Science.gov

Sample records for single nuclear spin

  1. Nuclear magnetic resonance spectroscopy with single spin sensitivity

    PubMed Central

    Müller, C.; Kong, X.; Cai, J.-M.; Melentijević, K.; Stacey, A.; Markham, M.; Twitchen, D.; Isoya, J.; Pezzagna, S.; Meijer, J.; Du, J. F.; Plenio, M. B.; Naydenov, B.; McGuinness, L. P.; Jelezko, F.

    2014-01-01

    Nuclear magnetic resonance spectroscopy and magnetic resonance imaging at the ultimate sensitivity limit of single molecules or single nuclear spins requires fundamentally new detection strategies. The strong coupling regime, when interaction between sensor and sample spins dominates all other interactions, is one such strategy. In this regime, classically forbidden detection of completely unpolarized nuclei is allowed, going beyond statistical fluctuations in magnetization. Here we realize strong coupling between an atomic (nitrogen–vacancy) sensor and sample nuclei to perform nuclear magnetic resonance on four 29Si spins. We exploit the field gradient created by the diamond atomic sensor, in concert with compressed sensing, to realize imaging protocols, enabling individual nuclei to be located with Angstrom precision. The achieved signal-to-noise ratio under ambient conditions allows single nuclear spin sensitivity to be achieved within seconds. PMID:25146503

  2. Nuclear magnetic resonance spectroscopy with single spin sensitivity.

    PubMed

    Müller, C; Kong, X; Cai, J-M; Melentijević, K; Stacey, A; Markham, M; Twitchen, D; Isoya, J; Pezzagna, S; Meijer, J; Du, J F; Plenio, M B; Naydenov, B; McGuinness, L P; Jelezko, F

    2014-01-01

    Nuclear magnetic resonance spectroscopy and magnetic resonance imaging at the ultimate sensitivity limit of single molecules or single nuclear spins requires fundamentally new detection strategies. The strong coupling regime, when interaction between sensor and sample spins dominates all other interactions, is one such strategy. In this regime, classically forbidden detection of completely unpolarized nuclei is allowed, going beyond statistical fluctuations in magnetization. Here we realize strong coupling between an atomic (nitrogen-vacancy) sensor and sample nuclei to perform nuclear magnetic resonance on four (29)Si spins. We exploit the field gradient created by the diamond atomic sensor, in concert with compressed sensing, to realize imaging protocols, enabling individual nuclei to be located with Angstrom precision. The achieved signal-to-noise ratio under ambient conditions allows single nuclear spin sensitivity to be achieved within seconds. PMID:25146503

  3. Single-shot readout of multiple nuclear spin qubits in diamond under ambient conditions.

    PubMed

    Drau, A; Spinicelli, P; Maze, J R; Roch, J-F; Jacques, V

    2013-02-01

    We use the electronic spin of a single nitrogen-vacancy defect in diamond to observe the real-time evolution of neighboring single nuclear spins under ambient conditions. Using a diamond sample with a natural abundance of (13)C isotopes, we first demonstrate high fidelity initialization and single-shot readout of an individual (13)C nuclear spin. By including the intrinsic (14)N nuclear spin of the nitrogen-vacancy defect in the quantum register, we then report the simultaneous observation of quantum jumps linked to both nuclear spin species, providing an efficient initialization of the two qubits. These results open up new avenues for diamond-based quantum information processing including active feedback in quantum error correction protocols and tests of quantum correlations with solid-state single spins at room temperature. PMID:23432227

  4. All-electrical control of a singlet-triplet qubit coupled to a single nuclear spin

    NASA Astrophysics Data System (ADS)

    Jacobson, N. Tobias; Harvey-Collard, Patrick; Baczewski, Andrew; Gamble, John; Rudolph, Martin; Nielsen, Erik; Muller, Richard; Carroll, Malcolm

    Donor nuclear spins in isotopically purified silicon have very long coherence times, suggesting that they may form high-quality quantum memories. We propose that coupling these nuclear spins to few-electron quantum dots could enable nuclear spin readout and two-qubit operations of the joint quantum dot and nuclear spin system without the need for electron spin resonance. As a step towards this goal, our group recently demonstrated coherent singlet/triplet electron spin rotations induced by the hyperfine interaction between electronic spin degrees of freedom and a single nuclear spin in isotopically purified silicon. In this talk, I will discuss the feasibility of universal all-electrical control of such a singlet/triplet electron spin qubit and explore the decoherence mechanisms that we expect to dominate. Finally, I will examine the relative merits of AC and pulsed DC gating schemes. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy National Nuclear Security Administration under Contract No. DE-AC04- 94AL85000.

  5. Coherent Population Trapping of a Single Nuclear Spin Under Ambient Conditions

    NASA Astrophysics Data System (ADS)

    Jamonneau, P.; Hétet, G.; Dréau, A.; Roch, J.-F.; Jacques, V.

    2016-01-01

    We demonstrate coherent population trapping of a single nuclear spin in a room-temperature solid. To this end, we exploit a three-level system with a Λ configuration in the microwave domain, which consists of nuclear spin states addressed through their hyperfine coupling to the electron spin of a single nitrogen-vacancy defect in diamond. Moreover, the Λ -scheme relaxation is externally controlled through incoherent optical pumping and separated in time from consecutive coherent microwave excitations. Such a scheme allows us (i) to monitor the sequential accumulation of population into the dark state and (ii) to reach a novel regime of coherent population trapping dynamics for which periodic arrays of dark resonances can be observed, owing to multiple constructive interferences. This Letter offers new prospects for quantum state preparation, information storage in hybrid quantum systems, and metrology.

  6. Fast room-temperature phase gate on a single nuclear spin in diamond.

    PubMed

    Sangtawesin, S; Brundage, T O; Petta, J R

    2014-07-11

    Nuclear spins support long lived quantum coherence due to weak coupling to the environment, but are difficult to rapidly control using nuclear magnetic resonance as a result of the small nuclear magnetic moment. We demonstrate a fast ∼500  ns nuclear spin phase gate on a (14)N nuclear spin qubit intrinsic to a nitrogen-vacancy center in diamond. The phase gate is enabled by the hyperfine interaction and off-resonance driving of electron spin transitions. Repeated applications of the phase gate bang-bang decouple the nuclear spin from the environment, locking the spin state for up to ∼140  μs. PMID:25062156

  7. Fast Room-Temperature Phase Gate on a Single Nuclear Spin in Diamond

    NASA Astrophysics Data System (ADS)

    Sangtawesin, S.; Brundage, T. O.; Petta, J. R.

    2014-07-01

    Nuclear spins support long lived quantum coherence due to weak coupling to the environment, but are difficult to rapidly control using nuclear magnetic resonance as a result of the small nuclear magnetic moment. We demonstrate a fast ˜500 ns nuclear spin phase gate on a N14 nuclear spin qubit intrinsic to a nitrogen-vacancy center in diamond. The phase gate is enabled by the hyperfine interaction and off-resonance driving of electron spin transitions. Repeated applications of the phase gate bang-bang decouple the nuclear spin from the environment, locking the spin state for up to ˜140 μs.

  8. Nuclear-driven electron spin rotations in a coupled silicon quantum dot and single donor system

    NASA Astrophysics Data System (ADS)

    Harvey-Collard, Patrick; Jacobson, Noah Tobias; Rudolph, Martin; Ten Eyck, Gregory A.; Wendt, Joel R.; Pluym, Tammy; Lilly, Michael P.; Pioro-Ladrière, Michel; Carroll, Malcolm S.

    Single donors in silicon are very good qubits. However, a central challenge is to couple them to one another. To achieve this, many proposals rely on using a nearby quantum dot (QD) to mediate an interaction. In this work, we demonstrate the coherent coupling of electron spins between a single 31P donor and an enriched 28Si metal-oxide-semiconductor few-electron QD. We show that the electron-nuclear spin interaction can drive coherent rotations between singlet and triplet electron spin states. Moreover, we are able to tune electrically the exchange interaction between the QD and donor electrons. The combination of single-nucleus-driven rotations and voltage-tunable exchange provides all elements for future all-electrical control of a spin qubit, and requires only a single dot and no additional magnetic field gradients. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  9. Fast Room-Temperature Phase Gate on a Single Nuclear Spin in Diamond

    NASA Astrophysics Data System (ADS)

    Sangtawesin, S.; Brundage, T. O.; Petta, J. R.

    2015-03-01

    Nuclear spins support long lived quantum coherence due to weak coupling to the environment, but are difficult to rapidly control using nuclear magnetic resonance as a result of the small nuclear magnetic moment. We demonstrate a fast ~ 500 ns nuclear spin phase gate on a 14N nuclear spin qubit intrinsic to a nitrogen-vacancy center in high purity diamond. This phase gate is achieved by utilizing electron-nuclear hyperfine interaction. By driving off-resonant Rabi oscillations on the electronic spin, we can generate an arbitrary phase gate on the nuclear spin. We also demonstrate that repeated applications of π-phase gates can bang-bang decouple the nuclear spin from the environment, locking the spin state for up to 140 μs. Research was supported by the Sloan and Packard Foundations, the National Science Foundation through Awards DMR-0819860 and DMR-0846341, and the Army Research Office through PECASE Award W911NF-08-1-0189.

  10. p -shell carrier assisted dynamic nuclear spin polarization in single quantum dots at zero external magnetic field

    NASA Astrophysics Data System (ADS)

    Fong, C. F.; Ota, Y.; Harbord, E.; Iwamoto, S.; Arakawa, Y.

    2016-03-01

    Repeated injection of spin-polarized carriers in a quantum dot (QD) leads to the polarization of nuclear spins, a process known as dynamic nuclear spin polarization (DNP). Here, we report the observation of p-shell carrier assisted DNP in single QDs at zero external magnetic field. The nuclear field—measured by using the Overhauser shift of the singly charged exciton state of the QDs—continues to increase, even after the carrier population in the s-shell saturates. This is also accompanied by an abrupt increase in nuclear spin buildup time as p-shell emission overtakes that of the s shell. We attribute the observation to p-shell electrons strongly altering the nuclear spin dynamics in the QD, supported by numerical simulation results based on a rate equation model of coupling between electron and nuclear spin system. Dynamic nuclear spin polarization with p-shell carriers could open up avenues for further control to increase the degree of nuclear spin polarization in QDs.

  11. Probing the effective nuclear-spin magnetic field in a single quantum dot via full counting statistics

    SciTech Connect

    Xue, Hai-Bin; Nie, Yi-Hang; Chen, Jingzhe; Ren, Wei

    2015-03-15

    We study theoretically the full counting statistics of electron transport through a quantum dot weakly coupled to two ferromagnetic leads, in which an effective nuclear-spin magnetic field originating from the configuration of nuclear spins is considered. We demonstrate that the quantum coherence between the two singly-occupied eigenstates and the spin polarization of two ferromagnetic leads play an important role in the formation of super-Poissonian noise. In particular, the orientation and magnitude of the effective field have a significant influence on the variations of the values of high-order cumulants, and the variations of the skewness and kurtosis values are more sensitive to the orientation and magnitude of the effective field than the shot noise. Thus, the high-order cumulants of transport current can be used to qualitatively extract information on the orientation and magnitude of the effective nuclear-spin magnetic field in a single quantum dot. - Highlights: • The effective nuclear-spin magnetic field gives rise to the off-diagonal elements of the reduced density matrix of single QD. • The off-diagonal elements of reduced density matrix of the QD have a significant impact on the high-order current cumulants. • The high-order current cumulants are sensitive to the orientation and magnitude of the effective nuclear-spin magnetic field. • The FCS can be used to detect the orientation and magnitude of the effective nuclear-spin magnetic field in a single QD.

  12. Sensing of single nuclear spins in random thermal motion with proximate nitrogen-vacancy centers

    NASA Astrophysics Data System (ADS)

    Bruderer, M.; Fernández-Acebal, P.; Aurich, R.; Plenio, M. B.

    2016-03-01

    Nitrogen-vacancy (NV) centers in diamond have emerged as valuable tools for sensing and polarizing spins. Motivated by potential applications in chemistry, biology, and medicine, we show that NV-based sensors are capable of detecting single spin targets even if they undergo diffusive motion in an ambient thermal environment. Focusing on experimentally relevant diffusion regimes, we derive an effective model for the NV-target interaction, where parameters entering the model are obtained from numerical simulations of the target motion. The practicality of our approach is demonstrated by analyzing two realistic experimental scenarios: (i) time-resolved sensing of a fluorine nuclear spin bound to an N-heterocyclic carbene-ruthenium (NHC-Ru) catalyst that is immobilized on the diamond surface and (ii) detection of an electron spin label by an NV center in a nanodiamond, both attached to a vibrating chemokine receptor in thermal motion. We find in particular that the detachment of a fluorine target from the NHC-Ru carrier molecule can be monitored with a time resolution of a few seconds.

  13. Quantum-state tomography of a single nuclear spin qubit of an optically manipulated ytterbium atom

    SciTech Connect

    Noguchi, Atsushi; Kozuma, Mikio; Eto, Yujiro; Ueda, Masahito

    2011-09-15

    A single Yb atom is loaded into a high-finesse optical cavity with a moving lattice, and its nuclear spin state is manipulated using a nuclear magnetic resonance technique. A highly reliable quantum state control with fidelity and purity greater than 0.98 and 0.96, respectively, is confirmed by the full quantum state tomography; a projective measurement with high speed (500 {mu}s) and high efficiency (0.98) is accomplished using the cavity QED technique. Because a hyperfine coupling is induced only when the projective measurement is operational, the long coherence times (T{sub 1}=0.49 s and T{sub 2}=0.10 s) are maintained.

  14. Optical quantum memory made from single nuclear spin in nitrogen vacancy in diamond

    NASA Astrophysics Data System (ADS)

    Yang, Sen; Wang, Ya; Tran, Thai Hien; Momenzadeh, S. Ali; Stoehr, Rainer; Neumann, Philipp; Kosaka, Hideo; Wrachtrup, Joerg

    2015-03-01

    Quantum repeater is one of the key elements to realize long distance quantum communication. In the heart of a quantum repeater is quantum memory. There are a few requirements for this memory: it needs to couple to flying qubits: photon; it needs to have long coherence time, so quantum error correction algorithm can be performed in the quantum repeater nods; it needs to be stable under optical illuminations. Nitrogen nuclear spin is available for every nitrogen vacancy center(NV) in diamond. Besides it can be a robust quantum memory for spin qubit operations, nitrogen nuclear spin can couple to photon by taking advantage of optically resonant excitation of spin-selective transitions in low temperature. Here we demonstrate the coherent storage of quantum information from photon into nuclear spin. We show this quantum memory fulfils requirements as quantum memory for quantum repeater. Coherent time beyond 5 seconds is measured in 13 C natural abundant sample. Under resonant laser excitations, the excited state quadruple and hyperfine interaction could lead to decoherence of nuclear spin. We show those interactions are low and nuclear spin can keep its coherence over 1000 times resonant laser excitation of electron spin.

  15. Single spin ESR

    NASA Astrophysics Data System (ADS)

    Buchachenko, A. L.; Dalidchik, F. I.; Shub, B. R.

    2001-05-01

    On the basis of classical scanning tunneling microscopy a new technique, single spin tunneling spectroscopy, is developed and experimentally illustrated. It allows to detect singlet and triplet channels of the tunneling current corresponding to the spin states of the pair of tunneling and unpaired electrons. The current of polarized tunneling electrons emitted by ferromagnetic tip may be controlled by resonance microwaves and allows to monitor the ESR spectrum of a single paramagnetic center. Theory of the new phenomenon is developed as a guide to the single spin ESR experimental devices.

  16. Single-spin CCD

    NASA Astrophysics Data System (ADS)

    Baart, T. A.; Shafiei, M.; Fujita, T.; Reichl, C.; Wegscheider, W.; Vandersypen, L. M. K.

    2016-04-01

    Spin-based electronics or spintronics relies on the ability to store, transport and manipulate electron spin polarization with great precision. In its ultimate limit, information is stored in the spin state of a single electron, at which point quantum information processing also becomes a possibility. Here, we demonstrate the manipulation, transport and readout of individual electron spins in a linear array of three semiconductor quantum dots. First, we demonstrate single-shot readout of three spins with fidelities of 97% on average, using an approach analogous to the operation of a charge-coupled device (CCD). Next, we perform site-selective control of the three spins, thereby writing the content of each pixel of this ‘single-spin charge-coupled device’. Finally, we show that shuttling an electron back and forth in the array hundreds of times, covering a cumulative distance of 80 μm, has negligible influence on its spin projection. Extrapolating these results to the case of much larger arrays points at a diverse range of potential applications, from quantum information to imaging and sensing.

  17. Single-spin CCD.

    PubMed

    Baart, T A; Shafiei, M; Fujita, T; Reichl, C; Wegscheider, W; Vandersypen, L M K

    2016-04-01

    Spin-based electronics or spintronics relies on the ability to store, transport and manipulate electron spin polarization with great precision. In its ultimate limit, information is stored in the spin state of a single electron, at which point quantum information processing also becomes a possibility. Here, we demonstrate the manipulation, transport and readout of individual electron spins in a linear array of three semiconductor quantum dots. First, we demonstrate single-shot readout of three spins with fidelities of 97% on average, using an approach analogous to the operation of a charge-coupled device (CCD). Next, we perform site-selective control of the three spins, thereby writing the content of each pixel of this 'single-spin charge-coupled device'. Finally, we show that shuttling an electron back and forth in the array hundreds of times, covering a cumulative distance of 80 μm, has negligible influence on its spin projection. Extrapolating these results to the case of much larger arrays points at a diverse range of potential applications, from quantum information to imaging and sensing. PMID:26727201

  18. High-selectivity detection of single nuclear spins using rotary echo on a nitrogen-vacancy center in diamond

    NASA Astrophysics Data System (ADS)

    Mkhitaryan, Vagharsh; Dobrovitski, Viatcheslav

    2014-03-01

    The properties of the nitrogen-vacancy (NV) centers in diamond make them an excellent tool for nanoscale spin detection and sensing, capable of detecting individual nuclear spins located 0.5-1 nm away. However, the selectivity of the current methods is limited. We show that the rotating-frame control of the NV center's electron spin can improve the sensing selectivity 10-1000 times in comparison with the existing methods. We employ periodically changing Rabi driving (multiple rotary echo) with a precisely chosen period, corresponding to the precession of the given nuclear spin. The rotary echo decouples the NV center from most nuclear spins, efficiently protecting coherence. At the same time, the given nuclear spin, whose precession fits a stringent resonance condition, does not decouple, and can be detected by its decohering impact on the NV spin. We evaluate the resolution and sensitivity of this detection scheme analytically, and verify the results by numerical simulations.

  19. High-spin nuclear spectroscopy

    SciTech Connect

    Diamond, R.M.

    1986-07-01

    High-spin spectroscopy is the study of the changes in nuclear structure, properties, and behavior with increasing angular momentum. It involves the complex interplay between collective and single-particle motion, between shape and deformation changes, particle alignments, and changes in the pairing correlations. A review of progress in theory, experimentation, and instrumentation in this field is given. (DWL)

  20. Control of electron spin decoherence in nuclear spin baths

    NASA Astrophysics Data System (ADS)

    Liu, Ren-Bao

    2011-03-01

    Nuclear spin baths are a main mechanism of decoherence of spin qubits in solid-state systems, such as quantum dots and nitrogen-vacancy (NV) centers of diamond. The decoherence results from entanglement between the electron and nuclear spins, established by quantum evolution of the bath conditioned on the electron spin state. When the electron spin is flipped, the conditional bath evolution is manipulated. Such manipulation of bath through control of the electron spin not only leads to preservation of the center spin coherence but also demonstrates quantum nature of the bath. In an NV center system, the electron spin effectively interacts with hundreds of 13 C nuclear spins. Under repeated flip control (dynamical decoupling), the electron spin coherence can be preserved for a long time (> 1 ms) . Thereforesomecharacteristicoscillations , duetocouplingtoabonded 13 C nuclear spin pair (a dimer), are imprinted on the electron spin coherence profile, which are very sensitive to the position and orientation of the dimer. With such finger-print oscillations, a dimer can be uniquely identified. Thus, we propose magnetometry with single-nucleus sensitivity and atomic resolution, using NV center spin coherence to identify single molecules. Through the center spin coherence, we could also explore the many-body physics in an interacting spin bath. The information of elementary excitations and many-body correlations can be extracted from the center spin coherence under many-pulse dynamical decoupling control. Another application of the preserved spin coherence is identifying quantumness of a spin bath through the back-action of the electron spin to the bath. We show that the multiple transition of an NV center in a nuclear spin bath can have longer coherence time than the single transition does, when the classical noises due to inhomogeneous broadening is removed by spin echo. This counter-intuitive result unambiguously demonstrates the quantumness of the nuclear spin bath. This work was supported by Hong Kong RGC/GRF CUHK402207, CUHK402209, and CUHK402410. The author acknowledges collaboration with Nan Zhao, Jian-Liang Hu, Sai Wah Ho, Jones T. K. Wan, and Jiangfeng Du.

  1. Single spin asymmetries at CLAS

    SciTech Connect

    Harut Avakian; Latifa Elouadrhiri

    2003-05-19

    We present recent results from Jefferson Lab's CLAS detector on beam and target single-spin asymmetries in single pion electroproduction off unpolarized hydrogen and polarized NH 3 targets. Non-zero single-beam and single-target spin asymmetries are observed for the first time in semi-inclusive and exclusive pion production in hard-scattering kinematics.

  2. Single-atom spin qubits in silicon

    NASA Astrophysics Data System (ADS)

    Dzurak, Andrew

    2013-03-01

    Spin qubits in silicon are excellent candidates for scalable quantum information processing (QIP) due to their long coherence times and the enormous investment in silicon MOS technology. Here I discuss qubits based upon single phosphorus (P) dopant atoms in Si. Projective readout of such qubits had proved challenging until single-shot measurement of a single donor electron spin was demonstrated using a silicon single electron transistor (Si-SET) and the process of spin-to-charge conversion. The measurement gave readout fidelities > 90% and spin lifetimes T1e > 6 s, opening the path to demonstration of electron and nuclear spin qubits in silicon. Integrating an on-chip microwave transmission line enabled single-electron spin resonance (ESR) of the P donor electron. We used this to demonstrate Rabi oscillations of the electron spin qubit, while a Hahn echo sequence revealed electron spin coherence times T2e > 0.2 ms. This time is expected to become much longer in isotopically enriched 28Si devices. We also achieved single-shot readout of the 31P nuclear spin (with fidelity > 99.6%) by monitoring the two hyperfine-split ESR lines of the P donor system. By applying (local) NMR pulses we demonstrated coherent control of the nuclear spin qubit, giving a coherence time T2n > 60 ms. Device fabrication was undertaken at the Australian National Fabrication Facility. This work was supported by the Australian Research Council Centre for Quantum Computation and Communication Technology and the U.S. Army Research Office (W911NF-08-1-0527).

  3. Nuclear spin circular dichroism

    SciTech Connect

    Vaara, Juha; Rizzo, Antonio; Kauczor, Joanna; Norman, Patrick; Coriani, Sonia

    2014-04-07

    Recent years have witnessed a growing interest in magneto-optic spectroscopy techniques that use nuclear magnetization as the source of the magnetic field. Here we present a formulation of magnetic circular dichroism (CD) due to magnetically polarized nuclei, nuclear spin-induced CD (NSCD), in molecules. The NSCD ellipticity and nuclear spin-induced optical rotation (NSOR) angle correspond to the real and imaginary parts, respectively, of (complex) quadratic response functions involving the dynamic second-order interaction of the electron system with the linearly polarized light beam, as well as the static magnetic hyperfine interaction. Using the complex polarization propagator framework, NSCD and NSOR signals are obtained at frequencies in the vicinity of optical excitations. Hartree-Fock and density-functional theory calculations on relatively small model systems, ethene, benzene, and 1,4-benzoquinone, demonstrate the feasibility of the method for obtaining relatively strong nuclear spin-induced ellipticity and optical rotation signals. Comparison of the proton and carbon-13 signals of ethanol reveals that these resonant phenomena facilitate chemical resolution between non-equivalent nuclei in magneto-optic spectra.

  4. Detection and Control of Individual Nuclear Spins Using a Weakly Coupled Electron Spin

    SciTech Connect

    Taminiau, T.H.; Wagenaar, J.J.T.; van der Sar, T.; Jelezko, F.; Dobrovitski, Viatcheslav V.; Hanson, R.

    2012-09-28

    We experimentally isolate, characterize, and coherently control up to six individual nuclear spins that are weakly coupled to an electron spin in diamond. Our method employs multipulse sequences on the electron spin that resonantly amplify the interaction with a selected nuclear spin and at the same time dynamically suppress decoherence caused by the rest of the spin bath. We are able to address nuclear spins with interaction strengths that are an order of magnitude smaller than the electron spin dephasing rate. Our results provide a route towards tomography with single-nuclear-spin sensitivity and greatly extend the number of available quantum bits for quantum information processing in diamond.

  5. Quantum memory enhanced nuclear magnetic resonance of nanometer-scale samples with a single spin in diamond

    NASA Astrophysics Data System (ADS)

    Aslam, Nabeel; Pfender, Matthias; Zaiser, Sebastian; Favaro de Oliveira, Felipe; Momenzadeh, S. Ali; Denisenko, Andrej; Isoya, Junichi; Neumann, Philipp; Wrachtrup, Joerg

    Recently nuclear magnetic resonance (NMR) of nanoscale samples at ambient conditions has been achieved with nitrogen-vacancy (NV) centers in diamond. So far the spectral resolution in the NV NMR experiments was limited by the sensor's coherence time, which in turn prohibited revealing the chemical composition and dynamics of the system under investigation. By entangling the NV electron spin sensor with a long-lived memory spin qubit we increase the spectral resolution of NMR measurement sequences for the detection of external nuclear spins. Applying the latter sensor-memory-couple it is particularly easy to track diffusion processes, to identify the molecules under study and to deduce the actual NV center depth inside the diamond. We performed nanoscale NMR on several liquid and solid samples exhibiting unique NMR response. Our method paves the way for nanoscale identification of molecule and protein structures and dynamics of conformational changes.

  6. Electron spin decoherence in silicon carbide nuclear spin bath

    NASA Astrophysics Data System (ADS)

    Yang, Li-Ping; Burk, Christian; Widmann, Matthias; Lee, Sang-Yun; Wrachtrup, Jörg; Zhao, Nan

    2014-12-01

    In this Rapid Communication, we study the electron spin decoherence of single defects in silicon carbide (SiC) nuclear spin bath. We find that, although the natural abundance of 29Si (pSi=4.7 % ) is about four times larger than that of 13C (pC=1.1 % ), the electron spin coherence time of defect centers in SiC nuclear spin bath in a strong magnetic field (B >300 G ) is longer than that of nitrogen-vacancy (NV) centers in 13C nuclear spin bath in diamond. In addition to the smaller gyromagnetic ratio of 29Si, and the larger bond length in SiC lattice, a crucial reason for this counterintuitive result is the suppression of the heteronuclear-spin flip-flop process in a finite magnetic field. Our results show that electron spin of defect centers in SiC are excellent candidates for solid state spin qubit in quantum information processing.

  7. Nuclear spin-lattice relaxation at field-induced level crossings in a Cr8F8 pivalate single crystal

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shoji

    2016-01-01

    We construct a microscopic theory for the proton spin-lattice relaxation-rate 1 / T1 measurements around field-induced level crossings in a single crystal of the trivalent chromium ion wheel complex [Cr8F8(OOCtBu)16] at sufficiently low temperatures [E. Micotti et al., Phys. Rev. B 72 (2005) 020405(R)]. Exactly diagonalizing a well-equipped spin Hamiltonian for the individual clusters and giving further consideration to their possible interactions, we reveal the mechanism of 1 / T1 being single-peaked normally at the first level crossing but double-peaked intriguingly around the second level crossing. We wipe out the doubt about poor crystallization and find out a solution-intramolecular alternating Dzyaloshinsky-Moriya interaction combined with intermolecular coupling of antiferromagnetic character, each of which is so weak as several tens of mK in magnitude.

  8. Single-spin stochastic optical reconstruction microscopy

    PubMed Central

    Pfender, Matthias; Aslam, Nabeel; Waldherr, Gerald; Neumann, Philipp; Wrachtrup, Jörg

    2014-01-01

    We experimentally demonstrate precision addressing of single-quantum emitters by combined optical microscopy and spin resonance techniques. To this end, we use nitrogen vacancy (NV) color centers in diamond confined within a few ten nanometers as individually resolvable quantum systems. By developing a stochastic optical reconstruction microscopy (STORM) technique for NV centers, we are able to simultaneously perform sub–diffraction-limit imaging and optically detected spin resonance (ODMR) measurements on NV spins. This allows the assignment of spin resonance spectra to individual NV center locations with nanometer-scale resolution and thus further improves spatial discrimination. For example, we resolved formerly indistinguishable emitters by their spectra. Furthermore, ODMR spectra contain metrology information allowing for sub–diffraction-limit sensing of, for instance, magnetic or electric fields with inherently parallel data acquisition. As an example, we have detected nuclear spins with nanometer-scale precision. Finally, we give prospects of how this technique can evolve into a fully parallel quantum sensor for nanometer resolution imaging of delocalized quantum correlations. PMID:25267655

  9. Uncovering many-body correlations in nanoscale nuclear spin baths by central spin decoherence

    PubMed Central

    Ma, Wen-Long; Wolfowicz, Gary; Zhao, Nan; Li, Shu-Shen; Morton, John J.L.; Liu, Ren-Bao

    2014-01-01

    Central spin decoherence caused by nuclear spin baths is often a critical issue in various quantum computing schemes, and it has also been used for sensing single-nuclear spins. Recent theoretical studies suggest that central spin decoherence can act as a probe of many-body physics in spin baths; however, identification and detection of many-body correlations of nuclear spins in nanoscale systems are highly challenging. Here, taking a phosphorus donor electron spin in a 29Si nuclear spin bath as our model system, we discover both theoretically and experimentally that many-body correlations in nanoscale nuclear spin baths produce identifiable signatures in decoherence of the central spin under multiple-pulse dynamical decoupling control. We demonstrate that under control by an odd or even number of pulses, the central spin decoherence is principally caused by second- or fourth-order nuclear spin correlations, respectively. This study marks an important step toward studying many-body physics using spin qubits. PMID:25205440

  10. Electrons trapped in single crystals of sucrose: Induced spin densities

    SciTech Connect

    Box, H.C.; Budzinski, E.E.; Freund, H.G. )

    1990-07-01

    Electrons are trapped at intermolecular sites in single crystals of sucrose {ital X} irradiated at 4.2 K. The coupling tensors for the hyperfine couplings between the electron and surrounding protons have been deduced from electron-nuclear double resonance (ENDOR) data. Electron spin densities at nearby hydroxy protons are positive, whereas spin densities at the more remote protons of carbon-bound hydrogen atoms are negative. The origin of these negative spin densities is discussed.

  11. Measurements of nuclear spin dynamics by spin-noise spectroscopy

    SciTech Connect

    Ryzhov, I. I.; Poltavtsev, S. V.; Kozlov, G. G.; Zapasskii, V. S.; Kavokin, K. V.; Glazov, M. M.; Vladimirova, M.; Scalbert, D.; Cronenberger, S.; Lemaître, A.; Bloch, J.

    2015-06-15

    We exploit the potential of the spin noise spectroscopy (SNS) for studies of nuclear spin dynamics in n-GaAs. The SNS experiments were performed on bulk n-type GaAs layers embedded into a high-finesse microcavity at negative detuning. In our experiments, nuclear spin polarisation initially prepared by optical pumping is monitored in real time via a shift of the peak position in the electron spin noise spectrum. We demonstrate that this shift is a direct measure of the Overhauser field acting on the electron spin. The dynamics of nuclear spin is shown to be strongly dependent on the electron concentration.

  12. Novel techniques towards nuclear spin detection

    NASA Astrophysics Data System (ADS)

    Houck, Andrew A.

    Measurement of small numbers of nuclear spins remains an important scientific problem, with potential applications in medical imaging and quantum computation. Significant progress will likely require novel techniques rather than incremental improvements of existing technology. Two possibilities are explored in this thesis: using materials with a negative index of refraction (NIM) to image nuclear spins, and using molecular electronics to probe single nuclear spins. The first approach was to use NIM lenses for non-local detection of a nuclear magnetic resonance signal. Two experiments were used to confirm the existence of artificially-structured NIM at X-band microwave frequencies. First, a Snell's Law refraction experiment measured the deflection of a microwave beam at an air-NIM interface. Second, direct phase measurements indicated a negative phase velocity inside the material. Flat slab NIM lenses were used to focus radiation from a point source. Frequency and size dependence were consistent with theoretical predictions, and qualitative features of the transmission profile were consistent with numerical simulations. However, sub-wavelength resolution was not attained, due to material loss and inhomogeneity; significant engineering challenges must be overcome before these materials are useful for spin detection. The second approach to spin detection used electronic transport through single molecules; for an electron tightly bound to an atom with strong hyperfine coupling, Coulomb blockade spectroscopy could resolve nuclear spin levels. However, fabrication of single molecule transistors remains beyond the limit of conventional lithography. In this thesis, an actively-controlled electromigration process was developed for generating electrode pairs with atomic-scale separation with 70% yield. Transport measurements on bare gold junctions revealed a surprising result: localized states that gave rise to the Kondo effect exist even in the absence of deposited molecules. Atomic-scale gold grains are the most likely source of these states. Controls for single molecule experiments are therefore inconclusive, making spin detection difficult. However, this system is well-suited for studying the Kondo effect in the presence of competing spin effects; for example, dilute magnetic impurities were introduced in the leads, splitting the Kondo resonance at zero magnetic field.

  13. Electron Spin Dephasing and Decoherence by Interaction with Nuclear Spins in Self-Assembled Quantum Dots

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; vonAllmen, Paul; Oyafuso, Fabiano; Klimeck, Gerhard; Whale, K. Birgitta

    2004-01-01

    Electron spin dephasing and decoherence by its interaction with nuclear spins in self-assembled quantum dots are investigated in the framework of the empirical tight-binding model. Electron spin dephasing in an ensemble of dots is induced by the inhomogeneous precession frequencies of the electron among dots, while electron spin decoherence in a single dot arises from the inhomogeneous precession frequencies of nuclear spins in the dot. For In(x)Ga(1-x) As self-assembled dots containing 30000 nuclei, the dephasing and decoherence times are predicted to be on the order of 100 ps and 1 (micro)s.

  14. Ultrafast optical spin echo of a single electron spin in a quantum dot

    NASA Astrophysics Data System (ADS)

    de Greve, Kristiaan; Press, David; McMahon, Peter; Ladd, Thaddeus; Friess, Benedikt; Kamp, Martin; Schneider, Christian; Hoefling, Sven; Forchel, Alfred; Yamamoto, Yoshihisa

    2010-03-01

    We report on the ultrafast optical implementation of a Hahn Echo sequence on a single electron spin in an InGaAs quantum dot. With this technique, we were able to overcome the shot-to-shot variations of the electron spin's magnetic environment in our multi-shot, time-averaged read-out scheme. We measured the electron spin coherence time T2, both as a function of applied magnetic field, and for different types of sample surface treatment. Measured T2-times of 3 μs, together with our experiment all-optical single spin rotation times of 30 ps, would allow 10^5 single qubit gate operations. Furthermore, we observe pronounced non-linear, hysteretic effects in a 2-pulse Ramsey interference experiment, which we attribute to an electron-spin dependent polarization of the nuclear spins. .

  15. Nuclear spin squeezing via electric quadrupole interaction

    NASA Astrophysics Data System (ADS)

    Aksu Korkmaz, Ya?mur; Bulutay, Ceyhun

    2016-01-01

    Control over nuclear-spin fluctuations is essential for processes that rely on preserving the quantum state of an embedded system. For this purpose, squeezing is a viable alternative, so far that has not been properly exploited for the nuclear spins. Of particular relevance in solids is the electric quadrupole interaction (QI), which operates on nuclei having spin higher than 1/2. In its general form, QI involves an electric-field gradient (EFG) biaxiality term. Here, we show that as this EFG biaxiality increases, it enables continuous tuning of single-particle squeezing from the one-axis twisting to the two-axis countertwisting limits. A detailed analysis of QI squeezing is provided, exhibiting the intricate consequences of EFG biaxiality. The initial states over the Bloch sphere are mapped out to identify those favorable for fast initial squeezing, or for prolonged squeezings. Furthermore, the evolution of squeezing in the presence of a phase-damping channel and an external magnetic field are investigated. We observe that dephasing drives toward an antisqueezed terminal state, the degree of which increases with the spin angular momentum. Finally, QI squeezing in the limiting case of a two-dimensional EFG with a perpendicular magnetic field is discussed, which is of importance for two-dimensional materials, and the associated beat patterns in squeezing are revealed.

  16. Single-Spin Asymmetries at CLAS

    SciTech Connect

    Avakian, Harutyun

    2003-05-01

    Single spin asymmetries (SSA) are crucial tools in the study of the spin structure of hadrons in pion electroproduction, since they are directly related to some hot topics,including transverse polarization distribution functions, fragmentation of polarized quarks and generalized parton distribution functions. At low beam energies, when the virtual photon has a relatively large angle with respect to the initial spin direction, the measured single-target spin-dependent sin φ moment in the cross section for the longitudinally polarized target contain contributions from the target spin components, both longitudinal and transverse with respect to the photon direction.This contribution presents preliminary results from Jefferson Lab's CLAS detector on beam and target SSA in pion azimuthal distributions in one particle inclusive electroproduction in the DIS regime (Q2 > 1GeV 2,W > 2GeV ) off a polarized NH3 target.

  17. Nuclear spin content and constraints on exotic spin-dependent couplings

    NASA Astrophysics Data System (ADS)

    Kimball, D. F. Jackson

    2015-07-01

    There are numerous recent and ongoing experiments employing a variety of atomic species to search for couplings of atomic spins to exotic fields. In order to meaningfully compare these experimental results, the coupling of the exotic field to the atomic spin must be interpreted in terms of the coupling to electron, proton, and neutron spins. Traditionally, constraints from atomic experiments on exotic couplings to neutron and proton spins have been derived using the single-particle Schmidt model for nuclear spin. In this model, particular atomic species are sensitive to either neutron or proton spin couplings, but not both. More recently, semi-empirical models employing nuclear magnetic moment data have been used to derive new constraints for non-valence nucleons. However, comparison of such semi-empirical models to detailed large-scale nuclear shell model calculations and analysis of known physical effects in nuclei show that existing semi-empirical models cannot reliably be used to predict the spin polarization of non-valence nucleons. The results of our re-analysis of nuclear spin content are applied to searches for exotic long-range monopole-dipole and dipole-dipole couplings of nuclei leading to significant revisions of some published constraints.

  18. Engineering and Manipulating Single Spins in Diamond

    NASA Astrophysics Data System (ADS)

    Heremans, Joseph Paul, IV

    The nitrogen-vacancy (NV) centers in diamond is a promising solid- state qubit for emerging quantum technologies, due to its long spin coherence time and fast manipulation rates, together with a level structure that allows for straightforward optical initialization and read- out of the electronic spin state . In high-quality single-crystal diamond at temperatures below 25 K, sharp zero-phonon-line (ZPL) optical transitions facilitate the coherent coupling between NV-center spins and photons. In this dissertation, I describe several experiments which explore the local spin environment around the NV centers along with a technique of electrically controlling their spin fine structure. We also take a bottom-up approach, by growing diamonds specifically engineered with shallow NV centers with long spin coherence times. The latter part of the dissertation explores two ways of manipulating the NV centers using all-optical control techniques, eliminating the need for traditional electron spin resonance devices and increasing the scalability and integration of NV centers into photonic networks.

  19. Single spin optically detected magnetic resonance with 60-90 GHz (E-band) microwave resonators

    NASA Astrophysics Data System (ADS)

    Aslam, Nabeel; Pfender, Matthias; Stöhr, Rainer; Neumann, Philipp; Scheffler, Marc; Sumiya, Hitoshi; Abe, Hiroshi; Onoda, Shinobu; Ohshima, Takeshi; Isoya, Junichi; Wrachtrup, Jörg

    2015-06-01

    Magnetic resonance with ensembles of electron spins is commonly performed around 10 GHz, but also at frequencies above 240 GHz and in corresponding magnetic fields of over 9 T. However, experiments with single electron and nuclear spins so far only reach into frequency ranges of several 10 GHz, where existing coplanar waveguide structures for microwave (MW) delivery are compatible with single spin readout techniques (e.g., electrical or optical readout). Here, we explore the frequency range up to 90 GHz, with magnetic fields of up to ≈3 T for single spin magnetic resonance in conjunction with optical spin readout. To this end, we develop MW resonators with optical single spin access. In our case, rectangular 60-90 GHz (E-band) waveguides guarantee low-loss supply of microwaves to the resonators. Three dimensional cavities, as well as coplanar waveguide resonators, enhance MW fields by spatial and spectral confinement with a MW efficiency of 1 . 36 mT / √{ W } . We utilize single nitrogen vacancy (NV) centers as hosts for optically accessible spins and show that their properties regarding optical spin readout known from smaller fields (<0.65 T) are retained up to fields of 3 T. In addition, we demonstrate coherent control of single nuclear spins under these conditions. Furthermore, our results extend the applicable magnetic field range of a single spin magnetic field sensor. Regarding spin based quantum registers, high fields lead to a purer product basis of electron and nuclear spins, which promises improved spin lifetimes. For example, during continuous single-shot readout, the 14N nuclear spin shows second-long longitudinal relaxation times.

  20. Single-proton spin detection by diamond magnetometry.

    PubMed

    Loretz, M; Rosskopf, T; Boss, J M; Pezzagna, S; Meijer, J; Degen, C L

    2014-10-16

    Extending magnetic resonance imaging to the atomic scale has been a long-standing aspiration, driven by the prospect of directly mapping atomic positions in molecules with three-dimensional spatial resolution. We report detection of individual, isolated proton spins by a nitrogen-vacancy (NV) center in a diamond chip covered by an inorganic salt. The single-proton identity was confirmed by the Zeeman effect and by a quantum coherent rotation of the weakly coupled nuclear spin. Using the hyperfine field of the NV center as an imaging gradient, we determined proton-NV distances of less than 1 nm. PMID:25323696

  1. Nonlinear Single Spin Spectrum Analyzer

    NASA Astrophysics Data System (ADS)

    Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Ozeri, Roee

    2014-03-01

    Qubits have been used as linear spectrum analyzers of their environments, through the use of decoherence spectroscopy. Here we solve the problem of nonlinear spectral analysis, required for discrete noise induced by a strongly coupled environment. Our nonperturbative analytical model shows a nonlinear signal dependence on noise power, resulting in a spectral resolution beyond the Fourier limit as well as frequency mixing. We develop a noise characterization scheme adapted to this nonlinearity. We then apply it using a single trapped ion as a sensitive probe of strong, non-Gaussian, discrete magnetic field noise. Finally, we experimentally compared the performance of equidistant vs Uhrig modulation schemes for spectral analysis. Phys. Rev. Lett. 110, 110503 (2013). Synopsis at http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.110.110503 Current position: NIST, Boulder, CO.

  2. Nuclear orbital and spin scissors with pairing

    NASA Astrophysics Data System (ADS)

    Balbutsev, Evgeny; Molodtsova, Irina

    2016-01-01

    Nuclear scissors modes are considered in the frame of the Wigner function moments method generalized to take into account spin degrees of freedom and pair correlations simultaneously. A new source of nuclear magnetism, connected with counter-rotation of spins up and down around the symmetry axis (hidden angular momenta), is discovered. Its inclusion into the theory allows one to improve substantially the agreement with experimental data in the description of energies and transition probabilities of scissors modes in rare earth nuclei.

  3. Nonlinear Single Spin Spectrum Analayzer

    NASA Astrophysics Data System (ADS)

    Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Ozeri, Roee

    2014-05-01

    Qubits are excellent probes of their environment. When operating in the linear regime, they can be used as linear spectrum analyzers of the noise processes surrounding them. These methods fail for strong non-Gaussian noise where the qubit response is no longer linear. Here we solve the problem of nonlinear spectral analysis, required for strongly coupled environments. Our non-perturbative analytic model shows a nonlinear signal dependence on noise power, resulting in a spectral resolution beyond the Fourier limit as well as frequency mixing. We developed a noise characterization scheme adapted to this non-linearity. We then applied it using a single trapped 88Sr+ ion as the a sensitive probe of strong, non-Gaussian, discrete magnetic field noise. With this method, we attained a ten fold improvement over the standard Fourier limit. Finally, we experimentally compared the performance of equidistant vs. Uhrig modulation schemes for spectral analysis. Phys. Rev. Lett. 110, 110503 (2013), Synopsis at http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.110.110503 Current position: National Institute of Standards and Tehcnology, Boulder, CO.

  4. Neutron single target spin asymmetries in SIDIS

    SciTech Connect

    Cisbani, Evaristo

    2010-04-01

    The experiment E06-010 in Hall A at Jefferson Lab took data between November 2008 and February 2009 to directly measure, for the first time, the pion (and kaon) single "neutron" target-spin asymmetry (SSA) in semi-inclusive DIS from a polarized 3He target. Collins, Sivers (and Pretzelosity) neutron asymmetries are going to be extracted from the measured SSA. Details of the experiment are described together with the preliminary results of the ongoing analysis. Near future Hall A experiments on transverse nucleon spin structure are shorty reviewed.

  5. Nuclear spin conversion in diatomic molecules

    SciTech Connect

    Il'ichev, L. V. Shalagin, A. M.

    2013-07-15

    A mechanism of the internal interaction in dimers that mixes different nuclear spin modifications has been proposed. It has been shown that the intramolecular current associated with transitions between electronic terms of different parities can generate different magnetic fields on nuclei, leading to transitions between spin modifications and to the corresponding changes in rotational states. In the framework of the known quantum relaxation process, this interaction initiates irreversible conversion of nuclear spin modifications. The estimated conversion rate for nitrogen at atmospheric pressure is quite high (10{sup -3}-10{sup -5} s{sup -1})

  6. Single spin asymmetries in muon pair production

    SciTech Connect

    Carlitz, R.D.; Willey, R.S. )

    1991-04-20

    Theoretical analyses of polarized leptoproduction data suggest that the polarized gluon structure function might be large, but there has been no independent measurement of this quantity. Measurements of single spin asymmetries in the production of muon pairs from the scattering of two protons, one of which is longitudinally polarized, can be interpreted in terms of polarized gluon and polarized quark structure functions. Here we compute the asymmetries for the parton subprocesses that contribute to the measured muon pair production.

  7. Single Spin Asymmetries from a Single Wilson Loop.

    PubMed

    Boer, Daniël; Echevarria, Miguel G; Mulders, Piet J; Zhou, Jian

    2016-03-25

    We study the leading-power gluon transverse-momentum-dependent distributions (TMDs) of relevance to the study of asymmetries in the scattering off transversely polarized hadrons. Next-to-leading-order perturbative calculations of these TMDs show that at large transverse momentum they have common dynamical origins but that in the limit of a small longitudinal momentum fraction x, only one origin remains. We find that in this limit, only the dipole-type gluon TMDs survive and become identical to each other. At small x, they are all given by the expectation value of a single Wilson loop inside the transversely polarized hadron, the so-called spin-dependent odderon. This universal origin of transverse spin asymmetries at small x is of importance to current and future experimental studies, paving the way to a better understanding of the role of gluons in the three-dimensional structure of spin-polarized protons. PMID:27058070

  8. Single Spin Asymmetries from a Single Wilson Loop

    NASA Astrophysics Data System (ADS)

    Boer, Daniël; Echevarria, Miguel G.; Mulders, Piet J.; Zhou, Jian

    2016-03-01

    We study the leading-power gluon transverse-momentum-dependent distributions (TMDs) of relevance to the study of asymmetries in the scattering off transversely polarized hadrons. Next-to-leading-order perturbative calculations of these TMDs show that at large transverse momentum they have common dynamical origins but that in the limit of a small longitudinal momentum fraction x , only one origin remains. We find that in this limit, only the dipole-type gluon TMDs survive and become identical to each other. At small x , they are all given by the expectation value of a single Wilson loop inside the transversely polarized hadron, the so-called spin-dependent odderon. This universal origin of transverse spin asymmetries at small x is of importance to current and future experimental studies, paving the way to a better understanding of the role of gluons in the three-dimensional structure of spin-polarized protons.

  9. Dynamics of a mesoscopic nuclear spin ensemble interacting with an optically driven electron spin

    NASA Astrophysics Data System (ADS)

    Stanley, M. J.; Matthiesen, C.; Hansom, J.; Le Gall, C.; Schulte, C. H. H.; Clarke, E.; Atatüre, M.

    2014-11-01

    The ability to discriminate between simultaneously occurring noise sources in the local environment of semiconductor InGaAs quantum dots, such as electric and magnetic field fluctuations, is key to understanding their respective dynamics and their effect on quantum dot coherence properties. We present a discriminatory approach to all-optical sensing based on two-color resonance fluorescence of a quantum dot charged with a single electron. Our measurements show that local magnetic field fluctuations due to nuclear spins in the absence of an external magnetic field are described by two correlation times, both in the microsecond regime. The nuclear spin bath dynamics show a strong dependence on the strength of resonant probing, with correlation times increasing by a factor of 4 as the optical transition is saturated. We interpret the behavior as motional averaging of both the Knight field of the resident electron spin and the hyperfine-mediated nuclear spin-spin interaction due to optically induced electron spin flips.

  10. The spin-temperature theory of dynamic nuclear polarization and nuclear spin-lattice relaxation

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Wollan, D. S.

    1974-01-01

    A detailed derivation of the equations governing dynamic nuclear polarization (DNP) and nuclear spin lattice relaxation by use of the spin temperature theory has been carried to second order in a perturbation expansion of the density matrix. Nuclear spin diffusion in the rapid diffusion limit and the effects of the coupling of the electron dipole-dipole reservoir (EDDR) with the nuclear spins are incorporated. The complete expression for the dynamic nuclear polarization has been derived and then examined in detail for the limit of well resolved solid effect transitions. Exactly at the solid effect transition peaks, the conventional solid-effect DNP results are obtained, but with EDDR effects on the nuclear relaxation and DNP leakage factor included. Explicit EDDR contributions to DNP are discussed, and a new DNP effect is predicted.

  11. Quantum control and engineering of single spins in diamond

    NASA Astrophysics Data System (ADS)

    Toyli, David M.

    The past two decades have seen intensive research efforts aimed at creating quantum technologies that leverage phenomena such as coherence and entanglement to achieve device functionalities surpassing those attainable with classical physics. While the range of applications for quantum devices is typically limited by their cryogenic operating temperatures, in recent years point defects in semiconductors have emerged as potential candidates for room temperature quantum technologies. In particular, the nitrogen vacancy (NV) center in diamond has gained prominence for the ability to measure and control its spin under ambient conditions and for its potential applications in magnetic sensing. Here we describe experiments that probe the thermal limits to the measurement and control of single NV centers to identify the origin of the system's unique temperature dependence and that define novel thermal sensing applications for single spins. We demonstrate the optical measurement and coherent control of the spin at temperatures exceeding 600 K and show that its addressability is eventually limited by thermal quenching of the optical spin readout. These measurements provide important information for the electronic structure responsible for the optical spin initialization and readout processes and, moreover, suggest that the coherence of the NV center's spin states could be harnessed for thermometry applications. To that end, we develop novel quantum control techniques that selectively probe thermally induced shifts in the spin resonance frequencies while minimizing the defect's interactions with nearby nuclear spins. We use these techniques to extend the NV center's spin coherence for thermometry by 45-fold to achieve thermal sensitivities approaching 10 mK Hz-1/2 . We show the versatility of these techniques by performing measurements in a range of magnetic environments and at temperatures as high as 500 K. Together with diamond's ideal thermal, mechanical, and chemical properties, these measurements suggest that NV center sensors could be employed in a diverse range of applications such as intracellular thermometry, microfuidic thermometry, and scanning thermal microscopy. Finally, while the development of NV center technologies is motivated by the desirable properties of isolated defects in bulk diamond, the realization of many of these technologies, such as those using the spin as a proximal sensor, require a means to control the placement of NV centers within the diamond lattice. We demonstrate a method to pattern defect formation on sub-100-nm length scales using ion implantation and electron beam lithography techniques. The ability to engineer large scale arrays of NV centers with this method holds promise for a variety of applications in quantum information science and nanoscale sensing.

  12. Nuclear spins coherent radiofrequency irradiation in ferromagnets

    NASA Astrophysics Data System (ADS)

    Khutsishvili, K. O.; Chkhaidze, S. G.

    1992-01-01

    The effects of self-induced coherent irradiation in the system of nuclear magnetic moments in ferromagnets in the presence of dynamical frequency shift are investigated. The equations of nuclear magnetization motion and the fields in the oscillation circuit are solved in the cases when {2}/{T 2} ≪ {1}/{τ c} and {1}/{τ c} ≪ {2}/{T 2}, where T2 is the time of spin-spin relaxation, τ c the time of circuit ringing. It is shown that in the former case generation of irradiation is possible at different frequencies, and in the latter, at one frequency of irradiation, but with different amplitudes.

  13. Nuclear spin relaxation of polycrystalline 129 xenon

    NASA Astrophysics Data System (ADS)

    Samuelson, Gary Lee, Jr.

    Through spin exchange optical pumping, it is possible to achieve upwards of 30% nuclear spin polarization in 129Xe with an NMR signal enhancement of some 5 orders of magnitude over typical thermal signals. Hyperpolarized 129Xe has thus found application in several leading-edge technologies. At 1 T and 4.2 K, the characteristic relaxation time of enriched polycrystalline 129Xe (86% 129Xe, 0.1% 131Xe) is well over 200 hrs, sufficient for long-term storage and transport. Longitudinal nuclear spin relaxation of 129Xe at more convenient fields from 1 to 200 G is studied in detail. Significant structure in relaxation times vs. magnetic field is seen; the most prominent new finding being a sharp local long-time T 1 maximum of 1000 mins at ≈3 G. Such structure has not been observed in previous measurements of natural Xe. Below temperatures of 10 K, relaxation can be attributed to cross relaxation with 131Xe, mediated by spin diffusion. Measurements of 129Xe relaxation as a function of magnetic field, temperature and Xe isotopic content are reported and compared with expected theoretical behaviors. It is seen that the characteristic nuclear spin relaxation of enriched 129Xe at 4.2 K is nonexponential at these low fields. For fields between 10 G and 200 G, these nonexponential relaxation curves can be fit well with a specific spin diffusion model. Below 10 G no such fit is possible and thus quantum mechanical details of the coupling between 129Xe, 131Xe and the bulk lattice are considered. These findings support the hypothesis that cross relaxation with 131Xe is indeed a dominant actor in the nuclear spin relaxation of polycrystalline 129 Xe at such low fields and low temperatures.

  14. Theoretical aspects of Magic Angle Spinning - Dynamic Nuclear Polarization

    NASA Astrophysics Data System (ADS)

    Mentink-Vigier, Frederic; Akbey, Ümit; Oschkinat, Hartmut; Vega, Shimon; Feintuch, Akiva

    2015-09-01

    Magic Angle Spinning (MAS) combined with Dynamic Nuclear Polarization (DNP) has been proven in recent years to be a very powerful method for increasing solid-state NMR signals. Since the advent of biradicals such as TOTAPOL to increase the nuclear polarization new classes of radicals, with larger molecular weight and/or different spin properties have been developed. These have led to unprecedented signal gain, with varying results for different experimental parameters, in particular the microwave irradiation strength, the static field, and the spinning frequency. Recently it has been demonstrated that sample spinning imposes DNP enhancement processes that differ from the active DNP mechanism in static samples as upon sample spinning the DNP enhancements are the results of energy level anticrossings occurring periodically during each rotor cycle. In this work we present experimental results with regards to the MAS frequency dependence of the DNP enhancement profiles of four nitroxide-based radicals at two different sets of temperature, 110 and 160 K. In fact, different magnitudes of reduction in enhancement are observed with increasing spinning frequency. Our simulation code for calculating MAS-DNP powder enhancements of small model spin systems has been improved to extend our studies of the influence of the interaction and relaxation parameters on powder enhancements. To achieve a better understanding we simulated the spin dynamics of a single three-spin system {ea -eb - n } during its steady state rotor periods and used the Landau-Zener formula to characterize the influence of the different anti-crossings on the polarizations of the system and their necessary action for reaching steady state conditions together with spin relaxation processes. Based on these model calculations we demonstrate that the maximum steady state nuclear polarization cannot become larger than the maximum polarization difference between the two electrons during the steady state rotor cycle. This study also shows the complexity of the MAS-DNP process and therefore the necessity to rely on numerical simulations for understanding parametric dependencies of the enhancements. Finally an extension of the spin system up to five spins allowed us to probe the first steps of the transfer of polarization from the nuclei coupled to the electrons to further away nuclei, demonstrating a decrease in the spin-diffusion barrier under MAS conditions.

  15. Dynamic Nuclear Polarization by Electrical Spin Injection

    NASA Astrophysics Data System (ADS)

    Strand, Jonathan

    2004-03-01

    The hyperfine coupling between electrons and nuclei in GaAs can give rise to dynamic nuclear polarization (DNP) and plays an important role in many proposed spintronic devices. We have demonstrated that DNP can be driven by a spin-polarized current injected from Fe into a GaAs quantum well (QW). The samples are Schottky spin-LEDs in which a Fe contact is a source of spin-polarized electrons and a QW serves as a spin detector. Measurements are performed in a low magnetic field (<1 kOe) applied in the plane of the QW. In this geometry the QW electroluminescence polarization (ELP) is sensitive only to the component of the spin that precesses out of the QW plane after injection into the GaAs. We find that the precession frequency depends on both the applied field and a hyperfine field (B_N) due to polarized nuclei. The data are described by modeling the electron spin dynamics while incorporating the magnetocrystalline anisotropy of the Fe contact, spin relaxation in the QW, and an effective BN up to 1 T [1]. BN increases with increasing current density before saturating at current densities 10 A/cm^2. The DNP decreases with increasing temperature and is not detected above 80 K. Explicit signatures of DNP are observed via the time dependence of the ELP and resonant depolarization of nuclei by a time-dependent magnetic field (H_1) [2]. BN builds up exponentially with characteristic times of 20-45 seconds and persists for several minutes after the spin-polarized current is turned off. This approach to spin injection realizes the possibility of using DC electrical currents to inject and manipulate spin-polarized carriers in a semiconductor device. [1] J. Strand, et al., Phys. Rev. Lett. 91, 036602 (2003); [2] Appl. Phys. Lett. 83, 3335 (2003).

  16. Optical pumping of a single hole spin in a quantum dot

    NASA Astrophysics Data System (ADS)

    Gerardot, Brian D.; Brunner, Daniel; Dalgarno, Paul A.; Öhberg, Patrik; Seidl, Stefan; Kroner, Martin; Karrai, Khaled; Stoltz, Nick G.; Petroff, Pierre M.; Warburton, Richard J.

    2008-01-01

    The spin of an electron is a natural two-level system for realizing a quantum bit in the solid state. For an electron trapped in a semiconductor quantum dot, strong quantum confinement highly suppresses the detrimental effect of phonon-related spin relaxation. However, this advantage is offset by the hyperfine interaction between the electron spin and the 104 to 106 spins of the host nuclei in the quantum dot. Random fluctuations in the nuclear spin ensemble lead to fast spin decoherence in about ten nanoseconds. Spin-echo techniques have been used to mitigate the hyperfine interaction, but completely cancelling the effect is more attractive. In principle, polarizing all the nuclear spins can achieve this but is very difficult to realize in practice. Exploring materials with zero-spin nuclei is another option, and carbon nanotubes, graphene quantum dots and silicon have been proposed. An alternative is to use a semiconductor hole. Unlike an electron, a valence hole in a quantum dot has an atomic p orbital which conveniently goes to zero at the location of all the nuclei, massively suppressing the interaction with the nuclear spins. Furthermore, in a quantum dot with strong strain and strong quantization, the heavy hole with spin-3/2 behaves as a spin-1/2 system and spin decoherence mechanisms are weak. We demonstrate here high fidelity (about 99 per cent) initialization of a single hole spin confined to a self-assembled quantum dot by optical pumping. Our scheme works even at zero magnetic field, demonstrating a negligible hole spin hyperfine interaction. We determine a hole spin relaxation time at low field of about one millisecond. These results suggest a route to the realization of solid-state quantum networks that can intra-convert the spin state with the polarization of a photon.

