whole gonococci bearing the same LPS but different protein I antigens as the strain used to produce a given protein I antigen. Of 125 strains of gonococci used as whole organisms to inhibit the protein I ELISA, 124 (99%) typed with one or more of the nine protein I types, and 35% of these typed with a single protein I serotype. Sixty-one of 65 (94%) strains from Seattle and Atlanta patients with disseminated gonococcal infection contained protein I serotype 1, and 16 of 24 (64%) strains from Seattle patients with salpingitis bore one or both of protein I serotypes 1 and 2. Images PMID:6166568

  12. Antigens with glycoprotein structure in the gastric juice. I. Immunological and chemical determinations.

    PubMed

    Vântu, A; Voiculet, N; Ivănescu, M; Balaban, C

    1978-01-01

    To demonstrate the presence of specific antigens in the normal and malignant gastric juice the immunological and chemical features of certain antigens with glycoprotein structure from malignant gastric jucice and gastric tumors were studied comparatively with those of antigens obtained from normal gastric juice and gastric tissue. The investigation was carried out in tumor tissue extracts from 7 patients with malignant gastric tumors and in gastric juice from 45 patients with other non-cancerous diseases. From the five fractions obtained, which gave immunoelectrophoretic precipitin lines in the beta and alpha-globulin regions with the antiserum against total normal gastric juice, a single specific was separated by means of successive chromatographies on sephadex G--100 and DEAE-Sephadex -a--50 (eluted in NaCl concentration gradient). This fraction represented 11.1 per cent of the total proteins. None of the five fractions could be identified with carcinoembryonic antigen (value in gastric juice and gastric malignant tumors = 2 to 10 ng per mg lyophilized products). PMID:635406

  13. Population, genetic, and antigenic diversity of the apicomplexan Eimeria tenella and their relevance to vaccine development.

    PubMed

    Blake, Damer P; Clark, Emily L; Macdonald, Sarah E; Thenmozhi, Venkatachalam; Kundu, Krishnendu; Garg, Rajat; Jatau, Isa D; Ayoade, Simeon; Kawahara, Fumiya; Moftah, Abdalgader; Reid, Adam James; Adebambo, Ayotunde O; Álvarez Zapata, Ramón; Srinivasa Rao, Arni S R; Thangaraj, Kumarasamy; Banerjee, Partha S; Dhinakar-Raj, G; Raman, M; Tomley, Fiona M

    2015-09-22

    The phylum Apicomplexa includes serious pathogens of humans and animals. Understanding the distribution and population structure of these protozoan parasites is of fundamental importance to explain disease epidemiology and develop sustainable controls. Predicting the likely efficacy and longevity of subunit vaccines in field populations relies on knowledge of relevant preexisting antigenic diversity, population structure, the likelihood of coinfection by genetically distinct strains, and the efficiency of cross-fertilization. All four of these factors have been investigated for Plasmodium species parasites, revealing both clonal and panmictic population structures with exceptional polymorphism associated with immunoprotective antigens such as apical membrane antigen 1 (AMA1). For the coccidian Toxoplasma gondii only genomic diversity and population structure have been defined in depth so far; for the closely related Eimeria species, all four variables are currently unknown. Using Eimeria tenella, a major cause of the enteric disease coccidiosis, which exerts a profound effect on chicken productivity and welfare, we determined population structure, genotype distribution, and likelihood of cross-fertilization during coinfection and also investigated the extent of naturally occurring antigenic diversity for the E. tenella AMA1 homolog. Using genome-wide Sequenom SNP-based haplotyping, targeted sequencing, and single-cell genotyping, we show that in this coccidian the functionality of EtAMA1 appears to outweigh immune evasion. This result is in direct contrast to the situation in Plasmodium and most likely is underpinned by the biology of the direct and acute coccidian life cycle in the definitive host. PMID:26354122

  14. Shared themes of antigenic variation and virulence in bacterial, protozoal, and fungal infections.

    PubMed Central

    Deitsch, K W; Moxon, E R; Wellems, T E

    1997-01-01

    Pathogenic microbes have evolved highly sophisticated mechanisms for colonizing host tissues and evading or deflecting assault by the immune response. The ability of these microbes to avoid clearance prolongs infection, thereby promoting their long-term survival within individual hosts and, through transmission, between hosts. Many pathogens are capable of extensive antigenic changes in the face of the multiple constitutive and dynamic components of host immune defenses. As a result, highly diverse populations that have widely different virulence properties can arise from a single infecting organism (clone). In this review, we consider the molecular and genetic features of antigenic variation and corresponding host-parasite interactions of different pathogenic bacterial, fungal, and protozoan microorganisms. The host and microbial molecules involved in these interactions often determine the adhesive, invasive, and antigenic properties of the infecting organisms and can dramatically affect the virulence and pathobiology of individual infections. Pathogens capable of such antigenic variation exhibit mechanisms of rapid mutability in confined chromosomal regions containing specialized genes designated contingency genes. The mechanisms of hypermutability of contingency genes are common to a variety of bacterial and eukaryotic pathogens and include promoter alterations, reading-frame shifts, gene conversion events, genomic rearrangements, and point mutations. PMID:9293182

  15. A Live Oral Fowl Typhoid Vaccine with Reversible O-Antigen Production.

    PubMed

    Mitra, Arindam; Łaniewski, Paweł; Curtiss, Roy; Roland, Kenneth L

    2015-03-01

    Salmonella enterica serovar Gallinarum causes fowl typhoid, recognized worldwide as an economically important disease. The current vaccine, 9R, lacks a complete O antigen, which is a Salmonella virulence factor, and, in addition, has a number of other less well characterized chromosomal mutations. For optimal efficacy, 9R is administered by injection. In an effort to develop a vaccine suitable for oral administration, we constructed Salmonella Gallinarum strains with a reversible O-antigen phenotype. In this scenario, the vaccine strain produces full-length O antigen at the time it is administered to birds. After the vaccine has had time to colonize internal lymphoid tissues, the O-antigen is gradually lost, resulting in an attenuated strain. We found that strains carrying single mutations conferring this phenotype, Apmi and arabinose-regulated rfc, retained virulence. However, a mutant strain carrying both of these mutations was completely attenuated and immunogenic in chickens. This work demonstrates a novel approach for developing live Salmonella vaccines for poultry. PMID:26292534

  16. Population, genetic, and antigenic diversity of the apicomplexan Eimeria tenella and their relevance to vaccine development

    PubMed Central

    Blake, Damer P.; Clark, Emily L.; Macdonald, Sarah E.; Thenmozhi, Venkatachalam; Kundu, Krishnendu; Garg, Rajat; Jatau, Isa D.; Ayoade, Simeon; Kawahara, Fumiya; Moftah, Abdalgader; Reid, Adam James; Adebambo, Ayotunde O.; Álvarez Zapata, Ramón; Srinivasa Rao, Arni S. R.; Thangaraj, Kumarasamy; Banerjee, Partha S.; Dhinakar-Raj, G.; Raman, M.; Tomley, Fiona M.

    2015-01-01

    The phylum Apicomplexa includes serious pathogens of humans and animals. Understanding the distribution and population structure of these protozoan parasites is of fundamental importance to explain disease epidemiology and develop sustainable controls. Predicting the likely efficacy and longevity of subunit vaccines in field populations relies on knowledge of relevant preexisting antigenic diversity, population structure, the likelihood of coinfection by genetically distinct strains, and the efficiency of cross-fertilization. All four of these factors have been investigated for Plasmodium species parasites, revealing both clonal and panmictic population structures with exceptional polymorphism associated with immunoprotective antigens such as apical membrane antigen 1 (AMA1). For the coccidian Toxoplasma gondii only genomic diversity and population structure have been defined in depth so far; for the closely related Eimeria species, all four variables are currently unknown. Using Eimeria tenella, a major cause of the enteric disease coccidiosis, which exerts a profound effect on chicken productivity and welfare, we determined population structure, genotype distribution, and likelihood of cross-fertilization during coinfection and also investigated the extent of naturally occurring antigenic diversity for the E. tenella AMA1 homolog. Using genome-wide Sequenom SNP-based haplotyping, targeted sequencing, and single-cell genotyping, we show that in this coccidian the functionality of EtAMA1 appears to outweigh immune evasion. This result is in direct contrast to the situation in Plasmodium and most likely is underpinned by the biology of the direct and acute coccidian life cycle in the definitive host. PMID:26354122

  17. The relationship between MHC antigen expression and metastasis.

    PubMed

    Gopas, J; Rager-Zisman, B; Bar-Eli, M; Hämmerling, G J; Segal, S

    1989-01-01

    From the studies summarized here a complex picture of the role played by MHC products in determining tumorigenicity and metastasis is emerging. In order to be able to understand this relationship better, it is necessary to consider several factors. 1. Each tumor system or neoplastic tissue is unique, and its behavior reflects the influence of cell-specific characteristics, as well as its ability to modulate other cells and tissues--including cells belonging to the immune system--and also to be modulated by other cells and soluble factors. 2. Since metastasis formation is a multistep process in which only small subpopulations of tumor cells with complex and defined phenotypes are able to colonize secondary tissues, elimination of even one single phenotypic component of this structured process can easily reverse the metastatic capacity of the cells. Acquisition of metastatic ability, on the other hand, would be a more difficult task, since any new characteristic expressed by the cells or induced experimentally, such as gene transfection or results of IFN treatment, must be expressed in a temporal manner and in concert with other cellular characteristics. Therefore, an experimental protocol measuring a specific element in determining metastasis can easily produce conflicting results, depending on the type of cells and genetic background of the host studied. 3. The level of specific MHC products on tumor cells is one among many other cell characteristics that may determine the metastatic potential of cells. Moreover, each of the class 1 MHC products, and the relationship among them, including other than the classical K, L, or D products (Brickell et al., 1983), should be regarded as independent entities, with possible different regulatory roles in cell-cell recognition, in a general sense, which may be involved in determining invasiveness and homing as well as recognition by the immune system. 4. Both specific T-cell and nonspecific natural mediated immunity (which is

  18. Reduced level of sex-specific antigen (H-Y antigen) on lymphocytes in some patients with bilateral cryptorchidism.

    PubMed

    Fedder, J; Hansen, L G; Hjort, T

    1989-01-01

    Sex-specific (Sxs) antigen on the surface of nucleated cells from normal human males seems to be essential for the formation of testes. The relative quantity of the antigen on lymphocytes was evaluated by absorption experiments in a complement-dependent cytotoxicity test or in an ELISA technique using antisera against Sxs antigen produced by immunization of female rats. Lymphocytes from 13 normal males were Sxs-antigen positive, and cells from 12 normal females were characterized as Sxs-antigen negative. However, in the testing of lymphocytes from nine boys with bilateral cryptorchidism, only six revealed a normal male absorption pattern, whereas the antigen level on cells from three boys, all of them with normal karyotype, was reduced compared with the normal male level. No correlation between Sxs-antigen level and testosterone response after treatment with hCG could be demonstrated. PMID:2565709

  19. Genetic Mapping of the Antigenic Determinants of Two Polysaccharide K Antigens, K10 and K54, in Escherichia coli

    PubMed Central

    Ørskov, Ida; Nyman, Kate

    1974-01-01

    The genes controlling synthesis of the Escherichia coli acidic polysaccharide capsular antigens K10 and K54 were transferred by conjugation to E. coli strains of other serotypes. The genes concerned with these K antigen determinants showed genetic linkage with the serA locus. We propose to name the K antigen-controlling gene kpsA. The genetic determinants of the two K antigens could also be transferred to enteropathogenic serotypes, even though such strains have never been found in nature with special acidic polysaccharide K antigens. A noncapsulated derivative, K−, of the K10 strain can transfer the genetic determinant of the K antigen, demonstrating the probable existence of another chromosomal locus involved in the production of such acidic polysaccharide K antigens. PMID:4138850

  20. Antigen binding properties of highly purified bispecific antibodies.

    PubMed

    Allard, W J; Moran, C A; Nagel, E; Collins, G; Largen, M T

    1992-10-01

    A panel of three bispecific monoclonal antibodies (bsMAbs) binding to follitropin (FSH) and to beta-galactosidase have been prepared by fusion of hybridoma cell lines resistant to oubain and neomycin. One of these bispecific antibodies contains heavy chains of the same IgG subclass, and two are composed of heavy chains of different IgG subclasses. We have investigated methods for the purification of bispecific antibodies from hybrid hybridoma supernatant fluids grown in serum-free medium. Following ammonium sulfate precipitation, bispecific antibodies can be purified in a single step by mixed mode ion-exchange HPLC on Bakerbond Abx columns. In one case, three species were resolved by ion-exchange HPLC and functional analysis showed that two peaks contained parental antibodies, and the third contained the bispecific. Ion-exchange HPLC purification of serum-free preparations from two other hybrid hybridomas resolved seven protein-containing peaks, only one of which was active in a bispecific ELISA. The equilibrium affinity constants for each of the parental antibodies for both FSH and beta-galactosidase were determined and found to be similar to those of the purified bsMAbs. Further, the association of FSH to one binding site on a bispecific antibody was shown to have no effect on the equilibrium binding constant for beta-galactosidase binding to the other site. Our results suggest that bsMAbs can be readily purified from hybrid hybridomas by a simple and rapid method, and the binding of antigen to one binding site on a bsMAb is independent of antigen binding to the second site. PMID:1528192

  1. Plasmodium falciparum Variant Surface Antigen Expression Patterns during Malaria

    PubMed Central

    2005-01-01

    The variant surface antigens expressed on Plasmodium falciparum–infected erythrocytes are potentially important targets of immunity to malaria and are encoded, at least in part, by a family of var genes, about 60 of which are present within every parasite genome. Here we use semi-conserved regions within short var gene sequence “tags” to make direct comparisons of var gene expression in 12 clinical parasite isolates from Kenyan children. A total of 1,746 var clones were sequenced from genomic and cDNA and assigned to one of six sequence groups using specific sequence features. The results show the following. (1) The relative numbers of genomic clones falling in each of the sequence groups was similar between parasite isolates and corresponded well with the numbers of genes found in the genome of a single, fully sequenced parasite isolate. In contrast, the relative numbers of cDNA clones falling in each group varied considerably between isolates. (2) Expression of sequences belonging to a relatively conserved group was negatively associated with the repertoire of variant surface antigen antibodies carried by the infected child at the time of disease, whereas expression of sequences belonging to another group was associated with the parasite “rosetting” phenotype, a well established virulence determinant. Our results suggest that information on the state of the host–parasite relationship in vivo can be provided by measurements of the differential expression of different var groups, and need only be defined by short stretches of sequence data. PMID:16304608

  2. Antigenic Determinants of the Bilobal Cockroach Allergen Bla g 2.

    PubMed

    Woodfolk, Judith A; Glesner, Jill; Wright, Paul W; Kepley, Christopher L; Li, Mi; Himly, Martin; Muehling, Lyndsey M; Gustchina, Alla; Wlodawer, Alexander; Chapman, Martin D; Pomés, Anna

    2016-01-29

    Bla g 2 is a major indoor cockroach allergen associated with the development of asthma. Antigenic determinants on Bla g 2 were analyzed by mutagenesis based on the structure of the allergen alone and in complex with monoclonal antibodies that interfere with IgE antibody binding. The structural analysis revealed mechanisms of allergen-antibody recognition through cation-π interactions. Single and multiple Bla g 2 mutants were expressed in Pichia pastoris and purified. The triple mutant K132A/K251A/F162Y showed an ∼100-fold reduced capacity to bind IgE, while preserving the native molecular fold, as proven by x-ray crystallography. This mutant was still able to induce mast cell release. T-cell responses were assessed by analyzing Th1/Th2 cytokine production and the CD4(+) T-cell phenotype in peripheral blood mononuclear cell cultures. Although T-cell activating capacity was similar for the KKF mutant and Bla g 2 based on CD25 expression, the KKF mutant was a weaker inducer of the Th2 cytokine IL-13. Furthermore, this mutant induced IL-10 from a non-T-cell source at higher levels that those induced by Bla g 2. Our findings demonstrate that a rational design of site-directed mutagenesis was effective in producing a mutant with only 3 amino acid substitutions that maintained the same fold as wild type Bla g 2. These residues, which were involved in IgE antibody binding, endowed Bla g 2 with a T-cell modulatory capacity. The antigenic analysis of Bla g 2 will be useful for the subsequent development of recombinant allergen vaccines. PMID:26644466

  3. Antigen-specificity using chimeric antigen receptors: the future of regulatory T-cell therapy?

    PubMed

    Boardman, Dominic; Maher, John; Lechler, Robert; Smyth, Lesley; Lombardi, Giovanna

    2016-04-15

    Adoptive regulatory T-cell (Treg) therapy using autologous Tregs expandedex vivois a promising therapeutic approach which is currently being investigated clinically as a means of treating various autoimmune diseases and transplant rejection. Despite this, early results have highlighted the need for potent Tregs to yield a substantial clinical advantage. One way to achieve this is to create antigen-specific Tregs which have been shown in pre-clinical animal models to have an increased potency at suppressing undesired immune responses, compared to polyclonal Tregs. This mini review outlines where Treg therapy currently stands and discusses the approaches which may be taken to generate antigen-specific Tregs, including the potential use of chimeric antigen receptors (CARs), for future clinical trials. PMID:27068938

  4. New diagnostic antigens for early trichinellosis: the excretory-secretory antigens of Trichinella spiralis intestinal infective larvae.

    PubMed

    Sun, Ge Ge; Liu, Ruo Dan; Wang, Zhong Quan; Jiang, Peng; Wang, Li; Liu, Xiao Lin; Liu, Chun Yin; Zhang, Xi; Cui, Jing

    2015-12-01

    The excretory-secretory (ES) antigens from Trichinella spiralis muscle larvae (ML) are the most commonly used diagnostic antigens for trichinellosis, but anti-Trichinella IgG antibodies cannot be detected until 2-3 weeks after infection; there is an obvious window period between Trichinella infection and antibody positivity. Intestinal infective larvae (IIL) are the first invasive stage during Trichinella infection, and their ES antigens are firstly exposed to the immune system and might be the early diagnostic markers of trichinellosis. The aim of this study was to evaluate the early diagnostic values of IIL ES antigens for trichinellosis. The IIL were collected from intestines of infected mice at 6 h postinfection (hpi), and IIL ES antigens were prepared by incubation for 18 h. Anti-Trichinella IgG antibodies in mice infected with 100 ML were detectable by ELISA with IIL ES antigens as soon as 10 days postinfection (dpi), but ELISA with ML ES antigens did not permit detection of infected mice before 12 dpi. When the sera of patients with trichinellosis at 19 dpi were assayed, the sensitivity (100 %) of ELISA with IIL ES antigens was evidently higher than 75 % of ELISA with ML ES antigens (P < 0.05) The specificity (96.86 %) of ELISA with IIL ES antigens was also higher than 89.31 % of ELISA with ML ES antigens (P < 0.05). The IIL ES antigens provided a new source of diagnostic antigens and could be considered as a potential early diagnostic antigen for trichinellosis. PMID:26342828

  5. Clinical significance of hepatitis B surface antigen mutants

    PubMed Central

    Coppola, Nicola; Onorato, Lorenzo; Minichini, Carmine; Di Caprio, Giovanni; Starace, Mario; Sagnelli, Caterina; Sagnelli, Evangelista

    2015-01-01

    Hepatitis B virus (HBV) infection is a major public health problem in many countries, with nearly 300 million people worldwide carrying HBV chronic infection and over 1 million deaths per year due to cirrhosis and liver cancer. Several hepatitis B surface antigen (HBsAg) mutations have been described, most frequently due to a single amino acid substitution and seldom to a nucleotide deletion. The majority of mutations are located in the S region, but they have also been found in the pre-S1 and pre-S2 regions. Single amino acid substitutions in the major hydrophilic region of HBsAg, called the “a” determinant, have been associated with immune escape and the consequent failure of HBV vaccination and HBsAg detection, whereas deletions in the pre-S1 or pre-S2 regions have been associated with the development of hepatocellular carcinoma. This review article will focus on the HBsAg mutants and their biological and clinical implications. PMID:26644816

  6. Exosome targeting of tumor antigens expressed by cancer vaccines can improve antigen immunogenicity and therapeutic efficacy.

    PubMed

    Rountree, Ryan B; Mandl, Stefanie J; Nachtwey, James M; Dalpozzo, Katie; Do, Lisa; Lombardo, John R; Schoonmaker, Peter L; Brinkmann, Kay; Dirmeier, Ulrike; Laus, Reiner; Delcayre, Alain

    2011-08-01

    MVA-BN-PRO (BN ImmunoTherapeutics) is a candidate immunotherapy product for the treatment of prostate cancer. It encodes 2 tumor-associated antigens, prostate-specific antigen (PSA), and prostatic acid phosphatase (PAP), and is derived from the highly attenuated modified vaccinia Ankara (MVA) virus stock known as MVA-BN. Past work has shown that the immunogenicity of antigens can be improved by targeting their localization to exosomes, which are small, 50- to 100-nm diameter vesicles secreted by most cell types. Exosome targeting is achieved by fusing the antigen to the C1C2 domain of the lactadherin protein. To test whether exosome targeting would improve the immunogenicity of PSA and PAP, 2 additional versions of MVA-BN-PRO were produced, targeting either PSA (MVA-BN-PSA-C1C2) or PAP (MVA-BN-PAP-C1C2) to exosomes, while leaving the second transgene untargeted. Treatment of mice with MVA-BN-PAP-C1C2 led to a striking increase in the immune response against PAP. Anti-PAP antibody titers developed more rapidly and reached levels that were 10- to 100-fold higher than those for mice treated with MVA-BN-PRO. Furthermore, treatment with MVA-BN-PAP-C1C2 increased the frequency of PAP-specific T cells 5-fold compared with mice treated with MVA-BN-PRO. These improvements translated into a greater frequency of tumor rejection in a PAP-expressing solid tumor model. Likewise, treatment with MVA-BN-PSA-C1C2 increased the antigenicity of PSA compared with treatment with MVA-BN-PRO and resulted in a trend of improved antitumor efficacy in a PSA-expressing tumor model. These experiments confirm that targeting antigen localization to exosomes is a viable approach for improving the therapeutic potential of MVA-BN-PRO in humans. PMID:21670078

  7. Genetic diversity and antigenicity variation of Babesia bovis merozoite surface antigen-1 (MSA-1) in Thailand.

    PubMed

    Tattiyapong, Muncharee; Sivakumar, Thillaiampalam; Takemae, Hitoshi; Simking, Pacharathon; Jittapalapong, Sathaporn; Igarashi, Ikuo; Yokoyama, Naoaki

    2016-07-01

    Babesia bovis, an intraerythrocytic protozoan parasite, causes severe clinical disease in cattle worldwide. The genetic diversity of parasite antigens often results in different immune profiles in infected animals, hindering efforts to develop immune control methodologies against the B. bovis infection. In this study, we analyzed the genetic diversity of the merozoite surface antigen-1 (msa-1) gene using 162 B. bovis-positive blood DNA samples sourced from cattle populations reared in different geographical regions of Thailand. The identity scores shared among 93 msa-1 gene sequences isolated by PCR amplification were 43.5-100%, and the similarity values among the translated amino acid sequences were 42.8-100%. Of 23 total clades detected in our phylogenetic analysis, Thai msa-1 gene sequences occurred in 18 clades; seven among them were composed of sequences exclusively from Thailand. To investigate differential antigenicity of isolated MSA-1 proteins, we expressed and purified eight recombinant MSA-1 (rMSA-1) proteins, including an rMSA-1 from B. bovis Texas (T2Bo) strain and seven rMSA-1 proteins based on the Thai msa-1 sequences. When these antigens were analyzed in a western blot assay, anti-T2Bo cattle serum strongly reacted with the rMSA-1 from T2Bo, as well as with three other rMSA-1 proteins that shared 54.9-68.4% sequence similarity with T2Bo MSA-1. In contrast, no or weak reactivity was observed for the remaining rMSA-1 proteins, which shared low sequence similarity (35.0-39.7%) with T2Bo MSA-1. While demonstrating the high genetic diversity of the B. bovis msa-1 gene in Thailand, the present findings suggest that the genetic diversity results in antigenicity variations among the MSA-1 antigens of B. bovis in Thailand. PMID:27101782

  8. Protamine-based nanoparticles as new antigen delivery systems.

    PubMed

    González-Aramundiz, José Vicente; Peleteiro Olmedo, Mercedes; González-Fernández, África; Alonso Fernández, María José; Csaba, Noemi Stefánia

    2015-11-01

    The use of biodegradable nanoparticles as antigen delivery vehicles is an attractive approach to overcome the problems associated with the use of Alum-based classical adjuvants. Herein we report, the design and development of protamine-based nanoparticles as novel antigen delivery systems, using recombinant hepatitis B surface antigen as a model viral antigen. The nanoparticles, composed of protamine and a polysaccharide (hyaluronic acid or alginate), were obtained using a mild ionic cross-linking technique. The size and surface charge of the nanoparticles could be modulated by adjusting the ratio of the components. Prototypes with optimal physicochemical characteristics and satisfactory colloidal stability were selected for the assessment of their antigen loading capacity, antigen stability during storage and in vitro and in vivo proof-of-concept studies. In vitro studies showed that antigen-loaded nanoparticles induced the secretion of cytokines by macrophages more efficiently than the antigen in solution, thus indicating a potential adjuvant effect of the nanoparticles. Finally, in vivo studies showed the capacity of these systems to trigger efficient immune responses against the hepatitis B antigen following intramuscular administration, suggesting the potential interest of protamine-polysaccharide nanoparticles as antigen delivery systems. PMID:26455338

  9. MHC Class II Auto-Antigen Presentation is Unconventional

    PubMed Central

    Sadegh-Nasseri, Scheherazade; Kim, AeRyon

    2015-01-01

    Antigen presentation is highly critical in adoptive immunity. Only by interacting with antigens presented by major histocompatibility complex class II molecules, helper T cells can be stimulated to fight infections or diseases. The degradation of a full protein into small peptide fragments bound to class II molecules is a dynamic, lengthy process consisting of many steps and chaperons. Deregulation in any step of antigen processing could lead to the development of self-reactive T cells or defective immune response to pathogens. Indeed, human leukocyte antigens class II genes are the predominant contributors to susceptibility to autoimmune diseases. Conventional antigen-processing calls for internalization of extracellular antigens followed by processing and epitope selection within antigen-processing subcellular compartments, enriched with all necessary accessory molecules, processing enzymes, and proper pH and denaturing conditions. However, recent data examining the temporal relationship between antigen uptakes, processing, and epitope selection revealed unexpected characteristics for auto-antigenic epitopes, which were not shared with antigenic epitopes from pathogens. This review provides a discussion of the relevance of these findings to the mechanisms of autoimmunity. PMID:26257739

  10. Cross-Reactivity of the PLATELIA CANDIDA Antigen Detection Enzyme Immunoassay with Fungal Antigen Extracts

    PubMed Central

    Rimek, Dagmar; Singh, Jagpal; Kappe, Reinhard

    2003-01-01

    We studied the specificity of the PLATELIA CANDIDA Ag enzyme immunoassay by using 130 isolates of 63 clinically relevant fungal species. Antigen extracts of seven Candida spp. (Candida albicans, C. dubliniensis, C. famata, C. glabrata, C. guilliermondii, C. lusitaniae, and C. tropicalis) repeatedly yielded positive reactions (>0.5 ng/ml). Geotrichum candidum and Fusarium verticillioides were found to yield borderline-positive reactions (0.25 to 0.50 ng/ml). Antigen preparations from the other 54 fungal species, including yeasts, molds, dermatophytes, and dimorphic fungi, did not cross-react in the assay. PMID:12843102

  11. Atomic force microscopy measurements reveal multiple bonds between Helicobacter pylori blood group antigen binding adhesin and Lewis b ligand

    PubMed Central

    Parreira, P.; Shi, Q.; Magalhaes, A.; Reis, C. A.; Bugaytsova, J.; Borén, T.; Leckband, D.; Martins, M. C. L.

    2014-01-01

    The strength of binding between the Helicobacter pylori blood group antigen-binding adhesin (BabA) and its cognate glycan receptor, the Lewis b blood group antigen (Leb), was measured by means of atomic force microscopy. High-resolution measurements of rupture forces between single receptor–ligand pairs were performed between the purified BabA and immobilized Leb structures on self-assembled monolayers. Dynamic force spectroscopy revealed two similar but statistically different bond populations. These findings suggest that the BabA may form different adhesive attachments to the gastric mucosa in ways that enhance the efficiency and stability of bacterial adhesion. PMID:25320070

  12. Cloning of cDNA of major antigen of foot and mouth disease virus and expression in E. coli

    NASA Astrophysics Data System (ADS)

    Küpper, Hans; Keller, Walter; Kurz, Christina; Forss, Sonja; Schaller, Heinz

    1981-02-01

    Double-stranded DNA copies of the single-stranded genomic RNA of foot and mouth disease virus have been cloned into the Escherichia coli plasmid pBR322. A restriction map of the viral genome was established and aligned with the biochemical map of foot and mouth disease virus. The coding sequence for structural protein VP1, the major antigen of the virus, was identified and inserted into a plasmid vector where the expression of this sequence is under control of the phage λ PL promoter. In an appropriate host the synthesis of antigenic polypeptide can be demonstrated by radioimmunoassay.