  17. Nuclear spin effects in optical lattice clocks

    SciTech Connect

    Boyd, Martin M.; Zelevinsky, Tanya; Ludlow, Andrew D.; Blatt, Sebastian; Zanon-Willette, Thomas; Foreman, Seth M.; Ye Jun

    2007-08-15

    We present a detailed experimental and theoretical study of the effect of nuclear spin on the performance of optical lattice clocks. With a state-mixing theory including spin-orbit and hyperfine interactions, we describe the origin of the {sup 1}S{sub 0}-{sup 3}P{sub 0} clock transition and the differential g factor between the two clock states for alkaline-earth-metal(-like) atoms, using {sup 87}Sr as an example. Clock frequency shifts due to magnetic and optical fields are discussed with an emphasis on those relating to nuclear structure. An experimental determination of the differential g factor in {sup 87}Sr is performed and is in good agreement with theory. The magnitude of the tensor light shift on the clock states is also explored experimentally. State specific measurements with controlled nuclear spin polarization are discussed as a method to reduce the nuclear spin-related systematic effects to below 10{sup -17} in lattice clocks.

  18. Measuring mechanical motion with a single spin

    NASA Astrophysics Data System (ADS)

    Bennett, S. D.; Kolkowitz, S.; Unterreithmeier, Q. P.; Rabl, P.; Bleszynski Jayich, A. C.; Harris, J. G. E.; Lukin, M. D.

    2012-12-01

    We study theoretically the measurement of a mechanical oscillator using a single two-level system as a detector. In a recent experiment, we used a single electronic spin associated with a nitrogen-vacancy center in diamond to probe the thermal motion of a magnetized cantilever at room temperature (Kolkowitz et al 2012 Science 335 1603). Here, we present a detailed analysis of the sensitivity limits of this technique, as well as the possibility to measure the zero-point motion of the oscillator. Further, we discuss the issue of measurement backaction in sequential measurements and find that although backaction heating can occur, it does not prohibit the detection of zero-point motion. Throughout the paper, we focus on the experimental implementation of a nitrogen-vacancy center coupled to a magnetic cantilever; however, our results are applicable to a wide class of spin-oscillator systems. The implications for the preparation of nonclassical states of a mechanical oscillator are also discussed.

  19. Protein imaging. Single-protein spin resonance spectroscopy under ambient conditions.

    PubMed

    Shi, Fazhan; Zhang, Qi; Wang, Pengfei; Sun, Hongbin; Wang, Jiarong; Rong, Xing; Chen, Ming; Ju, Chenyong; Reinhard, Friedemann; Chen, Hongwei; Wrachtrup, Jörg; Wang, Junfeng; Du, Jiangfeng

    2015-03-01

    Magnetic resonance is essential in revealing the structure and dynamics of biomolecules. However, measuring the magnetic resonance spectrum of single biomolecules has remained an elusive goal. We demonstrate the detection of the electron spin resonance signal from a single spin-labeled protein under ambient conditions. As a sensor, we use a single nitrogen vacancy center in bulk diamond in close proximity to the protein. We measure the orientation of the spin label at the protein and detect the impact of protein motion on the spin label dynamics. In addition, we coherently drive the spin at the protein, which is a prerequisite for studies involving polarization of nuclear spins of the protein or detailed structure analysis of the protein itself. PMID:25745170

  20. Nuclear spin symmetry state relaxation in formaldehyde

    NASA Astrophysics Data System (ADS)

    Bechtel, Christian; Elias, Elias; Schramm, Bernhard F.

    2005-05-01

    New measurements of the rate constant of the ortho- para conversion in monomeric gaseous formaldehyde (H 2CO) are presented. Separation of the nuclear spin isomers of formaldehyde was obtained by selective UV laser photolysis of ortho-formaldehyde in the natural ortho- para mixture. A first group of experiments is devoted to the question of surface relaxation. Measurements in low pressure formaldehyde gas show fast relaxation at very low pressures, falling to a minimum at pressures of about 1 mbar and then rising linearly with pressure. The fast relaxation at very low pressures is interpreted as surface relaxation and this interpretation is confirmed by the fact that different wall materials of the fluorescence cells yield different relaxation constants. A second group of experiments extended the pressure range of the nuclear spin symmetry state relaxation measurements in formaldehyde by adding H 2 or SF 6 to it up to pressures of 1 bar. The experimental data follow qualitatively the behaviour that is predicted by theory [R.F. Curl Jr, J.V.V. Kasper, K.S. Pitzer, J. Chem. Phys. 46 (1967) 3220]. Quantitative agreement with theory could be reached by taking calculated values of the spin-rotation coupling constants [P.L. Chapovsky, J. Mol. Struct. 599 (2001) 337] about 35% higher and using surprisingly large nuclear spin symmetry state relaxation cross-sections.

  1. 29Si nuclear spins as a resource for donor spin qubits in silicon

    NASA Astrophysics Data System (ADS)

    Wolfowicz, Gary; Mortemousque, Pierre-André; Guichard, Roland; Simmons, Stephanie; Thewalt, Mike L. W.; Itoh, Kohei M.; Morton, John J. L.

    2016-02-01

    Nuclear spin registers in the vicinity of electron spins in solid state systems offer a powerful resource to address the challenge of scalability in quantum architectures. We investigate here the properties of 29Si nuclear spins surrounding donor atoms in silicon, and consider the use of such spins, combined with the donor nuclear spin, as a quantum register coupled to the donor electron spin. We find the coherence of the nearby 29Si nuclear spins is effectively protected by the presence of the donor electron spin, leading to coherence times in the second timescale—over two orders of magnitude greater than the coherence times in bulk silicon. We theoretically investigate the use of such a register for quantum error correction (QEC), including methods to protect nuclear spins from the ionisation/neutralisation of the donor, which is necessary for the re-initialisation of the ancillae qubits. This provides a route for multi-round QEC using donors in silicon.

  2. Ultrahigh spin thermopower and pure spin current in a single-molecule magnet

    PubMed Central

    Luo, Bo; Liu, Juan; L, Jing-Tao; Gao, Jin-Hua; Yao, Kai-Lun

    2014-01-01

    Using the non-equilibrium Green's function (NEGF) formalism within the sequential regime, we studied ultrahigh spin thermopower and pure spin current in single-molecule magnet(SMM), which is attached to nonmagnetic metal wires with spin bias and angle (?) between the easy axis of SMM and the spin orientation in the electrodes. A pure spin current can be generated by tuning the gate voltage and temperature difference with finite spin bias and the arbitrary angle except of . In the linear regime, large thermopower can be obtained by modifying Vg and the angles (?). These results are useful in fabricating and advantaging SMM devices based on spin caloritronics. PMID:24549224

  3. Detection of single electron spin resonance in a double quantum dota)

    NASA Astrophysics Data System (ADS)

    Koppens, F. H. L.; Buizert, C.; Vink, I. T.; Nowack, K. C.; Meunier, T.; Kouwenhoven, L. P.; Vandersypen, L. M. K.

    2007-04-01

    Spin-dependent transport measurements through a double quantum dot are a valuable tool for detecting both the coherent evolution of the spin state of a single electron, as well as the hybridization of two-electron spin states. In this article, we discuss a model that describes the transport cycle in this regime, including the effects of an oscillating magnetic field (causing electron spin resonance) and the effective nuclear fields on the spin states in the two dots. We numerically calculate the current flow due to the induced spin flips via electron spin resonance, and we study the detector efficiency for a range of parameters. The experimental data are compared with the model and we find a reasonable agreement.

  4. Nuclear spin state relaxation in formaldehyde

    NASA Astrophysics Data System (ADS)

    Kern, J.; Schwahn, H.; Schramm, B.

    1989-01-01

    Measurements of ortho- to para-formaldehyde conversion rate constants are described. They are based on the fact that a clean photolysis of one nuclear spin modification is possible in the natural mixture with the help of narrow band UV laser radiation. Rate constants are of the order of k1 = 5 × 10 -3 s -1 under the experimental conditions used in our measurements.

  5. Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide.

    PubMed

    Fuchs, F; Stender, B; Trupke, M; Simin, D; Pflaum, J; Dyakonov, V; Astakhov, G V

    2015-01-01

    Vacancy-related centres in silicon carbide are attracting growing attention because of their appealing optical and spin properties. These atomic-scale defects can be created using electron or neutron irradiation; however, their precise engineering has not been demonstrated yet. Here, silicon vacancies are generated in a nuclear reactor and their density is controlled over eight orders of magnitude within an accuracy down to a single vacancy level. An isolated silicon vacancy serves as a near-infrared photostable single-photon emitter, operating even at room temperature. The vacancy spins can be manipulated using an optically detected magnetic resonance technique, and we determine the transition rates and absorption cross-section, describing the intensity-dependent photophysics of these emitters. The on-demand engineering of optically active spins in technologically friendly materials is a crucial step toward implementation of both maser amplifiers, requiring high-density spin ensembles, and qubits based on single spins. PMID:26151881

  6. Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide

    NASA Astrophysics Data System (ADS)

    Fuchs, F.; Stender, B.; Trupke, M.; Simin, D.; Pflaum, J.; Dyakonov, V.; Astakhov, G. V.

    2015-07-01

    Vacancy-related centres in silicon carbide are attracting growing attention because of their appealing optical and spin properties. These atomic-scale defects can be created using electron or neutron irradiation; however, their precise engineering has not been demonstrated yet. Here, silicon vacancies are generated in a nuclear reactor and their density is controlled over eight orders of magnitude within an accuracy down to a single vacancy level. An isolated silicon vacancy serves as a near-infrared photostable single-photon emitter, operating even at room temperature. The vacancy spins can be manipulated using an optically detected magnetic resonance technique, and we determine the transition rates and absorption cross-section, describing the intensity-dependent photophysics of these emitters. The on-demand engineering of optically active spins in technologically friendly materials is a crucial step toward implementation of both maser amplifiers, requiring high-density spin ensembles, and qubits based on single spins.

  7. Long-range photon-mediated gate scheme between nuclear spin qubits in diamond

    NASA Astrophysics Data System (ADS)

    Auer, Adrian; Burkard, Guido

    2016-01-01

    Defect centers in diamond are exceptional solid-state quantum systems that can have exceedingly long electron and nuclear spin coherence times. So far, single-qubit gates for the nitrogen nuclear spin, a two-qubit gate with a nitrogen-vacancy (NV) center electron spin, and entanglement between nearby nitrogen nuclear spins have been demonstrated. Here, we develop a scheme to implement a universal two-qubit gate between two distant nitrogen nuclear spins. Virtual excitation of an NV center that is embedded in an optical cavity can scatter a laser photon into the cavity mode; we show that this process depends on the nuclear spin state of the nitrogen atom. If two NV centers are simultaneously coupled to a common cavity mode and individually excited, virtual cavity photon exchange can mediate an effective interaction between the nuclear spin qubits, conditioned on the spin state of both nuclei, which implements a universal controlled-Z gate. We predict operation times below 10 ? s , which is four orders of magnitude faster than the decoherence time of nuclear spin qubits in diamond.

  8. Atomic-Scale Nuclear Spin Imaging Using Quantum-Assisted Sensors in Diamond

    NASA Astrophysics Data System (ADS)

    Ajoy, A.; Bissbort, U.; Lukin, M. D.; Walsworth, R. L.; Cappellaro, P.

    2015-01-01

    Nuclear spin imaging at the atomic level is essential for the understanding of fundamental biological phenomena and for applications such as drug discovery. The advent of novel nanoscale sensors promises to achieve the long-standing goal of single-protein, high spatial-resolution structure determination under ambient conditions. In particular, quantum sensors based on the spin-dependent photoluminescence of nitrogen-vacancy (NV) centers in diamond have recently been used to detect nanoscale ensembles of external nuclear spins. While NV sensitivity is approaching single-spin levels, extracting relevant information from a very complex structure is a further challenge since it requires not only the ability to sense the magnetic field of an isolated nuclear spin but also to achieve atomic-scale spatial resolution. Here, we propose a method that, by exploiting the coupling of the NV center to an intrinsic quantum memory associated with the nitrogen nuclear spin, can reach a tenfold improvement in spatial resolution, down to atomic scales. The spatial resolution enhancement is achieved through coherent control of the sensor spin, which creates a dynamic frequency filter selecting only a few nuclear spins at a time. We propose and analyze a protocol that would allow not only sensing individual spins in a complex biomolecule, but also unraveling couplings among them, thus elucidating local characteristics of the molecule structure.

  9. Recursive polarization of nuclear spins in diamond at arbitrary magnetic fields

    SciTech Connect

    Pagliero, Daniela; Laraoui, Abdelghani; Henshaw, Jacob D.; Meriles, Carlos A.

    2014-12-15

    We introduce an alternate route to dynamically polarize the nuclear spin host of nitrogen-vacancy (NV) centers in diamond. Our approach articulates optical, microwave, and radio-frequency pulses to recursively transfer spin polarization from the NV electronic spin. Using two complementary variants of the same underlying principle, we demonstrate nitrogen nuclear spin initialization approaching 80% at room temperature both in ensemble and single NV centers. Unlike existing schemes, our approach does not rely on level anti-crossings and is thus applicable at arbitrary magnetic fields. This versatility should prove useful in applications ranging from nanoscale metrology to sensitivity-enhanced NMR.

  10. Addressable single-spin control in multiple quantum dots coupled in series

    NASA Astrophysics Data System (ADS)

    Nakajima, Takashi

    2015-03-01

    Electron spin in semiconductor quantum dots (QDs) is promising building block of quantum computers for its controllability and potential scalability. Recent experiments on GaAs QDs have demonstrated necessary ingredients of universal quantum gate operations: single-spin rotations by electron spin resonance (ESR) which is virtually free from the effect of nuclear spin fluctuation, and pulsed control of two-spin entanglement. The scalability of this architecture, however, has remained to be demonstrated in the real world. In this talk, we will present our recent results on implementing single-spin-based qubits in triple, quadruple, and quintuple QDs based on a series coupled architecture defined by gate electrodes. Deterministic initialization of individual spin states and spin-state readout were performed by the pulse operation of detuning between two neighboring QDs. The spin state was coherently manipulated by ESR, where each spin in different QDs is addressed by the shift of the resonance frequency due to the inhomogeneous magnetic field induced by the micro magnet deposited on top of the QDs. Control of two-spin entanglement was also demonstrated. We will discuss key issues for implementing quantum algorithms based on three or more qubits, including the effect of a nuclear spin bath, single-shot readout fidelity, and tuning of multiple qubit devices. Our approaches to these issues will be also presented. This research is supported by Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST) from JSPS, IARPA project ``Multi-Qubit Coherent Operations'' through Copenhagen University, and Grant-in-Aid for Scientific Research from JSPS.

  11. Macroscopic rotation of photon polarization induced by a single spin.

    PubMed

    Arnold, Christophe; Demory, Justin; Loo, Vivien; Lematre, Aristide; Sagnes, Isabelle; Glazov, Mikhal; Krebs, Olivier; Voisin, Paul; Senellart, Pascale; Lanco, Loc

    2015-01-01

    Entangling a single spin to the polarization of a single incoming photon, generated by an external source, would open new paradigms in quantum optics such as delayed-photon entanglement, deterministic logic gates or fault-tolerant quantum computing. These perspectives rely on the possibility that a single spin induces a macroscopic rotation of a photon polarization. Such polarization rotations induced by single spins were recently observed, yet limited to a few 10(-3) degrees due to poor spin-photon coupling. Here we report the enhancement by three orders of magnitude of the spin-photon interaction, using a cavity quantum electrodynamics device. A single hole spin in a semiconductor quantum dot is deterministically coupled to a micropillar cavity. The cavity-enhanced coupling between the incoming photons and the solid-state spin results in a polarization rotation by 6 when the spin is optically initialized in the up or down state. These results open the way towards a spin-based quantum network. PMID:25687134

  12. Macroscopic rotation of photon polarization induced by a single spin

    PubMed Central

    Arnold, Christophe; Demory, Justin; Loo, Vivien; Lematre, Aristide; Sagnes, Isabelle; Glazov, Mikhal; Krebs, Olivier; Voisin, Paul; Senellart, Pascale; Lanco, Loc

    2015-01-01

    Entangling a single spin to the polarization of a single incoming photon, generated by an external source, would open new paradigms in quantum optics such as delayed-photon entanglement, deterministic logic gates or fault-tolerant quantum computing. These perspectives rely on the possibility that a single spin induces a macroscopic rotation of a photon polarization. Such polarization rotations induced by single spins were recently observed, yet limited to a few 10?3 degrees due to poor spinphoton coupling. Here we report the enhancement by three orders of magnitude of the spinphoton interaction, using a cavity quantum electrodynamics device. A single hole spin in a semiconductor quantum dot is deterministically coupled to a micropillar cavity. The cavity-enhanced coupling between the incoming photons and the solid-state spin results in a polarization rotation by 6 when the spin is optically initialized in the up or down state. These results open the way towards a spin-based quantum network. PMID:25687134

  13. Spin coherence in a Mn3 single-molecule magnet

    NASA Astrophysics Data System (ADS)

    Abeywardana, Chathuranga; Mowson, Andrew M.; Christou, George; Takahashi, Susumu

    2016-01-01

    Spin coherence in single crystals of the spin S = 6 single-molecule magnet (SMM) [Mn3O(O2CEt)3(mpko)3]+ (abbreviated Mn3) has been investigated using 230 GHz electron paramagnetic resonance spectroscopy. Coherence in Mn3 was uncovered by significantly suppressing dipolar contribution to the decoherence with complete spin polarization of Mn3 SMMs. The temperature dependence of spin decoherence time (T2) revealed that the dipolar decoherence is the dominant source of decoherence in Mn3 and T2 can be extended up to 267 ns by quenching the dipolar decoherence.

  14. Single molecule spin resonance spectroscopy and imaging by diamond-sensor

    NASA Astrophysics Data System (ADS)

    Du, Jiangfeng

    Single-molecule magnetic resonance spectroscopy and imaging is one of the ultimate goals in magnetic resonance and will has great applications in a broad range of scientific areas, from life science to physics and chemistry. The spin of a single nitrogen vacancy (NV) center in diamond is a highly sensitive magnetic-field sensor, which has been proposed for detection of single molecules or nanoscale targets. We and co-workers have successfully obtained the first single-protein spin resonance spectroscopy under ambient conditions, high-resolution vector microwave imaging, and realized atomic-scale structure analysis of single nuclear-spin clusters in diamond. Moreover, we have tried to improve the quantum control technique and succeed to achieve fault-tolerant universal quantum gates. As the last part, I will briefly introduce our most recently work on single protein imaging in situ in cell.

  15. Pumped Spin-Current in Single Quantum Dot with Spin-Dependent Electron Temperature

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Wang, Song; Du, Xiaohong

    2016-05-01

    Spin-dependent electron temperature effect on the spin pump in a single quantum dot connected to Normal and/or Ferromagnetic leads are investigated with the help of master equation method. Results show that spin heat accumulation breaks the tunneling rates balance at the thermal equilibrium state thus the charge current and the spin current are affected to some extent. Pure spin current can be obtained by adjusting pumping intensity or chemical potential of the lead. Spin heat accumulation of certain material can be detected by measuring the charge current strength in symmetric leads architectures. In practical devices, spin-dependent electron temperature effect is quite significant and our results should be useful in quantum information processing and spin Caloritronics.

  16. Single-parameter spin-pumping in driven metallic rings with spin-orbit coupling

    SciTech Connect

    Ramos, J. P.; Apel, V. M.; Foa Torres, L. E. F.; Orellana, P. A.

    2014-03-28

    We consider the generation of a pure spin-current at zero bias voltage with a single time-dependent potential. To such end we study a device made of a mesoscopic ring connected to electrodes and clarify the interplay between a magnetic flux, spin-orbit coupling, and non-adiabatic driving in the production of a spin and electrical current. By using Floquet theory, we show that the generated spin to charge current ratio can be controlled by tuning the spin-orbit coupling.

  17. Single Spin Asymmetry in Strongly Correlated Quark Model

    SciTech Connect

    Musulmanbekov, G.

    2007-06-13

    The Single Transverse - Spin Asymmetry (SSA) is analysed in the framework of the Strongly Correlated Quark Model proposed by author, where the proton spin emerges from the orbital momenta of quark and qluon condensates circulating around the valence quarks. It is shown that dominating factors of appearance of SSA are the orbiting around the valence quarks sea quark and qluon condensates and spin dependent quark-quark cross sections.

  18. Spin resonance strength calculation through single particle tracking for RHIC

    SciTech Connect

    Luo, Y.; Dutheil, Y.; Huang, H.; Meot, F.; Ranjbar, V.

    2015-05-03

    The strengths of spin resonances for the polarized-proton operation in the Relativistic Heavy Ion Collider are currently calculated with the code DEPOL, which numerically integrates through the ring based on an analytical approximate formula. In this article, we test a new way to calculate the spin resonance strengths by performing Fourier transformation to the actual transverse magnetic fields seen by a single particle traveling through the ring. Comparison of calculated spin resonance strengths is made between this method and DEPOL.

  19. Chemical distinction by nuclear spin optical rotation.

    PubMed

    Ikäläinen, Suvi; Romalis, Michael V; Lantto, Perttu; Vaara, Juha

    2010-10-01

    Nuclear spin optical rotation (NSOR) arising from the Faraday effect constitutes a novel, advantageous method for detection of nuclear magnetic resonance, provided that a distinction is seen between different chemical surroundings of magnetic nuclei. Efficient first-principles calculations for isolated water, ethanol, nitromethane, and urea molecules at standard laser wavelengths reveal a range of NSOR for different molecules and inequivalent nuclei, indicating the existence of an optical chemical shift. 1H results for H2O(l) are in excellent agreement with recent pioneering experiments. We also evaluate, for the same systems, the Verdet constants of Faraday rotation due to an external magnetic field. Calculations of NSOR in ethanol and a 11-cis-retinal protonated Schiff base imply an enhanced chemical distinction between chromophores at laser wavelengths approaching optical resonance. PMID:21230897

  20. Chemical Distinction by Nuclear Spin Optical Rotation

    NASA Astrophysics Data System (ADS)

    Ikäläinen, Suvi; Romalis, Michael V.; Lantto, Perttu; Vaara, Juha

    2010-10-01

    Nuclear spin optical rotation (NSOR) arising from the Faraday effect constitutes a novel, advantageous method for detection of nuclear magnetic resonance, provided that a distinction is seen between different chemical surroundings of magnetic nuclei. Efficient first-principles calculations for isolated water, ethanol, nitromethane, and urea molecules at standard laser wavelengths reveal a range of NSOR for different molecules and inequivalent nuclei, indicating the existence of an optical chemical shift. H1 results for H2O(l) are in excellent agreement with recent pioneering experiments. We also evaluate, for the same systems, the Verdet constants of Faraday rotation due to an external magnetic field. Calculations of NSOR in ethanol and a 11-cis-retinal protonated Schiff base imply an enhanced chemical distinction between chromophores at laser wavelengths approaching optical resonance.

  1. Nuclear-spin optical rotation in xenon

    NASA Astrophysics Data System (ADS)

    Savukov, I.

    2015-10-01

    The nuclear-spin optical rotation (NSOR) effect, which has potential applications in correlated nuclear-spin-resonance optical spectroscopy, has previously been explored experimentally and theoretically in liquid Xe. Calculations of the Xe NSOR constant are very challenging because the result is sensitive to correlations, relativistic effects, and the choice of basis, with strong cancellation between contributions from lowest and remaining states. The relativistic configuration-interaction many-body-theory approach, presented here, is promising because this approach has been successful in predicting various properties of noble-gas atoms, such as energies, oscillator strengths (OSs), Verdet constants, and photoionization cross sections. However, correlations become stronger along the sequence of noble-gas atoms and the theoretical accuracy in Xe is not as high as, for example, in neon and argon. To improve the accuracy of the Xe Verdet and NSOR constants, which are calculated as explicit sums over the excited states, theoretical values for the several lowest levels are replaced with empirical values of energies, OSs, and hyperfine structure constants. We found that the Xe Verdet constant is in excellent agreement with accurate measurements. To take into account liquid effects, empirical data for energy shifts were also used to correct the NSOR constant. The resulting Xe NSOR constant is in a good agreement with experiment, although the liquid-state effect is treated quite approximately.

  2. Magnetic interaction between a radical spin and a single-molecule magnet in a molecular spin-valve.

    PubMed

    Urdampilleta, Matias; Klayatskaya, Svetlana; Ruben, Mario; Wernsdorfer, Wolfgang

    2015-04-28

    Molecular spintronics using single molecule magnets (SMMs) is a fast growing field of nanoscience that proposes to manipulate the magnetic and quantum information stored in these molecules. Herein we report evidence of a strong magnetic coupling between a metallic ion and a radical spin in one of the most extensively studied SMMs: the bis(phtalocyaninato)terbium(III) complex (TbPc2). For that we use an original multiterminal device comprising a carbon nanotube laterally coupled to the SMMs. The current through the device, sensitive to magnetic interactions, is used to probe the magnetization of a single Tb ion. Combining this electronic read-out with the transverse field technique has allowed us to measure the interaction between the terbium ion, its nuclear spin, and a single electron located on the phtalocyanine ligands. We show that the coupling between the Tb and this radical is strong enough to give extra resonances in the hysteresis loop that are not observed in the anionic form of the complex. The experimental results are then modeled by diagonalization of a three-spins Hamiltonian. This strong coupling offers perspectives for implementing nuclear and electron spin resonance techniques to perform basic quantum operations in TbPc2. PMID:25858088

  3. Detection of atomic spin labels in a lipid bilayer using a single-spin nanodiamond probe

    PubMed Central

    Kaufmann, Stefan; Simpson, David A.; Hall, Liam T.; Perunicic, Viktor; Senn, Philipp; Steinert, Steffen; McGuinness, Liam P.; Johnson, Brett C.; Ohshima, Takeshi; Caruso, Frank; Wrachtrup, Jörg; Scholten, Robert E.; Mulvaney, Paul; Hollenberg, Lloyd

    2013-01-01

    Magnetic field fluctuations arising from fundamental spins are ubiquitous in nanoscale biology, and are a rich source of information about the processes that generate them. However, the ability to detect the few spins involved without averaging over large ensembles has remained elusive. Here, we demonstrate the detection of gadolinium spin labels in an artificial cell membrane under ambient conditions using a single-spin nanodiamond sensor. Changes in the spin relaxation time of the sensor located in the lipid bilayer were optically detected and found to be sensitive to near-individual (4 ± 2) proximal gadolinium atomic labels. The detection of such small numbers of spins in a model biological setting, with projected detection times of 1 s [corresponding to a sensitivity of ∼5 Gd spins per Hz1/2], opens a pathway for in situ nanoscale detection of dynamical processes in biology. PMID:23776230

  4. Coherent single-spin source based on topological insulators

    NASA Astrophysics Data System (ADS)

    Xing, Yanxia; Yang, Zhong-Liu; Sun, Qing-Feng; Wang, Jian

    2015-03-01

    We report on the injection of quantized pure spin current into quantum conductors. In particular, we propose an on-demand single-spin source generated by periodically varying the gate voltages of two quantum dots that are connected to a two-dimensional topological insulator via tunneling barriers. Due to the nature of the helical states of the topological insulator, one or several spin pairs can be pumped out per cycle giving rise to a pure quantized alternating spin current. Depending on the phase difference between two gate voltages, this device can serve as an on-demand single-spin emitter or single-charge emitter. Again, due to the helicity of the topological insulator, the single-spin emitter or charge emitter is dissipationless and immune to disorder. The proposed single-spin emitter can be an important building block of future spintronic devices. We gratefully acknowledge the financial support from from NSF-China under Grant (Nos. 11174032 and 11374246), NBRP of China (2012CB921303), and a RGC Grant (HKU 705212P) from the Government of HKSAR.

  5. Transverse single-spin asymmetries: Challenges and recent progress

    SciTech Connect

    Metz, Andreas; Pitonyak, Daniel; Schafer, Andreas; Schlegel, Marc; Vogelsang, Werner; Zhou, Jian

    2014-11-25

    In this study, transverse single-spin asymmetries are among the most intriguing observables in hadronic physics. Though such asymmetries were already measured for the first time about four decades ago, their origin is still under debate. Here we consider transverse single-spin asymmetries in semi-inclusive lepton–nucleon scattering, in nucleon–nucleon scattering, and in inclusive lepton–nucleon scattering. It is argued that, according to recent work, the single-spin asymmetries for those three processes may be simultaneously described in perturbative QCD, where the re-scattering of the active partons plays a crucial role. A comparison of single-spin asymmetries in different reactions can also shed light on the universality of transverse momentum dependent parton correlation functions. In particular, we discuss what existing data may tell us about the predicted process dependence of the Sivers function.

  6. Transverse single-spin asymmetries: Challenges and recent progress

    DOE PAGESBeta

    Metz, Andreas; Pitonyak, Daniel; Schafer, Andreas; Schlegel, Marc; Vogelsang, Werner; Zhou, Jian

    2014-11-25

    In this study, transverse single-spin asymmetries are among the most intriguing observables in hadronic physics. Though such asymmetries were already measured for the first time about four decades ago, their origin is still under debate. Here we consider transverse single-spin asymmetries in semi-inclusive lepton–nucleon scattering, in nucleon–nucleon scattering, and in inclusive lepton–nucleon scattering. It is argued that, according to recent work, the single-spin asymmetries for those three processes may be simultaneously described in perturbative QCD, where the re-scattering of the active partons plays a crucial role. A comparison of single-spin asymmetries in different reactions can also shed light on themore » universality of transverse momentum dependent parton correlation functions. In particular, we discuss what existing data may tell us about the predicted process dependence of the Sivers function.« less

  7. Manipulating Single Spins in Quantum Dots Coupled to Ferromagnetic Leads

    NASA Astrophysics Data System (ADS)

    König, Jürgen; Braun, Matthias; Martinek, Jan

    We discuss the possibility to generate, manipulate, and probe single spins in single-level quantum dots coupled to ferromagnetic leads. The spin-polarized currents flowing between dot and leads lead to a non-equilibrium spin accumulation, i.e., a finite polarization of the dot spin. Both the magnitude and the direction of the dot's spin polarization depends on the magnetic properties of leads and their coupling to the dot. They can be, furthermore, manipulated by either an externally applied magnetic field or an intrinsically present exchange field that arises due to the tunnel coupling of the strongly-interacting quantum-dot states to spin-polarized leads. The exchange field can be tuned by both the gate and bias voltage, which, therefore, provide convenient handles to manipulate the quantum-dot spin. Since the transmission through the quantum-dot spin valve sensitively depends on the state of the quantum-dot spin, all the dynamics of the latter is reflected in the transport properties of the device.

  8. Nanometer-scale probing of spin waves using single electron spins

    NASA Astrophysics Data System (ADS)

    van der Sar, Toeno; Casola, Francesco; Walsworth, Ronald; Yacoby, Amir

    2015-05-01

    We have developed a new approach to exploring magnetic excitations in correlated-electron systems, based on single electronic spins in atom-like defects diamond known as nitrogen-vacancy (NV) color centers. We demonstrate the power of this approach by detecting spin-wave excitations in a ferromagnetic microdisc with nanoscale spatial sensitivity over a broad range of frequencies and magnetic fields. We show how spin-wave resonances can be exploited for on-chip amplification of microwave magnetic fields, allowing strongly increased spin manipulation rates and single-spin magnetometry with enhanced sensitivity. Finally, we show the possibility to detect the magnetic spin noise produced by a thin (~ 30 nm) layer of a patterned ferromagnet. For the interpretation of our results, we develop a general framework describing single-spin stray field detection in terms of a filter function sensitive mostly to spin fluctuations with wavevector ~ 1 / d , where d is the NV-ferromagnet distance. Our results pave the way towards quantitative and non-perturbative detection of spectral properties in nanomagnets, establishing NV center magnetometry as an emergent probe of collective spin dynamics in condensed matter.

  9. Quantum nanophotonics: Controlling a photon with a single spin

    NASA Astrophysics Data System (ADS)

    Waks, Edo

    The implementation of quantum network and distributive quantum computation replies on strong interactions between stationary matter qubits and flying photons. The spin of a single electron confined in a quantum dot is considered as a promising matter qubit as it possesses microsecond coherence time and allows picosecond timescale control using optical pulses. The quantum dot spin can also interact with a photon by controlling the optical response of a strongly coupled cavity. In this talk I will discuss our recent work on an experimental realization of a spin-photon quantum phase switch using a single spin in a quantum dot strongly coupled to a photonic crystal cavity. We show large modulation of the cavity reflection spectrum by manipulating the spin states of the quantum dot, which enables us to control the quantum state of a reflected photon. We also show the complementary effect where the presence of a single photon switches the quantum state of the spin. The reported spin-photon quantum phase operation can switch spin or photon states in picoseconds timescale, representing an important step towards GHz semiconductor based quantum logic devices on-a-chip and solid-state implementations of quantum networks. Shuo Sun, Hyochul Kim, Glenn Solomon, co-authors.

  10. Controlling superconducting spin flow with spin-flip immunity using a single homogeneous ferromagnet

    PubMed Central

    Jacobsen, Sol H.; Kulagina, Iryna; Linder, Jacob

    2016-01-01

    Spin transport via electrons is typically plagued by Joule heating and short decay lengths due to spin-flip scattering. It is known that dissipationless spin currents can arise when using conventional superconducting contacts, yet this has only been experimentally demonstrated when using intricate magnetically inhomogeneous multilayers, or in extreme cases such as half-metals with interfacial magnetic disorder. Moreover, it is unknown how such spin supercurrents decay in the presence of spin-flip scattering. Here, we present a method for generating a spin supercurrent by using only a single homogeneous magnetic element. Remarkably, the spin supercurrent generated in this way does not decay spatially, in stark contrast to normal spin currents that remain polarized only up to the spin relaxation length. We also expose the existence of a superconductivity-mediated torque even without magnetic inhomogeneities, showing that the different components of the spin supercurrent polarization respond fundamentally differently to a change in the superconducting phase difference. This establishes a mechanism for tuning dissipationless spin and charge flow separately, and confirms the advantage that superconductors can offer in spintronics. PMID:27045733

  11. Controlling superconducting spin flow with spin-flip immunity using a single homogeneous ferromagnet.

    PubMed

    Jacobsen, Sol H; Kulagina, Iryna; Linder, Jacob

    2016-01-01

    Spin transport via electrons is typically plagued by Joule heating and short decay lengths due to spin-flip scattering. It is known that dissipationless spin currents can arise when using conventional superconducting contacts, yet this has only been experimentally demonstrated when using intricate magnetically inhomogeneous multilayers, or in extreme cases such as half-metals with interfacial magnetic disorder. Moreover, it is unknown how such spin supercurrents decay in the presence of spin-flip scattering. Here, we present a method for generating a spin supercurrent by using only a single homogeneous magnetic element. Remarkably, the spin supercurrent generated in this way does not decay spatially, in stark contrast to normal spin currents that remain polarized only up to the spin relaxation length. We also expose the existence of a superconductivity-mediated torque even without magnetic inhomogeneities, showing that the different components of the spin supercurrent polarization respond fundamentally differently to a change in the superconducting phase difference. This establishes a mechanism for tuning dissipationless spin and charge flow separately, and confirms the advantage that superconductors can offer in spintronics. PMID:27045733

  12. Controlling superconducting spin flow with spin-flip immunity using a single homogeneous ferromagnet

    NASA Astrophysics Data System (ADS)

    Jacobsen, Sol H.; Kulagina, Iryna; Linder, Jacob

    2016-04-01

    Spin transport via electrons is typically plagued by Joule heating and short decay lengths due to spin-flip scattering. It is known that dissipationless spin currents can arise when using conventional superconducting contacts, yet this has only been experimentally demonstrated when using intricate magnetically inhomogeneous multilayers, or in extreme cases such as half-metals with interfacial magnetic disorder. Moreover, it is unknown how such spin supercurrents decay in the presence of spin-flip scattering. Here, we present a method for generating a spin supercurrent by using only a single homogeneous magnetic element. Remarkably, the spin supercurrent generated in this way does not decay spatially, in stark contrast to normal spin currents that remain polarized only up to the spin relaxation length. We also expose the existence of a superconductivity-mediated torque even without magnetic inhomogeneities, showing that the different components of the spin supercurrent polarization respond fundamentally differently to a change in the superconducting phase difference. This establishes a mechanism for tuning dissipationless spin and charge flow separately, and confirms the advantage that superconductors can offer in spintronics.

  13. Theory of box-model hyperfine couplings and transport signatures of long-range nuclear-spin coherence in a quantum-dot spin valve

    NASA Astrophysics Data System (ADS)

    Chesi, Stefano; Coish, W. A.

    2015-06-01

    We have theoretically analyzed coherent nuclear-spin dynamics induced by electron transport through a quantum-dot spin valve. The hyperfine interaction between electron and nuclear spins in a quantum dot allows for the transfer of angular momentum from spin-polarized electrons injected from ferromagnetic or half-metal leads to the nuclear spin system under a finite voltage bias. Accounting for a local nuclear-spin dephasing process prevents the system from becoming stuck in collective dark states, allowing a large nuclear polarization to be built up in the long-time limit. After reaching a steady state, reversing the voltage bias induces a transient current response as the nuclear polarization is reversed. Long-range nuclear-spin coherence leads to a strong enhancement of spin-flip transition rates (by an amount proportional to the number of nuclear spins) and is revealed by an intense current burst, analogous to superradiant light emission. The crossover to a regime with incoherent spin flips occurs on a relatively long-time scale, on the order of the single-nuclear-spin dephasing time, which can be much longer than the time scale for the superradiant current burst. This conclusion is confirmed through a general master equation. For the two limiting regimes (coherent/incoherent spin flips), the general master equation recovers our simpler treatment based on rate equations, but is also applicable at intermediate dephasing. Throughout this work, we assume uniform hyperfine couplings, which yield the strongest coherent enhancement. We propose realistic strategies, based on isotopic modulation and wave-function engineering in core-shell nanowires, to realize this analytically solvable "box-model" of hyperfine couplings.

  14. All-Optical Initialization, Readout, and Coherent Preparation of Single Silicon-Vacancy Spins in Diamond

    NASA Astrophysics Data System (ADS)

    Rogers, Lachlan J.; Jahnke, Kay D.; Metsch, Mathias H.; Sipahigil, Alp; Binder, Jan M.; Teraji, Tokuyuki; Sumiya, Hitoshi; Isoya, Junichi; Lukin, Mikhail D.; Hemmer, Philip; Jelezko, Fedor

    2014-12-01

    The silicon-vacancy (SiV- ) color center in diamond has attracted attention because of its unique optical properties. It exhibits spectral stability and indistinguishability that facilitate efficient generation of photons capable of demonstrating quantum interference. Here we show optical initialization and readout of electronic spin in a single SiV- center with a spin relaxation time of T1=2.4 ±0.2 ms . Coherent population trapping (CPT) is used to demonstrate coherent preparation of dark superposition states with a spin coherence time of T2⋆=35 ±3 ns . This is fundamentally limited by orbital relaxation, and an understanding of this process opens the way to extend coherence by engineering interactions with phonons. Hyperfine structure is observed in CPT measurements with the Si 29 isotope which allows access to nuclear spin. These results establish the SiV- center as a solid-state spin-photon interface.

  15. Control of coherence among the spins of a single electron and the three nearest neighbor {sup 13}C nuclei of a nitrogen-vacancy center in diamond

    SciTech Connect

    Shimo-Oka, T.; Miwa, S.; Suzuki, Y.; Mizuochi, N.; Kato, H.; Yamasaki, S.; Jelezko, F.

    2015-04-13

    Individual nuclear spins in diamond can be optically detected through hyperfine couplings with the electron spin of a single nitrogen-vacancy (NV) center; such nuclear spins have outstandingly long coherence times. Among the hyperfine couplings in the NV center, the nearest neighbor {sup 13}C nuclear spins have the largest coupling strength. Nearest neighbor {sup 13}C nuclear spins have the potential to perform fastest gate operations, providing highest fidelity in quantum computing. Herein, we report on the control of coherences in the NV center where all three nearest neighbor carbons are of the {sup 13}C isotope. Coherence among the three and four qubits are generated and analyzed at room temperature.

  16. Spin Modes in Nuclei and Nuclear Forces

    SciTech Connect

    Suzuki, Toshio; Otsuka, Takaharu

    2011-05-06

    Spin modes in stable and unstable exotic nuclei are studied and important roles of tensor and three-body forces on nuclear structure are discussed. New shell model Hamiltonians, which have proper tensor components, are shown to explain shell evolutions toward drip-lines and spin properties of both stable and exotic nuclei, for example, Gamow-Teller transitions in {sup 12}C and {sup 14}C and an anomalous M1 transition in {sup 17}C. The importance and the necessity of the repulsive monopole corrections in isospin T = 1 channel to the microscopic two-body interactions are pointed out. The corrections are shown to lead to the proper shell evolutions in neutron-rich isotopes. The three-body force, in particular the Fujita-Miyazawa force induced by {Delta} excitations, is pointed out to be responsible for the repulsive corrections among the valence neutrons. The important roles of the three-body force on the energies and transitions in exotic oxygen and calcium isotopes are demonstrated.

  17. Optically induced dynamic nuclear spin polarisation in diamond

    NASA Astrophysics Data System (ADS)

    Scheuer, Jochen; Schwartz, Ilai; Chen, Qiong; Schulze-Sünninghausen, David; Carl, Patrick; Höfer, Peter; Retzker, Alexander; Sumiya, Hitoshi; Isoya, Junichi; Luy, Burkhard; Plenio, Martin B.; Naydenov, Boris; Jelezko, Fedor

    2016-01-01

    The sensitivity of magnetic resonance imaging (MRI) depends strongly on nuclear spin polarisation and, motivated by this observation, dynamical nuclear spin polarisation has recently been applied to enhance MRI protocols (Kurhanewicz et al 2011 Neoplasia 13 81). Nuclear spins associated with the 13C carbon isotope (nuclear spin I = 1/2) in diamond possess uniquely long spin lattice relaxation times (Reynhardt and High 2011 Prog. Nucl. Magn. Reson. Spectrosc. 38 37). If they are present in diamond nanocrystals, especially when strongly polarised, they form a promising contrast agent for MRI. Current schemes for achieving nuclear polarisation, however, require cryogenic temperatures. Here we demonstrate an efficient scheme that realises optically induced 13C nuclear spin hyperpolarisation in diamond at room temperature and low ambient magnetic field. Optical pumping of a nitrogen-vacancy centre creates a continuously renewable electron spin polarisation which can be transferred to surrounding 13C nuclear spins. Importantly for future applications we also realise polarisation protocols that are robust against an unknown misalignment between magnetic field and crystal axis.

  18. Efficient readout of a single spin state in diamond via spin-to-charge conversion.

    PubMed

    Shields, B J; Unterreithmeier, Q P; de Leon, N P; Park, H; Lukin, M D

    2015-04-01

    Efficient readout of individual electronic spins associated with atomlike impurities in the solid state is essential for applications in quantum information processing and quantum metrology. We demonstrate a new method for efficient spin readout of nitrogen-vacancy (NV) centers in diamond. The method is based on conversion of the electronic spin state of the NV to a charge-state distribution, followed by single-shot readout of the charge state. Conversion is achieved through a spin-dependent photoionization process in diamond at room temperature. Using NVs in nanofabricated diamond beams, we demonstrate that the resulting spin readout noise is within a factor of 3 of the spin projection noise level. Applications of this technique for nanoscale magnetic sensing are discussed. PMID:25884129

  19. Charge noise, spin-orbit coupling, and dephasing of single-spin qubits

    SciTech Connect

    Bermeister, Adam; Keith, Daniel; Culcer, Dimitrie

    2014-11-10

    Quantum dot quantum computing architectures rely on systems in which inversion symmetry is broken, and spin-orbit coupling is present, causing even single-spin qubits to be susceptible to charge noise. We derive an effective Hamiltonian for the combined action of noise and spin-orbit coupling on a single-spin qubit, identify the mechanisms behind dephasing, and estimate the free induction decay dephasing times T{sub 2}{sup *} for common materials such as Si and GaAs. Dephasing is driven by noise matrix elements that cause relative fluctuations between orbital levels, which are dominated by screened whole charge defects and unscreened dipole defects in the substrate. Dephasing times T{sub 2}{sup *} differ markedly between materials and can be enhanced by increasing gate fields, choosing materials with weak spin-orbit, making dots narrower, or using accumulation dots.

  20. Room temperature hyperpolarization of nuclear spins in bulk

    PubMed Central

    Tateishi, Kenichiro; Negoro, Makoto; Nishida, Shinsuke; Kagawa, Akinori; Morita, Yasushi; Kitagawa, Masahiro

    2014-01-01

    Dynamic nuclear polarization (DNP), a means of transferring spin polarization from electrons to nuclei, can enhance the nuclear spin polarization (hence the NMR sensitivity) in bulk materials at most 660 times for 1H spins, using electron spins in thermal equilibrium as polarizing agents. By using electron spins in photo-excited triplet states instead, DNP can overcome the above limit. We demonstrate a 1H spin polarization of 34%, which gives an enhancement factor of 250,000 in 0.40 T, while maintaining a bulk sample (∼0.6 mg, ∼0.7 × 0.7 × 1 mm3) containing >1019 1H spins at room temperature. Room temperature hyperpolarization achieved with DNP using photo-excited triplet electrons has potentials to be applied to a wide range of fields, including NMR spectroscopy and MRI as well as fundamental physics. PMID:24821773

  1. Optical manipulation of a multilevel nuclear spin in ZnO: Master equation and experiment

    NASA Astrophysics Data System (ADS)

    Buß, J. H.; Rudolph, J.; Wassner, T. A.; Eickhoff, M.; Hägele, D.

    2016-04-01

    We demonstrate the dynamics and optical control of a large quantum mechanical solid state spin system consisting of a donor electron spin strongly coupled to the 9/2 nuclear spin of 115In in the semiconductor ZnO. Comparison of electron spin dynamics observed by time-resolved pump-probe spectroscopy with density matrix theory reveals nuclear spin pumping via optically oriented electron spins, coherent spin-spin interaction, and quantization effects of the ten nuclear spin levels. Modulation of the optical electron spin orientation at frequencies above 1 MHz gives evidence for fast optical manipulation of the nuclear spin state.

  2. Single-particle spin effect on fission fragment angular momentum

    NASA Astrophysics Data System (ADS)

    Naik, H.; Dange, S. P.; Singh, R. J.; Reddy, A. V. R.

    2007-02-01

    Independent isomeric yield ratios (IYR) of 128Sb, 130Sb, 132Sb, 131Te, 133Te, 132I, 134I, 136I, 135Xe, and 138Cs have been determined in the fast neutron-induced fission of 243Am using the radiochemical and γ-ray spectrometric technique. From the IYR, fragment angular momenta (J rms) have been deduced using the spin-dependent statistical model analysis. From the J rms-values and experimental kinetic energy data deformation parameters (β) have been deduced using the pre-scission bending mode oscillation model and the statistical model. The J rms- and β-values of fission fragments from the present and earlier work in the odd-Z fissioning systems ( 238Np * , 242Am * and 244Am * ) are compared with the literature data in the even-Z fissioning systems ( 230, 233Th * , 233, 234, 236, 239U * , 239, 240, 241, 242Pu * , 244Cm(SF), 245, 246Cm * , 250Cf * and 252Cf(SF)) to examine the role of single-particle (proton) spin effect. It was observed that i) in all the fissioning systems J rms- and β-values of the fragments with spherical 82n shell and even-Z products are lower than the fragments away from the spherical neutron shell and odd-Z products, which indicate the effect of nuclear structure. ii) For both even-Z and odd-Z fission products J rms-values increase with Z F 2/A F due to increase in Coulomb torque. iii) The J rms- and β-values of even-Z fission products are comparable in all the fissioning systems. However, for odd-Z fission products they are slightly higher in the odd-Z fissioning systems compared to their adjacent even-Z fissioning systems. This is possible due to the contribution of the extra single-particle (proton) spin of the odd-Z fissioning systems to their odd-Z fragments. iv) The yield-weighted fragment angular momentum and elemental yields profile shows an anti-correlation in even-Z fissioning systems but not in the odd-Z fissioning systems.

  3. Thermally induced free-radical reactions in. cap alpha. -D-glucopyranose single crystals. An electron spin resonance-electron nuclear double resonance study. [X-radiation

    SciTech Connect

    Madden, K.P.; Bernhard, W.A.

    1982-09-30

    The dominant radical in single crystals of anhydrous ..cap alpha..-D-glucopyranose X-irradiated at 77 K, a C6 primary hydroxyalkyl radical, reorients slightly upon warming to approx. 200 K and converts to a C2 primary hydroxyalkyl radical upon warming to approx. 300 K. Annealing the sample at room temperature overnight results in several free-radical products, one identified as a C2 secondary hydroxyalkyl radical. The mechanisms of the free-radical reactions are discussed and compared to those postulated by using data from end-product analysis of irradiated crystalline ..cap alpha..-D-glucose.

  4. Exploring the Single Atom Spin State by Electron Spectroscopy.

    PubMed

    Lin, Yung-Chang; Teng, Po-Yuan; Chiu, Po-Wen; Suenaga, Kazu

    2015-11-13

    To control the spin state of an individual atom is an ultimate goal for spintronics. A single atom magnet, which may lead to a supercapacity memory device if realized, requires the high-spin state of an isolated individual atom. Here, we demonstrate the realization of well isolated transition metal (TM) atoms fixed at atomic defects sparsely dispersed in graphene. Core-level electron spectroscopy clearly reveals the high-spin state of the individual TM atoms at the divacancy or edge of the graphene layer. We also show for the first time that the spin state of single TM atoms systematically varies with the coordination of neighboring nitrogen or oxygen atoms. These structures can be thus regarded as the smallest components of spintronic devices with controlled magnetic behavior. PMID:26613462

  5. Cryogenic single-chip electron spin resonance detector

    NASA Astrophysics Data System (ADS)

    Gualco, Gabriele; Anders, Jens; Sienkiewicz, Andrzej; Alberti, Stefano; Forró, László; Boero, Giovanni

    2014-10-01

    We report on the design and characterization of a single-chip electron spin resonance detector, operating at a frequency of about 20 GHz and in a temperature range extending at least from 300 K down to 4 K. The detector consists of an LC oscillator formed by a 200 μm diameter single turn aluminum planar coil, a metal-oxide-metal capacitor, and two metal-oxide-semiconductor field effect transistors used as negative resistance network. At 300 K, the oscillator has a frequency noise of 20 Hz/Hz1/2 at 100 kHz offset from the 20 GHz carrier. At 4 K, the frequency noise is about 1 Hz/Hz1/2 at 10 kHz offset. The spin sensitivity measured with a sample of DPPH is 108 spins/Hz1/2 at 300 K and down to 106 spins/Hz1/2 at 4 K.

  6. Coherent detection of mechanical motion with a single spin qubit

    NASA Astrophysics Data System (ADS)

    Kolkowitz, Shimon; Unterreithmeier, Quirin; Jayich, Ania; Bennett, Steven; Rabl, Peter; Harris, Jack; Lukin, Mikhail

    2012-06-01

    Mechanical systems can be influenced by a wide variety of extremely small forces, ranging from gravitational to optical, electrical, and magnetic. When mechanical resonators are scaled down to nanometer-scale dimensions, these forces can be harnessed to enable coupling to individual quantum systems. We present results showing that the coherent evolution of a single electronic spin associated with a Nitrogen Vacancy (NV) center in diamond can be coupled to the motion of a magnetized mechanical resonator. Specifically we use coherent manipulation of the spin to sense the driven and Brownian motion of the resonator under ambient conditions at a precision of 5 picometers. We discuss potential future applications of this technique including the detection of the zero-point fluctuations of a mechanical resonator, the realization of strong spin-phonon coupling at a single quantum level, and the implementation of quantum spin transducers.

  7. 29Si nuclear spin relaxation in microcrystals of plastically deformed Si: B samples

    NASA Astrophysics Data System (ADS)

    Koplak, O. V.; Morgunov, R. B.

    2016-02-01

    Single crystals and microcrystals Si: B enriched with 29Si isotopes have been studied using nuclear magnetic resonance and electron paramagnetic resonance (EPR) in the temperature range from 300 to 800 K. It has been found that an increase in the temperature from 300 to 500 K leads to a change in the kinetics of the relaxation of the saturated nuclear spin system. At 300 K, the relaxation kinetics corresponds to direct electron-nuclear interaction with inhomogeneously distributed paramagnetic centers introduced by the plastic deformation of the crystals. At 500 K, the spin relaxation occurs through the nuclear spin diffusion and electron-nuclear interaction with an acceptor impurity. It has been revealed that the plastic deformation affects the EPR spectra at 9 K.

  8. Observation of spin flips with a single trapped proton.

    PubMed

    Ulmer, S; Rodegheri, C C; Blaum, K; Kracke, H; Mooser, A; Quint, W; Walz, J

    2011-06-24

    Radio-frequency induced spin transitions of one individual proton are observed. The spin quantum jumps are detected via the continuous Stern-Gerlach effect, which is used in an experiment with a single proton stored in a cryogenic Penning trap. This is an important milestone towards a direct high-precision measurement of the magnetic moment of the proton and a new test of the matter-antimatter symmetry in the baryon sector. PMID:21770638

  9. Observation of Spin Flips with a Single Trapped Proton

    SciTech Connect

    Ulmer, S.; Rodegheri, C. C.; Blaum, K.; Kracke, H.; Mooser, A.; Walz, J.; Quint, W.

    2011-06-24

    Radio-frequency induced spin transitions of one individual proton are observed. The spin quantum jumps are detected via the continuous Stern-Gerlach effect, which is used in an experiment with a single proton stored in a cryogenic Penning trap. This is an important milestone towards a direct high-precision measurement of the magnetic moment of the proton and a new test of the matter-antimatter symmetry in the baryon sector.

  10. A single-atom electron spin qubit in silicon.

    PubMed

    Pla, Jarryd J; Tan, Kuan Y; Dehollain, Juan P; Lim, Wee H; Morton, John J L; Jamieson, David N; Dzurak, Andrew S; Morello, Andrea

    2012-09-27

    A single atom is the prototypical quantum system, and a natural candidate for a quantum bit, or qubit--the elementary unit of a quantum computer. Atoms have been successfully used to store and process quantum information in electromagnetic traps, as well as in diamond through the use of the nitrogen-vacancy-centre point defect. Solid-state electrical devices possess great potential to scale up such demonstrations from few-qubit control to larger-scale quantum processors. Coherent control of spin qubits has been achieved in lithographically defined double quantum dots in both GaAs (refs 3-5) and Si (ref. 6). However, it is a formidable challenge to combine the electrical measurement capabilities of engineered nanostructures with the benefits inherent in atomic spin qubits. Here we demonstrate the coherent manipulation of an individual electron spin qubit bound to a phosphorus donor atom in natural silicon, measured electrically via single-shot read-out. We use electron spin resonance to drive Rabi oscillations, and a Hahn echo pulse sequence reveals a spin coherence time exceeding 200 µs. This time should be even longer in isotopically enriched (28)Si samples. Combined with a device architecture that is compatible with modern integrated circuit technology, the electron spin of a single phosphorus atom in silicon should be an excellent platform on which to build a scalable quantum computer. PMID:22992519

  11. Spin-transfer torque in a single ferromagnet

    NASA Astrophysics Data System (ADS)

    Ji, Yi

    2004-03-01

    A spin polarized current, with sufficiently high current density, is able to switch a magnet or induce magnetization precession. This is the consequence of the ¡°spin-transfer torque¡+/- that originates from spin angular momentum transfer between conduction electrons and the magnetization. Previously most theories and experiments explore F/N/F trilayer and F/N multilayer structures, where F denotes a ferromagnet and N denotes a nonmagnetic metal. These structures have been generally presumed indispensable, since non-collinear magnetizations between a polarizing layer and a free layer are required to generate spin torques, and the GMR effect is essential in detecting magnetization variations. In this work, spin-transfer torque effects in a single ferromagnetic layer are demonstrated, using current injection through a point-contact at 4.2 K. Firstly, differential resistance peaks, generally regarded as signatures of spin-wave excitations, are observed in a single ferromagnetic layer in high magnetic fields [1]. The current values corresponding to the peak positions linearly depend on the external field in the range of 2 to 9 Tesla. Secondly, hysteretic current-induced switching is observed in a single ferromagnet in low magnetic fields. Both experiments can be interpreted by a simple model based on heterogeneous current distribution and domain wall scattering. Systematic variations between low field and high field regions have been investigated and the implications will be discussed. [1] Y. Ji, C. L. Chien and M. D. Stiles, Phys. Rev. Lett. 90, 106601 (2003)

  12. Single-spin observables and orbital structures in hadronic distributions

    NASA Astrophysics Data System (ADS)

    Sivers, Dennis

    2006-11-01

    Single-spin observables in scattering processes (either analyzing powers or polarizations) are highly constrained by rotational invariance and finite symmetries. For example, it is possible to demonstrate that all single-spin observables are odd under the finite transformation O=PAτ where P is parity and Aτ is a finite symmetry that can be designated “artificial time reversal”. The operators P, O and Aτ all have eigenvalues ±1 so that all single-spin observables can be classified into two distinct categories: (1) P-odd and Aτ-even, (2) P-even and Aτ-odd. Within the light-quark sector of the standard model, P-odd observables are generated from pointlike electroweak processes while Aτ-odd observables (neglecting quark mass parameters) come from dynamic spin-orbit correlations within hadrons or within larger composite systems, such as nuclei. The effects of Aτ-odd dynamics can be inserted into transverse-momentum dependent constituent distribution functions and, in this paper, we construct the contribution from an orbital quark to the Aτ-odd quark parton distribution ΔNGq/p↑front(x,kTN;μ2). Using this distribution, we examine the crucial role of initial- and final-state interactions in the observation of the scattering asymmetries in different hard-scattering processes. This construction provides a geometrical and dynamical interpretation of the Collins conjugation relation between single-spin asymmetries in semi-inclusive deep inelastic scattering and the asymmetries in Drell-Yan production. Finally, our construction allows us to display a significant difference between the calculation of a spin asymmetry generated by a hard-scattering mechanism involving color-singlet exchange (such as a photon) and a calculation of an asymmetry with a hard-scattering exchange involving gluons. This leads to an appreciation of the process-dependence inherent in measurements of single-spin observables.

  13. Nuclear Spin Conversion in CH4: A Multichannel Relaxation Mechanism.

    PubMed

    Cacciani, Patrice; Cosléou, Jean; Khelkhal, Mohamed; Čermák, Peter; Puzzarini, Cristina

    2016-01-21

    Experiments on nuclear spin interconversion of ortho, para, and meta nuclear spin isomers of the methane molecule have been undertaken in gas phase and cryomatrices. Only the latter environment has led to the observation of the nuclear spin conversion. In this study, a quantitative explanation is given for the first time by considering the coupling of three relaxation paths: meta ⇔ para, meta ⇔ ortho, and ortho ⇔ para. The global evolution of the three populations of spin isomers is thus described by two characteristic times, which have been calculated using the best values of the energy levels for the vibrational ground state, of the intramolecular magnetic interactions, and of the collisional relaxation rates, and for different pressure and temperature conditions. Such calculations also provide an indication for the proper choice of reliable scenarios for experimental separation of the spin isomers of methane. PMID:26681482

  14. Spin Manipulation by Creation of Single-Molecule Radical Cations

    NASA Astrophysics Data System (ADS)

    Karan, Sujoy; Li, Na; Zhang, Yajie; He, Yang; Hong, I.-Po; Song, Huanjun; Lü, Jing-Tao; Wang, Yongfeng; Peng, Lianmao; Wu, Kai; Michelitsch, Georg S.; Maurer, Reinhard J.; Diller, Katharina; Reuter, Karsten; Weismann, Alexander; Berndt, Richard

    2016-01-01

    All-trans-retinoic acid (ReA), a closed-shell organic molecule comprising only C, H, and O atoms, is investigated on a Au(111) substrate using scanning tunneling microscopy and spectroscopy. In dense arrays single ReA molecules are switched to a number of states, three of which carry a localized spin as evidenced by conductance spectroscopy in high magnetic fields. The spin of a single molecule may be reversibly switched on and off without affecting its neighbors. We suggest that ReA on Au is readily converted to a radical by the abstraction of an electron.

  15. Nanometre-scale probing of spin waves using single-electron spins

    NASA Astrophysics Data System (ADS)

    van der Sar, Toeno; Casola, Francesco; Walsworth, Ronald; Yacoby, Amir

    2015-08-01

    Pushing the frontiers of condensed-matter magnetism requires the development of tools that provide real-space, few-nanometre-scale probing of correlated-electron magnetic excitations under ambient conditions. Here we present a practical approach to meet this challenge, using magnetometry based on single nitrogen-vacancy centres in diamond. We focus on spin-wave excitations in a ferromagnetic microdisc, and demonstrate local, quantitative and phase-sensitive detection of the spin-wave magnetic field at ~50 nm from the disc. We map the magnetic-field dependence of spin-wave excitations by detecting the associated local reduction in the disc's longitudinal magnetization. In addition, we characterize the spin-noise spectrum by nitrogen-vacancy spin relaxometry, finding excellent agreement with a general analytical description of the stray fields produced by spin-spin correlations in a 2D magnetic system. These complementary measurement modalities pave the way towards imaging the local excitations of systems such as ferromagnets and antiferromagnets, skyrmions, atomically assembled quantum magnets, and spin ice.

  16. Matrix Formalism for Spin Dynamics Near a Single Depolarization Resonance

    SciTech Connect

    Chao, Alexander W.; /SLAC

    2005-10-26

    A matrix formalism is developed to describe the spin dynamics in a synchrotron near a single depolarization resonance as the particle energy (and therefore its spin precession frequency) is varied in a prescribed pattern as a function of time such as during acceleration. This formalism is first applied to the case of crossing the resonance with a constant crossing speed and a finite total step size, and then applied also to other more involved cases when the single resonance is crossed repeatedly in a prescribed manner consisting of linear ramping segments or sudden jumps. How repeated crossings produce an interference behavior is discussed using the results obtained. For a polarized beam with finite energy spread, a spin echo experiment is suggested to explore this interference effect.

  17. Electrically controlling single-spin qubits in a continuous microwave field

    PubMed Central

    Laucht, Arne; Muhonen, Juha T.; Mohiyaddin, Fahd A.; Kalra, Rachpon; Dehollain, Juan P.; Freer, Solomon; Hudson, Fay E.; Veldhorst, Menno; Rahman, Rajib; Klimeck, Gerhard; Itoh, Kohei M.; Jamieson, David N.; McCallum, Jeffrey C.; Dzurak, Andrew S.; Morello, Andrea

    2015-01-01

    Large-scale quantum computers must be built upon quantum bits that are both highly coherent and locally controllable. We demonstrate the quantum control of the electron and the nuclear spin of a single 31P atom in silicon, using a continuous microwave magnetic field together with nanoscale electrostatic gates. The qubits are tuned into resonance with the microwave field by a local change in electric field, which induces a Stark shift of the qubit energies. This method, known as A-gate control, preserves the excellent coherence times and gate fidelities of isolated spins, and can be extended to arbitrarily many qubits without requiring multiple microwave sources. PMID:26601166

  18. Electrically controlling single-spin qubits in a continuous microwave field.

    PubMed

    Laucht, Arne; Muhonen, Juha T; Mohiyaddin, Fahd A; Kalra, Rachpon; Dehollain, Juan P; Freer, Solomon; Hudson, Fay E; Veldhorst, Menno; Rahman, Rajib; Klimeck, Gerhard; Itoh, Kohei M; Jamieson, David N; McCallum, Jeffrey C; Dzurak, Andrew S; Morello, Andrea

    2015-04-01

    Large-scale quantum computers must be built upon quantum bits that are both highly coherent and locally controllable. We demonstrate the quantum control of the electron and the nuclear spin of a single (31)P atom in silicon, using a continuous microwave magnetic field together with nanoscale electrostatic gates. The qubits are tuned into resonance with the microwave field by a local change in electric field, which induces a Stark shift of the qubit energies. This method, known as A-gate control, preserves the excellent coherence times and gate fidelities of isolated spins, and can be extended to arbitrarily many qubits without requiring multiple microwave sources. PMID:26601166

  19. Nonlinear single-spin spectrum analyzer.

    PubMed

    Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Ozeri, Roee

    2013-03-15

    Qubits have been used as linear spectrum analyzers of their environments. Here we solve the problem of nonlinear spectral analysis, required for discrete noise induced by a strongly coupled environment. Our nonperturbative analytical model shows a nonlinear signal dependence on noise power, resulting in a spectral resolution beyond the Fourier limit as well as frequency mixing. We develop a noise characterization scheme adapted to this nonlinearity. We then apply it using a single trapped ion as a sensitive probe of strong, non-Gaussian, discrete magnetic field noise. Finally, we experimentally compared the performance of equidistant vs Uhrig modulation schemes for spectral analysis. PMID:25166519

  20. Nonlinear Single-Spin Spectrum Analyzer

    NASA Astrophysics Data System (ADS)

    Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Ozeri, Roee

    2013-03-01

    Qubits have been used as linear spectrum analyzers of their environments. Here we solve the problem of nonlinear spectral analysis, required for discrete noise induced by a strongly coupled environment. Our nonperturbative analytical model shows a nonlinear signal dependence on noise power, resulting in a spectral resolution beyond the Fourier limit as well as frequency mixing. We develop a noise characterization scheme adapted to this nonlinearity. We then apply it using a single trapped ion as a sensitive probe of strong, non-Gaussian, discrete magnetic field noise. Finally, we experimentally compared the performance of equidistant vs Uhrig modulation schemes for spectral analysis.

  1. Highly selective detection of individual nuclear spins with rotary echo on an electron spin probe

    DOE PAGESBeta

    Mkhitaryan, V. V.; Jelezko, F.; Dobrovitski, V. V.

    2015-10-26

    We consider an electronic spin, such as a nitrogen-vacancy center in diamond, weakly coupled to a large number of nuclear spins, and subjected to the Rabi driving with a periodically alternating phase. We show that by switching the driving phase synchronously with the precession of a given nuclear spin, the interaction to this spin is selectively enhanced, while the rest of the bath remains decoupled. The enhancement is of resonant character. The key feature of the suggested scheme is that the width of the resonance is adjustable, and can be greatly decreased by increasing the driving strength. Thus, the resonancemore » can be significantly narrowed, by a factor of 10–100 in comparison with the existing detection methods. Significant improvement in selectivity is explained analytically and confirmed by direct numerical many-spin simulations. As a result, the method can be applied to a wide range of solid-state systems.« less

  2. Highly selective detection of individual nuclear spins with rotary echo on an electron spin probe

    SciTech Connect

    Mkhitaryan, V. V.; Jelezko, F.; Dobrovitski, V. V.

    2015-10-26

    We consider an electronic spin, such as a nitrogen-vacancy center in diamond, weakly coupled to a large number of nuclear spins, and subjected to the Rabi driving with a periodically alternating phase. We show that by switching the driving phase synchronously with the precession of a given nuclear spin, the interaction to this spin is selectively enhanced, while the rest of the bath remains decoupled. The enhancement is of resonant character. The key feature of the suggested scheme is that the width of the resonance is adjustable, and can be greatly decreased by increasing the driving strength. Thus, the resonance can be significantly narrowed, by a factor of 10–100 in comparison with the existing detection methods. Significant improvement in selectivity is explained analytically and confirmed by direct numerical many-spin simulations. As a result, the method can be applied to a wide range of solid-state systems.

  3. Highly selective detection of individual nuclear spins with rotary echo on an electron spin probe

    PubMed Central

    Mkhitaryan, V. V.; Jelezko, F.; Dobrovitski, V. V.

    2015-01-01

    We consider an electronic spin, such as a nitrogen-vacancy center in diamond, weakly coupled to a large number of nuclear spins, and subjected to the Rabi driving with a periodically alternating phase. We show that by switching the driving phase synchronously with the precession of a given nuclear spin, the interaction to this spin is selectively enhanced, while the rest of the bath remains decoupled. The enhancement is of resonant character. The key feature of the suggested scheme is that the width of the resonance is adjustable, and can be greatly decreased by increasing the driving strength. Thus, the resonance can be significantly narrowed, by a factor of 10–100 in comparison with the existing detection methods. Significant improvement in selectivity is explained analytically and confirmed by direct numerical many-spin simulations. The method can be applied to a wide range of solid-state systems. PMID:26497777

  4. Highly selective detection of individual nuclear spins with rotary echo on an electron spin probe

    NASA Astrophysics Data System (ADS)

    Mkhitaryan, V. V.; Jelezko, F.; Dobrovitski, V. V.

    2015-10-01

    We consider an electronic spin, such as a nitrogen-vacancy center in diamond, weakly coupled to a large number of nuclear spins, and subjected to the Rabi driving with a periodically alternating phase. We show that by switching the driving phase synchronously with the precession of a given nuclear spin, the interaction to this spin is selectively enhanced, while the rest of the bath remains decoupled. The enhancement is of resonant character. The key feature of the suggested scheme is that the width of the resonance is adjustable, and can be greatly decreased by increasing the driving strength. Thus, the resonance can be significantly narrowed, by a factor of 10-100 in comparison with the existing detection methods. Significant improvement in selectivity is explained analytically and confirmed by direct numerical many-spin simulations. The method can be applied to a wide range of solid-state systems.

  5. Computational quantum chemistry for single Heisenberg spin couplings made simple: just one spin flip required.

    PubMed

    Mayhall, Nicholas J; Head-Gordon, Martin

    2014-10-01

    We highlight a simple strategy for computing the magnetic coupling constants, J, for a complex containing two multiradical centers. On the assumption that the system follows Heisenberg Hamiltonian physics, J is obtained from a spin-flip electronic structure calculation where only a single electron is excited (and spin-flipped), from the single reference with maximum Ŝz, M, to the M - 1 manifold, regardless of the number of unpaired electrons, 2M, on the radical centers. In an active space picture involving 2M orbitals, only one β electron is required, together with only one α hole. While this observation is extremely simple, the reduction in the number of essential configurations from exponential in M to only linear provides dramatic computational benefits. This (M, M - 1) strategy for evaluating J is an unambiguous, spin-pure, wave function theory counterpart of the various projected broken symmetry density functional theory schemes, and likewise gives explicit energies for each possible spin-state that enable evaluation of properties. The approach is illustrated on five complexes with varying numbers of unpaired electrons, for which one spin-flip calculations are used to compute J. Some implications for further development of spin-flip methods are discussed. PMID:25296788

  6. Computational quantum chemistry for single Heisenberg spin couplings made simple: Just one spin flip required

    SciTech Connect

    Mayhall, Nicholas J.; Head-Gordon, Martin

    2014-10-07

    We highlight a simple strategy for computing the magnetic coupling constants, J, for a complex containing two multiradical centers. On the assumption that the system follows Heisenberg Hamiltonian physics, J is obtained from a spin-flip electronic structure calculation where only a single electron is excited (and spin-flipped), from the single reference with maximum S{sup ^}{sub z}, M, to the M − 1 manifold, regardless of the number of unpaired electrons, 2M, on the radical centers. In an active space picture involving 2M orbitals, only one β electron is required, together with only one α hole. While this observation is extremely simple, the reduction in the number of essential configurations from exponential in M to only linear provides dramatic computational benefits. This (M, M − 1) strategy for evaluating J is an unambiguous, spin-pure, wave function theory counterpart of the various projected broken symmetry density functional theory schemes, and likewise gives explicit energies for each possible spin-state that enable evaluation of properties. The approach is illustrated on five complexes with varying numbers of unpaired electrons, for which one spin-flip calculations are used to compute J. Some implications for further development of spin-flip methods are discussed.

  7. Flux noise in SQUIDs: Electron versus nuclear spins

    NASA Astrophysics Data System (ADS)

    de Sousa, Rogerio; Laforest, Stephanie

    2015-03-01

    Superconducting Quantum Interference Devices (SQUIDs) are limited by intrinsic flux noise whose origin is unknown. We develop a method to accurately calculate the flux produced by spin impurities in realistic superconducting thin film wires, and show that the flux produced by each spin is much larger than anticipated by former calculations. Remarkably, the total flux noise power due to electron spins at the thin side surface of the wires is found to be of similar magnitude as the one due to electrons at the wide top surface of the wires. In addition, flux noise due to lattice nuclear spins in the bulk of the wires is found to be a sizable fraction of the total noise for some SQUID geometries. We discuss the relative importance of electron and nuclear spin species in determining the total noise power, and propose strategies to design SQUIDs with lower flux noise. We acknowledge support from the Canadian agency NSERC through its Discovery and Engage programs.

  8. Calculation of nuclear spin-spin coupling constants using frozen density embedding

    SciTech Connect

    Götz, Andreas W.; Autschbach, Jochen; Visscher, Lucas

    2014-03-14

    We present a method for a subsystem-based calculation of indirect nuclear spin-spin coupling tensors within the framework of current-spin-density-functional theory. Our approach is based on the frozen-density embedding scheme within density-functional theory and extends a previously reported subsystem-based approach for the calculation of nuclear magnetic resonance shielding tensors to magnetic fields which couple not only to orbital but also spin degrees of freedom. This leads to a formulation in which the electron density, the induced paramagnetic current, and the induced spin-magnetization density are calculated separately for the individual subsystems. This is particularly useful for the inclusion of environmental effects in the calculation of nuclear spin-spin coupling constants. Neglecting the induced paramagnetic current and spin-magnetization density in the environment due to the magnetic moments of the coupled nuclei leads to a very efficient method in which the computationally expensive response calculation has to be performed only for the subsystem of interest. We show that this approach leads to very good results for the calculation of solvent-induced shifts of nuclear spin-spin coupling constants in hydrogen-bonded systems. Also for systems with stronger interactions, frozen-density embedding performs remarkably well, given the approximate nature of currently available functionals for the non-additive kinetic energy. As an example we show results for methylmercury halides which exhibit an exceptionally large shift of the one-bond coupling constants between {sup 199}Hg and {sup 13}C upon coordination of dimethylsulfoxide solvent molecules.

  9. Calculation of nuclear spin-spin coupling constants using frozen density embedding

    NASA Astrophysics Data System (ADS)

    Götz, Andreas W.; Autschbach, Jochen; Visscher, Lucas

    2014-03-01

    We present a method for a subsystem-based calculation of indirect nuclear spin-spin coupling tensors within the framework of current-spin-density-functional theory. Our approach is based on the frozen-density embedding scheme within density-functional theory and extends a previously reported subsystem-based approach for the calculation of nuclear magnetic resonance shielding tensors to magnetic fields which couple not only to orbital but also spin degrees of freedom. This leads to a formulation in which the electron density, the induced paramagnetic current, and the induced spin-magnetization density are calculated separately for the individual subsystems. This is particularly useful for the inclusion of environmental effects in the calculation of nuclear spin-spin coupling constants. Neglecting the induced paramagnetic current and spin-magnetization density in the environment due to the magnetic moments of the coupled nuclei leads to a very efficient method in which the computationally expensive response calculation has to be performed only for the subsystem of interest. We show that this approach leads to very good results for the calculation of solvent-induced shifts of nuclear spin-spin coupling constants in hydrogen-bonded systems. Also for systems with stronger interactions, frozen-density embedding performs remarkably well, given the approximate nature of currently available functionals for the non-additive kinetic energy. As an example we show results for methylmercury halides which exhibit an exceptionally large shift of the one-bond coupling constants between 199Hg and 13C upon coordination of dimethylsulfoxide solvent molecules.

  10. Quantifying the quantum gate fidelity of single-atom spin qubits in silicon by randomized benchmarking

    NASA Astrophysics Data System (ADS)

    Muhonen, J. T.; Laucht, A.; Simmons, S.; Dehollain, J. P.; Kalra, R.; Hudson, F. E.; Freer, S.; Itoh, K. M.; Jamieson, D. N.; McCallum, J. C.; Dzurak, A. S.; Morello, A.

    2015-04-01

    Building upon the demonstration of coherent control and single-shot readout of the electron and nuclear spins of individual 31P atoms in silicon, we present here a systematic experimental estimate of quantum gate fidelities using randomized benchmarking of 1-qubit gates in the Clifford group. We apply this analysis to the electron and the ionized 31P nucleus of a single P donor in isotopically purified 28Si. We find average gate fidelities of 99.95% for the electron and 99.99% for the nuclear spin. These values are above certain error correction thresholds and demonstrate the potential of donor-based quantum computing in silicon. By studying the influence of the shape and power of the control pulses, we find evidence that the present limitation to the gate fidelity is mostly related to the external hardware and not the intrinsic behaviour of the qubit.

  11. Quantifying the quantum gate fidelity of single-atom spin qubits in silicon by randomized benchmarking.

    PubMed

    Muhonen, J T; Laucht, A; Simmons, S; Dehollain, J P; Kalra, R; Hudson, F E; Freer, S; Itoh, K M; Jamieson, D N; McCallum, J C; Dzurak, A S; Morello, A

    2015-04-22

    Building upon the demonstration of coherent control and single-shot readout of the electron and nuclear spins of individual (31)P atoms in silicon, we present here a systematic experimental estimate of quantum gate fidelities using randomized benchmarking of 1-qubit gates in the Clifford group. We apply this analysis to the electron and the ionized (31)P nucleus of a single P donor in isotopically purified (28)Si. We find average gate fidelities of 99.95% for the electron and 99.99% for the nuclear spin. These values are above certain error correction thresholds and demonstrate the potential of donor-based quantum computing in silicon. By studying the influence of the shape and power of the control pulses, we find evidence that the present limitation to the gate fidelity is mostly related to the external hardware and not the intrinsic behaviour of the qubit. PMID:25783435

  12. Nuclear-spin observation of noise spectra in semiconductors

    NASA Astrophysics Data System (ADS)

    Sasaki, Susumu; Yuge, Tatsuro; Nishimori, Masashi; Kawanago, Takashi; Hirayama, Yoshiro

    2013-12-01

    We propose a systematic method of obtaining the spectra of noises that cause the decoherence of spins in solids. Based on this method, we experimentally show that this method can be applied to nuclear spins in semiconductors. We clarify that the spectral intensity must be derived from the long-time tail of the multiple-echo decay. To obtain higher-frequency noise, the inversion-pulse interval must be as short as possible, which required us to employ the alternating-phase Carr-Purcell sequence instead of the widely used Carr-Purcell Meiboom-Gill. For 75As nuclear spin in variously-doped GaAs, we observed a Lorentzian spectrum, instead of the commonly observed 1/f spectrum. This indicates that the nuclear spins are indeed in a coherently-controlled state.

  13. Nuclear-spin observation of noise spectra in semiconductors

    SciTech Connect

    Sasaki, Susumu; Nishimori, Masashi; Kawanago, Takashi; Yuge, Tatsuro; Hirayama, Yoshiro

    2013-12-04

    We propose a systematic method of obtaining the spectra of noises that cause the decoherence of spins in solids. Based on this method, we experimentally show that this method can be applied to nuclear spins in semiconductors. We clarify that the spectral intensity must be derived from the long-time tail of the multiple-echo decay. To obtain higher-frequency noise, the inversion-pulse interval must be as short as possible, which required us to employ the alternating-phase Carr-Purcell sequence instead of the widely used Carr-Purcell Meiboom-Gill. For {sup 75}As nuclear spin in variously-doped GaAs, we observed a Lorentzian spectrum, instead of the commonly observed 1/f spectrum. This indicates that the nuclear spins are indeed in a coherently-controlled state.

  14. Analysis of the transient response of nuclear spins in GaAs with/without nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Rasly, Mahmoud; Lin, Zhichao; Yamamoto, Masafumi; Uemura, Tetsuya

    2016-05-01

    As an alternative to studying the steady-state responses of nuclear spins in solid state systems, working within a transient-state framework can reveal interesting phenomena. The response of nuclear spins in GaAs to a changing magnetic field was analyzed based on the time evolution of nuclear spin temperature. Simulation results well reproduced our experimental results for the transient oblique Hanle signals observed in an all-electrical spin injection device. The analysis showed that the so called dynamic nuclear polarization can be treated as a cooling tool for the nuclear spins: It works as a provider to exchange spin angular momentum between polarized electron spins and nuclear spins through the hyperfine interaction, leading to an increase in the nuclear polarization. In addition, a time-delay of the nuclear spin temperature with a fast sweep of the external magnetic field produces a possible transient state for the nuclear spin polarization. On the other hand, the nuclear magnetic resonance acts as a heating tool for a nuclear spin system. This causes the nuclear spin temperature to jump to infinity: i.e., the average nuclear spins along with the nuclear field vanish at resonant fields of 75As, 69Ga and 71Ga, showing an interesting step-dip structure in the oblique Hanle signals. These analyses provide a quantitative understanding of nuclear spin dynamics in semiconductors for application in future computation processing.

  15. Mechanism for nuclear and electron spin excitation by radio frequency current

    NASA Astrophysics Data System (ADS)

    Müllegger, Stefan; Rauls, Eva; Gerstmann, Uwe; Tebi, Stefano; Serrano, Giulia; Wiespointner-Baumgarthuber, Stefan; Schmidt, Wolf Gero; Koch, Reinhold

    2015-12-01

    Recent radio frequency scanning tunneling spectroscopy (rf-STS) experiments have demonstrated nuclear and electron spin excitations up to ±12 ℏ in a single molecular spin quantum dot (qudot). Despite the profound experimental evidence, the observed independence of the well-established dipole selection rules is not described by existing theory of magnetic resonance—pointing to a new excitation mechanism. Here we solve the puzzle of the underlying mechanism by discussing the relevant mechanistic steps. At the heart of the mechanism, periodic transient charging and electric polarization due to the rf-modulated tunneling process cause a periodic asymmetric deformation of the adsorbed qudot, enabling efficient spin transitions via spin-phonon-like coupling. The mechanism has general relevance for a broad variety of different spin qudots exhibiting internal mechanical degrees of freedom (organic molecules, doped semiconductor qudots, nanocrystals, etc.).

  16. Long-range spin-triplet correlations and edge spin currents in diffusive spin-orbit coupled SNS hybrids with a single spin-active interface

    NASA Astrophysics Data System (ADS)

    Alidoust, Mohammad; Halterman, Klaus

    2015-06-01

    Utilizing a SU(2) gauge symmetry technique in the quasiclassical diffusive regime, we theoretically study finite-sized two-dimensional intrinsic spin-orbit coupled superconductor/normal-metal/superconductor (S/N/S) hybrid structures with a single spin-active interface. We consider intrinsic spin-orbit interactions (ISOIs) that are confined within the N wire and absent in the s-wave superconducting electrodes (S). Using experimentally feasible parameters, we demonstrate that the coupling of the ISOIs and spin moment of the spin-active interface results in maximum singlet-triplet conversion and accumulation of spin current density at the corners of the N wire nearest the spin-active interface. By solely modulating the superconducting phase difference, we show how the opposing parities of the charge and spin currents provide an effective venue to experimentally examine pure edge spin currents not accompanied by charge currents. These effects occur in the absence of externally imposed fields and moreover are insensitive to the arbitrary orientations of the interface spin moment. The experimental implementation of these robust edge phenomena are also discussed.

  17. All-electric spin control in interference single electron transistors.

    PubMed

    Donarini, Andrea; Begemann, Georg; Grifoni, Milena

    2009-08-01

    Single particle interference lies at the heart of quantum mechanics. The archetypal double-slit experiment(1) has been repeated with electrons in vacuum(2,3) up to the more massive C(60) molecules.(4) Mesoscopic rings threaded by a magnetic flux provide the solid-state analogues.(5,6) Intramolecular interference has been recently discussed in molecular junctions.(7-11) Here we propose to exploit interference to achieve all-electrical control of a single electron spin in quantum dots, a highly desirable property for spintronics(12-14) and spin-qubit applications.(15-19) The device consists of an interference single electron transistor,(10,11) where destructive interference between orbitally degenerate electronic states produces current blocking at specific bias voltages. We show that in the presence of parallel polarized ferromagnetic leads the interplay between interference and the exchange interaction on the system generates an effective energy renormalization yielding different blocking biases for majority and minority spins. Hence, by tuning the bias voltage full control over the spin of the trapped electron is achieved. PMID:19719108

  18. Visualization of spin dynamics in single nanosized magnetic elements.

    PubMed

    Banholzer, A; Narkowicz, R; Hassel, C; Meckenstock, R; Stienen, S; Posth, O; Suter, D; Farle, M; Lindner, J

    2011-07-22

    The design of future spintronic devices requires a quantitative understanding of the microscopic linear and nonlinear spin relaxation processes governing the magnetization reversal in nanometer-scale ferromagnetic systems. Ferromagnetic resonance is the method of choice for a quantitative analysis of relaxation rates, magnetic anisotropy and susceptibility in a single experiment. The approach offers the possibility of coherent control and manipulation of nanoscaled structures by microwave irradiation. Here, we analyze the different excitation modes in a single nanometer-sized ferromagnetic stripe. Measurements are performed using a microresonator set-up which offers a sensitivity to quantitatively analyze the dynamic and static magnetic properties of single nanomagnets with volumes of (100 nm)(3). Uniform as well as non-uniform volume modes of the spin wave excitation spectrum are identified and found to be in excellent agreement with the results of micromagnetic simulations which allow the visualization of the spatial distribution of these modes in the nanostructures. PMID:21693797

  19. Vanishing current hysteresis under competing nuclear spin pumping processes in a quadruplet spin-blockaded double quantum dot

    SciTech Connect

    Amaha, S.; Hatano, T.; Tarucha, S.; Gupta, J. A.; Austing, D. G.

    2015-04-27

    We investigate nuclear spin pumping with five-electron quadruplet spin states in a spin-blockaded weakly coupled vertical double quantum dot device. Two types of hysteretic steps in the leakage current are observed on sweeping the magnetic field and are associated with bidirectional polarization of nuclear spin. Properties of the steps are understood in terms of bias-voltage-dependent conditions for the mixing of quadruplet and doublet spin states by the hyperfine interaction. The hysteretic steps vanish when up- and down-nuclear spin pumping processes are in close competition.

  20. Entangled absorption of a single photon with a single spin in diamond.

    PubMed

    Kosaka, Hideo; Niikura, Naeko

    2015-02-01

    Quantum entanglement, a key resource for quantum information science, is inherent in a solid. It has been recently shown that entanglement between a single optical photon and a single spin qubit in a solid is generated via spontaneous emission. However, entanglement generation by measurement is rather essential for quantum operations. We here show that the physics behind the entangled emission can be time reversed to demonstrate entangled absorption mediated by an inherent spin-orbit entanglement in a single nitrogen vacancy center in diamond. Optical arbitrary spin state preparation and complete spin state tomography reveal the fidelity of the entangled absorption to be 95%. With the entangled emission and absorption of a photon, materials can be spontaneously entangled or swap their quantum state based on the quantum teleportation scheme. PMID:25699440

  1. Optical hyperpolarization of 13C nuclear spins in nanodiamond ensembles

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Schwarz, I.; Jelezko, F.; Retzker, A.; Plenio, M. B.

    2015-11-01

    Dynamical nuclear polarization holds the key for orders of magnitude enhancements of nuclear magnetic resonance signals which, in turn, would enable a wide range of novel applications in biomedical sciences. However, current implementations of DNP require cryogenic temperatures and long times for achieving high polarization. Here we propose and analyze in detail protocols that can achieve rapid hyperpolarization of 13C nuclear spins in randomly oriented ensembles of nanodiamonds at room temperature. Our protocols exploit a combination of optical polarization of electron spins in nitrogen-vacancy centers and the transfer of this polarization to 13C nuclei by means of microwave control to overcome the severe challenges that are posed by the random orientation of the nanodiamonds and their nitrogen-vacancy centers. Specifically, these random orientations result in exceedingly large energy variations of the electron spin levels that render the polarization and coherent control of the nitrogen-vacancy center electron spins as well as the control of their coherent interaction with the surrounding 13C nuclear spins highly inefficient. We address these challenges by a combination of an off-resonant microwave double resonance scheme in conjunction with a realization of the integrated solid effect which, together with adiabatic rotations of external magnetic fields or rotations of nanodiamonds, leads to a protocol that achieves high levels of hyperpolarization of the entire nuclear-spin bath in a randomly oriented ensemble of nanodiamonds even at room temperature. This hyperpolarization together with the long nuclear-spin polarization lifetimes in nanodiamonds and the relatively high density of 13C nuclei has the potential to result in a major signal enhancement in 13C nuclear magnetic resonance imaging and suggests functionalized and hyperpolarized nanodiamonds as a unique probe for molecular imaging both in vitro and in vivo.

  2. Spin constraints on nuclear energy density functionals

    NASA Astrophysics Data System (ADS)

    Robledo, L. M.; Bernard, R. N.; Bertsch, G. F.

    2014-02-01

    The Gallagher-Moszkowski rule in the spectroscopy of odd-odd nuclei imposes a new spin constraint on the energy functionals for self-consistent mean field theory. The commonly used parametrization of the effective three-body interaction in the Gogny and Skyrme families of energy functionals is ill suited to satisfy the spin constraint. In particular, the Gogny parametrization of the three-body interaction has the spin dependence opposite to that required by the observed spectra. The two-body part has a correct sign, but in combination the rule is violated as often as not. We conclude that a new functional form is needed for the effective three-body interaction that can take into better account the different spin-isospin channels of the interaction.

  3. Anomalous organic magnetoresistance from competing carrier-spin-dependent interactions with localized electronic and nuclear spins

    NASA Astrophysics Data System (ADS)

    Flatté, Michael E.

    Transport of carriers through disordered electronic energy landscapes occurs via hopping or tunneling through various sites, and can enhance the effects of carrier spin dynamics on the transport. When incoherent hopping preserves the spin orientation of carriers, the magnetic-field-dependent correlations between pairs of spins influence the charge conductivity of the material. Examples of these phenomena have been identified in hopping transport in organic semiconductors and colloidal quantum dots, as well as tunneling through oxide barriers in complex oxide devices, among other materials. The resulting room-temperature magnetic field effects on the conductivity or electroluminescence require external fields of only a few milliTesla. These magnetic field effects can be dramatically modified by changes in the local spin environment. Recent theoretical and experimental work has identified a regime for low-field magnetoresistance in organic semiconductors in which the spin-relaxing effects of localized nuclear spins and electronic spins interfere1. The regime is studied experimentally by the controlled addition of localized electronic spins, through the addition of a stable free radical (galvinoxyl) to a material (MEH-PPV) that exhibits substantial room-temperature magnetoresistance (20 initially suppressed by the doping, as the localized electronic spin mixes one of the two spins whose correlation controls the transport. At intermediate doping, when one spin is fully decohered but the other is not, there is a regime where the magnetoresistance is insensitive to the doping level. For much greater doping concentrations the magnetoresistance is fully suppressed as both spins that control the charge conductivity of the material are mixed. The behavior is described within a theoretical model describing the effect of carrier spin dynamics on the current. Generalizations to amorphous and other disordered crystalline semiconductors will also be described. This work was supported by DOE and an ARO MURI and was done in collaboration with N. J. Harmon, K. Sahin-Tiras, Y. Wang and M. Wohlgenannt.

  4. Interfacing nuclear spins in quantum dots to a cavity or traveling-wave fields

    NASA Astrophysics Data System (ADS)

    Schwager, Heike; Cirac, J. Ignacio; Giedke, Gza

    2010-04-01

    In this paper, we show how to realize a quantum interface between optical fields and the polarized nuclear spins in a singly charged quantum dot, which is strongly coupled to a high-finesse optical cavity. Effective direct coupling between cavity and nuclear spins is obtained by adiabatically eliminating the (far detuned) excitonic and electronic states. The requirements for mapping qubit and continuous variable states of cavity or traveling-wave fields to the collective nuclear spin are investigated: for cavity fields, we consider adiabatic passage processes to transfer the states. It is seen that a significant improvement in cavity lifetimes beyond present-day technology would be required for a quantum interface. We then turn to a scheme that couples the nuclei to the output field of the cavity and does not require a long-lived cavity. We show that the lifetimes reported in the literature and the recently achieved nuclear polarization of ~90% allow both high-fidelity read-out and write-in of quantum information between the nuclear spins and the output field. We discuss the performance of the scheme and provide a convenient description of the dipolar dynamics of the nuclei for highly polarized spins, demonstrating that this process does not affect the performance of our protocol.

  5. Single-chip detector for electron spin resonance spectroscopy.

    PubMed

    Yalcin, T; Boero, G

    2008-09-01

    We have realized an innovative integrated detector for electron spin resonance spectroscopy. The microsystem, consisting of an LC oscillator, a mixer, and a frequency division module, is integrated onto a single silicon chip using a conventional complementary metal-oxide-semiconductor technology. The implemented detection method is based on the measurement of the variation of the frequency of the integrated LC oscillator as a function of the applied static magnetic field, caused by the presence of a resonating sample placed over the inductor of the LC-tank circuit. The achieved room temperature spin sensitivity is about 10(10) spinsGHz(12) with a sensitive volume of about (100 microm)(3). PMID:19044436

  6. Single-chip detector for electron spin resonance spectroscopy

    SciTech Connect

    Yalcin, T.; Boero, G.

    2008-09-15

    We have realized an innovative integrated detector for electron spin resonance spectroscopy. The microsystem, consisting of an LC oscillator, a mixer, and a frequency division module, is integrated onto a single silicon chip using a conventional complementary metal-oxide-semiconductor technology. The implemented detection method is based on the measurement of the variation of the frequency of the integrated LC oscillator as a function of the applied static magnetic field, caused by the presence of a resonating sample placed over the inductor of the LC-tank circuit. The achieved room temperature spin sensitivity is about 10{sup 10} spins/GHz{sup 1/2} with a sensitive volume of about (100 {mu}m){sup 3}.

  7. Electric-field sensing using single diamond spins

    NASA Astrophysics Data System (ADS)

    Dolde, F.; Fedder, H.; Doherty, M. W.; Nöbauer, T.; Rempp, F.; Balasubramanian, G.; Wolf, T.; Reinhard, F.; Hollenberg, L. C. L.; Jelezko, F.; Wrachtrup, J.

    2011-06-01

    The ability to sensitively detect individual charges under ambient conditions would benefit a wide range of applications across disciplines. However, most current techniques are limited to low-temperature methods such as single-electron transistors, single-electron electrostatic force microscopy and scanning tunnelling microscopy. Here we introduce a quantum-metrology technique demonstrating precision three-dimensional electric-field measurement using a single nitrogen-vacancy defect centre spin in diamond. An a.c. electric-field sensitivity reaching 202+/-6Vcm-1Hz-1/2 has been achieved. This corresponds to the electric field produced by a single elementary charge located at a distance of ~150nm from our spin sensor with averaging for one second. The analysis of the electronic structure of the defect centre reveals how an applied magnetic field influences the electric-field-sensing properties. We also demonstrate that diamond-defect-centre spins can be switched between electric- and magnetic-field sensing modes and identify suitable parameter ranges for both detector schemes. By combining magnetic- and electric-field sensitivity, nanoscale detection and ambient operation, our study should open up new frontiers in imaging and sensing applications ranging from materials science to bioimaging.

  8. High-efficiency resonant amplification of weak magnetic fields for single spin magnetometry at room temperature

    NASA Astrophysics Data System (ADS)

    Trifunovic, Luka; Pedrocchi, Fabio L.; Hoffman, Silas; Maletinsky, Patrick; Yacoby, Amir; Loss, Daniel

    2015-06-01

    Magnetic resonance techniques not only provide powerful imaging tools that have revolutionized medicine, but they have a wide spectrum of applications in other fields of science such as biology, chemistry, neuroscience and physics. However, current state-of-the-art magnetometers are unable to detect a single nuclear spin unless the tip-to-sample separation is made sufficiently small. Here, we demonstrate theoretically that by placing a ferromagnetic particle between a nitrogen-vacancy magnetometer and a target spin, the magnetometer sensitivity is improved dramatically. Using materials and techniques that are already experimentally available, our proposed set-up is sensitive enough to detect a single nuclear spin within ten milliseconds of data acquisition at room temperature. The sensitivity is practically unchanged when the ferromagnet surface to the target spin separation is smaller than the ferromagnet lateral dimensions; typically about a tenth of a micrometre. This scheme further benefits when used for nitrogen-vacancy ensemble measurements, enhancing sensitivity by an additional three orders of magnitude.

  9. Nuclear spin conversion of methane in solid parahydrogen.

    PubMed

    Miyamoto, Yuki; Fushitani, Mizuho; Ando, Daisuke; Momose, Takamasa

    2008-03-21

    The nuclear spin conversion of CH(4) and CD(4) isolated in solid parahydrogen was investigated by high resolution Fourier transform infrared spectroscopy. From the analysis of the temporal changes of rovibrational absorption spectra, the nuclear spin conversion rates associated with the rotational relaxation from the J=1 state to the J=0 state for both species were determined at temperatures between 1 and 6 K. The conversion rate of CD(4) was found to be 2-100 times faster than that of CH(4) in this temperature range. The faster conversion in CD(4) is attributed to the quadrupole interaction of D atoms in CD(4), while the conversion in CH(4) takes place mainly through the nuclear spin-nuclear spin interaction. The conversion rates depend on crystal temperature strongly above 3.5 K for CH(4) and above 2 K for CD(4), while the rates were almost constant below these temperatures. The temperature dependence indicates that the one-phonon process is dominant at low temperatures, while two-phonon processes become important at higher temperatures as a cause of the nuclear spin conversion. PMID:18361586

  10. Dephasing due to Nuclear Spins in Large-Amplitude Electric Dipole Spin Resonance.

    PubMed

    Chesi, Stefano; Yang, Li-Ping; Loss, Daniel

    2016-02-12

    We analyze effects of the hyperfine interaction on electric dipole spin resonance when the amplitude of the quantum-dot motion becomes comparable or larger than the quantum dot's size. Away from the well-known small-drive regime, the important role played by transverse nuclear fluctuations leads to a Gaussian decay with characteristic dependence on drive strength and detuning. A characterization of spin-flip gate fidelity, in the presence of such additional drive-dependent dephasing, shows that vanishingly small errors can still be achieved at sufficiently large amplitudes. Based on our theory, we analyze recent electric dipole spin resonance experiments relying on spin-orbit interactions or the slanting field of a micromagnet. We find that such experiments are already in a regime with significant effects of transverse nuclear fluctuations and the form of decay of the Rabi oscillations can be reproduced well by our theory. PMID:26919009

  11. Dephasing due to Nuclear Spins in Large-Amplitude Electric Dipole Spin Resonance

    NASA Astrophysics Data System (ADS)

    Chesi, Stefano; Yang, Li-Ping; Loss, Daniel

    2016-02-01

    We analyze effects of the hyperfine interaction on electric dipole spin resonance when the amplitude of the quantum-dot motion becomes comparable or larger than the quantum dot's size. Away from the well-known small-drive regime, the important role played by transverse nuclear fluctuations leads to a Gaussian decay with characteristic dependence on drive strength and detuning. A characterization of spin-flip gate fidelity, in the presence of such additional drive-dependent dephasing, shows that vanishingly small errors can still be achieved at sufficiently large amplitudes. Based on our theory, we analyze recent electric dipole spin resonance experiments relying on spin-orbit interactions or the slanting field of a micromagnet. We find that such experiments are already in a regime with significant effects of transverse nuclear fluctuations and the form of decay of the Rabi oscillations can be reproduced well by our theory.

  12. Coherent manipulation of quantum spin states in a single molecular nanomagnet

    NASA Astrophysics Data System (ADS)

    Wernsdorfer, Wolfgang

    The endeavour of quantum electronics is driven by one of the most ambitious technological goals of today's scientists: the realization of an operational quantum computer (http://qurope.eu). We started to address this goal by the new research field of molecular quantum spintronics. The building blocks are magnetic molecules, i.e. well-defined spin qubits. We will discuss this still largely unexplored field and present our first results: For example, using a molecular spin-transistor, we achieved the electronic read-out of the nuclear spin of an individual metal atom embedded in an SMM. We could show very long spin lifetimes (>10 s). Using the hyperfine Stark effect, which transforms electric fields into local effective magnetic fields, we could not only tune the resonance frequency by several MHz, but also perform coherent quantum manipulations on a single nuclear qubit faster than a μs by means of electrical fields only, establishing the individual addressability of identical nuclear qubits. Using three different microwave frequencies, we could implement a simple four-level Grover algorithm. S. Thiele, F. Balestro, R. Ballou, S. Klyatskaya, M. Ruben, W. Wernsdorfer, Science 344, 1135 (2014).

  13. Spin dynamics of a confined electron interacting with magnetic or nuclear spins: A semiclassical approach

    NASA Astrophysics Data System (ADS)

    Dietl, Tomasz

    2015-03-01

    A physically transparent and mathematically simple semiclassical model is employed to examine dynamics in the central-spin problem. The results reproduce previous findings obtained by various quantum approaches and, at the same time, provide information on the electron spin dynamics and Berry's phase effects over a wider range of experimentally relevant parameters than available previously. This development is relevant to dynamics of bound magnetic polarons and spin dephasing of an electron trapped by an impurity or a quantum dot, and coupled by a contact interaction to neighboring localized magnetic impurities or nuclear spins. Furthermore, it substantiates the applicability of semiclassical models to simulate dynamic properties of spintronic nanostructures with a mesoscopic number of spins.

  14. Single-spin asymmetries in muon pair production

    SciTech Connect

    Carlitz, R.D.; Willey, R.S. )

    1992-04-01

    Theoretical analyses of polarized leptoproduction data suggest that the polarized gluon structure function might be large, but there has been no independent measurement of this quantity. Measurements of single-spin asymmetries in the production of muon pairs from the scattering of two protons, one of which is longitudinally polarized, can be interpreted in terms of polarized gluon, quark, and antiquark structure functions. We develop this interpretation in detail and compute the size of the asymmetries that might be expected for this process.

  15. High fidelity readout of a single electron spin

    NASA Astrophysics Data System (ADS)

    Keselman, Anna; Glickman, Yinnon; Akerman, Nitzan; Kotler, Shlomi; Dallal, Yehonatan; Ozeri, Roee

    2010-03-01

    We use the two spin states of the valence electron of a single trapped ^88Sr^+ ion as a physical qubit implementation. For qubit readout one of the qubit states is shelved to a metastable D level using a narrow linewidth 674nm diode laser followed by state-selective fluorescence detection. Careful analysis of the resulting photon detection statistics allows for a minimal detection error of 2 . 10-3, compatible with recent estimates of the fault-tolerance required error threshold.

  16. Quantum and classical correlations in electron-nuclear spin echo

    SciTech Connect

    Zobov, V. E.

    2014-11-15

    The quantum properties of dynamic correlations in a system of an electron spin surrounded by nuclear spins under the conditions of free induction decay and electron spin echo have been studied. Analytical results for the time evolution of mutual information, classical part of correlations, and quantum part characterized by quantum discord have been obtained within the central-spin model in the high-temperature approximation. The same formulas describe discord in both free induction decay and spin echo although the time and magnetic field dependences are different because of difference in the parameters entering into the formulas. Changes in discord in the presence of the nuclear polarization β{sub I} in addition to the electron polarization β{sub S} have been calculated. It has been shown that the method of reduction of the density matrix to a two-spin electron-nuclear system provides a qualitatively correct description of pair correlations playing the main role at β{sub S} ≈ β{sub I} and small times. At large times, such correlations decay and multispin correlations ensuring nonzero mutual information and zero quantum discord become dominant.

  17. Single-Spin Asymmetries in Pion Electroproduction at CLAS

    NASA Astrophysics Data System (ADS)

    Avagyan, Harut

    2002-04-01

    Single-spin asymmetries (SSA) in azimuthal distributions of final state particles in deep inelastic scattering (DIS) play a crucial role in the study of the spin structure of hadrons in terms of their elementary constituents. They give access to subtle distribution and fragmentation functions, which cannot easily be accessed in other ways. The higher-twist distributions while being important for understanding the long-range quark-gluon dynamics, contribute at leading order to certain asymmetries and will be very important at low beam energies (CEBAF,HERMES) because of the phenomenon of hadron-parton duality, or ``precocious scaling''. This contribution presents latest results from Jefferson Lab's CLAS detector on beam and target SSA in pion azimuthal distributions in one particle inclusive electroproduction in the DIS regime (Q^2>1GeV^2,W>2GeV) off an unpolarized hydrogen and polarized NH3 targets. Large single-beam and single-target spin asymmetries were observed at large z (fraction of the virtual photon momentum carried by the produced pion), a domain where semi-inclusive and exclusive processes overlap in hard scattering.

  18. Accelerated 2D magnetic resonance spectroscopy of single spins using matrix completion

    NASA Astrophysics Data System (ADS)

    Scheuer, Jochen; Stark, Alexander; Kost, Matthias; Plenio, Martin B.; Naydenov, Boris; Jelezko, Fedor

    2015-12-01

    Two dimensional nuclear magnetic resonance (NMR) spectroscopy is one of the major tools for analysing the chemical structure of organic molecules and proteins. Despite its power, this technique requires long measurement times, which, particularly in the recently emerging diamond based single molecule NMR, limits its application to stable samples. Here we demonstrate a method which allows to obtain the spectrum by collecting only a small fraction of the experimental data. Our method is based on matrix completion which can recover the full spectral information from randomly sampled data points. We confirm experimentally the applicability of this technique by performing two dimensional electron spin echo envelope modulation (ESEEM) experiments on a two spin system consisting of a single nitrogen vacancy (NV) centre in diamond coupled to a single 13C nuclear spin. The signal to noise ratio of the recovered 2D spectrum is compared to the Fourier transform of randomly subsampled data, where we observe a strong suppression of the noise when the matrix completion algorithm is applied. We show that the peaks in the spectrum can be obtained with only 10% of the total number of the data points. We believe that our results reported here can find an application in all types of two dimensional spectroscopy, as long as the measured matrices have a low rank.

  19. Accelerated 2D magnetic resonance spectroscopy of single spins using matrix completion

    PubMed Central

    Scheuer, Jochen; Stark, Alexander; Kost, Matthias; Plenio, Martin B.; Naydenov, Boris; Jelezko, Fedor

    2015-01-01

    Two dimensional nuclear magnetic resonance (NMR) spectroscopy is one of the major tools for analysing the chemical structure of organic molecules and proteins. Despite its power, this technique requires long measurement times, which, particularly in the recently emerging diamond based single molecule NMR, limits its application to stable samples. Here we demonstrate a method which allows to obtain the spectrum by collecting only a small fraction of the experimental data. Our method is based on matrix completion which can recover the full spectral information from randomly sampled data points. We confirm experimentally the applicability of this technique by performing two dimensional electron spin echo envelope modulation (ESEEM) experiments on a two spin system consisting of a single nitrogen vacancy (NV) centre in diamond coupled to a single 13C nuclear spin. The signal to noise ratio of the recovered 2D spectrum is compared to the Fourier transform of randomly subsampled data, where we observe a strong suppression of the noise when the matrix completion algorithm is applied. We show that the peaks in the spectrum can be obtained with only 10% of the total number of the data points. We believe that our results reported here can find an application in all types of two dimensional spectroscopy, as long as the measured matrices have a low rank. PMID:26631593

  20. Spin blockade effect in single-molecule transistors

    NASA Astrophysics Data System (ADS)

    Luo, Guangpu; Park, Kyungwha

    Recently single-molecule transistors consisting of individual single-molecule magnets trapped between electrodes have been experimentally realized and electron transport properties through individual single-molecule magnets have been measured. For a single-molecule magnet the (2S+1)-fold degeneracy of magnetic levels in a given spin multiplet is lifted even in the absence of external magnetic field, due to the magnetic anisotropy induced by spin-orbit coupling. This anisotropic nature of single-molecule magnets allowed one to discover interesting, unexpected transport properties. A recent theoretical study showed that an Eu-based anisotropic magnetic molecule can switch its magnetic anisotropy between magnetic easy plane and easy axis upon varying the charge state of the molecule. Motivated by this report, we investigate how this switch of magnetic anisotropy influences the electron transport through the molecule, by considering sequential electron tunneling. We calculate current-voltage characteristics by solving the master equation based on the model Hamiltonians. We explore this interesting effect in the absence and presence of external magnetic field. Funding from NSF DMR-1206354.

  1. Atomic-scale nuclear spin imaging using quantum-assisted sensors in diamond

    NASA Astrophysics Data System (ADS)

    Ajoy, Ashok; Bissbort, Ulf; Liu, Yixiang; Marseglia, Luca; Saha, Kasturi; Cappellaro, Paola

    2015-05-01

    Recent developments in materials fabrication and coherent control have brought quantum magnetometers based on electronic spin defects in diamond close to single nuclear spin sensitivity. These quantum sensors have the potential to be a revolutionary tool in proteomics, thus helping drug discovery: They can overcome some of the challenges plaguing other experimental techniques (x-ray and NMR) and allow single protein reconstruction in their natural conditions. While the sensitivity of diamond-based magnetometers approaches the single nuclear spin level, the outstanding challenge is to resolve contributions arising from distinct nuclear spins in a dense sample and use the acquired signal to reconstruct their positions. This talk describes a strategy to boost the spatial resolution of NV-based magnetic resonance imaging, by combining the use of a quantum memory intrinsic to the NV system with Hamiltonian engineering by coherent quantum control. The proposed strategy promises to make diamond-based quantum sensors an invaluable technology for bioimaging, as they could achieve the reconstruction of biomolecules local structure without the need to crystallize them, to synthesize large ensembles or to alter their natural environment.

  2. Single spin magnetometry with nitrogen-vacancy centers in diamond

    NASA Astrophysics Data System (ADS)

    Chisholm, Nicholas Edward Kennedy

    The nitrogen-vacancy (NV) center in diamond is a solid-state point defect with an electronic spin that has accessible quantum mechanical properties. At room temperature, the electronic ground state sub-levels of the NV center can be initialized and read out using optical pumping, as well as coherently controlled using microwave frequency fields. This thesis focuses on using the spin state of the NV center for highly-sensitive magnetometry under ambient conditions. In particular, when the diamond surface is properly prepared, we demonstrate that NV centers can be used to measure the magnetic fluctuations stemming from individual molecules and ions attached or adsorbed to the surface. This thesis begins by introducing the physical and electronic structure of the NV center at room temperature, followed by the fundamental measurements that allow us to use the NV center as a sensitive magnetometer. Combining our sensitive NV center magnetometer with techniques from chemistry and atomic force microscopy (AFM), we demonstrate the all-optical detection of a single-molecule electron spin at room temperature. Finally, we discuss the time-resolved detection of individual electron spins adsorbing onto the surface of nano-diamonds. By extending our techniques to nano-diamonds, we move closer towards textit{in vitro} magnetic field sensing that could be pivotal for better disease diagnosis and drug development.

  3. Optical Polarization of Nuclear Spins in Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Falk, Abram L.; Klimov, Paul V.; Ivády, Viktor; Szász, Krisztián; Christle, David J.; Koehl, William F.; Gali, Ádám; Awschalom, David D.

    2015-06-01

    We demonstrate optically pumped dynamic nuclear polarization of 29Si nuclear spins that are strongly coupled to paramagnetic color centers in 4 H - and 6 H -SiC. The 9 9 % ±1 % degree of polarization that we observe at room temperature corresponds to an effective nuclear temperature of 5 μ K . By combining ab initio theory with the experimental identification of the color centers' optically excited states, we quantitatively model how the polarization derives from hyperfine-mediated level anticrossings. These results lay a foundation for SiC-based quantum memories, nuclear gyroscopes, and hyperpolarized probes for magnetic resonance imaging.

  4. Observation of a single spin by transferring its coherence to a high level macroscopic pure state

    SciTech Connect

    Kawamura, Minaru

    2014-12-04

    We discuss about quantum measurement of a single spin in a superconducting RF resonator, where amplification of coherence of the spin is enabled by transferring its coherence to the harmonic oscillator in an non-coherent state with high energy level. This quantum amplification allows that a single spin can induce macroscopic current to permits observation of a single spin state in the number and phase uncertainty relation.

  5. Nuclear Spin Gyroscope Based on an Atomic Comagnetometer

    SciTech Connect

    Kornack, T.W.; Ghosh, R.K.; Romalis, M.V.

    2005-12-02

    We describe a nuclear spin gyroscope based on an alkali-metal-noble-gas comagnetometer. Optically pumped alkali-metal vapor is used to polarize the noble-gas atoms and detect their gyroscopic precession. Spin precession due to magnetic fields as well as their gradients and transients can be cancelled in this arrangement. The sensitivity is enhanced by using a high-density alkali-metal vapor in a spin-exchange relaxation free regime. With a K-{sup 3}He comagnetometer we demonstrate rotation sensitivity of 5x10{sup -7} rad s{sup -1} Hz{sup -1/2}, equivalent to a magnetic field sensitivity of 2.5 fT/Hz{sup 1/2}. The rotation signal can be increased by a factor of 10 using {sup 21}Ne with a smaller magnetic moment. The comagnetometer is also a promising tool in searches for anomalous spin couplings beyond the standard model.

  6. Multistability and spin diffusion enhanced lifetimes in dynamic nuclear polarization in a double quantum dot

    NASA Astrophysics Data System (ADS)

    Forster, F.; Mühlbacher, M.; Schuh, D.; Wegscheider, W.; Giedke, G.; Ludwig, S.

    2015-12-01

    The control of nuclear spins in quantum dots is essential to explore their many-body dynamics and exploit their prospects for quantum information processing. We present a unique combination of dynamic nuclear spin polarization and electric-dipole-induced spin resonance in an electrostatically defined double quantum dot (DQD) exposed to the strongly inhomogeneous field of two on-chip nanomagnets. Our experiments provide direct and unrivaled access to the nuclear spin polarization distribution and allow us to establish and characterize multiple fixed points. Further, we demonstrate polarization of the DQD environment by nuclear spin diffusion which significantly stabilizes the nuclear spins inside the DQD.

  7. Nuclear moments of inertia at high spin

    SciTech Connect

    Deleplanque, M.A.

    1982-10-01

    The competition between collective motion and alignment at high spin can be evaluated by measuring two complementary dynamic moments of inertia. The first, I band, measured in ..gamma..-..gamma.. correlation experiments, relates to the collective properties of the nucleus. A new moment of inertia I/sub eff/ is defined here, which contains both collective and alignment effects. Both of these can be measured in continuum ..gamma..-ray spectra of rotational nuclei up to high frequencies. The evolution of ..gamma..-ray spectra for Er nuclei from mass 160 to 154 shows that shell effects can directly be observed in the spectra of the lighter nuclei.

  8. Nuclear spin optical rotation and Faraday effect in gaseous and liquid water

    NASA Astrophysics Data System (ADS)

    Pennanen, Teemu S.; Ikäläinen, Suvi; Lantto, Perttu; Vaara, Juha

    2012-05-01

    Nuclear spin optical rotation (NSOR) of linearly polarized light, due to the nuclear spins through the Faraday effect, provides a novel probe of molecular structure and could pave the way to optical detection of nuclear magnetization. We determine computationally the effects of the liquid medium on NSOR and the Verdet constant of Faraday rotation (arising from an external magnetic field) in water, using the recently developed theory applied on a first-principles molecular dynamics trajectory. The gas-to-liquid shifts of the relevant antisymmetric polarizability and, hence, NSOR magnitude are found to be -14% and -29% for 1H and 17O nuclei, respectively. On the other hand, medium effects both enhance the local electric field in water and, via bulk magnetization, the local magnetic field. Together these two effects partially cancel the solvation influence on the single-molecular property. We find a good agreement for the hydrogen NSOR with a recent pioneering experiment on H2O(l).

  9. Search for an Atomic EDM with Optical-Coupling Nuclear Spin Oscillator

    SciTech Connect

    Asahi, K.; Uchida, M.; Inoue, T.; Hatakeyama, N.; Yoshimi, A.

    2007-06-13

    We have constructed a nuclear spin oscillator of a new type, that employs a feedback scheme based on an optical spin detection and suceeding spin control by a transverse field application. This spin oscillator parallels the conventional spin maser in many points, but exhibits advantages and requirements that are different from those with the spin maser. By means of the optical-coupling nuclear spin oscillator, an experimental setup to search for an electric dipole moment (EDM) in a spin 1/2 diamagnetic atom 129Xe is being developed.

  10. Half-metallic properties, single-spin negative differential resistance, and large single-spin Seebeck effects induced by chemical doping in zigzag-edged graphene nanoribbons

    SciTech Connect

    Yang, Xi-Feng; Zhou, Wen-Qian; Hong, Xue-Kun; Liu, Yu-Shen Feng, Jin-Fu; Wang, Xue-Feng

    2015-01-14

    Ab initio calculations combining density-functional theory and nonequilibrium Green’s function are performed to investigate the effects of either single B atom or single N atom dopant in zigzag-edged graphene nanoribbons (ZGNRs) with the ferromagnetic state on the spin-dependent transport properties and thermospin performances. A spin-up (spin-down) localized state near the Fermi level can be induced by these dopants, resulting in a half-metallic property with 100% negative (positive) spin polarization at the Fermi level due to the destructive quantum interference effects. In addition, the highly spin-polarized electric current in the low bias-voltage regime and single-spin negative differential resistance in the high bias-voltage regime are also observed in these doped ZGNRs. Moreover, the large spin-up (spin-down) Seebeck coefficient and the very weak spin-down (spin-up) Seebeck effect of the B(N)-doped ZGNRs near the Fermi level are simultaneously achieved, indicating that the spin Seebeck effect is comparable to the corresponding charge Seebeck effect.

  11. Dynamics of nuclear spin polarization induced and detected by coherently precessing electron spins in fluorine-doped ZnSe

    NASA Astrophysics Data System (ADS)

    Heisterkamp, F.; Kirstein, E.; Greilich, A.; Zhukov, E. A.; Kazimierczuk, T.; Yakovlev, D. R.; Pawlis, A.; Bayer, M.

    2016-02-01

    We study the dynamics of optically induced nuclear spin polarization in a fluorine-doped ZnSe epilayer via time-resolved Kerr rotation. The nuclear polarization in the vicinity of a fluorine donor is induced by interaction with coherently precessing electron spins in a magnetic field applied in the Voigt geometry. It is detected by nuclei-induced changes in the electron spin coherence signal. This all-optical technique allows us to measure the longitudinal spin relaxation time T1 of the 77Se isotope in a magnetic field range from 10 to 130 mT under illumination. We combine the optical technique with radio frequency methods to address the coherent spin dynamics of the nuclei and measure Rabi oscillations, Ramsey fringes, and the nuclear spin echo. The inhomogeneous spin dephasing time T2* and the spin coherence time T2 of the 77Se isotope are measured. While the T1 time is on the order of several milliseconds, the T2 time is several hundred microseconds. The experimentally determined condition T1≫T2 verifies the validity of the classical model of nuclear spin cooling for describing the optically induced nuclear spin polarization.