  13. The molecular basis of antigen presentation.

    PubMed

    Germain, R N; Sant, A J; Braunstein, N S; Ronchese, F

    1988-01-01

    We have used a multifactorial approach to investigate the relationship between the structure of class II major histocompatibility complex (MHC)-encoded cell surface molecules (Ia) and the recognition of Ia-bound peptide antigens by clonally distributed alpha beta heterodimeric T cell receptors (TCR). Four distinct parameters of Ia structure-function--1) control of Ia assembly and transport to the surface membrane; 2) serological reactivity with panels of monoclonal antibodies; 3) ability to present peptide antigens to T cells for functional activation; and 4) differential peptide binding independent of the TCR--have been measured. This has allowed assignment of allelically polymorphic subregions or individual residues to locations in a model class II molecular structure and attribution to these subregions and residues of specific functions such as control of alpha beta chain interaction and protein folding, antigenic peptide binding, or TCR binding. The results of these analyses have provided an internally consistent picture of the class II molecule that fits well with a hypothetical model for Ia derived by analogy from the recently solved HLA class I crystal structure. They have also given us the first clear definition of specific peptide binding residues within the general peptide binding region of Ia and have revealed an unexpected asymmetry in the structure-function relationships of the putative alpha and beta chain helical regions. Overall, the results of these studies indicate the critical importance of multi-parameter analysis in creating useful molecular models using non-chemical techniques. They also suggest that hypotheses about TCR-Ia interaction may have to take into account a significant asymmetry in the function of the two major polymorphic regions of histocompatibility molecules. PMID:3269359

  14. Galactosylated LDL nanoparticles: a novel targeting delivery system to deliver antigen to macrophages and enhance antigen specific T cell responses.

    PubMed

    Wu, Fang; Wuensch, Sherry A; Azadniv, Mitra; Ebrahimkhani, Mohammad R; Crispe, I Nicholas

    2009-01-01

    We aim to define the role of Kupffer cells in intrahepatic antigen presentation, using the selective delivery of antigen to Kupffer cells rather than other populations of liver antigen-presenting cells. To achieve this we developed a novel antigen delivery system that can target antigens to macrophages, based on a galactosylated low-density lipoprotein nanoscale platform. Antigen was delivered via the galactose particle receptor (GPr), internalized, degraded and presented to T cells. The conjugation of fluoresceinated ovalbumin (FLUO-OVA) and lactobionic acid with LDL resulted in a substantially increased uptake of FLUO-OVA by murine macrophage-like ANA1 cells in preference to NIH3T3 cells, and by primary peritoneal macrophages in preference to primary hepatic stellate cells. Such preferential uptake led to enhanced proliferation of OVA specific T cells, showing that the galactosylated LDL nanoscale platform is a successful antigen carrier, targeting antigen to macrophages but not to all categories of antigen presenting cells. This system will allow targeted delivery of antigen to macrophages in the liver and elsewhere, addressing the question of the role of Kupffer cells in liver immunology. It may also be an effective way of delivering drugs or vaccines directly at macrophages. PMID:19637876

  15. Characterization of human platelet glycoprotein antigens giving rise to individual immunoprecipitates in crossed-immunoelectrophoresis

    SciTech Connect

    Kunicki, T.J.; Nurden, A.T.; Pidard, D.; Russell, N.R.; Caen, J.P.

    1981-12-01

    Washed human platelets were labeled with 125I by the lactoperoxidase-catalyzed method and solubilized in 1% Triton X-100. The soluble proteins were analyzed by crossed-immunoelectrophoresis in 1% agarose, employing a rabbit antibody raised against whole human platelets. Analysis of autoradiograms developed from dried agarose gels led to the establishment of a normal reference pattern that was consistent for platelets obtained from more than 50 normal individuals. Six platelet membrane glycoprotein antigens contained in four distinguishable precipitates were identified. Each identification was based on direct sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis of 125I-antigens contained in individually excised precipitates. These platelet antigens include major membrane glycoproteins previously designated la, lb, lla, llb, llla, and lllb. Glycoproteins llb and llla were shown to be contained in a single immunoprecipitate, while glycoproteins la and lla were routinely detected in a single different immunoprecipitate. Analysis of soluble proteins from platelets of five patients with Glanzmann's thrombasthenia demonstrated either a complete absence or a marked reduction of only one radiolabeled precipitate, that containing membrane glycoproteins llb and llla. Platelet samples from two patients with Bernard-Soulier syndrome were devoid of a different precipitate, that containing membrane glycoprotein lb.

  16. How to Make a Non-Antigenic Protein (Auto) Antigenic: Molecular Complementarity Alters Antigen Processing and Activates Adaptive-Innate Immunity Synergy.

    PubMed

    Root-Bernstein, Robert

    2015-01-01

    Evidence is reviewed that complementary proteins and peptides form complexes with increased antigenicity and/or autoimmunogenicity. Five case studies are highlighted: 1) diphtheria toxin-antitoxin (antibody), which induces immunity to the normally non-antigenic toxin, and autoimmune neuritis; 2) tryptophan peptide of myelin basic protein and muramyl dipeptide ("adjuvant peptide"), which form a complex that induces experimental allergic encephalomyelitis; 3) an insulin and glucagon complex that is far more antigenic than either component individually; 4) various causes of experimental autoimmune myocarditis such as C protein in combination with its antibody, or coxsackie B virus in combination with the coxsackie and adenovirus receptor; 5) influenza A virus haemagglutinin with the outer membrane protein of the Haemophilus influenzae, which increases antigenicity. Several mechanisms cooperate to alter immunogenicity. Complexation alters antigen processing, protecting the components against proteolysis, altering fragmentation and presenting novel antigens to the immune system. Complementary antigens induce complementary adaptive immune responses (complementary antibodies and/or T cell receptors) that produce circulating immune complexes (CIC). CIC stimulate innate immunity. Concurrently, complementary antigens stimulate multiple Toll-like receptors that synergize to over-produce cytokines, which further stimulate adaptive immunity. Thus innate and adaptive immunity form a positive feedback loop. If components of the complex mimic a host protein, then autoimmunity may result. Enhanced antigenicity for production of improved vaccines and/or therapeutic autoimmunity (e.g., against cancer cells) might be achieved by using information from antibody or TCR recognition sites to complement an antigen; by panning for complements in randomized peptide libraries; or using antisense peptide strategies to design complements. PMID:26179268

  17. Biofunctionalizing nanofibers with carbohydrate blood group antigens.

    PubMed

    Barr, Katie; Kannan, Bhuvaneswari; Korchagina, Elena; Popova, Inna; Ryzhov, Ivan; Henry, Stephen; Bovin, Nicolai

    2016-11-01

    A rapid and simple method of biofunctionalising nylon, cellulose acetate, and polyvinyl butyral electrospun nanofibers with blood group glycans was achieved by preparing function-spacer-lipid constructs and simply contacting them to fibers with a piezo inkjet printer. A series of water dispersible amphipathic glycan-spacer constructs were synthesized representing a range ABO and related blood group antigens. After immediate contact of the amphipathic glycan-spacer constructs with nanofiber surfaces they self-assembled and were detectable by enzyme immunoassays with high sensitivity and specificity. PMID:27388774

  18. Specific Fluorine Labeling of the HyHEL10 Antibody Affects Antigen Binding and Dynamics

    SciTech Connect

    Acchione, Mauro; Lee, Yi-Chien; DeSantis, Morgan E.; Lipschultz, Claudia A.; Wlodawer, Alexander; Li, Mi; Shanmuganathan, Aranganathan; Walter, Richard L.; Smith-Gill, Sandra; Barchi, Jr., Joseph J.

    2012-10-16

    To more fully understand the molecular mechanisms responsible for variations in binding affinity with antibody maturation, we explored the use of site specific fluorine labeling and {sup 19}F nuclear magnetic resonance (NMR). Several single-chain (scFv) antibodies, derived from an affinity-matured series of anti-hen egg white lysozyme (HEL) mouse IgG1, were constructed with either complete or individual replacement of tryptophan residues with 5-fluorotryptophan ({sup 5F}W). An array of biophysical techniques was used to gain insight into the impact of fluorine substitution on the overall protein structure and antigen binding. SPR measurements indicated that {sup 5F}W incorporation lowered binding affinity for the HEL antigen. The degree of analogue impact was residue-dependent, and the greatest decrease in affinity was observed when {sup 5F}W was substituted for residues near the binding interface. In contrast, corresponding crystal structures in complex with HEL were essentially indistinguishable from the unsubstituted antibody. {sup 19}F NMR analysis showed severe overlap of signals in the free fluorinated protein that was resolved upon binding to antigen, suggesting very distinct chemical environments for each {sup 5F}W in the complex. Preliminary relaxation analysis suggested the presence of chemical exchange in the antibody-antigen complex that could not be observed by X-ray crystallography. These data demonstrate that fluorine NMR can be an extremely useful tool for discerning structural changes in scFv antibody-antigen complexes with altered function that may not be discernible by other biophysical techniques.

  19. Large-scale sequence and structural comparisons of human naive and antigen-experienced antibody repertoires.

    PubMed

    DeKosky, Brandon J; Lungu, Oana I; Park, Daechan; Johnson, Erik L; Charab, Wissam; Chrysostomou, Constantine; Kuroda, Daisuke; Ellington, Andrew D; Ippolito, Gregory C; Gray, Jeffrey J; Georgiou, George

    2016-05-10

    Elucidating how antigen exposure and selection shape the human antibody repertoire is fundamental to our understanding of B-cell immunity. We sequenced the paired heavy- and light-chain variable regions (VH and VL, respectively) from large populations of single B cells combined with computational modeling of antibody structures to evaluate sequence and structural features of human antibody repertoires at unprecedented depth. Analysis of a dataset comprising 55,000 antibody clusters from CD19(+)CD20(+)CD27(-) IgM-naive B cells, >120,000 antibody clusters from CD19(+)CD20(+)CD27(+) antigen-experienced B cells, and >2,000 RosettaAntibody-predicted structural models across three healthy donors led to a number of key findings: (i) VH and VL gene sequences pair in a combinatorial fashion without detectable pairing restrictions at the population level; (ii) certain VH:VL gene pairs were significantly enriched or depleted in the antigen-experienced repertoire relative to the naive repertoire; (iii) antigen selection increased antibody paratope net charge and solvent-accessible surface area; and (iv) public heavy-chain third complementarity-determining region (CDR-H3) antibodies in the antigen-experienced repertoire showed signs of convergent paired light-chain genetic signatures, including shared light-chain third complementarity-determining region (CDR-L3) amino acid sequences and/or Vκ,λ-Jκ,λ genes. The data reported here address several longstanding questions regarding antibody repertoire selection and development and provide a benchmark for future repertoire-scale analyses of antibody responses to vaccination and disease. PMID:27114511

  20. Antigenic diversity of lipooligosaccharides of nontypable Haemophilus influenzae.

    PubMed Central

    Campagnari, A A; Gupta, M R; Dudas, K C; Murphy, T F; Apicella, M A

    1987-01-01

    The lipooligosaccharides (LOS) of nontypable Haemophilus influenzae are an antigenically heterogeneous group of macromolecules. Immunodiffusion and enzyme-linked immunosorbent assay inhibition studies with phenol-water-extracted LOS and absorbed antisera specific for the oligosaccharide portion of the LOS identified six LOS strain-specific antigens. To facilitate screening large numbers of strains to search for LOS antigenic heterogeneity, a system utilizing proteinase K whole cell digests in Western blots was developed. Seventy-two nontypable H. influenzae LOS extracts were analyzed in this Western blot assay. Thirty-seven of these extracts could be segregated into 10 antigenically distinct LOS groups based on immunologic recognition by one or more of the rabbit antisera. Thirty-five of the strains did not contain these LOS antigens. These results demonstrate that antigenic differences exist among the LOS of nontypable H. influenzae strains, and this heterogeneity has the potential to be used to establish an LOS-based serogrouping system. Images PMID:3549563

  1. Lessons learned from cancer vaccine trials and target antigen choice.

    PubMed

    Butterfield, Lisa H

    2016-07-01

    A wide variety of tumor antigens have been targeted in cancer immunotherapy studies. Traditionally, the focus has been on commonly overexpressed antigens shared across many patients and/or tumor types. As the field has progressed, the identity of human tumor rejection antigens has broadened. Immunologic monitoring of clinical trials has slowly elucidated candidate biomarkers of immune response and clinical response, and conversely, of immune dysfunction and suppression. We have utilized MART-1/Melan-A in our melanoma studies and observed a high frequency of immune responses and several significant clinical responses in patients vaccinated with this melanosomal protein. Alpha-fetoprotein is a shared, overexpressed tumor antigen and secreted glycoprotein that we have tested in hepatocellular cancer vaccines. Our recent studies have identified immunosuppressive and immune-skewing activities of this antigen. The choice of target antigen and its form can have unexpected effects. PMID:26842127

  2. Characterization of the cellular antigens of Paracoccidioides brasiliensis yeast form.

    PubMed Central

    Casotto, M

    1990-01-01

    Antigenic components of the yeast extract of Paracoccidioides brasiliensis Linder 2511 cultured for 3, 8, 20, 30, and 60 days were examined by the Western blot (immunoblot) technique. The 3-day extract was chosen for characterization of the antigenic components because its stability did not vary with time and it contained all antigens identified by patient sera. Antibodies to cross-reacting antigens of P. brasiliensis extracts were detected in sera from patients with histoplasmosis, candidiasis, and aspergillosis. The 58-, 57-, 21-, and 16-kilodalton (kDa) antigens were specific for P. brasiliensis, while the 48- and 45-kDa antigens were specific for paracoccidioidomycosis. The Western blot technique is a useful tool for the diagnosis of disease and revealed heterogeneity in the responses of patient sera. The combination of the 58-, 57-, and 45-kDa proteins confirmed a diagnosis of paracoccidioidomycosis (87% of the cases). Images PMID:2380351

  3. Overview of Plant-Made Vaccine Antigens against Malaria

    PubMed Central

    Clemente, Marina; Corigliano, Mariana G.

    2012-01-01

    This paper is an overview of vaccine antigens against malaria produced in plants. Plant-based expression systems represent an interesting production platform due to their reduced manufacturing costs and high scalability. At present, different Plasmodium antigens and expression strategies have been optimized in plants. Furthermore, malaria antigens are one of the few examples of eukaryotic proteins with vaccine value expressed in plants, making plant-derived malaria antigens an interesting model to analyze. Up to now, malaria antigen expression in plants has allowed the complete synthesis of these vaccine antigens, which have been able to induce an active immune response in mice. Therefore, plant production platforms offer wonderful prospects for improving the access to malaria vaccines. PMID:22911156

  4. Characterization of the major outer membrane antigens of Treponema hyodysenteriae.

    PubMed Central

    Wannemuehler, M J; Hubbard, R D; Greer, J M

    1988-01-01

    Outer membrane extracts of Treponema hyodysenteriae were used to evaluate the antibody responses in immunized or convalescent pigs. Western blot (immunoblot) analysis identified antibodies in sera reactive with 14- to 19-kilodalton (kDa) antigens. Reactivity against these antigens could be removed only by absorption of sera with butanol-water-extracted endotoxin from the homologous strain of T. hyodysenteriae. Treatment of the outer membrane extracts with 0.1 M sodium meta-periodate, but not with proteinase K, abolished reactivity with both outer membrane and endotoxin antigens (14 and 19 kDa). These results indicate that swine vaccinated with the outer membrane extract of T. hyodysenteriae develop antibody responses to outer membrane antigens qualitatively similar to those of swine convalescing from active infection, especially antibodies against low-molecular-mass antigens. The nature of the 14- to 19-kDa antigens appears consistent with that of treponemal endotoxin and lipopolysaccharide. Images PMID:2460406

  5. Nonclassical T Cells and Their Antigens in Tuberculosis

    PubMed Central

    De Libero, Gennaro; Singhal, Amit; Lepore, Marco; Mori, Lucia

    2014-01-01

    T cells that recognize nonpeptidic antigens, and thereby are identified as nonclassical, represent important yet poorly characterized effectors of the immune response. They are present in large numbers in circulating blood and tissues and are as abundant as T cells recognizing peptide antigens. Nonclassical T cells exert multiple functions including immunoregulation, tumor control, and protection against infections. They recognize complexes of nonpeptidic antigens such as lipid and glycolipid molecules, vitamin B2 precursors, and phosphorylated metabolites of the mevalonate pathway. Each of these antigens is presented by antigen-presenting molecules other than major histocompatibility complex (MHC), including CD1, MHC class I–related molecule 1 (MR1), and butyrophilin 3A1 (BTN3A1) molecules. Here, we discuss how nonclassical T cells participate in the recognition of mycobacterial antigens and in the mycobacterial-specific immune response. PMID:25059739

  6. Antigenic relationship between the common antigen (OEP) of Pseudomonas aeruginosa and Vibrio cholerae.

    PubMed Central

    Hirao, Y; Homma, J Y

    1978-01-01

    Antibodies were found by the OEP-passive hemagglutination test to cross-react with the common antigen (OEP) of Pseudomonas aeruginosa in sera of rabbits immunized with two serotype (Inaba and Ogawa) strains of Vibrio cholerae. The titer in the OEP-passive hemagglutination reaction rose later than did the agglutinin titer and reached a peak of 640 to 1,280. The titers of OEP antibody formation in rabbits immunized with V. cholerae were almost the same as that of P. aeruginosa. The common antigen of P. aeruginosa was confirmed to exist serologically in both strains of V. cholerae as determined by the indirect fluorescent antibody test and the agar gel precipitin test. Passive immunization with the V. cholerae immune rabbit serum significantly protected mice against P. aeruginosa infection. Purified antibodies cross-reacting with the OEP of P. aeruginosa derived from the V. cholerae immune rabbit sera by OEP-coupled affinity chromatography protected mice against P. aeruginosa infection as compared with the control group, which was injected with 100 microgram of immunoglobin G not containing OEP antibody. The purified antibodies (2.5 microgram per mouse) protected animals challenged with approximately 10,000 50% lethal doses in the control group. Consequently, the common antigen (OEP) of P. aeruginosa proved to be a common antigen of V. cholerae both serologically and in possessing infection protective properties. PMID:75846

  7. Novel selective inhibitors of aminopeptidases that generate antigenic peptides.

    PubMed

    Papakyriakou, Athanasios; Zervoudi, Efthalia; Theodorakis, Emmanuel A; Saveanu, Loredana; Stratikos, Efstratios; Vourloumis, Dionisios

    2013-09-01

    Endoplasmic reticulum aminopeptidases, ERAP1 and ERAP2, as well as Insulin regulated aminopeptidase (IRAP) play key roles in antigen processing, and have recently emerged as biologically important targets for manipulation of antigen presentation. Taking advantage of the available structural and substrate-selectivity data for these enzymes, we have rationally designed a new series of inhibitors that display low micromolar activity. The selectivity profile for these three highly homologous aminopeptidases provides a promising avenue for modulating intracellular antigen processing. PMID:23916253

  8. The 18-kilodalton antigen secreted by Aspergillus fumigatus.

    PubMed Central

    Latgé, J P; Moutaouakil, M; Debeaupuis, J P; Bouchara, J P; Haynes, K; Prévost, M C

    1991-01-01

    One of the major antigens secreted in vitro by Aspergillus fumigatus is an 18-kDa basic protein which has been purified by cation-exchange chromatography. It is recognized by sera from aspergilloma patients. It is also the major circulating antigen found in urine of patients with invasive aspergillosis. Our results indicated that this antigen has potential for the diagnosis of both aspergilloma and invasive aspergillosis. Images PMID:1855978

  9. An evolutionarily mobile antigen receptor variable region gene: Doubly rearranging NAR-TcR genes in sharks

    PubMed Central

    Criscitiello, Michael F.; Saltis, Mark; Flajnik, Martin F.

    2006-01-01

    Distinctive Ig and T cell receptor (TcR) chains define the two major lineages of vertebrate lymphocyte yet similarly recognize antigen with a single, membrane-distal variable (V) domain. Here we describe the first antigen receptor chain that employs two V domains, which are generated by separate VDJ gene rearrangement events. These molecules have specialized “supportive” TcRδV domains membrane-proximal to domains with most similarity to IgNAR V. The ancestral NAR V gene encoding this domain is hypothesized to have recombined with the TRD locus in a cartilaginous fish ancestor >200 million years ago and encodes the first V domain shown to be used in both Igs and TcRs. Furthermore, these data support the view that γ/δ TcRs have for long used structural conformations recognizing free antigen. PMID:16549799

  10. Cloning and expression in Escherichia coli of Mycoplasma gallisepticum antigens recognized by sera from infected chickens.

    PubMed

    Krause, D C; Kleven, S H; Lee, K K

    1990-01-01

    A clone bank of Mycoplasma gallisepticum (MG) strain A5969 DNA was prepared in the expression vector phage lambda gt11. Approximately 75% of the resulting phages were recombinants, based upon the insertional inactivation of the lacZ gene of the vector. Clones were screened immunologically with serum prepared from specific-pathogen-free white leghorn chickens that had been infected with aerosolized MG. Approximately 250 clones, or less than 1% of the recombinant phage, reacted positively to various degrees with the test serum and failed to react with serum from uninfected specific-pathogen-free control chickens. A single clone was chosen at random for comparison with a vector control by western immunoblot, revealing a polypeptide of 140,000 molecular weight in the clone profile but not the control profile that reacted with immune serum. Clones expressing MG antigens recognized during infection may provide an improved means for antigen preparation for serologic diagnosis of mycoplasmosis. PMID:2142422

  11. MHC structure and function – antigen presentation. Part 1

    PubMed Central

    Goldberg, Anna Carla; Rizzo, Luiz Vicente

    2015-01-01

    The setting for the occurrence of an immune response is that of the need to cope with a vast array of different antigens from both pathogenic and non-pathogenic sources. When the first barriers against infection and innate defense fail, adaptive immune response enters the stage for recognition of the antigens by means of extremely variable molecules, namely immunoglobulins and T-cell receptors. The latter recognize the antigen exposed on cell surfaces, in the form of peptides presented by the HLA molecule. The first part of this review details the central role played by these molecules, establishing the close connection existing between their structure and their antigen presenting function. PMID:25807245

  12. V-antigen homologs in pathogenic gram-negative bacteria.

    PubMed

    Sawa, Teiji; Katoh, Hideya; Yasumoto, Hiroaki

    2014-05-01

    Gram-negative bacteria cause many types of infections in animals from fish and shrimps to humans. Bacteria use Type III secretion systems (TTSSs) to translocate their toxins directly into eukaryotic cells. The V-antigen is a multifunctional protein required for the TTSS in Yersinia and Pseudomonas aeruginosa. V-antigen vaccines and anti-V-antigen antisera confer protection against Yersinia or P. aeruginosa infections in animal models. The V-antigen forms a pentameric cap structure at the tip of the Type III secretory needle; this structure, which has evolved from the bacterial flagellar cap structure, is indispensable for toxin translocation. Various pathogenic gram-negative bacteria such as Photorhabdus luminescens, Vibrio spp., and Aeromonas spp. encode homologs of the V-antigen. Because the V-antigens of pathogenic gram-negative bacteria play a key role in toxin translocation, they are potential therapeutic targets for combatting bacterial virulence. In the USA and Europe, these vaccines and specific antibodies against V-antigens are in clinical trials investigating the treatment of Yersinia or P. aeruginosa infections. Pathogenic gram-negative bacteria are of great interest because of their ability to infect fish and shrimp farms, their potential for exploitation in biological terrorism attacks, and their ability to cause opportunistic infections in humans. Thus, elucidation of the roles of the V-antigen in the TTSS and mechanisms by which these functions can be blocked is critical to facilitating the development of improved anti-V-antigen strategies. PMID:24641673

  13. Monoclonal antibodies to Nocardia asteroides and Nocardia brasiliensis antigens.

    PubMed Central

    Jiménez, T; Díaz, A M; Zlotnik, H

    1990-01-01

    Nocardia asteroides and Nocardia brasiliensis whole-cell extracts were used as antigens to generate monoclonal antibodies (MAbs). Six stable hybrid cell lines secreting anti-Nocardia spp. MAbs were obtained. These were characterized by enzyme-linked immunosorbent assay, Western blot (immunoblot), and immunofluorescence assay. Although all the MAbs exhibited different degrees of cross-reactivity with N. asteroides and N. brasiliensis antigens as well as with culture-filtrate antigens from Mycobacteria spp., they have the potential for use as reagents in the purification of Nocardia antigens. Images PMID:2405017

  14. The known unknowns of antigen processing and presentation

    PubMed Central

    Vyas, Jatin M.; Van der Veen, Annemarthe G.; Ploegh, Hidde L.

    2009-01-01

    The principal components of both MHC class I and class II antigen processing and presentation pathways are well known. Within dendritic cells, these pathways are tightly regulated by Toll-like receptor signalling and include features, such as cross-presentation, that are not seen in other cell types. The exact mechanisms involved in the subcellular trafficking of antigens remain poorly understood and in some cases are controversial. Recent data suggest that diverse cellular machineries including autophagy participate in antigen processing and presentation, though their relative contributions remain to be fully elucidated. Here, we highlight some emerging themes of antigen processing and presentation that we believe merit further attention. PMID:18641646

  15. Stimulation of human lymphocytes by Herpes simplex virus antigens.

    PubMed Central

    Starr, S E; Karatela, S A; Shore, S L; Duffey, A; Nahmias, A J

    1975-01-01

    Lymphocytes from individuals with laboratory evidence of prior infection with herpes simplex virus (HSV) type 1 or type 2 demonstrated transformation (av antigens. Higher stimulation indexes were obtained when lymphocytes were incubated with the homologous as compared with the heterologous antigen. Higher mean lymphocyte stimulation indexes were also demonstrated in seropositive as compared with seronegative individuals. Lymphocytes from children with HSV-1 stomatitis usually became responsive to HSV-1 antigen within 2 to 6 weeks after the onset of illness. Lymphocytes from infants with neonatal HSV-2 infection were stimulated by HSV-2 antigen. PMID:163788

  16. Protein kinase activity associated with simian virus 40 T antigen.

    PubMed Central

    Griffin, J D; Spangler, G; Livingston, D M

    1979-01-01

    Incubation of simian virus 40 (SV40) tumor (T) antigen-containing immunoprecipitates with [gamma-32P]ATP results in the incorporation of radioactive phosphate into large T antigen. Highly purified preparations of large T antigen from a SV40-transformed cell line, SV80, are able to catalyze the phosphorylation of a known phosphate acceptor, casein. The kinase activity migrates with large T antigen through multiple purification steps. Sedimentation analysis under non-T-antigen-aggregating conditions reveals that kinase activity and the immunoreactive protein comigrate as a 6S structure. The kinase activity of purified preparations of large T antigen can be specifically adsorbed to solid-phase anti-T IgG, and partially purified T antigen from a SV40 tsA transformation is thermolabile in its ability to phosphorylate casein when compared to comparably purified wild-type T antigen. These observations indicate that the SV40 large T antigen is closely associated with protein kinase (ATP:protein phosphotransferase, EC 2.7.1.37) activity. Images PMID:223152

  17. Strain-specific virulence-associated antigen of Neisseria gonorrhoeae.

    PubMed Central

    Pierce, W A; Leong, J K; Hough, D M

    1975-01-01

    A strain-specific virulence-associated antigen has been found in Neisseria gonorrhoeae strain F-62. Using immunodiffusion in agar gel, it has been shown that the antigen is distinguishable from endotoxin and the virulence-associated toxic protein. It does not appear to be derived from pili. The antigen was not detected in T1 and/or T2 colony type cultures of 10 other isolates. It exhibited a possible partial immunological relationship with an antigen found in one additional strain. It was susceptible to digestion with Pronase and trypsin. Images PMID:804445

  18. Cathepsin G: roles in antigen presentation and beyond

    PubMed Central

    Burster, Timo; Macmillan, Henriette; Hou, Tieying; Boehm, Bernhard O.; Mellins, Elizabeth D.

    2014-01-01

    Summary Contributions from multiple cathepsins within endosomal antigen processing compartments are necessary to process antigenic proteins into antigenic peptides. Cysteine and aspartyl cathepsins have been known to digest antigenic proteins. A role for the serine protease, Cathepsin G (CatG), in this process has been described only recently, although CatG has long been known to be a granule-associated proteolytic enzyme of neutrophils. In line with a role for this enzyme in antigen presentation, CatG is found in endocytic compartments of a variety of antigen presenting cells. CatG is found in primary human monocytes, B cells, myeloid dendritic cells 1 (mDC1), mDC2, plasmacytoid DC (pDC), and murine microglia, but is not expressed in B cell lines or monocyte-derived DC. Purified CatG can be internalized into endocytic compartments in CatG non-expressing cells, widening the range of cells where this enzyme may play a role in antigen processing. Functional assays have implicated CatG as a critical enzyme in processing of several antigens and autoantigens. In this review, historical and recent data on CatG expression, distribution, function and involvement in disease will be summarized and discussed, with a focus on its role in antigen presentation and immune-related events. PMID:19910052

  19. Charged polylactide co-glycolide microparticles as antigen delivery systems.

    PubMed

    Singh, Manmohan; Kazzaz, Jina; Ugozzoli, Mildred; Chesko, James; O'Hagan, Derek T

    2004-04-01

    Polymeric microparticles with encapsulated antigens have become well-established in the last decade as potent antigen delivery systems and adjuvants, with experience being reported from many groups. However, the authors have recently shown that an alternative approach involving charged polylactide co-glycolide (PLG) microparticles with surface adsorbed antigen(s) can also be used to deliver antigen into antigen-presenting cell populations. The authors have described the preparation of cationic and anionic PLG microparticles that have been used to adsorb a variety of agents, to include plasmid DNA, recombinant proteins and adjuvant active oligonucleotides. These novel PLG microparticles were prepared using a w/o/w solvent evaporation process in the presence of the anionic surfactants, such as dioctyl sodium sulfosuccinate, or cationic surfactants, such as hexadecyl trimethyl ammonium bromide. Antigen binding to the charged PLG microparticles was influenced by both electrostatic interaction and other mechanisms, including hydrophobic interactions. Adsorption of antigens to microparticles resulted in the induction of significantly enhanced immune responses in comparison with alternative approaches. The surface adsorbed microparticle formulation offers an alternative way of delivering antigens as a vaccine formulation. PMID:15102598

  20. [The HLA antigen system in patients with pneumoconiosis].