  12. Observation of spin-charge conversion in chemical-vapor-deposition-grown single-layer graphene

    SciTech Connect

    Ohshima, Ryo; Sakai, Atsushi; Ando, Yuichiro; Shiraishi, Masashi; Shinjo, Teruya; Kawahara, Kenji; Ago, Hiroki

    2014-10-20

    Conversion of pure spin current to charge current in single-layer graphene (SLG) is investigated by using spin pumping. Large-area SLG grown by chemical vapor deposition is used for the conversion. Efficient spin accumulation in SLG by spin pumping enables observing an electromotive force produced by the inverse spin Hall effect (ISHE) of SLG. The spin Hall angle of SLG is estimated to be 6.1 × 10{sup −7}. The observed ISHE in SLG is ascribed to its non-negligible spin-orbit interaction in SLG.

  13. Spin-flip configuration interaction singles with exact spin-projection: Theory and applications to strongly correlated systems

    NASA Astrophysics Data System (ADS)

    Tsuchimochi, Takashi

    2015-10-01

    Spin-flip approaches capture static correlation with the same computational scaling as the ordinary single reference methods. Here, we extend spin-flip configuration interaction singles (SFCIS) by projecting out intrinsic spin-contamination to make it spin-complete, rather than by explicitly complementing it with spin-coupled configurations. We give a general formalism of spin-projection for SFCIS, applicable to any spin states. The proposed method is viewed as a natural unification of SFCIS and spin-projected CIS to achieve a better qualitative accuracy at a low computational cost. While our wave function ansatz is more compact than previously proposed spin-complete SF approaches, it successfully offers more general static correlation beyond biradicals without sacrificing good quantum numbers. It is also shown that our method is invariant with respect to open-shell orbital rotations, due to the uniqueness of spin-projection. We will report benchmark calculations to demonstrate its qualitative performance on strongly correlated systems, including conical intersections that appear both in ground-excited and excited-excited degeneracies.

  14. Spin-flip configuration interaction singles with exact spin-projection: Theory and applications to strongly correlated systems

    SciTech Connect

    Tsuchimochi, Takashi

    2015-10-14

    Spin-flip approaches capture static correlation with the same computational scaling as the ordinary single reference methods. Here, we extend spin-flip configuration interaction singles (SFCIS) by projecting out intrinsic spin-contamination to make it spin-complete, rather than by explicitly complementing it with spin-coupled configurations. We give a general formalism of spin-projection for SFCIS, applicable to any spin states. The proposed method is viewed as a natural unification of SFCIS and spin-projected CIS to achieve a better qualitative accuracy at a low computational cost. While our wave function ansatz is more compact than previously proposed spin-complete SF approaches, it successfully offers more general static correlation beyond biradicals without sacrificing good quantum numbers. It is also shown that our method is invariant with respect to open-shell orbital rotations, due to the uniqueness of spin-projection. We will report benchmark calculations to demonstrate its qualitative performance on strongly correlated systems, including conical intersections that appear both in ground-excited and excited-excited degeneracies.

  15. Spin-flip configuration interaction singles with exact spin-projection: Theory and applications to strongly correlated systems.

    PubMed

    Tsuchimochi, Takashi

    2015-10-14

    Spin-flip approaches capture static correlation with the same computational scaling as the ordinary single reference methods. Here, we extend spin-flip configuration interaction singles (SFCIS) by projecting out intrinsic spin-contamination to make it spin-complete, rather than by explicitly complementing it with spin-coupled configurations. We give a general formalism of spin-projection for SFCIS, applicable to any spin states. The proposed method is viewed as a natural unification of SFCIS and spin-projected CIS to achieve a better qualitative accuracy at a low computational cost. While our wave function ansatz is more compact than previously proposed spin-complete SF approaches, it successfully offers more general static correlation beyond biradicals without sacrificing good quantum numbers. It is also shown that our method is invariant with respect to open-shell orbital rotations, due to the uniqueness of spin-projection. We will report benchmark calculations to demonstrate its qualitative performance on strongly correlated systems, including conical intersections that appear both in ground-excited and excited-excited degeneracies. PMID:26472370

  16. Investigation of the Possibility of Using Nuclear Magnetic Spin Alignment

    NASA Technical Reports Server (NTRS)

    Dent, William V., Jr.

    1998-01-01

    The goal of the program to investigate a "Gasdynamic fusion propulsion system for space exploration" is to develop a fusion propulsion system for a manned mission to the planet mars. A study using Deuterium and Tritium atoms are currently in progress. When these atoms under-go fusion, the resulting neutrons and alpha particles are emitted in random directions (isotropically). The probable direction of emission is equal for all directions, thus resulting in wasted energy, massive shielding and cooling requirements, and serious problems with the physics of achieving fusion. If the nuclear magnetic spin moments of the deuterium and tritium nuclei could be precisely aligned at the moment of fusion, the stream of emitted neutrons could be directed out the rear of the spacecraft for thrust and the alpha particles directed forward into an electromagnet ot produce electricity to continue operating the fusion engine. The following supporting topics are discussed: nuclear magnetic moments and spin precession in magnetic field, nuclear spin quantum mechanics, kinematics of nuclear reactions, and angular distribution of particles.

  17. Nuclear-spin-lattice relaxation in rhenium metal

    SciTech Connect

    Dimitropoulos, C.; Bucher, J.P.; Borsa, F.; Corti, M.

    1989-04-01

    Nuclear-spin-lattice relaxation measurements are presented for /sup 187/Re in Re metal as a function of temperature. The relaxation transition probabilities were extracted from the nuclear magnetization recovery curves both in high magnetic field (H/sub 0/ = 8 T) nuclear-magnetic-resonance experiments and in nuclear-quadrupole-resonance (H/sub 0/ = 0) experiments. It is found that the dominant relaxation mechanisms is due to magnetic rather then quadrupolar hyperfine interaction with W/sub M/ = 1.32 T. The data are analyzed in terms of the electronic structure of Re metal. The analysis confirms that Re is a ''weakly enhanced'' transition metal with a nuclear relaxation rate dominated by the s-contact hyperfine interaction.

  18. Nuclear-spin lattice relaxation and magnetic-ion spin fluctuations in Heisenberg antiferromagnets below TN

    NASA Astrophysics Data System (ADS)

    Engelsberg, M.; Albino O. de Aguiar, J.

    1985-04-01

    The results of measurements on the magnetic field and temperature dependences of the 19F nuclear-spin lattice relaxation time T1 in KNiF3 for T<~0.04TN are reported. It is concluded that a relaxation mechanism that had been previously proposed to interpret the low-temperature field dependence of T1 in RbMnF3 does not explain our experimental results in KNiF3. Some similarities in the behavior of both systems suggest that a common mechanism may be responsible for spin-lattice relaxation in either case. We discuss the possibility that this mechanism may involve a diffusive mode below TN with a central peak in the relevant magnetic-ion spin correlation function.

  19. Quantum logic readout and cooling of a single dark electron spin

    NASA Astrophysics Data System (ADS)

    Shi, Fazhan; Zhang, Qi; Naydenov, Boris; Jelezko, Fedor; Du, Jiangfeng; Reinhard, Friedemann; Wrachtrup, Jörg

    2013-05-01

    We study a single dark N2 electron spin defect in diamond, which is magnetically coupled to a nearby nitrogen-vacancy (NV) center. We perform pulsed electron spin resonance on this single spin by mapping its state to the NV center spin and optically reading out the latter. Moreover, we show that the NV center's spin polarization can be transferred to the electron spin by combined two decoupling control-NOT gates. These two results allow us to extend the NV center's two key properties—optical spin polarization and detection—to any electron spin in its vicinity. This enables dark electron spins to be used as local quantum registers and engineerable memories.

  20. Employing Forbidden Transitions as Qubits in a Nuclear Spin-Free Chromium Complex.

    PubMed

    Fataftah, Majed S; Zadrozny, Joseph M; Coste, Scott C; Graham, Michael J; Rogers, Dylan M; Freedman, Danna E

    2016-02-01

    The implementation of quantum computation (QC) would revolutionize scientific fields ranging from encryption to quantum simulation. One intuitive candidate for the smallest unit of a quantum computer, a qubit, is electronic spin. A prominent proposal for QC relies on high-spin magnetic molecules, where multiple transitions between the many MS levels are employed as qubits. Yet, over a decade after the original notion, the exploitation of multiple transitions within a single manifold for QC remains unrealized in these high-spin species due to the challenge of accessing forbidden transitions. To create a proof-of-concept system, we synthesized the novel nuclear spin-free complex [Cr(C3S5)3](3-) with precisely tuned zero-field splitting parameters that create two spectroscopically addressable transitions, with one being a forbidden transition. Pulsed electron paramagnetic resonance (EPR) measurements enabled the investigation of the coherent lifetimes (T2) and quantum control (Rabi oscillations) for two transitions, one allowed and one forbidden, within the S = (3)/2 spin manifold. This investigation represents a step forward in the development of high-spin species as a pathway to scalable QC systems within magnetic molecules. PMID:26739626

  1. Spin-dependent thermoelectronic transport of a single molecule magnet Mn(dmit){sub 2}

    SciTech Connect

    Su, Zhongbo; Wei, Xinyuan; Yang, Zhongqin; An, Yipeng

    2014-05-28

    We investigate spin-dependent thermoelectronic transport properties of a single molecule magnet Mn(dmit){sub 2} sandwiched between two Au electrodes using first-principles density functional theory combined with nonequilibrium Green's function method. By applying a temperature difference between the two Au electrodes, spin-up and spin-down currents flowing in opposite directions can be induced due to asymmetric distribution of the spin-up and spin-down transmission spectra around the Fermi level. A pure spin current and 100% spin polarization are achieved by tuning back-gate voltage to the system. The spin caloritronics of the molecule with a perpendicular conformation is also explored, where the spin-down current is blocked strongly. These results suggest that Mn(dmit){sub 2} is a promising material for spin caloritronic applications.

  2. Microtesla SABRE enables 10% nitrogen-15 nuclear spin polarization.

    PubMed

    Theis, Thomas; Truong, Milton L; Coffey, Aaron M; Shchepin, Roman V; Waddell, Kevin W; Shi, Fan; Goodson, Boyd M; Warren, Warren S; Chekmenev, Eduard Y

    2015-02-01

    Parahydrogen is demonstrated to efficiently transfer its nuclear spin hyperpolarization to nitrogen-15 in pyridine and nicotinamide (vitamin B(3) amide) by conducting "signal amplification by reversible exchange" (SABRE) at microtesla fields within a magnetic shield. Following transfer of the sample from the magnetic shield chamber to a conventional NMR spectrometer, the (15)N NMR signals for these molecules are enhanced by ∼30,000- and ∼20,000-fold at 9.4 T, corresponding to ∼10% and ∼7% nuclear spin polarization, respectively. This method, dubbed "SABRE in shield enables alignment transfer to heteronuclei" or "SABRE-SHEATH", promises to be a simple, cost-effective way to hyperpolarize heteronuclei. It may be particularly useful for in vivo applications because of longer hyperpolarization lifetimes, lack of background signal, and facile chemical-shift discrimination of different species. PMID:25583142

  3. Flux-vector model of spin noise in superconducting circuits: Electron versus nuclear spins and role of phase transition

    NASA Astrophysics Data System (ADS)

    LaForest, S.; de Sousa, Rogério

    2015-08-01

    Superconducting quantum interference devices (SQUIDs) and other superconducting circuits are limited by intrinsic flux noise with spectral density 1 /fα with α <1 whose origin is believed to be due to spin impurities. Here, we present a theory of flux noise that takes into account the vectorial nature of the coupling of spins to superconducting wires. We present explicit numerical calculations of the flux-noise power (spectral density integrated over all frequencies) for electron impurities and lattice nuclear spins under several different assumptions. The noise power is shown to be dominated by surface electron spins near the wire edges, with bulk lattice nuclear spins contributing ˜5 % of the noise power in aluminum and niobium wires. We consider the role of electron spin phase transitions, showing that the spin-spin correlation length (describing, e.g., the average size of ferromagnetic spin clusters) greatly impacts the scaling of flux noise with wire geometry. Remarkably, the flux-noise power is exactly equal to zero when the spins are polarized along the flux-vector direction, forming what we call a poloidal state. Flux noise is nonzero for other spin textures, but gets reduced in the presence of correlated ferromagnetic fluctuations between the top and bottom wire surfaces, where the flux vectors are antiparallel. This demonstrates that engineering spin textures and/or intersurface correlation provides a method to reduce flux noise in superconducting devices.

  4. Quantum Dot Spin Valves Controlled by Single Molecule Magnets

    NASA Astrophysics Data System (ADS)

    Rostamzadeh Renani, Fatemeh; Kirczenow, George

    2013-03-01

    We explore theoretically for the first time the properties of a new class of spintronic nano-devices in which the electrical resistance of a non-magnetic quantum dot contacted by non-magnetic electrodes is controlled by transition metal-based single molecule nanomagnets (SMMs) bound to the dot. Although the SMMs do not lie directly in the current path in these devices, we show that the relative orientation of their magnetic moments can strongly influence on the electric current passing through the device. If the magnetic moment of one of the SMMs is reversed by the application of a magnetic field, we predict a large change in the resistance of the dot, i.e., a strong spin valve effect. The mechanism is resonant conduction via molecular orbitals extending over the entire system. The spin valve is activated by a gate that tunes the transport resonances through the Fermi energy. Detailed results will be presented for the case of Mn12 SMMs bound to a gold quantum dot. This work was supported by CIFAR and NSERC.

  5. Multiple Reflection Effect on Spin-Transfer Torque Dynamics in Spin Valves with a Single or Dual Polarizer

    NASA Astrophysics Data System (ADS)

    Zhu, Weiwei; Zhang, Zongzhi; Zhang, Jianwei; Liu, Yaowen

    2015-04-01

    In this paper, spin-dependent multiple reflection effect on spin-transfer torque (STT) has been theoretically and numerically studied in a spin valve nanopillar with a single or dual spin-polarizer. By using a scattering matrix method, we formulate an analytical expression of STT that contains the multiple interfacial reflection effect. It is found that the multiple reflections could enhance the STT efficiency and reduce the critical switching current. The STT efficiency depends on the spin polarization of both the free layer and polarizer. In the nanopillars with a dual spin polarizer, the multiple reflections would cause an asymmetric frequency dependence on the applied current, albeit exactly the same parameters are used in all three ferromagnetic layers, indicating that the frequency in the negative current varies much faster than that in the positive case.

  6. Spin Density Matrices for Nuclear Density Functionals with Parity Violation

    NASA Astrophysics Data System (ADS)

    Barrett, Bruce; Giraud, Bertrand

    2010-11-01

    Within the context of the radial density functional [1], we apply the spin density matrix (SDM) used in atomic and molecular physics [2] to nuclear physics. The vector part of the SDM defines a ``hedgehog'' situation, which exists only if nuclear states contain some amount of parity violation. Thus, looking for the vector profile of the SDM could be used as a test for parity violation in nuclei. The difference between the scalar profile and the vector profile of the SDM will be illustrated by a toy model. [4pt] [1] B. G. Giraud, Phys. Rev. C 78, 014307 (2008).[0pt] [2] A. Goerling, Phys. Rev. A 47, 2783 (1993).

  7. Global fitting of single spin asymmetry: an attempt

    SciTech Connect

    Alexey Prokudin,Zhong-Bo Kang

    2012-04-01

    We present an attempt of global analysis of Semi-Inclusive Deep Inelastic Scattering (SIDIS) $\\ell p^\\uparrow \\to \\ell' \\pi X$ data on single spin asymmetries and data on left-right asymmetry $A_N$ in $p^\\uparrow p \\to \\pi X$ in order to simultaneously extract information on Sivers function and twist-three quark-gluon Efremov-Teryaev-Qiu-Sterman (ETQS) function. We explore different possibilities such as node of Sivers function in $x$ or $k_\\perp$ in order to explain ``sign mismatch'' between these functions. We show that $\\pi^\\pm$ SIDIS data and $\\pi^0$ STAR data can be well described in a combined TMD and twist-3 fit, however $\\pi^\\pm$ BRAHMS data are not described in a satisfactory way. This leaves open a question to the solution of the ``sign mismatch''. Possible explanations are then discussed.

  8. Calculation of TMD Evolution for Transverse Single Spin Asymmetry Measurements

    SciTech Connect

    Mert Aybat, Ted Rogers, Alexey Prokudin

    2012-06-01

    In this letter, we show that it is necessary to include the full treatment of QCD evolution of Transverse Momentum Dependent parton densities to explain discrepancies between HERMES data and recent COMPASS data on a proton target for the Sivers transverse single spin asymmetry in Semi-Inclusive Deep Inelastic Scattering (SIDIS). Calculations based on existing fits to TMDs in SIDIS, and including evolution within the Collins-Soper-Sterman with properly defined TMD PDFs are shown to provide a good explanation for the discrepancy. The non-perturbative input needed for the implementation of evolution is taken from earlier analyses of unpolarized Drell-Yan (DY) scattering at high energy. Its success in describing the Sivers function in SIDIS data at much lower energies is strong evidence in support of the unifying aspect of the QCD TMD-factorization formalism.

  9. Single Transverse-Spin Asymmetries at Large-x

    SciTech Connect

    Brodsky, Stanley J.; Yuan, Feng

    2006-10-24

    The large-x behavior of the transverse-momentum dependent quark distributions is analyzed in the factorization-inspired perturbative QCD framework, particularly for the naive time-reversal-odd quark Sivers function which is responsible for the single transverse-spin asymmetries in various semi-inclusive hard processes. By examining the dominant hard gluon exchange Feynman diagrams, and using the resulting power counting rule, we find that the Sivers function has power behavior (1-x){sup 4} at x {yields} 1, which is one power of (1-x) suppressed relative to the unpolarized quark distribution. These power-counting results provide important guidelines for the parameterization of quark distributions and quark-gluon correlations.

  10. Scanning SQUID microscopy with single electron spin sensitivity

    NASA Astrophysics Data System (ADS)

    Vasyukov, Denis

    2014-03-01

    Superconducting interference devices (SQUIDs) have been traditionally used for studying fundamental properties of magnetic materials and superconductors. Although widely used in scanning magnetic microscopy, their progress towards detection of small magnetic moments was stagnating of late due to limitations imposed by conventional designs of planar SQUIDs and contemporary lithography techniques, restricting sample-to-sensor distance smaller than ~ 0.5 micron and SQUIDs diameters smaller than ~ 200 nm. These limitations were overcome by the invention of a SQUID-on-tip device, subsequent realization of a SQUID-on-tip microscope, and by creation of an ultra-small sensor with spatial resolution of 20 nm and sensitivity to a single electron spin per 1 Hz bandwidth. In this talk I will describe the principles of scanning SQUID magnetometry, its applications to study superconductors and its potential for magnetic nano-scale imaging of novel materials.

  11. Room-temperature in situ nuclear spin hyperpolarization from optically pumped nitrogen vacancy centres in diamond

    NASA Astrophysics Data System (ADS)

    King, Jonathan P.; Jeong, Keunhong; Vassiliou, Christophoros C.; Shin, Chang S.; Page, Ralph H.; Avalos, Claudia E.; Wang, Hai-Jing; Pines, Alexander

    2015-12-01

    Low detection sensitivity stemming from the weak polarization of nuclear spins is a primary limitation of magnetic resonance spectroscopy and imaging. Methods have been developed to enhance nuclear spin polarization but they typically require high magnetic fields, cryogenic temperatures or sample transfer between magnets. Here we report bulk, room-temperature hyperpolarization of 13C nuclear spins observed via high-field magnetic resonance. The technique harnesses the high optically induced spin polarization of diamond nitrogen vacancy centres at room temperature in combination with dynamic nuclear polarization. We observe bulk nuclear spin polarization of 6%, an enhancement of ~170,000 over thermal equilibrium. The signal of the hyperpolarized spins was detected in situ with a standard nuclear magnetic resonance probe without the need for sample shuttling or precise crystal orientation. Hyperpolarization via optical pumping/dynamic nuclear polarization should function at arbitrary magnetic fields enabling orders of magnitude sensitivity enhancement for nuclear magnetic resonance of solids and liquids under ambient conditions.

  12. Spin reorientation transition in dysprosium-samarium orthoferrite single crystals

    NASA Astrophysics Data System (ADS)

    Zhao, Weiyao; Cao, Shixun; Huang, Ruoxiang; Cao, Yiming; Xu, Kai; Kang, Baojuan; Zhang, Jincang; Ren, Wei

    2015-03-01

    We report the control of spin reorientation (SR) transition in perovskite D y1 -xS mxFe O3 , a whole family of single crystals grown by an optical floating zone method from x =0 to 1 with an interval of 0.1. Powder x-ray diffractions and Rietveld refinements indicate that lattice parameters a and c increase linearly with Sm doping concentration, whereas b keeps a constant. Temperature dependence of the magnetizations under zero-field-cooling (ZFC) and field-cooling (FC) processes are studied in detail. We have found a remarkable linear change of SR transition temperature in Sm-rich samples for x >0.2 , which covers an extremely wide temperature range including room temperature. The a -axis magnetization curves under the FC during cooling (FCC) process bifurcate from and then jump back to that of the ZFC and FC warming process in single crystals when x =0.5 -0.9 , suggesting complicated 4 f -3 d electron interactions among D y3 + -S m3 +,D y3 + -F e3 + , and S m3 + -F e3 + sublattices of diverse magnetic configurations. The magnetic properties from the doping effect on SR transition temperature in these single crystals might be useful in the material physics and device design applications.

  13. Nano-magnetic materials: spin crossover compounds vs. single molecule magnets vs. single chain magnets.

    PubMed

    Brooker, Sally; Kitchen, Jonathan A

    2009-09-28

    Brief introductions to spin crossover (SCO), single molecule magnetism (SMM) and single chain magnetism (SCM) are provided. Each section is illustrated by selected examples that have contributed significantly to the development of these fields, including recent efforts to produce materials (films, attachment to surfaces etc.). The advantages and disadvantages of each class of magnetically interesting compound are considered, along with the key challenges that remain to be overcome before such compounds can be used commercially as nanocomponents. This invited perspective article is intended to be easily comprehensible to non-specialists in the field. PMID:19727448

  14. Protecting nickel with graphene spin-filtering membranes: A single layer is enough

    NASA Astrophysics Data System (ADS)

    Martin, M.-B.; Dlubak, B.; Weatherup, R. S.; Piquemal-Banci, M.; Yang, H.; Blume, R.; Schloegl, R.; Collin, S.; Petroff, F.; Hofmann, S.; Robertson, J.; Anane, A.; Fert, A.; Seneor, P.

    2015-07-01

    We report on the demonstration of ferromagnetic spin injectors for spintronics which are protected against oxidation through passivation by a single layer of graphene. The graphene monolayer is directly grown by catalytic chemical vapor deposition on pre-patterned nickel electrodes. X-ray photoelectron spectroscopy reveals that even with its monoatomic thickness, monolayer graphene still efficiently protects spin sources against oxidation in ambient air. The resulting single layer passivated electrodes are integrated into spin valves and demonstrated to act as spin polarizers. Strikingly, the atom-thick graphene layer is shown to be sufficient to induce a characteristic spin filtering effect evidenced through the sign reversal of the measured magnetoresistance.

  15. Active Morphology Control for Concomitant Long Distance Spin Transport and Photoresponse in a Single Organic Device.

    PubMed

    Sun, Xiangnan; Bedoya-Pinto, Amilcar; Mao, Zupan; Gobbi, Marco; Yan, Wenjing; Guo, Yunlong; Atxabal, Ainhoa; Llopis, Roger; Yu, Gui; Liu, Yunqi; Chuvilin, Andrey; Casanova, Felix; Hueso, Luis E

    2016-04-01

    Long distance spin transport and photoresponse are demonstrated in a single F16 CuPc spin valve. By introducing a low-temperature strategy for controlling the morphology of the organic layer during the fabrication of a molecular spin valve, a large spin-diffusion length up to 180 nm is achieved at room temperature. Magnetoresistive and photoresponsive signals are simultaneously observed even in an air atmosphere. PMID:26823157

  16. Nuclear spin-spin coupling in a van der Waals-bonded system: xenon dimer.

    PubMed

    Vaara, Juha; Hanni, Matti; Jokisaari, Jukka

    2013-03-14

    Nuclear spin-spin coupling over van der Waals bond has recently been observed via the frequency shift of solute protons in a solution containing optically hyperpolarized (129)Xe nuclei. We carry out a first-principles computational study of the prototypic van der Waals-bonded xenon dimer, where the spin-spin coupling between two magnetically non-equivalent isotopes, J((129)Xe - (131)Xe), is observable. We use relativistic theory at the four-component Dirac-Hartree-Fock and Dirac-density-functional theory levels using novel completeness-optimized Gaussian basis sets and choosing the functional based on a comparison with correlated ab initio methods at the nonrelativistic level. J-coupling curves are provided at different levels of theory as functions of the internuclear distance in the xenon dimer, demonstrating cross-coupling effects between relativity and electron correlation for this property. Calculations on small Xe clusters are used to estimate the importance of many-atom effects on J((129)Xe - (131)Xe). Possibilities of observing J((129)Xe - (131)Xe) in liquid xenon are critically examined, based on molecular dynamics simulation. A simplistic spherical model is set up for the xenon dimer confined in a cavity, such as in microporous materials. It is shown that the on the average shorter internuclear distance enforced by the confinement increases the magnitude of the coupling as compared to the bulk liquid case, rendering J((129)Xe - (131)Xe) in a cavity a feasible target for experimental investigation. PMID:23514495

  17. Imaging nuclear spins weakly coupled to a probe paramagnetic center

    NASA Astrophysics Data System (ADS)

    Laraoui, Abdelghani; Pagliero, Daniela; Meriles, Carlos A.

    2015-05-01

    Optically detected paramagnetic centers in wide-band-gap semiconductors are emerging as a promising platform for nanoscale metrology at room temperature. Of particular interest are applications where the center is used as a probe to interrogate other spins that cannot be observed directly. Using the nitrogen-vacancy (NV) center in diamond as a model system, we propose a strategy to determine the spatial coordinates of weakly coupled nuclear spins. The central idea is to label the target nucleus with a spin polarization that depends on its spatial location, which is subsequently revealed by making this polarization flow back to the NV for readout. Using extensive analytical and numerical modeling, we show that the technique can attain high spatial resolution depending on the NV lifetime and target spin location. No external magnetic field gradient is required, which circumvents complications resulting from changes in the direction of the applied magnetic field, and considerably simplifies the required instrumentation. Extensions of the present technique may be adapted to pinpoint the locations of other paramagnetic centers in the NV vicinity or to yield information on dynamical processes in molecules on the diamond surface.

  18. Solid effect in magic angle spinning dynamic nuclear polarization

    NASA Astrophysics Data System (ADS)

    Corzilius, Björn; Smith, Albert A.; Griffin, Robert G.

    2012-08-01

    For over five decades, the solid effect (SE) has been heavily utilized as a mechanism for performing dynamic nuclear polarization (DNP). Nevertheless, it has not found widespread application in contemporary, high magnetic field DNP experiments because SE enhancements display an ω _0 ^{ - 2} field dependence. In particular, for nominally forbidden zero and double quantum SE transitions to be partially allowed, it is necessary for mixing of adjacent nuclear spin states to occur, and this leads to the observed field dependence. However, recently we have improved our instrumentation and report here an enhancement of ɛ = 91 obtained with the organic radical trityl (OX063) in magic angle spinning experiments performed at 5 T and 80 K. This is a factor of 6-7 higher than previous values in the literature under similar conditions. Because the solid effect depends strongly on the microwave field strength, we attribute this large enhancement to larger microwave field strengths inside the sample volume, achieved with more efficient coupling of the gyrotron to the sample chamber. In addition, we develop a theoretical model to explain the dependence of the buildup rate of enhanced nuclear polarization and the steady-state enhancement on the microwave power. Buildup times and enhancements were measured as a function of 1H concentration for both trityl and Gd-DOTA. Comparison of the results indicates that for trityl the initial polarization step is the slower, rate-determining step. However, for Gd-DOTA the spread of nuclear polarization via homonuclear 1H spin diffusion is rate-limiting. Finally, we discuss the applicability of the solid effect at fields > 5 T and the requirements to address the unfavorable field dependence of the solid effect.

  19. Towards quantum networks of single spins: analysis of a quantum memory with an optical interface in diamond.

    PubMed

    Blok, M S; Kalb, N; Reiserer, A; Taminiau, T H; Hanson, R

    2015-12-12

    Single defect centers in diamond have emerged as a powerful platform for quantum optics experiments and quantum information processing tasks. Connecting spatially separated nodes via optical photons into a quantum network will enable distributed quantum computing and long-range quantum communication. Initial experiments on trapped atoms and ions as well as defects in diamond have demonstrated entanglement between two nodes over several meters. To realize multi-node networks, additional quantum bit systems that store quantum states while new entanglement links are established are highly desirable. Such memories allow for entanglement distillation, purification and quantum repeater protocols that extend the size, speed and distance of the network. However, to be effective, the memory must be robust against the entanglement generation protocol, which typically must be repeated many times. Here we evaluate the prospects of using carbon nuclear spins in diamond as quantum memories that are compatible with quantum networks based on single nitrogen vacancy (NV) defects in diamond. We present a theoretical framework to describe the dephasing of the nuclear spins under repeated generation of NV spin-photon entanglement and show that quantum states can be stored during hundreds of repetitions using typical experimental coupling parameters. This result demonstrates that nuclear spins with weak hyperfine couplings are promising quantum memories for quantum networks. PMID:26411802

  20. Concept for room temperature single-spin tunneling force microscopy with atomic spatial resolution

    NASA Astrophysics Data System (ADS)

    Payne, Adam

    A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy (AFM) system noise. The results show that the approach could provide single-spin measurement of electrically isolated defect states with atomic spatial resolution at room temperature.

  1. Atomic-resolution single-spin magnetic resonance detection concept based on tunneling force microscopy

    NASA Astrophysics Data System (ADS)

    Payne, A.; Ambal, K.; Boehme, C.; Williams, C. C.

    2015-05-01

    A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single-electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy system noise. The results show that the approach could provide single-spin measurement of electrically isolated qubit states with atomic spatial resolution at room temperature.

  2. Tools for Studying Electron and Spin Transport in Single Molecules

    NASA Astrophysics Data System (ADS)

    Ralph, Daniel C.

    2005-03-01

    Experiments in the field of single-molecule electronics are challenging in part because it can be very difficult to control and characterize the device structure. Molecules contacted by metal electrodes cannot easily be imaged by microscopy techniques. Moreover, if one attempts to characterize the device structure simply by measuring a current-voltage curve, it is easy to mistake nonlinear transport across a bare tunnel junction or a metallic short for a molecular signal. I will discuss the development of a set of experimental test structures that enable the properties of a molecular device to be tuned controllably in-situ, so that the transport mechanisms can be studied more systematically and compared with theoretical predictions. My collaborators and I are developing the means to use several different types of such experimental "knobs" in coordination: electrostatic gating to shift the energy levels in a molecule, mechanical motion to adjust the molecular configuration or the molecule-electrode coupling strength, illumination with light to promote electrons to excited states or to make and break chemical bonds, and the use of ferromagnetic electrodes to study spin-polarized transport. Our work so far has provided new insights into Kondo physics, the coupling between a molecule's electronic and mechanical degrees of freedom, and spin transport through a molecule between magnetic electrodes. Collaborators: Radek Bialczak, Alex Champagne, Luke Donev, Jonas Goldsmith, Jacob Grose, Janice Guikema, Jiwoong Park, Josh Parks, Abhay Pasupathy, Jason Petta, Sara Slater, Burak Ulgut, Alexander Soldatov, H'ector Abruña, and Paul McEuen.

  3. Nuclear Spin Maser at Highly Stabilized Low Magnetic Field and Search for Atomic EDM

    SciTech Connect

    Yoshimi, A.; Asahi, K.; Inoue, T.; Uchida, M.; Hatakeyama, N.; Tsuchiya, M.; Kagami, S.

    2009-08-04

    A nuclear spin maser is operated at a low static field through an active feedback scheme based on an optical nuclear spin detection and succeeding spin control by a transverse field application. The frequency stability of this optical-coupling spin maser is improved by installation of a low-noise current source for a solenoid magnet producing a static magnetic field in the maser operation. Experimental devices for application of the maser to EDM experiment are being developed.

  4. Quantum Information Processing Experiments Using Nuclear and Electron Spins in Molecules

    NASA Astrophysics Data System (ADS)

    Kitagawa, Masahiro; Morita, Yasushi; Kagawa, Akinori; Negoro, Makoto

    Nuclear spins and electron spins in molecules have relatively long decoherence times, offer appropriate interactions for use in quantum gate operations, and can be controlled using magnetic resonance techniques. In this chapter, from the viewpoint of using these spins for quantum information processing, Hamiltonian engineering methods and hardware are developed for hyper precision control. Additionally, hyperpolarization techniques are developed for spin initialization, and a spin amplification method is developed for detection.

  5. Continuous dynamical decoupling of a single diamond nitrogen-vacancy center spin with a mechanical resonator

    NASA Astrophysics Data System (ADS)

    MacQuarrie, E. R.; Gosavi, T. A.; Bhave, S. A.; Fuchs, G. D.

    2015-12-01

    Inhomogeneous dephasing from uncontrolled environmental noise can limit the coherence of a quantum sensor or qubit. For solid-state spin qubits such as the nitrogen-vacancy (NV) center in diamond, a dominant source of environmental noise is magnetic field fluctuations due to nearby paramagnetic impurities and instabilities in a magnetic bias field. In this work, we use ac stress generated by a diamond mechanical resonator to engineer a dressed spin basis in which a single NV center qubit is less sensitive to its magnetic environment. For a qubit in the thermally isolated subspace of this protected basis, we prolong the dephasing time T2* from 2.7 ±0.1 to 15 ±1 μ s by dressing with a Ω /2 π =581 ±2 kHz mechanical Rabi field. Furthermore, we develop a model that quantitatively predicts the relationship between Ω and T2* in the dressed basis. Our model suggests that a combination of magnetic field fluctuations and hyperfine coupling to nearby nuclear spins limits the protected coherence time over the range of Ω accessed here. We show that amplitude noise in Ω will dominate the dephasing for larger driving fields.

  6. Dynamics of entanglement of two electron spins interacting with nuclear spin baths in quantum dots

    NASA Astrophysics Data System (ADS)

    Bragar, Igor; Cywiński, Łukasz

    2015-04-01

    We study the dynamics of entanglement of two electron spins in two quantum dots, in which each electron is interacting with its nuclear spin environment. Focusing on the case of uncoupled dots, and starting from either Bell or Werner states of two qubits, we calculate the decay of entanglement due to the hyperfine interaction with the nuclei. We mostly focus on the regime of magnetic fields in which the bath-induced electron spin flips play a role, for example, their presence leads to the appearance of entanglement sudden death at finite time for two qubits initialized in a Bell state. For these fields, the intrabath dipolar interactions and spatial inhomogeneity of hyperfine couplings are irrelevant on the time scale of coherence (and entanglement) decay, and most of the presented calculations are performed using the uniform-coupling approximation to the exact hyperfine Hamiltonian. We provide a comprehensive overview of entanglement decay in this regime, considering both free evolution of the qubits, and an echo protocol with simultaneous application of π pulses to the two spins. All the currently relevant for experiments bath states are considered: the thermal state, narrowed states (characterized by diminished uncertainty of one of the components of the Overhauser field) of two uncorrelated baths, and a correlated narrowed state with a well-defined value of the z component of the Overhauser field interdot gradient. While we mostly use concurrence to quantify the amount of entanglement in a mixed state of the two electron spins, we also show that their entanglement dynamics can be reconstructed from measurements of the currently relevant for experiments entanglement witnesses and the fidelity of quantum teleportation, performed using a partially disentangled state as a resource.

  7. Efficient spin filter and spin valve in a single-molecule magnet Fe4 between two graphene electrodes

    NASA Astrophysics Data System (ADS)

    Zu, Feng-Xia; Gao, Guo-Ying; Fu, Hua-Hua; Xiong, Lun; Zhu, Si-Cong; Peng, Li; Yao, Kai-Lun

    2015-12-01

    We propose a magnetic molecular junction consisting of a single-molecule magnet Fe4 connected two graphene electrodes and investigate transport properties, using the nonequilibrium Green's function method in combination with spin-polarized density-functional theory. The results show that the device can be used as a nearly perfect spin filter with efficiency approaching 100%. Our calculations provide crucial microscopic information how the four iron cores of the chemical structure are responsible for the spin-resolved transmissions. Moreover, it is also found that the device behaves as a highly efficient spin valve, which is an excellent candidate for spintronics of molecular devices. The idea of combining single-molecule magnets with graphene provides a direction in designing a new class of molecular spintronic devices.

  8. Efficient spin filter and spin valve in a single-molecule magnet Fe{sub 4} between two graphene electrodes

    SciTech Connect

    Zu, Feng-Xia; Gao, Guo-Ying; Fu, Hua-Hua; Peng, Li; Yao, Kai-Lun; Xiong, Lun; Zhu, Si-Cong

    2015-12-21

    We propose a magnetic molecular junction consisting of a single-molecule magnet Fe{sub 4} connected two graphene electrodes and investigate transport properties, using the nonequilibrium Green's function method in combination with spin-polarized density-functional theory. The results show that the device can be used as a nearly perfect spin filter with efficiency approaching 100%. Our calculations provide crucial microscopic information how the four iron cores of the chemical structure are responsible for the spin-resolved transmissions. Moreover, it is also found that the device behaves as a highly efficient spin valve, which is an excellent candidate for spintronics of molecular devices. The idea of combining single-molecule magnets with graphene provides a direction in designing a new class of molecular spintronic devices.

  9. Elasticity of Single-Crystal Ferropericlase across the Spin Transition in the Lower Mantle

    NASA Astrophysics Data System (ADS)

    Yang, J.; Tong, X.; Lin, J. F.; Okuchi, T.; Tomioka, N.

    2014-12-01

    Recent experimental and theoretical studies on the lower-mantle ferropericlase have demonstrated that its physical and chemical properties can be affected by the spin transition, which in turn can affect our understanding of deep-Earth seismic structures, geochemistry, and geodynamics. The sound velocities of ferropericlase at lower-mantle pressures have been reported using various techniques including Brillouin Light Scattering (BLS), Impulsive Stimulate Light Scattering (ISS), Inelastic X-ray Scattering (IXS), and Nuclear Resonant Inelastic X-ray Scattering [1,2,3]. However, the compressional wave and shear wave velocities have never been measured simultaneously up to lower mantle conditions to solve for full elastic constants of ferropericlase, C11, C12 and C44 via Christoffel's equations. Thus far, the effects of the spin transition on elasticity of ferropericlase remains highly debated. Using the combinations of experimental results from BLS and ISS measurements in the Mineral Physics Lab at the University of Texas at Austin, we have directly measured Vp and Vs of ferropericlase (Mg0.92Fe0.08)O simultaneously along [100] and [110] crystallographic axes up to megabar pressures. These results permit the derivation of reliable full elastic constants and the modeling of the elastic and seismic properties in the high-spin, low-spin and mixed-spin states. Single-crystal X-ray diffraction experiments were also performed to provide the equation of state parameters of ferropericlase for the modelling. The compressional wave velocities from ISS measurements show significant softening, while shear wave velocities from BLS experiments were only slightly affected by the spin transition. Using thermoelastic modelling [4], we will discuss the effects of the spin transition on elastic constants, sound velocities, elastic anisotropies, and seismic parameters of ferropericlase at lower-mantle pressure-temperature conditions. These results are compared with seismic observations of the deep lower mantle in order to better understand seismic signatures and mineralogical models of the lower mantle. References:1. Antonangeli, D., et al., 2011, Science 331, 64 2.Marquardt, H., et al., 2009, Science 324, 224. 3. Crowhurst, J., et al., 2008, Science 319, 451. 4.Wu, Z.Q., et al., 2013, PRL 110, 228501.

  10. Suppression of nuclear spin bath fluctuations in self-assembled quantum dots induced by inhomogeneous strain.

    PubMed

    Chekhovich, E A; Hopkinson, M; Skolnick, M S; Tartakovskii, A I

    2015-01-01

    Interaction with nuclear spins leads to decoherence and information loss in solid-state electron-spin qubits. One particular, ineradicable source of electron decoherence arises from decoherence of the nuclear spin bath, driven by nuclear-nuclear dipolar interactions. Owing to its many-body nature nuclear decoherence is difficult to predict, especially for an important class of strained nanostructures where nuclear quadrupolar effects have a significant but largely unknown impact. Here, we report direct measurement of nuclear spin bath coherence in individual self-assembled InGaAs/GaAs quantum dots: spin-echo coherence times in the range 1.2-4.5 ms are found. Based on these values, we demonstrate that strain-induced quadrupolar interactions make nuclear spin fluctuations much slower compared with lattice-matched GaAs/AlGaAs structures. Our findings demonstrate that quadrupolar effects can potentially be used to engineer optically active III-V semiconductor spin-qubits with a nearly noise-free nuclear spin bath, previously achievable only in nuclear spin-0 semiconductors, where qubit network interconnection and scaling are challenging. PMID:25704639

  11. Nuclear Hydrogen for Peak Electricity Production and Spinning Reserve

    SciTech Connect

    Forsberg, C.W.

    2005-01-20

    Nuclear energy can be used to produce hydrogen. The key strategic question is this: ''What are the early markets for nuclear hydrogen?'' The answer determines (1) whether there are incentives to implement nuclear hydrogen technology today or whether the development of such a technology could be delayed by decades until a hydrogen economy has evolved, (2) the industrial partners required to develop such a technology, and (3) the technological requirements for the hydrogen production system (rate of production, steady-state or variable production, hydrogen purity, etc.). Understanding ''early'' markets for any new product is difficult because the customer may not even recognize that the product could exist. This study is an initial examination of how nuclear hydrogen could be used in two interconnected early markets: the production of electricity for peak and intermediate electrical loads and spinning reserve for the electrical grid. The study is intended to provide an initial description that can then be used to consult with potential customers (utilities, the Electric Power Research Institute, etc.) to better determine the potential real-world viability of this early market for nuclear hydrogen and provide the starting point for a more definitive assessment of the concept. If this set of applications is economically viable, it offers several unique advantages: (1) the market is approximately equivalent in size to the existing nuclear electric enterprise in the United States, (2) the entire market is within the utility industry and does not require development of an external market for hydrogen or a significant hydrogen infrastructure beyond the utility site, (3) the technology and scale match those of nuclear hydrogen production, (4) the market exists today, and (5) the market is sufficient in size to justify development of nuclear hydrogen production techniques independent of the development of any other market for hydrogen. These characteristics make it an ideal early market for nuclear hydrogen.

  12. Nearly perfect spin filter, spin valve and negative differential resistance effects in a Fe4-based single-molecule junction.

    PubMed

    Zu, Fengxia; Liu, Zuli; Yao, Kailun; Gao, Guoying; Fu, Huahua; Zhu, Sicong; Ni, Yun; Peng, Li

    2014-01-01

    The spin-polarized transport in a single-molecule magnet Fe4 sandwiched between two gold electrodes is studied, using nonequilibrium Green's functions in combination with the density-functional theory. We predict that the device possesses spin filter effect (SFE), spin valve effect (SVE), and negative differential resistance (NDR) behavior. Moreover, we also find that the appropriate chemical ligand, coupling the single molecule to leads, is a key factor for manipulating spin-dependent transport. The device containing the methyl ligand behaves as a nearly perfect spin filter with efficiency approaching 100%, and the transport is dominated by transmission through the Fe4 metal center. However, in the case of phenyl ligand, the spin filter effect seems to be reduced, but the spin valve effect is significantly enhanced with a large magnetoresistance ratio, reaching 1800%. This may be attributed to the blocking effect of the phenyl ligands in mediating transport. Our findings suggest that such a multifunctional molecular device, possessing SVE, NDR and high SFE simultaneously, would be an excellent candidate for spintronics of molecular devices. PMID:24787446

  13. Nuclear spin conversion of water inside fullerene cages detected by low-temperature nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Mamone, Salvatore; Concistrè, Maria; Carignani, Elisa; Meier, Benno; Krachmalnicoff, Andrea; Johannessen, Ole G.; Lei, Xuegong; Li, Yongjun; Denning, Mark; Carravetta, Marina; Goh, Kelvin; Horsewill, Anthony J.; Whitby, Richard J.; Levitt, Malcolm H.

    2014-05-01

    The water-endofullerene H2O@C60 provides a unique chemical system in which freely rotating water molecules are confined inside homogeneous and symmetrical carbon cages. The spin conversion between the ortho and para species of the endohedral H2O was studied in the solid phase by low-temperature nuclear magnetic resonance. The experimental data are consistent with a second-order kinetics, indicating a bimolecular spin conversion process. Numerical simulations suggest the simultaneous presence of a spin diffusion process allowing neighbouring ortho and para molecules to exchange their angular momenta. Cross-polarization experiments found no evidence that the spin conversion of the endohedral H2O molecules is catalysed by 13C nuclei present in the cages.

  14. Nuclear spin conversion of water inside fullerene cages detected by low-temperature nuclear magnetic resonance

    SciTech Connect

    Mamone, Salvatore Concistrè, Maria; Carignani, Elisa; Meier, Benno; Krachmalnicoff, Andrea; Johannessen, Ole G.; Denning, Mark; Carravetta, Marina; Whitby, Richard J.; Levitt, Malcolm H.; Lei, Xuegong; Li, Yongjun; Goh, Kelvin; Horsewill, Anthony J.

    2014-05-21

    The water-endofullerene H{sub 2}O@C{sub 60} provides a unique chemical system in which freely rotating water molecules are confined inside homogeneous and symmetrical carbon cages. The spin conversion between the ortho and para species of the endohedral H{sub 2}O was studied in the solid phase by low-temperature nuclear magnetic resonance. The experimental data are consistent with a second-order kinetics, indicating a bimolecular spin conversion process. Numerical simulations suggest the simultaneous presence of a spin diffusion process allowing neighbouring ortho and para molecules to exchange their angular momenta. Cross-polarization experiments found no evidence that the spin conversion of the endohedral H{sub 2}O molecules is catalysed by {sup 13}C nuclei present in the cages.

  15. Coherent control of single spins in silicon carbide at room temperature

    NASA Astrophysics Data System (ADS)

    Widmann, Matthias; Lee, Sang-Yun; Rendler, Torsten; Son, Nguyen Tien; Fedder, Helmut; Paik, Seoyoung; Yang, Li-Ping; Zhao, Nan; Yang, Sen; Booker, Ian; Denisenko, Andrej; Jamali, Mohammad; Momenzadeh, S. Ali; Gerhardt, Ilja; Ohshima, Takeshi; Gali, Adam; Janzén, Erik; Wrachtrup, Jörg

    2015-02-01

    Spins in solids are cornerstone elements of quantum spintronics. Leading contenders such as defects in diamond or individual phosphorus dopants in silicon have shown spectacular progress, but either lack established nanotechnology or an efficient spin/photon interface. Silicon carbide (SiC) combines the strength of both systems: it has a large bandgap with deep defects and benefits from mature fabrication techniques. Here, we report the characterization of photoluminescence and optical spin polarization from single silicon vacancies in SiC, and demonstrate that single spins can be addressed at room temperature. We show coherent control of a single defect spin and find long spin coherence times under ambient conditions. Our study provides evidence that SiC is a promising system for atomic-scale spintronics and quantum technology.

  16. Coherent control of single spins in silicon carbide at room temperature.

    PubMed

    Widmann, Matthias; Lee, Sang-Yun; Rendler, Torsten; Son, Nguyen Tien; Fedder, Helmut; Paik, Seoyoung; Yang, Li-Ping; Zhao, Nan; Yang, Sen; Booker, Ian; Denisenko, Andrej; Jamali, Mohammad; Momenzadeh, S Ali; Gerhardt, Ilja; Ohshima, Takeshi; Gali, Adam; Janzén, Erik; Wrachtrup, Jörg

    2015-02-01

    Spins in solids are cornerstone elements of quantum spintronics. Leading contenders such as defects in diamond or individual phosphorus dopants in silicon have shown spectacular progress, but either lack established nanotechnology or an efficient spin/photon interface. Silicon carbide (SiC) combines the strength of both systems: it has a large bandgap with deep defects and benefits from mature fabrication techniques. Here, we report the characterization of photoluminescence and optical spin polarization from single silicon vacancies in SiC, and demonstrate that single spins can be addressed at room temperature. We show coherent control of a single defect spin and find long spin coherence times under ambient conditions. Our study provides evidence that SiC is a promising system for atomic-scale spintronics and quantum technology. PMID:25437256

  17. Spin-path entanglement in single-neutron interferometer experiments

    SciTech Connect

    Hasegawa, Yuji; Erdoesi, Daniel

    2011-09-23

    There are two powerful arguments against the possibility of extending quantum mechanics (QM) into a more fundamental theory yielding a deterministic description of nature. One is the experimental violation of Bell inequalities, which discards local hidden-variable theories as a possible extension to QM. The other is the Kochen-Specker (KS) theorem, which stresses the incompatibility of QM with a larger class of hidden-variable theories, known as noncontextual hidden-variable theories. We performed experiments with neutron interferometer, which exploits spin-path entanglements in single neutrons. A Bell-like state is generated to demonstrate a violation of the Bell-like inequality and phenomena in accordance with KS theorem: both experiments study quantum contextuality and show clear evidence of the incompatibility of noncontextual hidden variable theories with QM. The value S = 2.202{+-}0.007 Neither-Less-Than-Nor-Equal-To 2 is obtained in the new measurement of the Bell-like inequality, which shows a larger violation than the previous measurement. For the study of KS theorem, the obtained violation 2.291{+-}0.008 Neither-Less-Than-Nor-Equal-To 1 clearly shows that quantum mechanical predictions cannot be reproduced by noncontextual hidden variable theories.

  18. Experimental Study of Single Spin Asymmetries and TMDs

    NASA Astrophysics Data System (ADS)

    Chen, Jian-Ping

    2014-01-01

    Single Spin Asymmetries and Transverse Momentum Dependent (TMD) distribution study has been one of the main focuses of hadron physics in recent years. The initial exploratory Semi-Inclusive Deep-Inelastic-Scattering (SIDIS) experiments with transversely polarized proton and deuteron targets from HERMES and COMPASS attracted great attention and lead to very active efforts in both experiments and theory. A SIDIS experiment on the neutron with a polarized 3He target was performed at JLab. Recently published results as well as new preliminary results are shown. Precision TMD experiments are planned at JLab after the 12 GeV energy upgrade. Three approved experiments with a new SoLID spectrometer on both the proton and neutron will provide high precision TMD data in the valence quark region. In the long-term future, an Electron-Ion Collider (EIC) as proposed in US (MEIC@JLab and E-RHIC@BNL) will provide precision TMD data of the gluons and the sea. A new opportunity just emerged in China that a low-energy EIC (1st stage EIC@HIAF) may provide precision TMD data in the sea quark region, complementary to the proposed EIC in US.

  19. Suppression of nuclear spin bath fluctuations in self-assembled quantum dots induced by inhomogeneous strain

    PubMed Central

    Chekhovich, E.A.; Hopkinson, M.; Skolnick, M.S.; Tartakovskii, A.I.

    2015-01-01

    Interaction with nuclear spins leads to decoherence and information loss in solid-state electron-spin qubits. One particular, ineradicable source of electron decoherence arises from decoherence of the nuclear spin bath, driven by nuclear–nuclear dipolar interactions. Owing to its many-body nature nuclear decoherence is difficult to predict, especially for an important class of strained nanostructures where nuclear quadrupolar effects have a significant but largely unknown impact. Here, we report direct measurement of nuclear spin bath coherence in individual self-assembled InGaAs/GaAs quantum dots: spin-echo coherence times in the range 1.2–4.5 ms are found. Based on these values, we demonstrate that strain-induced quadrupolar interactions make nuclear spin fluctuations much slower compared with lattice-matched GaAs/AlGaAs structures. Our findings demonstrate that quadrupolar effects can potentially be used to engineer optically active III-V semiconductor spin-qubits with a nearly noise-free nuclear spin bath, previously achievable only in nuclear spin-0 semiconductors, where qubit network interconnection and scaling are challenging. PMID:25704639

  20. Nuclear Spin Orientation Dependence of Magnetoconductance: A New Method for Measuring the Spin of Charged Excitations in the QHE

    SciTech Connect

    Bowers, C.R.; Reno, J.L.; Simmons, J.A.; Vitkalov, S.A.

    1998-12-01

    A new method for measuring the spin of the electrically charged ground state excitations m the Q$j~j quantum Hall effect ia proposed and demonstmted for the tirst time in GaAs/AIGaAs nndtiquantum wells. The method is &sed on the nuclear spin orientation dependence of" the 2D dc conductivity y in the quantum Hall regime due to the nuclear hyperfine interaction. As a demonstration of this method the spin of the electrically charged excitations of the ground state is determined at filling factor v = 1.

  1. Theory of transport through noncollinear single-electron spin-valve transistors

    NASA Astrophysics Data System (ADS)

    Lindebaum, Stephan; König, Jürgen

    2011-12-01

    We study the electronic transport through a noncollinear single-electron spin-valve transistor. It consists of a small metallic island weakly coupled to two ferromagnetic leads with noncollinear magnetization directions. The electric current is influenced by Coulomb charging and by spin accumulation. Furthermore, the interplay of Coulomb interaction and tunnel coupling to spin-polarized leads yields a many-body exchange field in which the accumulated island spin precesses. We analyze the effects of this exchange field in both the linear and nonlinear transport regime. In particular, we find that the exchange field can give rise to a high sensitivity of the island's spin orientation on the gate voltage.

  2. Nuclear Spin Locking and Extended Two-Electron Spin Decoherence Time in an InAs Quantum Dot Molecule

    NASA Astrophysics Data System (ADS)

    Chow, Colin; Ross, Aaron; Steel, Duncan; Sham, L. J.; Bracker, Allan; Gammon, Daniel

    2015-03-01

    The spin eigenstates for two electrons confined in a self-assembled InAs quantum dot molecule (QDM) consist of the spin singlet state, S, with J = 0 and the triplet states T-, T0 and T+, with J = 1. When a transverse magnetic field (Voigt geometry) is applied, the two-electron system can be initialized to the different states with appropriate laser excitation. Under the excitation of a weak probe laser, non-Lorentzian lineshapes are obtained when the system is initialized to either T- or T+, where T- results in a ``resonance locking'' lineshape while T+ gives a ``resonance avoiding '' lineshape: two different manifestations of hysteresis showing the importance of memory in the system. These observations signify dynamic nuclear spin polarization (DNSP) arising from a feedback mechanism involving hyperfine interaction between lattice nuclei and delocalized electron spins, and Overhauser shift due to nuclear spin polarization. Using pump configurations that generate coherent population trapping, the isolation of the electron spin from the optical excitation shows the stabilization of the nuclear spin ensemble. The dark-state lineshape measures the lengthened electron spin decoherence time, from 1 ns to 1 μs. Our detailed spectra highlight the potential of QDM for realizing a two-qubit gate. This work is supported by NSF, ARO, AFOSR, DARPA, and ONR.

  3. Efficient route to high-bandwidth nanoscale magnetometry using single spins in diamond

    PubMed Central

    Puentes, Graciana; Waldherr, Gerald; Neumann, Philipp; Balasubramanian, Gopalakrishnan; Wrachtrup, Jörg

    2014-01-01

    Nitrogen-vacancy (NV) center in diamond is a promising quantum metrology tool finding applications across disciplines. The spin sensor measures magnetic fields, electric fields and temperature with nano-scale precision and is fully operable under ambient conditions. Moreover, it achieves precision scaling inversely with total measurement time σB ∝ 1/T (Heisenberg scaling) rather than as the inverse of the square root of T, with the Shot-Noise limit. This scaling can be achieved by means of phase estimation algorithms (PEAs), in combination with single-shot read-out. Despite their accuracy, the range of applicability of PEAs is limited to sensing single frequencies with negligible temporal fluctuations. Nuclear Magnetic Resonance (NMR) signals from molecules often contain multifrequency components and sensing them using PEA is ruled out. Here we propose an alternative method for precision magnetometry in frequency multiplexed signals via compressive sensing (CS) techniques focusing on nanoscale NMR. We show that CS can provide for precision scaling approximately as σB ≈ 1/T, as well as for a 5-fold increase in sensitivity over dynamic-range gain, in addition to reducing the total number of resources required. We illustrate our method by taking model solid-state spectra of Glycine acquired under Magic Angle Spinning conditions. PMID:24728454

  4. Efficient route to high-bandwidth nanoscale magnetometry using single spins in diamond

    NASA Astrophysics Data System (ADS)

    Puentes, Graciana; Waldherr, Gerald; Neumann, Philipp; Balasubramanian, Gopalakrishnan; Wrachtrup, Jörg

    2014-04-01

    Nitrogen-vacancy (NV) center in diamond is a promising quantum metrology tool finding applications across disciplines. The spin sensor measures magnetic fields, electric fields and temperature with nano-scale precision and is fully operable under ambient conditions. Moreover, it achieves precision scaling inversely with total measurement time σB ~ 1/T (Heisenberg scaling) rather than as the inverse of the square root of T, with the Shot-Noise limit. This scaling can be achieved by means of phase estimation algorithms (PEAs), in combination with single-shot read-out. Despite their accuracy, the range of applicability of PEAs is limited to sensing single frequencies with negligible temporal fluctuations. Nuclear Magnetic Resonance (NMR) signals from molecules often contain multifrequency components and sensing them using PEA is ruled out. Here we propose an alternative method for precision magnetometry in frequency multiplexed signals via compressive sensing (CS) techniques focusing on nanoscale NMR. We show that CS can provide for precision scaling approximately as σB ~ 1/T, as well as for a 5-fold increase in sensitivity over dynamic-range gain, in addition to reducing the total number of resources required. We illustrate our method by taking model solid-state spectra of Glycine acquired under Magic Angle Spinning conditions.

  5. Efficient route to high-bandwidth nanoscale magnetometry using single spins in diamond.

    PubMed

    Puentes, Graciana; Waldherr, Gerald; Neumann, Philipp; Balasubramanian, Gopalakrishnan; Wrachtrup, Jörg

    2014-01-01

    Nitrogen-vacancy (NV) center in diamond is a promising quantum metrology tool finding applications across disciplines. The spin sensor measures magnetic fields, electric fields and temperature with nano-scale precision and is fully operable under ambient conditions. Moreover, it achieves precision scaling inversely with total measurement time σB ∝ 1/T (Heisenberg scaling) rather than as the inverse of the square root of T, with σB = √T the Shot-Noise limit. This scaling can be achieved by means of phase estimation algorithms (PEAs), in combination with single-shot read-out. Despite their accuracy, the range of applicability of PEAs is limited to sensing single frequencies with negligible temporal fluctuations. Nuclear Magnetic Resonance (NMR) signals from molecules often contain multifrequency components and sensing them using PEA is ruled out. Here we propose an alternative method for precision magnetometry in frequency multiplexed signals via compressive sensing (CS) techniques focusing on nanoscale NMR. We show that CS can provide for precision scaling approximately as σB ≈ 1/T, as well as for a 5-fold increase in sensitivity over dynamic-range gain, in addition to reducing the total number of resources required. We illustrate our method by taking model solid-state spectra of Glycine acquired under Magic Angle Spinning conditions. PMID:24728454

  6. Nuclear spin decoherence of neutral 31P donors in silicon: Effect of environmental 29Si nuclei

    NASA Astrophysics Data System (ADS)

    Petersen, Evan S.; Tyryshkin, A. M.; Morton, J. J. L.; Abe, E.; Tojo, S.; Itoh, K. M.; Thewalt, M. L. W.; Lyon, S. A.

    2016-04-01

    Spectral diffusion arising from 29Si nuclear spin flip-flops, known to be a primary source of electron spin decoherence in silicon, is also predicted to limit the coherence times of neutral donor nuclear spins in silicon. Here, the impact of this mechanism on 31P nuclear spin coherence is measured as a function of 29Si concentration using X -band pulsed electron nuclear double resonance. The 31P nuclear spin echo decays show that decoherence is controlled by 29Si flip-flops resulting in both fast (exponential) and slow (nonexponential) spectral diffusion processes. The decay times span a range from 100 ms in crystals containing 50% 29Si to 3 s in crystals containing 1% 29Si. These nuclear spin echo decay times for neutral donors are orders of magnitude longer than those reported for ionized donors in natural silicon. The electron spin of the neutral donors "protects" the donor nuclear spins by suppressing 29Si flip-flops within a "frozen core," as a result of the detuning of the 29Si spins caused by their hyperfine coupling to the electron spin.

  7. High-spin nuclear structure studies with radioactive ion beams

    SciTech Connect

    Baktash, C.

    1992-12-31

    Two important developments in the sixties, namely the advent of heavy-ion accelerators and fabrication of Ge detectors, opened the way for the experimental studies of nuclear properties at high angular momentum. Addition of a new degree of freedom, namely spin, made it possible to observe such fascinating phenomena as occurrences and coexistence of a variety of novel shapes, rise, fall and occasionally rebirth of nuclear collectivity, and disappearance of pairing correlations. Today, with the promise of development of radioactive ion beams (RIB) and construction of the third-generation Ge-detection systems (GAMMASPHERE and EUROBALL), the authors are poised to explore new and equally fascinating phenomena that have been hitherto inaccessible. With the addition of yet another dimension, namely the isospin, they will be able to observe and verify predictions for exotic shapes as varied as rigid triaxiality, hyperdeformation and triaxial octupole shapes, or to investigate the T = 0 pairing correlations. In this paper, they shall review, separately for neutron-deficient and neutron-rich nuclei, these and a few other new high-spin physics opportunities that may be realized with RIB. Following this discussion, they shall present a list of the beam species, intensities and energies that are needed to fulfill these goals. The paper will conclude with a description of the experimental techniques and instrumentations that are required for these studies.

  8. Geometric quantum computation using fictitious spin-(1/2) subspaces of strongly dipolar coupled nuclear spins

    SciTech Connect

    Gopinath, T.; Kumar, Anil

    2006-02-15

    Geometric phases have been used in NMR to implement controlled phase shift gates for quantum-information processing, only in weakly coupled systems in which the individual spins can be identified as qubits. In this work, we implement controlled phase shift gates in strongly coupled systems by using nonadiabatic geometric phases, obtained by evolving the magnetization of fictitious spin-1/2 subspaces, over a closed loop on the Bloch sphere. The dynamical phase accumulated during the evolution of the subspaces is refocused by a spin echo pulse sequence and by setting the delay of transition selective pulses such that the evolution under the homonuclear coupling makes a complete 2{pi} rotation. A detailed theoretical explanation of nonadiabatic geometric phases in NMR is given by using single transition operators. Controlled phase shift gates, two qubit Deutsch-Jozsa algorithm, and parity algorithm in a qubit-qutrit system have been implemented in various strongly dipolar coupled systems obtained by orienting the molecules in liquid crystal media.

  9. Single-spin asymmetry in pp and pA-collisions

    NASA Astrophysics Data System (ADS)

    Abramov, V. V.

    2016-02-01

    Experimental data on the transverse single-spin asymmetry AN in the collisions of polarized protons with protons and nuclear targets are analyzed. The existing data are compared with predictions from the chromomagnetic polarization of quarks (CPQ) model for the processes of π±, K±, p and antiproton production in the inclusive reactions. The results of An calculations for the above processes are presented in the following kinematic region: 8.77 ≤ √s ≤ 500 GeV, 0 < xF ≤ 0.83, 0 ≤ pT ≤ 9 GeV/c. Predictions of the CPQ model can be used for planning of experiments SPASCHARM(IHEP), SPD(JINR), STAR and PHENIX.

  10. Nanometre-scale nuclear-spin device for quantum information processing

    NASA Astrophysics Data System (ADS)

    Hirayama, Y.; Miranowicz, A.; Ota, T.; Yusa, G.; Muraki, K.; Ozdemir, S. K.; Imoto, N.

    2006-05-01

    We have developed semiconductor point contact devices in which nuclear spins in a nanoscale region are coherently controlled by all-electrical methods. Different from the standard nuclear-magnetic resonance technique, the longitudinal magnetization of nuclear spins is directly detected by measuring resistance, resulting in ultra-sensitive detection of the microscopic quantity of nuclear spins. All possible coherent oscillations have been successfully demonstrated between two levels from four nuclear spin states of I = 3/2 nuclei. Quantum information processing is discussed based on two fictitious qubits of an I = 3/2 system and methods are described for performing arbitrary logical gates both on one and two qubits. A scheme for quantum state tomography based on Mz-detection is also proposed. As the starting point of quantum manipulations, we have experimentally prepared the effective pure states for the I = 3/2 nuclear spin system.

  11. Nuclear depolarization and absolute sensitivity in magic-angle spinning cross effect dynamic nuclear polarization.

    PubMed

    Mentink-Vigier, Frédéric; Paul, Subhradip; Lee, Daniel; Feintuch, Akiva; Hediger, Sabine; Vega, Shimon; De Paëpe, Gaël

    2015-09-14

    Over the last two decades solid state Nuclear Magnetic Resonance has witnessed a breakthrough in increasing the nuclear polarization, and thus experimental sensitivity, with the advent of Magic Angle Spinning Dynamic Nuclear Polarization (MAS-DNP). To enhance the nuclear polarization of protons, exogenous nitroxide biradicals such as TOTAPOL or AMUPOL are routinely used. Their efficiency is usually assessed as the ratio between the NMR signal intensity in the presence and the absence of microwave irradiation εon/off. While TOTAPOL delivers an enhancement εon/off of about 60 on a model sample, the more recent AMUPOL is more efficient: >200 at 100 K. Such a comparison is valid as long as the signal measured in the absence of microwaves is merely the Boltzmann polarization and is not affected by the spinning of the sample. However, recent MAS-DNP studies at 25 K by Thurber and Tycko (2014) have demonstrated that the presence of nitroxide biradicals combined with sample spinning can lead to a depolarized nuclear state, below the Boltzmann polarization. In this work we demonstrate that TOTAPOL and AMUPOL both lead to observable depolarization at ≈110 K, and that the magnitude of this depolarization is radical dependent. Compared to the static sample, TOTAPOL and AMUPOL lead, respectively, to nuclear polarization losses of up to 20% and 60% at a 10 kHz MAS frequency, while Trityl OX63 does not depolarize at all. This experimental work is analyzed using a theoretical model that explains how the depolarization process works under MAS and gives new insights into the DNP mechanism and into the spin parameters, which are relevant for the efficiency of a biradical. In light of these results, the outstanding performance of AMUPOL must be revised and we propose a new method to assess the polarization gain for future radicals. PMID:26235749

  12. Single-Quantum Coherence Filter for Strongly Coupled Spin Systems for Localized 1H NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Trabesinger, Andreas H.; Mueller, D. Christoph; Boesiger, Peter

    2000-08-01

    A pulse sequence for localized in vivo1H NMR spectroscopy is presented, which selectively filters single-quantum coherence built up by strongly coupled spin systems. Uncoupled and weakly coupled spin systems do not contribute to the signal output. Analytical calculations using a product operator description of the strongly coupled AB spin system as well as in vitro tests demonstrate that the proposed filter produces a signal output for a strongly coupled AB spin system, whereas the resonances of a weakly coupled AX spin system and of uncoupled spins are widely suppressed. As a potential application, the detection of the strongly coupled AA‧BB‧ spin system of taurine at 1.5 T is discussed.

  13. Manipulation and measurement of nuclear spin over the quantum Hall regime for quantum information processing

    NASA Astrophysics Data System (ADS)

    Mani, R. G.; Johnson, W. B.; Narayanamurti, V.

    2002-12-01

    We propose a method for the management of nuclear spin immersed in a confined quantum Hall electronic system that is characterized by: (a) the application of the Overhauser effect for dynamic nuclear polarization, (b) spin measurement using electrical resistance detection techniques, (c) spin control with microwave/radio frequency methods, and (d) the utilization of the electronic spin exciton as a possible mobile spin transfer mechanism for the eventual realization of a logic gate. Concepts involved in this approach are illustrated with experimental results.

  14. Berry phase magnetometry using a single electronic spin in diamond

    NASA Astrophysics Data System (ADS)

    Arai, Keigo; Lee, Junghyun; Belthangady, Chinmay; Walsworth, Ronald

    2015-05-01

    We present a new approach for improving the sensitivity and dynamic-range of nitrogen-vacancy (NV) center magnetic field sensing using Berry phase. In the conventional Ramsey interferometry, an NV spin accumulates dynamic phase proportional to the Larmor frequency. This approach provides high sensitivity in exchange for the dynamic-range due to 2pi phase ambiguity. Our approach, in which the magnetic field is encoded in the Berry phase of the spin, can unwrap this ambiguity due to a chirped magnetometry curve. This work will provide a new modality not only for magnetometry but also for thermometry and electrometry using solid-state spins.

  15. Nuclear Spin Polarization of Phosphorus Donors in Silicon. Direct Evidence from 31P-Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Gumann, Patryk; Ramanathan, Chandrasekhar; Patange, Om; Moussa, Osama; Thewalt, Mike; Riemann, Helge; Abrosimov, Nikolay; Becker, Peter; Pohl, Hans-Joachim; Itoh, Kohei; Cory, David G.

    2014-03-01

    We experimentally demonstrate the optical hyperpolarization and coherent control of 31P, nuclear spins in single crystal silicon via the inductive readout of the nuclear magnetic resonance (NMR) signal of 31P at a concentration of 1.5 x 1015 cc-1. The obtained polarization is sufficient the 31P spin polarization of 1.17 x 1015 in a 10 mm x 10 mm sample, observed in one FID with signal-to-noise ration of 113. The linewidth is 800 Hz. The Hahn echo pulse sequence reveals a 31P T2 time of 0.42 s at 1.6 K, which was extended by the Carr Purcell cycle to 1.2 s at the same temperature. The maximum build-up of the nuclear polarization was achieved within ~577 seconds, at 4.2 K, in 6.7 T, using optical excitations provided by an infra-red laser. This work has been supported by CERC Canada.

  16. Spectral Signatures of Ultrafast Spin Crossover in Single Crystal [Fe(II) (bpy)3 ](PF6 )2.

    PubMed

    Field, Ryan; Liu, Lai Chung; Gawelda, Wojciech; Lu, Cheng; Miller, R J Dwayne

    2016-04-01

    Solvated iron(II)-tris(bipyridine) ([Fe(II) (bpy)3 ](2+) ) has been extensively studied with regard to the spin crossover (SCO) phenomenon. Herein, the ultrafast spin transition dynamics of single crystal [Fe(II) (bpy)3 ](PF6 )2 was characterized for the first time using femtosecond transient absorption (TA) spectroscopy. The single crystal environment is of interest for experiments that probe the nuclear motions involved in the SCO transition, such as femtosecond X-ray and electron diffraction. We found that the TA at early times is very similar to what has been reported in solvated [Fe(II) (bpy)3 ](2+) , whereas the later dynamics are perturbed in the crystal environment. The lifetime of the high-spin state is found to be much shorter (100 ps) than in solution due to chemical pressure exerted by the lattice. Oscillatory behavior was observed on both time scales. Our results show that single crystal [Fe(II) (bpy)3 ](PF6 )2 serves as an excellent model system for localized molecular spin transitions. PMID:26839974

  17. Decoherence of a single spin coupled to an interacting spin bath

    NASA Astrophysics Data System (ADS)

    Wu, Ning; Fröhling, Nina; Xing, Xi; Hackmann, Johannes; Nanduri, Arun; Anders, Frithjof B.; Rabitz, Herschel

    2016-01-01

    Decoherence of a central spin coupled to an interacting spin bath via inhomogeneous Heisenberg coupling is studied by two different approaches, namely an exact equations of motion (EOMs) method and a Chebyshev expansion technique (CET). By assuming a wheel topology of the bath spins with uniform nearest-neighbor X X -type intrabath coupling, we examine the central spin dynamics with the bath prepared in two different types of bath initial conditions. For fully polarized baths in strong magnetic fields, the polarization dynamics of the central spin exhibits a collapse-revival behavior in the intermediate-time regime. Under an antiferromagnetic bath initial condition, the two methods give excellently consistent central spin decoherence dynamics for finite-size baths of N ≤14 bath spins. The decoherence factor is found to drop off abruptly on a short time scale and approach a finite plateau value which depends on the intrabath coupling strength nonmonotonically. In the ultrastrong intrabath coupling regime, the plateau values show an oscillatory behavior depending on whether N /2 is even or odd. The observed results are interpreted qualitatively within the framework of the EOM and perturbation analysis. The effects of anisotropic spin-bath coupling and inhomogeneous intrabath bath couplings are briefly discussed. Possible experimental realization of the model in a modified quantum corral setup is suggested.

  18. Spin relaxometry of single nitrogen-vacancy defects in diamond nanocrystals for magnetic noise sensing

    NASA Astrophysics Data System (ADS)

    Tetienne, J.-P.; Hingant, T.; Rondin, L.; Cavaills, A.; Mayer, L.; Dantelle, G.; Gacoin, T.; Wrachtrup, J.; Roch, J.-F.; Jacques, V.

    2013-06-01

    We report an experimental study of the longitudinal relaxation time (T1) of the electron spin associated with single nitrogen-vacancy (NV) defects hosted in nanodiamonds (NDs). We first show that T1 decreases over three orders of magnitude when the ND size is reduced from 100 to 10 nm owing to the interaction of the NV electron spin with a bath of paramagnetic centers lying on the ND surface. We next tune the magnetic environment by decorating the ND surface with Gd3+ ions and observe an efficient T1 quenching, which demonstrates magnetic noise sensing with a single electron spin. We estimate a sensitivity down to ?14 electron spins detected within 10 s, using a single NV defect hosted in a 10-nm-size ND. These results pave the way towards T1-based nanoscale imaging of the spin density in biological samples.

  19. High-sensitivity single NV magnetometry by spin-to-charge state mapping

    NASA Astrophysics Data System (ADS)

    Jaskula, Jean-Christophe; Shields, Brendan; Bauch, Erik; Lukin, Mikhail; Walsworth, Ronald; Trifonov, Alexei

    2015-05-01

    Nitrogen-Vacancy (NV) centers in diamond are atom-like quantum system in a solid state matrix whom its structure allows optical readout of the electronic spin. However, the optimal duration of optical readout is limited by a singlet state lifetime making single shot spin readout out of reach. On the other side, the NV center charge state readout can be extremely efficient (up to 99% fidelity) by using excitation at 594 nm. We will present a new method of spin readout utilizing a spin-depending photoionization process to map the electronic spin state of the NV onto the its charge state. Moreover, pre-selection on the charged state allows to minimize data acquisition time. This scheme improves single NV AC magnetometry by a factor of 5 and will benefit other single NV center experiments as well.

  20. A broadband single-chip transceiver for multi-nuclear NMR probes

    NASA Astrophysics Data System (ADS)

    Grisi, Marco; Gualco, Gabriele; Boero, Giovanni

    2015-04-01

    In this article, we present an integrated broadband complementary metal-oxide semiconductor single-chip transceiver suitable for the realization of multi-nuclear pulsed nuclear magnetic resonance (NMR) probes. The realized single-chip transceiver can be interfaced with on-chip integrated microcoils or external LC resonators operating in the range from 1 MHz to 1 GHz. The dimension of the chip is about 1 mm2. It consists of a radio-frequency (RF) power amplifier, a low-noise RF preamplifier, a frequency mixer, an audio-frequency amplifier, and fully integrated transmit-receive switches. As specific example, we show its use for multi-nuclear NMR spectroscopy. With an integrated coil of about 150 μm external diameter, a 1H spin sensitivity of about 1.5 × 1013 spins/Hz1/2 is achieved at 7 T.

  1. A broadband single-chip transceiver for multi-nuclear NMR probes.

    PubMed

    Grisi, Marco; Gualco, Gabriele; Boero, Giovanni

    2015-04-01

    In this article, we present an integrated broadband complementary metal-oxide semiconductor single-chip transceiver suitable for the realization of multi-nuclear pulsed nuclear magnetic resonance (NMR) probes. The realized single-chip transceiver can be interfaced with on-chip integrated microcoils or external LC resonators operating in the range from 1 MHz to 1 GHz. The dimension of the chip is about 1 mm(2). It consists of a radio-frequency (RF) power amplifier, a low-noise RF preamplifier, a frequency mixer, an audio-frequency amplifier, and fully integrated transmit-receive switches. As specific example, we show its use for multi-nuclear NMR spectroscopy. With an integrated coil of about 150 μm external diameter, a (1)H spin sensitivity of about 1.5 × 10(13) spins/Hz(1/2) is achieved at 7 T. PMID:25933876

  2. A broadband single-chip transceiver for multi-nuclear NMR probes

    SciTech Connect

    Grisi, Marco Gualco, Gabriele; Boero, Giovanni

    2015-04-15

    In this article, we present an integrated broadband complementary metal-oxide semiconductor single-chip transceiver suitable for the realization of multi-nuclear pulsed nuclear magnetic resonance (NMR) probes. The realized single-chip transceiver can be interfaced with on-chip integrated microcoils or external LC resonators operating in the range from 1 MHz to 1 GHz. The dimension of the chip is about 1 mm{sup 2}. It consists of a radio-frequency (RF) power amplifier, a low-noise RF preamplifier, a frequency mixer, an audio-frequency amplifier, and fully integrated transmit-receive switches. As specific example, we show its use for multi-nuclear NMR spectroscopy. With an integrated coil of about 150 μm external diameter, a {sup 1}H spin sensitivity of about 1.5 × 10{sup 13} spins/Hz{sup 1/2} is achieved at 7 T.

  3. Single cell elemental analysis using nuclear microscopy

    NASA Astrophysics Data System (ADS)

    Ren, M. Q.; Thong, P. S. P.; Kara, U.; Watt, F.

    1999-04-01

    The use of Particle Induced X-ray Emission (PIXE), Rutherford Backscattering Spectrometry (RBS) and Scanning Transmission Ion Microscopy (STIM) to provide quantitative elemental analysis of single cells is an area which has high potential, particularly when the trace elements such as Ca, Fe, Zn and Cu can be monitored. We describe the methodology of sample preparation for two cell types, the procedures of cell imaging using STIM, and the quantitative elemental analysis of single cells using RBS and PIXE. Recent work on single cells at the Nuclear Microscopy Research Centre,National University of Singapore has centred around two research areas: (a) Apoptosis (programmed cell death), which has been recently implicated in a wide range of pathological conditions such as cancer, Parkinson's disease etc, and (b) Malaria (infection of red blood cells by the malaria parasite). Firstly we present results on the elemental analysis of human Chang liver cells (ATTCC CCL 13) where vanadium ions were used to trigger apoptosis, and demonstrate that nuclear microscopy has the capability of monitoring vanadium loading within individual cells. Secondly we present the results of elemental changes taking place in individual mouse red blood cells which have been infected with the malaria parasite and treated with the anti-malaria drug Qinghaosu (QHS).

  4. Temperature dependence of nuclear spin coherence in E u3 + :Y2Si O5

    NASA Astrophysics Data System (ADS)

    Arcangeli, Andrea; Macfarlane, Roger M.; Ferrier, Alban; Goldner, Philippe

    2015-12-01

    We have measured the temperature dependence of the spin-lattice relaxation and dephasing of the two nuclear quadrupole transitions in the 7F0 ground state of 151Eu in yttrium orthosilicate up to 21 K. Spin-lattice relaxation (T1) is dominated by an Orbach process and decoherence comes from 87Y nuclear spin fluctuations at low temperatures and is T1 limited at higher temperatures. The different contributions to relaxation and dephasing are evaluated.

  5. A 3D-printed high power nuclear spin polarizer.

    PubMed

    Nikolaou, Panayiotis; Coffey, Aaron M; Walkup, Laura L; Gust, Brogan M; LaPierre, Cristen D; Koehnemann, Edward; Barlow, Michael J; Rosen, Matthew S; Goodson, Boyd M; Chekmenev, Eduard Y

    2014-01-29

    Three-dimensional printing with high-temperature plastic is used to enable spin exchange optical pumping (SEOP) and hyperpolarization of xenon-129 gas. The use of 3D printed structures increases the simplicity of integration of the following key components with a variable temperature SEOP probe: (i) in situ NMR circuit operating at 84 kHz (Larmor frequencies of (129)Xe and (1)H nuclear spins), (ii) <0.3 nm narrowed 200 W laser source, (iii) in situ high-resolution near-IR spectroscopy, (iv) thermoelectric temperature control, (v) retroreflection optics, and (vi) optomechanical alignment system. The rapid prototyping endowed by 3D printing dramatically reduces production time and expenses while allowing reproducibility and integration of "off-the-shelf" components and enables the concept of printing on demand. The utility of this SEOP setup is demonstrated here to obtain near-unity (129)Xe polarization values in a 0.5 L optical pumping cell, including ∼74 ± 7% at 1000 Torr xenon partial pressure, a record value at such high Xe density. Values for the (129)Xe polarization exponential build-up rate [(3.63 ± 0.15) × 10(-2) min(-1)] and in-cell (129)Xe spin-lattice relaxation time (T1 = 2.19 ± 0.06 h) for 1000 Torr Xe were in excellent agreement with the ratio of the gas-phase polarizations for (129)Xe and Rb (PRb ∼ 96%). Hyperpolarization-enhanced (129)Xe gas imaging was demonstrated with a spherical phantom following automated gas transfer from the polarizer. Taken together, these results support the development of a wide range of chemical, biochemical, material science, and biomedical applications. PMID:24400919

  6. Frequency selective detection of nuclear quadrupole resonance (NQR) spin echoes

    NASA Astrophysics Data System (ADS)

    Somasundaram, Samuel D.; Jakobsson, Andreas; Smith, John A. S.; Althoefer, Kaspar A.

    2006-05-01

    Nuclear Quadrupole Resonance (NQR) is a radio frequency (RF) technique that can be used to detect the presence of quadrupolar nuclei, such as the 14N nucleus prevalent in many explosives and narcotics. The technique has been hampered by low signal-to-noise ratios and is further aggravated by the presence of RF interference (RFI). To ensure accurate detection, proposed detectors should exploit the rich form of the NQR signal. Furthermore, the detectors should also be robust to any remaining residual interference, left after suitable RFI mitigation has been employed. In this paper, we propose a new NQR data model, particularly for the realistic case where multiple pulse sequences are used to generate trains of spin echoes. Furthermore, we refine two recently proposed approximative maximum likelihood (AML) detectors, enabling the algorithm to optimally exploit the data model of the entire echo train and also incorporate knowledge of the temperature dependent spin-echo decay time. The AML-based detectors ensure accurate detection and robustness against residual RFI, even when the temperature of the sample is not precisely known, by exploiting the dependencies of the NQR resonant lines on temperature. Further robustness against residual interference is gained as the proposed detector is frequency selective; exploiting only those regions of the spectrum where the NQR signal is expected. Extensive numerical evaluations based on both simulated and measured NQR data indicate that the proposed Frequency selective Echo Train AML (FETAML) detector offers a significant improvement as compared to other existing detectors.

  7. Nuclear spin lattice relaxation of191 m Ir in Fe

    NASA Astrophysics Data System (ADS)

    Kopp, M.; Kazemi-Far, B.; Klein, E.

    1981-03-01

    Thermal cycling of the lattice temperature was used to determine the nuclear spin lattice relaxation of191 m Ir Fe in polarizing fields of 0.05 to 1.3 T. At low temperatures, the relaxation time is not very much shorter than the lifetime of191 m Ir. In the first part of the paper, the master equation formalism is extended to include a finite lifetime. Our result for the reduced relaxation constant, γ2 C K =(1.48±0.11)·1014 K s-1 T-2 (high field limit) is in serious disagreement with that of a spin echo measurement of193Ir Fe, but fits much better into the general systematics. A comparison of relaxation rates for 3 d-, 4 d-, and 5 d-impurities in Fe is given. As a by-product, a Kapitza conductivity constant of l K =1.5 mW cm-2 K-4±30% was found between Fe and dilute3He/4He.

  8. Measurement of untruncated nuclear spin interactions via zero- to ultralow-field nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Blanchard, J. W.; Sjolander, T. F.; King, J. P.; Ledbetter, M. P.; Levine, E. H.; Bajaj, V. S.; Budker, D.; Pines, A.

    2015-12-01

    Zero- to ultralow-field nuclear magnetic resonance (ZULF NMR) provides a new regime for the measurement of nuclear spin-spin interactions free from the effects of large magnetic fields, such as truncation of terms that do not commute with the Zeeman Hamiltonian. One such interaction, the magnetic dipole-dipole coupling, is a valuable source of spatial information in NMR, though many terms are unobservable in high-field NMR, and the coupling averages to zero under isotropic molecular tumbling. Under partial alignment, this information is retained in the form of so-called residual dipolar couplings. We report zero- to ultralow-field NMR measurements of residual dipolar couplings in acetonitrile-2-13C aligned in stretched polyvinyl acetate gels. This permits the investigation of dipolar couplings as a perturbation on the indirect spin-spin J coupling in the absence of an applied magnetic field. As a consequence of working at zero magnetic field, we observe terms of the dipole-dipole coupling Hamiltonian that are invisible in conventional high-field NMR. This technique expands the capabilities of zero- to ultralow-field NMR and has potential applications in precision measurement of subtle physical interactions, chemical analysis, and characterization of local mesoscale structure in materials.

  9. Twist-3 spin observables for single-hadron production in DIS

    SciTech Connect

    Gamberg, Leonard P.; Kanazawa, Koichi; Kang, Zhong-Bo; Metz, Andreas; Pitonyak, Daniel A.; Prokudin, Alexei; Schlegel, Marc

    2015-09-01

    Recently, three twist-3 spin asymmetries for single-inclusive hadron production in deep-inelastic lepton-nucleon scattering have been computed using collinear factorization and the leading order approximation. Here we summarize the main findings of these studies.

  10. Nuclear spin optical rotation and Faraday effect in gaseous and liquid water.

    PubMed

    Pennanen, Teemu S; Ikäläinen, Suvi; Lantto, Perttu; Vaara, Juha

    2012-05-14

    Nuclear spin optical rotation (NSOR) of linearly polarized light, due to the nuclear spins through the Faraday effect, provides a novel probe of molecular structure and could pave the way to optical detection of nuclear magnetization. We determine computationally the effects of the liquid medium on NSOR and the Verdet constant of Faraday rotation (arising from an external magnetic field) in water, using the recently developed theory applied on a first-principles molecular dynamics trajectory. The gas-to-liquid shifts of the relevant antisymmetric polarizability and, hence, NSOR magnitude are found to be -14% and -29% for (1)H and (17)O nuclei, respectively. On the other hand, medium effects both enhance the local electric field in water and, via bulk magnetization, the local magnetic field. Together these two effects partially cancel the solvation influence on the single-molecular property. We find a good agreement for the hydrogen NSOR with a recent pioneering experiment on H(2)O(l). PMID:22583295

  11. High-fidelity gate operations with the coupled nuclear and electron spins of a nitrogen-vacancy center in diamond

    NASA Astrophysics Data System (ADS)

    Everitt, Mark S.; Devitt, Simon; Munro, W. J.; Nemoto, Kae

    2014-05-01

    In this article we investigate the dynamics of a single negatively charged nitrogen-vacancy center (NV-) coupled to the spin of the nucleus of a 15-nitrogen atom and show that high-speed, high-fidelity gate operations are possible without the need for complicated composite pulse sequences. These operations include both the electron and nuclear spin rotations, as well as an entangling gate between them. These are the primitive gates one will need within a quantum node of a distributed communication network.

  12. Room temperature single GaN nanowire spin valves with FeCo/MgO tunnel contacts

    NASA Astrophysics Data System (ADS)

    Kum, Hyun; Heo, Junseok; Jahangir, Shafat; Banerjee, Animesh; Guo, Wei; Bhattacharya, Pallab

    2012-04-01

    We report the direct measurement of spin transport characteristics in a GaN spin valve, with a relatively defect-free single GaN nanowire (NW) as the channel and FeCo/MgO as the tunnel barrier spin contact. Hanle spin precession and non-local transport measurements are made in an unintentionally doped nanowire spin valves. Spin diffusion length and spin lifetime values of 260 nm and 100 ps, respectively, are derived. Appropriate control measurements have been made to verify spin injection, transport, and detection.

  13. Improved single particle potential for transport model simulations of nuclear reactions induced by rare isotope beams

    SciTech Connect

    Xu Chang; Li Baoan

    2010-04-15

    Taking into account more accurately the isospin dependence of nucleon-nucleon interactions in the in-medium many-body force term of the Gogny effective interaction, new expressions for the single-nucleon potential and the symmetry energy are derived. Effects of both the spin (isospin) and the density dependence of nuclear effective interactions on the symmetry potential and the symmetry energy are examined. It is shown that they both play a crucial role in determining the symmetry potential and the symmetry energy at suprasaturation densities. The improved single-nucleon potential will be useful for more accurate simulation of nuclear reactions induced by rare-isotope beams within transport models.

  14. Spin-phonon coupling in single Mn-doped CdTe quantum dot

    NASA Astrophysics Data System (ADS)

    Cao, C. L.; Besombes, L.; Fernández-Rossier, J.

    2011-11-01

    The spin dynamics of a single Mn atom in a laser driven CdTe quantum dot is addressed theoretically. Recent experimental results [Gall , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.102.127402 102, 127402 (2009); Goryca , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.103.087401 103, 087401 (2009); Gall , Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.81.245315 81, 245315 (2010)] show that it is possible to induce Mn spin polarization by means of circularly polarized optical pumping. Pumping is made possible by the faster Mn spin relaxation in the presence of the exciton. Here we discuss different Mn spin-relaxation mechanisms: first, Mn-phonon coupling, which is enhanced in the presence of the exciton; second, phonon induced hole spin relaxation combined with carrier-Mn spin-flip coupling and photon emission results in Mn spin relaxation. We model the Mn spin dynamics under the influence of a pumping laser that injects excitons into the dot, taking into account exciton-Mn exchange and phonon induced spin relaxation of both Mn and holes. Our simulations account for the optically induced Mn spin pumping.

  15. Large Conductance Switching in a Single-Molecule Device through Room Temperature Spin-Dependent Transport.

    PubMed

    Aragonès, Albert C; Aravena, Daniel; Cerdá, Jorge I; Acís-Castillo, Zulema; Li, Haipeng; Real, José Antonio; Sanz, Fausto; Hihath, Josh; Ruiz, Eliseo; Díez-Pérez, Ismael

    2016-01-13

    Controlling the spin of electrons in nanoscale electronic devices is one of the most promising topics aiming at developing devices with rapid and high density information storage capabilities. The interface magnetism or spinterface resulting from the interaction between a magnetic molecule and a metal surface, or vice versa, has become a key ingredient in creating nanoscale molecular devices with novel functionalities. Here, we present a single-molecule wire that displays large (>10000%) conductance switching by controlling the spin-dependent transport under ambient conditions (room temperature in a liquid cell). The molecular wire is built by trapping individual spin crossover Fe(II) complexes between one Au electrode and one ferromagnetic Ni electrode in an organic liquid medium. Large changes in the single-molecule conductance (>100-fold) are measured when the electrons flow from the Au electrode to either an α-up or a β-down spin-polarized Ni electrode. Our calculations show that the current flowing through such an interface appears to be strongly spin-polarized, thus resulting in the observed switching of the single-molecule wire conductance. The observation of such a high spin-dependent conductance switching in a single-molecule wire opens up a new door for the design and control of spin-polarized transport in nanoscale molecular devices at room temperature. PMID:26675052

  16. Influence of spin polarizability on liquid gas phase transition in the nuclear matter

    NASA Astrophysics Data System (ADS)

    Rezaei, Z.; Bigdeli, M.; Bordbar, G. H.

    2015-10-01

    In this paper, we investigate the liquid gas phase transition for the spin polarized nuclear matter. Applying the lowest order constrained variational (LOCV) method, and using two microscopic potentials, AV18 and UV14+TNI, we calculate the free energy, equation of state (EOS), order parameter, entropy, heat capacity and compressibility to derive the critical properties of spin polarized nuclear matter. Our results indicate that for the spin polarized nuclear matter, the second-order phase transition takes place at lower temperatures with respect to the unpolarized one. It is also shown that the critical temperature of our spin polarized nuclear matter with a specific value of spin polarization parameter is in good agreement with the experimental result.

  17. Stabilizing nuclear spins around semiconductor electrons via the interplay of optical coherent population trapping and dynamic nuclear polarization

    NASA Astrophysics Data System (ADS)

    Onur, A. R.; de Jong, J. P.; O'Shea, D.; Reuter, D.; Wieck, A. D.; van der Wal, C. H.

    2016-04-01

    We experimentally demonstrate how coherent population trapping (CPT) for donor-bound electron spins in GaAs results in autonomous feedback that prepares stabilized states for the spin polarization of nuclei around the electrons. CPT was realized by excitation with two lasers to a bound-exciton state. Transmission studies of the spectral CPT feature on an ensemble of electrons directly reveal the statistical distribution of prepared nuclear-spin states. Tuning the laser driving from blue to red detuned drives a transition from one to two stable states. Our results have importance for ongoing research on schemes for dynamic nuclear-spin polarization, the central spin problem, and control of spin coherence.

  18. Two-dimensional nanoscale imaging of gadolinium spins via scanning probe relaxometry with a single spin in diamond

    NASA Astrophysics Data System (ADS)

    Pelliccione, Matthew; Myers, Bryan; Pascal, Laetitia; Das, Anand; Jayich, Ania

    2015-03-01

    Spin-labeling of molecules with paramagnetic ions is an important approach for determining molecular structure, however current ensemble techniques lack the sensitivity to detect few isolated spins. In this talk, we demonstrate two-dimensional nanoscale imaging of paramagnetic gadolinium compounds using scanning relaxometry of a single nitrogen vacancy (NV) center in diamond. Gadopentetate dimeglumine attached to an atomic force microscope tip is controllably interacted with and detected by the NV center, by virtue of the fact that the NV exhibits fast relaxation in the fluctuating magnetic field generated by electron spin flips in the gadolinium. We demonstrate a reduction in the T1 relaxation time of the NV center by over two orders of magnitude, probed with a spatial resolution of 20 nm, limited by thermal drift in ambient conditions. We discuss the importance of mitigating drift to reach truly nanoscale imaging and present progress towards cryogenic scanning magnetometry, along with utilizing chemically functionalized tips to gain greater control over the Gd distribution on the tip. Our result exhibits the viability of the technique for imaging individual spins attached to complex nanostructures or biomolecules, along with studying the magnetic dynamics of isolated spins.

  19. Nuclear Spin Relaxation Times for Methane-Helium ``Slush'' at 4 MHz using Pulsed NMR

    NASA Astrophysics Data System (ADS)

    Hamida, J. A.; Sullivan, N. S.

    2006-09-01

    We report measurements of the nuclear spin-lattice relaxation times (T1) and spin-spin relaxation times (T2) for small grains of methane suspended in liquid helium (methane-helium "slush") for temperatures 2 Kspin-spin relaxation rate 1/T2 is consistent with internal diffusion as opposed to surface scattering, which has been shown to be dominant for hydrogen-helium "slush". The most interesting feature observed for methane-helium mixtures is the existence of three different time scales for samples aged at 4.2 K. The possible origins of this distribution of relaxation times are discussed.

  20. SIMPRE1.2: Considering the hyperfine and quadrupolar couplings and the nuclear spin bath decoherence.

    PubMed

    Cardona-Serra, Salvador; Escalera-Moreno, Luis; Baldoví, José J; Gaita-Ariño, Alejandro; Clemente-Juan, Juan M; Coronado, Eugenio

    2016-05-15

    SIMPRE is a fortran77 code which uses an effective electrostatic model of point charges to predict the magnetic behavior of rare-earth-based mononuclear complexes. In this article, we present SIMPRE1.2, which now takes into account two further phenomena. First, SIMPRE now considers the hyperfine and quadrupolar interactions within the rare-earth ion, resulting in a more complete and realistic set of energy levels and wave functions. Second, and to widen SIMPRE's predictive capabilities regarding potential molecular spin qubits, it now includes a routine that calculates an upper-bound estimate of the decoherence time considering only the dipolar coupling between the electron spin and the surrounding nuclear spin bath. Additionally, SIMPRE now allows the user to introduce the crystal field parameters manually. Thus, we are able to demonstrate the new features using as examples (i) a Gd-based mononuclear complex known for its properties both as a single ion magnet and as a coherent qubit and (ii) an Er-based mononuclear complex. © 2016 Wiley Periodicals, Inc. PMID:26833799

  1. Frequency-stepped acquisition in nuclear magnetic resonance spectroscopy under magic angle spinning

    NASA Astrophysics Data System (ADS)

    Pell, Andrew J.; Clément, Raphaële J.; Grey, Clare P.; Emsley, Lyndon; Pintacuda, Guido

    2013-03-01

    The nuclear magnetic resonance of paramagnetic solids is usually characterized by the presence of large chemical shifts and shift anisotropies due to hyperfine interactions. Frequently the resulting spectra cover a frequency range of several megahertz, which is greater than the bandwidth of commercially available radio-frequency (RF) probes, making it impossible to acquire the whole spectrum in a single experiment. In these cases it common to record a series of spectra, in which the probe is tuned to a different frequency for each, and then sum the results to give the "true" spectrum. While this method is very widely used on static samples, the application of frequency stepping under magic-angle spinning (MAS) is less common, owing to the increased complexity of the spin dynamics when describing the interplay of the RF irradiation with the mechanical rotation of the shift tensor. In this paper, we present a theoretical description, based on the jolting frame formalism of Caravatti et al. [J. Magn. Reson. 55, 88 (1983), 10.1016/0022-2364(83)90279-2], for describing the spin dynamics of a powder sample under MAS when subjected to a selective pulse of low RF-field amplitude. The formalism is used to describe the frequency stepping method under MAS, and under what circumstances the true spectrum is reproduced. We also present an experimental validation of the methodology under ultra-fast MAS with the paramagnetic materials LiMnPO4 and TbCsDPA.

  2. Influence of nuclear spin on chemical reactions: Magnetic isotope and magnetic field effects (A Review)

    PubMed Central

    Turro, Nicholas J.

    1983-01-01

    The course of chemical reactions involving radical pairs may depend on occurrence and orientation of nuclear spins in the pairs. The influence of nuclear spins is maximized when the radical pairs are confined to a space that serves as a cage that allows a certain degree of independent diffusional and rotational motion of the partners of the pair but that also encourages reencounters of the partners within a period which allows the nuclear spins to operate on the odd electron spins of the pair. Under the proper conditions, the nuclear spins can induce intersystem crossing between triplet and singlet states of radical pairs. It is shown that this dependence of intersystem crossing on nuclear spin leads to a magnetic isotope effect on the chemistry of radical pairs which provides a means of separating isotopes on the basis of nuclear spins rather than nuclear masses and also leads to a magnetic field effect on the chemistry of radical pairs which provides a means of influencing the course of polymerization by the application of weak magnetic fields. PMID:16593273

  3. Spin splitting anisotropy in single diluted magnetic nanowire heterostructures.

    PubMed

    Szymura, Małgorzata; Wojnar, Piotr; Kłopotowski, Łukasz; Suffczyński, Jan; Goryca, Mateusz; Smoleński, Tomasz; Kossacki, Piotr; Zaleszczyk, Wojciech; Wojciechowski, Tomasz; Karczewski, Grzegorz; Wojtowicz, Tomasz; Kossut, Jacek

    2015-03-11

    We study the impact of the nanowire shape anisotropy on the spin splitting of excitonic photoluminescence. The experiments are performed on individual ZnMnTe/ZnMgTe core/shell nanowires as well as on ZnTe/ZnMgTe core/shell nanowires containing optically active magnetic CdMnTe insertions. When the magnetic field is oriented parallel to the nanowire axis, the spin splitting is several times larger than for the perpendicular field. We interpret this pronounced anisotropy as an effect of mixing of valence band states arising from the strain present in the core/shell geometry. This interpretation is further supported by theoretical calculations which allow to reproduce experimental results. PMID:25710186

  4. A 3D-Printed High Power Nuclear Spin Polarizer

    PubMed Central

    Nikolaou, Panayiotis; Coffey, Aaron M.; Walkup, Laura L.; Gust, Brogan M.; LaPierre, Cristen D.; Koehnemann, Edward; Barlow, Michael J.; Rosen, Matthew S.; Goodson, Boyd M.; Chekmenev, Eduard Y.

    2015-01-01

    Three-dimensional printing with high-temperature plastic is used to enable spin exchange optical pumping (SEOP) and hyperpolarization of xenon-129 gas. The use of 3D printed structures increases the simplicity of integration of the following key components with a variable temperature SEOP probe: (i) in situ NMR circuit operating at 84 kHz (Larmor frequencies of 129Xe and 1H nuclear spins), (ii) <0.3 nm narrowed 200 W laser source, (iii) in situ high-resolution near-IR spectroscopy, (iv) thermoelectric temperature control, (v) retroreflection optics, and (vi) optomechanical alignment system. The rapid prototyping endowed by 3D printing dramatically reduces production time and expenses while allowing reproducibility and integration of “off-the-shelf” components and enables the concept of printing on demand. The utility of this SEOP setup is demonstrated here to obtain near-unity 129Xe polarization values in a 0.5 L optical pumping cell, including ~74 ± 7% at 1000 Torr xenon partial pressure, a record value at such high Xe density. Values for the 129Xe polarization exponential build-up rate [(3.63 ± 0.15) × 10−2 min−1] and in-cell 129Xe spin−lattice relaxation time (T1 = 2.19 ± 0.06 h) for 1000 Torr Xe were in excellent agreement with the ratio of the gas-phase polarizations for 129Xe and Rb (PRb ~ 96%). Hyperpolarization-enhanced 129Xe gas imaging was demonstrated with a spherical phantom following automated gas transfer from the polarizer. Taken together, these results support the development of a wide range of chemical, biochemical, material science, and biomedical applications. PMID:24400919

  5. Absence of a spin-signature from a single Ho adatom as probed by spin-sensitive tunneling

    NASA Astrophysics Data System (ADS)

    Steinbrecher, M.; Sonntag, A.; Dias, M. Dos Santos; Bouhassoune, M.; Lounis, S.; Wiebe, J.; Wiesendanger, R.; Khajetoorians, A. A.

    2016-02-01

    Whether rare-earth materials can be used as single-atom magnetic memory is an ongoing debate in recent literature. Here we show, by inelastic and spin-resolved scanning tunnelling-based methods, that we observe a strong magnetic signal and excitation from Fe atoms adsorbed on Pt(111), but see no signatures of magnetic excitation or spin-based telegraph noise for Ho atoms. Moreover, we observe that the indirect exchange field produced by a single Ho atom is negligible, as sensed by nearby Fe atoms. We demonstrate, using ab initio methods, that this stems from a comparatively weak coupling of the Ho 4f electrons with both tunnelling electrons and substrate-derived itinerant electrons, making both magnetic coupling and detection very difficult when compared to 3d elements. We discuss these results in the context of ongoing disputes and clarify important controversies.

  6. Absence of a spin-signature from a single Ho adatom as probed by spin-sensitive tunneling

    PubMed Central

    Steinbrecher, M.; Sonntag, A.; Dias, M. dos Santos; Bouhassoune, M.; Lounis, S.; Wiebe, J.; Wiesendanger, R.; Khajetoorians, A. A.

    2016-01-01

    Whether rare-earth materials can be used as single-atom magnetic memory is an ongoing debate in recent literature. Here we show, by inelastic and spin-resolved scanning tunnelling-based methods, that we observe a strong magnetic signal and excitation from Fe atoms adsorbed on Pt(111), but see no signatures of magnetic excitation or spin-based telegraph noise for Ho atoms. Moreover, we observe that the indirect exchange field produced by a single Ho atom is negligible, as sensed by nearby Fe atoms. We demonstrate, using ab initio methods, that this stems from a comparatively weak coupling of the Ho 4f electrons with both tunnelling electrons and substrate-derived itinerant electrons, making both magnetic coupling and detection very difficult when compared to 3d elements. We discuss these results in the context of ongoing disputes and clarify important controversies. PMID:26838811

  7. Absence of a spin-signature from a single Ho adatom as probed by spin-sensitive tunneling.

    PubMed

    Steinbrecher, M; Sonntag, A; Dias, M Dos Santos; Bouhassoune, M; Lounis, S; Wiebe, J; Wiesendanger, R; Khajetoorians, A A

    2016-01-01

    Whether rare-earth materials can be used as single-atom magnetic memory is an ongoing debate in recent literature. Here we show, by inelastic and spin-resolved scanning tunnelling-based methods, that we observe a strong magnetic signal and excitation from Fe atoms adsorbed on Pt(111), but see no signatures of magnetic excitation or spin-based telegraph noise for Ho atoms. Moreover, we observe that the indirect exchange field produced by a single Ho atom is negligible, as sensed by nearby Fe atoms. We demonstrate, using ab initio methods, that this stems from a comparatively weak coupling of the Ho 4f electrons with both tunnelling electrons and substrate-derived itinerant electrons, making both magnetic coupling and detection very difficult when compared to 3d elements. We discuss these results in the context of ongoing disputes and clarify important controversies. PMID:26838811

  8. Electrically generated nuclear spin polarization in In.04Ga.96As

    NASA Astrophysics Data System (ADS)

    Trowbridge, Christopher; Norman, Benjamin; Kato, Yuichiro K.; Awschalom, David; Sih, Vanessa

    2013-03-01

    The promises of lower power consumption and simple interfacing to magnetic storage has driven interest in the development of spintronics, in which devices could take advantage of electron spin as a means to store, move, and process data. Due to its long lifetime in moderate fields, nuclear polarization could serve as intermediate timescale data storage in both classical spintronic and quantum computation schemes. Here, we investigate the role of nuclear spins in materials with electrically driven spin polarization. The electron spin polarization generated by electrical current in a non-magnetic semiconductor is transferred via dynamic nuclear polarization to the nuclei. The resulting nuclear field is interrogated using Larmor magnetometry. We measure nuclear field as a function of current, applied magnetic field, and temperature. Polarization decay dynamics and the role of nuclei in devices are also discussed.

  9. Spin-pseudospin intertwined excitation at the ν = 1 bilayer quantum Hall state investigated by nuclear-spin relaxation

    SciTech Connect

    Tsuda, S.; Nguyen, M. H.; Terasawa, D.; Fukuda, A.; Zheng, Y. D.; Arai, T.; Sawada, A.; Ezawa, Z. F.

    2013-12-04

    We investigate the electron spin degree of freedom at the imbalanced density bilayer ν = 1 quantum Hall states using the resistively detected nuclear-spin-lattice relaxation rate 1/T{sub 1}. Our measurements reveal a continuous change in 1/T{sub 1} for σ = 1 to 0, suggesting that the balanced density ν = 1 state also exhibits electron-spin fluctuations. Moreover, the value of 1/T{sub 1} in the back layer (the layer from which electrons are transferred to the front layer) increases at intermediate density imbalance states. This indicates that the low-energy electron-spin mode, similar to a mode observed in Skyrmion crystals, might extend across the two layers.

  10. Boundary between the thermal and statistical polarization regimes in a nuclear spin ensemble

    NASA Astrophysics Data System (ADS)

    Herzog, B. E.; Cadeddu, D.; Xue, F.; Peddibhotla, P.; Poggio, M.

    2014-07-01

    As the number of spins in an ensemble is reduced, the statistical fluctuations in its polarization eventually exceed the mean thermal polarization. This transition has now been surpassed in a number of recent nuclear magnetic resonance experiments, which achieve nanometer-scale detection volumes. Here, we measure nanometer-scale ensembles of nuclear spins in a KPF6 sample using magnetic resonance force microscopy. In particular, we investigate the transition between regimes dominated by thermal and statistical nuclear polarization. The ratio between the two types of polarization provides a measure of the number of spins in the detected ensemble.

  11. Boundary between the thermal and statistical polarization regimes in a nuclear spin ensemble

    SciTech Connect

    Herzog, B. E.; Cadeddu, D.; Xue, F.; Peddibhotla, P.; Poggio, M.

    2014-07-28

    As the number of spins in an ensemble is reduced, the statistical fluctuations in its polarization eventually exceed the mean thermal polarization. This transition has now been surpassed in a number of recent nuclear magnetic resonance experiments, which achieve nanometer-scale detection volumes. Here, we measure nanometer-scale ensembles of nuclear spins in a KPF{sub 6} sample using magnetic resonance force microscopy. In particular, we investigate the transition between regimes dominated by thermal and statistical nuclear polarization. The ratio between the two types of polarization provides a measure of the number of spins in the detected ensemble.

  12. Decoupling a spin qubit from high-frequency Larmor dynamics of a GaAs nuclear spin bath

    NASA Astrophysics Data System (ADS)

    Malinowski, Filip K.; Martins, Frederico; Nissen, Peter D.; Rudner, Mark S.; Marcus, Charles M.; Kuemmeth, Ferdinand; Barnes, Edwin; Fallahi, Saeed; Gardner, Geoffrey C.; Manfra, Michael J.

    We present a technique of decoupling a spin qubit in a GaAs/AlGaAs heterostructure from low- and high-frequency noise arising from hyperfine interaction of electrons with nuclear spins. We use Carr-Purcell-Meiboom-Gill sequences in which we synchronize the repetition rate of π pulses to difference Larmor frequencies of 69Ga, 71Ga and 75As nuclei. This decouples the qubit both from low-frequency noise due to diffusion of nuclear spins and from noise at selected high frequencies, allowing us to apply more than a thousand π pulses in a sequence. We demonstrate a coherence time of a singlet-triplet qubit of 0.87 ms, i.e. five orders of magnitude longer than the inhomogeneous dephasing time intrinsic to GaAs. Support through IARPA-MQCO, Army Research Office, LPS-MPO-CMTC, the Villum Foundation and the Danish National Research Foundation is acknowledged.

  13. Coherent control of single spins in a silicon carbide pn junction device at room temperature

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Yun; Widmann, Matthias; Booker, Ian; Niethammer, Matthias; Ohshima, Takeshi; Gali, Adam; Son, Nguyen T.; Janzén, Erik; Wrachtrup, Joerg

    Spins in single defects have been studied for quantum information science and quantum metrology. It has been proven that spins of the single nitrogen-vacancy (NV) centers in diamond can be used as a quantum bit, and a single spin sensor operating at ambient conditions. Recently, there has been a growing interest in a new material in which color centers similar to NV centers can be created and whose electrical properties can also be well controlled, thus existing electronic devices can easily be adapted as a platform for quantum applications. We recently reported that single spins of negatively charged silicon vacancies in SiC can be coherently controlled and long-lived at room temperature. As a next step, we isolated single silicon vacancies in a SiC pn junction device and investigated how the change in Fermi level, induced by applying bias, alters the charge state of silicon vacancies, thus affects the spin state control. This study will allow us to envision quantum applications based on single defects incorporated in modern electronic devices.

  14. Room-temperature in situ nuclear spin hyperpolarization from optically pumped nitrogen vacancy centres in diamond.

    PubMed

    King, Jonathan P; Jeong, Keunhong; Vassiliou, Christophoros C; Shin, Chang S; Page, Ralph H; Avalos, Claudia E; Wang, Hai-Jing; Pines, Alexander

    2015-01-01

    Low detection sensitivity stemming from the weak polarization of nuclear spins is a primary limitation of magnetic resonance spectroscopy and imaging. Methods have been developed to enhance nuclear spin polarization but they typically require high magnetic fields, cryogenic temperatures or sample transfer between magnets. Here we report bulk, room-temperature hyperpolarization of (13)C nuclear spins observed via high-field magnetic resonance. The technique harnesses the high optically induced spin polarization of diamond nitrogen vacancy centres at room temperature in combination with dynamic nuclear polarization. We observe bulk nuclear spin polarization of 6%, an enhancement of ∼170,000 over thermal equilibrium. The signal of the hyperpolarized spins was detected in situ with a standard nuclear magnetic resonance probe without the need for sample shuttling or precise crystal orientation. Hyperpolarization via optical pumping/dynamic nuclear polarization should function at arbitrary magnetic fields enabling orders of magnitude sensitivity enhancement for nuclear magnetic resonance of solids and liquids under ambient conditions. PMID:26639147

  15. Room-temperature in situ nuclear spin hyperpolarization from optically pumped nitrogen vacancy centres in diamond

    PubMed Central

    King, Jonathan P.; Jeong, Keunhong; Vassiliou, Christophoros C.; Shin, Chang S.; Page, Ralph H.; Avalos, Claudia E.; Wang, Hai-Jing; Pines, Alexander

    2015-01-01

    Low detection sensitivity stemming from the weak polarization of nuclear spins is a primary limitation of magnetic resonance spectroscopy and imaging. Methods have been developed to enhance nuclear spin polarization but they typically require high magnetic fields, cryogenic temperatures or sample transfer between magnets. Here we report bulk, room-temperature hyperpolarization of 13C nuclear spins observed via high-field magnetic resonance. The technique harnesses the high optically induced spin polarization of diamond nitrogen vacancy centres at room temperature in combination with dynamic nuclear polarization. We observe bulk nuclear spin polarization of 6%, an enhancement of ∼170,000 over thermal equilibrium. The signal of the hyperpolarized spins was detected in situ with a standard nuclear magnetic resonance probe without the need for sample shuttling or precise crystal orientation. Hyperpolarization via optical pumping/dynamic nuclear polarization should function at arbitrary magnetic fields enabling orders of magnitude sensitivity enhancement for nuclear magnetic resonance of solids and liquids under ambient conditions. PMID:26639147

  16. Optimal Dense Coding and Swap Operation Between Two Coupled Electronic Spins: Effects of Nuclear Field and Spin-Orbit Interaction

    NASA Astrophysics Data System (ADS)

    Jiang, Li; Zhang, Guo-Feng

    2016-03-01

    The effects of nuclear field and spin-orbit interaction on dense coding and swap operation are studied in detail for both the antiferromagnetic (AFM) and ferromagnetic (FM) coupling cases. The conditions for a valid dense coding and under which swap operation is feasible are given.

  17. Accessing long-lived nuclear singlet states between chemically equivalent spins without breaking symmetry

    PubMed Central

    Feng, Yesu; Davis, Ryan M.; Warren, Warren S.

    2013-01-01

    Long-lived nuclear spin states could greatly enhance the applicability of hyperpolarized nuclear magnetic resonance. Using singlet states between inequivalent spin pairs has been shown to extend the signal lifetime by more than an order of magnitude compared to the spin lattice relaxation time (T1), but they have to be prevented from evolving into other states. In the most interesting case the singlet is between chemically equivalent spins, as it can then be inherently an eigenstate. However this presents major challenges in the conversion from bulk magnetization to singlet. In the only case demonstrated so far, a reversible chemical reaction to break symmetry was required. Here we present a pulse sequence technique that interconverts between singlet spin order and bulk magnetization without breaking the symmetry of the spin system. This technique is independent of field strength and is applicable to a broad range of molecules. PMID:23505397

  18. Magnetoresistance effect of heat generation in a single-molecular spin-valve

    NASA Astrophysics Data System (ADS)

    Jiang, Feng; Yan, Yonghong; Wang, Shikuan; Yan, Yijing

    2016-02-01

    Based on non-equilibrium Green's functions' theory and small polaron transformation's technology, we study the heat generation by current through a single-molecular spin-valve. Numerical results indicate that the variation of spin polarization degree can change heat generation effectively, the spin-valve effect happens not only in electrical current but also in heat generation when Coulomb repulsion in quantum dot is smaller than phonon frequency and interestingly, when Coulomb repulsion is larger than phonon frequency, the inverse spin-valve effect appears by sweeping gate voltage and is enlarged with bias increasing. The inverse spin-valve effect will induce the unique heat magnetoresistance effect, which can be modulated from heat-resistance to heat-gain by gate voltage easily.

  19. Spin-orbit coupling and the static polarizability of single-wall carbon nanotubes

    SciTech Connect

    Diniz, Ginetom S. Ulloa, Sergio E.

    2014-07-14

    We calculate the static longitudinal polarizability of single-wall carbon tubes in the long wavelength limit taking into account spin-orbit effects. We use a four-orbital orthogonal tight-binding formalism to describe the electronic states and the random phase approximation to calculate the dielectric function. We study the role of both the Rashba as well as the intrinsic spin-orbit interactions on the longitudinal dielectric response, i.e., when the probing electric field is parallel to the nanotube axis. The spin-orbit interaction modifies the nanotube electronic band dispersions, which may especially result in a small gap opening in otherwise metallic tubes. The bandgap size and state features, the result of competition between Rashba and intrinsic spin-orbit interactions, result in drastic changes in the longitudinal static polarizability of the system. We discuss results for different nanotube types and the dependence on nanotube radius and spin-orbit couplings.

  20. Spin- and Energy-Dependent Tunneling through a Single Molecule with Intramolecular Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Brede, Jens; Atodiresei, Nicolae; Kuck, Stefan; Lazić, Predrag; Caciuc, Vasile; Morikawa, Yoshitada; Hoffmann, Germar; Blügel, Stefan; Wiesendanger, Roland

    2010-07-01

    We investigate the spin- and energy-dependent tunneling through a single organic molecule (CoPc) adsorbed on a ferromagnetic Fe thin film, spatially resolved by low-temperature spin-polarized scanning tunneling microscopy. Interestingly, the metal ion as well as the organic ligand show a significant spin dependence of tunneling current flow. State-of-the-art ab initio calculations including also van der Waals interactions reveal a strong hybridization of molecular orbitals and substrate 3d states. The molecule is anionic due to a transfer of one electron, resulting in a nonmagnetic (S=0) state. Nevertheless, tunneling through the molecule exhibits a pronounced spin dependence due to spin-split molecule-surface hybrid states.

  1. Spin reorientation transition process in single crystal NdFeO3

    NASA Astrophysics Data System (ADS)

    Song, Gaibei; Jiang, Junjie; Kang, Baojuan; Zhang, Jincang; Cheng, Zhenxiang; Ma, Guohong; Cao, Shixun

    2015-06-01

    The spin reorientation transition in single crystal NdFeO3 is studied using AC magnetic susceptibility, hysteresis loops, and polarized terahertz (THz) time domain spectroscopy measurements. Different frequency dependence behaviors of AC susceptibility reflect that the dynamic response of magnetization inside the spin reorientation region differs from the phase outside the transition region. The magnetization hysteresis loops at different temperatures reveal that domains formed during the spin reorientation process, which coincides with the abrupt increase of AC magnetic susceptibility during the transition. In addition, temperature dependent THz wave excitation of quasi-antiferromagnetic mode indicates the process of spin reorientation as a continuous rotation of Fe3+ spins rather than a mixed phase of Γ4 and Γ2.

  2. Size-Specific Spin Configurations in Single Iron Nanomagnet: From Flower to Exotic Vortices.

    PubMed

    Gatel, Christophe; Bonilla, Francisco Javier; Meffre, Anca; Snoeck, Etienne; Warot-Fonrose, Bénédicte; Chaudret, Bruno; Lacroix, Lise-Marie; Blon, Thomas

    2015-10-14

    The different spin configurations in the vicinity of the single-domain/vortex transition are reported in isolated magnetic nanoparticles. By combining chemical synthesis, electron holography in a dedicated transmission electron microscope and micromagnetic simulations, we establish the "magnetic configurations vs size" phase diagram of Fe single-crystalline nanocubes. Room temperature high resolution magnetic maps reveal the transition between single-domain and vortex states for Fe nanocubes from 25 to 27 nm, respectively. An intermediate spin configuration consisting of an ⟨111⟩ vortex is for the first time evidenced. PMID:26407034

  3. Positioning nuclear spins in interacting clusters for quantum technologies and bioimaging

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-Yu; Haase, Jan F.; Casanova, Jorge; Plenio, Martin B.