    PubMed

    Kleĭner, A I; Makotchenko, V M; Nabrinskiĭ, S I; Prilipskaia, N I; Tkach, S I

    1992-01-01

    The antigenic HLA spectra, loci A, B and C, were explored in 102 patients suffering from pneumoconiosis of workers exposed to dust in machine building. Significant frequency differences were discovered in some antigens and their complexes (AI; A I B 8; Bw35 Cw4) between the patients and control group subjects (112 healthy persons). The patients with uncomplicated pneumoconiosis and coniotuberculosis manifested appreciable differences in the antigenic HLA spectra. The authors propose an algorithm of predicting risk at pneumoconiosis as well as risk at coniotuberculosis, resting on the results of the typing of the antigenic HLA spectra. PMID:1523545

  1. Identification of Protective Antigens for Vaccination against Systemic Salmonellosis

    PubMed Central

    Bumann, Dirk

    2014-01-01

    There is an urgent medical need for improved vaccines with broad serovar coverage and high efficacy against systemic salmonellosis. Subunit vaccines offer excellent safety profiles but require identification of protective antigens, which remains a challenging task. Here, I review crucial properties of Salmonella antigens that might help to narrow down the number of potential candidates from more than 4000 proteins encoded in Salmonella genomes, to a more manageable number of 50–200 most promising antigens. I also discuss complementary approaches for antigen identification and potential limitations of current pre-clinical vaccine testing. PMID:25157252

  2. Detection of peste des petits ruminants virus antigen using immunofiltration and antigen-competition ELISA methods.

    PubMed

    Raj, G Dhinakar; Rajanathan, T M C; Kumar, C Senthil; Ramathilagam, G; Hiremath, Geetha; Shaila, M S

    2008-06-22

    Peste des petits ruminants (PPR) is one of the most economically important diseases affecting sheep and goats in India. An immunofiltration-based test has been developed using either mono-specific serum/monoclonal antibodies (mAb) prepared against a recombinant truncated nucleocapsid protein of rinderpest virus (RPV) cross-reactive with PPR virus. This method consists of coating ocular swab eluate from suspected animals onto a nitrocellulose membrane housed in a plastic module, which is allowed to react with suitable dilutions of a mAb or a mono-specific polyclonal antibody. The antigen-antibody complex formed on the membrane is then detected by protein A-colloidal gold conjugate, which forms a pink colour. In the immunofiltration test, concordant results were obtained using either PPRV mAb or mono-specific serum. Another test, an antigen-competition ELISA which relies on the competition between plate-coated recombinant truncated 'N' protein of RPV and the PPRV 'N' protein present in ocular swab eluates (sample) for binding to the mono-specific antibody against N protein of RPV (in liquid phase) was developed. The cut-off value for this test was established using reverse transcription polymerase chain reaction (RT-PCR) positive and negative oculo-nasal swab samples. Linear correlation between percent inhibition (PI) values in antigen-competition ELISA and virus infectivity titres was 0.992. Comparison of the immunofiltration test with the antigen-competition ELISA yielded a sensitivity of 80% and specificity of 100%. These two tests can serve as a screening (immunofiltration) and confirmatory (antigen-competition ELISA) test, respectively, in the diagnosis of PPR in sheep or goats. PMID:18182256

  3. Lipophilic O-antigens in Rhodospirillum tenue.

    PubMed Central

    Weckesser, J; Drews, G; Indira, R; Mayer, H

    1977-01-01

    Lipopolysaccharides of eight wild-type strains of the phototrophic bacterium Rhodospirillum tenue have been analyzed. All of the lipopolysaccharides are highly lipophilic. The compositions of preparations obtained by the phenol-water or by the phenol-chloroform-petroleum ether procedure are very similar. The polysaccharide moiety, obtained by mild acid hydrolysis of lipopolysaccharide, consists mainly of aldoheptoses: L-glycero-D-mannoheptose is present in all strains, whereas D-glycero-D-mannoheptose is an additional constituent in some strains. Galactosaminuronic acid and two unknown ninhydrin-positive components were detected in the lipopolysaccharides of six strains. Spermidine and putrescine are present in large amounts in a salt-like linkage in the lipopolysaccharides from three strains. 2-Keto-3-deoxyoctonate forms the linkage between the polysaccharide moiety and lipid A. The lipid A fraction contains all the glucosamine and all the D-arabinose present in the lipopolysaccharide. D-Arabinose is an invariable constituent of the lipid A from the Rhodopseudomonas tenue lipopolysaccharides investigated. The principal fatty acids are beta-hydroxycapric, myristic, and palmitic acids. The isolated R. tenue lipopolysaccharides (O-antigens) react with rabbit antisera prepared against homologous cells. The titers in passive hemagglutination are low, similar to those found with enterobacterial R-lipopolysaccharides. R. tenue O-antigens containing only L-glycero-D-mannoheptose and those containing both the L- and D-epimers of glycero-D-mannoheptose could not be differentiated by serological means. PMID:95659

  4. Emerging Antigens Involved in Allergic Responses

    PubMed Central

    Platts-Mills, Thomas A.E.; Commins, Scott P.

    2013-01-01

    New allergic diseases can “emerge” because of exposure to a novel antigen, because the immune responsiveness of the subject changes, or because of a change in the behavior of the population. Novel antigens have entered the environment as new pests in the home (e.g., Asian lady beetle or stink bugs), in the diet (e.g., prebiotics or wheat isolates), or because of the spread of a biting arthropod (e.g., ticks). Over the last few years, a significant new disease has been identified, which has changed the paradigm for food allergy. Bites of the tick, Amblyomma americanum, are capable of inducing IgE antibodies to galactose-alpha-1,3-galactose, which is associated with two novel forms of anaphylaxis. In a large area of the southeastern United States, the disease of delayed anaphylaxis to mammalian meat is now common. This disease challenges many previous rules about food allergy and provides a striking model of an emerging allergic disease. PMID:24095162

  5. Immunoregulation by Taenia crassiceps and Its Antigens

    PubMed Central

    Peón, Alberto N.; Espinoza-Jiménez, Arlett; Terrazas, Luis I.

    2013-01-01

    Taenia crassiceps is a cestode parasite of rodents (in its larval stage) and canids (in its adult stage) that can also parasitize immunocompromised humans. We have studied the immune response elicited by this helminth and its antigens in mice and human cells, and have discovered that they have a strong capacity to induce chronic Th2-type responses that are primarily characterized by high levels of Th2 cytokines, low proliferative responses in lymphocytes, an immature and LPS-tolerogenic profile in dendritic cells, the recruitment of myeloid-derived suppressor cells and, specially, alternatively activated macrophages. We also have utilized the immunoregulatory capabilities of this helminth to successfully modulate autoimmune responses and the outcome of other infectious diseases. In the present paper, we review the work of others and ourselves with regard to the immune response induced by T. crassiceps and its antigens, and we compare the advances in our understanding of this parasitic infection model with the knowledge that has been obtained from other selected models. PMID:23484125

  6. Tecemotide: An antigen-specific cancer immunotherapy

    PubMed Central

    Wurz, Gregory T; Kao, Chiao-Jung; Wolf, Michael; DeGregorio, Michael W

    2015-01-01

    The identification of tumor-associated antigens (TAA) has made possible the development of antigen-specific cancer immunotherapies such as tecemotide. One of those is mucin 1 (MUC1), a cell membrane glycoprotein expressed on some epithelial tissues such as breast and lung. In cancer, MUC1 becomes overexpressed and aberrantly glycosylated, exposing the immunogenic tandem repeat units in the extracellular domain of MUC1. Designed to target tumor associated MUC1, tecemotide is being evaluated in Phase III clinical trials for treatment of unresectable stage IIIA/IIIB non-small cell lung cancer (NSCLC) as maintenance therapy following chemoradiotherapy. Additional Phase II studies in other indications are ongoing. This review discusses the preclinical and clinical development of tecemotide, ongoing preclinical studies of tecemotide in human MUC1 transgenic mouse models of breast and lung cancer, and the potential application of these models for optimizing the timing of chemoradiotherapy and tecemotide immunotherapy to achieve the best treatment outcome for patients. PMID:25483673

  7. Specificity for the tumor-associated self-antigen WT1 drives the development of fully functional memory T cells in the absence of vaccination.

    PubMed

    Pospori, Constandina; Xue, Shao-An; Holler, Angelika; Voisine, Cecile; Perro, Mario; King, Judith; Fallah-Arani, Farnaz; Flutter, Barry; Chakraverty, Ronjon; Stauss, Hans J; Morris, Emma C

    2011-06-23

    Recently, vaccines against the Wilms Tumor antigen 1 (WT1) have been tested in cancer patients. However, it is currently not known whether physiologic levels of WT1 expression in stem and progenitor cells of normal tissue result in the deletion or tolerance induction of WT1-specific T cells. Here, we used an human leukocyte antigen-transgenic murine model to study the fate of human leukocyte antigen class-I restricted, WT1-specific T cells in the thymus and in the periphery. Thymocytes expressing a WT1-specific T-cell receptor derived from high avidity human CD8 T cells were positively selected into the single-positive CD8 population. In the periphery, T cells specific for the WT1 antigen differentiated into CD44-high memory phenotype cells, whereas T cells specific for a non-self-viral antigen retained a CD44(low) naive phenotype. Only the WT1-specific T cells, but not the virus-specific T cells, displayed rapid antigen-specific effector function without prior vaccination. Despite long-term persistence of WT1-specific memory T cells, the animals did not develop autoimmunity, and the function of hematopoietic stem and progenitor cells was unimpaired. This is the first demonstration that specificity for a tumor-associated self-antigen may drive differentiation of functionally competent memory T cells. PMID:21447831

  8. Nanolipoprotein Particles (NLPs) as Versatile Vaccine Platforms for Co-delivery of Multiple Adjuvants with Subunit Antigens from Burkholderia spp. and F. tularensis - Annual Technical Report

    SciTech Connect

    Fischer, N. O.

    2015-04-16

    The goal of this proposal is to demonstrate that co-localization of protein subunit antigens and adjuvants on nanolipoprotein particles (NLPs) can increase the protective efficacy of recombinant subunit antigens from Burkholderia spp. and Francisella tularensis against an aerosol challenge. NLPs are are biocompatible, high-density lipoprotein mimetics that are amenable to the incorporation of multiple, chemically-disparate adjuvant and antigen molecules. We hypothesize that the ability to co-localize optimized adjuvant formulations with subunit antigens within a single particle will enhance the stimulation and activation of key immune effector cells, increasing the protective efficacy of subunit antigen-based vaccines. While Burkholderia spp. and F. tularensis subunit antigens are the focus of this proposal, we anticipate that this approach is applicable to a wide range of DOD-relevant biothreat agents. The F344 rat aerosol challenge model for F. tularensis has been successfully established at Battelle under this contract, and Year 3 efficacy studies performed at Battelle demonstrated that an NLP vaccine formulation was able to enhance survival of female F344 rats relative to naïve animals. In addition, Year 3 focused on the incorporation of multiple Burkholderia antigens (both polysaccharides and proteins) onto adjuvanted NLPs, with immunological analysis poised to begin in the next quarter.

  9. Characterization of the fertilization antigen 1 for the development of a contraceptive vaccine.

    PubMed Central

    Naz, R K; Phillips, T M; Rosenblum, B B

    1986-01-01

    A fertilization antigen, FA-1, was purified from either deoxycholate- or lithium diiodosalicylate-solubilized murine testes by immunoaffinity chromatography using a monoclonal antibody, MA-24, which inhibited fertilization in vitro. The FA-1 was recovered at high (11.4) or low (2.8) pH using stepwise elution procedures of the deoxycholate or lithium diiodosalicylate extracts, respectively. Both of these fractions showed a single band of 47 kDa when analyzed by NaDodSO4/PAGE and silver staining. Following removal of the detergent and extensive dialysis at pH 5.8 or treatment with 0.15 M NaCl, even in the presence of detergent, a monomer of 23 kDa was detected. Two-dimensional PAGE of FA-1 showed, four or five polypeptides in the 47-kDa or 23-kDa range. The dialyzed FA-1 contained a major 23-kDa and a minor 48-kDa band when separated on both sucrose and cesium chloride gradients. High performance size-exclusion chromatography showed a major peak at 23 kDa and a minor peak at 50 kDa. Further analysis of the 23-kDa peak by reverse-phase chromatography resolved the antigen into three peaks, which gave similar two-dimensional gel patterns as the native FA-1. Lectin affinity chromatography on a lens culinaris column demonstrated that a part of the antigen was bound to the lectin while the rest was not. The FA-1 revealed a positive reaction with periodic-Schiff reagent and contained glucose and mannose, which together constituted 18.8% of the total antigen mass. Amino acid analysis showed a high percentage of aspartic acid, glutamic acid, serine, and glycine. As a single injection of MA-24 significantly reduced fertilization rates in vivo, the purified FA-1 is an attractive candidate for the development of contraceptive vaccine. Images PMID:3461457

  10. Molecular Pathways: Breaking the Epithelial Cancer Barrier for Chimeric Antigen Receptor and T-cell Receptor Gene Therapy.

    PubMed

    Hinrichs, Christian S

    2016-04-01

    Adoptive transfer of T cells genetically engineered to express a tumor-targeting chimeric antigen receptor (CAR) or T-cell receptor (TCR) can mediate cancer regression in some patients. CARs are synthetic single-chain proteins that use antibody domains to target cell surface antigens. TCRs are natural heterodimeric proteins that can target intracellular antigens through recognition of peptides bound to human leukocyte antigens. CARs have shown promise in B-cell malignancies and TCRs in melanoma, but neither approach has achieved clear success in an epithelial cancer. Treatment of epithelial cancers may be particularly challenging because of a paucity of target antigens expressed by carcinomas and not by important healthy tissues. In addition, epithelial cancers may be protected by inhibitory ligands and soluble factors in the tumor microenvironment. One strategy to overcome these negative regulators is to modulate expression of T-cell genes to enhance intrinsic T-cell function. Programmable nucleases, which can suppress inhibitory genes, and inducible gene expression systems, which can enhance stimulatory genes, are entering clinical testing. Other work is delineating whether control of genes for immune checkpoint receptors (e.g.,PDCD1, CTLA4) and cytokine and TCR signaling regulators (e.g.,CBLB, CISH, IL12, IL15) can increase the antitumor activity of therapeutic T cells.Clin Cancer Res; 22(7); 1559-64. ©2016 AACR. PMID:27037253

  11. Use of replication restricted recombinant vesicular stomatitis virus vectors for detection of antigen-specific T cells.

    PubMed

    Moseley, Nelson B; Laur, Oskar; Ibegbu, Chris C; Loria, Gilbert D; Ikwuenzunma, Gini; Jayakar, Himangi R; Whitt, Michael A; Altman, John D

    2012-01-31

    Detection of antigen-specific T cells at the single-cell level by ELISpot or flow cytometry techniques employing intracellular cytokine staining (ICS) is now an indispensable tool in many areas of immunology. When precisely mapped, optimal MHC-binding peptide epitopes are unknown, these assays use antigen in a variety of forms, including recombinant proteins, overlapping peptide sets representing one or more target protein sequences, microbial lysates, lysates of microbially-infected cells, or gene delivery vectors such as DNA expression plasmids or recombinant vaccinia or adenoviruses expressing a target protein of interest. Here we introduce replication-restricted, recombinant vesicular stomatitis virus (VSV) vectors as a safe, easy to produce, simple to use, and highly effective vector for genetic antigen delivery for the detection of human antigen-specific helper and cytotoxic T cells. To demonstrate the broad applicability of this approach, we have used these vectors to detect human T cell responses to the immunodominant pp65 antigen of human cytomegalovirus, individual segments of the yellow fever virus polyprotein, and to various influenza proteins. PMID:22004852

  12. Evaluation of a commercial dengue NS1 antigen-capture ELISA for laboratory diagnosis of acute dengue virus infection.

    PubMed

    Kumarasamy, V; Wahab, A H Abdul; Chua, S K; Hassan, Z; Chem, Y K; Mohamad, M; Chua, K B

    2007-03-01

    A commercial dengue NS1 antigen-capture ELISA was evaluated to demonstrate its potential application for early laboratory diagnosis of acute dengue virus infection. Dengue virus NS1 antigen was detected in 199 of 213 acute serum samples from patients with laboratory confirmation of acute dengue virus infection but none of the 354 healthy blood donors' serum specimens. The dengue NS1 antigen-capture ELISA gave an overall sensitivity of 93.4% (199/213) and a specificity of 100% (354/354). The sensitivity was significantly higher in acute primary dengue (97.3%) than in acute secondary dengue (70.0%). The positive predictive value of the dengue NS1 antigen-capture ELISA was 100% and negative predictive value was 97.3%. Comparatively, virus isolation gave an overall positive isolation rate of 68.1% with a positive isolation rate of 73.9 and 31.0% for acute primary dengue and acute secondary dengue, respectively. Molecular detection of dengue RNA by RT-PCR gave an overall positive detection rate of 66.7% with a detection rate of 65.2 and 75.9% for acute primary dengue and acute secondary dengue, respectively. The results indicate that the commercial dengue NS1 antigen-capture ELISA may be superior to virus isolation and RT-PCR for the laboratory diagnosis of acute dengue infection based on a single serum sample. PMID:17140671

  13. Graft-versus-leukemia antigen CML66 elicits coordinated B and T cell immunity after donor lymphocyte infusion

    PubMed Central

    Zhang, Wandi; Choi, Jaewon; Zeng, Wanyong; Rogers, Shelby A.; Alyea, Edwin P.; Rheinwald, James G.; Canning, Christine M.; Brusic, Vladimir; Sasada, Tetsuro; Reinherz, Ellis L.; Ritz, Jerome; Soiffer, Robert J.; Wu, Catherine J.

    2010-01-01

    Purpose The target antigens of graft-versus-leukemia that are tumor-associated are incompletely characterized. Experimental Design We examined responses developing against CML66, an immunogenic antigen preferentially expressed in myeloid progenitor cells identified from a patient with chronic myelogenous leukemia who attained long-lived remission following CD4+ donor lymphocyte infusion (DLI). Results From this patient, CML66-reactive CD8+ T cell clones were detected against an endogenously presented HLA-B*4403-restricted epitope (HDVDALLW). Neither CML66-specific antibody nor T cell responses were detectable in peripheral blood before DLI. However, by one month after DLI, CD8+ T cells were present in peripheral blood, and at 10-fold higher frequency in marrow. Subsequently, plasma antibody to CML66 developed in association with disease remission. Donor-derived CML66-reactive T cells were detected at low levels in vivo in marrow prior to DLI by ELISpot and by a nested polymerase chain reaction-based assay to detect clonotypic T cell receptor sequences, but not in blood of the patient pre-DLI, nor of the graft donor. Conclusions CD4+ DLI results in rapid expansion of pre-existing marrow-resident leukemia-specific donor CD8+ T cells, followed by a cascade of antigen-specific immune responses detectable in blood. Our single-antigen analysis thus demonstrates that durable post-transplant tumor immunity is directed in part against nonpolymorphic overexpressed leukemia antigens, that elicit coordinated cellular and humoral immunity. PMID:20460482

  14. Use of antigenic cartography in vaccine seed strain selection.

    PubMed

    Fouchier, Ron A M; Smith, Derek J

    2010-03-01

    Human influenza A viruses are classic examples of antigenically variable pathogens that have a seemingly endless capacity to evade the host's immune response. The viral hemagglutinin (HA) and neuraminidase (NA) proteins are the main targets of our antibody response to combat infections. HA and NA continuously change to escape from humoral immunity, a process known as antigenic drift. As a result of antigenic drift, the human influenza vaccine is updated frequently. The World Health Organization (WHO) coordinates a global influenza surveillance network that, by the hemagglutination inhibition (HI) assay, routinely characterizes the antigenic properties of circulating strains in order to select new seed viruses for such vaccine updates. To facilitate a quantitative interpretation and easy visualization of HI data, a new computational technique called "antigenic cartography" was developed. Since its development, antigenic cartography has been applied routinely to assist the WHO with influenza surveillance activities. Until recently, antigenic variation was not considered a serious issue with influenza vaccines for poultry. However, because of the diversification of the Asian H5N1 lineage since 1996 into multiple genetic clades and subclades, and because of the long-term use of poultry vaccines against H5 in some parts of the world, this issue needs to be re-addressed. The antigenic properties of panels of avian H5N1 viruses were characterized by HI assay, using mammalian or avian antisera, and analyzed using antigenic cartography methods. These analyses revealed antigenic differences between circulating H5N1 viruses and the H5 viruses used in poultry vaccines. Considerable antigenic variation was also observed within and between H5N1 clades. These observations have important implications for the efficacy and long-term use of poultry vaccines. PMID:20521635

  15. Immunochemistry of the streptococcal group R cell wall polysaccharide antigen.

    PubMed

    Soprey, P; Slade, H D

    1972-01-01

    The group R streptococcal group antigen has been shown to be a polysaccharide located at the surface of the cell wall of the organism. The antigen was extracted from cell walls in 0.05 n HCl or 5% trichloracetic acid at 100 C, from whole cells at room temperature in 0.85% NaCl or 0.1 m acetate (pH 5.0), and by sonic oscillation. The antigen is largely destroyed when extracted from whole cells in 0.05 n HCl at 100 C. Acetate is recommended for routine extraction. The antigen extracted by sonic treatment was separated into six immunologically active fractions on diethylaminoethyl-Sephadex. The fractions were found to possess a common antigen which exhibited similar properties on immunodiffusion and immunoelectrophoresis. The purified antigen did not react with any other streptococcal group antisera. Adsorption of group R serum with the antigen removed all antibodies against whole cell antigen extracts of R cells. Chemical and enzymatic analysis of three fractions showed that the antigen was composed of d-glucose, d-galactose, rhamnose, and glucosamine. No significant quantities of phosphorus, glycerol, ribitol, or muramic acid were present. Significant inhibition of the quantitative precipitin determination by d-galactose and stachyose indicated that galactose in terminal alpha linkage was the immunodominant hexose in the antigen. d-Glucose and d-glucosamine possessed a partial inhibitory activity. N-acetyl-d-glucosamine and l-rhamnose did not produce significant inhibition. The results indicate that the R antigen is an immunologically specific structure which serves as a reliable means of identification of these streptococci as a serological group. PMID:4632470

  16. Proliferating cell nuclear antigen (PCNA) : ringmaster of the genome.

    SciTech Connect

    Paunesku, T.; Mittal, S.; Protic, M.; Oryhon, J.; Korolev, S. V.; Joachimiak, A.; Woloschak, G. E.; Biosciences Division

    2001-10-01

    Proliferating cell nuclear antigen (PCNA) protein is one of the central molecules responsible for decisions of life and death of the cell. The PCNA gene is induced by p53, while PCNA protein interacts with p53-controlled proteins Gadd45, MyD118, CR6 and, most importantly, p21, in the process of deciding cell fate. If PCNA protein is present in abundance in the cell in the absence of p53, DNA replication occurs. On the other hand, if PCNA protein levels are high in the cell in the presence of p53, DNA repair takes place. If PCNA is rendered non-functional or is absent or present in low quantities in the cell, apoptosis occurs. The evolution from prokaryotes to eukaryotes involved a change of function of PCNA from a 'simple' sliding clamp protein of the DNA polymerase complex to an executive molecule controlling critical cellular decision pathways. The evolution of multicellular organisms led to the development of multicellular processes such as differentiation, senescence and apoptosis. PCNA, already an essential molecule in the life of single cellular organisms, then became a protein critical for the survival of multicellular organisms.

  17. Analysis of the Mycobacterium tuberculosis 85A antigen promoter region.

    PubMed Central

    Kremer, L; Baulard, A; Estaquier, J; Content, J; Capron, A; Locht, C

    1995-01-01

    A mycobacterial expression-secretion vector was constructed in which the Escherichia coli alkaline phosphatase (phoA) reporter gene was placed under the control of the Mycobacterium tuberculosis 85A promoter and secretion signal sequences. In recombinant Mycobacterium smegmatis and Mycobacterium bovis BCG, PhoA activity could readily be detected on the mycobacterial cell surface and in the culture supernatant, indicating that the 85A signals can drive heterologous expression and secretion in both species. In contrast to the mycobacteria, the 85A promoter did not function in E. coli. We mapped the promoter region by progressive deletions using BAL 31 exonuclease and by primer extension analysis. Insertion and deletion mutations within the promoter region indicated that, unlike most E. coli promoters but similar to Streptomyces promoters, the position of the putative -35 region was not critical for efficient promoter activity. In addition, we investigated the ability of the identified signals to drive the production and secretion in BCG of recombinant Schistosoma mansoni glutathione S-transferase (Sm28GST), a protective antigen against schistosomiasis. BALB/c mice immunized with the recombinant BCG by a single dose exhibited a weak but specific T-cell response to Sm28GST. PMID:7836298

  18. Multiplexed BioCD for prostate specific antigen detection

    NASA Astrophysics Data System (ADS)

    Wang, Xuefeng; Zhao, Ming; Nolte, David D.

    2008-02-01

    Specific protein concentrations in human body fluid can serve as diagnostic markers for some diseases, and a quantitative and high-throughput technique for multiplexed protein detection would speed up diagnosis and facilitate medical research. For this purpose, our group developed the BioCD, a spinning-disc interferometric biosensor on which antibody is immobilized. The detection system adopts a common-path scheme making it ultra stable. The scaling mass sensitivity is below 10 pg/mm for protein surface density. A 25000-spot antibody BioCD was fabricated to measure the concentration of prostate specific antigen (PSA), a protein indicating prostate cancer if its level is high. Statistical analysis of our immunoassay results projects that the detection limit of PSA would reach 20 pg/ml in a 2 mg/ml background solution. For future prospects, a multiplexed BioCD can be produced for simultaneous diagnosis of diverse diseases. For instance, 100 markers above 200 pg/ml could be measured on a single disc given that the detection limit is inversely proportional to square root of the number of spots.

  19. Accuracy of point-of-care testing for circulatory cathodic antigen in the detection of schistosome infection: systematic review and meta-analysis

    PubMed Central

    Minton, Jonathan; Boamah, Daniel; Otchere, Joseph; Asmah, Richard H; Rodgers, Mark; Bosompem, Kwabena M; Eusebi, Paolo; De Vlas, Sake J

    2016-01-01

    Abstract Objective To assess the accuracy of point-of-care testing for circulatory cathodic antigen in the diagnosis of schistosome infection. Methods We searched MEDLINE, EMBASE, LILACS and other bibliographic databases for studies published until 30 September 2015 that described circulatory cathodic antigen testing compared against one to three Kato–Katz tests per subject – for Schistosoma mansoni – or the filtration of one 10-ml urine sample per subject – for S. haematobium. We extracted the numbers of true positives, false positives, true negatives and false negatives for the antigen testing and performed meta-analyses using a bivariate hierarchical regression model. Findings Twenty-six studies published between 1994 and 2014 met the inclusion criteria. In the detection of S. mansoni, a single antigen test gave a pooled sensitivity of 0.90 (95% confidence interval, CI: 0.84–0.94) and a pooled specificity of 0.56 (95% CI: 0.39–0.71; n = 7) when compared against a single Kato–Katz test. The corresponding values from comparisons with two to three Kato–Katz tests per subject were 0.85 (95% CI: 0.80–0.88) and 0.66 (95% CI: 0.53–0.76; n = 14), respectively. There appeared to be no advantage in using three antigen tests per subject instead of one. When compared against the results of urine filtration, antigen testing for S. haematobium showed poor sensitivity and poor specificity. The performance of antigen testing was better in areas of high endemicity than in settings with low endemicity. Conclusion Antigen testing may represent an effective tool for monitoring programmes for the control of S. mansoni. PMID:27429491

  20. Reactivity of heat-stable Leptospira antigenic preparation used in enzyme-linked immunosorbent assay for detection of antibodies in swine serum.

    PubMed

    Wasiński, B; Pejsak, Z

    2012-01-01

    Serology plays an important role in laboratory diagnosis of leptospirosis. Apart from the most often used microscopic agglutination test (MAT), enzyme-linked immunosorbent assay (ELISA) seems to be useful especially in screenings of animal herds. The ELISA used for detection of antibodies against selected Leptospira serogroups in swine serum samples was investigated during the study. An essential element of this test is heat-stable antigenic preparation from cultures of Leptospira interrogans serovars Icterohaemorrhagiae, Pomona and L. borgpetersenii serovar Sejroe. The aim of the present study was to identify and analyze ELISA heat-stable antigen fractions playing a role in the reaction with leptospiral antibodies indicated in swine serum. Reactivity of the three-component antigenic preparation was compared in immunoblotting with reactivity of six heat-stable antigenic preparations made from the following single serovars: L. interrogans serovars Icterohaemorrhagiae, Pomona, Canicola, L. borgpetersenii serovars Sejroe, Tarassovi and L. kirshneri serovar Grippotyphosa. All antigenic preparations were submitted to SDS-PAGE and transferred to a nitrocellulose membrane using a semidry system. After the transfer, the membrane was incubated with diluted swine serum containing antibodies specific for one of the six above mentioned Leptospira serovars. For the three-component antigenic preparation and antigens prepared from single serovars the immunoblot revealed reaction of sera with fractions of the 20-26 kDa region and around the 14.5 kDa region. The investigated heat-stable Leptospira antigenic preparation contains fractions demonstrating serogroup- and species-specificity. Fraction 20-26 kDa showed serogroup-specific activity, whereas the fraction around 14.5 kDa showed species-specific activity. PMID:22708354

  1. Co-administration of certain DNA vaccine combinations expressing different H5N1 influenza virus antigens can be beneficial or detrimental to immune protection.