    2016-05-01

    We propose a method to measure the hyperfine vectors between a nitrogen-vacancy (NV) center and an environment of interacting nuclear spins. Our protocol enables the generation of tunable electron-nuclear coupling Hamiltonians while suppressing unwanted internuclear interactions. In this manner, each nucleus can be addressed and controlled individually, thereby permitting the reconstruction of the individual hyperfine vectors. With this ability the three-dimensional (3D) structure of spin ensembles and spins in biomolecules can be identified without the necessity of varying the direction of applied magnetic fields. We demonstrate examples including the complete reconstruction of an interacting spin cluster in diamond and 3D imaging of all the nuclear spins in a biomolecule.

  4. Single-shot readout of spin qubits in Si/SiGe quantum dots

    NASA Astrophysics Data System (ADS)

    Simmons, Christie

    2012-02-01

    Si/SiGe quantum dots are an attractive option for spin qubit development, because of the long coherence times for electron spins in silicon, arising from weak hyperfine interaction and low spin orbit coupling. I will present measurements of gate-defined single and double quantum dots formed in Si/SiGe semiconductor heterostuctures. Control of the gate voltages on these dots enables tuning of the tunnel coupling to the leads and to other dots. Careful tuning of these tunnel rates, in combination with fast, pulsed-gate manipulation and spin-to-charge conversion, allow spin state measurement using an integrated quantum point contact as a local charge detector. Single spin qubit readout relies on the Zeeman energy splitting from an external magnetic field for spin-to-charge conversion. Two-electron singlet-triplet qubits, on the other hand, can be measured by using Pauli spin blockade of tunneling between the dots to readout the qubit even at zero magnetic field. I will present real-time, single-shot readout measurements of both individual spin [1] and singlet-triplet qubits [2] in gated Si/SiGe quantum dots. Work performed in collaboration with J. R. Prance, Zhan Shi, B. J. Van Bael, Teck Seng Koh, D. E. Savage, M. G. Lagally, R. Joynt, L. R. Schreiber, L. M. K. Vandersypen, M. Friesen, S. N. Coppersmith, and M. A. Eriksson. [4pt] [1] C. B. Simmons et al. Physical Review Letters 106, 156804 (2011). [0pt] [2] J. R. Prance, et al., e-print: http://lanl.arxiv.org/abs/1110.6431

  5. Quantum Stirling heat engine and refrigerator with single and coupled spin systems

    NASA Astrophysics Data System (ADS)

    Huang, Xiao-Li; Niu, Xin-Ya; Xiu, Xiao-Ming; Yi, Xue-Xi

    2014-02-01

    We study the reversible quantum Stirling cycle with a single spin or two coupled spins as the working substance. With the single spin as the working substance, we find that under certain conditions the reversed cycle of a heat engine is NOT a refrigerator, this feature holds true for a Stirling heat engine with an ion trapped in a shallow potential as its working substance. The efficiency of quantum Stirling heat engine can be higher than the efficiency of the Carnot engine, but the performance coefficient of the quantum Stirling refrigerator is always lower than its classical counterpart. With two coupled spins as the working substance, we find that a heat engine can turn to a refrigerator due to the increasing of the coupling constant, this can be explained by the properties of the isothermal line in the magnetic field-entropy plane.

  6. Recent Results of Target Single-Spin Asymmetry Experiments at Jefferson Lab

    SciTech Connect

    Jiang, Xiaodong

    2013-08-01

    We report recent results from Jefferson Lab Hall A “Neutron Transversity” experiment (E06-010). Transversely polarized target single-spin asymmetry AUT and beam-target double-spin asymmetry A{sub LT} have been measured in semi-inclusive deep-inelastic scattering (SIDIS) reactions on a polarized neutron ({sup 3}He) target. Collins-type and Sivers-type asymmetries have been extracted from A{sub UT} for charged pion SIDIS productions, which are sensitive to quark transversity and Sivers distributions, correspondingly. Double spin asymmetry A{sub LT} is sensitive to a specific quark transverse momentum dependent parton distribution (TMD), the so-called “ transverse helicity” (g{sub 1T} ) distributions. In addition, target single-spin asymmetries A{sub y} in inclusive electron scattering on a transversely polarized {sup 3}He target in quasi-elastic and deep inelastic kinematics were also measured in Hall A.

  7. Coherent Sensing of a Mechanical Resonator with a Single-Spin Qubit

    NASA Astrophysics Data System (ADS)

    Kolkowitz, Shimon; Bleszynski Jayich, Ania C.; Unterreithmeier, Quirin P.; Bennett, Steven D.; Rabl, Peter; Harris, J. G. E.; Lukin, Mikhail D.

    2012-03-01

    Mechanical systems can be influenced by a wide variety of small forces, ranging from gravitational to optical, electrical, and magnetic. When mechanical resonators are scaled down to nanometer-scale dimensions, these forces can be harnessed to enable coupling to individual quantum systems. We demonstrate that the coherent evolution of a single electronic spin associated with a nitrogen vacancy center in diamond can be coupled to the motion of a magnetized mechanical resonator. Coherent manipulation of the spin is used to sense driven and Brownian motion of the resonator under ambient conditions with a precision below 6 picometers. With future improvements, this technique could be used to detect mechanical zero-point fluctuations, realize strong spin-phonon coupling at a single quantum level, and implement quantum spin transducers.

  8. Probing the motion of a mechanical resonator via coherent coupling to a single spin qubit

    NASA Astrophysics Data System (ADS)

    Harris, J. G. E.

    2012-02-01

    Mechanical systems can be inuenced by a wide variety of extremely small forces, ranging from gravitational to optical, electrical, and magnetic. If the mechanical resonator is scaled down to nanometer-scale dimensions, these couplings can be harnessed to monitor and control individual quantum systems. In this talk, I will describe experiments in which the coherent evolution of a single electronic spin associated with a Nitrogen Vacancy (NV) center in diamond is coupled to the motion of a magnetized mechanical resonator. Specifically, we have used coherent manipulation of the NV spin to sense the resonator's Brownian motion under ambient conditions. Potential applications of th is technique include the detection of the zero-point uctuations of a mechanical resonator, the realization of strong spin-phonon coupling at a single quantum level, and the implementation of quantum spin transducers.

  9. Probing the motion of a mechanical resonator via coherent coupling to a single spin qubit

    NASA Astrophysics Data System (ADS)

    Kolkowitz, Shimon; Unterreithmeier, Quirin; Bleszynski Jayich, Ania; Bennett, Steven; Rabl, Peter; Harris, J. G. E.; Lukin, Mikhail

    2012-02-01

    Mechanical systems can be influenced by a wide variety of extremely small forces, ranging from gravitational to optical, electrical, and magnetic. When mechanical resonators are scaled down to nanometer-scale dimensions, these forces can be harnessed to enable coupling to individual quantum systems. In this talk we will present results showing that the coherent evolution of a single electronic spin associated with a Nitrogen Vacancy (NV) center in diamond can be coupled to the motion of a magnetized mechanical resonator. Specifically we use coherent manipulation of the spin to sense the driven and Brownian motion of the resonator under ambient conditions at a picometer length scale. We will discuss potential applications of this technique including the decetion of the zero-point fluctuations of a mechanical resonator, the realization of strong spin-phonon coupling at a single quantum level, and the implementation of quantum spin transducers.

  10. Coherent sensing of a mechanical resonator with a single-spin qubit.

    PubMed

    Kolkowitz, Shimon; Jayich, Ania C Bleszynski; Unterreithmeier, Quirin P; Bennett, Steven D; Rabl, Peter; Harris, J G E; Lukin, Mikhail D

    2012-03-30

    Mechanical systems can be influenced by a wide variety of small forces, ranging from gravitational to optical, electrical, and magnetic. When mechanical resonators are scaled down to nanometer-scale dimensions, these forces can be harnessed to enable coupling to individual quantum systems. We demonstrate that the coherent evolution of a single electronic spin associated with a nitrogen vacancy center in diamond can be coupled to the motion of a magnetized mechanical resonator. Coherent manipulation of the spin is used to sense driven and Brownian motion of the resonator under ambient conditions with a precision below 6 picometers. With future improvements, this technique could be used to detect mechanical zero-point fluctuations, realize strong spin-phonon coupling at a single quantum level, and implement quantum spin transducers. PMID:22362881

  11. Nuclear Magnetic Resonance Studies of Topological Insulators and Materials with a Large Spin-Orbit Coupling

    NASA Astrophysics Data System (ADS)

    Nisson, David Mark

    Nuclear magnetic resonance (NMR) studies were performed on large single crystals of the topological insulator materials Bi2Se 3 and Bi2Te2Se, as well as the doped topological superconductor candidate CuxBi2Se3. Samples were grown using the facilities of the Department of Physics at the University of California, Davis. Bi2Se3 crystals were grown under different conditions to control the intrinsic concentration of carrier electrons, which arises from an inherent tendency for Se vacancies to form during growth. The electrical properties, including carrier concentration of each sample, were then characterized by electrical transport measurements. Frequency swept 209Bi spectra for these samples reveal a relatively weak electric field gradient producing a splitting of about 160 kHz, and a shift that depends on the carrier concentration. The correlation between shift and intrinsic carrier concentration determines the hyperfine coupling strength between the Bi nuclei and the bulk carrier electrons. The spin-lattice relaxation rate T1--1 was also measured as a function of temperature. It is mostly temperature-independent, indicating that in samples of Bi2Se3 grown by the Bridgman method, relaxation may occur by spin diffusion to impurities rather than by previously reported mechanisms. Nuclear magnetic resonance measurements were also performed on single crystals of Bi2Se3 as a function of the angle between the field and the c-axis of the crystal lattice. These frequency-swept measurements revealed anomalous behavior that deviated significantly from what would be expected of the angular dependence of the resonance spectrum. Powder samples reveal spectra that differ still from the expectations from the single-crystal data. These phenomena are explained in part by the fact that the nutation time tpi/2) depends on the angle as a result of overlap between the central and satellite transitions, but may in addition be the result of screening of the radiofrequency field by the topological surface states. Numerical predictions of NMR frequency-swept spectra and nutation curves in Bi2Se3 were performed using the software packages SIMPSON and SPINEVOLUTION. These programs helped to explain partially the results of the angular dependence in terms of the nutation curves. Predictions were also made using the software Mathematica 9 of the effects that localized electrons would have on NMR spectra as a function of temperature when large spin-orbit couplings are present, such as those found in compounds of heavy elements like Bi2Se3, or heavy fermion materials. It is found that the orbital and spin contributions to the hyperfine coupling with spin-orbit coupling present cannot be discerned from the shift K and electronic spin susceptibility chi simply as the slope and intercept of the line. This dissertation is an example of the need to understand the interactions between nuclei and the special electronic states of materials in which significant spin-orbit interactions occur.

  12. Spin-dipole nuclear matrix elements for double beta decays and astro-neutrinos

    NASA Astrophysics Data System (ADS)

    Ejiri, H.; Soukouti, N.; Suhonen, J.

    2014-02-01

    Spin-dipole (SD) nuclear matrix elements (NMEs) M±(SD2) for unique first forbidden β± 2-→0+ ground-state-to-ground-state transitions are studied by using effective microscopic two-nucleon interactions in realistic single-particle model spaces. The observed values of the NMEs Mexp±(SD2) are compared with the values of the single-quasiparticle NMEs Mqp±(SD2) without nucleon spin-isospin (στ) correlation and the QRPA NMEs MQRPA±(SD2) with the στ correlation. The observed SD matrix elements are found to be reduced by the factor k≈0.2 with respect to Mqp±(SD2) and by the factor kNM≈0.5 with respect to MQRPA±(SD2). We then infer that the SD NME is reduced considerably partly by the nucleon στ correlations and partly by other non-nucleonic and nucleonic correlations which are not explicitly included in the QRPA. Impact of the found reduction factors on the magnitudes of the NMEs involved in neutrino-less double beta decays and astro-neutrino interactions are discussed.

  13. Decoherence imaging of spin ensembles using a scanning single-electron spin in diamond

    PubMed Central

    Luan, Lan; Grinolds, Michael S.; Hong, Sungkun; Maletinsky, Patrick; Walsworth, Ronald L.; Yacoby, Amir

    2015-01-01

    The nitrogen-vacancy (NV) defect center in diamond has demonstrated great capability for nanoscale magnetic sensing and imaging for both static and periodically modulated target fields. However, it remains a challenge to detect and image randomly fluctuating magnetic fields. Recent theoretical and numerical works have outlined detection schemes that exploit changes in decoherence of the detector spin as a sensitive measure for fluctuating fields. Here we experimentally monitor the decoherence of a scanning NV center in order to image the fluctuating magnetic fields from paramagnetic impurities on an underlying diamond surface. We detect a signal corresponding to roughly 800 μB in 2 s of integration time, without any control on the target spins, and obtain magnetic-field spectral information using dynamical decoupling techniques. The extracted spatial and temporal properties of the surface paramagnetic impurities provide insight to prolonging the coherence of near-surface qubits for quantum information and metrology applications. PMID:25631646

  14. Spin-one Heisenberg antiferromagnetic chain with exchange and single-ion anisotropies

    NASA Astrophysics Data System (ADS)

    Peters, D.; McCulloch, I. P.; Selke, W.

    2009-04-01

    Using density-matrix renormalization group calculations, ground-state properties of the spin-1 Heisenberg chain with exchange and single-ion anisotropies in an external field are studied. Our findings confirm and refine recent numerical and analytic results by Sengupta and Batista [Phys. Rev. Lett. 99, 217205 (2007)] on the same model. In particular, we present evidence for two types of biconical (or supersolid) and for two types of spin-flop (or superfluid) structures for chains of finite length. Basic features of the quantum phase diagram may be interpreted qualitatively in the framework of classical spin models.

  15. Quantum computers based on electron spins controlled by ultrafast off-resonant single optical pulses.

    PubMed

    Clark, Susan M; Fu, Kai-Mei C; Ladd, Thaddeus D; Yamamoto, Yoshihisa

    2007-07-27

    We describe a fast quantum computer based on optically controlled electron spins in charged quantum dots that are coupled to microcavities. This scheme uses broadband optical pulses to rotate electron spins and provide the clock signal to the system. Nonlocal two-qubit gates are performed by phase shifts induced by electron spins on laser pulses propagating along a shared waveguide. Numerical simulations of this scheme demonstrate high-fidelity single-qubit and two-qubit gates with operation times comparable to the inverse Zeeman frequency. PMID:17678343

  16. Knight shift and spin relaxation in the single band 2D Hubbard model

    NASA Astrophysics Data System (ADS)

    Leblanc, James; Chen, Xi; Gull, Emanuel

    We study in detail the roles of spin and charge fluctuations in the single band 2D Hubbard model. Using dynamical mean field theory and cluster extensions such as the dynamical cluster approximation (DCA), we compute the full two particle susceptibilities in the spin and charge representations. By performing analytic continuations we obtain the temperature and doping dependence of the spin-lattice relaxation (T1- 1) and knight shift in the 2D Hubbard model relevant to NMR results on doped cuprates and connect these to RPA results in weak coupling limits.

  17. Macroscopic nuclear spin diffusion constants of rotating polycrystalline solids from first-principles simulation

    NASA Astrophysics Data System (ADS)

    Halse, Meghan E.; Zagdoun, Alexandre; Dumez, Jean-Nicolas; Emsley, Lyndon

    2015-05-01

    A method for quantitatively calculating nuclear spin diffusion constants directly from crystal structures is introduced. This approach uses the first-principles low-order correlations in Liouville space (LCL) method to simulate spin diffusion in a box, starting from atomic geometry and including both magic-angle spinning (MAS) and powder averaging. The LCL simulations are fit to the 3D diffusion equation to extract quantitative nuclear spin diffusion constants. We demonstrate this method for the case of 1H spin diffusion in ice and L-histidine, obtaining diffusion constants that are consistent with literature values for 1H spin diffusion in polymers and that follow the expected trends with respect to magic-angle spinning rate and the density of nuclear spins. In addition, we show that this method can be used to model 13C spin diffusion in diamond and therefore has the potential to provide insight into applications such as the transport of polarization in non-protonated systems.

  18. Thermal averaging of the indirect nuclear spin-spin coupling constants of ammonia: The importance of the large amplitude inversion mode

    NASA Astrophysics Data System (ADS)

    Yachmenev, Andrey; Yurchenko, Sergei N.; Paidarová, Ivana; Jensen, Per; Thiel, Walter; Sauer, Stephan P. A.

    2010-03-01

    Analytic internal-coordinate representations are reported for two accurate ab initio spin-spin coupling surfaces of the ammonia molecule, J1 (N15,H) and J2(H,H). Calculations were carried out at the level of the second-order polarization propagator approximation involving coupled-cluster singles and doubles amplitudes (CCSD) and using a large specialized basis set, for a total of 841 different geometries corresponding to 2523 distinct points on the J1 (N15,H) and J2(H,H) surfaces. The results were fitted to power series expansions truncated after the fourth-order terms. While the one-bond nitrogen-hydrogen coupling depends more on the internuclear distance, the geminal hydrogen-hydrogen coupling exhibits a pronounced dependence on the bond angle. The spin-spin parameters are first vibrationally averaged, using vibrational wave functions obtained variationally from the TROVE computer program with a CCSD(T) based potential energy surface, for ammonia and its various deuterated isotopologues. The vibrationally averaged quantities are then thermally averaged to give values of the couplings at absolute temperatures of 300 and 600 K. We find that the nuclear-motion corrections are rather small. The computed one-bond couplings and their minute isotope effects are in excellent agreement with the experimental values.

  19. Optimized basis sets for the calculation of indirect nuclear spin-spin coupling constants involving the atoms B, Al, Si, P, and Cl.

    PubMed

    Provasi, Patricio F; Sauer, Stephan P A

    2010-08-01

    The aug-cc-pVTZ-J series of basis sets for indirect nuclear spin-spin coupling constants has been extended to the atoms B, Al, Si, P, and Cl. The basis sets were obtained according to the scheme previously described by Provasi et al. [J. Chem. Phys. 115, 1324 (2001)]. First, the completely uncontracted correlation consistent aug-cc-pVTZ basis sets were extended with four tight s and three tight d functions. Second, the s and p basis functions were contracted with the molecular orbital coefficients of self-consistent-field calculations performed with the uncontracted basis sets on the simplest hydrides of each atom. As a first illustration, we have calculated the one-bond indirect spin-spin coupling constants in BH(4)(-), BF, AlH, AlF, SiH(4), SiF(4), PH(3), PF(3), H(2)S, SF(6), HCl, and ClF at the level of density functional theory using the Becke three parameter Lee-Yang-Parr and the second order polarization propagator approximation with coupled cluster singles and doubles amplitudes. PMID:20707533

  20. Bimodal Latex Effect on Spin-Coated Thin Conductive Polymer-Single-Walled Carbon Nanotube Layers.

    PubMed

    Moradi, Mohammad-Amin; Larrakoetxea Angoitia, Katalin; van Berkel, Stefan; Gnanasekaran, Karthikeyan; Friedrich, Heiner; Heuts, Johan P A; van der Schoot, Paul; van Herk, Alex M

    2015-11-10

    We synthesize two differently sized poly(methyl methacrylate-co-tert-butyl acrylate) latexes by emulsion polymerization and mix these with a sonicated single-walled carbon nanotube (SWCNT) dispersion, in order to prepare 3% SWCNT composite mixtures. We spin-coat these mixtures at various spin-speed rates and spin times over a glass substrate, producing a thin, transparent, solid, conductive layer. Keeping the amount of SWCNTs constant, we vary the weight fraction of our smaller 30-nm latex particles relative to the larger 70-nm-sized ones. We find a maximum in the electrical conductivity up to 370 S/m as a function of the weight fraction of smaller particles, depending on the overall solid content, the spin speed, and the spin time. This maximum occurs at 3-5% of the smaller latex particles. We also find a more than 2-fold increase in conductivity parallel to the radius of spin-coating than perpendicular to it. Atomic force microscopy points at the existence of lanes of latex particles in the spin-coated thin layer, while large-area transmission electron microscopy demonstrates that the SWCNTs are aligned over a grid fixed on the glass substrate during the spin-coating process. We extract the conductivity distribution on the surface of the thin film and translate this into the direction of the SWCNTs in it. PMID:26491888

  1. Spin-Tunnel Investigation of the Spinning Characteristics of Typical Single-Engine General Aviation Airplane Designs. 1. Low-Wing Model A: Effects of Tail Configurations

    NASA Technical Reports Server (NTRS)

    Burk, S. M., Jr.; Bowman, J. S., Jr.; White, W. L.

    1977-01-01

    The effects of tail design on spin and recovery were investigated in a spin tunnel. A 1/11-scale model of a research airplane which represents a typical low-wing, single engine, light general aviation airplane was used. A tail design criterion for satisfactory spin recovery for light airplanes was evaluated. The effects of other geometric design features on the spin and recovery characteristics were also determined. Results indicate that the existing tail design criterion for light airplanes, which uses the tail damping power factor as a parameter, cannot be used to predict spin-recovery characteristics.

  2. Metal-center exchange of tetrahedral cages: single crystal to single crystal and spin-crossover properties.

    PubMed

    Zhang, Feng-Li; Chen, Jia-Qian; Qin, Long-Fang; Tian, Lei; Li, Zaijun; Ren, Xuehong; Gu, Zhi-Guo

    2016-04-01

    An effective single crystal to single crystal transformation from a tetrahedral Ni cage to an FeNi cage was demonstrated. The iron(ii) centers of the FeNi cage can be induced to display spin crossover behaviors with an increasing amount of Fe(ii) ions. The SCSC metal-center exchange provides a powerful approach to modify solid magnetic properties. PMID:26955799

  3. Sensitivity of nuclear-quadrupole double-resonance detection of half-integer spin nuclei

    NASA Astrophysics Data System (ADS)

    Seliger, J.; Žagar, V.

    2008-10-01

    The sensitivity of the Slusher and Hahn's nuclear quadrupole double resonance technique is calculated in general for an arbitrary nuclear spin S of the quadrupole nuclei and for an arbitrary asymmetry parameter η of the electric field gradient tensor. The nuclear spin S = 5/2 ( 17O, 25Mg, …) is treated in details. The influence of the cross-relaxation rate between the quadrupole nuclei and the abundant spin system on the sensitivity of double resonance is discussed. The results of the theoretical analysis are applied in the analysis of the 1H- 17O nuclear quadrupole double resonance spectra in p-toluenesulfonamide and 2-nitrobenzoic acid. The 17O nuclear quadrupole resonance frequencies from a sulfonamide group are determined for the first time. The proton-oxygen cross-relaxation rates and the proton local frequency in zero external magnetic field are experimentally determined from the nuclear quadrupole double resonance spectra.

  4. Nuclear-Spin Gyroscope Based on an Atomic Co-Magnetometer

    NASA Technical Reports Server (NTRS)

    Romalis, Michael; Komack, Tom; Ghost, Rajat

    2008-01-01

    An experimental nuclear-spin gyroscope is based on an alkali-metal/noblegas co-magnetometer, which automatically cancels the effects of magnetic fields. Whereas the performances of prior nuclear-spin gyroscopes are limited by sensitivity to magnetic fields, this gyroscope is insensitive to magnetic fields and to other external perturbations. In addition, relative to prior nuclear-spin gyroscopes, this one exhibits greater sensitivity to rotation. There is commercial interest in development of small, highly sensitive gyroscopes. The present experimental device could be a prototype for development of nuclear spin gyroscopes suitable for navigation. In comparison with fiber-optic gyroscopes, these gyroscopes would draw less power and would be smaller, lighter, more sensitive, and less costly.

  5. Knight shift and nuclear spin relaxation in Fe/n -GaAs heterostructures

    NASA Astrophysics Data System (ADS)

    Christie, K. D.; Geppert, C. C.; Patel, S. J.; Hu, Q. O.; Palmstrøm, C. J.; Crowell, P. A.

    2015-10-01

    We investigate the dynamically polarized nuclear spin system in Fe/n -GaAs heterostructures using the response of the electron-spin system to nuclear magnetic resonance (NMR) in lateral spin-valve devices. The hyperfine interaction is known to act more strongly on donor-bound electron states than on those in the conduction band. We provide a quantitative model of the temperature dependence of the occupation of donor sites. With this model we calculate the ratios of the hyperfine and quadrupolar nuclear relaxation rates of each isotope. For all temperatures measured, quadrupolar relaxation limits the spatial extent of nuclear spin polarization to within a Bohr radius of the donor sites and is directly responsible for the isotope dependence of the measured NMR signal amplitude. The hyperfine interaction is also responsible for the 2 kHz Knight shift of the nuclear resonance frequency that is measured as a function of the electron-spin accumulation. The Knight shift is shown to provide a measurement of the electron-spin polarization that agrees qualitatively with standard spin transport measurements.

  6. A high-performance Fortran code to calculate spin- and parity-dependent nuclear level densities

    NASA Astrophysics Data System (ADS)

    Sen'kov, R. A.; Horoi, M.; Zelevinsky, V. G.

    2013-01-01

    A high-performance Fortran code is developed to calculate the spin- and parity-dependent shell model nuclear level densities. The algorithm is based on the extension of methods of statistical spectroscopy and implies exact calculation of the first and second Hamiltonian moments for different configurations at fixed spin and parity. The proton-neutron formalism is used. We have applied the method for calculating the level densities for a set of nuclei in the sd-, pf-, and pf+g- model spaces. Examples of the calculations for 28Si (in the sd-model space) and 64Ge (in the pf+g-model space) are presented. To illustrate the power of the method we estimate the ground state energy of 64Ge in the larger model space pf+g, which is not accessible to direct shell model diagonalization due to the prohibitively large dimension, by comparing with the nuclear level densities at low excitation energy calculated in the smaller model space pf. Program summaryProgram title: MM Catalogue identifier: AENM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENM_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 193181 No. of bytes in distributed program, including test data, etc.: 1298585 Distribution format: tar.gz Programming language: Fortran 90, MPI. Computer: Any architecture with a Fortran 90 compiler and MPI. Operating system: Linux. RAM: Proportional to the system size, in our examples, up to 75Mb Classification: 17.15. External routines: MPICH2 (http://www.mcs.anl.gov/research/projects/mpich2/) Nature of problem: Calculating of the spin- and parity-dependent nuclear level density. Solution method: The algorithm implies exact calculation of the first and second Hamiltonian moments for different configurations at fixed spin and parity. The code is parallelized using the Message Passing Interface and a master-slaves dynamical load-balancing approach. Restrictions: The program uses two-body interaction in a restricted single-level basis. For example, GXPF1A in the pf-valence space. Running time: Depends on the system size and the number of processors used (from 1 min to several hours).

  7. Towards single-molecule NMR detection and spectroscopy using single spins in diamond

    NASA Astrophysics Data System (ADS)

    Perunicic, V. S.; Hall, L. T.; Simpson, D. A.; Hill, C. D.; Hollenberg, L. C. L.

    2014-02-01

    Nanomagnetometry using the nitrogen-vacancy (NV) center in diamond has attracted a great deal of interest due to its unique combination of room temperature operation, nanoscale resolution, and high sensitivity. One of the important goals for nanomagnetometry is to be able to detect nanoscale nuclear magnetic resonance (NMR) in individual molecules. Our theoretical analysis details a method by which a single molecule on the surface of diamond, with characteristic NMR frequencies, can be detected using a proximate NV center on a time scale of an order of seconds with nanometer precision. We perform spatiotemporal resolution optimization and subsequently outline paths to greater sensitivity. Our method is suitable for application in low and relatively inhomogeneous background magnetic fields in contrast to both conventional liquid and solid state NMR spectroscopy.

  8. Rare-Earth Triangular Lattice Spin Liquid: A Single-Crystal Study of YbMgGaO4

    NASA Astrophysics Data System (ADS)

    Li, Yuesheng; Chen, Gang; Tong, Wei; Pi, Li; Liu, Juanjuan; Yang, Zhaorong; Wang, Xiaoqun; Zhang, Qingming

    2015-10-01

    YbMgGaO4 , a structurally perfect two-dimensional triangular lattice with an odd number of electrons per unit cell and spin-orbit entangled effective spin-1 /2 local moments for the Yb3 + ions, is likely to experimentally realize the quantum spin liquid ground state. We report the first experimental characterization of single-crystal YbMgGaO4 samples. Because of the spin-orbit entanglement, the interaction between the neighboring Yb3 + moments depends on the bond orientations and is highly anisotropic in the spin space. We carry out thermodynamic and the electron spin resonance measurements to confirm the anisotropic nature of the spin interaction as well as to quantitatively determine the couplings. Our result is a first step towards the theoretical understanding of the possible quantum spin liquid ground state in this system and sheds new light on the search for quantum spin liquids in strong spin-orbit coupled insulators.

  9. Controlled Rephasing of Single Collective Spin Excitations in a Cold Atomic Quantum Memory

    NASA Astrophysics Data System (ADS)

    Albrecht, Boris; Farrera, Pau; Heinze, Georg; Cristiani, Matteo; de Riedmatten, Hugues

    2015-10-01

    We demonstrate active control of inhomogeneous dephasing and rephasing for single collective atomic spin excitations (spin waves) created by spontaneous Raman scattering in a quantum memory based on cold 87Rb atoms. The control is provided by a reversible external magnetic field gradient inducing an inhomogeneous broadening of the atomic hyperfine levels. We demonstrate experimentally that active rephasing preserves the single photon nature of the retrieved photons. Finally, we show that the control of the inhomogeneous dephasing enables the creation of time-separated spin waves in a single ensemble followed by a selective read-out in time. This is an important step towards the implementation of a functional temporally multiplexed quantum repeater node.

  10. Controlled Rephasing of Single Collective Spin Excitations in a Cold Atomic Quantum Memory.

    PubMed

    Albrecht, Boris; Farrera, Pau; Heinze, Georg; Cristiani, Matteo; de Riedmatten, Hugues

    2015-10-16

    We demonstrate active control of inhomogeneous dephasing and rephasing for single collective atomic spin excitations (spin waves) created by spontaneous Raman scattering in a quantum memory based on cold 87Rb atoms. The control is provided by a reversible external magnetic field gradient inducing an inhomogeneous broadening of the atomic hyperfine levels. We demonstrate experimentally that active rephasing preserves the single photon nature of the retrieved photons. Finally, we show that the control of the inhomogeneous dephasing enables the creation of time-separated spin waves in a single ensemble followed by a selective read-out in time. This is an important step towards the implementation of a functional temporally multiplexed quantum repeater node. PMID:26550854

  11. Description of 158Er at Ultrahigh Spin in Nuclear Density Functional Theory

    SciTech Connect

    Afanasjev, A. V.; Nazarewicz, Witold

    2012-01-01

    Rotational bands in 158Er at ultrahigh spin have been studied in the framework of relativistic and nonrelativistic nuclear density-functional theories. Consistent results are obtained across the theoretical models used but some puzzles remain when confronted with experiment. Namely, the many-body configurations which provide good description of experimental transition quadrupole moments and dynamic moments of inertia require substantial increase of the spins of observed bands as compared with experimental estimates, which are still subject to large uncertainties. If, however, the theoretical spin assignments turned out to be correct, experimental band 1 in 158Er would be the highest spin structure ever observed.

  12. Single scale cluster expansions with applications to many Boson and unbounded spin systems

    SciTech Connect

    Lohmann, Martin

    2015-06-15

    We develop a cluster expansion to show exponential decay of correlations for quite general single scale spin systems, as they arise in lattice quantum field theory and discretized functional integral representations for observables of quantum statistical mechanics. We apply our results to the small field approximation to the coherent state correlation functions of the grand canonical Bose gas at negative chemical potential, constructed by Balaban et al. [Ann. Henri Poincaré 11, 151–350 (2010c)], and to N component unbounded spin systems with repulsive two body interaction and massive, possibly complex, covariance. Our cluster expansion is derived by a single application of the Brydges-Kennedy-Abdesselam-Rivasseau interpolation formula.

  13. Single Spin Asymmetry in Inclusive Hadron Production in pp Scattering from Collins Mechanism

    SciTech Connect

    Yuan, Feng; Yuan, Feng

    2008-04-14

    We study the Collins mechanism contribution to the single transverse spin asymmetry in inclusive hadron production in pp scattering p{up_arrow}p {yields} {pi}X from the leading jet fragmentation. The azimuthal asymmetric distribution of hadron in the jet leads to a single spin asymmetry for the produced hadron in the Lab frame. The effect is evaluated in a transverse momentum dependent model that takes into account the transverse momentum dependence in the fragmentation process. We find the asymmetry is comparable in size to the experimental observation at RHIC at {radical}s = 200GeV.

  14. Classical nature of nuclear spin noise near clock transitions of Bi donors in silicon

    NASA Astrophysics Data System (ADS)

    Ma, Wen-Long; Wolfowicz, Gary; Li, Shu-Shen; Morton, John J. L.; Liu, Ren-Bao

    2015-10-01

    Whether a quantum bath can be approximated as classical Gaussian noise is a fundamental issue in central spin decoherence and also of practical importance in designing noise-resilient quantum control. Spin qubits based on bismuth donors in silicon have tunable interactions with nuclear spin baths and are first-order insensitive to magnetic noise at so-called clock transitions (CTs). This system is therefore ideal for studying the quantum/classical Gaussian nature of nuclear spin baths since the qubit-bath interaction strength determines the back-action on the baths and hence the adequacy of a Gaussian noise model. We develop a Gaussian noise model with noise correlations determined by quantum calculations and compare the classical noise approximation to the full quantum bath theory. We experimentally test our model through a dynamical decoupling sequence of up to 128 pulses, finding good agreement with simulations and measuring electron spin coherence times approaching 1 snotably using natural silicon. Our theoretical and experimental study demonstrates that the noise from a nuclear spin bath is analogous to classical Gaussian noise if the back-action of the qubit on the bath is small compared to the internal bath dynamics, as is the case close to CTs. However, far from the CTs, the back-action of the central spin on the bath is such that the quantum model is required to accurately model spin decoherence.

  15. Coupling and control in coherently driven and asymmetrically synchronized hybrid electron-nuclear spin system

    NASA Astrophysics Data System (ADS)

    Berec, V.

    2016-02-01

    We study the coupling and control adaptation of a hybrid electron-nuclear spin system using the laser mediated proton beam in MeV energy regime. The asymmetric control mechanism is based on exact optimization of both: the measure of exchange interaction and anisotropy of the hyperfine interaction induced in the resonance with optimal channeled protons (CP) superfocused field, allowing manipulation over arbitrary localized spatial centers while addressing only the electron spin. Using highly precise and coherent proton channeling regime we have obtained efficient pulse shaping separator technique aimed for spatio-temporal engineering of quantum states, introducing a method for control of nuclear spins, which are coupled via anisotropic hyperfine interactions in isolated electron spin manifold, without radio wave (RW) pulses. The presented method can be efficiently implemented in synchronized spin networks with the purpose to facilitate preservation and efficient transfer of experimentally observed quantum particle states, contributing to the overall background noise reduction.

  16. Controlled rephasing of single spin-waves in a quantum memory based on cold atoms

    NASA Astrophysics Data System (ADS)

    Farrera, Pau; Albrecht, Boris; Heinze, Georg; Cristiani, Matteo; de Riedmatten, Hugues; Quantum Photonics With Solids; Atoms Team

    2015-05-01

    Quantum memories for light allow a reversible transfer of quantum information between photons and long lived matter quantum bits. In atomic ensembles, this information is commonly stored in the form of single collective spin excitations (spin-waves). In this work we demonstrate that we can actively control the dephasing of the spin-waves created in a quantum memory based on a cold Rb87 atomic ensemble. The control is provided by an external magnetic field gradient, which induces an inhomogeneous broadening of the atomic hyperfine levels. We show that acting on this gradient allows to control the dephasing of individual spin-waves and to induce later a rephasing. The spin-waves are then mapped into single photons, and we demonstrate experimentally that the active rephasing preserves the sub-Poissonian statistics of the retrieved photons. Finally we show that this rephasing control enables the creation and storage of multiple spin-waves in different temporal modes, which can be selectively readout. This is an important step towards the implementation of a functional temporally multiplexed quantum memory for quantum repeaters. We acknowledge support from the ERC starting grant, the Spanish Ministry of Economy and Competitiveness, the Fondo Europeo de Desarrollo Regional, and the International PhD- fellowship program ``la Caixa''-Severo Ochoa @ICFO.

  17. High temperature spin dynamics in linear magnetic chains, molecular rings, and segments by nuclear magnetic resonance

    SciTech Connect

    Adelnia, Fatemeh; Lascialfari, Alessandro; Mariani, Manuel; Ammannato, Luca; Caneschi, Andrea; Rovai, Donella; Winpenny, Richard; Timco, Grigore; Corti, Maurizio Borsa, Ferdinando

    2015-05-07

    We present the room temperature proton nuclear magnetic resonance (NMR) nuclear spin-lattice relaxation rate (NSLR) results in two 1D spin chains: the Heisenberg antiferromagnetic (AFM) Eu(hfac){sub 3}NITEt and the magnetically frustrated Gd(hfac){sub 3}NITEt. The NSLR as a function of external magnetic field can be interpreted very well in terms of high temperature spin dynamics dominated by a long time persistence of the decay of the two-spin correlation function due to the conservation of the total spin value for isotropic Heisenberg chains. The high temperature spin dynamics are also investigated in Heisenberg AFM molecular rings. In both Cr{sub 8} closed ring and in Cr{sub 7}Cd and Cr{sub 8}Zn open rings, i.e., model systems for a finite spin segment, an enhancement of the low frequency spectral density is found consistent with spin diffusion but the high cut-off frequency due to intermolecular anisotropic interactions prevents a detailed analysis of the spin diffusion regime.

  18. Control of the cavity reflectivity using a single quantum dot spin

    NASA Astrophysics Data System (ADS)

    Sun, Shuo; Kim, Hyochul; Solomon, Glenn; Waks, Edo

    2015-03-01

    The implementation of quantum network and distributive quantum information processing relies on interaction between stationary matter qubits and flying photons. The spin of a single electron or hole confined in a quantum dot is considered as promising matter qubit as it possesses microsecond coherence time and allows picosecond timescale control using optical pulses. The quantum dot spin can also interact with a photon by controlling the optical response of a strongly coupled cavity. Yet all the experimental demonstrations of the cavity spectrum control have used neutral dots. The spin-dependent cavity spectrum for a strongly coupled charged quantum dot and cavity system has not been reported. Here, we report an experimental realization of a spin-photon interface using a strongly coupled quantum dot and cavity system. We show large modulation of the cavity reflection spectrum by manipulating the spin states of the quantum dot. The spin-photon interface is crucial for realizing a quantum logic gate or generating hybrid entanglement between a quantum dot spin and a photon. Our results represent an important step towards semiconductor based quantum logic devices and on-chip quantum networks.

  19. Gate-tuned spin to charge conversion in semiconducting single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Shigematsu, Ei; Nagano, Hiroshi; Dushenko, Sergey; Ando, Yuichiro; Tsuda, Tetsuya; Kuwabata, Susumu; Takenobu, Taishi; Tanaka, Takeshi; Kataura, Hiromichi; Shinjo, Teruya; Shiraishi, Masashi

    Interconversion of spin and charge current is a hot topic in the molecular spintronics. It was achieved for the first time in a conducting conjugated polymer 1, and shortly followed by spin-charge conversion in graphene. However, control over carrier type has not been shown yet. In this study we focused on single-walled carbon nanotubes (SWNT). Spin injection into semiconductor from metal ferromagnet is challenging due to the presence of Schottky barrier and conductance mismatch problem. To bypass it, we used ionic liquid electric gate and ferrimagnetic insulator. We prepared SWNT layer on top of ferrimagnetic yttrium iron garnet substrate. Using spin pumping we successfully observed spin-charge conversion in metallic SWNT. As for a semiconducting SWNT, we applied a top gate using ionic liquid. The drain-source current vs. gate voltage dependence showed tuning of the Fermi level and changing of carrier type. Under gate voltage application we measured electromotive force induced by spin pumping. Detected voltage changed its sign together with carrier type. This is first evidence of spin-charge conversion in carbon nanotubes 2. 1 K. Ando et al., Nature Mater. 12, 622 (2013). 2 E. Shigematsu et al., submitted.

  20. Measurement and control of single spins in diamond above 600 K

    NASA Astrophysics Data System (ADS)

    Toyli, David M.

    2013-03-01

    The nitrogen vacancy (NV) center in diamond stands out among spin qubit systems in large part because its spin can be controlled under ambient conditions whereas most other solid state qubits operate only at cryogenic temperatures. However, despite the intense interest in the NV center's room temperature properties for nanoscale sensing and quantum information applications, the ultimate thermal limits to its measurement and control have been largely unknown. We demonstrate that the NV center's spin can be optically addressed and coherently controlled at temperatures exceeding 600 K and show that its addressability is eventually limited by thermal quenching of the optical spin readout. These measurements, in combination with computational studies, provide important information about the electronic states that facilitate the optical spin measurement and, moreover, suggest that the coherence of the NV center's spin states could be utilized for thermometry. We infer that single spins in diamond offer temperature sensitivities better than 100 mK/√{ Hz} up to 600 K using conventional sensing techniques and show that advanced measurement schemes provide a pathway to reach 10 mK/√{ Hz} sensitivities. Together with diamond's ideal thermal and mechanical properties, these results suggest that NV center thermometers could be applied in cellular thermometry and scanning thermal microscopy. This work was funded by AFOSR, ARO, and DARPA.

  1. Optimal control of fast and high-fidelity quantum gates with electron and nuclear spins of a nitrogen-vacancy center in diamond

    NASA Astrophysics Data System (ADS)

    Chou, Yi; Huang, Shang-Yu; Goan, Hsi-Sheng

    2015-05-01

    A negatively charged nitrogen-vacancy (NV) center in diamond has been recognized as a good solid-state qubit. A system consisting of the electronic spin of the NV center and hyperfine-coupled nitrogen and additionally nearby carbon nuclear spins can form a quantum register of several qubits for quantum information processing or as a node in a quantum repeater. Several impressive experiments on the hybrid electron and nuclear spin register have been reported, but fidelities achieved so far are not yet at or below the thresholds required for fault-tolerant quantum computation (FTQC). Using quantum optimal control theory based on the Krotov method, we show here that fast and high-fidelity single-qubit and two-qubit gates in the universal quantum gate set for FTQC, taking into account the effects of the leakage state, nearby noise qubits, and distant bath spins, can be achieved with errors less than those required by the threshold theorem of FTQC.

  2. Controlled Complete Suppression of Single-Atom Inelastic Spin and Orbital Cotunneling.

    PubMed

    Bryant, Benjamin; Toskovic, Ranko; Ferrón, Alejandro; Lado, José L; Spinelli, Anna; Fernández-Rossier, Joaquín; Otte, Alexander F

    2015-10-14

    The inelastic portion of the tunnel current through an individual magnetic atom grants unique access to read out and change the atom's spin state, but it also provides a path for spontaneous relaxation and decoherence. Controlled closure of the inelastic channel would allow for the latter to be switched off at will, paving the way to coherent spin manipulation in single atoms. Here, we demonstrate complete closure of the inelastic channels for both spin and orbital transitions due to a controlled geometric modification of the atom's environment, using scanning tunneling microscopy (STM). The observed suppression of the excitation signal, which occurs for Co atoms assembled into chains on a Cu2N substrate, indicates a structural transition affecting the dz(2) orbital, effectively cutting off the STM tip from the spin-flip cotunneling path. PMID:26366713

  3. Spin polarized surface resonance bands in single layer Bi on Ge(1 1 1).

    PubMed

    Bottegoni, F; Calloni, A; Bussetti, G; Camera, A; Zucchetti, C; Finazzi, M; Duò, L; Ciccacci, F

    2016-05-18

    The spin features of surface resonance bands in single layer Bi on Ge(1 1 1) are studied by means of spin- and angle-resolved photoemission spectroscopy and inverse photoemission spectroscopy. We characterize the occupied and empty surface states of Ge(1 1 1) and show that the deposition of one monolayer of Bi on Ge(1 1 1) leads to the appearance of spin-polarized surface resonance bands. In particular, the C 3v symmetry, which Bi adatoms adopt on Ge(1 1 1), allows for the presence of Rashba-like occupied and unoccupied electronic states around the [Formula: see text] point of the Bi surface Brillouin zone with a giant spin-orbit constant [Formula: see text] eV · Å. PMID:27073190

  4. Strongly polarizing weakly coupled 13C nuclear spins with optically pumped nitrogen-vacancy center

    PubMed Central

    Wang, Ping; Liu, Bao; Yang, Wen

    2015-01-01

    Enhancing the polarization of nuclear spins surrounding the nitrogen-vacancy (NV) center in diamond has recently attracted widespread attention due to its various applications. Here we present an analytical formula that not only provides a clear physical picture for the recently observed polarization reversal of strongly coupled13C nuclei over a narrow range of magnetic field [H. J. Wang et al., Nat. Commun. 4, 1940 (2013)], but also demonstrates the possibility to strongly polarize weakly coupled13C nuclei. This allows sensitive magnetic field control of the 13C nuclear spin polarization for NMR applications and significant suppression of the 13C nuclear spin noise to prolong the NV spin coherence time. PMID:26521962

  5. Circuit-quantum electrodynamics with direct magnetic coupling to single-atom spin qubits in isotopically enriched {sup 28}Si

    SciTech Connect

    Tosi, Guilherme Mohiyaddin, Fahd A.; Morello, Andrea; Huebl, Hans

    2014-08-15

    Recent advances in silicon nanofabrication have allowed the manipulation of spin qubits that are extremely isolated from noise sources, being therefore the semiconductor equivalent of single atoms in vacuum. We investigate the possibility of directly coupling an electron spin qubit to a superconducting resonator magnetic vacuum field. By using resonators modified to increase the vacuum magnetic field at the qubit location, and isotopically purified {sup 28}Si substrates, it is possible to achieve coupling rates faster than the single spin dephasing. This opens up new avenues for circuit-quantum electrodynamics with spins, and provides a pathway for dispersive read-out of spin qubits via superconducting resonators.

  6. Theory of nuclear spin dephasing and relaxation by optically illuminated nitrogen-vacancy center

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Yang, Wen

    2015-11-01

    Dephasing and relaxation of the nuclear spins coupled to the nitrogen-vacancy (NV) center during optical initialization and readout is an important issue for various applications of this hybrid quantum register. Here we present both an analytical description and a numerical simulation for this process, which agree reasonably with the experimental measurements. For an NV center under cyclic optical transition, our analytical formulas not only provide a clear physical picture, but also allow control of the nuclear spin dissipation by tuning an external magnetic field. For more general optical pumping, our analytical formulas reveal a significant contribution to the nuclear spin dissipation due to electron random hopping into/out of the m = 0 (or m=+/- 1) subspace. This contribution is not suppressed, even under saturated optical pumping and/or vanishing magnetic field, thus providing a possible solution to the puzzling observation of nuclear spin dephasing in zero perpendicular magnetic field Dutt et al (2007 Science 316 1312). It also implies that enhancing the degree of optical spin polarization of the nitrogen-vacancy center can reduce the effect of optically induced nuclear spin dissipation.

  7. Spin-Relaxation Dynamics of E' Centers at High Density in SiO2 Thin Films for Single-Spin Tunneling Force Microscopy

    NASA Astrophysics Data System (ADS)

    Ambal, K.; Payne, A.; Waters, D. P.; Williams, C. C.; Boehme, C.

    2015-08-01

    The suitability of the spin dynamics of paramagnetic silicon dangling bonds (E' centers) in high-E'-density amorphous silicon dioxide (SiO2 ) as probe spins for single-spin tunneling force microscopy (SSTFM) is studied. SSTFM is a spin-selection-rule-based scanning-probe single-spin readout concept. Following the synthesis of SiO2 thin films on (111)-oriented crystalline-silicon substrates with room-temperature stable densities of [E'] >5 ×1018 cm-3 throughout the 60-nm thin film, pulsed electron paramagnetic resonance spectroscopy is conducted on the E' centers at temperatures between T =5 K and T =70 K . The measurements reveal that the spin coherence (the transverse spin-relaxation time T2) of these centers is significantly shortened compared to low-E'-density SiO2 films and within error margins not dependent on temperature. In contrast, the spin-flip times (the longitudinal relaxation times T1) are dependent on the temperature but with much weaker dependence than low-density SiO2 , with the greatest deviations from low-density SiO2 seen for T =5 K . These results, discussed in the context of the spin-relaxation dynamics of dangling-bond states of other silicon-based disordered solids, indicate the suitability of E' centers in high-density SiO2 as probe spins for SSTFM.

  8. Spin symmetry in the antinucleon spectrum.

    PubMed

    Zhou, Shan-Gui; Meng, Jie; Ring, P

    2003-12-31

    We discuss spin and pseudospin symmetry in the spectrum of single nucleons and single antinucleons in a nucleus. As an example we use relativistic mean field theory to investigate single antinucleon spectra. We find a very well developed spin symmetry in single antineutron and single antiproton spectra. The dominant components of the wave functions of the spin doublet are almost identical. This spin symmetry in antiparticle spectra and the pseudospin symmetry in particle spectra have the same origin. However, it turns out that the spin symmetry in antinucleon spectra is much better developed than the pseudospin symmetry in normal nuclear single particle spectra. PMID:14754045

  9. Comparison of Magnetization Tunneling in the Giant-Spin and Multi-Spin Descriptions of Single-Molecule Magnets

    NASA Astrophysics Data System (ADS)

    Liu, Junjie; Del Barco, Enrique; Hill, Stephen

    2010-03-01

    We perform a mapping of the spectrum obtained for a triangular Mn3 single-molecule magnet (SMM) with idealized C3 symmetry via exact diagonalization of a multi-spin (MS) Hamiltonian onto that of a giant-spin (GS) model which assumes strong ferromagnetic coupling and a spin S = 6 ground state. Magnetic hysteresis measurements on this Mn3 SMM reveal clear evidence that the steps in magnetization due to magnetization tunneling obey the expected quantum mechanical selection rules [J. Henderson et al., Phys. Rev. Lett. 103, 017202 (2009)]. High-frequency EPR and magnetization data are first fit to the MS model. The tunnel splittings obtained via the two models are then compared in order to find a relationship between the sixth order transverse anisotropy term B6^6 in GS model and the exchange constant J coupling the Mn^III ions in the MS model. We also find that the fourth order transverse term B4^3 in the GS model is related to the orientation of JahnTeller axes of Mn^III ions, as well as J

  10. Dynamical control of the spin transition inside the thermal hysteresis loop of a spin-crossover single crystal

    NASA Astrophysics Data System (ADS)

    Boukheddaden, Kamel; Sy, Mouhamadou; Paez-Espejo, Miguel; Slimani, Ahmed; Varret, François

    2016-04-01

    We have succeeded to achieve experimentally, using an adapted optical microscopy setup, the reversible control of the front transformation between the low-spin (LS)-high-spin (HS) interface in the spin-crossover (SC) single crystal [{Fe(NCSe)(py)2}2(m-bpypz)] undergoing a first-order transition at 112 K with a 7 K hysteresis width. For that, we first generate a phase separation state (a HS/LS interface at equilibrium) inside the hysteresis loop by tuning the light intensity of the microscope. In the second step, this intensity is monitored in such a way to drive, through a photo-heating process, the interface motion. This photo-control is found to be reversible, accurate and requiring a very small amount of energy. In addition the integrity of the crystal is maintained even after a large number of cycling. The experimental observations, are well described as a reaction diffusion process accounting for the front propagation and the photo-heating effects.

  11. Real time magnetic field sensing and imaging using a single spin in diamond.

    PubMed

    Schoenfeld, Rolf Simon; Harneit, Wolfgang

    2011-01-21

    The Zeeman splitting of a localized single spin can be used to construct a highly sensitive magnetometer offering almost atomic spatial resolution. While sub-μT sensitivity can be obtained in principle using pulsed techniques and long measurement times, a fast and easy method without laborious data postprocessing is desirable for a scanning-probe approach with high spatial resolution. In order to measure the resonance frequency in real time, we applied a field-frequency lock to the optically detected magnetic resonance signal of a single electron spin in a nanodiamond. We achieved a sampling rate of up to 100 readings per sec with a sensitivity of 6  μT/sqrt[Hz]. Images of the field distribution around a magnetic wire were acquired with ∼30  μT resolution and 4096 submicron sized pixels in 10 min. The response of several spins was used to reconstruct the field orientation. PMID:21405264

  12. Rényi information flow in the Ising model with single-spin dynamics.

    PubMed

    Deng, Zehui; Wu, Jinshan; Guo, Wenan

    2014-12-01

    The n-index Rényi mutual information and transfer entropies for the two-dimensional kinetic Ising model with arbitrary single-spin dynamics in the thermodynamic limit are derived as functions of ensemble averages of observables and spin-flip probabilities. Cluster Monte Carlo algorithms with different dynamics from the single-spin dynamics are thus applicable to estimate the transfer entropies. By means of Monte Carlo simulations with the Wolff algorithm, we calculate the information flows in the Ising model with the Metropolis dynamics and the Glauber dynamics, respectively. We find that not only the global Rényi transfer entropy, but also the pairwise Rényi transfer entropy, peaks in the disorder phase. PMID:25615223

  13. Rényi information flow in the Ising model with single-spin dynamics

    NASA Astrophysics Data System (ADS)

    Deng, Zehui; Wu, Jinshan; Guo, Wenan

    2014-12-01

    The n -index Rényi mutual information and transfer entropies for the two-dimensional kinetic Ising model with arbitrary single-spin dynamics in the thermodynamic limit are derived as functions of ensemble averages of observables and spin-flip probabilities. Cluster Monte Carlo algorithms with different dynamics from the single-spin dynamics are thus applicable to estimate the transfer entropies. By means of Monte Carlo simulations with the Wolff algorithm, we calculate the information flows in the Ising model with the Metropolis dynamics and the Glauber dynamics, respectively. We find that not only the global Rényi transfer entropy, but also the pairwise Rényi transfer entropy, peaks in the disorder phase.

  14. Nuclear spin-spin coupling anisotropy in the van der Waals-bonded 129Xe dimer.

    PubMed

    Jokisaari, Jukka; Vaara, Juha

    2013-07-21

    The spin-spin coupling constant, J, in the van der Waals-bonded (129)Xe-(129)Xe dimer cannot be determined experimentally because of the magnetic equivalence of the two nuclei. In contrast, the anisotropy of the coupling tensor, ΔJ, can be obtained from the so called effective dipole-dipole coupling determined in a solid state inclusion compound whose cages accommodate two xenon atoms. For the determination of the experimental ΔJ((129)Xe, (129)Xe) we exploited the data reported earlier in this journal. [D. H. Brouwer et al., Phys. Chem. Chem. Phys., 2007, 9, 1093.] The experimental value and the value obtained from relativistic first-principles computation are in perfect agreement. To the best of our knowledge this is the first investigation of spin-spin coupling anisotropy in a van der Waals-bonded system. PMID:23743998

  15. Testing for parity violation in nuclei using spin density matrices for nuclear density functionals

    NASA Astrophysics Data System (ADS)

    Barrett, B. R.; Giraud, B. G.

    2015-06-01

    The spin density matrix (SDM) used in atomic and molecular physics is revisited for nuclear physics, in the context of the radial density functional theory. The vector part of the SDM defines a hedgehog situation, which exists only if nuclear states contain some amount of parity violation. A toy model is given as an illustrative example.

  16. Quadrupolar effects on nuclear spins of neutral arsenic donors in silicon

    NASA Astrophysics Data System (ADS)

    Franke, David P.; Pflüger, Moritz P. D.; Mortemousque, Pierre-André; Itoh, Kohei M.; Brandt, Martin S.

    2016-04-01

    We present electrically detected electron nuclear double resonance measurements of the nuclear spins of ionized and neutral arsenic donors in strained silicon. In addition to a reduction of the hyperfine coupling, we find significant quadrupole interactions of the nuclear spin of the neutral donors of the order of 10 kHz. By comparing these to the quadrupole shifts due to crystal fields measured for the ionized donors, we identify the effect of the additional electron on the electric field gradient at the nucleus. This extra component is expected to be caused by the coupling to electric field gradients created due to changes in the electron wave function under strain.

  17. Shot noise as a probe of spin-polarized transport through single atoms.

    PubMed

    Burtzlaff, Andreas; Weismann, Alexander; Brandbyge, Mads; Berndt, Richard

    2015-01-01

    Single atoms on Au(111) surfaces have been contacted with the Au tip of a low temperature scanning tunneling microscope. The shot noise of the current through these contacts has been measured up to frequencies of 120 kHz and Fano factors have been determined to characterize the transport channels. The noise at Fe and Co atoms, the latter displaying a Kondo effect, indicates spin-polarized transport through a single channel. Transport calculations reproduce this observation. PMID:25615489

  18. Nuclear spin dynamics in double quantum dots: Multistability, dynamical polarization, criticality, and entanglement

    NASA Astrophysics Data System (ADS)

    Schuetz, M. J. A.; Kessler, E. M.; Vandersypen, L. M. K.; Cirac, J. I.; Giedke, G.

    2014-05-01

    We theoretically study the nuclear spin dynamics driven by electron transport and hyperfine interaction in an electrically defined double quantum dot in the Pauli-blockade regime. We derive a master-equation-based framework and show that the coupled electron-nuclear system displays an instability towards the buildup of large nuclear spin polarization gradients in the two quantum dots. In the presence of such inhomogeneous magnetic fields, a quantum interference effect in the collective hyperfine coupling results in sizable nuclear spin entanglement between the two quantum dots in the steady state of the evolution. We investigate this effect using analytical and numerical techniques, and demonstrate its robustness under various types of imperfections.

  19. Coherent storage of microwave excitations in rare-earth nuclear spins.

    PubMed

    Wolfowicz, Gary; Maier-Flaig, Hannes; Marino, Robert; Ferrier, Alban; Vezin, Hervé; Morton, John J L; Goldner, Philippe

    2015-05-01

    Interfacing between various elements of a computer--from memory to processors to long range communication--will be as critical for quantum computers as it is for classical computers today. Paramagnetic rare-earth doped crystals, such as Nd(3+):Y2SiO5(YSO), are excellent candidates for such a quantum interface: they are known to exhibit long optical coherence lifetimes (for communication via optical photons), possess a nuclear spin (memory), and have in addition an electron spin that can offer hybrid coupling with superconducting qubits (processing). Here we study two of these three elements, demonstrating coherent storage and retrieval between electron and (145)Nd nuclear spin states in Nd(3+):YSO. We find nuclear spin coherence times can reach 9 ms at ∼5  K, about 2 orders of magnitude longer than the electron spin coherence, while quantum state and process tomography of the storage or retrieval operation between the electron and nuclear spin reveal an average state fidelity of 0.86. The times and fidelities are expected to further improve at lower temperatures and with more homogeneous radio-frequency excitation. PMID:25978214

  20. Coherent Storage of Microwave Excitations in Rare-Earth Nuclear Spins

    NASA Astrophysics Data System (ADS)

    Wolfowicz, Gary; Maier-Flaig, Hannes; Marino, Robert; Ferrier, Alban; Vezin, Hervé; Morton, John J. L.; Goldner, Philippe

    2015-05-01

    Interfacing between various elements of a computer—from memory to processors to long range communication—will be as critical for quantum computers as it is for classical computers today. Paramagnetic rare-earth doped crystals, such as Nd3 +∶Y2SiO5 (YSO ) , are excellent candidates for such a quantum interface: they are known to exhibit long optical coherence lifetimes (for communication via optical photons), possess a nuclear spin (memory), and have in addition an electron spin that can offer hybrid coupling with superconducting qubits (processing). Here we study two of these three elements, demonstrating coherent storage and retrieval between electron and Nd 145 nuclear spin states in Nd3 +∶YSO . We find nuclear spin coherence times can reach 9 ms at ˜5 K , about 2 orders of magnitude longer than the electron spin coherence, while quantum state and process tomography of the storage or retrieval operation between the electron and nuclear spin reveal an average state fidelity of 0.86. The times and fidelities are expected to further improve at lower temperatures and with more homogeneous radio-frequency excitation.

  1. Spin-1 atoms in optical superlattices: Single-atom tunneling and entanglement

    SciTech Connect

    Wagner, Andreas; Bruder, Christoph; Demler, Eugene

    2011-12-15

    We examine spinor Bose-Einstein condensates in optical superlattices theoretically using a Bose-Hubbard Hamiltonian that takes spin effects into account. Assuming that a small number of spin-1 bosons is loaded in an optical potential, we study single-particle tunneling that occurs when one lattice site is ramped up relative to a neighboring site. Spin-dependent effects modify the tunneling events in a qualitative and quantitative way. Depending on the asymmetry of the double well, different types of magnetic order occur, making the system of spin-1 bosons in an optical superlattice a model for mesoscopic magnetism. We use a double-well potential as a unit cell for a one-dimensional superlattice. Homogeneous and inhomogeneous magnetic fields are applied, and the effects of the linear and the quadratic Zeeman shifts are examined. We also investigate the bipartite entanglement between the sites and construct states of maximal entanglement. The entanglement in our system is due to both orbital and spin degrees of freedom. We calculate the contribution of orbital and spin entanglements and show that the sum of these two terms gives a lower bound for the total entanglement.

  2. Relativistic symmetries in nuclear single-particle spectra

    NASA Astrophysics Data System (ADS)

    Guo, Jian-You; Liang, Hao Zhao; Meng, Jie; Zhou, Shan-Gui

    Symmetry is a fundamental concept in quantum physics. The quasi-degeneracy between single-particle orbitals (n, l, j = l + 1/2) and (n -1, l + 2, j = l + 3/2) indicates a hidden symmetry in atomic nuclei, the so-called pseudospin symmetry. Since the pseudospin symmetry was recognized as a relativistic symmetry in 1990s, many special features, including the spin symmetry for anti-nucleons, and many new concepts have been introduced. In this Chapter, we will illustrate the schematic picture of spin and pseudospin symmetries, derive the basic formalism, highlight the recent progress from several different aspects, and discuss selected open issues in this topic.

  3. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves

    SciTech Connect

    Thurber, Kent R. Tycko, Robert

    2014-05-14

    We report solid state {sup 13}C and {sup 1}H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, {sup 1}H and cross-polarized {sup 13}C NMR signals from {sup 15}N,{sup 13}C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T{sub 1e} is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations.

  4. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves

    PubMed Central

    Thurber, Kent R.; Tycko, Robert

    2014-01-01

    We report solid state 13C and 1H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, 1H and cross-polarized 13C NMR signals from 15N,13C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T1e is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations. PMID:24832263

  5. Twist-three Fragmentation Function Contribution to the Single Spin Asymmetry in pp Collisions

    SciTech Connect

    Kang, Zhong-Bo; Yuan, Feng; Zhou, Jian

    2010-01-29

    We study the twist-three fragmentation function contribution to the single transverse spin asymmetries in inclusive hadron production in pp collisions, pp->h+X. In particular, we evaluate the so-called derivative contribution which dominates the spin asymmetry in the forward direction of the polarized proton. With certain parametrizations for the twist-three fragmentation function, we estimate its contribution to the asymmetry of pi0 production at RHIC energy. We find that the contribution is sizable and might be responsible for the big difference between the asymmetries in eta and pi0 productions observed by the STAR collaboration at RHIC.

  6. Separation and conversion dynamics of nuclear-spin isomers of gaseous methanol

    PubMed Central

    Sun, Zhen-Dong; Ge, Meihua; Zheng, Yujun

    2015-01-01

    All symmetrical molecules with non-zero nuclear spin exist in nature as nuclear-spin isomers (NSIs). However, owing to the lack of experimental information, knowledge is rare about interconversions of NSIs of gaseous molecules with torsional symmetry. Here we report our separation and conversion observations on NSI-torsion-specific transition systems of gaseous methanol from a light-induced drift experiment involving partially spatial separation of the ortho and para isomers. We find that vibrationally excited molecules of the methanol spin isomer have a smaller collision cross-section than their ground-state counterparts. Interconversion of the enriched ortho isomer with the para isomer, which is generally considered improbable, has been quantitatively studied by sensitive detections of the spectral intensities. Rather counterintuitively, this reveals that the interconversion is inhibited with increasing pressure. Our results suggest that the spin conversion mechanism in methanol is via a quantum relaxation process with the quantum Zeno effect induced by molecular collisions. PMID:25880882

  7. Separation and conversion dynamics of nuclear-spin isomers of gaseous methanol

    NASA Astrophysics Data System (ADS)

    Sun, Zhen-Dong; Ge, Meihua; Zheng, Yujun

    2015-04-01

    All symmetrical molecules with non-zero nuclear spin exist in nature as nuclear-spin isomers (NSIs). However, owing to the lack of experimental information, knowledge is rare about interconversions of NSIs of gaseous molecules with torsional symmetry. Here we report our separation and conversion observations on NSI-torsion-specific transition systems of gaseous methanol from a light-induced drift experiment involving partially spatial separation of the ortho and para isomers. We find that vibrationally excited molecules of the methanol spin isomer have a smaller collision cross-section than their ground-state counterparts. Interconversion of the enriched ortho isomer with the para isomer, which is generally considered improbable, has been quantitatively studied by sensitive detections of the spectral intensities. Rather counterintuitively, this reveals that the interconversion is inhibited with increasing pressure. Our results suggest that the spin conversion mechanism in methanol is via a quantum relaxation process with the quantum Zeno effect induced by molecular collisions.

  8. Note: Time-gated 3D single quantum dot tracking with simultaneous spinning disk imaging

    SciTech Connect

    DeVore, M. S.; Stich, D. G.; Keller, A. M.; Phipps, M. E.; Hollingsworth, J. A.; Goodwin, P. M.; Werner, J. H.; Cleyrat, C.; Lidke, D. S.; Wilson, B. S.

    2015-12-15

    We describe recent upgrades to a 3D tracking microscope to include simultaneous Nipkow spinning disk imaging and time-gated single-particle tracking (SPT). Simultaneous 3D molecular tracking and spinning disk imaging enable the visualization of cellular structures and proteins around a given fluorescently labeled target molecule. The addition of photon time-gating to the SPT hardware improves signal to noise by discriminating against Raman scattering and short-lived fluorescence. In contrast to camera-based SPT, single-photon arrival times are recorded, enabling time-resolved spectroscopy (e.g., measurement of fluorescence lifetimes and photon correlations) to be performed during single molecule/particle tracking experiments.

  9. Note: Time-gated 3D single quantum dot tracking with simultaneous spinning disk imaging

    NASA Astrophysics Data System (ADS)

    DeVore, M. S.; Stich, D. G.; Keller, A. M.; Cleyrat, C.; Phipps, M. E.; Hollingsworth, J. A.; Lidke, D. S.; Wilson, B. S.; Goodwin, P. M.; Werner, J. H.

    2015-12-01

    We describe recent upgrades to a 3D tracking microscope to include simultaneous Nipkow spinning disk imaging and time-gated single-particle tracking (SPT). Simultaneous 3D molecular tracking and spinning disk imaging enable the visualization of cellular structures and proteins around a given fluorescently labeled target molecule. The addition of photon time-gating to the SPT hardware improves signal to noise by discriminating against Raman scattering and short-lived fluorescence. In contrast to camera-based SPT, single-photon arrival times are recorded, enabling time-resolved spectroscopy (e.g., measurement of fluorescence lifetimes and photon correlations) to be performed during single molecule/particle tracking experiments.

  10. Chip-Scale Nanofabrication of Single Spins and Spin Arrays in Diamond

    SciTech Connect

    Toyli, David M.; Weis, Christoph D.; Fuchs, D.; Schenkel, Thomas; Awschalom, David D.

    2010-07-02

    We demonstrate a technique to nanofabricate nitrogen vacancy (NV) centers in diamond based on broad-beam nitrogen implantation through apertures in electron beam lithography resist. This method enables high-throughput nanofabrication of single NV centers on sub-100-nm length scales. Secondary ion mass spectroscopy measurements facilitate depth profiling of the implanted nitrogen to provide three-dimensional characterization of the NV center spatial distribution. Measurements of NV center coherence with on-chip coplanar waveguides suggest a pathway for incorporating this scalable nanofabrication technique in future quantum applications.

  11. Nuclear inelastic scattering study of a dinuclear iron(II) complex showing a direct spin transition

    NASA Astrophysics Data System (ADS)

    Wolny, J. A.; Garcia, Y.; Faus, I.; Rackwitz, S.; Schlage, K.; Wille, H.-C.; Schünemann, V.

    2016-12-01

    The results of the nuclear inelastic scattering (NIS)/nuclear resonance vibrational spectroscopy (NRVS) for the powder spectra of dimeric [Fe 2 L 5(NCS) 4] (L = N-salicylidene-4-amino-1,2,4-triazole) complex are presented. This system is spin crossover (SCO) material tagged with a fluorophore that can sense or "feel" the SCO signal ripping through the molecular network and thereby providing an opportunity to register the SCO transition. The spectra have been measured for the low-spin and high-spin phases of the complex. The high-spin isomer reveals one broad band above 200 cm -1, while the low-spin one displays two intense bands in the range from 390 to 430 cm -1, accompanied by a number of weaker bands below this area and one at ca. 490 cm -1. A normal coordinate analysis based on density functional calculations yields the assignment of the spin marker bands to particular molecular modes. In addition the vibrational contribution to the spin transition has been estimated

  12. Normal and inverse bulk spin valve effects in single-crystal ruthenates

    NASA Astrophysics Data System (ADS)

    Peng, Jin; Hu, J.; Gu, X. M.; Zhou, G. T.; Liu, J. Y.; Zhang, F. M.; Wu, X. S.; Mao, Z. Q.

    2016-04-01

    The current-perpendicular-to-plane magnetoresistivity (CPP-MR) /ρc(B ) is investigated in single crystal ruthenates Ca3(Ru1-xTix)2O7 (x = 0.02). This material is naturally composed of ferromagnetic metallic bilayers (Ru,Ti)O2 separated by nonmagnetic insulating layers of Ca2O2, resulting in tunneling magnetoresistivity. Non-monotonic ρc(B ) curves as well as the inverse spin valve effect are observed around the magnetic phase transition associating with the metal-to-insulator transition. A spin dependent tunneling model with alternate distribution of hard and soft magnetic layers [(Ru,Ti)O2] is proposed to explain the exotic CPP-MR behavior. This eccentric CPP-MR behavior highlights the strong spin-charge coupling in double-layered ruthenates and provides a potential material for spintronic devices.

  13. Multi-dimensional single-spin nano-optomechanics with a levitated nanodiamond

    NASA Astrophysics Data System (ADS)

    Neukirch, Levi P.; von Haartman, Eva; Rosenholm, Jessica M.; Nick Vamivakas, A.

    2015-10-01

    Considerable advances made in the development of nanomechanical and nano-optomechanical devices have enabled the observation of quantum effects, improved sensitivity to minute forces, and provided avenues to probe fundamental physics at the nanoscale. Concurrently, solid-state quantum emitters with optically accessible spin degrees of freedom have been pursued in applications ranging from quantum information science to nanoscale sensing. Here, we demonstrate a hybrid nano-optomechanical system composed of a nanodiamond (containing a single nitrogen-vacancy centre) that is levitated in an optical dipole trap. The mechanical state of the diamond is controlled by modulation of the optical trapping potential. We demonstrate the ability to imprint the multi-dimensional mechanical motion of the cavity-free mechanical oscillator into the nitrogen-vacancy centre fluorescence and manipulate the mechanical system's intrinsic spin. This result represents the first step towards a hybrid quantum system based on levitating nanoparticles that simultaneously engages optical, phononic and spin degrees of freedom.

  14. Robust entanglement in antiferromagnetic Heisenberg chains by single-spin optimal control

    SciTech Connect

    Wang Xiaoting; Schirmer, S. G.; Bayat, Abolfazl; Bose, Sougato

    2010-03-15

    We demonstrate how near-perfect entanglement (in fact arbitrarily close to maximal entanglement) can be generated between the end spins of an antiferromagnetic isotropic Heisenberg chain of length N, starting from the ground state in the N/2 excitation subspace, by applying a magnetic field along a given direction, acting on a single spin only. Temporally optimal magnetic fields to generate a singlet pair between the two end spins of the chain are calculated for chains up to length 20 using optimal control theory. The optimal fields are shown to remain effective in various nonideal situations including thermal fluctuations, magnetic field leakage, random system couplings, and decoherence. Furthermore, the quality of the entanglement generated can be substantially improved by taking these imperfections into account in the optimization. In particular, the optimal pulse of a given thermal initial state is also optimal for any other initial thermal state with lower temperature.

  15. Spin polarized surface resonance bands in single layer Bi on Ge(1 1 1)

    NASA Astrophysics Data System (ADS)

    Bottegoni, F.; Calloni, A.; Bussetti, G.; Camera, A.; Zucchetti, C.; Finazzi, M.; Duò, L.; Ciccacci, F.

    2016-05-01

    The spin features of surface resonance bands in single layer Bi on Ge(1 1 1) are studied by means of spin- and angle-resolved photoemission spectroscopy and inverse photoemission spectroscopy. We characterize the occupied and empty surface states of Ge(1 1 1) and show that the deposition of one monolayer of Bi on Ge(1 1 1) leads to the appearance of spin-polarized surface resonance bands. In particular, the C 3v symmetry, which Bi adatoms adopt on Ge(1 1 1), allows for the presence of Rashba-like occupied and unoccupied electronic states around the \\overline{\\text{M}} point of the Bi surface Brillouin zone with a giant spin–orbit constant |{α\\text{R}}| =≤ft(1.4+/- 0.1\\right) eV · Å.

  16. Probing the C₆₀ triplet state coupling to nuclear spins inside and out.

    PubMed

    Filidou, Vasileia; Mamone, Salvatore; Simmons, Stephanie; Karlen, Steven D; Anderson, Harry L; Kay, Christopher W M; Bagno, Alessandro; Rastrelli, Federico; Murata, Yasujiro; Komatsu, Koichi; Lei, Xuegong; Li, Yongjun; Turro, Nicholas J; Levitt, Malcolm H; Morton, John J L

    2013-09-13

    The photoexcitation of functionalized fullerenes to their paramagnetic triplet electronic state can be studied by pulsed electron paramagnetic resonance (EPR) spectroscopy, whereas the interactions of this state with the surrounding nuclear spins can be observed by a related technique: electron nuclear double resonance (ENDOR). In this study, we present EPR and ENDOR studies on a functionalized exohedral fullerene system, dimethyl[9-hydro (C60-Ih)[5,6]fulleren-1(9H)-yl]phosphonate (DMHFP), where the triplet electron spin has been used to hyperpolarize, couple and measure two nuclear spins. We go on to discuss the extension of these methods to study a new class of endohedral fullerenes filled with small molecules, such as H₂@C₆₀, and we relate the results to density functional calculations. PMID:23918718

  17. Single-level resonance parameters fit nuclear cross-sections

    NASA Technical Reports Server (NTRS)

    Drawbaugh, D. W.; Gibson, G.; Miller, M.; Page, S. L.

    1970-01-01

    Least squares analyses of experimental differential cross-section data for the U-235 nucleus have yielded single level Breit-Wigner resonance parameters that fit, simultaneously, three nuclear cross sections of capture, fission, and total.

  18. Measurement of Single and Double Spin Asymmetries in Deep Inelastic Pion Electroproduction with a Longitudinally Polarized Target

    SciTech Connect

    Avakian, H; Bosted, P; Elouadrhiri, L; Adhikari, K P; Aghasyan, M; Amaryan, M; Anghinolfi, M; Baghdasaryan, H; Ball, J; Battaglieri, M; Bedlinskiy, I; Biselli, A S; Branford, D; Briscoe, W J; Brooks, W; Carman, D S; Casey, L; Cole, P L; Collins, P; Crabb, D; Crede, V; D' Angelo, A; Daniel, A; Dashyan, N; DeVita, R; DeSanctis, E; Deur, A; Dey, B; Dhamija, S; Dickson, R; Djalali, C; Dodge, G; Doughty, D; Dupre, R; El Alaoui, A; Eugenio, P; Fegan, S; Fersch, M; Guler, N; Guo, L; Hafidi, K; Hakobyan, H; Hanretty, C; Hassall, N; Heddle, D; Hicks, K; Holtrop, M; Ilieva, Y; Ireland, D G; Isupov, E L; Jawalkar, S S; Jo, H S; Joo, K; Keller, D; Khandaker, M; Khetarpal,; Kim, W; Klein, A; Klein, F J; Konczykowski, P; Kubarovsky, V; Kuhn, S E; Kuleshov, S V; Kuznetsov, V; Livingston, K; Lu, H Y; Markov, N; Mayer, M; McAndrew, J; McCracken, M E; McKInnon, B; Meyer, C A; Mineeva, T; Mirazita, M; Mokeev, V; Moreno, B; Moriya, K; Morrison, B; Moutarde, H; Munevar, E; Nadel-Turonski, P; Nasseripour, R; Niccolai, S; Niculescu, G; Niculescu, I; Niroula, M R; Osipenko, M; Ostrovidov, A I; Paremuzyan, R; Park, K; Park, S; Pasyuk, E; Anefalos Pereira, S; Perrin, Y; Pisano, S; Pogorelko, O; Price, J W; Procureur, S; Prok, Protopopescu; Raue, B A; Ricco, G; Ripani, M; Rosner, G; Rossi, P; Sabatie, F; Saini, M S; Salamanca, J; Salgado, C; Schumacher, R A; Seder, E; Seraydaryan, H; Sharabian, Y G; Sober, D I; Sokhan, D; Stapanyan, S S; Stepanyan, S; Stoler, P; Strauch, S; Suleiman, R; Taiuti, M; Tedeschi, D J; Tkachenko, S; Ungaro, M; Vernarsky, B; Vineyard, M F; Voutier, E; Watts, D P; Weinstein, L B; Weygand, D P; Wood, M H; Zhang, J; Zhao, B

    2010-12-01

    We report the first measurement of the transverse momentum dependence of double spin asymmetries in semi-inclusive production of pions in deep inelastic scattering off the longitudinally polarized proton. Data have been obtained using a polarized electron beam of 5.7 GeV with the CLAS detector at the Thomas Jefferson National Accelerator Facility (JLab). A significant non-zero $\\sin2\\phi$ single spin asymmetry was also observed for the first time indicating strong spin-orbit correlations for transversely polarized quarks in the longitudinally polarized proton. The azimuthal modulations of single spin asymmetries have been measured over a wide kinematic range.

  19. Spin-exchange narrowing in a nuclear magnetic transverse oscillator

    NASA Astrophysics Data System (ADS)

    Korver, Anna; Thrasher, Daniel; Bulatowicz, Michael; Walker, Thad

    2015-05-01

    We demonstrate spin exchange narrowing in synchronously pumped Xe NMR. The Xe NMR is driven by spin exchange with Rb atoms whose polarization is square-wave modulated at the Xe NMR frequency. On resonance, the nuclei precess in phase with the Rb polarization. Off resonance, however, the spin-exchange fields from the Rb cause the Xe to develop a static orthogonal spin component. This induces broadening in the NMR line while also dramatically suppressing the phase shift between the precessing Rb and Xe polarizations. We can compensate for this effect by adding an oscillating magnetic field oriented along the optical pumping axis and 180 degrees out of phase with the Rb polarization. This narrows the NMR line width to approximately the T1 limit, and nearly restores the usual relationship between detuning and phase shift. These results suggest the possibility of using the alkali field with appropriate magnetic field feedback along the bias field direction to narrow the NMR linewidth below the usual T1 limit. Support by the NSF and Northrop Grumman Co.

  20. Vector Model Of Electron Spin Echo Envelope Modulation Due To Nuclear Hyperfine And Zeeman Interactions

    SciTech Connect

    Maryasov, Alexander G.; Bowman, Michael K. ); Tsvetkov, Yuri D.

    2002-12-01

    The transverse electron spin magnetization of a paramagnetic center with effective spin S=? interacting with nonquadrupolar nuclei may be presented as a function of pairs of nuclei magnetization vectors which process around the effective magnetic field directions. Each vector of the pair starts its precession perpendicular to both effective fields. The FID signal is proportional to the scalar product of the vectors for nuclear spin I=?. The ESE signal can be described using two pairs of magnetization vectors. The ESE shape is not equal to two back-to-back FID signals except in the absence of ESE envelope modulation. A recursion relation is obtained which allows calculation of ESE signals for larger nuclear spins in the absence of NQI. This relation can be used to calculate the time course of the ESE signal for arbitrary nuclear spin as a function of the nuclear magnetization vectors. Although this formalism allows quantitative calculation of modulation from nuclei, it also provides a qualitative means of visualizing the modulation based on simple magnetization vectors.

  1. Cotunneling signatures of spin-electric coupling in frustrated triangular single-molecule magnets

    NASA Astrophysics Data System (ADS)

    Nossa, Javier; Canali, Carlo

    2013-03-01

    The ground state (GS) of frustrated (antiferromagnetic) triangular single-molecule magnets is characterized by two total-spin S = 1 /2 doublets with opposite chirality. According to a group theory analysis [M. Trif et al., Phys. Rev. Lett. 101, 217201 (2008)] an external electric field can efficiently couple these two chiral spin states, even when the spin-orbit interaction (SOI) is absent. The strength of this coupling, d, is determined by an off-diagonal matrix element of the dipole operator, which can be calculated by ab-initio methods [M. F. Islam et al., Phys. Rev. B 82, 155446 (2010)]. In this work we propose that Coulomb-blockade transport experiments in the cotunneling regime can provide a direct way to determine the spin-electric coupling strength. Indeed, an electric field generates a d-dependent splitting of the GS manifold, which can be detected in the inelastic cotunneling conductance. Our theoretical analysis is supported by master-equation calculations of quantum transport in the cotunneling regime. We employ a Hubbard-model approach to elucidate the relationship between the Hubbard parameters t and U, and the spin-electric coupling constant d . This allows us to predict the regime in which the coupling constant d can be extracted from experiment.

  2. Spontaneous formation and spin of particle pairs in a single-layer complex plasma crystal

    NASA Astrophysics Data System (ADS)

    Nosenko, V.; Zhdanov, S. K.; Thomas, H. M.; Carmona-Reyes, J.; Hyde, T. W.

    2015-11-01

    In an experiment with a single-layer plasma crystal, spontaneous pairing of particles was observed upon a sudden reduction of the discharge power. The pairs were oriented vertically with the upper particle above the crystal layer and the lower particle beneath it, the pair size was about 0.2 mm. The pairs were spinning around their vertical axis with the upper particle leading and the lower one following it; the rotation speed was 10-13 Hz. Spinning particle pairs disturbed the plasma crystal through interaction with their neighbors. Upon further reduction of the discharge power, the spinning pairs proliferated in the plasma crystal and eventually it melted. The experiment was performed with micron-size polymer particles suspended in the radio-frequency (rf) argon plasma at a pressure of 157 mtorr. We propose a theoretical model of a spinning particle pair based on the plasma wake effect. Spinning particle pairs can be used as a diagnostic tool for plasma wakes or as a generic model of a 2D system of vortices.

  3. Terahertz probes of magnetic field induced spin reorientation in YFeO{sub 3} single crystal

    SciTech Connect

    Lin, Xian; Jiang, Junjie; Ma, Guohong; Jin, Zuanming; Wang, Dongyang; Tian, Zhen; Han, Jiaguang; Cheng, Zhenxiang

    2015-03-02

    Using the terahertz time-domain spectroscopy, we demonstrate the spin reorientation of a canted antiferromagnetic YFeO{sub 3} single crystal, by evaluating the temperature and magnetic field dependence of resonant frequency and amplitude for the quasi-ferromagnetic (FM) and quasi-antiferromagnetic modes (AFM), a deeper insight into the dynamics of spin reorientation in rare-earth orthoferrites is established. Due to the absence of 4f-electrons in Y ion, the spin reorientation of Fe sublattices can only be induced by the applied magnetic field, rather than temperature. In agreement with the theoretical predication, the frequency of FM mode decreases with magnetic field. In addition, an obvious step of spin reorientation phase transition occurs with a relatively large applied magnetic field of 4 T. By comparison with the family members of RFeO{sub 3} (R = Y{sup 3+} or rare-earth ions), our results suggest that the chosen of R would tailor the dynamical rotation properties of Fe ions, leading to the designable spin switching in the orthoferrite antiferromagnetic systems.

  4. Continuous dynamical decoupling of a single diamond nitrogen-vacancy center spin with a mechanical resonator

    NASA Astrophysics Data System (ADS)

    Macquarrie, Evan; Gosavi, Tanay; Bhave, Sunil; Fuchs, Gregory

    We use coherent interactions between a diamond mechanical resonator and a single nitrogen-vacancy (NV) center spin qubit to engineer a decoherence-protected spin basis. For solid state spin qubits such as the NV center, a dominant source of inhomogeneous dephasing is magnetic field fluctuations due to nearby paramagnetic impurities or instabilities in a magnetic bias field. By dressing the NV center spin states with a 581 +/- 2 kHz mechanical Rabi field, we decrease the spin's sensitivity to magnetic fluctuations in a thermally isolated subspace, thus prolonging the Ramsey coherence time from T2* = 2 . 7 +/- 0 . 1 μs to 15 +/- 1 μs. We develop a model that quantitatively predicts the relationship between the mechanical Rabi field and the dephasing time. Our model shows that a combination of random magnetic field fluctuations and hyperfine coupling limits the protected coherence time over the range of mechanical dressing fields accessed in our experiment. Finally, we show that amplitude noise in the dressing field will dominate over magnetic noise for larger driving fields. We acknowledge research support from the Office of Naval Research.

  5. Mechanically induced two-qubit gates and maximally entangled states for single electron spins in a carbon nanotube

    NASA Astrophysics Data System (ADS)

    Wang, Heng; Burkard, Guido

    2015-11-01

    We theoretically analyze a system where two electrons are trapped separately in two quantum dots on a suspended carbon nanotube (CNT), subject to external ac electric driving. An indirect mechanically induced coupling of two distant single electron spins is induced by the interaction between the spins and the mechanical motion of the CNT. We show that a two-qubit iswap gate and arbitrary single-qubit gates can be obtained from the intrinsic spin-orbit coupling. Combining the iswap gate and single-qubit gates, maximally entangled states of two spins can be generated in a single step by varying the frequency and the strength of the external electric driving field. The spin-phonon coupling can be turned off by electrostatically shifting the electron wave function on the nanotube.

  6. Nuclear magnetic resonance spin-spin relaxation of the crystals of bone, dental enamel, and synthetic hydroxyapatites.

    PubMed

    Wu, Yaotang; Ackerman, Jerome L; Kim, Hyun-Man; Rey, Christian; Barroug, Allal; Glimcher, Melvin J

    2002-03-01

    Studies of the apatitic crystals of bone and enamel by a variety of spectroscopic techniques have established clearly that their chemical composition, short-range order, and physical chemical reactivity are distinctly different from those of pure hydroxyapatite. Moreover, these characteristics change with aging and maturation of the bone and enamel crystals. Phosphorus-31 solid state nuclear magnetic resonance (NMR) spin-spin relaxation studies were carried out on bovine bone and dental enamel crystals of different ages and the data were compared with those obtained from pure and carbonated hydroxyapatites. By measuring the 31P Hahn spin echo amplitude as a function of echo time, Van Vleck second moments (expansion coefficients describing the homonuclear dipolar line shape) were obtained and analyzed in terms of the number density of phosphorus nuclei. 31P magnetization prepared by a 90 degree pulse or by proton-phosphorus cross-polarization (CP) yielded different second moments and experienced different degrees of proton spin-spin coupling, suggesting that these two preparation methods sample different regions, possibly the interior and the surface, respectively, of bone mineral crystals. Distinct differences were found between the biological apatites and the synthetic hydroxyapatites and as a function of the age and maturity of the biological apatites. The data provide evidence that a significant fraction of the protonated phosphates (HPO4(-2)) are located on the surfaces of the biological crystals, and the concentration of unprotonated phosphates (PO4(-3)) within the apatitic lattice is elevated with respect to the surface. The total concentration of the surface HPO4(-2) groups is higher in the younger, less mature biological crystals. PMID:11874238

  7. Spin dynamics in the single molecule magnet Ni4 under microwave irradiation

    NASA Astrophysics Data System (ADS)

    de Loubens, Gregoire

    2009-03-01

    Quantum mechanical effects such as quantum tunneling of magnetization (QTM) and quantum phase interference have been intensively studied in single molecule magnets (SMMs). These materials have also been suggested as candidates for qubits and are promising for molecular spintronics. Understanding decoherence and energy relaxation mechanisms in SMMs is then both of fundamental interest and important for the use of SMMs in applications. Interestingly, the single-spin relaxation rate due to direct process of a SMM embedded in an elastic medium can be derived without any unknown coupling constant [1]. Moreover, nontrivial relaxation mechanisms are expected from collective effects in SMM single crystals, such as phonon superradiance or phonon bottleneck. In order to investigate the spin relaxation between the two lowest lying spin-states of the S=4 single molecule magnet Ni4, we have developed an integrated sensor that combines a microstrip resonator and micro-Hall effect magnetometer on a chip [2]. This sensor enables both real time studies of magnetization dynamics under pulse irradiation as well as simultaneous measurements of the absorbed power and magnetization changes under continuous microwave irradiation. The latter technique permits the study of small deviations from equilibrium under steady state conditions, i.e. small amplitude cw microwave irradiation. This has been used to determine the energy relaxation rate of a Ni4 single crystal as a function of temperature at two frequencies, 10 and 27.8 GHz. A strong temperature dependence is observed below 1.5 K, which is not consistent with a direct spin-phonon relaxation process. The data instead suggest that the spin relaxation is dominated by a phonon bottleneck at low temperatures and occurs by an Orbach process involving excited spin-levels at higher temperatures [3]. Experimental results will be compared with detailed calculations of the relaxation rate using the density matrix equation with the relaxation terms in the universal form.1. E. M. Chudnovsky, D. A. Garanin and R. Schilling, Phys. Rev. B 72, 094426 (2005)2. G. de Loubens et al., J. Appl. Phys. 101, 09E104 (2007)3. G. de Loubens, D. A. Garanin, C. C. Beedle, D. N. Hendrickson and A. D. Kent, Europhys. Lett. 83, 37006 (2008)

  8. On the Relation Between Mechanisms for Single-Transverse-SpinAsymmetries

    SciTech Connect

    Koike, Yuji; Vogelsang, Werner; Yuan, Feng

    2007-11-05

    Recent studies have shown that two widely-used mechanismsfor single-transverse-spin asymmetries based on either twist-threecontributions or on transverse-momentum-dependent (Sivers) partondistributions become identical in a kinematical regime of overlap. Thiswas demonstrated for the so-called soft-gluon-pole and hard-polecontributions to the asymmetry associated with a particular quark-gluoncorrelation function in the nucleon. In this paper, using semi-inclusivedeep inelastic scattering as an example, we extend the study to thecontributions by soft-fermion poles and by another independenttwist-three correlation function. We find that these additional termsorganize themselves in such a way as to maintain the mutual consistencyof the two mechanisms for single-spin asymmetries.

  9. Incommensurate single-angle spiral ordering of classical Heisenberg spins on zigzag ladder lattices

    NASA Astrophysics Data System (ADS)

    Dublenych, Yu. I.

    2016-02-01

    Exact and rigorous solutions of the ground-state problem for the classical Heisenberg model with nearest-neighbor interactions on two- and three-dimensional lattices composed of zigzag (triangular) ladders are obtained in a very simple way, with the use of a cluster method. It is shown how the geometrical frustration due to the presence of triangles as structural units leads to the emergence of incommensurate spiral orderings and their frustrated collinear limits which become nonfrustrated if the interaction along ladder legs changes the sign (becoming ferromagnetic). Interestingly, these orderings are determined by a single angle (along with the signs of the interactions between neighboring spins); therefore, the term "single-angle spiral ordering" is proposed. A hypothesis about the origin of a puzzling spin ordering in a zigzag ladder compound β -CaCr2O4 is made.

  10. Relativistic Force Field: Parametrization of (13)C-(1)H Nuclear Spin-Spin Coupling Constants.

    PubMed

    Kutateladze, Andrei G; Mukhina, Olga A

    2015-11-01

    Previously, we reported a reliable DU8 method for natural bond orbital (NBO)-aided parametric scaling of Fermi contacts to achieve fast and accurate prediction of proton-proton spin-spin coupling constants (SSCC) in (1)H NMR. As sophisticated NMR experiments for precise measurements of carbon-proton SSCCs are becoming more user-friendly and broadly utilized by the organic chemistry community to guide and inform the process of structure determination of complex organic compounds, we have now developed a fast and accurate method for computing (13)C-(1)H SSCCs. Fermi contacts computed with the DU8 basis set are scaled using selected NBO parameters in conjunction with empirical scaling coefficients. The method is optimized for inexpensive B3LYP/6-31G(d) geometries. The parametric scaling is based on a carefully selected training set of 274 ((3)J), 193 ((2)J), and 143 ((1)J) experimental (13)C-(1)H spin-spin coupling constants reported in the literature. The DU8 basis set, optimized for computing Fermi contacts, which by design had evolved from optimization of a collection of inexpensive 3-21G*, 4-21G, and 6-31G(d) bases, offers very short computational (wall) times even for relatively large organic molecules containing 15-20 carbon atoms. The most informative SSCCs for structure determination, i.e., (3)J, were computed with an accuracy of 0.41 Hz (rmsd). The new unified approach for computing (1)H-(1)H and (13)C-(1)H SSCCs is termed "DU8c". PMID:26414291

  11. Spin glass in semiconducting KFe1.05Ag0.88Te2 single crystals

    DOE PAGESBeta

    Ryu, H.; Lei, H.; Klobes, B.; Warren, J. B.; Hermann, R. P.; Petrovic, C.

    2015-05-26

    We report discovery of KFe1.05Ag0.88Te2 single crystals with semiconducting spin glass ground state. Composition and structure analysis suggest nearly stoichiometric I4/mmm space group but allow for the existence of vacancies, absent in long range semiconducting antiferromagnet KFe1.05Ag0.88Te2. The subtle change in stoichometry in Fe/Ag sublattice changes magnetic ground state but not conductivity, giving further insight into the semiconducting gap mechanism.

  12. Spin glass in semiconducting KFe1.05Ag0.88Te2 single crystals

    NASA Astrophysics Data System (ADS)

    Ryu, Hyejin; Lei, Hechang; Klobes, B.; Warren, J. B.; Hermann, R. P.; Petrovic, C.

    2015-05-01

    We report discovery of KFe1.05Ag0.88Te2 single crystals with semiconducting spin glass ground state. Composition and structure analyses suggest nearly stoichiometric I 4 /mmm space group but allow for the existence of vacancies, absent in long-range semiconducting antiferromagnet KFe0.85Ag1.15Te2 . The subtle change in stoichometry in Fe-Ag sublattice changes magnetic ground state but not conductivity, giving further insight into the semiconducting gap mechanism.

  13. Inhomogeneous nuclear spin polarization induced by helicity-modulated optical excitation of fluorine-bound electron spins in ZnSe

    NASA Astrophysics Data System (ADS)

    Heisterkamp, F.; Greilich, A.; Zhukov, E. A.; Kirstein, E.; Kazimierczuk, T.; Korenev, V. L.; Yugova, I. A.; Yakovlev, D. R.; Pawlis, A.; Bayer, M.

    2015-12-01

    Optically induced nuclear spin polarization in a fluorine-doped ZnSe epilayer is studied by time-resolved Kerr rotation using resonant excitation of donor-bound excitons. Excitation with helicity-modulated laser pulses results in a transverse nuclear spin polarization, which is detected as a change of the Larmor precession frequency of the donor-bound electron spins. The frequency shift in dependence on the transverse magnetic field exhibits a pronounced dispersion-like shape with resonances at the fields of nuclear magnetic resonance of the constituent zinc and selenium isotopes. It is studied as a function of external parameters, particularly of constant and radio frequency external magnetic fields. The width of the resonance and its shape indicate a strong spatial inhomogeneity of the nuclear spin polarization in the vicinity of a fluorine donor. A mechanism of optically induced nuclear spin polarization is suggested based on the concept of resonant nuclear spin cooling driven by the inhomogeneous Knight field of the donor-bound electron.

  14. Doping controlled spin reorientation in dysprosium-samarium orthoferrite single crystals

    NASA Astrophysics Data System (ADS)

    Cao, Shixun; Zhao, Weiyao; Kang, Baojuan; Zhang, Jincang; Ren, Wei

    2015-03-01

    As one of the most important phase transitions, spin reorientation (SR) in rare earth transition metal oxides draws much attention of emerging materials technologies. The origin of SR is the competition between different spin configurations which possess different free energy. We report the control of spin reorientation (SR) transition in perovskite rare earth orthoferrite Dy1-xSmxFeO3, a whole family of single crystals grown by optical floating zone method from x =0 to 1. Temperature dependence of the magnetizations under zero-field-cooling (ZFC) and field-cooling (FC) processes are studied. We have found a remarkable linear change of SR transition temperature in Sm-rich samples for x>0.2, which covers an extremely wide temperature range including room temperature. The a-axis magnetization curves under FCC process bifurcate from and then jump down to that of warming process (ZFC and FCW curves) in single crystals when x =0.5-0.9, suggesting complicated 4f-3d electron interactions among Dy3+-Sm3+, Dy3+-Fe3+, and Sm3+-Fe3+ sublattices of diverse magnetic configurations for materials physics and design. The magnetic properties and the doping effect on SR transition temperature in these single crystals might be useful in the spintronics device application. This work is supported by the National Key Basic Research Program of China (Grant No. 2015CB921600), and the National Natural Science Foundation of China (NSFC, Nos. 51372149, 50932003, 11274222).

  15. Microwave field distribution in a magic angle spinning dynamic nuclear polarization NMR probe

    NASA Astrophysics Data System (ADS)

    Nanni, Emilio A.; Barnes, Alexander B.; Matsuki, Yoh; Woskov, Paul P.; Corzilius, Björn; Griffin, Robert G.; Temkin, Richard J.

    2011-05-01

    We present a calculation of the microwave field distribution in a magic angle spinning (MAS) probe utilized in dynamic nuclear polarization (DNP) experiments. The microwave magnetic field (B 1 S) profile was obtained from simulations performed with the High Frequency Structure Simulator (HFSS) software suite, using a model that includes the launching antenna, the outer Kel-F stator housing coated with Ag, the RF coil, and the 4 mm diameter sapphire rotor containing the sample. The predicted average B 1 S field is 13 μT/W 1/2, where S denotes the electron spin. For a routinely achievable input power of 5 W the corresponding value is γSB 1 S = 0.84 MHz. The calculations provide insights into the coupling of the microwave power to the sample, including reflections from the RF coil and diffraction of the power transmitted through the coil. The variation of enhancement with rotor wall thickness was also successfully simulated. A second, simplified calculation was performed using a single pass model based on Gaussian beam propagation and Fresnel diffraction. This model provided additional physical insight and was in good agreement with the full HFSS simulation. These calculations indicate approaches to increasing the coupling of the microwave power to the sample, including the use of a converging lens and fine adjustment of the spacing of the windings of the RF coil. The present results should prove useful in optimizing the coupling of microwave power to the sample in future DNP experiments. Finally, the results of the simulation were used to predict the cross effect DNP enhancement ( ɛ) vs. ω1 S/(2 π) for a sample of 13C-urea dissolved in a 60:40 glycerol/water mixture containing the polarizing agent TOTAPOL; very good agreement was obtained between theory and experiment.

  16. NMR Investigation of Optical Polarization of Nuclear Spins in GaAs

    NASA Astrophysics Data System (ADS)

    Paravastu, Anant; Hayes, Sophia; Schwickert, Birgit; Reimer, Jeffrey; Dinh, Long; Balooch, Mehdi

    2003-03-01

    Light-induced nuclear spin alignments have been measured in GaAs as a function of photon energy, irradiation time, and sample temperature using NMR spectroscopy at 9.4 Tesla and 10 to 50 K. Significant optical enhancements were observed at a range of photon energies, starting just below the band gap and persisting through 100 meV above the gap. Irradiation above the band gap resulted in thermally activated NMR signal enhancements while sub band gap irradiation did not. Short and long irradiation time dependencies revealed insights into the nature of cross relaxation between electronic nuclear spins, contradicting mechanisms based on either localized electron-nuclear contact at defect sites or cross relaxation between nuclei and free electrons. We propose that the presence of a mobile or delocalized enabling electronic species characterized by a long electron-nuclear correlation time, such as an exciton, is necessary in any mechanism which explains the data.

  17. Addressing a single spin in diamond with a macroscopic dielectric microwave cavity

    SciTech Connect

    Le Floch, J.-M.; Tobar, M. E.; Bradac, C.; Nand, N.; Volz, T.; Castelletto, S.

    2014-09-29

    We present a technique for addressing single nitrogen-vacancy (NV) center spins in diamond over macroscopic distances using a tunable dielectric microwave cavity. We demonstrate optically detected magnetic resonance (ODMR) for a single negatively charged NV center (NV{sup –}) in a nanodiamond (ND) located directly under the macroscopic microwave cavity. By moving the cavity relative to the ND, we record the ODMR signal as a function of position, mapping out the distribution of the cavity magnetic field along one axis. In addition, we argue that our system could be used to determine the orientation of the NV{sup –} major axis in a straightforward manner.

  18. Process Dependent Sivers Function and Implication for Single Spin Asymmetry in Inclusive Hadron Production

    SciTech Connect

    Leonard Gamberg, Zhong-Bo Kang

    2011-01-01

    We study the single transverse spin asymmetries in the single inclusive particle production within the framework of the generalized parton model (GPM). By carefully analyzing the initial- and final-state interactions, we include the process-dependence of the Sivers functions into the GPM formalism. The modified GPM formalism has a close connection with the collinear twist-3 approach. Within the new formalism, we make predictions for inclusive {pi}{sup 0} and direct photon productions at RHIC energies. We find the predictions are opposite to those in the conventional GPM approach.

  19. Experimental search for EDM in diamagnetic atom 129Xe using active nuclear spin maser

    NASA Astrophysics Data System (ADS)

    Ichikawa, Yuichi; Sato, Tomoya; Ohtomo, Yuichi; Sakamoto, Yu; Kojima, Shuichiro; Funayama, Chikako; Hirao, Chika; Suzuki, Takahiro; Chikamori, Masatoshi; Hikota, Eri; Miyatake, Hirokazu; Nanao, Tsubasa; Suzuki, Kunifumi; Tsuchiya, Masato; Inoue, Takeshi; Furukawa, Takeshi; Yoshimi, Akihiko; Bidinosti, Christopher; Ino, Takashi; Ueno, Hideki; Matsuo, Yukari; Fukuyama, Takeshi; Asahi, Koichiro

    2014-09-01

    A permanent electric dipole moment (EDM) which directly means T-violation attracts much attention, because an unknown CP-violating phase which is necessary to understand the present matter-dominated Universe is expected to be probed by EDM. The present study aims at measuring the EDM in the diamagnetic atom 129Xe to a size of 10-28 ecm, stepping into a domain below the present upper limit by one order of magnitude. In the present experiment, we employ an active nuclear spin maser which has characteristics of the optical detection of the spin precession and the artificial production of the feedback field to sustain the spin precession over a long measurement duration. For the magnetometry in the measurement, a comagnetometer using 3He is incorporated to the spin maser system. In this presentation, the current status of our experiment will be given.

  20. Spin polarized asymmetric nuclear matter and neutron star matter within the lowest order constrained variational method

    SciTech Connect

    Bordbar, G. H.; Bigdeli, M.

    2008-01-15

    In this paper, we calculate properties of the spin polarized asymmetrical nuclear matter and neutron star matter, using the lowest order constrained variational (LOCV) method with the AV{sub 18}, Reid93, UV{sub 14}, and AV{sub 14} potentials. According to our results, the spontaneous phase transition to a ferromagnetic state in the asymmetrical nuclear matter as well as neutron star matter do not occur.

  1. Implementation of dynamically corrected gates on a single electron spin in diamond.

    PubMed

    Rong, Xing; Geng, Jianpei; Wang, Zixiang; Zhang, Qi; Ju, Chenyong; Shi, Fazhan; Duan, Chang-Kui; Du, Jiangfeng

    2014-02-01

    Precise control of an open quantum system is critical to quantum information processing but is challenging due to inevitable interactions between the quantum system and the environment. We demonstrated experimentally a type of dynamically corrected gates using only bounded-strength pulses on the nitrogen-vacancy centers in diamond. The infidelity of quantum gates caused by a nuclear-spin bath is reduced from being the second order to the sixth order of the noise-to-control-field ratio, which offers greater efficiency in reducing infidelity. The quantum gates have been protected to the limit essentially set by the spin-lattice relaxation time T1. Our work marks an important step towards fault-tolerant quantum computation in realistic systems. PMID:24580578

  2. On nuclear spin statistics in rotational transition intensities in tetrahedral AB4 molecules

    NASA Technical Reports Server (NTRS)

    Rosenberg, A.; Susskind, J.

    1979-01-01

    A general expression is derived for the integrated intensity of rotational transitions in the vibronic ground state of tetrahedral molecules, taking into account the nuclear spin statistics. It is shown that the ratio of this expression to previously published spin-free integrated intensities depends only on the tensor character N of the operator driving the transition, the appropriate rotational quantum numbers J and J', and the nuclear spin of the identical nuclei. Tables are given for N = 3, 4 and J no more than 50, which enable the calculation of integrated intensities for octopole and hexadecapole collision-induced dipole-moment transitions, centrifugal-distortion-induced dipole-moment transitions, and centrifugal-distortion-induced anisotropic-polarizability-tensor Raman transitions.

  3. A Search for Nonstandard Neutron Spin Interactions using Dual Species Xenon Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael; Larsen, Michael; Mirijanian, James; Fu, Changbo; Yan, Haiyang; Smith, Erick; Snow, Mike; Walker, Thad

    2012-06-01

    NMR measurements using polarized noble gases can constrain possible exotic spin-dependent interactions involving nucleons. A differential measurement insensitive to magnetic field fluctuations can be performed using a mixture of two polarized species with different ratios of nucleon spin to magnetic moment. We used the NMR cell test station at Northrop Grumman Corporation (NGC) (developed to evaluate dual species xenon vapor cells for the Nuclear Magnetic Resonance Gyroscope) to search for NMR frequency shifts of xenon-129 and xenon-131 when a non-magnetic zirconia rod is modulated near the NMR cell. We simultaneously excited both Xe isotopes and detected free-induction-decay transients. In combination with theoretical calculations of the neutron spin contribution to the nuclear angular momentum, the measurements put a new upper bound on possible monopole-dipole interactions of the neutron for ranges around 1mm. This work is supported by the NGC Internal Research and Development (IRAD) funding, the Department of Energy, and the NSF.

  4. The role of level anti-crossings in nuclear spin hyperpolarization.

    PubMed

    Ivanov, Konstantin L; Pravdivtsev, Andrey N; Yurkovskaya, Alexandra V; Vieth, Hans-Martin; Kaptein, Robert

    2014-08-01

    Nuclear spin hyperpolarization is an important resource for increasing the sensitivity of NMR spectroscopy and MRI. Signal enhancements can be as large as 3-4 orders of magnitude. In hyperpolarization experiments, it is often desirable to transfer the initial polarization to other nuclei of choice, either protons or insensitive nuclei such as (13)C and (15)N. This situation arises primarily in Chemically Induced Dynamic Nuclear Polarization (CIDNP), Para-Hydrogen Induced Polarization (PHIP), and the related Signal Amplification By Reversible Exchange (SABRE). Here we review the recent literature on polarization transfer mechanisms, in particular focusing on the role of Level Anti-Crossings (LACs) therein. So-called "spontaneous" polarization transfer may occur both at low and high magnetic fields. In addition, transfer of spin polarization can be accomplished by using especially designed pulse sequences. It is now clear that at low field spontaneous polarization transfer is primarily due to coherent spin-state mixing under strong coupling conditions. However, thus far the important role of LACs in this process has not received much attention. At high magnetic field, polarization may be transferred by cross-relaxation effects. Another promising high-field technique is to generate the strong coupling condition by spin locking using strong radio-frequency fields. Here, an analysis of polarization transfer in terms of LACs in the rotating frame is very useful to predict which spin orders are transferred depending on the strength and frequency of the B1 field. Finally, we will examine the role of strong coupling and LACs in magnetic-field dependent nuclear spin relaxation and the related topic of long-lived spin-states. PMID:25142733

  5. Parametric analysis of plastic strain and force distribution in single pass metal spinning

    SciTech Connect

    Choudhary, Shashank E-mail: mohantejesh93@gmail.com E-mail: ksuresh@hyderabad.bits-pilani.ac.in; Tejesh, Chiruvolu Mohan E-mail: mohantejesh93@gmail.com E-mail: ksuresh@hyderabad.bits-pilani.ac.in; Regalla, Srinivasa Prakash E-mail: mohantejesh93@gmail.com E-mail: ksuresh@hyderabad.bits-pilani.ac.in; Suresh, Kurra E-mail: mohantejesh93@gmail.com E-mail: ksuresh@hyderabad.bits-pilani.ac.in

    2013-12-16

    Metal spinning also known as spin forming is one of the sheet metal working processes by which an axis-symmetric part can be formed from a flat sheet metal blank. Parts are produced by pressing a blunt edged tool or roller on to the blank which in turn is mounted on a rotating mandrel. This paper discusses about the setting up a 3-D finite element simulation of single pass metal spinning in LS-Dyna. Four parameters were considered namely blank thickness, roller nose radius, feed ratio and mandrel speed and the variation in forces and plastic strain were analysed using the full-factorial design of experiments (DOE) method of simulation experiments. For some of these DOE runs, physical experiments on extra deep drawing (EDD) sheet metal were carried out using En31 tool on a lathe machine. Simulation results are able to predict the zone of unsafe thinning in the sheet and high forming forces that are hint to the necessity for less-expensive and semi-automated machine tools to help the household and small scale spinning workers widely prevalent in India.

  6. Parametric analysis of plastic strain and force distribution in single pass metal spinning

    NASA Astrophysics Data System (ADS)

    Choudhary, Shashank; Tejesh, Chiruvolu Mohan; Regalla, Srinivasa Prakash; Suresh, Kurra

    2013-12-01

    Metal spinning also known as spin forming is one of the sheet metal working processes by which an axis-symmetric part can be formed from a flat sheet metal blank. Parts are produced by pressing a blunt edged tool or roller on to the blank which in turn is mounted on a rotating mandrel. This paper discusses about the setting up a 3-D finite element simulation of single pass metal spinning in LS-Dyna. Four parameters were considered namely blank thickness, roller nose radius, feed ratio and mandrel speed and the variation in forces and plastic strain were analysed using the full-factorial design of experiments (DOE) method of simulation experiments. For some of these DOE runs, physical experiments on extra deep drawing (EDD) sheet metal were carried out using En31 tool on a lathe machine. Simulation results are able to predict the zone of unsafe thinning in the sheet and high forming forces that are hint to the necessity for less-expensive and semi-automated machine tools to help the household and small scale spinning workers widely prevalent in India.

  7. Analysis of state-of-the-art single-thruster attitude control techniques for spinning penetrator

    NASA Astrophysics Data System (ADS)

    Raus, Robin; Gao, Yang; Wu, Yunhua; Watt, Mark

    2012-07-01

    The attitude dynamics and manoeuvre survey in this paper is performed for a mission scenario involving a penetrator-type spacecraft: an axisymmetric prolate spacecraft spinning around its minor axis of inertia performing a 90 spin axis reorientation manoeuvre. In contrast to most existing spacecraft only one attitude control thruster is available, providing a control torque perpendicular to the spin axis. Having only one attitude thruster on a spinning spacecraft could be preferred for spacecraft simplicity (lower mass, lower power consumption etc.), or it could be imposed in the context of redundancy/contingency operations. This constraint does yield restrictions on the thruster timings, depending on the ratio of minor to major moments of inertia among other parameters. The Japanese Lunar-A penetrator spacecraft proposal is a good example of such a single-thruster spin-stabilised prolate spacecraft. The attitude dynamics of a spinning rigid body are first investigated analytically, then expanded for the specific case of a prolate and axisymmetric rigid body and finally a cursory exploration of non-rigid body dynamics is made. Next two well-known techniques for manoeuvring a spin-stabilised spacecraft, the Half-cone/Multiple Half-cone and the Rhumb line slew, are compared with two new techniques, the Sector-Arc Slew developed by Astrium Satellites and the Dual-cone developed at Surrey Space Centre. Each technique is introduced and characterised by means of simulation results and illustrations based on the penetrator mission scenario and a brief robustness analysis is performed against errors in moments of inertia and spin rate. Also, the relative benefits of each slew algorithm are discussed in terms of slew accuracy, energy (propellant) efficiency and time efficiency. For example, a sequence of half-cone manoeuvres (a Multi-half-cone manoeuvre) tends to be more energy-efficient than one half-cone for the same final slew angle, but more time-consuming. As another example, the new Sector-Arc Slew and Dual-cone techniques are designed to overcome a specific restriction on attainable slew angle that is associated with the half-cone manoeuvre, giving one additional degree of freedom for designers to fine-tune.

  8. Nuclear Spin Dependent Chemistry of the Trihydrogen Cation in Diffuse Interstellar Clouds

    NASA Astrophysics Data System (ADS)

    Crabtree, Kyle

    2015-05-01

    The trihydrogen cation, H3+,long thought to be the species responsible for initiating ion-molecule chemistry in the interstellar medium, was first observed in interstellar clouds twenty years ago. Since its detection, this cation has been used to infer temperatures, densities, cloud sizes, and the local cosmic ray ionization rate. However, in diffuse molecular clouds the excitation temperature of its two nuclear spin modifications, ortho (I = 3 / 2) and para-H3+(I = 1 / 2) is found to differ markedly from the cloud kinetic temperature inferred from the spin modifications of molecular hydrogen (H2) in the same environment. A steady state analysis of the chemical kinetics of ortho and para-H3+suggests that the interplay of thermalizing collisions with H2 and nuclear spin dependent dissociative recombination with electrons may result in a nonthermal excitation temperature. Each of these processes is complex. Collisions between H3+and H2 must obey selection rules based on conservation of nuclear spin angular momentum, and the allowed spin conversion reactions, which proceed through the fluxional (H5+)* intermediate, each have different statistical weights and energetic requirements. Meanwhile, theoretical and experimental studies of H3+electron recombination carried out over the past 40 years have yielded rates that span 4 orders of magnitude in range. We will present experimental measurements of the nuclear spin dependence of the reactions of H3+with H2 and with electrons, as well as astronomical observations of H3+in diffuse molecular clouds and time-dependent chemical modeling of these environments. Astrochemical models incorporating the latest experimental data still do not satisfactorily explain the observed excitation temperature in diffuse molecular clouds, and point to the need for state-selective measurements of the H3+electron recombination rate.

  9. Spin-tunnel investigation of the spinning characteristics of typical single-engine general aviation airplane designs. 2: Low-wing model A; tail parachute diameter and canopy distance for emergency spin recovery

    NASA Technical Reports Server (NTRS)

    Burk, S. M., Jr.; Bowman, J. S., Jr.; White, W. L.

    1977-01-01

    A spin tunnel study is reported on a scale model of a research airplane typical of low-wing, single-engine, light general aviation airplanes to determine the tail parachute diameter and canopy distance (riser length plus suspension-line length) required for energency spin recovery. Nine tail configurations were tested, resulting in a wide range of developed spin conditions, including steep spins and flat spins. The results indicate that the full-scale parachute diameter required for satisfactory recovery from the most critical conditions investigated is about 3.2 m and that the canopy distance, which was found to be critical for flat spins, should be between 4.6 and 6.1 m.

  10. Irreversible adiabatic decoherence of dipole-interacting nuclear-spin pairs coupled with a phonon bath

    NASA Astrophysics Data System (ADS)

    Domínguez, F. D.; González, C. E.; Segnorile, H. H.; Zamar, R. C.

    2016-02-01

    We study the quantum adiabatic decoherence of a multispin array, coupled with an environment of harmonic phonons, in the framework of the theory of open quantum systems. We follow the basic formal guidelines of the well-known spin-boson model, since in this framework it is possible to derive the time dependence of the reduced density matrix in the adiabatic time scale, without resorting to coarse-graining procedures. However, instead of considering a set of uncoupled spins interacting individually with the boson field, the observed system in our model is a network of weakly interacting spin pairs; the bath corresponds to lattice phonons, and the system-environment interaction is generated by the variation of the dipole-dipole energy due to correlated shifts of the spin positions, produced by the phonons. We discuss the conditions that the model must meet in order to fit within the adiabatic regime. By identifying the coupling of the dipole-dipole spin interaction with the low-frequency acoustic modes as the source of decoherence, we calculate the decoherence function of the reduced spin density matrix in closed way, and estimate the decoherence rate of a typical element of the reduced density matrix in one- and three-dimensional models of the spin array. Using realistic values for the various parameters of the model we conclude that the dipole-phonon mechanism can be particularly efficient to degrade multispin coherences, when the number of active spins involved in a given coherence is high. The model provides insight into the microscopic irreversible spin dynamics involved in the buildup of quasiequilibrium states and in the coherence leakage during refocusing experiments in nuclear magnetic resonance of crystalline solids.

  11. Optimized quantum sensing with a single electron spin using real-time adaptive measurements

    NASA Astrophysics Data System (ADS)

    Bonato, C.; Blok, M. S.; Dinani, H. T.; Berry, D. W.; Markham, M. L.; Twitchen, D. J.; Hanson, R.

    2016-03-01

    Quantum sensors based on single solid-state spins promise a unique combination of sensitivity and spatial resolution. The key challenge in sensing is to achieve minimum estimation uncertainty within a given time and with high dynamic range. Adaptive strategies have been proposed to achieve optimal performance, but their implementation in solid-state systems has been hindered by the demanding experimental requirements. Here, we realize adaptive d.c. sensing by combining single-shot readout of an electron spin in diamond with fast feedback. By adapting the spin readout basis in real time based on previous outcomes, we demonstrate a sensitivity in Ramsey interferometry surpassing the standard measurement limit. Furthermore, we find by simulations and experiments that adaptive protocols offer a distinctive advantage over the best known non-adaptive protocols when overhead and limited estimation time are taken into account. Using an optimized adaptive protocol we achieve a magnetic field sensitivity of 6.1 ± 1.7 nT Hz-1/2 over a wide range of 1.78 mT. These results open up a new class of experiments for solid-state sensors in which real-time knowledge of the measurement history is exploited to obtain optimal performance.

  12. Optimized quantum sensing with a single electron spin using real-time adaptive measurements.

    PubMed

    Bonato, C; Blok, M S; Dinani, H T; Berry, D W; Markham, M L; Twitchen, D J; Hanson, R

    2016-03-01

    Quantum sensors based on single solid-state spins promise a unique combination of sensitivity and spatial resolution. The key challenge in sensing is to achieve minimum estimation uncertainty within a given time and with high dynamic range. Adaptive strategies have been proposed to achieve optimal performance, but their implementation in solid-state systems has been hindered by the demanding experimental requirements. Here, we realize adaptive d.c. sensing by combining single-shot readout of an electron spin in diamond with fast feedback. By adapting the spin readout basis in real time based on previous outcomes, we demonstrate a sensitivity in Ramsey interferometry surpassing the standard measurement limit. Furthermore, we find by simulations and experiments that adaptive protocols offer a distinctive advantage over the best known non-adaptive protocols when overhead and limited estimation time are taken into account. Using an optimized adaptive protocol we achieve a magnetic field sensitivity of 6.1??1.7?nT?Hz(-1/2) over a wide range of 1.78?mT. These results open up a new class of experiments for solid-state sensors in which real-time knowledge of the measurement history is exploited to obtain optimal performance. PMID:26571007

  13. Manipulation of a single Mn spin using excitation transfer between two coupled CdTe/ZnTe quantum dots

    NASA Astrophysics Data System (ADS)

    Goryca, Mateusz

    2010-02-01

    A semiconductor quantum dot (QD) containing a single Mn atom is a promising system from the point of view of future information processing and storage devices. An efficient optical read-out of the single Mn spin state in a CdTe/ZnTe quantum dot, as well as studies of dynamics of this state, were recently reported by L. Besombes and co-workers. However, to construct the building blocks of future memory devices basing on single magnetic atoms the ability to control a single spin is still needed. This work is focused on the advancement in writing and storing of information on the Mn spin state. We demonstrate optical writing of information on the spin state of a single Mn ion embedded in a CdTe QD and we test the storage time in the range of a few tenths of a millisecond. A spin-conserving excitation transfer between two coupled QDs is used as a tool for optical manipulation of the Mn spin. Excitons resonantly created in a dot without magnetic atom by circularly polarized light tunnel to the dot with the Mn ion in a few picoseconds. Then they act on the Mn ion via the sp-d exchange interaction and orient its spin. The orientation is much more efficient in presence of a magnetic field of about 1T, due to suppression of fast spin relaxation channels. Dynamics of the Mn spin under polarized excitation as well as the information storage time on the Mn spin was measured in a time-resolved experiment, in which the intensity and polarization of excitation were modulated. Observed dynamics can be described with a simple rate equation model. The storage time was enhanced by the magnetic field and reached about half a millisecond at 1T.