    PubMed

    Patel, Ami; Gray, Michael; Li, Yan; Kobasa, Darwyn; Yao, Xiaojian; Kobinger, Gary P

    2012-01-11

    Achieving broad-spectrum immunity against emerging zoonotic viruses such as avian influenza H5N1 and other possible pandemic viruses will require generation of cross-protective immune responses. Strong antibody responses generated against the H5HA protein are protective, however, antigenic variation between diverging isolates can interfere with virus neutralization. The current study investigates co-administration of an H5 HA DNA vaccine with other variable and conserved influenza antigens (NA, NP, and M2). All antigens were derived from the A/Hanoi/30408/2005 (H5N1) virus and the contribution towards overall protection and immune activation was assessed against lethal homologous and heterologous challenges. An (HA+NA) combination afforded the best protection against homologous challenge and (HA+NP) was comparable to HA alone against heterologous A/Hong Kong/483/1997 challenge. Interestingly, combining all four H5 antigens at a single site did not improve protection against matched challenge and unexpectedly reduced survival by 30% against a heterologous challenge. Survival was also significantly decreased against heterologous challenge following combination of (HA+NP) with an unrelated antigen. Although there were no significant changes in antibody titres, significantly lower T-cell responses were detected against all antigens except HA in each combination. Co-administration of the vaccines at different injection sites restored T-cell responses but did not improve overall protection. Similar observations were also recorded following combination of HA and NP antigens using two different adenovirus-based backbones. Overall, the data suggest that co-administering certain H5N1 antigens offer better or comparable protection to HA alone, however, combining extra antigens may be unnecessary and lead to unfavourable immune responses. PMID:22119588

  2. B-cell acquisition of antigen: Sensing the surface.

    PubMed

    Knight, Andrew M

    2015-06-01

    B-cell antigen receptor (BCR) recognition and acquisition of antigen by B cells is the essential first step in the generation of effective antibody responses. As B-cell-mediated antigen presentation is also believed to play a significant role in the activation of CD4(+) Th-cell responses, considerable effort has focused on clarifying the nature of antigen/BCR interactions. Following earlier descriptions of interactions of soluble antigens with the BCR, it is now clear that B cells also recognize, physically extract and present antigens that are tethered to, or integral components of, the surfaces or extracellular matrix of other cells. In this issue of the European Journal of Immunology, Zeng et al. [Eur. J. Immunol. 2015. 45: XXXX-XXXX] examine how the physical property or "stiffness" of the surface displaying antigens to B cells influences the B-cell response. This commentary reports that antigen tethered on "less stiff" surfaces induces increased B-cell activation and antibody responses. I then infer how "sensing the surface" by B cells may represent a new component of the immune system's ability to detect "damage," and how this understanding may influence approaches to clinical therapies where immune activity is either unwanted or desired. PMID:25929718

  3. Overcoming Antigen Escape with CAR T-cell Therapy.

    PubMed

    Jackson, Hollie J; Brentjens, Renier J

    2015-12-01

    Sotillo and colleagues describe the molecular events associated with apparent loss of target antigen expression following CAR T-cell therapy. We propose that broader immune activation is required to prevent outgrowth of tumor antigen escape variants following targeted therapies. PMID:26637657

  4. Antigens provide immunity against Ich in channel catfish trials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies were conducted to determine effects of 1) types of Ich antigens and routes of immunization, 2) methods of inactivated trophonts, and 3) antigen doses on fish immune protection against Ichthyophthirius multifiliis Fouquet (Ich). All catfish immunized with live theronts by immersion, live the...

  5. Twenty Years of PSA: From Prostate Antigen to Tumor Marker

    PubMed Central

    De Angelis, Gabriela; Rittenhouse, Harry G; Mikolajczyk, Stephen D; Blair Shamel, L; Semjonow, Axel

    2007-01-01

    The measurement of prostate-specific antigen in serum is credited with dramatic advances in the early detection of men with prostatic carcinoma. This report summarizes the history of biochemical research and the current understanding and application of prostate-specific antigen in prostate cancer diagnostics. PMID:17934568

  6. Expression of Plasmodium falciparum surface antigens in Escherichia coli.

    PubMed Central

    Ardeshir, F; Flint, J E; Reese, R T

    1985-01-01

    The asexual blood stages of the human malarial parasite Plasmodium falciparum produce many antigens, only some of which are important for protective immunity. Most of the putative protective antigens are believed to be expressed in schizonts and merozoites, the late stages of the asexual cycle. With the aim of cloning and characterizing genes for important parasite antigens, we used late-stage P. falciparum mRNA to construct a library of cDNA sequences inserted in the Escherichia coli expression vector pUC8. Nine thousand clones from the expression library were immunologically screened in situ with serum from Aotus monkeys immune to P. falciparum, and 95 clones expressing parasite antigens were identified. Mice were immunized with lysates from 49 of the bacterial clones that reacted with Aotus sera, and the mouse sera were tested for their reactivity with parasite antigens by indirect immunofluorescence, immunoprecipitation, and immunoblotting assays. Several different P. falciparum antigens were identified by these assays. Indirect immunofluorescence studies of extracellular merozoites showed that three of these antigens appear to be located on the merozoite surface. Thus, we have identified cDNA clones to three different P. falciparum antigens that may be important in protective immunity. Images PMID:3887406

  7. Expression of Treponema pallidum Antigens in Escherichia coli

    NASA Astrophysics Data System (ADS)

    Walfield, Alan M.; Hanff, Philip A.; Lovett, Michael A.

    1982-04-01

    Treponema pallidum DNA was cloned in a bacteriophage. Clones were screened for expression of Treponema pallidum antigens by an in situ radio-immunoassay on nitrocellulose, with the use of subsequent reactions with syphilitic serum and radioiodinated Staphylococcus aureus protein A. One clone, which gave a strong signal, codes for at least seven antigens that react specifically with human antibodies to Treponema pallidum.

  8. Mapping of phosphorylation sites in polyomavirus large T antigen

    SciTech Connect

    Hassauer, M.; Scheidtmann, K.H.; Walter, G.

    1986-06-01

    The phosphorylation sites of polyomavirus large T antigen from infected or transformed cells were investigated. Tryptic digestion of large T antigen from infected, /sup 32/P/sub i/-labeled cells revealed seven major phosphopeptides. Five of these were phosphorylated only at serine residues, and two were phosphorylated at serine and threonine residues. The overall ratio of phosphoserine to phosphothreonine was 6:1. The transformed cell line B4 expressed two polyomavirus-specific phosphoproteins: large T antigen, which was only weakly phosphorylated, and a truncated form of large T antigen of 34,000 molecular weight which was heavily phosphorylated. Both showed phosphorylation patterns similar to that of large T antigen from infected cells. Peptide analyses of large T antigens encoded by the deletion mutants dl8 and dl23 or of specific fragments of wild-type large T antigen indicated that the phosphorylation sites are located in an amino-terminal region upstream of residue 194. The amino acid composition of the phosphopeptides as revealed by differential labeling with various amino acids indicated that several phosphopeptides contain overlapping sequences and that all phosphorylation sites are located in four tryptic peptides derived from a region between Met71 and Arg191. Two of the potential phosphorylation sites were identified as Ser81 and Thr187. The possible role of this modification of large T antigen is discussed.

  9. Intestine-associated antigens in ovarian tumours: an immunohistological study.

    PubMed

    De Boer, W G; Ma, J; Nayman, J

    1981-07-01

    The presence of 3 intestine-associated antigens, small intestine mucin antigen (SIMA), large intestine mucin antigen (LIMA) and carcinoembryonic antigen (CEA) was studied in the female genital tract and ovarian tumours by immunofluorescence. These antigens could not be detected in normal ovary, benign cysts of ovary, fallopian tube or endometrium, but both LIMA and CEA were present in endocervical glandular tissue. The antigenic cross-reactivity of endocervical and large bowel mucin may indicate a close embryological relationship between these organs during the cloacogenic stage. The 3 antigens could be demonstrated in mucinous tumours of the ovary but were absent in serous or mesonephroid tumours. In one of the 2 endometroid tumours CEA was the only detectable antigen. These observations confirm the presence of intestinal type of epithelium in cystic mucinous tumours of the ovary and explain the cross-reactivity of mucin of benign tumours of the ovary and mucin from colonic cancer, normal colonic mucosa and gastric mucosa as reported by earlier workers. In the process of malignant transformation the columnar epithelium of ovarian cystadenoma seems to behave in the same way as superficial gastric and gall bladder epithelium by forming inappropriate intestine-associated mucin substances. Our technique may provide a specific means for studies on the histogenesis of female genital tract tumours, particularly ovarian tumours. It can also be used in differentiating between benign and malignant variants of these tumours. PMID:7029434

  10. Intramolecular trimerization, a novel strategy for making multispecific antibodies with controlled orientation of the antigen binding domains.

    PubMed

    Alvarez-Cienfuegos, Ana; Nuñez-Prado, Natalia; Compte, Marta; Cuesta, Angel M; Blanco-Toribio, Ana; Harwood, Seandean Lykke; Villate, Maider; Merino, Nekane; Bonet, Jaume; Navarro, Rocio; Muñoz-Briones, Clara; Sørensen, Karen Marie Juul; Mølgaard, Kasper; Oliva, Baldo; Sanz, Laura; Blanco, Francisco J; Alvarez-Vallina, Luis

    2016-01-01

    Here, we describe a new strategy that allows the rapid and efficient engineering of mono and multispecific trivalent antibodies. By fusing single-domain antibodies from camelid heavy-chain-only immunoglobulins (VHHs) to the N-terminus of a human collagen XVIII trimerization domain (TIE(XVIII)) we produced monospecific trimerbodies that were efficiently secreted as soluble functional proteins by mammalian cells. The purified VHH-TIE(XVIII) trimerbodies were trimeric in solution and exhibited excellent antigen binding capacity. Furthermore, by connecting with two additional glycine-serine-based linkers three VHH-TIE(XVIII) modules on a single polypeptide chain, we present an approach for the rational design of multispecific tandem trimerbodies with defined stoichiometry and controlled orientation. Using this technology we report here the construction and characterization of a tandem VHH-based trimerbody capable of simultaneously binding to three different antigens: carcinoembryonic antigen (CEA), epidermal growth factor receptor (EGFR) and green fluorescence protein (GFP). Multispecific tandem VHH-based trimerbodies were well expressed in mammalian cells, had good biophysical properties and were capable of simultaneously binding their targeted antigens. Importantly, these antibodies were very effective in inhibiting the proliferation of human epidermoid carcinoma A431 cells. Multispecific VHH-based trimerbodies are therefore ideal candidates for future applications in various therapeutic areas. PMID:27345490

  11. Intramolecular trimerization, a novel strategy for making multispecific antibodies with controlled orientation of the antigen binding domains

    PubMed Central

    Alvarez-Cienfuegos, Ana; Nuñez-Prado, Natalia; Compte, Marta; Cuesta, Angel M.; Blanco-Toribio, Ana; Harwood, Seandean Lykke; Villate, Maider; Merino, Nekane; Bonet, Jaume; Navarro, Rocio; Muñoz-Briones, Clara; Sørensen, Karen Marie Juul; Mølgaard, Kasper; Oliva, Baldo; Sanz, Laura; Blanco, Francisco J.; Alvarez-Vallina, Luis

    2016-01-01

    Here, we describe a new strategy that allows the rapid and efficient engineering of mono and multispecific trivalent antibodies. By fusing single-domain antibodies from camelid heavy-chain-only immunoglobulins (VHHs) to the N-terminus of a human collagen XVIII trimerization domain (TIEXVIII) we produced monospecific trimerbodies that were efficiently secreted as soluble functional proteins by mammalian cells. The purified VHH-TIEXVIII trimerbodies were trimeric in solution and exhibited excellent antigen binding capacity. Furthermore, by connecting with two additional glycine-serine-based linkers three VHH-TIEXVIII modules on a single polypeptide chain, we present an approach for the rational design of multispecific tandem trimerbodies with defined stoichiometry and controlled orientation. Using this technology we report here the construction and characterization of a tandem VHH-based trimerbody capable of simultaneously binding to three different antigens: carcinoembryonic antigen (CEA), epidermal growth factor receptor (EGFR) and green fluorescence protein (GFP). Multispecific tandem VHH-based trimerbodies were well expressed in mammalian cells, had good biophysical properties and were capable of simultaneously binding their targeted antigens. Importantly, these antibodies were very effective in inhibiting the proliferation of human epidermoid carcinoma A431 cells. Multispecific VHH-based trimerbodies are therefore ideal candidates for future applications in various therapeutic areas. PMID:27345490

  12. Novel antigens for enterotoxigenic Escherichia coli vaccines.

    PubMed

    Fleckenstein, James; Sheikh, Alaullah; Qadri, Firdausi

    2014-05-01

    Enterotoxigenic Escherichia coli (ETEC) are the most common bacterial pathogens causing diarrhea in developing countries where they lead to hundreds of thousands of deaths, mostly in children. These organisms are a leading cause of diarrheal illness in travelers to endemic countries. ETEC pathogenesis, and consequently vaccine approaches, have largely focused on plasmid-encoded enterotoxins or fimbrial colonization factors. To date these approaches have not yielded a broadly protective vaccine. However, recent studies suggest that ETEC pathogenesis is more complex than previously appreciated and involves additional plasmid and chromosomally encoded virulence molecules that can be targeted in vaccines. Here, we review recent novel antigen discovery efforts, potential contribution of these proteins to the molecular pathogenesis of ETEC and protective immunity, and the potential implications for development of next generation vaccines for important pathogens. These proteins may help to improve the effectiveness of future vaccines by making them simpler and possibly broadly protective because of their conserved nature. PMID:24702311

  13. [Detection and typing for swine leukocyte antigen].

    PubMed

    Li, Hua; Luo, Huai-Rong; Zhang, Ya-Ping; Qiu, Xiang-Pin; Ye, Chun

    2004-03-01

    Traditionally the cluster of swine leukocyte antigen (SLA) was typed by serological, cytological and biochemical methods. Many special molecular typing methods have been developed with the progress of molecular biological technology, such as PCR-RFLP, PCR-SSCP , MS and DNA sequencing. Here we discussed the advantages and disadvantages of each method based on the polymorphic and conservative (from the functional aspect, such as supertype and supermotif) characteristics of SLA, and illustrated the development of typing for SLA in the future. In addition, we pointed out the editorial mistakes about the serological haplotype of SLA in reference book and emphasized that the accurate polymorphism of SLA-DQB gene must be based on the cloning sequencing. PMID:15639990

  14. Protein microarrays for parasite antigen discovery.

    PubMed

    Driguez, Patrick; Doolan, Denise L; Molina, Douglas M; Loukas, Alex; Trieu, Angela; Felgner, Phil L; McManus, Donald P

    2015-01-01

    The host serological profile to a parasitic infection, such as schistosomiasis, can be used to define potential vaccine and diagnostic targets. Determining the host antibody response using traditional approaches is hindered by the large number of putative antigens in any parasite proteome. Parasite protein microarrays offer the potential for a high-throughput host antibody screen to simplify this task. In order to construct the array, parasite proteins are selected from available genomic sequence and protein databases using bioinformatic tools. Selected open reading frames are PCR amplified, incorporated into a vector for cell-free protein expression, and printed robotically onto glass slides. The protein microarrays can be probed with antisera from infected/immune animals or humans and the antibody reactivity measured with fluorophore labeled antibodies on a confocal laser microarray scanner to identify potential targets for diagnosis or therapeutic or prophylactic intervention. PMID:25388117

  15. Engineering antigen-specific immunological tolerance.

    SciTech Connect

    Kontos, Stephan; Grimm, Alizee J.; Hubbell, Jeffrey A.

    2015-05-01

    Unwanted immunity develops in response to many protein drugs, in autoimmunity, in allergy, and in transplantation. Approaches to induce immunological tolerance aim to either prevent these responses or reverse them after they have already taken place. We present here recent developments in approaches, based on engineered peptides, proteins and biomaterials, that harness mechanisms of peripheral tolerance both prophylactically and therapeutically to induce antigenspecific immunological tolerance. These mechanisms are based on responses of B and T lymphocytes to other cells in their immune environment that result in cellular deletion or ignorance to particular antigens, or in development of active immune regulatory responses. Several of these approaches are moving toward clinical development, and some are already in early stages of clinical testing.

  16. Antigen handling in antigen-induced arthritis in mice: an autoradiographic and immunofluorescence study using whole joint sections.

    PubMed Central

    van den Berg, W. B.; van Beusekom, H. J.; van de Putte, L. B.; Zwarts, W. A.; van der Sluis, M.

    1982-01-01

    Antigen localization after intraarticular antigen injection was studied in immune and nonimmune mice using autoradiographic and immunofluorescence techniques on whole joint sections. After intraarticular injection of radiolabeled methylated bovine serum albumin (125I-mBSA) in immune mice, labeling in the synovium and synovial exudate diminished rapidly, apart from some deposits in fibrinlike material present in the joint cavity. Long-term antigen retention was found in avascular and hypovascular structures lining the joint cavity, albeit not along the whole surface; eg, labeling remained present at the edges of the femoral condyle hyaline cartilage but not at the central weight-bearing region; long-term retention at ligaments was only found at the insertion sites. Immunofluorescence data in immune animals showed antigen retention together with the presence of immunoglobulins and complement, indicating that antigen is retained at least in part in the form of immune complexes. Nonimmune mice showed even higher long-term antigen retention than immune animals, probably related to physico-chemical properties of the antigen enabling nonimmune binding to articular structures, but also indicating that the presence of joint inflammation in the immune animals enhances antigen clearance. Histologic examination of the ligaments and patellar cartilage of immune mice did reveal that long-term antigen retention was not anatomically related to nearby inflammation or to local tissue damage. The importance of long-term antigen retention for the chronicity of arthritis may lie in the leakage of small amounts of this antigen to joint compartments where it does behave as an inflammatory stimulus; it may further be that it renders the joint a specifically hypersensitive area. Images Figure 1 Figure 2 Figure 3 Figure 6 Figure 7 PMID:7046457

  17. Expression patterns of the T antigen and the cryptic T antigen in rat fetuses: detection with the lectin amaranthin.

    PubMed

    Sata, T; Zuber, C; Rinderle, S J; Goldstein, I J; Roth, J

    1990-06-01

    The lectin amaranthin, purified from the seeds of Amaranthus caudatus, has been shown to react specifically with the Gal beta 1,3GalNAc-alpha and the NeuAc alpha 2,3Gal beta 1,3GalNAc-alpha sequence which represent the T antigen and the cryptic T antigen, respectively. We report here the development of labeling techniques that apply amaranthin to stain paraffin sections from rat fetuses. Amaranthin staining was inhibited by pre-incubation of lectin-gold complexes with 10 mM Gal beta 1,3GalNAc-alpha-O-benzyl (synthetic T antigen) or 10 mM Gal beta 1,3GalNAc-alpha-O-aminophenylethyl-human serum albumin (T antigen neoglycoprotein), asialoglycophorin, asialofetuin, and asialomucin. The beta-elimination reaction also abolished the lectin staining demonstrating specificity for O-glycosidically linked structures. A comparison with monoclonal anti-T antigen antibody immunostaining demonstrated that amaranthin detects the T antigen and its cryptic form in tissue sections. Application of the galactose oxidase-Schiff sequence abolished amaranthin (and anti-T antibody) binding to the T antigen but not to its cryptic form, and therefore permitted their differentiation in tissue sections. Histochemical evidence was obtained indicating that amaranthin is a more specific anti-T reagent than peanut lectin. Data are presented that show the differential expression of the T antigen and the cryptic T antigen in organs and cells of rat fetuses late in gestation. Therefore, amaranthin can be used for histochemical detection of the T antigen and the cryptic T antigen, and facilitates discrimination between them. PMID:2335739

  18. The Human Transporter Associated with Antigen Processing

    PubMed Central

    Corradi, Valentina; Singh, Gurpreet; Tieleman, D. Peter

    2012-01-01

    The human transporter associated with antigen processing (TAP) is a member of the ATP binding cassette (ABC) transporter superfamily. TAP plays an essential role in the antigen presentation pathway by translocating cytosolic peptides derived from proteasomal degradation into the endoplasmic reticulum lumen. Here, the peptides are loaded into major histocompatibility class I molecules to be in turn exposed at the cell surface for recognition by T-cells. TAP is a heterodimer formed by the association of two half-transporters, TAP1 and TAP2, with a typical ABC transporter core that consists of two nucleotide binding domains and two transmembrane domains. Despite the availability of biological data, a full understanding of the mechanism of action of TAP is limited by the absence of experimental structures of the full-length transporter. Here, we present homology models of TAP built on the crystal structures of P-glycoprotein, ABCB10, and Sav1866. The models represent the transporter in inward- and outward-facing conformations that could represent initial and final states of the transport cycle, respectively. We described conserved regions in the endoplasmic reticulum-facing loops with a role in the opening and closing of the cavity. We also identified conserved π-stacking interactions in the cytosolic part of the transmembrane domains that could explain the experimental data available for TAP1-Phe-265. Electrostatic potential calculations gave structural insights into the role of residues involved in peptide binding, such as TAP1-Val-288, TAP2-Cys-213, TAP2-Met-218. Moreover, these calculations identified additional residues potentially involved in peptide binding, in turn verified with replica exchange simulations performed on a peptide bound to the inward-facing models. PMID:22700967

  19. PROSTATE SPECIFIC MEMBRANE ANTIGEN-BASED IMAGING

    PubMed Central

    Osborne, Joseph R.; Akhtar, Naveed H.; Vallabhajosula, Shankar; Anand, Alok; Deh, Kofi; Tagawa, Scott T.

    2012-01-01

    SUMMARY Prostate cancer (PC) is the most common non-cutaneous malignancy affecting men in North America. Despite significant efforts, conventional imaging of PC does not contribute to patient management as much as imaging performed for other common cancers. Given the lack of specificity in conventional imaging techniques, one possible solution is to screen for PC specific antigenic targets and generate agents able to specifically bind. Prostate specific membrane antigen (PSMA) is over-expressed in PC tissue, with low levels of expression in the small intestine, renal tubular cells and salivary gland. The first clinical agent for targeting PSMA was 111In-capromab, involving an antibody recognizing the internal domain of PSMA. The second- and third-generation humanized PSMA binding antibodies have the potential to overcome some of the limitations inherent to capromab pendetide i.e. inability to bind to live PC cells. One example is the humanized monoclonal antibody J591 (Hu mAb J591) that was developed primarily for therapeutic purposes but also has interesting imaging characteristics including the identification of bone metastases in PC. The major disadvantage of use of mAb for imaging is slow target recognition and background clearance in an appropriate timeframe for diagnostic imaging. Urea-based compounds such as small molecule inhibitors may also present promising agents for PC imaging with SPECT and PET. Two such small-molecule inhibitors targeting PSMA, MIP-1072 and MIP-1095, have exhibited high affinity for PSMA. The uptake of 123I-MIP-1072 and 123I-MIP-1095 in PC xenografts have imaged successfully with favorable properties amenable to human trials. While advances in conventional imaging will continue, Ab and small molecule imaging exemplified by PSMA targeting have the greatest potential to improve diagnostic sensitivity and specificity. PMID:22658884

  20. Antigens of Bordetella pertussis V. Separation of Agglutinogen 1 and Mouse-Protective Antigen.

    PubMed

    Ross, R F; Munoz, J

    1971-02-01

    Agglutinogen 1 of Bordetella pertussis strain 353/Z (serotype 1) was separated from protective antigen and histamine-sensitizing factor by starch-block electrophoresis. Most of the agglutinogen 1 migrated towards the cathode in starch-block electrophoresis, although some remained near the origin. Fractions containing most of the agglutinogen 1 were free of detectable mouse-protecting or histamine-sensitizing activities. Agglutinogen 1 from a serotype 1, 3 B. pertussis strain (J20) migrated similarly to the agglutinogen 1 from strain 353/Z. All agglutinogen 3 activity was found at the point of application in the starch block. No clear relationship was found between agglutinogen 1 and mouse-protecting antigen or histamine-sensitizing factor. PMID:16557960

  1. Antigens of Bordetella pertussis V. Separation of Agglutinogen 1 and Mouse-Protective Antigen

    PubMed Central

    Ross, R. F.; Munoz, J.

    1971-01-01

    Agglutinogen 1 of Bordetella pertussis strain 353/Z (serotype 1) was separated from protective antigen and histamine-sensitizing factor by starch-block electrophoresis. Most of the agglutinogen 1 migrated towards the cathode in starch-block electrophoresis, although some remained near the origin. Fractions containing most of the agglutinogen 1 were free of detectable mouse-protecting or histamine-sensitizing activities. Agglutinogen 1 from a serotype 1, 3 B. pertussis strain (J20) migrated similarly to the agglutinogen 1 from strain 353/Z. All agglutinogen 3 activity was found at the point of application in the starch block. No clear relationship was found between agglutinogen 1 and mouse-protecting antigen or histamine-sensitizing factor. Images PMID:16557960

  2. The global antigenic diversity of swine influenza A viruses.

    PubMed

    Lewis, Nicola S; Russell, Colin A; Langat, Pinky; Anderson, Tavis K; Berger, Kathryn; Bielejec, Filip; Burke, David F; Dudas, Gytis; Fonville, Judith M; Fouchier, Ron Am; Kellam, Paul; Koel, Bjorn F; Lemey, Philippe; Nguyen, Tung; Nuansrichy, Bundit; Peiris, Js Malik; Saito, Takehiko; Simon, Gaelle; Skepner, Eugene; Takemae, Nobuhiro; Webby, Richard J; Van Reeth, Kristien; Brookes, Sharon M; Larsen, Lars; Watson, Simon J; Brown, Ian H; Vincent, Amy L

    2016-01-01

    Swine influenza presents a substantial disease burden for pig populations worldwide and poses a potential pandemic threat to humans. There is considerable diversity in both H1 and H3 influenza viruses circulating in swine due to the frequent introductions of viruses from humans and birds coupled with geographic segregation of global swine populations. Much of this diversity is characterized genetically but the antigenic diversity of these viruses is poorly understood. Critically, the antigenic diversity shapes the risk profile of swine influenza viruses in terms of their epizootic and pandemic potential. Here, using the most comprehensive set of swine influenza virus antigenic data compiled to date, we quantify the antigenic diversity of swine influenza viruses on a multi-continental scale. The substantial antigenic diversity of recently circulating viruses in different parts of the world adds complexity to the risk profiles for the movement of swine and the potential for swine-derived infections in humans. PMID:27113719

  3. Targeting Antigens to Dendritic Cell Receptors for Vaccine Development

    PubMed Central

    Apostolopoulos, Vasso; Thalhammer, Theresia; Tzakos, Andreas G.

    2013-01-01

    Dendritic cells (DCs) are highly specialized antigen presenting cells of the immune system which play a key role in regulating immune responses. Depending on the method of antigen delivery, DCs stimulate immune responses or induce tolerance. As a consequence of the dual function of DCs, DCs are studied in the context of immunotherapy for both cancer and autoimmune diseases. In vaccine development, a major aim is to induce strong, specific T-cell responses. This is achieved by targeting antigen to cell surface molecules on DCs that efficiently channel the antigen into endocytic compartments for loading onto MHC molecules and stimulation of T-cell responses. The most attractive cell surface receptors, expressed on DCs used as targets for antigen delivery for cancer and other diseases, are discussed. PMID:24228179

  4. Activation of B cells by antigens on follicular dendritic cells

    PubMed Central

    El Shikh, Mohey Eldin M.; El Sayed, Rania M.; Sukumar, Selvakumar; Szakal, Andras K.; Tew, John G.

    2010-01-01

    A need for antigen-processing and presentation to B cells is not widely appreciated. However, cross-linking of multiple B cell receptors (BCRs) by T-independent antigens delivers a potent signal that induces antibody responses. Such BCR cross-linking also occurs in germinal centers where follicular dendritic cells (FDCs) present multimerized antigens as periodically arranged antigen-antibody complexes (ICs). Unlike T cells that recognize antigens as peptide-MHC complexes, optimal B cell-responses are induced by multimerized FDC-ICs that simultaneously engage multiple BCRs. FDC-FcγRIIB mediates IC-periodicity and FDC-BAFF, -IL-6 and -C4bBP are co-stimulators. Remarkably, specific antibody responses can be induced by FDC-ICs in the absence of T cells, opening up the exciting possibility that people with T cell insufficiencies may be immunized with T-dependent vaccines via FDC-ICs. PMID:20418164

  5. Bovine immune recognition of Ostertagia ostertagi larval antigens.

    PubMed

    Mansour, M M; Dixon, J B; Clarkson, M J; Carter, S D; Rowan, T G; Hammet, N C

    1990-04-01

    Analysis of a detergent-solubilized somatic antigen of Ostertagia ostertagi 3rd stage larvae by SDS-PAGE and Western blotting has revealed two specific antigens with apparent molecular weights of 17 and 43 kD under reducing conditions. Probing of the Ostertagia ostertagi preparation with preinfection control sera has shown two cross-reacting antigens with apparent molecular weights of 67 and 81 kD. Both the 17 and the 43 kD antigens were recognised by IgG1 which was the predominant reactive subclass. FPLC fractionation of the crude extract with gel filtration and ion-exchange columns demonstrated immune reactivity in discrete peaks. Comparisons of ELISA and lymphocyte transformation showed antigenic components reactive with both antibodies and primed lymphocytes. PMID:2339503

  6. SEROLOGY OF THE SOLUBLE ANTIGENS OF THE PATHOGENIC CLOSTRIDIA

    PubMed Central

    Ellner, Paul D.; Green, Stanley S.

    1963-01-01

    Ellner, Paul D. (University of Vermont, Burlington), and Stanley S. Green. Serology of the soluble antigens of the pathogenic clostridia. J. Bacteriol. 86:1084–1097. 1963.—Soluble antigens of 42 strains, representing nine species of clostridia commonly occurring in human infections, were prepared by growing the organisms in a nonantigenic medium. Serological studies demonstrated the occurrence of considerable strain variation within each species. Interactions among the nine species, as well as with the previously characterized Clostridium perfringens, were also investigated. Extreme heterogeneity was observed among the species studied, with many cross-reactions due to common antigens, although species-specific antigens were also found in some cases. Occasional weak reactions were also demonstrated between certain clostridial antisera and the soluble antigens of three of the four species of Bacillus studied. Images PMID:14080776

  7. CD1-Restricted T Cell Recognition of Microbial Lipoglycan Antigens

    NASA Astrophysics Data System (ADS)

    Sieling, P. A.; Chatterjee, D.; Porcelli, S. A.; Prigozy, T. I.; Mazzaccaro, R. J.; Soriano, T.; Bloom, B. R.; Brenner, M. B.; Kronenberg, M.; Brennan, P. J.; Modlin, R. L.

    1995-07-01

    It has long been the paradigm that T cells recognize peptide antigens presented by major histocompatibility complex (MHC) molecules. However, nonpeptide antigens can be presented to T cells by human CD1b molecules, which are not encoded by the MHC. A major class of microbial antigens associated with pathogenicity are lipoglycans. It is shown here that human CD1b presents the defined mycobacterial lipoglycan lipoarabinomannan (LAM) to αβ T cell receptor-bearing lymphocytes. Presentation of these lipoglycan antigens required internalization and endosomal acidification. The T cell recognition required mannosides with α(1-->2) linkages and a phosphatidylinositol unit. T cells activated by LAM produced interferon γ and were cytolytic. Thus, an important class of microbial molecules, the lipoglycans, is a part of the universe of foreign antigens recognized by human T cells.

  8. [HLA and keloids: antigenic frequency and therapeutic response].

    PubMed

    Rossi, A; Bozzi, M

    1989-01-01

    Twenty keloid subjects were typed for class 1 (HLA-A, B and C) and class 2 (HLA-DR and DQ) histocompatibility antigens. Their frequencies were compared to those found in control populations. Of all the antigens belonging to class 1, B 21 was more prevalent in patients. The findings regarding class 2 antigens were noteworthy: in keloid patients there was a significant prevalence of DR 5 (RR = 3.54 and 7.93 respectively for the two control groups) and DQw 3 (RR = 16.8). The patients typed for HLA-antigens were treated with corticosteroid infiltrations. The responses to the treatments were no related to the histocompatibility antigens. PMID:2628278

  9. Quantum dot based fluorometric detection of cancer TF-antigen.

    PubMed

    Li, Nan; Chow, Ari M; Ganesh, Hashwin V S; Brown, Ian R; Kerman, Kagan

    2013-10-15

    Cancer is a major global health challenge that would benefit from advances in screening methods for early detection that are rapid and low cost. TF-antigen is a tumor-associated antigen displayed on cell surface proteins of a high percentage of human carcinomas. Here we present a fluorometric bioassay for TF-antigen (galactose-β-(1→3)-N-acetyl-d-galactosamine) that utilizes quantum dot (QD) technology coupled with magnetic beads for rapid detection of TF-antigen at high sensitivity (10(-7) M range). In the competitive bioassay, 4-aminophenyl β-d-galactopyranoside (4-APG) conjugated to QDs competes with TF-antigen for binding sites on peanut agglutinin (PNA) that is immobilized on magnetic beads. The bioassay is specific and ultrasensitive in the environment of complex protein mixtures, demonstrating its potential applicability for the screening of clinical samples. PMID:23980999

  10. Artificial antigen presenting cells for use in adoptive immunotherapy

    PubMed Central

    Turtle, Cameron J.; Riddell, Stanley R.

    2010-01-01

    The observation that T cells can recognize and specifically eliminate cancer cells has spurred interest in the development of efficient methods to generate large numbers of T cells with specificity for tumor antigens that can be harnessed for use in cancer therapy. Recent studies have demonstrated that during encounter with tumor antigen, the signals delivered to T cells by professional antigen presenting cells can affect T cell programming and their subsequent therapeutic efficacy. This has stimulated efforts to develop artificial antigen presenting cells that allow optimal control over the signals provided to T cells. In this review, we will discuss the advantages and disadvantages of cellular and acellular artificial antigen presenting cell systems and their use in T cell adoptive immunotherapy for cancer. PMID:20693850

  11. Dengue viruses cluster antigenically but not as discrete serotypes.

    PubMed

    Katzelnick, Leah C; Fonville, Judith M; Gromowski, Gregory D; Bustos Arriaga, Jose; Green, Angela; James, Sarah L; Lau, Louis; Montoya, Magelda; Wang, Chunling; VanBlargan, Laura A; Russell, Colin A; Thu, Hlaing Myat; Pierson, Theodore C; Buchy, Philippe; Aaskov, John G; Muñoz-Jordán, Jorge L; Vasilakis, Nikos; Gibbons, Robert V; Tesh, Robert B; Osterhaus, Albert D M E; Fouchier, Ron A M; Durbin, Anna; Simmons, Cameron P; Holmes, Edward C; Harris, Eva; Whitehead, Stephen S; Smith, Derek J

    2015-09-18

    The four genetically divergent dengue virus (DENV) types are traditionally classified as serotypes. Antigenic and genetic differences among the DENV types influence disease outcome, vaccine-induced protection, epidemic magnitude, and viral evolution. We characterized antigenic diversity in the DENV types by antigenic maps constructed from neutralizing antibody titers obtained from African green monkeys and after human vaccination and natural infections. Genetically, geographically, and temporally, diverse DENV isolates clustered loosely by type, but we found that many are as similar antigenically to a virus of a different type as to some viruses of the same type. Primary infection antisera did not neutralize all viruses of the same DENV type any better than other types did up to 2 years after infection and did not show improved neutralization to homologous type isolates. That the canonical DENV types are not antigenically homogeneous has implications for vaccination and research on the dynamics of immunity, disease, and the evolution of DENV. PMID:26383952

  12. Complex Antigens Drive Permissive Clonal Selection in Germinal Centers.

    PubMed

    Kuraoka, Masayuki; Schmidt, Aaron G; Nojima, Takuya; Feng, Feng; Watanabe, Akiko; Kitamura, Daisuke; Harrison, Stephen C; Kepler, Thomas B; Kelsoe, Garnett

    2016-03-15

    Germinal center (GC) B cells evolve toward increased affinity by a Darwinian process that has been studied primarily in genetically restricted, hapten-specific responses. We explored the population dynamics of genetically diverse GC responses to two complex antigens-Bacillus anthracis protective antigen and influenza hemagglutinin-in which B cells competed both intra- and interclonally for distinct epitopes. Preferred VH rearrangements among antigen-binding, naive B cells were similarly abundant in early GCs but, unlike responses to haptens, clonal diversity increased in GC B cells as early "winners" were replaced by rarer, high-affinity clones. Despite affinity maturation, inter- and intraclonal avidities varied greatly, and half of GC B cells did not bind the immunogen but nonetheless exhibited biased VH use, V(D)J mutation, and clonal expansion comparable to antigen-binding cells. GC reactions to complex antigens permit a range of specificities and affinities, with potential advantages for broad protection. PMID:26948373

  13. Dengue viruses cluster antigenically but not as discrete serotypes

    PubMed Central

    Katzelnick, Leah C.; Fonville, Judith M.; Gromowski, Gregory D.; Arriaga, Jose Bustos; Green, Angela; James, Sarah L.; Lau, Louis; Montoya, Magelda; Wang, Chunling; VanBlargan, Laura A.; Russell, Colin A.; Thu, Hlaing Myat; Pierson, Theodore C.; Buchy, Philippe; Aaskov, John G.; Muñoz-Jordán, Jorge L.; Vasilakis, Nikos; Gibbons, Robert V.; Tesh, Robert B.; Osterhaus, Albert D.M.E.; Fouchier, Ron A.M.; Durbin, Anna; Simmons, Cameron P.; Holmes, Edward C.; Harris, Eva; Whitehead, Stephen S.; Smith, Derek J.

    2016-01-01

    The four genetically divergent dengue virus (DENV) types are traditionally classified as serotypes. Antigenic and genetic differences among the DENV types influence disease outcome, vaccine-induced protection, epidemic magnitude, and viral evolution. We characterized antigenic diversity in the DENV types by antigenic maps constructed from neutralizing antibody titers obtained from African green monkeys and after human vaccination and natural infections. Genetically, geographically, and temporally, diverse DENV isolates clustered loosely by type, but we found many are as similar antigenically to a virus of a different type as to some viruses of the same type. Primary infection antisera did not neutralize all viruses of the same DENV type any better than other types did up to two years after infection and did not show improved neutralization to homologous type isolates. That the canonical DENV types are not antigenically homogenous has implications for vaccination and research on the dynamics of immunity, disease, and the evolution of DENV. PMID:26383952

  14. Molecular Mechanisms of B Cell Antigen Gathering and Endocytosis.

    PubMed

    Hoogeboom, Robbert; Tolar, Pavel

    2016-01-01

    Generation of high-affinity, protective antibodies requires B cell receptor (BCR) signaling, as well as antigen internalization and presentation to helper T cells. B cell antigen internalization is initiated by antigen capture, either from solution or from immune synapses formed on the surface of antigen-presenting cells, and proceeds via clathrin-dependent endocytosis and intracellular routing to late endosomes. Although the components of this pathway are still being discovered, it has become clear that antigen internalization is actively regulated by BCR signaling at multiple steps and, vice versa, that localization of the BCR along the endocytic pathway modulates signaling. Accordingly, defects in BCR internalization or trafficking contribute to enhanced B cell activation in models of autoimmune diseases and in B cell lymphomas. In this review, we discuss how BCR signaling complexes regulate each of the steps of this endocytic process and why defects along this pathway manifest as hyperactive B cell responses in vivo. PMID:26336965

  15. Frequency of Mia antigen: A pilot study among blood donors

    PubMed Central

    Makroo, Raj Nath; Bhatia, Aakanksha; Chowdhry, Mohit; Rosamma, N.L.; Karna, Prashant

    2016-01-01

    The Miltenberger (Mi) classes represent a group of phenotypes for red cells that carry low frequency antigens associated with the MNSs blood group system. This pilot study was aimed at determining the Mia antigen positivity in the blood donor population in a tertiary care hospital in New Delhi, India. The study was performed between June to August 2014 on eligible blood donors willing to participate. Antigen typing was performed using monoclonal anti-Mia antiserum by tube technique. Only one of the 1000 blood donors (0.1%) tested was found to be Mia antigen positive. The Mia antigen can, therefore, be considered as being rare in the Indian blood donor population. PMID:27488007

  16. Mosaic VSGs and the Scale of Trypanosoma brucei Antigenic Variation

    PubMed Central

    Hall, James P. J.; Wang, Huanhuan; Barry, J. David

    2013-01-01

    A main determinant of prolonged Trypanosoma brucei infection and transmission and success of the parasite is the interplay between host acquired immunity and antigenic variation of the parasite variant surface glycoprotein (VSG) coat. About 0.1% of trypanosome divisions produce a switch to a different VSG through differential expression of an archive of hundreds of silent VSG genes and pseudogenes, but the patterns and extent of the trypanosome diversity phenotype, particularly in chronic infection, are unclear. We applied longitudinal VSG cDNA sequencing to estimate variant richness and test whether pseudogenes contribute to antigenic variation. We show that individual growth peaks can contain at least 15 distinct variants, are estimated computationally to comprise many more, and that antigenically distinct ‘mosaic’ VSGs arise from segmental gene conversion between donor VSG genes or pseudogenes. The potential for trypanosome antigenic variation is probably much greater than VSG archive size; mosaic VSGs are core to antigenic variation and chronic infection. PMID:23853603

  17. Expression of hepatitis B surface antigen in the methylotrophic yeast Pichia pastoris using the GAP promoter.

    PubMed

    Vassileva, A; Chugh, D A; Swaminathan, S; Khanna, N

    2001-06-01

    High-level expression and efficient assembly of Hepatitis B surface Antigen (HBsAg) particles have been reported in Pichia pastoris by integrating a single copy of the HBsAg gene under the control of the alcohol oxidase (AOX1) promoter. However, the time taken to reach peak product concentration is usually very long ( approximately 240 h). In this paper, we describe the expression of HBsAg in P. pastoris using the recently described glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter. Unlike the previously described AOX1 promoter based system (in which biomass is generated first followed by methanol-induced antigen production), biomass generation and antigen production occur simultaneously in medium containing glycerol or glucose. Maximal levels of HBsAg expression in case of the single copy AOX1 integrant (attained after 6 days of induction) exceeded the levels of antigen produced by the single copy GAP integrant. However, this was offset by continuous antigen production by the GAP clone. In an attempt to further enhance antigen production levels of the GAP clones, we isolated multicopy Pichia integrants containing up to four copies of the GAP promoter-driven constitutive expression cassette using the Zeocin screening procedure. The data demonstrated a direct correlation between the gene dosage and the levels of HBsAg expressed by the GAP clones. The effect of copy number was additive and the four copy clone resulted in about four-fold higher yield of HBsAg. The majority of HBsAg produced in the constitutive expression system was found to be of particulate form, based on sedimentation behaviour and particle-specific ELISA, suggesting that it has the potential to serve as an effective immunogen. These particles were sensitive to thiol reagents. We also explored the possibility of secreting the GAP expressed HBsAg in P. pastoris. In-frame fusion of the Saccharomyces cerevisiae alpha-factor secretion signal under the constitutive GAP promoter resulted in

  18. Validation of nanodiamond-extracted CFP-10 antigen as a biomarker in clinical isolates of Mycobacterium tuberculosis complex in broth culture media.

    PubMed

    Soo, Po-Chi; Horng, Yu-Tze; Chen, Ai-Ti; Yang, Shih-Chieh; Chang, Kai-Chih; Lee, Jen-Jyh; Peng, Wen-Ping

    2015-09-01

    With detonation nanodiamonds (DNDs) and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS), we previously identified early secreted cell filtrate protein 10 (CFP-10) as a candidate Mycobacterium tuberculosis complex (MTC) biomarker. The performance of the CFP-10 biomarker was initially evaluated in relatively small mycobacterial samples (n = 42 samples) in our previous study. In this study, we conducted DND MALDI-TOF MS experiments to investigate the specificity and sensitivity of the MTC biomarker with 312 MTC and 52 nontuberculous mycobacteria (NTM) clinical samples. The frequency and intensity of the acquired CFP-10 mass-to-charge (m/z) peaks were checked with a program to validate that the singly and doubly charged CFP-10 antigen can be treated as a MTC biomarker. We confirmed that by detecting the singly charged species of CFP-10 antigen, the sensitivity and the specificity of MTC samples could reach 97.4% and 100% and no CFP-10 biomarker could be found in NTM samples. This indicates with CFP-10 biomarker it is easy to distinguish MTC from NTM. Besides, the observed intensity ratio of singly and doubly charged species of CFP-10 antigen was 3.3 ± 2.6 and the CFP-10 antigen could maintain good signal intensity for a week. Our results suggest that, with the DND MALDI-TOF mass spectrometry approach, CFP-10 antigen can be used as an early diagnosis biomarker in clinical practice. PMID:26071665

  19. In Vitro Studies with Recombinant Plasmodium falciparum Apical Membrane Antigen 1 (AMA1): Production and Activity of an AMA1 Vaccine and Generation of a Multiallelic Response

    PubMed Central

    Kennedy, Michael C.; Wang, Jin; Zhang, Yanling; Miles, Aaron P.; Chitsaz, Farideh; Saul, Allan; Long, Carole A.; Miller, Louis H.; Stowers, Anthony W.

    2002-01-01

    Apical membrane antigen 1 (AMA1) is regarded as a leading malaria blood-stage vaccine candidate. While the overall structure of AMA1 is conserved in Plasmodium spp., numerous AMA1 allelic variants of P. falciparum have been described. The effect of AMA1 allelic diversity on the ability of a recombinant AMA1 vaccine to protect against human infection by different P. falciparum strains is unknown. We characterize two allelic forms of AMA1 that were both produced in Pichia pastoris at a sufficient economy of scale to be usable for clinical vaccine studies. Both proteins were used to immunize rabbits, singly and in combination, in order to evaluate their immunogenicity and the ability of elicited antibodies to block the growth of different P. falciparum clones. Both antigens, when used alone, elicited high homologous anti-AMA1 titers, with reduced strain cross-reactivity. Similarly, sera from rabbits immunized with a single antigen were capable of blocking the growth of homologous parasite strains at levels theoretically sufficient to clear parasite infections. However, heterologous inhibition was significantly reduced, providing experimental evidence that AMA1 allelic diversity is a result of immune pressure. Encouragingly, rabbits immunized with a combination of both antigens exhibited titers and levels of parasite inhibition as good as those of the single-antigen-immunized rabbits for each of the homologous parasite lines, and consequently exhibited a broadening of allelic diversity coverage. PMID:12438374

  20. Antigens of Lyme disease of spirochaete Borrelia burgdorferi inhibits antigen or mitogen-induced lymphocyte proliferation.

    PubMed

    Chiao, J W; Pavia, C; Riley, M; Altmann-Lasekan, W; Abolhassani, M; Liegner, K; Mittelman, A

    1994-02-01

    Modulation of cellular immune responses by the spirochaete Borrelia burgdorferi, the bacteria that causes Lyme disease, was demonstrated. When cultured in the presence of sonicated Borrelia preparation (Bb), the mitogen- or antigen-stimulated proliferative responses of normal lymphocytes were consistently lowered. Bb caused the greatest reduction in Concanavalin A (ConA) or antigen-stimulated proliferation, where almost 100% reduction in proliferation could be achieved. Bb also reduced phytohemagglutinin-M (PHA) or pokeweed mitogen (PWM)-stimulated peripheral blood lymphocyte (PBL) proliferation, with the PWM proliferation being the least affected. This regulatory activity was not due to toxicity and was determined to be caused by Bb protein antigens. The degree of the proliferation reduction was directly proportional to both Bb quantity and length of exposure to lymphocytes. IL-2 production was significantly reduced from Bb-exposed lymphocytes. The entry of lymphocytes into the proliferating phases of the cell cycle was also shown to be blocked. These results have demonstrated an immune suppressive mechanism of B. burgdorferi. The magnitude of host immune responses may be dependent on the degree of suppression which is related to the spirochaete quantity and their length of presence in the host. PMID:8173554

  1. Antigenic Relationships among Human Pathogenic Orientia tsutsugamushi Isolates from Thailand

    PubMed Central

    Nawtaisong, Pruksa; Tanganuchitcharnchai, Ampai; Smith, Derek J.; Day, Nicholas P. J.; Paris, Daniel H.

    2016-01-01

    Background Scrub typhus is a common cause of undiagnosed febrile illness in certain tropical regions, but can be easily treated with antibiotics. The causative agent, Orientia tsutsugamushi, is antigenically variable which complicates diagnosis and efforts towards vaccine development. Methodology/Principal Findings This study aimed to dissect the antigenic and genetic relatedness of O. tsutsugamushi strains and investigate sero-diagnostic reactivities by titrating individual patient sera against their O. tsutsugamushi isolates (whole-cell antigen preparation), in homologous and heterologous serum-isolate pairs from the same endemic region in NE Thailand. The indirect immunofluorescence assay was used to titrate Orientia tsutsugamushi isolates and human sera, and a mathematical technique, antigenic cartography, was applied to these data to visualise the antigenic differences and cross-reactivity between strains and sera. No functional or antigen-specific analyses were performed. The antigenic variation found in clinical isolates was much less pronounced than the genetic differences found in the 56kDa type-specific antigen genes. The Karp-like sera were more broadly reactive than the Gilliam-like sera. Conclusions/Significance Antigenic cartography worked well with scrub typhus indirect immunofluorescence titres. The data from humoral responses suggest that a Karp-like strain would provide broader antibody cross-reactivity than a Gilliam-like strain. Although previous exposure to O. tsutsugamushi could not be ruled out, scrub typhus patient serum antibody responses were characterised by strong homologous, but weak heterologous antibody titres, with little evidence for cross-reactivity by Gilliam-like sera, but a broader response from some Karp-like sera. This work highlights the importance of antigenic variation in O. tsutsugamushi diagnosis and determination of new serotypes. PMID:27248711

  2. Cancer/testis (CT) antigens, carcinogenesis and spermatogenesis

    PubMed Central

    2011-01-01

    During spermatogenesis, spermatogonial stem cells, undifferentiated and differentiated spermatogonia, spermatocytes, spermatids and spermatozoa all express specific antigens, yet the functions of many of these antigens remain unexplored. Studies in the past three decades have shown that many of these transiently expressed genes in developing germ cells are proto-oncogenes and oncogenes, which are expressed only in the testis and various types of cancers in humans and rodents. As such, these antigens are designated cancer/testis antigens (CT antigens). Since the early 1980s, about 70 families of CT antigens have been identified with over 140 members are known to date. Due to their restricted expression in the testis and in various tumors in humans, they have been used as the target of immunotherapy. Multiple clinical trials at different phases are now being conducted with some promising results. Interestingly, in a significant number of cancer patients, antibodies against some of these CT antigens were detected in their sera. However, antibodies against these CT antigens in humans under normal physiological conditions have yet to be reported even though many of these antigens are residing outside of the blood-testis barrier (BTB), such as in the basal compartment of the seminiferous epithelium and in the stem cell niche in the testis. In this review, we summarize latest findings in the field regarding several selected CT antigens which may be intimately related to spermatogenesis due to their unusual restricted expression during different discrete events of spermatogenesis, such as cell cycle progression, meiosis and spermiogenesis. This information should be helpful to investigators in the field to study the roles of these oncogenes in spermatogenesis. PMID:22319669

  3. Detection and manipulation of live antigen-expressing cells using conditionally stable nanobodies

    PubMed Central

    Tang, Jonathan CY; Drokhlyansky, Eugene; Etemad, Behzad; Rudolph, Stephanie; Guo, Binggege; Wang, Sui; Ellis, Emily G; Li, Jonathan Z; Cepko, Constance L

    2016-01-01

    The ability to detect and/or manipulate specific cell populations based upon the presence of intracellular protein epitopes would enable many types of studies and applications. Protein binders such as nanobodies (Nbs) can target untagged proteins (antigens) in the intracellular environment. However, genetically expressed protein binders are stable regardless of antigen expression, complicating their use for applications that require cell-specificity. Here, we created a conditional system in which the stability of an Nb depends upon an antigen of interest. We identified Nb framework mutations that can be used to rapidly create destabilized Nbs. Fusion of destabilized Nbs to various proteins enabled applications in living cells, such as optogenetic control of neural activity in specific cell types in the mouse brain, and detection of HIV-infected human cells by flow cytometry. These approaches are generalizable to other protein binders, and enable the rapid generation of single-polypeptide sensors and effectors active in cells expressing specific intracellular epitopes. DOI: http://dx.doi.org/10.7554/eLife.15312.001 PMID:27205882

  4. Nonviral RNA transfection to transiently modify T cells with chimeric antigen receptors for adoptive therapy.

    PubMed

    Riet, Tobias; Holzinger, Astrid; Dörrie, Jan; Schaft, Niels; Schuler, Gerold; Abken, Hinrich

    2013-01-01

    Redirecting T cells with a chimeric antigen receptor (CAR) of predefined specificity showed remarkable efficacy in the adoptive therapy trials of malignant diseases. The CAR consists of a single chain fragment of variable region (scFv) antibody targeting domain covalently linked to the CD3ζ signalling domain of the T cell receptor complex to mediate T cell activation upon antigen engagement. By using an antibody-derived targeting domain a CAR can potentially redirect T cells towards any target expressed on the cell surface as long as a binding domain is available. Antibody-mediated targeting moreover circumvents MHC restriction of the targeted antigen, thereby broadening the potential of applicability of adoptive T cell therapy. While T cells were so far genetically modified by viral transduction, transient modification with a CAR by RNA transfection gained increasing interest during the last years. This chapter focuses on methods to modify human T cells from peripheral blood with a CAR by electroporation of in vitro transcribed RNA and to test modified T cells for function for use in adoptive immunotherapy. PMID:23296935

  5. Prevalence of HLA-B27 antigen in patients with juvenile idiopathic arthritis

    PubMed Central

    Turowska-Heydel, Dorota; Sobczyk, Małgorzata; Chudek, Jerzy

    2015-01-01

    Introduction Human leukocyte antigen B27 (HLA-B27) is considered as a risk factor for development of juvenile idiopathic arthritis (JIA). The aim of this study was to analyse the prevalence of HLA-B27 antigen in JIA categories and its influence on disease onset and response to conventional therapy. Material and methods The retrospective analysis included 461 unselected children with JIA hospitalized in a single reference rheumatology centre between July 2007 and June 2012. The diagnosis was based on criteria by the International League of Association for Rheumatology. HLA-B27 was determined in 387 of all patients (84%) by hybridization of the amplified, labelled product to immobilize it on the microarray probe. Results HLA-B27 antigen was found in 104 of 383 affected children (27.2%), 48 of 206 girls (23.3%), and 56 of 177 boys (31.6%) – most frequently in patients with enthesitis-related arthritis (71%), psoriatic arthritis (50%) and unclassified cases (86.7%). The age of JIA onset was slightly (by 1 year) but significantly different in patients with and without HLA-B27 antigen [11 (8.5–14) vs. 10 (5–13.5) years.; p < 0.001]. The use of disease-modifying antirheumatic drugs (DMARDs) and corticosteroids was more frequently clinically ineffective in HLA-B27 positive than negative patients (23.1% vs. 15.2%; p = 0.09). Patients with polyarthritis, systemic, and psoriatic arthritis more frequently received biological therapy. HLA-B27 positive patients with enthesitis-related arthritis received biological therapy more frequently than HLA-B27 negative ones (20.4% vs. 0, respectively; p = 0.09). Conclusions HLA-B27 antigen is a strong risk factor for the development of enthesitis-related arthritis, and to a lesser extent for psoriatic arthritis and extended course of oligoarthritis. The presence of this antigen does not affect the disease onset but seems to predict resistance to therapy with disease-modifying drugs and corticosteroids.

  6. Trypanosoma vivax GM6 Antigen: A Candidate Antigen for Diagnosis of African Animal Trypanosomosis in Cattle

    PubMed Central

    Pillay, Davita; Izotte, Julien; Fikru, Regassa; Büscher, Philipe; Mucache, Hermogenes; Neves, Luis; Boulangé, Alain; Seck, Momar Talla; Bouyer, Jérémy; Napier, Grant B.; Chevtzoff, Cyrille; Coustou, Virginie; Baltz, Théo

    2013-01-01

    Background Diagnosis of African animal trypanosomosis is vital to controlling this severe disease which hampers development across 10 million km2 of Africa endemic to tsetse flies. Diagnosis at the point of treatment is currently dependent on parasite detection which is unreliable, and on clinical signs, which are common to several other prevalent bovine diseases. Methodology/Principle Findings the repeat sequence of the GM6 antigen of Trypanosoma vivax (TvGM6), a flagellar-associated protein, was analysed from several isolates of T. vivax and found to be almost identical despite the fact that T. vivax is known to have high genetic variation. The TvGM6 repeat was recombinantly expressed in E. coli and purified. An indirect ELISA for bovine sera based on this antigen was developed. The TvGM6 indirect ELISA had a sensitivity of 91.4% (95% CI: 91.3 to 91.6) in the period following 10 days post experimental infection with T. vivax, which decreased ten-fold to 9.1% (95% CI: 7.3 to 10.9) one month post treatment. With field sera from cattle infected with T. vivax from two locations in East and West Africa, 91.5% (95% CI: 83.2 to 99.5) sensitivity and 91.3% (95% CI: 78.9 to 93.1) specificity was obtained for the TvGM6 ELISA using the whole trypanosome lysate ELISA as a reference. For heterologous T. congolense field infections, the TvGM6 ELISA had a sensitivity of 85.1% (95% CI: 76.8 to 94.4). Conclusion/Significance this study is the first to analyse the GM6 antigen of T. vivax and the first to test the GM6 antigen on a large collection of sera from experimentally and naturally infected cattle. This study demonstrates that the TvGM6 is an excellent candidate antigen for the development of a point-of-treatment test for diagnosis of T. vivax, and to a lesser extent T. congolense, African animal trypanosomosis in cattle. PMID:24205263

  7. Antigenic relationship between the animal and human pathogen Pythium insidiosum and nonpathogenic Pythium species.

    PubMed Central

    Mendoza, L; Kaufman, L; Standard, P

    1987-01-01

    Identification of the newly named pathogenic oomycete Pythium insidiosum and its differentiation from other Pythium species by morphologic criteria alone can be difficult and time-consuming. Antigenic analysis by fluorescent-antibody and immunodiffusion precipitin techniques demonstrated that the P. insidiosum isolates that cause pythiosis in dogs, horses, and humans are identical and that they were distinguishable from other Pythium species by these means. The immunologic data agreed with the morphologic data. This indicated that the animal and human isolates belonged to a single species, P. insidiosum. Fluorescent-antibody and immunodiffusion reagents were developed for the specific identification of P. insidiosum. PMID:3121666

  8. Targeted Surface Expression of an Exogenous Antigen in Stably Transfected Babesia bovis

    PubMed Central

    Laughery, Jacob M.; Knowles, Donald P.; Schneider, David A.; Bastos, Reginaldo G.; McElwain, Terry F.; Suarez, Carlos E.

    2014-01-01

    Babesia bovis is a tick-borne intraerythocytic protozoan responsible for acute disease in cattle which can be controlled by vaccination with attenuated B. bovis strains. Emerging B. bovis transfection technologies may increase the usefulness of these live vaccines. One use of transfected B. bovis parasites may be as a vaccine delivery platform. Previous transfection methods for B. bovis were limited by single expression sites and intracellular expression of transfected antigens. This study describes a novel transfection system in which two exogenous genes are expressed: one for selection and the other for a selected antigen designed to be delivered to the surface of the parasites. The strategy for duplicating the number of transfected genes was based on the use of the putative bidirectional promoter of the B. bovis 1.4 Kb ef-1α intergenic region. The ability of this region to regulate two independent expression sites was demonstrated using a luciferase assay on transiently transfected B. bovis parasites and then incorporated into a stable transfection plasmid to control independent expression of the selectable marker GFP-BSD and another gene of interest. A chimeric gene was synthetized using sequences from the protective B-cell epitopes of Rhipicephalus microplus tick antigen Bm86 along with sequences from the surface exposed B. bovis major surface antigen-1. This chimeric gene was then cloned into the additional expression site of the transfection plasmid. Transfection of the B. bovis Mo7 strain with this plasmid resulted in stable insertion into the ef-1α locus and simultaneous expression of both exogenous genes. Expression of the Bm86 epitopes on the surface of transfected merozoites was demonstrated using immunofluorescence analyses. The ability to independently express multiple genes by the inclusion of a bidirectional promoter and the achievement of surface expression of foreign epitopes advances the potential of transfected B. bovis as a future vaccine

  9. Targeted surface expression of an exogenous antigen in stably transfected Babesia bovis.

    PubMed

    Laughery, Jacob M; Knowles, Donald P; Schneider, David A; Bastos, Reginaldo G; McElwain, Terry F; Suarez, Carlos E

    2014-01-01

    Babesia bovis is a tick-borne intraerythocytic protozoan responsible for acute disease in cattle which can be controlled by vaccination with attenuated B. bovis strains. Emerging B. bovis transfection technologies may increase the usefulness of these live vaccines. One use of transfected B. bovis parasites may be as a vaccine delivery platform. Previous transfection methods for B. bovis were limited by single expression sites and intracellular expression of transfected antigens. This study describes a novel transfection system in which two exogenous genes are expressed: one for selection and the other for a selected antigen designed to be delivered to the surface of the parasites. The strategy for duplicating the number of transfected genes was based on the use of the putative bidirectional promoter of the B. bovis 1.4 Kb ef-1α intergenic region. The ability of this region to regulate two independent expression sites was demonstrated using a luciferase assay on transiently transfected B. bovis parasites and then incorporated into a stable transfection plasmid to control independent expression of the selectable marker GFP-BSD and another gene of interest. A chimeric gene was synthetized using sequences from the protective B-cell epitopes of Rhipicephalus microplus tick antigen Bm86 along with sequences from the surface exposed B. bovis major surface antigen-1. This chimeric gene was then cloned into the additional expression site of the transfection plasmid. Transfection of the B. bovis Mo7 strain with this plasmid resulted in stable insertion into the ef-1α locus and simultaneous expression of both exogenous genes. Expression of the Bm86 epitopes on the surface of transfected merozoites was demonstrated using immunofluorescence analyses. The ability to independently express multiple genes by the inclusion of a bidirectional promoter and the achievement of surface expression of foreign epitopes advances the potential of transfected B. bovis as a future vaccine

  10. Flow cytometric determination of intracellular or secreted IFNgamma for the quantification of antigen reactive T cells.

    PubMed

    Asemissen, A M; Nagorsen, D; Keilholz, U; Letsch, A; Schmittel, A; Thiel, E; Scheibenbogen, C

    2001-05-01

    The detection of antigen-induced IFNgamma secretion at the single cell level can be used to identify and enumerate antigen-reactive T cells from peripheral blood. This study was performed to analyze the suitability of T cell enumeration by flow cytometry in comparison with the ELISPOT assay. Peripheral blood mononuclear cell (PBMC) samples from six HLA-A2+ healthy subjects were analysed for the frequency of influenza-reactive CD8+ T cells by flow cytometry detecting either intracellular IFNgamma (IC-FC) or secreted IFNgamma (S-FC). All samples were also analysed by IFNgamma ELISPOT assay. The frequency of influenza peptide-reactive T cells determined by IC-FC was 0.01 to 0.34% of CD8+ T cells and by ELISPOT assay 0.02 to 0.23% of CD8+ T cells (n=6 subjects) with a high inter-assay reproducibility and a close correlation between the assays (r=0.77, P<0.001). Little or no IFNgamma production was observed in unstimulated PBMC samples using either the IC-FC or the ELISPOT assay. In contrast, using S-FC large numbers of IFNgamma-secreting CD8+ T cells (0.37% to 5.55%, n=6 subjects) were detected in unstimulated PBMC. The frequency of influenza-reactive CD8+ T cells (0.57-5.19%, n=6 subjects) determined by S-FC did not correlate with the values from the IC-FC or ELISPOT assays. This comparative study shows the suitability of the determination of frequencies of antigen reactive T cells in PBMC by IC-FC. The advantage of IC-FC is the possibility to phenotype simultaneously antigen-reactive T cells. PMID:11292486

  11. Limited genetic and antigenic diversity within parasite isolates used in a live vaccine against Theileria parva.

    PubMed

    Hemmink, Johanneke D; Weir, William; MacHugh, Niall D; Graham, Simon P; Patel, Ekta; Paxton, Edith; Shiels, Brian; Toye, Philip G; Morrison, W Ivan; Pelle, Roger

    2016-07-01

    An infection and treatment protocol is used to vaccinate cattle against Theileria parva infection. Due to incomplete cross-protection between different parasite isolates, a mixture of three isolates, termed the Muguga cocktail, is used for vaccination. While vaccination of cattle in some regions provides high levels of protection, some animals are not protected against challenge with buffalo-derived T. parva. Knowledge of the genetic composition of the Muguga cocktail vaccine is required to understand how vaccination is able to protect against field challenge and to identify the potential limitations of the vaccine. The aim of the current study was to determine the extent of genetic and antigenic diversity within the parasite isolates that constitute the Muguga cocktail. High throughput multi-locus sequencing of antigen-encoding loci was performed in parallel with typing using a panel of micro- and mini-satellite loci. The former focused on genes encoding CD8(+) T cell antigens, believed to be relevant to protective immunity. The results demonstrate that each of the three component stocks of the cocktail contains limited parasite genotypic diversity, with single alleles detected at many gene/satellite loci and, moreover, that two of the components show a very high level of similarity. Thus, the vaccine incorporates very little of the genetic and antigenic diversity observed in field populations of T. parva. The presence of alleles at low frequency (<10%) within vaccine component populations also points to the possibility of variability in the content of vaccine doses and the potential for loss of allelic diversity during tick passage. The results demonstrate that there is scope to modify the content of the vaccine in order to enhance its diversity and thus its potential for providing broad protection. The ability to accurately quantify genetic diversity in vaccine component stocks will facilitate improved quality control procedures designed to ensure the long

  12. Production of a recombinant antibody specific for i blood group antigen, a mesenchymal stem cell marker.

    PubMed

    Hirvonen, Tia; Suila, Heli; Tiitinen, Sari; Natunen, Suvi; Laukkanen, Marja-Leena; Kotovuori, Annika; Reinman, Mirka; Satomaa, Tero; Alfthan, Kaija; Laitinen, Saara; Takkinen, Kristiina; Räbinä, Jarkko; Valmu, Leena

    2013-10-01

    Multipotent mesenchymal stem/stromal cells (MSCs) offer great promise for future regenerative and anti-inflammatory therapies. Panels of functional and phenotypical markers are currently used in characterization of different therapeutic stem cell populations from various sources. The i antigen (linear poly-N-acetyllactosamine) from the Ii blood group system has been suggested as a marker for MSCs derived from umbilical cord blood (UCB). However, there are currently no commercially available antibodies recognizing the i antigen. In the present study, we describe the use of antibody phage display technology to produce recombinant antibodies recognizing a structure from the surface of mesenchymal stem cells. We constructed IgM phage display libraries from the lymphocytes of a donor with an elevated serum anti-i titer. Antibody phage display technology is not dependent on immunization and thus allows the generation of antibodies against poorly immunogenic molecules, such as carbohydrates. Agglutination assays utilizing i antigen-positive red blood cells (RBCs) from UCB revealed six promising single-chain variable fragment (scFv) antibodies, three of which recognized epitopes from the surface of UCB-MSCs in flow cytometric assays. The amino acid sequence of the VH gene segment of B12.2 scFv was highly similar to the VH4.21 gene segment required to encode anti-i specificities. Further characterization of binding properties revealed that the binding of B12.2 hyperphage was inhibited by soluble linear lactosamine oligosaccharide. Based on these findings, we suggest that the B12.2 scFv we have generated is a prominent anti-i antibody that recognizes i antigen on the surface of both UCB-MSCs and RBCs. This binder can thus be utilized in UCB-MSC detection and isolation as well as in blood group serology. PMID:24083089

  13. A peptide mimic blocks the cross-reaction of anti-DNA antibodies with glomerular antigens.

    PubMed

    Xia, Y; Eryilmaz, E; Der, E; Pawar, R D; Guo, X; Cowburn, D; Putterman, C

    2016-03-01

    Anti-DNA antibodies play a pivotal role in the pathogenesis of lupus nephritis by cross-reacting with renal antigens. Previously, we demonstrated that the binding affinity of anti-DNA antibodies to self-antigens is isotype-dependent. Furthermore, significant variability in renal pathogenicity was seen among a panel of anti-DNA isotypes [derived from a single murine immunoglobulin (Ig)G3 monoclonal antibody, PL9-11] that share identical variable regions. In this study, we sought to select peptide mimics that effectively inhibit the binding of all murine and human anti-DNA IgG isotypes to glomerular antigens. The PL9-11 panel of IgG anti-DNA antibodies (IgG1, IgG2a, IgG2b and IgG3) was used for screening a 12-mer phage display library. Binding affinity was determined by surface plasmon resonance. Enzyme-linked immunosorbent assay (ELISA), flow cytometry and glomerular binding assays were used for the assessment of peptide inhibition of antibody binding to nuclear and kidney antigens. We identified a 12 amino acid peptide (ALWPPNLHAWVP, or 'ALW') which binds to all PL9-11 IgG isotypes. Preincubation with the ALW peptide reduced the binding of the PL9-11 anti-DNA antibodies to DNA, laminin, mesangial cells and isolated glomeruli significantly. Furthermore, we confirmed the specificity of the amino acid sequence in the binding of ALW to anti-DNA antibodies by alanine scanning. Finally, ALW inhibited the binding of murine and human lupus sera to dsDNA and glomeruli significantly. In conclusion, by inhibiting the binding of polyclonal anti-DNA antibodies to autoantigens in vivo, the ALW peptide (or its derivatives) may potentially be a useful approach to block anti-DNA antibody binding to renal tissue. PMID:26482679

  14. Enhancement of Immune Effector Functions by Modulating IgG’s Intrinsic Affinity for Target Antigen

    PubMed Central

    Mazor, Yariv; Yang, Chunning; Borrok, M. Jack; Ayriss, Joanne; Aherne, Karen; Wu, Herren; Dall’Acqua, William F.

    2016-01-01

    Antibody-mediated immune effector functions play an essential role in the anti-tumor efficacy of many therapeutic mAbs. While much of the effort to improve effector potency has focused on augmenting the interaction between the antibody-Fc and activating Fc-receptors expressed on immune cells, the role of antibody binding interactions with the target antigen remains poorly understood. We show that antibody intrinsic affinity to the target antigen clearly influences the extent and efficiency of Fc-mediated effector mechanisms, and report the pivotal role of antibody binding valence on the ability to regulate effector functions. More particularly, we used an array of affinity modulated variants of three different mAbs, anti-CD4, anti-EGFR and anti-HER2 against a panel of target cell lines expressing disparate levels of the target antigen. We found that at saturating antibody concentrations, IgG variants with moderate intrinsic affinities, similar to those generated by the natural humoral immune response, promoted superior effector functions compared to higher affinity antibodies. We hypothesize that at saturating concentrations, effector function correlates most directly with the amount of Fc bound to the cell surface. Thus, high affinity antibodies exhibiting slow off-rates are more likely to interact bivalently with the target cell, occupying two antigen sites with a single Fc. In contrast, antibodies with faster off-rates are likely to dissociate each binding arm more rapidly, resulting in a higher likelihood of monovalent binding. Monovalent binding may in turn increase target cell opsonization and lead to improved recruitment of effector cells. This unpredicted relationship between target affinity and effector function potency suggests a careful examination of antibody design and engineering for the development of next-generation immunotherapeutics. PMID:27322177

  15. Application of Protein Microarrays for Multiplexed Detection of Antibodies to Tumor Antigens in Breast Cancer

    PubMed Central

    Anderson, Karen S.; Ramachandran, Niroshan; Wong, Jessica; Raphael, Jacob V.; Hainsworth, Eugenie; Demirkan, Gokhan; Cramer, Daniel; Aronzon, Diana; Hodi, F. Stephen; Harris, Lyndsay; Logvinenko, Tanya; LaBaer, Joshua

    2012-01-01

    There is strong preclinical evidence that cancer, including breast cancer, undergoes immune surveillance. This continual monitoring, by both the innate and the adaptive immune systems, recognizes changes in protein expression, mutation, folding, glycosylation, and degradation. Local immune responses to tumor antigens are amplified in draining lymph nodes, and then enter the systemic circulation. The antibody response to tumor antigens, such as p53 protein, are robust, stable, and easily detected in serum, may exist in greater concentrations than their cognate antigens, and are potential highly specific biomarkers for cancer. However, antibodies have limited sensitivities as single analytes, and differences in protein purification and assay characteristics have limited their clinical application. For example, p53 autoantibodies in the sera are highly specific for cancer patients, but are only detected in the sera of 10-20% of patients with breast cancer. Detection of p53 autoantibodies is dependent on tumor burden, p53 mutation, rapidly decreases with effective therapy, but is relatively independent of breast cancer subtype. Although antibodies to hundreds of other tumor antigens have been identified in the sera of breast cancer patients, very little is known about the specificity and clinical impact of the antibody immune repertoire to breast cancer. Recent advances in proteomic technologies have the potential for rapid identification of immune response signatures for breast cancer diagnosis and monitoring. We have adapted programmable protein microarrays for the specific detection of autoantibodies in breast cancer. Here, we present the first demonstration of the application of programmable protein microarray ELISAs for the rapid identification of breast cancer autoantibodies. PMID:18311903

  16. Sugar–Protein Connectivity Impacts on the Immunogenicity of Site-Selective Salmonella O-Antigen Glycoconjugate Vaccines

    PubMed Central

    Stefanetti, Giuseppe; Hu, Qi-Ying; Usera, Aimee; Robinson, Zack; Allan, Martin; Singh, Alok; Imase, Hidetomo; Cobb, Jennifer; Zhai, Huili; Quinn, Douglas; Lei, Ming; Saul, Allan; Adamo, Roberto; MacLennan, Calman A; Micoli, Francesca

    2015-01-01

    A series of glycoconjugates with defined connectivity were synthesized to investigate the impact of coupling Salmonella typhimurium O-antigen to different amino acids of CRM197 protein carrier. In particular, two novel methods for site-selective glycan conjugation were developed to obtain conjugates with single attachment site on the protein, based on chemical modification of a disulfide bond and pH-controlled transglutaminase-catalyzed modification of lysine, respectively. Importantly, conjugation at the C186-201 bond resulted in significantly higher anti O-antigen bactericidal antibody titers than coupling to K37/39, and in comparable titers to conjugates bearing a larger number of saccharides. This study demonstrates that the conjugation site plays a role in determining the immunogenicity in mice and one single attachment point may be sufficient to induce high levels of bactericidal antibodies. PMID:26350581

  17. Duality of β-glucan microparticles: antigen carrier and immunostimulants

    PubMed Central

    Baert, Kim; De Geest, Bruno G; De Greve, Henri; Cox, Eric; Devriendt, Bert

    2016-01-01

    Designing efficient recombinant mucosal vaccines against enteric diseases is still a major challenge. Mucosal delivery of recombinant vaccines requires encapsulation in potent immunostimulatory particles to induce an efficient immune response. This paper evaluates the capacity of β-glucan microparticles (GPs) as antigen vehicles and characterizes their immune-stimulatory effects. The relevant infectious antigen FedF was chosen to be loaded inside the microparticles. The incorporation of FedF inside the particles was highly efficient (roughly 85%) and occurred without antigen degradation. In addition, these GPs have immunostimulatory effects as well, demonstrated by the strong reactive oxygen species (ROS) production by porcine neutrophils upon their recognition. Although antigen-loaded GPs still induce ROS production, antigen loading decreases this production by neutrophils for reasons yet unknown. However, these antigen-loaded GPs are still able to bind their specific β-glucan receptor, demonstrated by blocking complement receptor 3, which is the major β-glucan receptor on porcine neutrophils. The dual character of these particles is confirmed by a T-cell proliferation assay. FedF-loaded particles induce a significantly higher FedF-specific T-cell proliferation than soluble FedF. Taken together, these results show that GPs are efficient antigen carriers with immune-stimulatory properties. PMID:27330289

  18. Polyethyleneimine is a potent systemic adjuvant for glycoprotein antigens.

    PubMed

    Sheppard, Neil C; Brinckmann, Sarah A; Gartlan, Kate H; Puthia, Manoj; Svanborg, Catharina; Krashias, George; Eisenbarth, Stephanie C; Flavell, Richard A; Sattentau, Quentin J; Wegmann, Frank

    2014-10-01

    Polyethyleneimine (PEI) is an organic polycation used extensively as a gene and DNA vaccine delivery reagent. Although the DNA targeting activity of PEI is well documented, its immune activating activity is not. We recently reported that PEI has robust mucosal adjuvanticity when administered intranasally with glycoprotein antigens. Here, we show that PEI has strong immune activating activity after systemic delivery. PEI administered subcutaneously with viral glycoprotein (HIV-1 gp140) enhanced antigen-specific serum IgG production in the context of mixed Th1/Th2-type immunity. PEI elicited higher titers of both antigen binding and neutralizing antibodies than alum in mice and rabbits and induced an increased proportion of antibodies reactive with native antigen. In an intraperitoneal model, PEI recruited neutrophils followed by monocytes to the site of administration and enhanced antigen uptake by antigen-presenting cells. The Th bias was modulated by PEI activation of the Nlrp3 inflammasome; however its global adjuvanticity was unchanged in Nlrp3-deficient mice. When coformulated with CpG oligodeoxynucleotides, PEI adjuvant potency was synergistically increased and biased toward a Th1-type immune profile. Taken together, these data support the use of PEI as a versatile systemic adjuvant platform with particular utility for induction of secondary structure-reactive antibodies against glycoprotein antigens. PMID:24844701

  19. Monocyte recruitment, antigen degradation and localization in cutaneous leishmaniasis.

    PubMed Central

    Ridley, M. J.; Ridley, D. S.

    1986-01-01

    The relationship between the destruction of Leishmania, the recruitment of monocytes and macrophage activity in the lesions of cutaneous leishmaniasis (CL) was studied in 53 biopsies representing the phases of evolution of the infection. Lysozyme, amastigotes and their degradation products were located by their specific antibodies. A rising level of monocyte influx was found to correlate with the degradation and solubilization of antigen, a falling level with final clearance. Differences in the results supported the previous concept of macrophage activation and macrophage lysis as alternative mechanisms for the elimination of Leishmania. Macrophage activation appeared to coincide with re-phagocytosis of externalized antigenic products of different type and origin. Macrophage lysis was a fully effective mechanism only when the antigen was contained within a focalized granuloma before mass lysis. Failing this, degradation and clearance of antigen were incomplete, and residues were sequestered on the periphery of the lesion where they bound to collagen and epidermis with consequential tissue damage. Antigen was demonstrated on the surface of lightly parasitized macrophages but not heavily infected ones. Other cells bound antigen without ingesting it, a process which might allow antigen presentation though it would also favour survival of parasites within the cell. Images Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:3707851

  20. Duality of β-glucan microparticles: antigen carrier and immunostimulants.

    PubMed

    Baert, Kim; De Geest, Bruno G; De Greve, Henri; Cox, Eric; Devriendt, Bert

    2016-01-01

    Designing efficient recombinant mucosal vaccines against enteric diseases is still a major challenge. Mucosal delivery of recombinant vaccines requires encapsulation in potent immunostimulatory particles to induce an efficient immune response. This paper evaluates the capacity of β-glucan microparticles (GPs) as antigen vehicles and characterizes their immune-stimulatory effects. The relevant infectious antigen FedF was chosen to be loaded inside the microparticles. The incorporation of FedF inside the particles was highly efficient (roughly 85%) and occurred without antigen degradation. In addition, these GPs have immunostimulatory effects as well, demonstrated by the strong reactive oxygen species (ROS) production by porcine neutrophils upon their recognition. Although antigen-loaded GPs still induce ROS production, antigen loading decreases this production by neutrophils for reasons yet unknown. However, these antigen-loaded GPs are still able to bind their specific β-glucan receptor, demonstrated by blocking complement receptor 3, which is the major β-glucan receptor on porcine neutrophils. The dual character of these particles is confirmed by a T-cell proliferation assay. FedF-loaded particles induce a significantly higher FedF-specific T-cell proliferation than soluble FedF. Taken together, these results show that GPs are efficient antigen carriers with immune-stimulatory properties. PMID:27330289

  1. Antigenic variation with a twist--the Borrelia story.

    PubMed

    Norris, Steven J

    2006-06-01

    A common mechanism of immune evasion in pathogenic bacteria and protozoa is antigenic variation, in which genetic or epigenetic changes result in rapid, sequential shifts in a surface-exposed antigen. In this issue of Molecular Microbiology, Dai et al. provide the most complete description to date of the vlp/vsp antigenic variation system of the relapsing fever spirochaete, Borrelia hermsii. This elaborate, plasmid-encoded system involves an expression site that can acquire either variable large protein (vlp) or variable small protein (vsp) surface lipoprotein genes from 59 different archival copies. The archival vlp and vsp genes are arranged in clusters on at least five different plasmids. Gene conversion occurs through recombination events at upstream homology sequences (UHS) found in each gene copy, and at downstream homology sequences (DHS) found periodically among the vlp/vsp archival genes. Previous studies have shown that antigenic variation in relapsing fever Borrelia not only permits the evasion of host antibody responses, but can also result in changes in neurotropism and other pathogenic properties. The vlsE antigenic variation locus of Lyme disease spirochaetes, although similar in sequence to the relapsing fever vlp genes, has evolved a completely different antigenic variation mechanism involving segmental recombination from a contiguous array of vls silent cassettes. These two systems thus appear to represent divergence from a common precursor followed by functional convergence to create two distinct antigenic variation processes. PMID:16796669

  2. Trade-offs in antibody repertoires to complex antigens

    PubMed Central

    Childs, Lauren M.; Baskerville, Edward B.; Cobey, Sarah

    2015-01-01

    Pathogens vary in their antigenic complexity. While some pathogens such as measles present a few relatively invariant targets to the immune system, others such as malaria display considerable antigenic diversity. How the immune response copes in the presence of multiple antigens, and whether a trade-off exists between the breadth and efficacy of antibody (Ab)-mediated immune responses, are unsolved problems. We present a theoretical model of affinity maturation of B-cell receptors (BCRs) during a primary infection and examine how variation in the number of accessible antigenic sites alters the Ab repertoire. Naive B cells with randomly generated receptor sequences initiate the germinal centre (GC) reaction. The binding affinity of a BCR to an antigen is quantified via a genotype–phenotype map, based on a random energy landscape, that combines local and distant interactions between residues. In the presence of numerous antigens or epitopes, B-cell clones with different specificities compete for stimulation during rounds of mutation within GCs. We find that the availability of many epitopes reduces the affinity and relative breadth of the Ab repertoire. Despite the stochasticity of somatic hypermutation, patterns of immunodominance are strongly shaped by chance selection of naive B cells with specificities for particular epitopes. Our model provides a mechanistic basis for the diversity of Ab repertoires and the evolutionary advantage of antigenically complex pathogens. PMID:26194759

  3. Atomic structure of anthrax protective antigen pore elucidates toxin translocation.

    PubMed

    Jiang, Jiansen; Pentelute, Bradley L; Collier, R John; Zhou, Z Hong

    2015-05-28

    Anthrax toxin, comprising protective antigen, lethal factor, and oedema factor, is the major virulence factor of Bacillus anthracis, an agent that causes high mortality in humans and animals. Protective antigen forms oligomeric prepores that undergo conversion to membrane-spanning pores by endosomal acidification, and these pores translocate the enzymes lethal factor and oedema factor into the cytosol of target cells. Protective antigen is not only a vaccine component and therapeutic target for anthrax infections but also an excellent model system for understanding the mechanism of protein translocation. On the basis of biochemical and electrophysiological results, researchers have proposed that a phi (Φ)-clamp composed of phenylalanine (Phe)427 residues of protective antigen catalyses protein translocation via a charge-state-dependent Brownian ratchet. Although atomic structures of protective antigen prepores are available, how protective antigen senses low pH, converts to active pore, and translocates lethal factor and oedema factor are not well defined without an atomic model of its pore. Here, by cryo-electron microscopy with direct electron counting, we determine the protective antigen pore structure at 2.9-Å resolution. The structure reveals the long-sought-after catalytic Φ-clamp and the membrane-spanning translocation channel, and supports the Brownian ratchet model for protein translocation. Comparisons of four structures reveal conformational changes in prepore to pore conversion that support a multi-step mechanism by which low pH is sensed and the membrane-spanning channel is formed. PMID:25778700

  4. A 2-Step Laemmli and Antigen Retrieval Method Improves Immunodetection.

    PubMed

    Scalia, Carla R; Gendusa, Rossella; Cattoretti, Giorgio

    2016-07-01

    Detection by immunohistochemistry of antigens relies on reproducibly optimal preanalytical and analytical variables such as fixation conditions, antigen retrieval (AR), and the resolutive power of the detection system. There is a need to improve immunodetection on routinely fixed and embedded material, particularly for scarcely represented but relevant antigens. We devised a 2-step method and applied it to a panel of antigens of common use for diagnosis, prognosis, individualized therapy use, or research. The first step consists of a 10 minutes. Incubation at 95°C with a modified Laemmli extraction buffer. This was followed by a traditional AR method. Detection of the vast majority of antigens was improved over a simple AR with preservation of tissue integrity, as shown by quantitative image analysis. The mechanism underlying the improved detection may be controlled denaturation followed by heat-mediated retrieval, a method we dubbed "antigen relaxing" and which will improve routine detection of scarce antigens in formalin-fixed, paraffin-embedded material. PMID:26067142

  5. Collaborative study on antigens for immunodiagnosis of Schistosoma japonicum infection.

    PubMed

    Mott, K E; Dixon, H; Carter, C E; Garcia, E; Ishii, A; Matsuda, H; Mitchell, G; Owhashi, M; Tanaka, H; Tsang, V C

    1987-01-01

    Six research laboratories in Australia, Japan, the Philippines and the USA participated in a collaborative evaluation of immunodiagnostic tests for Schistosoma japonicum infections. The serum bank consisted of 385 well-documented sera from Brazil, Kenya, Philippines, Republic of Korea and Europe. Twelve S. japonicum antigen/test system combinations were evaluated.Crude S. japonicum egg antigens showed the highest sensitivity and specificity. The defined or characterized antigens showed no advantage over the crude antigens. Quantitative seroreactivity of all S. japonicum antigens showed a positive correlation with faecal egg counts (log x + 1) in all age groups. The performance of the circumoval precipitin test was satisfactory within the same laboratory but with differences in the results between laboratories. A monoclonal antibody used in a competitive radioimmunoassay test system performed as well as the crude egg antigens.The high sensitivity of crude S. japonicum antigens now permits further evaluation for wide-scale use in public health laboratories of endemic areas to support control efforts. PMID:3111737

  6. Dual antigenic recognition by cloned human gamma delta T cells.

    PubMed Central

    Holoshitz, J; Vila, L M; Keroack, B J; McKinley, D R; Bayne, N K

    1992-01-01

    The function of gamma delta T cells is still elusive. The nature of the antigens that they recognize and the mode of presentation of these antigens are largely unknown. The majority of human peripheral gamma delta T cells bear a V gamma 9/V delta 2 T cell receptor, and display nonclonal reactivity to mycobacteria, without restriction by MHC. It is unknown whether these cells have clonal antigenic specificity as well. Here we describe rheumatoid arthritis-derived V gamma 9/V delta 2 T cell clones, displaying dual antigenic recognition: a nonclonal, MHC-unrestricted recognition of mycobacteria, and a clonal recognition of a short tetanus toxin peptide presented by HLA-DRw53, a nonpolymorphic class II MHC molecule associated with susceptibility to rheumatoid arthritis. This is the first evidence that V gamma 9/V delta 2 T cells can recognize nominal antigenic peptides presented by class II MHC molecules. These results suggest that much like alpha beta T cells, V gamma 9/V delta 2 cells may contribute to the immune response against foreign antigens in an antigen-specific and MHC-restricted manner. The reactivity of these gamma delta T cells to mycobacteria may represent a superantigen-like phenomenon. PMID:1345917

  7. Microbial antigenic variation mediated by homologous DNA recombination.

    PubMed

    Vink, Cornelis; Rudenko, Gloria; Seifert, H Steven

    2012-09-01

    Pathogenic microorganisms employ numerous molecular strategies in order to delay or circumvent recognition by the immune system of their host. One of the most widely used strategies of immune evasion is antigenic variation, in which immunogenic molecules expressed on the surface of a microorganism are continuously modified. As a consequence, the host is forced to constantly adapt its humoral immune response against this pathogen. An antigenic change thus provides the microorganism with an opportunity to persist and/or replicate within the host (population) for an extended period of time or to effectively infect a previously infected host. In most cases, antigenic variation is caused by genetic processes that lead to the modification of the amino acid sequence of a particular antigen or to alterations in the expression of biosynthesis genes that induce changes in the expression of a variant antigen. Here, we will review antigenic variation systems that rely on homologous DNA recombination and that are found in a wide range of cellular, human pathogens, including bacteria (such as Neisseria spp., Borrelia spp., Treponema pallidum, and Mycoplasma spp.), fungi (such as Pneumocystis carinii) and parasites (such as the African trypanosome Trypanosoma brucei). Specifically, the various DNA recombination-based antigenic variation systems will be discussed with a focus on the employed mechanisms of recombination, the DNA substrates, and the enzymatic machinery involved. PMID:22212019

  8. Standardization and characterization of antigens for the diagnosis of aspergillosis.

    PubMed

    Stopiglia, Cheila Denise Ottonelli; Arechavala, Alicia; Carissimi, Mariana; Sorrentino, Julia Medeiros; Aquino, Valério Rodrigues; Daboit, Tatiane Caroline; Kammler, Luana; Negroni, Ricardo; Scroferneker, Maria Lúcia

    2012-04-01

    The aim of this study was to develop and characterize antigens for the diagnosis of aspergillosis. Nine strains of Aspergillus species Aspergillus fumigatus , Aspergillus flavus , and Aspergillus niger were grown in Sabouraud and Smith broth to produce exoantigens. The antigens were tested by immunodiffusion against sera from patients with aspergillosis and other systemic mycoses. The protein fraction of the antigens was detected by SDS-PAGE; Western blot and representative bands were assessed by mass spectrometry coupled to a nano Acquity UltraPerformance LC and analyzed by the Mascot search engine. Concurrently, all sera were tested with Platelia Aspergillus EIA. The most reactive antigens to sera from patients infected by A. fumigatus were produced by A. fumigatus MG2 Sabouraud and pooled A. fumigatus Sabouraud samples, both with a sensitivity of 93% and specificity of 100% and 97%, respectively. Aspergillus niger and A. flavus antigens were reactive against A. niger and A. flavus sera, each one with a sensitivity and specificity of 100%. Two proteins, probably responsible for antigenic activity, β-glucosidase in A. fumigatus and α-amylase in A. niger were attained. The commercial kit had a specificity of 22%, sensitivity of 100%, positive predictive value of 48%, and negative predictive value of 100%. The antigens produced showed high sensitivity and specificity and can be exploited for diagnostics of aspergilloma. PMID:22452622

  9. Response to self antigen imprints regulatory memory in tissues

    PubMed Central

    Rosenblum, Michael D.; Gratz, Iris K.; Paw, Jonathan S.; Lee, Karen; Marshak-Rothstein, Ann; Abbas, Abul K.

    2012-01-01

    Immune homeostasis in tissues is achieved through a delicate balance between pathogenic T cell responses directed at tissue-specific antigens and the ability of the tissue to inhibit these responses. The mechanisms by which tissues and the immune system communicate to establish and maintain immune homeostasis are currently unknown. Clinical evidence suggests that chronic or repeated exposure to self antigen within tissues leads to an attenuation of pathologic autoimmune responses, possibly as a means to mitigate inflammatory damage and preserve function. Many human organ-specific autoimmune diseases are characterized by the initial presentation of the disease being the most severe, with subsequent flares being of lesser severity and duration1. In fact, these diseases often spontaneously resolve, despite persistent tissue autoantigen expression2. In the practice of antigen-specific immunotherapy (antigen-SIT), allergens or self antigens are repeatedly injected in the skin, with a diminution of the inflammatory response occurring after each successive exposure3. Although these findings suggest that tissues acquire the ability to attenuate autoimmune reactions upon repeated responses to antigens, the mechanism by which this occurs is unknown. Here we show that upon expression of self antigen in a peripheral tissue, thymus-derived regulatory T cells (Treg cells) become activated, proliferate and differentiate into more potent suppressors, which mediate resolution of organ-specific autoimmunity. After resolution of the inflammatory response, activated Treg cells are maintained in the target tissue and are primed to attenuate subsequent autoimmune reactions when antigen is re-expressed. Thus, Treg cells function to confer ‘regulatory memory’ to the target tissue. These findings provide a framework for understanding how Treg cells respond when exposed to self antigen in peripheral tissues and offer mechanistic insight into how tissues regulate autoimmunity. PMID

  10. Antigen receptor signaling: integration of protein tyrosine kinase functions.

    PubMed

    Tamir, I; Cambier, J C

    1998-09-17

    Antigen receptors on T and B cells function to transduce signals leading to a variety of biologic responses minimally including antigen receptor editing, apoptotic death, developmental progression, cell activation, proliferation and survival. The response to antigen depends upon antigen affinity and valence, involvement of coreceptors in signaling and differentiative stage of the responding cell. The requirement that these receptors integrate signals that drive an array of responses may explain their evolved structural complexity. Antigen receptors are composed of multiple subunits compartmentalized to provide antigen recognition and signal transduction function. In lieu of on-board enzymatic activity these receptors rely on associated Protein Tyrosine Kinases (PTKs) for their signaling function. By aggregating the receptors, and hence their appended PTKs, antigens induce PTK transphosphorylation, activating them to phosphorylate the receptor within conserved motifs termed Immunoreceptor Tyrosine-based Activation Motifs (ITAMs) found in transducer subunits. The tyrosyl phosphorylated ITAMs then interact with Src Homology 2 (SH2) domains within the PTKs leading to their further activation. As receptor phosphorylation is amplified, other effectors, such as Shc, dock by virtue of SH2 binding, and serve, in-turn, as substrates for these PTKs. This sequence of events not only provides a signal amplification mechanism by combining multiple consecutive steps with positive feedback, but also allows for signal diversification by differential recruitment of effectors that provide access to distinct parallel downstream signaling pathways. The subject of antigen receptor signaling has been recently reviewed in depth (DeFranco, 1997; Kurosaki, 1997). Here we discuss the biochemical basis of antigen receptor signal transduction, using the B cell receptor (BCR) as a paradigm, with specific emphasis on the involved PTKs. We review several specific mechanisms by which responses

  11. Analysis of human tumor associated Thomsen-Friedenreich antigen

    SciTech Connect

    Samuel, J.; Noujaim, A.A.; MacLean, G.D.; Suresh, M.R.; Longenecker, B.M. )

    1990-08-01

    The Thomsen-Friedenrich (TF) antigen is a precursor structure of MN blood group antigens and is also expressed by about 90% of human carcinomas. The immunodominant group of TF antigen (beta-galactosyl(1-3)-alpha-N-acetylglactosamine) is present in cryptic form in normal RBC and is revealed by neuraminidase treatment. A murine monoclonal antibody (Mab 49H.8) developed against neuraminidase treated human RBC was reactive against a variety of human tumors. We have characterized the human tumor associated TF antigen detected by this antibody from a human transitional bladder carcinoma cell line (647V), a human colon adenocarcinoma cell line (LS174T), and a pleural effusion fluid of a breast adenocarcinoma patient (PE 89). A heterologous sandwich radioimmunoassay for TF antigen was developed using Mab 49H.8 as the catcher and 125I-peanut agglutinin as the probe. Detergent extracts of 647V and LS174T cells, media conditioned by culturing these cells, and PE 89 were shown to contain the antigen by this assay. The specificity of the antigen capture by Mab 49H.8 in this assay was demonstrated by its selective inhibition by nitrophenyl-beta-D-galactoside, phenyl-beta-D-galactoside, and a TF hapten. Preliminary studies on TF antigen in serum samples using this assay showed that about 53.7% of the carcinoma samples contained an antigen concentration greater than 200 units/ml whereas for 90.9% of the normal samples the antigen concentration was below 200 units/ml. These studies demonstrated that the TF antigen is shed by the tumor cells both in vitro and in vivo. The TF antigen was sensitive to treatment with alkali (0.1 M NaOH for 5 h at 37 degrees C) and periodate (10 mM sodium periodate for 1 h at room temperature), was resistant to acidic pH (50 mM acetate buffer, pH 4.5, for 5 h at 37 degrees C), and could be extracted with perchloric acid.

  12. Bacterial vectors for the delivery of tumor antigens.

    PubMed

    Wang, Yan; Toussaint, Bertrand; Le Gouëllec, Audrey

    2014-01-01

    The use of bacterial vectors, which offer ease of production and efficiency, has become an important mechanism for the delivery of protein antigens to antigen-presenting cells (APCs) in vivo. Proof of concept studies has been carried out utilizing different bacteria in various cancer models with some in clinical trials. Here we described the way to prepare Pseudomonas aeruginosa (P. aeruginosa) vaccines based on a virulence-attenuated strain to test the efficacy of different fragments of a well-known tumor antigen. This protocol could be applied to efficacy studies in murine models of human cancers. PMID:24619697

  13. T-cell recognition of a cross-reactive antigen(s) in erythrocyte stages of Plasmodium falciparum and Plasmodium yoelii: inhibition of parasitemia by this antigen(s).

    PubMed Central

    Lucas, B; Engels, A; Camus, D; Haque, A

    1993-01-01

    In the current study, we investigated the presence of a cross-reactive antigen(s) in the erythrocyte stage from Plasmodium yoelii (265 BY strain) and Plasmodium falciparum through recognition by T cells primed in vivo with antigens from each of these parasites. BALB/c mice are naturally resistant to P. falciparum but are susceptible to P. yoelii infection. Mice that had recovered from P. yoelii primary infection became resistant to a second infection. A higher in vitro proliferative response to a soluble blood stage preparation of P. falciparum was observed in splenic cells from immune animals than in those from mice with a patent P. yoelii infection. The antigen-induced proliferative response was enhanced when animals were exposed to a secondary infection. Animals exposed to a challenge infection were treated with anti-CD4 or anti-CD8 monoclonal antibodies to deplete the corresponding subset of T cells. There was a marked diminution in P. falciparum antigen-induced proliferative response in the total splenic cell populations from CD8-depleted but not from CD4-depleted mice. In CD8-depleted and nondepleted animals, the antigen-induced proliferation in the total cell populations was markedly lower than in the T-cell-rich populations, indicating inhibitory activities of B cells and/or macrophages. There was no such difference in the stimulation between total and T-enriched cell populations from CD4-depleted animals. Flow cytometry analysis demonstrated the presence of an almost equal percentage of CD8+ (59.6%) and CD4+ (64%) T cells in the spleen preparations following in vivo depletion of CD4- and CD8-bearing T cells, respectively. When cultured with P. yoelii blood stage antigen, splenocytes from animals immunized with P. falciparum antigen displayed a significant proliferative response which was markedly diminished by treatment with anti-Thy-1.2 antibody plus complement. Animals immunized with P. falciparum antigen and then challenged with P. yoelii blood stage

  14. Carcinoembryonic antigen in patients with intracranial tumors.

    PubMed

    Suzuki, Y; Tanaka, R

    1980-09-01

    Carcinoembryonic antigen (CEA) in plasma, cerebrospinal fluid (CSF), and tumor cyst fluid obtained from patients with a variety of intracranial tumors was determined by radioimmunoassay Slightly elevated levels of plasma CEA, ranging from 2.6 to 3.8 ng/ml, were noted in six (4%) of 161 patients with primary brain tumors: in three gliomas, two pineal tumors, and one acoustic neurinoma, respectively. On the other hand, 17 (37%) of 46 patients with metastatic brain tumors showed a definite elevation, and most of them had values higher than 5.0 ng/ml. Of 37 patients with primary brain tumors, only one with a pineal germinoma showed a significant elevation of CEA in CSF, whereas eight (44%) of 18 patients with metastatic brain tumors showed high values of CEA in CSF. All six patients with leptomeningeal carcinomatosis showed elevated CEA in CSF. Levels of CEA in tumor cyst fluid were determined in 17 patients with intracranial tumors, including 12 gliomas, two craniopharyngiomas, two metastatic tumors, and one meningioma; elevation of CEA in tumor fluid was noted in two craniopharyngiomas and one metastatic tumor. Sequential determination of CEA of plasma or CSF revealed that the CEA levels were well correlated with the activity of brain tumors. Consequently, the determination of CEA in plasma or CSF is valuable for the differential diagnosis between primary and metastatic brain tumors and for the management of CEA-producing tumors. PMID:7420150

  15. Immunization with viral antigens: infectious haematopoietic necrosis.

    PubMed

    Winton, J R

    1997-01-01

    Infectious haematopoietic necrosis (IHN) is one of the most important viral diseases of salmonids, especially among juvenile fish where losses can be high. For over 20 years, researchers have tested a variety of preparations for control of IHN. Early vaccines consisted of killed virus and were effective when delivered by injection, but too costly to be practical on a large scale. Attenuated vaccines were developed by serial passage in cell culture and by monoclonal antibody selection. These offered excellent protection and were cost-effective, but residual virulence and uncertainty about their effects on other aquatic species made them poor candidates for licensing. Subunit vaccines using part of the IHNV glycoprotein gene cloned into E. coli or into an attenuated strain of A. salmonicida have been tested, appeared safe and were inexpensive. These vaccines were reported to provide some protection when delivered by immersion. Information on the location of antigenic sites on the glycoprotein led to trials using synthetic peptides, but these did not seem to be economically viable. Recently, plasmid vectors encoding the glycoprotein gene under control of a cytomegalovirus promoter were developed for genetic immunization. The constructs were highly protective when delivered by injection, but a more practical delivery system is needed. Thus, while several vaccine strategies have been tried in order to stimulate specific immunity against IHN, more research is needed to develop a commercially viable product for control of this important disease. PMID:9270850

  16. Pericyte Antigens in Perivascular Soft Tissue Tumors

    PubMed Central

    Shen, Jia; Shrestha, Swati; Yen, Yu-Hsin; Asatrian, Greg; Mravic, Marco; Soo, Chia; Ting, Kang; Dry, Sarah M.; Peault, Bruno; James, Aaron W.

    2015-01-01

    Introduction Perivascular soft tissue tumors are relatively uncommon neoplasms of unclear line of differentiation, although most are presumed to originate from pericytes or modified perivascular cells. Among these, glomus tumor, myopericytoma, and angioleiomyoma share a spectrum of histologic findings and a perivascular growth pattern. In contrast, solitary fibrous tumor (previously termed hemangiopericytoma) was once hypothesized to have pericytic differentiation. Methods Here, we systematically examine pericyte immunohistochemical markers among glomus tumor (including malignant glomus tumor), myopericytoma, angioleiomyoma, and solitary fibrous tumor. Immunohistochemical staining and semiquantification was performed using well-defined pericyte antigens, including αSMA, CD146, and PDGFRβ. Results Glomus tumor and myopericytoma demonstrate diffuse staining for all pericyte markers, including immunohistochemical reactivity for αSMA, CD146, and PDGFRβ. Malignant glomus tumors all showed some degree of pericyte marker immunoreactivity, although it was significantly reduced. Angioleiomyoma shared a similar αSMA + CD146 + PDGFRβ+ immunophenotype; however, this was predominantly seen in the areas of perivascular tumor growth. Solitary fibrous tumors showed patchy PDGFRβ immunoreactivity only. Discussion In summary, pericyte marker expression is a ubiquitous finding in glomus tumor, myopericytoma, and angioleiomyoma. Malignant glomus tumor shows a comparative reduction in pericyte marker expression, which may represent partial loss of pericytic differentiation. Pericyte markers are essentially not seen in solitary fibrous tumor. The combination of αSMA, CD146, and PDGFRβ immunohistochemical stainings may be of utility for the evaluation of pericytic differentiation in soft tissue tumors. PMID:26085647

  17. Immunosuppressant deoxyspergualin inhibits antigen processing in monocytes.

    PubMed

    Hoeger, P H; Tepper, M A; Faith, A; Higgins, J A; Lamb, J R; Geha, R S

    1994-11-01

    Deoxyspergualin (DSG) is a novel immunosuppressive agent recently shown to bind to the constitutive heat shock protein 70, which is involved in binding and intracellular transport of antigenic peptides. In this study, we show that DSG inhibits the proliferation of PBMCs to the Ags tetanus toxoid and diphtheria toxoid, but not to the mitogens PHA and PMA/ionomycin, nor to the superantigens toxic shock syndrome toxin-1 and staphylococcal enterotoxin A. DSG's effect was specific for monocytes as preincubation of T cells with DSG did not inhibit their proliferation to monocytes pulsed with tetanus toxoid Ag for 16 h, whereas the presence of DSG during Ag pulsing of the monocytes inhibited their ability to stimulate T cell proliferation. DSG did not down-regulate the expression of MHC class II molecules by monocytes, and the inhibitory effect of DSG on T cell proliferation was not reversed by the addition of IL-2, nor by the addition of the costimulatory signals IL-1, IL-6, and anti-CD28. Studies with two human T cell clones, HA1.7 and PF5, specific, respectively, to peptides spanning amino acids 307-319 and 256-270 of influenza hemagglutinin, showed that DSG inhibited the proliferation of the clones to the native hemagglutinin molecule but minimally affected their proliferation to the peptides. These data suggest that DSG interferes with Ag processing and/or presentation. PMID:7930603

  18. Structural and antigenic analysis of meningococcal piliation.

    PubMed Central

    Olafson, R W; McCarthy, P J; Bhatti, A R; Dooley, J S; Heckels, J E; Trust, T J

    1985-01-01

    Pilin with an Mr of 16,500 was purified to homogeneity from Neisseria meningitidis SP3428. Procedures which provided useful separation during purification included high-pressure liquid chromatography with a TSK size exclusion column, Sephacryl S-200 column chromatography, ion-exchange chromatography with SP-Sephadex, and preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The amino acid composition of this pilin was similar to that previously reported for this species. The sequence of N-terminal 51 amino acids was also determined. The protein lacked a modified phenylalanine at the amino terminus and displayed six residues which were different from Neisseria gonorrhoeae in that region of the molecule determined to be the lectin-binding domain. Monoclonal antibody raised to this pilin was employed, along with a monoclonal antibody to an epitope common to all gonococcal pilins, to analyze the intra- and interstrain heterogeneity of meningococcal piliation. The results indicate that N. meningitidis displays considerable intra- and interstrain heterogeneity with respect to both pilus subunit size and antigenicity. The Mr of subunits ranged from 13,000 to 20,000. Images PMID:2580788

  19. Designing malaria vaccines to circumvent antigen variability.

    PubMed

    Ouattara, Amed; Barry, Alyssa E; Dutta, Sheetij; Remarque, Edmond J; Beeson, James G; Plowe, Christopher V

    2015-12-22

    Prospects for malaria eradication will be greatly enhanced by an effective vaccine, but parasite genetic diversity poses a major impediment to malaria vaccine efficacy. In recent pre-clinical and field trials, vaccines based on polymorphic Plasmodium falciparum antigens have shown efficacy only against homologous strains, raising the specter of allele-specific immunity such as that which plagues vaccines against influenza and HIV. The most advanced malaria vaccine, RTS,S, targets relatively conserved epitopes on the P. falciparum circumsporozoite protein. After more than 40 years of development and testing, RTS,S, has shown significant but modest efficacy against clinical malaria in phase 2 and 3 trials. Ongoing phase 2 studies of an irradiated sporozoite vaccine will ascertain whether the full protection against homologous experimental malaria challenge conferred by high doses of a whole organism vaccine can provide protection against diverse strains in the field. Here we review and evaluate approaches being taken to design broadly cross-protective malaria vaccines. PMID:26475447

  20. Proliferating cell nuclear antigen in neutrophil fate.

    PubMed

    Witko-Sarsat, Véronique; Ohayon, Delphine

    2016-09-01

    The life span of a neutrophil is a tightly regulated process as extended survival is beneficial for pathogen elimination and cell death necessary to prevent cytotoxic content release from activated neutrophils at the inflammatory site. Therefore, the control between survival and death must be a dynamic process. We have previously described that proliferating cell nuclear antigen (PCNA) which is known as a nuclear protein pivotal in DNA synthesis, is a key element in controlling neutrophil survival through its association with procaspases. Contrary to the dogma which asserted that PCNA has a strictly nuclear function, in mature neutrophils, PCNA is present exclusively within the cytosol due to its nuclear export at the end of the granulocytic differentiation. More recent studies are consistent with the notion that the cytosolic scaffold of PCNA is aimed at modulating neutrophil fate rather than simply preventing death. Ultimately, targeting neutrophil survival might have important applications not just in the field of immunology and inflammation, but also in hematology and transfusion. The neutrophil emerges as a unique and powerful cellular model to unravel the basic mechanisms governing the cell cycle-independent functions of PCNA and should be considered as a leader of the pack. PMID:27558345

  1. Assaying Carcinoembryonic Antigens by Normalized Saturation Magnetization

    NASA Astrophysics Data System (ADS)

    Huang, Kai-Wen; Chieh, Jen-Jie; Shi, Jin-Cheng; Chiang, Ming-Hsien

    2015-07-01

    Biofunctionalized magnetic nanoparticles (BMNs) that provide unique advantages have been extensively used to develop immunoassay methods. However, these developed magnetic methods have been used only for specific immunoassays and not in studies of magnetic characteristics of materials. In this study, a common vibration sample magnetometer (VSM) was used for the measurement of the hysteresis loop for different carcinoembryonic antigens (CEA) concentrations ( Φ CEA) based on the synthesized BMNs with anti-CEA coating. Additionally, magnetic parameters such as magnetization ( M), remanent magnetization ( M R), saturation magnetization ( M S), and normalized parameters (Δ M R/ M R and Δ M S/ M S) were studied. Here, Δ M R and Δ M s were defined as the difference between any ΦCEA and zero Φ CEA. The parameters M, Δ M R, and Δ M S increased with Φ CEA, and Δ M S showed the largest increase. Magnetic clusters produced by the conjugation of the BMNs to CEAs showed a Δ M S greater than that of BMNs. Furthermore, the relationship between Δ M S/ M S and Φ CEA could be described by a characteristic logistic function, which was appropriate for assaying the amount of CEAs. This analytic Δ M S/ M S and the BMNs used in general magnetic immunoassays can be used for upgrading the functions of the VSM and for studying the magnetic characteristics of materials.

  2. Increasing the Antigenicity of Synthetic Tumor-Associated Carbohydrate Antigens by Targeting Toll-Like Receptors

    PubMed Central

    Ingale, Sampat; Wolfert, Margreet A.; Buskas, Therese; Boons, Geert-Jan

    2009-01-01

    Epithelial cancer cells often over express mucins that are aberrantly glycosylated. Although it has been realized that these compounds offer exciting opportunities for the development of immunotherapy for cancer, their use is hampered by the low antigenicity of classical immunogens composed of a glycopeptide derived from a mucin conjugated to a foreign carrier protein. We have designed, chemically synthesized, and immunologically evaluated a number of fully synthetic vaccine candidates to establish a strategy to overcome the poor immunogenicity of tumor-associated carbohydrates and glycopeptides. The compounds were also designed to study in detail the importance of TLR engagement for these antigenic responses. We have found that covalent attachment of a TLR2 agonist, a promiscuous peptide T-helper epitope, and a tumor-associated glycopeptide, gives a compound (1) that elicit in mice exceptionally high titers of IgG antibodies which recognize MCF7 cancer cells expressing the tumor-associated carbohydrate. Immunizations with glycolipopeptide (2), which contains lipidated amino acids instead of a TLR2 ligand, gave significantly lower titers of IgG antibodies demonstrating that TLR engagement is critical for optimum antigenic responses. Although mixtures of compound 2 with Pam3CysSK4 (3) or monophosphoryl lipid A (4) elicited similar titers of IgG antibodies compared to 1, the resulting antisera had an impaired ability to recognize cancer cells. It was also found that it is essential to covalently link the helper T-epitope to B-epitope probably because internalization of the helper T-epitope by B-cells requires assistance of the B-epitope. The results presented here show that synthetic vaccine development is amenable to structure activity relationship studies for successful optimization of carbohydrate-based cancer vaccines. PMID:19145607

  3. Bloodstream form Trypanosome plasma membrane proteins: antigenic variation and invariant antigens.

    PubMed

    Schwede, Angela; Carrington, Mark

    2010-12-01

    Trypanosoma brucei is exposed to the adaptive immune system and complement in the blood of its mammalian hosts. The aim of this review is to analyse the role and regulation of the proteins present on the external face of the plasma membrane in the long-term persistence of an infection and transmission. In particular, the following are addressed: (1) antigenic variation of the variant surface glycoprotein (VSG), (2) the formation of an effective VSG barrier shielding invariant surface proteins, and (3) the rapid uptake of VSG antibody complexes combined with degradation of the immunoglobulin and recycling of the VSG. PMID:20109254

  4. Identification of antigenic epitopes in a surface protein antigen of Streptococcus mutans in humans.

    PubMed Central

    Matsushita, K; Nisizawa, T; Nagaoka, S; Kawagoe, M; Koga, T

    1994-01-01

    The reactivities of antibodies in human serum and saliva to a cell surface protein antigen (PAc) of Streptococcus mutans and synthetic peptides covering the PAc molecule were examined. Both an enzyme-linked immunosorbent assay (ELISA) and Western blotting (immunoblotting) showed that all the serum samples from five adult subjects harboring serotype c S. mutans in their oral cavity reacted with recombinant PAc (rPAc). On the other hand, the serum from a 4-month-old infant did not react with rPAc in ELISA. The immunoglobulin A (IgA) antibodies in saliva samples from the five adult subjects reacted with rPAc. However, in saliva samples from these subjects, the titers of IgA antibody to rPAc did not correlate with the titers of serum antibody to the antigen. To map continuous antigenic epitopes in the PAc molecule, we synthesized 153 decapeptides covering the entire mature PAc molecule, 121 overlapping decapeptides covering the alanine-rich repeating region (A-region) of the PAc molecule, and 21 overlapping decapeptides covering the middle region (residues 824 to 853) according to multiple pin-coupled peptide synthesis technology. Of 153 decapeptides covering the mature PAc, 27 decapeptides showed a strong reaction with the antibodies in serum from the adult subjects. The epitope-scanning patterns in the serum samples from these subjects were also very similar to each other. The antigenic epitope patterns in the saliva resembled those in the serum. However, the ELISA titers of salivary IgA antibodies to these decapeptides differed from the titers of the serum antibody. Of the 121 overlapping decapeptides covering the A-region, 27 decapeptides showed a positive reaction with the antibodies in serum from the adult subjects. All of these 27 decapeptides had either one or two of the five common sequences YQAXL, NADAKA, VQKAN, NNAKNA, and IKKRNA. Six decapeptides of the 21 overlapping decapeptides covering the middle region reacted strongly with the serum antibodies from a

  5. Co-delivery of PLGA encapsulated invariant NKT cell agonist with antigenic protein induce strong T cell-mediated antitumor immune responses

    PubMed Central

    Dölen, Yusuf; Kreutz, Martin; Gileadi, Uzi; Tel, Jurjen; Vasaturo, Angela; van Dinther, Eric A. W.; van Hout-Kuijer, Maaike A.; Cerundolo, Vincenzo; Figdor, Carl G.

    2016-01-01

    ABSTRACT Antitumor immunity can be enhanced by the coordinated release and delivery of antigens and immune-stimulating agents to antigen-presenting cells via biodegradable vaccine carriers. So far, encapsulation of TLR ligands and tumor-associated antigens augmented cytotoxic T cell (CTLs) responses. Here, we compared the efficacy of the invariant NKT (iNKT) cell agonist α-galactosylceramide (α-GalCer) and TLR ligands (R848 and poly I:C) as an adjuvant for the full length ovalbumin (OVA) in PLGA nanoparticles. We observed that OVA+α-GalCer nanoparticles (NP) are superior over OVA+TLR-L NP in generating and stimulating antigen-specific cytotoxic T lymphocytes without the need for CD4+ T cell help. Not only a 4-fold higher induction of antigen-specific T cells was observed, but also a more profound IFN-γ secretion was obtained by the addition α-GalCer. Surprisingly, we observed that mixtures of OVA containing NP with α-GalCer were ineffective, demonstrating that co-encapsulation of both α-GalCer and antigen within the same nanoparticle is essential for the observed T cell responses. Moreover, a single immunization with OVA+α-GalCer NP provided substantial protection from tumor formation and even delayed the growth of already established tumors, which coincided with a prominent and enhanced antigen-specific CD8+ T cell infiltration. The provided evidence on the advantage of antigen and α-GalCer coencapsulation should be considered in the design of future nanoparticle vaccines for therapeutic purposes. PMID:26942088

  6. Antibodies to Hepatitis B Surface Antigen Potentiate the Response of Human T Lymphocyte Clones to the Same Antigen

    NASA Astrophysics Data System (ADS)

    Celis, Esteban; Chang, Tse Wen

    1984-04-01

    Human T-helper lymphocyte clones specific for hepatitis B virus surface antigen (HBsAg) proliferate on stimulation with HBsAg in vitro. Antibodies specific for HBsAg, but no other antibodies, augment this proliferative response. In the presence of antibodies to HBsAg, the maximum response could be achieved at HBsAg concentrations that were 1 percent of those required in the absence of the antibodies. These findings suggest that antigen-specific antibodies exert regulatory controls on T cells that recognize the same antigens.

  7. IRRIGATION TO MAXIMIZE VACCINE ANTIGEN PRODUCTION IN PHARMACEUTICAL TOBACCO

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biotechnology companies have engineered plants to produce recombinant proteins for therapeutic drugs and vaccines. Chlorogen, Inc. located in St. Louis, Missouri, inserted the protective antigen (PA) gene from Bacillus anthracis into tobacco (Nicotiana tabacum) chloroplasts to produce an anthrax va...

  8. Dendritic cell function and antigen presentation in malaria.

    PubMed

    Cockburn, Ian A; Zavala, Fidel

    2016-06-01

    Due to the diverse roles T cells play in protection against malaria as well as pathogenesis it is critical to know which cells present antigen and the nature of the antigens they present. During pre-erythrocytic stages of infection, cutting-edge imaging studies have shown how Plasmodium antigens are presented during both the priming and effector phases of the protective CD8+ T cell response. During blood stages, pathology is in part due to the loss of DC function and the action of pathogenic T cells in the brain. Recently endothelial cells presenting malaria antigen to cognate T cells have emerged as critical players in malaria pathogenesis. Manipulating these processes may inform both vaccine design and the development of therapies for cerebral malaria. PMID:26845735

  9. Virulence of Shigella flexneri Hybrids Expressing Escherichia coli Somatic Antigens

    PubMed Central

    Gemski, P.; Sheahan, D. G.; Washington, O.; Formal, S. B.

    1972-01-01

    The genes controlling either Escherichia coli somatic antigen 8 or 25 were conjugally transferred to virulent Shigella flexneri 2a recipients to determine whether the aquisition of these antigens would affect the virulence of the resulting hybrid. A high proportion of such hybrids were found to be rough and hence were avirulent. Some smooth S. flexneri hybrids which replaced their native group antigens with E. coli factor 25 were still virulent in the animal models employed. All S. flexneri O-8 hybrids were uniformly avirulent. Our finding, that S. flexneri hybrids with the chemically divergent E. coli O-8 repeat unit are avirulent whereas some hybrids with the chemically related O-25 repeat unit retain virulence, suggests that the chemical composition and structure of the O side chain of somatic antigens may represent one determining factor for bacterial penetration of mucosal epithelial cells, the primary step in the pathogenesis of bacillary dysentery. Images PMID:4569915

  10. Evasion and subversion of antigen presentation by Mycobacterium tuberculosis

    PubMed Central

    Baena, Andres; Porcelli, Steven A.

    2009-01-01

    Mycobacterium tuberculosis is one of the most successful of human pathogens, and has acquired the ability to establish latent or progressive infection and persist even in the presence of a fully functioning immune system. The ability of M. tuberculosis to avoid immune-mediated clearance is likely to reflect a highly evolved and coordinated program of immune evasion strategies, including some that interfere with antigen presentation to prevent or alter the quality of T cell responses. Here we review an extensive array of published studies supporting the view that antigen presentation pathways are targeted at many points by pathogenic mycobacteria. These studies reveal the multiple potential mechanisms by which M. tuberculosis may actively inhibit, subvert or otherwise modulate antigen presentation by MHC class I, class II and CD1 molecules. Unraveling the mechanisms by which M. tuberculosis evades or modulates antigen presentation is of critical importance for the development of more effective new vaccines based on live attenuated mycobacterial strains. PMID:19563525

  11. Control of T cell antigen reactivity via programmed TCR downregulation.

    PubMed

    Gallegos, Alena M; Xiong, Huizhong; Leiner, Ingrid M; Sušac, Bože; Glickman, Michael S; Pamer, Eric G; van Heijst, Jeroen W J

    2016-04-01

    The T cell antigen receptor (TCR) is unique in that its affinity for ligand is unknown before encounter and can vary by orders of magnitude. How the immune system regulates individual T cells that display very different reactivity to antigen remains unclear. Here we found that activated CD4(+) T cells, at the peak of clonal expansion, persistently downregulated their TCR expression in proportion to the strength of the initial antigen recognition. This programmed response increased the threshold for cytokine production and recall proliferation in a clone-specific manner and ultimately excluded clones with the highest antigen reactivity. Thus, programmed downregulation of TCR expression represents a negative feedback mechanism for constraining T cell effector function with a suitable time delay to thereby allow pathogen control while avoiding excess inflammatory damage. PMID:26901151

  12. Antigen-based immunotherapy for autoimmune disease: current status

    PubMed Central

    Hirsch, Darren Lowell; Ponda, Punita

    2015-01-01

    Autoimmune diseases are common chronic disorders that not only have a major impact on the quality of life but are also potentially life-threatening. Treatment modalities that are currently favored have conferred significant clinical benefits, but they may have considerable side effects. An optimal treatment strategy for autoimmune disease would specifically target disease-associated antigens and limit systemic side effects. Similar to allergen-specific immunotherapy for allergic rhinitis, antigen-specific immunotherapy for autoimmune disease aims to induce immune deviation and promote tolerance to specific antigens. In this review, we present the current status of studies and clinical trials in both human and animal hosts that use antigen-based immunotherapy for autoimmune disease. PMID:27471707

  13. Rapid diagnosis of typhoid fever by antigen detection.

    PubMed

    Sivadasan, K; Kurien, B; John, T J

    1984-01-21

    Salmonella typhi antigen was demonstrated in the blood of patients with typhoid fever by a passive staphylococcal agglutination test. This test was positive in 10 culture-proven typhoid patients and negative in 10 febrile patients without typhoid. PMID:6140444

  14. HLA antigens in individuals with down syndrome and alopecia areata

    PubMed Central

    Estefan, Juliany L; Oliveira, Juliana C; Abad, Eliane D; Saintive, Simone B; Porto, Luis Cristóvão MS; Ribeiro, Marcia

    2014-01-01

    AIM: To describe human leukocyte antigen (HLA) alleles in individuals with Down syndrome and alopecia areata. METHODS: A cross-sectional study was conducted, which evaluated 109 individuals. Ten with down syndrome (DS) and alopecia areata (AA), ten with DS without AA and ten with AA without DS, and their families. The individuals were matched by gender and age. The following data were computed: gender, age, ethnic group, karyotype, clinical presentation and family history of alopecia areata. Descriptive analysis: measures of central tendency and frequency distribution. Inferential analysis: Fisher’s exact test to compare categorical data between the three groups and Kruskal-Wallis ANOVA test for numerical data. RESULTS: Seventy per cent of evaluated individuals in the DS and AA group were male; presented mean age of 18.6 (SD ± 7.2) years and 70% were Caucasian. We observed involvement of the scalp, with a single lesion in 10% and multiple in 90% of subjects. It was observed that there is no significant difference in the frequency distributions of the alleles HLA loci A, B, C, DRB1 and DQB1 of subjects studied. However, according to Fisher’s exact test, there is a trend (P = 0.089) of DS group to present higher proportions of HLA-A 36 and HLA-B 15 than the AA group and AA and DS group. CONCLUSION: There was a tendency for the DS group, to present proportion of HLA-A 36 and HLA-B 15 higher than the AA group and group of individuals with AA and DS. However, there was no significant difference in the frequency distribution of the alleles. PMID:25325065

  15. Breaking Tolerance to Thyroid Antigens: Changing Concepts in Thyroid Autoimmunity

    PubMed Central

    Rapoport, Basil

    2014-01-01

    Thyroid autoimmunity involves loss of tolerance to thyroid proteins in genetically susceptible individuals in association with environmental factors. In central tolerance, intrathymic autoantigen presentation deletes immature T cells with high affinity for autoantigen-derived peptides. Regulatory T cells provide an alternative mechanism to silence autoimmune T cells in the periphery. The TSH receptor (TSHR), thyroid peroxidase (TPO), and thyroglobulin (Tg) have unusual properties (“immunogenicity”) that contribute to breaking tolerance, including size, abundance, membrane association, glycosylation, and polymorphisms. Insight into loss of tolerance to thyroid proteins comes from spontaneous and induced animal models: 1) intrathymic expression controls self-tolerance to the TSHR, not TPO or Tg; 2) regulatory T cells are not involved in TSHR self-tolerance and instead control the balance between Graves' disease and thyroiditis; 3) breaking TSHR tolerance involves contributions from major histocompatibility complex molecules (humans and induced mouse models), TSHR polymorphism(s) (humans), and alternative splicing (mice); 4) loss of tolerance to Tg before TPO indicates that greater Tg immunogenicity vs TPO dominates central tolerance expectations; 5) tolerance is induced by thyroid autoantigen administration before autoimmunity is established; 6) interferon-α therapy for hepatitis C infection enhances thyroid autoimmunity in patients with intact immunity; Graves' disease developing after T-cell depletion reflects reconstitution autoimmunity; and 7) most environmental factors (including excess iodine) “reveal,” but do not induce, thyroid autoimmunity. Micro-organisms likely exert their effects via bystander stimulation. Finally, no single mechanism explains the loss of tolerance to thyroid proteins. The goal of inducing self-tolerance to prevent autoimmune thyroid disease will require accurate prediction of at-risk individuals together with an antigen

  16. The Significance of Serum Carcinoembryonic Antigen in Lung Adenocarcinoma

    PubMed Central

    Kim, Jae Jun; Hyun, Kwanyong; Park, Jae Kil; Moon, Seok Whan

    2015-01-01

    Background A raised carcinoembryonic antigen (CEA) may be associated with significant pathology during the postoperative follow-up of lung adenocarcinoma. Methods We reviewed the medical records of 305 patients who underwent surgical resections for primary lung adenocarcinoma at a single institution between April 2006 and February 2013. Results Preoperative CEA levels were significantly associated with age, smoking history, pathologic stage including pT (pathologic tumor stge), pN (pathologic nodal stage) and overall pathological stage, tumor size and differentiation, pathologically positive total lymph node, N1 and N2 lymph node, N2 nodal station (0/1/2=1.83/2.94/7.21 ng/mL, p=0.019), and 5-year disease-free survival (0.591 in group with normal preoperative CEA levels vs. 0.40 in group with high preoperative CEA levels, p=0.001). Preoperative CEA levels were significantly higher than postoperative CEA levels (p<0.001, Wilcoxon signed-rank test). Postoperative CEA level was also significantly associated with disease-free survival (p<0.001). A follow-up serum CEA value of >2.57 ng/mL was found to be the appropriate cutoff value for the prediction of cancer recurrence with sensitivity and specificity of 71.4% and 72.3%, respectively. Twenty percent of patients who had recurrence of disease had a CEA level elevated above this cutoff value prior to radiographic evidence of recurrence. Postoperative CEA, pathologic stage, differentiation, vascular invasion, and neoadjuvant therapy were identified as independent predictors of 5-year disease-free survival in a multivariate analysis. Conclusion The follow-up CEA level can be a useful tool for detecting early recurrence undetected by postoperative imaging studies. The perioperative follow-up CEA levels may be helpful for providing personalized evaluation of lung adenocarcinoma. PMID:26509127

  17. Novel Mycobacteria Antigen 85 Complex Binding Motif on Fibronectin*

    PubMed Central

    Kuo, Chih-Jung; Bell, Hannah; Hsieh, Ching-Lin; Ptak, Christopher P.; Chang, Yung-Fu

    2012-01-01

    The members of the antigen 85 protein family (Ag85), consisting of members Ag85A, Ag85B, and Ag85C, are the predominantly secreted proteins of mycobacteria and possess the ability to specifically interact with fibronectin (Fn). Because Fn-binding proteins are likely to be important virulence factors of Mycobacterium spp., Ag85 may contribute to the adherence, invasion, and dissemination of organisms in host tissue. In this study, we reported the Fn binding affinity of Ag85A, Ag85B, and Ag85C from Mycobacterium avium subsp. paratuberculosis (MAP) (KD values were determined from 33.6 to 68.4 nm) and mapped the Ag85-binding motifs of Fn. Fn14, a type III module located on the heparin-binding domain II (Hep-2) of Fn, was discovered to interact with Ag85 from MAP. The peptide inhibition assay subsequently demonstrated that a peptide consisting of residues 17–26 from Fn14 (17SLLVSWQPPR26, termed P17–26) could interfere with Ag85B binding to Fn (73.3% reduction). In addition, single alanine substitutions along the sequence of P17–26 revealed that the key residues involved in Ag85-Fn binding likely contribute through hydrophobic and charge interactions. Moreover, binding of Ag85 on Fn siRNA-transfected Caco2 cells was dramatically reduced (44.6%), implying the physiological significance of the Ag85-Fn interaction between mycobacteria and host cells during infection. Our results indicate that Ag85 binds to Fn at a novel motif and plays a critical role in mycobacteria adherence to host cells by initiating infection. Ag85 might serve as an important colonization factor potentially contributing to mycobacterial virulence. PMID:22128161

  18. New enterovirulent Escherichia coli serogroup 64474 showing antigenic and genotypic relationships to Shigella boydii 16.

    PubMed

    Navarro, Armando; Eslava, Carlos; Perea, Luis Manuel; Inzunza, Alma; Delgado, Gabriela; Morales-Espinosa, Rosario; Cheasty, Thomas; Cravioto, Alejandro

    2010-04-01

    Studies based on the analysis of housekeeping genes indicate that Escherichia coli and all Shigella species, except for Shigella boydii type 13, belong to a single species. This study analysed the phenotypic and genotypic characteristics of 23 E. coli strains isolated in different countries from faecal specimens taken from children with diarrhoea. Strains were identified using the VITEK system and typed with rabbit sera obtained against 186 somatic and 53 flagellar E. coli antigens and against 45 Shigella somatic antigens. Biochemical analysis of these strains showed a typical E. coli profile with a defined reaction against both E. coli O179 and S. boydii 16 somatic antisera. Agglutination assays for flagellar antigens showed a response against H2 in 7 (30 %) strains, H10 in 2 (9 %) strains, H32 in 12 (52 %) strains and H34 in 2 (9 %) strains, demonstrating 4 serotypes associated with this new somatic antigen 64474. A serum against one of these E. coli strains (64474) was prepared. Absorption assays of S. boydii 16 and E. coli 64474 antisera with E. coli O179 antigen removed the agglutination response against this O179 antigen completely, while the agglutination titres against both S. boydii 16 and E. coli 64474 remained the same. Four (17 %) E. coli strains showed antimicrobial resistance to piperacillin only, one (4 %) to piperacillin and trimethoprim/sulfamethoxazole, one (4 %) to ciprofloxacin, nitrofurantoin and piperacillin, and two (9 %) strains were resistant to ciprofloxacin, norfloxacin, ofloxacin, piperacillin and trimethoprim/sulfamethoxazole. With regards to PCR assays, one (4 %) of the strains was positive for Shigella gene ipaH, one (4 %) for ipaA, two (9 %) for ipaB, one (4 %) for ipaD, two (9 %) for sepA and three (13 %) for ospF. The rfb gene cluster in the E. coli strains was analysed by RFLP and compared with the gene cluster obtained from S. boydii 16. The rfb-RFLP patterns for all 23 E. coli strains were similar to those obtained for S. boydii

  19. Recombinant Salmonella Expressing Burkholderia mallei LPS O Antigen Provides Protection in a Murine Model of Melioidosis and Glanders

    PubMed Central

    Moustafa, Dina A.; Scarff, Jennifer M.; Garcia, Preston P.; Cassidy, Sara K. B.; DiGiandomenico, Antonio; Waag, David M.; Inzana, Thomas J.; Goldberg, Joanna B.

    2015-01-01

    Burkholderia pseudomallei and Burkholderia mallei are the etiologic agents of melioidosis and glanders, respectively. These bacteria are highly infectious via the respiratory route and can cause severe and often fatal diseases in humans and animals. Both species are considered potential agents of biological warfare; they are classified as category B priority pathogens. Currently there are no human or veterinary vaccines available against these pathogens. Consequently efforts are directed towards the development of an efficacious and safe vaccine. Lipopolysaccharide (LPS) is an immunodominant antigen and potent stimulator of host immune responses. B. mallei express LPS that is structurally similar to that expressed by B. pseudomallei, suggesting the possibility of constructing a single protective vaccine against melioidosis and glanders. Previous studies of others have shown that antibodies against B. mallei or B. pseudomallei LPS partially protect mice against subsequent lethal virulent Burkholderia challenge. In this study, we evaluated the protective efficacy of recombinant Salmonella enterica serovar Typhimurium SL3261 expressing B. mallei O antigen against lethal intranasal infection with Burkholderia thailandensis, a surrogate for biothreat Burkholderia spp. in a murine model that mimics melioidosis and glanders. All vaccine-immunized mice developed a specific antibody response to B. mallei and B. pseudomallei O antigen and to B. thailandensis and were significantly protected against challenge with a lethal dose of B. thailandensis. These results suggest that live-attenuated SL3261 expressing B. mallei O antigen is a promising platform for developing a safe and effective vaccine. PMID:26148026

  20. The pathogenic antigen of Heymann nephritis is a membrane glycoprotein of the renal proximal tubule brush border.

    PubMed Central

    Kerjaschki, D; Farquhar, M G

    1982-01-01

    Purified brush border fractions prepared from rat kidneys were solubilized in detergent, iodinated, and subjected to immunoprecipitation to identify the pathogenic antigen present in brush border membranes that is responsible for the production of Heymann nephritis (HN). Purified IgG prepared from the sera of rabbits or rats immunized with a crude cortical preparation, known as Fx1A, precipitated multiple peptides, whereas IgG eluted from glomeruli of rats with active or passive HN specifically immunoprecipitated a single large glycoprotein (Mr = 330,000). This protein (gp330) was subsequently purified by gel filtration and lentil lectin affinity chromatography from detergent-solubilized brush border membranes. When rats were immunized with purified gp330, they developed anti-brush border antibodies and active HN. IgG prepared from the serum of rats with active HN caused passive HN when injected into normal recipients. Rats immunized against brush border membrane proteins depleted of gp330 developed anti-brush border antibodies but did not develop HN. Further analysis of gp330 indicated that it is solubilized by detergent treatment of isolated brush border microvilli, and its antigenic component is released from intact microvilli by trypsin. By immunoperoxidase staining it was localized to the luminal side of the brush border membranes. These results indicate that (i) gp330 is the pathogenic antigen of HN; (ii) the antigen is a glycoprotein of the brush border membrane; and (iii) it is disposed with its pathogenic domain(s) facing the tubule lumen. Images PMID:6752952

  1. Systemic Combination Virotherapy for Melanoma with Tumor Antigen-Expressing Vesicular Stomatitis Virus and Adoptive T-cell Transfer

    PubMed Central

    Rommelfanger, Diana M.; Wongthida, Phonphimon; Diaz, Rosa M.; Kaluza, Karen M.; Thompson, Jill M.; Kottke, Timothy J.; Vile, Richard G.

    2013-01-01

    Oncolytic virotherapy offers the potential to treat tumors both as a single agent and in combination with traditional modalities such as chemotherapy and radiotherapy. Here we describe an effective, fully systemic treatment regimen, which combines virotherapy, acting essentially as an adjuvant immunotherapy, with adoptive cell transfer (ACT). The combination of ACT with systemic administration of a vesicular stomatitis virus (VSV) engineered to express the endogenous melanocyte antigen glycoprotein 100 (gp100) resulted in regression of established melanomas and generation of antitumor immunity. Tumor response was associated with in vivo T-cell persistence and activation as well as treatment-related vitiligo. However, in a proportion of treated mice, initial tumor regressions were followed by recurrences. Therapy was further enhanced by targeting an additional tumor antigen with the VSV-antigen + ACT combination strategy, leading to sustained response in 100% of mice. Together, our findings suggest that systemic virotherapy combined with antigen-expressing VSV could be used to support and enhance clinical immunotherapy protocols with adoptive T-cell transfer, which are already used in the clinic. PMID:22836753

  2. Transduction of Human Antigen-Presenting Cells with Integrase-Defective Lentiviral Vector Enables Functional Expansion of Primed Antigen-Specific CD8+ T Cells

    PubMed Central

    Bona, Roberta; Michelini, Zuleika; Leone, Pasqualina; Macchia, Iole; Klotman, Mary E.; Salvatore, Mirella

    2010-01-01

    Abstract Nonintegrating lentiviral vectors are being developed as a efficient and safe delivery system for both gene therapy and vaccine purposes. Several reports have demonstrated that a single immunization with integration-defective lentiviral vectors (IDLVs) delivering viral or tumor model antigens in mice was able to elicit broad and long-lasting specific immune responses in the absence of vector integration. At present, no evidence has been reported showing that IDLVs are able to expand preexisting immune responses in the human context. In the present study, we demonstrate that infection of human antigen-presenting cells (APCs), such as monocyte-derived dendritic cells (DCs) and macrophages with IDLVs expressing influenza matrix M1 protein resulted in effective induction of in vitro expansion of M1-primed CD8+ T cells, as evaluated by both pentamer staining and cytokine production. This is the first demonstration that IDLVs represent an efficient delivery system for gene transfer and expression in human APCs, useful for immunotherapeutic applications. PMID:20210625

  3. An Annular Lipid Belt Is Essential for Allosteric Coupling and Viral Inhibition of the Antigen Translocation Complex TAP (Transporter Associated with Antigen Processing)*

    PubMed Central

    Eggensperger, Sabine; Fisette, Olivier; Parcej, David; Schäfer, Lars V.; Tampé, Robert

    2014-01-01

    The transporter associated with antigen processing (TAP) constitutes a focal element in the adaptive immune response against infected or malignantly transformed cells. TAP shuttles proteasomal degradation products into the lumen of the endoplasmic reticulum for loading of major histocompatibility complex (MHC) class I molecules. Here, the heterodimeric TAP complex was purified and reconstituted in nanodiscs in defined stoichiometry. We demonstrate that a single heterodimeric core-TAP complex is active in peptide binding, which is tightly coupled to ATP hydrolysis. Notably, with increasing peptide length, the ATP turnover was gradually decreased, revealing that ATP hydrolysis is coupled to the movement of peptide through the ATP-binding cassette transporter. In addition, all-atom molecular dynamics simulations show that the observed 22 lipids are sufficient to form an annular belt surrounding the TAP complex. This lipid belt is essential for high affinity inhibition by the herpesvirus immune evasin ICP47. In conclusion, nanodiscs are a powerful approach to study the important role of lipids as well as the function, interaction, and modulation of the antigen translocation machinery. PMID:25305015

  4. Heat stability of protective antigen of Leptospira interrogans serovar lai.

    PubMed Central

    Masuzawa, T; Nakamura, R; Shimizu, T; Yanagihara, Y

    1990-01-01

    Protective antigen (PAg; glycolipid antigen; molecular size, 23 to 30 kilodaltons), the serogroup-specific antigen partially purified from leptospiral cells, is one of the most important protective antigens. The heat stability of PAg was compared with that of whole-cell (WC) antigen by using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, immunoblotting, protective activity, opsonin-inducing activity, agglutinating antibody-inducing activity, and an inhibition test in an enzyme-linked immunosorbent assay. A band of 23 to 30 kilodaltons of PAg, which was seen in untreated PAg and WC, shifted to a position with a molecular size of ca. 20 kilodaltons after heat treatment of PAg at 80 degrees C for 30 min and WC at 100 degrees C for 30 min. In the enzyme-linked immunosorbent assay inhibition test with monoclonal antibody LW2 and a sonicated antigen of WC, the inhibition rate of PAg and WC to sonicated WC was reduced by heat treatment at 80 degrees C for 30 min and at 100 degrees C for 30 min, respectively. Agglutinating antibody-inducing activities and opsonin-inducing activities of PAg and WC in mice were reduced by heat treatment under the same conditions; these activities were assayed by a microscopic agglutination test and by chemical luminescence response in serum from immunized mice, respectively. Protective activity of heated PAg and heated WC in cyclophosphamide-pretreated mice agreed with the results of immunogenicity in mice. These results indicate that the Leptospira PAg is one of the important protective antigens and is altered by heat treatment at 80 degrees C. Furthermore, the immunogenicity and antigenicity of the PAg present in WC are more stable than that of the extracted PAg, and the coexistence of other cellular components with PAg might protect and stabilize PAg from the heat treatment. Images PMID:2332463

  5. Multiple overlapping homologies between two rheumatoid antigens and immunosuppressive viruses.

    PubMed Central

    Douvas, A; Sobelman, S

    1991-01-01

    Amino acid (aa) sequence homologies between viruses and autoimmune nuclear antigens are suggestive of viral involvement in disorders such as systemic lupus erythematosus (SLE) and scleroderma. We analyzed the frequency of exact homologies of greater than or equal to 5 aa between 61 viral proteins (19,827 aa), 8 nuclear antigens (3813 aa), and 41 control proteins (11,743 aa). Both pentamer and hexamer homologies between control proteins and viruses are unexpectedly abundant, with hexamer matches occurring in 1 of 3 control proteins (or once every 769 aa). However, 2 nuclear antigens, the SLE-associated 70-kDa antigen and the scleroderma-associated CENP-B protein, are highly unusual in containing multiple homologies to a group of synergizing immunosuppressive viruses. Two viruses, herpes simplex virus 1 (HSV-1) and human immunodeficiency virus 1 (HIV-1), contain sequences exactly duplicated at 15 sites in the 70-kDa antigen and at 10 sites in CENP-B protein. The immediate-early (IE) protein of HSV-1, which activates HIV-1 regulatory functions, contains three homologies to the 70-kDa antigen (two hexamers and a pentamer) and two to CENP-B (a hexamer and pentamer). There are four homologies (including a hexamer) common to the 70-kDa antigen and Epstein-Barr virus, and three homologies (including two hexamers) common to CENP-B and cytomegalovirus. The majority of homologies in both nuclear antigens are clustered in highly charged C-terminal domains containing epitopes for human autoantibodies. Furthermore, most homologies have a contiguous or overlapping distribution, thereby creating a high density of potential epitopes. In addition to the exact homologies tabulated, motifs of matching sequences are repeated frequently in these domains. Our analysis suggests that coexpression of heterologous viruses having common immunosuppressive functions may generate autoantibodies cross-reacting with certain nuclear proteins. PMID:1712488

  6. Self-Antigen Presentation by Dendritic Cells in Autoimmunity

    PubMed Central

    Hopp, Ann-Katrin; Rupp, Anne; Lukacs-Kornek, Veronika

    2014-01-01

    The operation of both central and peripheral tolerance ensures the prevention of autoimmune diseases. The maintenance of peripheral tolerance requires self-antigen presentation by professional antigen presenting cells (APCs). Dendritic cells (DCs) are considered as major APCs involved in this process. The current review discusses the role of DCs in autoimmune diseases, the various factors involved in the induction and maintenance of tolerogenic DC phenotype, and pinpoints their therapeutic capacity as well as potential novel targets for future clinical studies. PMID:24592266

  7. Recognition of oxidized albumin and thyroid antigens by psoriasis autoantibodies

    PubMed Central

    Al-Shobaili, Hani A.; Ahmed, Ahmed A.; Rasheed, Zafar

    2015-01-01

    Objectives: To investigate the role of reactive-oxygen-species (ROS) induced epitopes on human-serum-albumin (HSA) and thyroid antigens in psoriasis autoimmunity. Methods: This study was performed in the College of Medicine, Qassim University, Buraidah, Saudi Arabia between May 2014 and February 2015. The study was designed to explore the role of ROS-induced epitopes in psoriasis autoimmunity. Singlet-oxygen (or ROS)-induced epitopes on protein (ROS-epitopes-albumin) was characterized by in-vitro and in-vivo. Thyroid antigens were prepared from rabbit thyroid, and thyroglobulin was isolated from thyroid extract. Immunocross-reactions of protein-A purified anti-ROS-epitopes-HSA-immunoglobulin G (IgGs) with thyroid antigen, thyroglobulin, and their oxidized forms were determined. Binding characteristics of autoantibodies in chronic plaque psoriasis patients (n=26) against ROS-epitopes-HSA and also with native and oxidized thyroid antigens were screened, and the results were compared with age-matched controls (n=22). Results: The anti-ROS-epitopes-HSA-IgGs showed cross-reactions with thyroid antigen, thyroglobulin and with their oxidized forms. High degree of specific binding by psoriasis IgGs to ROS-epitopes-HSA, ROS-thyroid antigen and ROS-thyroglobulin was observed. Immunoglobulin G from normal-human-controls showed negligible binding with all tested antigens. Moreover, sera from psoriasis patients had higher levels of carbonyl contents compared with control sera. Conclusion: Structural alterations in albumin, thyroid antigens by ROS, generate unique neo-epitopes that might be one of the factors for the induction of autoantibodies in psoriasis. PMID:26620982

  8. Antigen-specific immune reactions to ischemic stroke

    PubMed Central

    Urra, Xabier; Miró, Francesc; Chamorro, Angel; Planas, Anna M.

    2014-01-01

    Brain proteins are detected in the cerebrospinal fluid (CSF) and blood of stroke patients and their concentration is related to the extent of brain damage. Antibodies against brain antigens develop after stroke, suggesting a humoral immune response to the brain injury. Furthermore, induced immune tolerance is beneficial in animal models of cerebral ischemia. The presence of circulating T cells sensitized against brain antigens, and antigen presenting cells (APCs) carrying brain antigens in draining lymphoid tissue of stroke patients support the notion that stroke might induce antigen-specific immune responses. After stroke, brain proteins that are normally hidden from the periphery, inflammatory mediators, and danger signals can exit the brain through several efflux routes. They can reach the blood after leaking out of the damaged blood-brain barrier (BBB) or following the drainage of interstitial fluid to the dural venous sinus, or reach the cervical lymph nodes through the nasal lymphatics following CSF drainage along the arachnoid sheaths of nerves across the nasal submucosa. The route and mode of access of brain antigens to lymphoid tissue could influence the type of response. Central and peripheral tolerance prevents autoimmunity, but the actual mechanisms of tolerance to brain antigens released into the periphery in the presence of inflammation, danger signals, and APCs, are not fully characterized. Stroke does not systematically trigger autoimmunity, but under certain circumstances, such as pronounced systemic inflammation or infection, autoreactive T cells could escape the tolerance controls. Further investigation is needed to elucidate whether antigen-specific immune events could underlie neurological complications impairing recovery from stroke. PMID:25309322

  9. Human cysticercosis: antigens, antibodies and non-responders.

    PubMed Central

    Flisser, A; Woodhouse, E; Larralde, C

    1980-01-01

    Immunoelectrophoresis of sera from patients with brain cysticercosis against a crude antigenic extract from Cysticercus cellulosae indicates that nearly 50% of the patients do not make sufficient antibodies to ostensively precipitate. The other 50% of the patients who do make precipitating antibodies show a very heterogeneous response in the number of antigens they recognize as well as in the type of antigen--as classified by their electrophoretic mobilities. The most favoured, called antigen B, is recognized by 84% of positive sera and corresponds to one or a limited number of antigens isoelectric at pH 8.6. Indirect immunofluorescence with monospecific anti-human immunoglobulins, performed upon the immunoelectrophoretic preparations, reveal that all cysticercus antigens induced the synthesis of antibodies in the immunoglobulin classes in the order G greater than M greater than E greater than A greater than D. Finally, antigen H (an anodic component) seems to favour IgE relative to its ability to induce IgG. Thus, although in natural infection a good proportion of cysticercotic patients do not seem to mount an energetic antibody response against the parasite, giving rise to some speculations about immunosuppression, the fact that 50% do synthesize antibodies allows for some optimistic expectations from vaccination of humans--in view of the good results of vaccination in experimental ani