  14. Phonon induced spin relaxation times of single donors and donor clusters in silicon

    NASA Astrophysics Data System (ADS)

    Hsueh, Yuling; Buch, Holger; Hollenberg, Lloyd; Simmons, Michelle; Klimeck, Gerhard; Rahman, Rajib

    2014-03-01

    The phonon induced relaxation times (T1) of electron spins bound to single phosphorous (P) donors and P donor clusters in silicon is computed using the atomistic tight-binding method. The electron-phonon Hamiltonian is directly computed from the strain dependent tight-binding Hamiltonian, and the relaxation time is computed from Fermi's Golden Rule using the donor states and the electron-phonon Hamiltonian. The self-consistent Hartree method is used to compute the multi-electron wavefunctions in donor clusters. The method takes into account the full band structure of silicon including the spin-orbit interaction, and captures both valley repopulation and single valley g-factor shifts in a unified framework. The single donor relaxation rate varies proportionally to B5, and is of the order of seconds at B =2T, both in good agreement with experimental single donor data (A. Morello et. al., Nature 467, 687 (2010)). T1 calculations in donor clusters show variations for different electron numbers and donor numbers and locations. The computed T1 in a 4P:5e donor cluster match well with a scanning tunneling microscope patterned P donor cluster (H. Buch et. al., Nature Communications 4, 2017 (2013)).

  15. Intrinsic spin and momentum relaxation in organic single-crystalline semiconductors probed by ESR and Hall measurements

    NASA Astrophysics Data System (ADS)

    Tsurumi, Junto; Häusermann, Roger; Watanabe, Shun; Mitsui, Chikahiko; Okamoto, Toshihiro; Matsui, Hiroyuki; Takeya, Jun

    Spin and charge momentum relaxation mechanism has been argued among organic semiconductors with various methods, devices, and materials. However, little is known in organic single-crystalline semiconductors because it has been hard to obtain an ideal organic crystal with an excellent crystallinity and controllability required for accurate measurements. By using more than 1-inch sized single crystals which are fabricated via contentious edge-casting method developed by our group, we have successfully demonstrated a simultaneous determination of spin and momentum relaxation time for gate-induced charges of 3,11-didecyldinaphtho[2,3- d:2',3'- d']benzo[1,2- b:4,5- b']dithiophene, by combining electron spin resonance (ESR) and Hall effect measurements. The obtained temperature dependences of spin and momentum relaxation times are in good agreement in terms of power law with a factor of approximately -2. It is concluded that Elliott-Yafet spin relaxation mechanism can be dominant at room temperature regime (200 - 300 K). Probing characteristic time scales such as spin-lattice, spin-spin, and momentum relaxation times, demonstrated in the present work, would be a powerful tool to elucidate fundamental spin and charge transport mechanisms. We acknowledge the New Energy and Industrial Technology Developing Organization (NEDO) for financial support.

  16. Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin

    PubMed Central

    Arroyo-Camejo, Silvia; Lazariev, Andrii; Hell, Stefan W.; Balasubramanian, Gopalakrishnan

    2014-01-01

    At its most fundamental level, circuit-based quantum computation relies on the application of controlled phase shift operations on quantum registers. While these operations are generally compromised by noise and imperfections, quantum gates based on geometric phase shifts can provide intrinsically fault-tolerant quantum computing. Here we demonstrate the high-fidelity realization of a recently proposed fast (non-adiabatic) and universal (non-Abelian) holonomic single-qubit gate, using an individual solid-state spin qubit under ambient conditions. This fault-tolerant quantum gate provides an elegant means for achieving the fidelity threshold indispensable for implementing quantum error correction protocols. Since we employ a spin qubit associated with a nitrogen-vacancy colour centre in diamond, this system is based on integrable and scalable hardware exhibiting strong analogy to current silicon technology. This quantum gate realization is a promising step towards viable, fault-tolerant quantum computing under ambient conditions. PMID:25216026

  17. Single-axis gyroscopic motion with uncertain angular velocity about spin axis

    NASA Technical Reports Server (NTRS)

    Singh, S. N.

    1977-01-01

    A differential game approach is presented for studying the response of a gyro by treating the controlled angular velocity about the input axis as the evader, and the bounded but uncertain angular velocity about the spin axis as the pursuer. When the uncertain angular velocity about the spin axis desires to force the gyro to saturation a differential game problem with two terminal surfaces results, whereas when the evader desires to attain the equilibrium state the usual game with single terminal manifold arises. A barrier, delineating the capture zone (CZ) in which the gyro can attain saturation and the escape zone (EZ) in which the evader avoids saturation is obtained. The CZ is further delineated into two subregions such that the states in each subregion can be forced on a definite target manifold. The application of the game theoretic approach to Control Moment Gyro is briefly discussed.

  18. Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin.

    PubMed

    Arroyo-Camejo, Silvia; Lazariev, Andrii; Hell, Stefan W; Balasubramanian, Gopalakrishnan

    2014-01-01

    At its most fundamental level, circuit-based quantum computation relies on the application of controlled phase shift operations on quantum registers. While these operations are generally compromised by noise and imperfections, quantum gates based on geometric phase shifts can provide intrinsically fault-tolerant quantum computing. Here we demonstrate the high-fidelity realization of a recently proposed fast (non-adiabatic) and universal (non-Abelian) holonomic single-qubit gate, using an individual solid-state spin qubit under ambient conditions. This fault-tolerant quantum gate provides an elegant means for achieving the fidelity threshold indispensable for implementing quantum error correction protocols. Since we employ a spin qubit associated with a nitrogen-vacancy colour centre in diamond, this system is based on integrable and scalable hardware exhibiting strong analogy to current silicon technology. This quantum gate realization is a promising step towards viable, fault-tolerant quantum computing under ambient conditions. PMID:25216026

  19. Spin filtering and entanglement swapping through coherent evolution of a single quantum dot.

    PubMed

    Coello, Jose Garcia; Bayat, Abolfazl; Bose, Sougato; Jefferson, John H; Creffield, Charles E

    2010-08-20

    We exploit the nondissipative dynamics of a pair of electrons in a large square quantum dot to perform singlet-triplet spin measurement through a single charge detection and show how this may be used for entanglement swapping and teleportation. The method is also used to generate the Affleck-Kennedy-Lieb-Tasaki ground state, a further resource for quantum computation. We justify, and derive analytic results for, an effective charge-spin Hamiltonian which is valid over a wide range of parameters and agrees well with exact numerical results of a realistic effective-mass model. Our analysis also indicates that the method is robust to the choice of dot-size and initialization errors, as well as decoherence. PMID:20868084

  20. Single-Molecule Spin Switch Based on Voltage-Triggered Distortion of the Coordination Sphere.

    PubMed

    Harzmann, Gero D; Frisenda, Riccardo; van der Zant, Herre S J; Mayor, Marcel

    2015-11-01

    Here, we report on a new single-molecule-switching concept based on the coordination-sphere-dependent spin state of Fe(II) species. The perpendicular arrangement of two terpyridine (tpy) ligands within heteroleptic complexes is distorted by the applied electric field. Whereas one ligand fixes the complex in the junction, the second one exhibits an intrinsic dipole moment which senses the E field and causes the distortion of the Fe(II) coordination sphere triggering the alteration of its spin state. A series of complexes with different dipole moments have been synthesized and their transport features were investigated via mechanically controlled break-junctions. Statistical analyses support the hypothesized switching mechanism with increasing numbers of junctions displaying voltage-dependent bistabilities upon increasing the Fe(II) complexes' intrinsic dipole moments. A constant threshold value of the E field required for switching corroborates the mechanism. PMID:26426777

  1. Spin Noise Detection of Nuclear Hyperpolarization at 1.2 K.

    PubMed

    Pöschko, Maria Theresia; Vuichoud, Basile; Milani, Jonas; Bornet, Aurélien; Bechmann, Matthias; Bodenhausen, Geoffrey; Jannin, Sami; Müller, Norbert

    2015-12-21

    We report proton spin noise spectra of a hyperpolarized solid sample of commonly used "DNP (dynamic nuclear polarization) juice" containing TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidine N-oxide) and irradiated by a microwave field at a temperature of 1.2 K in a magnetic field of 6.7 T. The line shapes of the spin noise power spectra are sensitive to the variation of the microwave irradiation frequency and change from dip to bump, when the electron Larmor frequency is crossed, which is shown to be in good accordance with theory by simulations. Small but significant deviations from these predictions are observed, which can be related to spin noise and radiation damping phenomena that have been reported in thermally polarized systems. The non-linear dependence of the spin noise integral on nuclear polarization provides a means to monitor hyperpolarization semi-quantitatively without any perturbation of the spin system by radio frequency irradiation. PMID:26477605

  2. Spin Noise Detection of Nuclear Hyperpolarization at 1.2 K

    PubMed Central

    Pöschko, Maria Theresia; Vuichoud, Basile; Milani, Jonas; Bornet, Aurélien; Bechmann, Matthias; Bodenhausen, Geoffrey; Jannin, Sami; Müller, Norbert

    2015-01-01

    We report proton spin noise spectra of a hyperpolarized solid sample of commonly used “DNP (dynamic nuclear polarization) juice” containing TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidine N-oxide) and irradiated by a microwave field at a temperature of 1.2 K in a magnetic field of 6.7 T. The line shapes of the spin noise power spectra are sensitive to the variation of the microwave irradiation frequency and change from dip to bump, when the electron Larmor frequency is crossed, which is shown to be in good accordance with theory by simulations. Small but significant deviations from these predictions are observed, which can be related to spin noise and radiation damping phenomena that have been reported in thermally polarized systems. The non-linear dependence of the spin noise integral on nuclear polarization provides a means to monitor hyperpolarization semi-quantitatively without any perturbation of the spin system by radio frequency irradiation. PMID:26477605

  3. Advances and applications of dynamic-angle spinning nuclear magnetic resonance

    SciTech Connect

    Baltisberger, J.H.

    1993-06-01

    This dissertation describes nuclear magnetic resonance experiments and theory which have been developed to study quadrupolar nuclei (those nuclei with spin greater than one-half) in the solid state. Primarily, the technique of dynamic-angle spinning (DAS) is extensively reviewed and expanded upon in this thesis. Specifically, the improvement in both the resolution (two-dimensional pure-absorptive phase methods and DAS angle choice) and sensitivity (pulse-sequence development), along with effective spinning speed enhancement (again through choice of DAS conditions or alternative multiple pulse schemes) of dynamic-angle spinning experiment was realized with both theory and experimental examples. The application of DAS to new types of nuclei (specifically the {sup 87}Rb and {sup 85}Rb nuclear spins) and materials (specifically amorphous solids) has also greatly expanded the possibilities of the use of DAS to study a larger range of materials. This dissertation is meant to demonstrate both recent advances and applications of the DAS technique, and by no means represents a comprehensive study of any particular chemical problem.

  4. Natural reference for nuclear high-spin states

    SciTech Connect

    Rowley, Neil; Ollier, James; Simpson, John

    2009-08-15

    We suggest two new representations of the data on rotational nuclei. The first is reference-free and the second arises from a natural reference related to the variable moment of inertia model parameters of the ground-state band of the system. As such, neither representation contains any free parameters. By defining a 'configuration spin' we show how a new ground-state band reference can be applied. Its use allows a complete description of the changes associated with the first, and higher, band crossings. We apply these new representations to discuss the nature of the first band crossing along even-even isotopic chains in the erbium and osmium isotopes and to odd-even nuclei in the vicinity of {sup 158}Er.

  5. Nuclear orientation of radon isotopes by spin-exchange optical pumping

    SciTech Connect

    Kitano, M.; Calaprice, F.P.; Pitt, M.L.; Clayhold, J.; Happer, W.; Kadar-Kallen, M.; Musolf, M.; Ulm, G.; Wendt, K.; Chupp, T.

    1988-05-23

    This paper reports the first demonstration of nuclear orientation of radon atoms. The method employed was spin exchange with potassium atoms polarized by optical pumping. The radon isotopes were produced at the ISOLDE isotope separator of CERN. The nuclear alignment of /sup 209/Rn and /sup 223/Rn has been measured by observation of ..gamma..-ray anisotropies and the magnetic dipole moment for /sup 209/Rn has been measured by the nuclear-magnetic-resonance method to be chemically bond..mu..chemically bond = 0.838 81(39)..mu../sub N/.

  6. The radiation-induced oxidation and reduction of guanine: Electron spin resonance-electron nuclear double resonance studies of irradiated guanosine cyclic monophosphate

    NASA Astrophysics Data System (ADS)

    Kim, Heasook; Budzinski, Edwin E.; Box, Harold C.

    1989-02-01

    Two free radicals are identified by electron spin resonance-electron nuclear double resonance (ESR-ENDOR) spectroscopy in single crystals of guanosine 3',5'-cyclic monophosphate x irradiated at 4.2 K. The two absorptions are attributed to the anion and cation formed on the guanine moiety. The characteristics of the cation absorption are consistent with those postulated previously for guanine cation presumed to form in irradiated DNA.

  7. Nuclear Spin Relaxation and Molecular Interactions of a Novel Triazolium-Based Ionic Liquid

    SciTech Connect

    Allen, Jesse J.; Schneider, Yanika; Kail, Brian W.; Luebke, David R.; Nulwala, Hunaid; Damodaran, Krishnan

    2013-04-11

    Nuclear spin relaxation, small-angle X-ray scattering (SAXS), and electrospray ionization mass spectrometry (ESI-MS) techniques are used to determine supramolecular arrangement of 3-methyl-1-octyl-4-phenyl-1H-triazol-1,2,3-ium bis(trifluoromethanesulfonyl)imide [OMPhTz][Tf{sub 2}N], an example of a triazolium-based ionic liquid. The results obtained showed first-order thermodynamic dependence for nuclear spin relaxation of the anion. First-order relaxation dependence is interpreted as through-bond dipolar relaxation. Greater than first-order dependence was found in the aliphatic protons, aromatic carbons (including nearest neighbors), and carbons at the end of the aliphatic tail. Greater than first order thermodynamic dependence of spin relaxation rates is interpreted as relaxation resulting from at least one mechanism additional to through-bond dipolar relaxation. In rigid portions of the cation, an additional spin relaxation mechanism is attributed to anisotropic effects, while greater than first order thermodynamic dependence of the octyl side chain’s spin relaxation rates is attributed to cation–cation interactions. Little interaction between the anion and the cation was observed by spin relaxation studies or by ESI-MS. No extended supramolecular structure was observed in this study, which was further supported by MS and SAXS. nuclear Overhauser enhancement (NOE) factors are used in conjunction with spin–lattice relaxation time (T{sub 1}) measurements to calculate rotational correlation times for C–H bonds (the time it takes for the vector represented by the bond between the two atoms to rotate by one radian). The rotational correlation times are used to represent segmental reorientation dynamics of the cation. A combination of techniques is used to determine the segmental interactions and dynamics of this example of a triazolium-based ionic liquid.

  8. Rare-Earth Triangular Lattice Spin Liquid: A Single-Crystal Study of YbMgGaO4.

    PubMed

    Li, Yuesheng; Chen, Gang; Tong, Wei; Pi, Li; Liu, Juanjuan; Yang, Zhaorong; Wang, Xiaoqun; Zhang, Qingming

    2015-10-16

    YbMgGaO4, a structurally perfect two-dimensional triangular lattice with an odd number of electrons per unit cell and spin-orbit entangled effective spin-1/2 local moments for the Yb(3+) ions, is likely to experimentally realize the quantum spin liquid ground state. We report the first experimental characterization of single-crystal YbMgGaO4 samples. Because of the spin-orbit entanglement, the interaction between the neighboring Yb(3+) moments depends on the bond orientations and is highly anisotropic in the spin space. We carry out thermodynamic and the electron spin resonance measurements to confirm the anisotropic nature of the spin interaction as well as to quantitatively determine the couplings. Our result is a first step towards the theoretical understanding of the possible quantum spin liquid ground state in this system and sheds new light on the search for quantum spin liquids in strong spin-orbit coupled insulators. PMID:26550899

  9. Nuclear magnetic relaxation induced by exchange-mediated orientational randomization: Longitudinal relaxation dispersion for a dipole-coupled spin-1/2 pair

    NASA Astrophysics Data System (ADS)

    Chang, Zhiwei; Halle, Bertil

    2013-10-01

    In complex biological or colloidal samples, magnetic relaxation dispersion (MRD) experiments using the field-cycling technique can characterize molecular motions on time scales ranging from nanoseconds to microseconds, provided that a rigorous theory of nuclear spin relaxation is available. In gels, cross-linked proteins, and biological tissues, where an immobilized macromolecular component coexists with a mobile solvent phase, nuclear spins residing in solvent (or cosolvent) species relax predominantly via exchange-mediated orientational randomization (EMOR) of anisotropic nuclear (electric quadrupole or magnetic dipole) couplings. The physical or chemical exchange processes that dominate the MRD typically occur on a time scale of microseconds or longer, where the conventional perturbation theory of spin relaxation breaks down. There is thus a need for a more general relaxation theory. Such a theory, based on the stochastic Liouville equation (SLE) for the EMOR mechanism, is available for a single quadrupolar spin I = 1. Here, we present the corresponding theory for a dipole-coupled spin-1/2 pair. To our knowledge, this is the first treatment of dipolar MRD outside the motional-narrowing regime. Based on an analytical solution of the spatial part of the SLE, we show how the integral longitudinal relaxation rate can be computed efficiently. Both like and unlike spins, with selective or non-selective excitation, are treated. For the experimentally important dilute regime, where only a small fraction of the spin pairs are immobilized, we obtain simple analytical expressions for the auto-relaxation and cross-relaxation rates which generalize the well-known Solomon equations. These generalized results will be useful in biophysical studies, e.g., of intermittent protein dynamics. In addition, they represent a first step towards a rigorous theory of water 1H relaxation in biological tissues, which is a prerequisite for unravelling the molecular basis of soft-tissue contrast in clinical magnetic resonance imaging.

  10. Single-spin microscope with sub-nanoscale resolution based on optically detected magnetic resonance

    SciTech Connect

    Berman, Gennady P; Chernobrod, Boris

    2009-01-01

    Invention of scanning tunneling microscope (STM) and atomic force microscope (AFM) initiated a new era of material science and technology characterized by 2-D imaging with atomic resolution and manipulation of individual atoms. However, for further progress in material science, and in particular in structural biology, 3-D imaging with sub-nanometer resolution is very desirable. Currently the most promising technique for 3-D imaging is magnetic resonance force microscopy (MRFM), which senses individual electron spins [1,2] with nanoscale resolution and can detect collective magnetization of about 100 nuclear spins [3]. The highest sensitivity demonstrated by MRFM is based on a time modulation technique called the oscillating cantilever-driven adiabatic reversals (OSCAAR) which requires a long phase relaxation time T 2 of measured spins, which usually corresponds to rather low temperature. For example, a temperature of 300 mK was used in the case of 3D imaging of the tobacco mosaic virus [3]. This limitation is incompatible with the room-temperature operation needed for the study of biological systems under physiological conditions.

  11. Analytic derivative couplings for spin-flip configuration interaction singles and spin-flip time-dependent density functional theory

    SciTech Connect

    Zhang, Xing; Herbert, John M.

    2014-08-14

    We revisit the calculation of analytic derivative couplings for configuration interaction singles (CIS), and derive and implement these couplings for its spin-flip variant for the first time. Our algorithm is closely related to the CIS analytic energy gradient algorithm and should be straightforward to implement in any quantum chemistry code that has CIS analytic energy gradients. The additional cost of evaluating the derivative couplings is small in comparison to the cost of evaluating the gradients for the two electronic states in question. Incorporation of an exchange-correlation term provides an ad hoc extension of this formalism to time-dependent density functional theory within the Tamm-Dancoff approximation, without the need to invoke quadratic response theory or evaluate third derivatives of the exchange-correlation functional. Application to several different conical intersections in ethylene demonstrates that minimum-energy crossing points along conical seams can be located at substantially reduced cost when analytic derivative couplings are employed, as compared to use of a branching-plane updating algorithm that does not require these couplings. Application to H{sub 3} near its D{sub 3h} geometry demonstrates that correct topology is obtained in the vicinity of a conical intersection involving a degenerate ground state.

  12. Single and Multi-Nucleon Transfer Reactions for Nuclear Moment Studies Toward Radioactive-Ion Beams

    SciTech Connect

    Lozeva, R. L.; Georgiev, G. P.; Audi, G.; Cabaret, S.; Fiori, E.; Gaulard, C.; Hauschilda, K.; Lopez-Martens, A.; Risegari, L.; Blazhev, A.; Jolie, J.; Moschner, K.; Zell, K.-O.; Daugas, J.-M.; Faul, T.; Morel, P.; Roig, O.; Ferraton, M.; Ibrahim, F.

    2010-04-30

    This study is a part of an experimental program to measure nuclear moments in transfer reactions. It aims to probe for a first time the nuclear -spin orientation in multi-nucleon transfer. Fist experiments were performed to measure the quadrupole moment of an isomeric state in {sup 66}Cu (I{sup p}i 6{sup -}, E{sub x} = 1154 keV, T{sub 1/2} = 595(20) ns) in single nucleon transfer and the population of mus isomers in {sup 66}Cu and {sup 63}Ni in multi-nucleon transfer. The experimentally tested methodology allows broad applications toward more exotic species and feasibility of these reactions to produce species away from stability.

  13. Shell structure at high spin and the influence on nuclear shapes

    SciTech Connect

    Khoo, T.L.; Chowdhury, P.; Ahmad, I.

    1982-01-01

    Nuclear structure at high spin is influenced by a combination of liquid-drop and shell-structure effects. For N < 86 both contribute towards the occurrence along the yrast line of high-spin oblate aligned-particle configurations. Shell effects are mainly responsible for the prolate deformation of nuclei with N > 90. The competition between oblate and prolate driving effects leads to a prolate-to-oblate shape transition in /sup 154/Dy/sub 88/. The role of rotation-aligned configurations in the shape change is discussed.

  14. Shell structure at high spin and the influence on nuclear shapes

    NASA Astrophysics Data System (ADS)

    Khoo, T. L.; Chowdhury, P.; Ahmad, I.; Borggreen, J.; Emling, H.; Frekers, D.; Janssens, R. V. F.; Pakkanen, A.; Chung, Y. H.; Day, P. J.

    Nuclear structure at high spin is influenced by a combination of liquid-drop and shell-structure effects. For N 86 both contribute towards the occurrence along the yrast line of high spin oblate aligned particle configurations. Shell effects are mainly responsible for the prolate deformation of nuclei with N 90. The competition between oblate and prolate driving effects leads to a prolate to oblate shape transition in Dy 154 sub 88. The role of rotation aligned configurations in the shape change is discussed.

  15. Nanoscale magnetic field mapping with a single spin scanning probe magnetometer

    SciTech Connect

    Rondin, L.; Tetienne, J.-P.; Spinicelli, P.; Roch, J.-F.; Jacques, V.; Dal Savio, C.; Karrai, K.; Dantelle, G.; Thiaville, A.; Rohart, S.

    2012-04-09

    We demonstrate quantitative magnetic field mapping with nanoscale resolution, by applying a lock-in technique on the electron spin resonance frequency of a single nitrogen-vacancy defect placed at the apex of an atomic force microscope tip. In addition, we report an all-optical magnetic imaging technique which is sensitive to large off-axis magnetic fields, thus extending the operation range of diamond-based magnetometry. Both techniques are illustrated by using a magnetic hard disk as a test sample. Owing to the non-perturbing and quantitative nature of the magnetic probe, this work should open up numerous perspectives in nanomagnetism and spintronics.

  16. Generating Entangled Spin States for Quantum Metrology by Single-Photon Detection

    NASA Astrophysics Data System (ADS)

    McConnell, Robert; Zhang, Hao; Cuk, Senka; Hu, Jiazhong; Schleier-Smith, Monika; Vuletic, Vladan

    2014-05-01

    We present a proposal and latest experimental results on a probabilistic but heralded scheme to generate non-Gaussian entangled states of collective spin in large atomic ensembles by means of single-photon detection. One photon announces the preparation of a Dicke state, while two or more photons announce Schrödinger cat states. The entangled states thus produced allow interferometry below the Standard Quantum Limit (SQL). The method produces nearly pure states even for finite photon detection efficiency and weak atom-photon coupling. The entanglement generation can be made quasi-deterministic by means of repeated trial and feedback.

  17. Quantum interference of stored dual-channel spin-wave excitations in a single tripod system

    SciTech Connect

    Wang Hai; Li Shujing; Xu Zhongxiao; Zhao Xingbo; Zhang Lijun; Li Jiahua; Wu Yuelong; Xie Changde; Peng Kunchi; Xiao Min

    2011-04-15

    We present an experimental demonstration of dual-channel memory in a single tripod atomic system. The total readout signal exhibits either constructive or destructive interference when the dual-channel spin-wave excitations (SWEs) are retrieved by two reading beams with a controllable relative phase. When the two reading beams have opposite phases, the SWEs will remain in the medium, which can be retrieved later with two in-phase reading beams. Such a phase-sensitive storage and retrieval scheme can be used to measure and control the relative phase between the two SWEs in the memory medium, which may find applications in quantum-information processing.

  18. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ENTITLED ''SINGLE SPIN ASYMMETRIES'' (VOLUME 75)

    SciTech Connect

    YUAN, F.; VOGELSANG, W.

    2005-06-01

    Single-transverse spin asymmetries (SSA) in strong interactions have a long history, starting from the 1970s and 1980s when surprisingly large single-transverse spin asymmetries were observed in p+p {yields} {pi}X and pp {yields} {Lambda} + X, where really none were expected. They have again attracted much interest in recent years from both experimental and theoretical sides. In particular, first measurements by the STAR, PHENIX, and BRAHMS collaborations at RHIC have now become available which again reveal large single transverse spin asymmetries for hadron production in polarized proton proton scattering. This extends the SSA observations from the fixed target energy range to the collider regime. Meanwhile, experimental studies in Deep Inelastic Scattering by the HERMES collaboration at DESY, SMC at CERN, and CLAS at JLab also show a remarkably large SSA in semi-inclusive hadron production, {gamma}*p {yields} {pi}X, when the proton is transversely polarized. On the theoretical side, there are several approaches to understanding SSA within Quantum Chromodynamics (QCD). For example, to explain the large SSAs for hadron production in hadron collisions, a mechanism that takes into account the contribution from quark-gluon-quark correlations (twist-3) in the nucleon was proposed. On the other hand, possible origins of SSA in DIS and hadronic scattering were also found in leading-twist transverse momentum dependent parton distributions. Current theoretical efforts aim at a better conceptual understanding of these two types of mechanisms, and of their connections. We were very happy at this timely date to bring together the theorists and experimentalists of this field to review and discuss the current theoretical status and the latest experimental results. The whole workshop contained 25 formal talks, both experiment (15) and theory (10), and a few informal talks and many fruitful discussions. The topics covered all the relevant SSA observables, including in Deep Inelastic Scattering, the Drell-Yan process, and in inclusive hadron production and dijet correlations at hadron colliders. There were not only discussions on possible interpretations of the existing SSA data, but also on the future observables for the ongoing experiments as well as for planned experiments (such as RHIC II and eRHIC). On the theory side, the talks ranged from overviews and descriptions of the fundamental aspects of SSAs, to presentations of detailed phenomenological studies. All of the talks attracted much interest and initiated active discussions. Directions for future measurements were pointed out, in particular for studies at RHIC. Also, significant theoretical advances were made that may tie together some of the currently proposed mechanisms for single-spin asymmetries. This was a very successful workshop. It stimulated many discussions and new collaborations.

  19. Dynamic nuclear polarization and Hanle effect in (In,Ga)As/GaAs quantum dots. Role of nuclear spin fluctuations

    SciTech Connect

    Gerlovin, I. Ya.; Cherbunin, R. V.; Ignatiev, I. V.; Kuznetsova, M. S.; Verbin, S. Yu.; Flisinski, K.; Bayer, M.; Reuter, D.; Wieck, A. D.; Yakovlev, D. R.

    2013-12-04

    The degree of circular polarization of photoluminescence of (In,Ga)As quantum dots as a function of magnetic field applied perpendicular to the optical axis (Hanle effect) is experimentally studied. The measurements have been performed at various regimes of the optical excitation modulation. The analysis of experimental data has been performed in the framework of a vector model of regular nuclear spin polarization and its fluctuations. The analysis allowed us to evaluate the magnitude of nuclear polarization and its dynamics at the experimental conditions used.

  20. High-pressure magic angle spinning nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Hoyt, David W.; Turcu, Romulus V. F.; Sears, Jesse A.; Rosso, Kevin M.; Burton, Sarah D.; Felmy, Andrew R.; Hu, Jian Zhi

    2011-10-01

    A high-pressure magic angle spinning (MAS) NMR capability, consisting of a reusable high-pressure MAS rotor, a high-pressure rotor loading/reaction chamber for in situ sealing and re-opening of the high-pressure MAS rotor, and a MAS probe with a localized RF coil for background signal suppression, is reported. The unusual technical challenges associated with development of a reusable high-pressure MAS rotor are addressed in part by modifying standard ceramics for the rotor sleeve by abrading the internal surface at both ends of the cylinder. In this way, not only is the advantage of ceramic cylinders for withstanding very high-pressure utilized, but also plastic bushings can be glued tightly in place so that other removable plastic sealing mechanisms/components and O-rings can be mounted to create the desired high-pressure seal. Using this strategy, sealed internal pressures exceeding 150 bars have been achieved and sustained under ambient external pressure with minimal loss of pressure for 72 h. As an application example, in situ13C MAS NMR studies of mineral carbonation reaction intermediates and final products of forsterite (Mg 2SiO 4) reacted with supercritical CO 2 and H 2O at 150 bar and 50 °C are reported, with relevance to geological sequestration of carbon dioxide.

  1. High-pressure Magic Angle Spinning Nuclear Magnetic Resonance

    SciTech Connect

    Hoyt, David W.; Turcu, Romulus VF; Sears, Jesse A.; Rosso, Kevin M.; Burton, Sarah D.; Felmy, Andrew R.; Hu, Jian Z.

    2011-10-01

    A high-pressure magic angle spinning (MAS) NMR capability, consisting of a reusable high-pressure MAS rotor, a high-pressure loading/reaction chamber for in situ sealing and re-opening of the high-pressure MAS rotor, and a MAS probe with a localized RF coil for background signal suppression, is reported. The unusual technical challenges associated with development of a reusable high-pressure MAS rotor are addressed in part by modifying standard ceramics for the rotor sleeve to include micro-groves at the internal surface at both ends of the cylinder. In this way, not only is the advantage of ceramic cylinders for withstanding very high-pressure utilized, but also plastic bushings can be glued tightly in place so that other plastic sealing mechanisms/components and O-rings can be mounted to create the desired high-pressure seal. Using this strategy, sealed internal pressures exceeding 150 bars have been achieved and sustained under ambient external pressure with minimal penetration loss of pressure for 72 hours. As an application example, in situ 13C MAS NMR studies of mineral carbonation reaction intermediates and final products of forsterite (Mg2SiO4) reacted with supercritical CO2 and H2O at 150 bar and 50C are reported, with relevance to geological sequestration of carbon dioxide.

  2. Spin-dependent structure functions in nuclear matter and the polarized EMC effect

    SciTech Connect

    I.C. Cloet; W. Bentz; A.W. Thomas

    2005-04-01

    An excellent description of both spin-independent and spin-dependent quark distributions and structure functions has been obtained with a modified Nambu-Jona-Lasinio model, which is free of unphysical thresholds for nucleon decay into quarks--hence incorporating an important aspect of confinement. We utilize this model to investigate nuclear medium modifications to structure functions, and find that we are readily able to reproduce both nuclear matter saturation and the experimental F{sub 2N}{sup A}/F{sub 2N} ratio, that is, the EMC effect. Applying this framework to determine g{sub 1p}{sup A}, we find that the ratio g{sub 1p}{sup A}/g{sub 1p} differs significantly from 1, with the quenching caused by the nuclear medium being about twice that of the spin-independent case. This represents an exciting result, which if confirmed experimentally, will reveal much about the quark structure of nuclear matter.

  3. Excitation and detection of propagating spin waves at the single magnon level.

    NASA Astrophysics Data System (ADS)

    Karenowska, Alexy; Patterson, Andrew; Peterer, Michael; Magnússon, Einar; Leek, Peter

    2015-03-01

    The fields of spin-wave dynamics and magnonics have made substantial contributions to our understanding of fundamental magnetism, and are increasingly widely acknowledged to be areas of solid-state physics with significant technological potential. To date however, experimental activity has focused on the study and possible application of room-temperature systems operating within classical limits. Here, we report a series of experiments in which we demonstrate, for the first time, the excitation and detection of propagating spin waves at the single magnon level. Our results, which have been obtained at cryogenic temperatures using an yttrium iron garnet spin-wave waveguide, serve as evidence that the experimental tools now exist to permit us to create microwave (i.e. GHz frequency) quantum circuits incorporating dispersive magnon systems. This allows us to anticipate the possibility both of exploring quantum aspects of magnon physics with new experimental clarity, and of examining how this physics -- in particular, the magnon's highly tunable dispersion, its readily accessible nonlinearity, and its capacity to couple to optical excitations and electron-based spintronic systems -- might have a role to play in new microwave quantum technologies.

  4. Molecular Quantum Spintronics: Supramolecular Spin Valves Based on Single-Molecule Magnets and Carbon Nanotubes

    PubMed Central

    Urdampilleta, Matias; Nguyen, Ngoc-Viet; Cleuziou, Jean-Pierre; Klyatskaya, Svetlana; Ruben, Mario; Wernsdorfer, Wolfgang

    2011-01-01

    We built new hybrid devices consisting of chemical vapor deposition (CVD) grown carbon nanotube (CNT) transistors, decorated with TbPc2 (Pc = phthalocyanine) rare-earth based single-molecule magnets (SMMs). The drafting was achieved by tailoring supramolecular π-π interactions between CNTs and SMMs. The magnetoresistance hysteresis loop measurements revealed steep steps, which we can relate to the magnetization reversal of individual SMMs. Indeed, we established that the electronic transport properties of these devices depend strongly on the relative magnetization orientations of the grafted SMMs. The SMMs are playing the role of localized spin polarizer and analyzer on the CNT electronic conducting channel. As a result, we measured magneto-resistance ratios up to several hundred percent. We used this spin valve effect to confirm the strong uniaxial anisotropy and the superparamagnetic blocking temperature (TB ~ 1 K) of isolated TbPc2 SMMs. For the first time, the strength of exchange interaction between the different SMMs of the molecular spin valve geometry could be determined. Our results introduce a new design for operable molecular spintronic devices using the quantum effects of individual SMMs. PMID:22072910

  5. Effects of two different random single-ion anisotropies on the critical properties of a mixed spin-2 and spin-5/2 Ising system

    NASA Astrophysics Data System (ADS)

    da Cruz Filho, J. S.; Tunes, T. M.; Godoy, M.; de Arruda, A. S.

    2016-05-01

    We have studied the effects of two different random single-ion anisotropies in the phase diagram and on the critical properties of a mixed spin-2 and spin-5/2 Ising ferrimagnetic system. We employed the mean-field theory based on the Bogoliubov inequality for the Gibbs free energy. We have used the Landau expansion of the free energy in the order parameter to describe the phase diagram. We have shown that the phase diagram temperature as function of random single-ion anisotropy displays tricritical behavior. We also investigated the existence and dependence of a compensation temperature on random single-ion anisotropies. The critical and compensation temperatures increase with increasing of the random single-ion anisotropies values.

  6. Hyperfine interaction in InAs/GaAs self-assembled quantum dots: dynamical nuclear polarization versus spin relaxation

    NASA Astrophysics Data System (ADS)

    Krebs, Olivier; Eble, Benoît; Lemaître, Aristide; Voisin, Paul; Urbaszek, Bernhard; Amand, Thierry; Marie, Xavier

    2008-10-01

    We report on the influence of the hyperfine interaction on the optical orientation of singly charged excitons X in self-assembled InAs/GaAs quantum dots. All measurements were carried out on individual quantum dots studied by micro-photoluminescence at low temperature. We show that the hyperfine interaction leads to an effective partial spin relaxation, under 50 kHz modulated excitation polarization, which becomes, however, strongly inhibited under steady optical pumping conditions because of dynamical nuclear polarization. This optically created magnetic-like nuclear field can become very strong (up to ˜4 T) when it is generated in the direction opposite to a longitudinally applied field, and exhibits then a bistability regime. This effect is very well described by a theoretical model derived in a perturbative approach, which reveals the key role played by the energy cost of an electron spin flip in the total magnetic field. Finally, we emphasize the similarities and differences between X and X trions with respect to the hyperfine interaction, which turn out to be in perfect agreement with the theoretical description. To cite this article: O. Krebs et al., C. R. Physique 9 (2008).

  7. QUANTUM SIMULATION. Localization-delocalization transition in the dynamics of dipolar-coupled nuclear spins.

    PubMed

    Álvarez, Gonzalo A; Suter, Dieter; Kaiser, Robin

    2015-08-21

    Nonequilibrium dynamics of many-body systems are important in many scientific fields. Here, we report the experimental observation of a phase transition of the quantum coherent dynamics of a three-dimensional many-spin system with dipolar interactions. Using nuclear magnetic resonance (NMR) on a solid-state system of spins at room-temperature, we quench the interaction Hamiltonian to drive the evolution of the system. Depending on the quench strength, we then observe either localized or extended dynamics of the system coherence. We extract the critical exponents for the localized cluster size of correlated spins and diffusion coefficient around the phase transition separating the localized from the delocalized dynamical regime. These results show that NMR techniques are well suited to studying the nonequilibrium dynamics of complex many-body systems. PMID:26293957

  8. Spin-dipole strength functions of 4He with realistic nuclear forces

    NASA Astrophysics Data System (ADS)

    Horiuchi, W.; Suzuki, Y.

    2013-03-01

    Both isoscalar and isovector spin-dipole excitations of 4He are studied using realistic nuclear forces in the complex scaling method. The ground state of 4He and discretized continuum states with Jπ=0-,1-,2- for A=4 nuclei are described in explicitly correlated Gaussians reinforced with global vectors for angular motion. Two- and three-body decay channels are specifically treated to take into account final state interactions. The observed resonance energies and widths of the negative-parity levels are all in fair agreement with those calculated from both the spin-dipole and electric-dipole strength functions as well as the energy eigenvalues of the complex scaled Hamiltonian. Spin-dipole sum rules, both non-energy-weighted and energy-weighted, are discussed in relation to tensor correlations in the ground state of 4He.

  9. Periodic trends in indirect nuclear spin-spin coupling tensors: relativistic density functional calculations for interhalogen diatomics.

    PubMed

    Bryce, David L; Wasylishen, Roderick E; Autschbach, Jochen; Ziegler, Tom

    2002-05-01

    There have been significant advances in the calculation and interpretation of indirect nuclear spin-spin coupling (J) tensors during the past few years; however, much work remains to be done, especially for molecules containing heavy atoms where relativistic effects may play an important role. Many J tensors cannot be explained based solely on a nonrelativistic Fermi-contact mechanism. In the present work, the relativistic zeroth-order regular approximation density-functional (ZORA-DFT) implementation for the calculation of J has been applied to the complete series of homonuclear and heteronuclear diatomic halogen molecules: F(2), Cl(2), Br(2), I(2), At(2), ClF, BrF, IF, ClBr, ClI, and BrI. For all of these compounds, the reduced isotropic coupling constant (K(iso)) is positive and the reduced anisotropic coupling constant (DeltaK) is negative. With the exception of molecular fluorine, the magnitudes of K(iso) and DeltaK are shown to increase linearly with the product of the atomic numbers of the coupled nuclei. ZORA-DFT calculations of J for F(2) and ClF are in excellent agreement with the results obtained from multiconfigurational self-consistent-field calculations. The relative importance of the various coupling mechanisms is approximately constant for all of the compounds, with the paramagnetic spin-orbit term being the dominant contributor to K(iso), at approximately 70-80%. Available experimental stimulated resonant Raman spectroscopy data are exploited to extract the complete J((127)I,(127)I) tensor for iodine in two rotational states. The dependence of K(iso) and DeltaK on bond length and rovibrational state is investigated by using calculated results in combination with available experimental data. In addition to providing new insights into periodic trends for J coupling tensors, this work further demonstrates the utility of the ZORA-DFT method and emphasizes the necessity of spin-orbit relativistic corrections for J calculations involving heavy nuclei. PMID:11971740

  10. CdSe/ZnSe quantum dot with a single Mn{sup 2+} ion—A new system for a single spin manipulation

    SciTech Connect

    Smoleński, T.

    2015-03-21

    We present a magneto-optical study of individual self-assembled CdSe/ZnSe quantum dots doped with single Mn{sup 2+} ions. Properties of the studied dots are analyzed analogously to more explored system of Mn-doped CdTe/ZnTe dots. Characteristic sixfold splitting of the neutral exciton emission line as well as its evolution in the magnetic field are described using a spin Hamiltonian model. Dynamics of both exciton recombination and Mn{sup 2+} spin relaxation are extracted from a series of time-resolved experiments. Presence of a single dopant is shown not to affect the average excitonic lifetime measured for a number of nonmagnetic and Mn-doped dots. On the other hand, non-resonant pumping is demonstrated to depolarize the Mn{sup 2+} spin in a quantum dot placed in external magnetic field. This effect is utilized to determine the ion spin relaxation time in the dark.

  11. All electrical probe of nuclear spin polarization and relaxation by spin phase transition peaks of the filling fraction ? = 2/3 quantum hall effect

    NASA Astrophysics Data System (ADS)

    Fauzi, M. H.; Watanabe, S.; Kumada, N.; Hirayama, Y.

    2012-05-01

    We developed a sensitive spectroscopic tool to probe resistively as low as a few percent of an ensemble of nuclear spin polarizations in a GaAs quantum well. We take advantage of the spinphase-transition (SPT) peak of the filling fraction ? = 2/3 quantum Hall effect at which the electronic systems are energetically degenerate. The non-zero nuclear spin polarization incorporated in the system would be perceived as an effective magnetic field B N that modifies the Zeeman energy exclusively. It would result in a change in the overall shape of the peak including the peak's position, width, and amplitude. The alteration of the shape of the overall peak provide essential information on the microscopic characteristics of nuclear spin polarization and its relation to the domain formations which was not well investigated in the previous reports.

  12. Quadratic coupling between a classical nanomechanical oscillator and a single spin

    NASA Astrophysics Data System (ADS)

    Dhingra, Shonali

    Though the motions of macroscopic objects must ultimately be governed by quantum mechanics, the distinctive features of quantum mechanics can be hidden or washed out by thermal excitations and coupling to the environment. For the work of this thesis, we tried to develop a hybrid system consisting a classical and a quantum component, which can be used to probe the quantum nature of both these components. This hybrid system quadratically coupled a nanomechanical oscillator (NMO) with a single spin in presence of a uniform external magnetic field. The NMO was fabricated out of single-layer graphene, grown using Chemical Vapor Deposition (CVD) and patterned using various lithography and etching techniques. The NMO was driven electrically and detected optically. The NMO's resonant frequencies, and their stabilities were studied. The spin originated from a nitrogen vacancy (NV) center in a diamond nanocrystal which is positioned on the NMO. In presence of an external magnetic field, we show that the NV centers are excellen theta2 sensors. Their sensitivity is shown to increase much faster than linearly with the external magnetic field and diverges as the external field approaches an internally-defined limit. Both these components of the hybrid system get coupled by physical placement of NVcontaining diamond nanocrystals on top of NMO undergoing torsional mode of oscillation, in presence of an external magnetic field. The capability of the NV centers to detect the quadratic behavior of the oscillation angle of the NMO with excellent sensitivity, ensures quantum non-demolition (QND) measurement of both components of the hybrid system. This enables a bridge between the quantum and classical worlds for a simple readout of the NV center spin and observation of the discrete states of the NMO. This system could become the building block for a wide range of quantum nanomechanical devices.

  13. Spin-glass transition in Ni carbide single crystal nanoparticles with Ni3C - type structure

    NASA Astrophysics Data System (ADS)

    Fujieda, S.; Kuboniwa, T.; Shinoda, K.; Suzuki, S.; Echigoya, J.

    2016-05-01

    Hexagonal shaped nanoparticles about 60 nm in size were successfully synthesized in tetraethylene glycol solution containing polyvinylpyrrolidone. By the analysis of the electron diffraction pattern, these were identified as a single crystal of Ni carbide with Ni3C - type structure. Their magnetization curve at 5 K was not completely saturated under a magnetic field of 5 T. The thermomagnetization curves after zero-field cooling and after field cooling exhibited the magnetic cooling effect at low temperatures. Furthermore, the 2nd order nonlinear term of AC magnetic susceptibility exhibited a negative divergence at about 17 K. It is concluded that Ni carbide single crystal nanoparticles with the Ni3C - type structure exhibit spin-glass transition at low temperatures.

  14. Analytical and exact critical phenomena of d -dimensional singly spinning Kerr-AdS black holes

    NASA Astrophysics Data System (ADS)

    Wei, Shao-Wen; Cheng, Peng; Liu, Yu-Xiao

    2016-04-01

    In the extended phase space, the d -dimensional singly spinning Kerr-anti-de Sitter black holes exhibit the van der Waals phase transition and reentrant phase transition. Since the black hole system is a single-characteristic-parameter system, we show that the form of the critical point can be uniquely determined by the dimensional analysis. When d =4 , we get the analytical critical point. The coexistence curve and phase diagram are obtained. The result shows that the fitting form of the coexistence curve in the reduced parameter space is independent of the angular momentum. When d =5 - 9 , the exact critical points are numerically solved. It demonstrates that when d ≥6 , there are two critical points. However, the small one does not participate in the phase transition. Moreover, the exact critical reentrant phase transition points are also obtained. All the critical points are obtained without any approximation.

  15. Probing Johnson noise and ballistic transport in normal metals with a single-spin qubit

    NASA Astrophysics Data System (ADS)

    Kolkowitz, S.; Safira, A.; High, A. A.; Devlin, R. C.; Choi, S.; Unterreithmeier, Q. P.; Patterson, D.; Zibrov, A. S.; Manucharyan, V. E.; Park, H.; Lukin, M. D.

    2015-03-01

    Thermally induced electrical currents, known as Johnson noise, cause fluctuating electric and magnetic fields in proximity to a conductor. These fluctuations are intrinsically related to the conductivity of the metal. We use single-spin qubits associated with nitrogen-vacancy centers in diamond to probe Johnson noise in the vicinity of conductive silver films. Measurements of polycrystalline silver films over a range of distances (20 to 200 nanometers) and temperatures (10 to 300 kelvin) are consistent with the classically expected behavior of the magnetic fluctuations. However, we find that Johnson noise is markedly suppressed next to single-crystal films, indicative of a substantial deviation from Ohm’s law at length scales below the electron mean free path. Our results are consistent with a generalized model that accounts for the ballistic motion of electrons in the metal, indicating that under the appropriate conditions, nearby electrodes may be used for controlling nanoscale optoelectronic, atomic, and solid-state quantum systems.

  16. New Techniques for Determining Spins and Parities of Neutron Resonances and Their Impact on Nuclear Astrophysics

    SciTech Connect

    Koehler, Paul Edward; Harvey, John A; Becvar, F.; Krticka, Milan; Guber, Klaus H

    2011-01-01

    We describe new techniques for determining spins and parities of neutron resonances which have resulted in large improvements over previous methods. These advances have made it possible, for the first time, to obtain reduced-neutron- and total-radiation-width distributions separately for resonances of different spin and parity in odd-A target nuclides. Using these new as well as previous data, we show that neutron distributions sometimes are significantly different from the Porter-Thomas distribution assumed by the nuclear statistical model. Furthermore, we show that the radiation-width distributions often are substantially different than predicted by the nuclear statistical model using standard level densities and photon strength functions. These differences could have significant impact on astrophysical reaction rates calculated using the statistical model.

  17. Symmetry-lowering lattice distortion at the spin reorientation in MnBi single crystals

    NASA Astrophysics Data System (ADS)

    McGuire, Michael A.; Cao, Huibo; Chakoumakos, Bryan C.; Sales, Brian C.

    2014-11-01

    Structural and physical properties determined by measurements on large single crystals of the anisotropic ferromagnet MnBi are reported. The findings support the importance of magnetoelastic effects in this material. X-ray diffraction reveals a structural phase transition at the spin reorientation temperature TS R=90 K. The distortion is driven by magnetoelastic coupling, and upon cooling transforms the structure from hexagonal to orthorhombic. Heat capacity measurements show a thermal anomaly at the crystallographic transition, which is suppressed rapidly by applied magnetic fields. Effects on the transport and anisotropic magnetic properties of the single crystals are also presented. Increasing anisotropy of the atomic displacement parameters for Bi with increasing temperature above TS R is revealed by neutron diffraction measurements. It is likely that this is directly related to the anisotropic thermal expansion in MnBi, which plays a key role in the spin reorientation and magnetocrystalline anisotropy. The identification of the true ground-state crystal structure reported here may be important for future experimental and theoretical studies of this permanent magnet material, which have to date been performed and interpreted using only the high-temperature structure.

  18. Electron Spin Resonance Experiments on a Single Electron in Silicon Implanted with Phosphorous

    NASA Astrophysics Data System (ADS)

    Luhman, Dwight R.; Nguyen, K.; Tracy, L. A.; Carr, S.; Borchardt, J.; Bishop, N.; Ten Eyck, G.; Pluym, T.; Wendt, J.; Lilly, M. P.; Carroll, M. S.

    2015-03-01

    In this talk we will discuss the results of our ongoing experiments involving electron spin resonance (ESR) on a single electron in a natural silicon sample. The sample consists of an SET, defined by lithographic polysilicon gates, coupled to nearby phosphorous donors. The SET is used to detect charge transitions and readout the spin of the electron being investigated with ESR. The measurements were done with the sample at dilution refrigerator temperatures in the presence of a 1.3 T magnetic field. We will present data demonstrating Rabi oscillations of a single electron in this system as well as measurements of the coherence time, T2. We will also discuss our results using these and various other pulsing schemes in the context of a donor-SET system. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  19. Temperature induced Spin Switching in SmFeO3 Single Crystal

    PubMed Central

    Cao, Shixun; Zhao, Huazhi; Kang, Baojuan; Zhang, Jincang; Ren, Wei

    2014-01-01

    The prospect of controlling the magnetization (M) of a material is of great importance from the viewpoints of fundamental physics and future applications of emerging spintronics. A class of rare-earth orthoferrites RFeO3 (R is rare-earth element) materials exhibit striking physical properties of spin switching and magnetization reversal induced by temperature and/or applied magnetic field. Furthermore, due to the novel magnetic, magneto-optic and multiferroic properties etc., RFeO3 materials are attracting more and more interests in recent years. We have prepared and investigated a prototype of RFeO3 materials, namely SmFeO3 single-crystal. And we report magnetic measurements upon both field cooling (FC) and zero-field cooling (ZFC) of the sample, as a function of temperature and applied magnetic field. The central findings of this study include that the magnetization of single-crystal SmFeO3 can be switched by temperature, and tuning the magnitude of applied magnetic field allows us to realize such spin switching even at room temperature. PMID:25091202

  20. Discrimination of nuclear spin isomers exploiting the excited state dynamics of a quinodimethane derivative

    SciTech Connect

    Obaid, Rana; Kinzel, Daniel; Oppel, Markus González, Leticia

    2014-10-28

    Despite the concept of nuclear spin isomers (NSIs) exists since the early days of quantum mechanics, only few approaches have been suggested to separate different NSIs. Here, a method is proposed to discriminate different NSIs of a quinodimethane derivative using its electronic excited state dynamics. After electronic excitation by a laser field with femtosecond time duration, a difference in the behavior of several quantum mechanical operators can be observed. A pump-probe experimental approach for separating these different NSIs is then proposed.

  1. Diamond as a Solid State Quantum Computer with a Linear Chain of Nuclear Spins System

    NASA Astrophysics Data System (ADS)

    Lpez, G. V.; Lpez, G. V.

    By removing a $^{12}C$ atom from the tetrahedral configuration of the diamond, replace it by a $^{13}C$ atom, and repeating this in a linear direction, it is possible to have a linear chain of nuclear spins one half and to build a solid state quantum computer. One qubit rotation and controlled-not (CNOT) quantum gates are obtained immediately from this configuration, and CNOT quantum gate is used to determined the design parameters of this quantum computer.

  2. Low temperature magnetic properties and spin dynamics in single crystals of Cr8Zn antiferromagnetic molecular rings

    NASA Astrophysics Data System (ADS)

    Adelnia, Fatemeh; Chiesa, Alessandro; Bordignon, Sara; Carretta, Stefano; Ghirri, Alberto; Candini, Andrea; Cervetti, Christian; Evangelisti, Marco; Affronte, Marco; Sheikin, Ilya; Winpenny, Richard; Timco, Grigore; Borsa, Ferdinando; Lascialfari, Alessandro

    2015-12-01

    A detailed experimental investigation of the effects giving rise to the magnetic energy level structure in the vicinity of the level crossing (LC) at low temperature is reported for the open antiferromagnetic molecular ring Cr8Zn. The study is conducted by means of thermodynamic techniques (torque magnetometry, magnetization and specific heat measurements) and microscopic techniques (nuclear magnetic resonance line width, nuclear spin lattice, and spin-spin relaxation measurements). The experimental results are shown to be in excellent agreement with theoretical calculations based on a minimal spin model Hamiltonian, which includes a Dzyaloshinskii-Moriya interaction. The first ground state level crossing at μ0Hc1 = 2.15 T is found to be an almost true LC while the second LC at μ0Hc2 = 6.95 T has an anti-crossing gap of Δ12 = 0.19 K. In addition, both NMR and specific heat measurements show the presence of a level anti-crossing between excited states at μ0H = 4.5 T as predicted by the theory. In all cases, the fit of the experimental data is improved by introducing a distribution of the isotropic exchange couplings (J), i.e., using a J strain model. The peaks at the first and second LCs in the nuclear spin-lattice relaxation rate are dominated by inelastic scattering and a value of Γ ˜ 1010 rad/s is inferred for the life time broadening of the excited state of the open ring, due to spin phonon interaction. A loss of NMR signal (wipe-out effect) is observed for the first time at LC and is explained by the enhancement of the spin-spin relaxation rate due to the inelastic scattering.

  3. Low temperature magnetic properties and spin dynamics in single crystals of Cr8Zn antiferromagnetic molecular rings.

    PubMed

    Adelnia, Fatemeh; Chiesa, Alessandro; Bordignon, Sara; Carretta, Stefano; Ghirri, Alberto; Candini, Andrea; Cervetti, Christian; Evangelisti, Marco; Affronte, Marco; Sheikin, Ilya; Winpenny, Richard; Timco, Grigore; Borsa, Ferdinando; Lascialfari, Alessandro

    2015-12-28

    A detailed experimental investigation of the effects giving rise to the magnetic energy level structure in the vicinity of the level crossing (LC) at low temperature is reported for the open antiferromagnetic molecular ring Cr8Zn. The study is conducted by means of thermodynamic techniques (torque magnetometry, magnetization and specific heat measurements) and microscopic techniques (nuclear magnetic resonance line width, nuclear spin lattice, and spin-spin relaxation measurements). The experimental results are shown to be in excellent agreement with theoretical calculations based on a minimal spin model Hamiltonian, which includes a Dzyaloshinskii-Moriya interaction. The first ground state level crossing at μ0Hc1 = 2.15 T is found to be an almost true LC while the second LC at μ0Hc2 = 6.95 T has an anti-crossing gap of Δ12 = 0.19 K. In addition, both NMR and specific heat measurements show the presence of a level anti-crossing between excited states at μ0H = 4.5 T as predicted by the theory. In all cases, the fit of the experimental data is improved by introducing a distribution of the isotropic exchange couplings (J), i.e., using a J strain model. The peaks at the first and second LCs in the nuclear spin-lattice relaxation rate are dominated by inelastic scattering and a value of Γ ∼ 10(10) rad/s is inferred for the life time broadening of the excited state of the open ring, due to spin phonon interaction. A loss of NMR signal (wipe-out effect) is observed for the first time at LC and is explained by the enhancement of the spin-spin relaxation rate due to the inelastic scattering. PMID:26723685

  4. Relativistic theory of nuclear spin-rotation tensor with kinetically balanced rotational London orbitals

    NASA Astrophysics Data System (ADS)

    Xiao, Yunlong; Zhang, Yong; Liu, Wenjian

    2014-10-01

    Both kinetically balanced (KB) and kinetically unbalanced (KU) rotational London orbitals (RLO) are proposed to resolve the slow basis set convergence in relativistic calculations of nuclear spin-rotation (NSR) coupling tensors of molecules containing heavy elements [Y. Xiao and W. Liu, J. Chem. Phys. 138, 134104 (2013)]. While they perform rather similarly, the KB-RLO Ansatz is clearly preferred as it ensures the correct nonrelativistic limit even with a finite basis. Moreover, it gives rise to the same "direct relativistic mapping" between nuclear magnetic resonance shielding and NSR coupling tensors as that without using the London orbitals [Y. Xiao, Y. Zhang, and W. Liu, J. Chem. Theory Comput. 10, 600 (2014)].

  5. Quantum cognition: The possibility of processing with nuclear spins in the brain

    NASA Astrophysics Data System (ADS)

    Fisher, Matthew P. A.

    2015-11-01

    The possibility that quantum processing with nuclear spins might be operative in the brain is explored. Phosphorus is identified as the unique biological element with a nuclear spin that can serve as a qubit for such putative quantum processing-a neural qubit-while the phosphate ion is the only possible qubit-transporter. We identify the "Posner molecule", Ca9(PO4)6, as the unique molecule that can protect the neural qubits on very long times and thereby serve as a (working) quantum-memory. A central requirement for quantum-processing is quantum entanglement. It is argued that the enzyme catalyzed chemical reaction which breaks a pyrophosphate ion into two phosphate ions can quantum entangle pairs of qubits. Posner molecules, formed by binding such phosphate pairs with extracellular calcium ions, will inherit the nuclear spin entanglement. A mechanism for transporting Posner molecules into presynaptic neurons during vesicle endocytosis is proposed. Quantum measurements can occur when a pair of Posner molecules chemically bind and subsequently melt, releasing a shower of intra-cellular calcium ions that can trigger further neurotransmitter release and enhance the probability of post-synaptic neuron firing. Multiple entangled Posner molecules, triggering non-local quantum correlations of neuron firing rates, would provide the key mechanism for neural quantum processing. Implications, both in vitro and in vivo, are briefly mentioned.

  6. Sideband Cooling while Preserving Coherences in the Nuclear Spin State in Group-II-like Atoms

    SciTech Connect

    Reichenbach, Iris; Deutsch, Ivan H.

    2007-09-21

    We propose a method for laser cooling group-II-like atoms without changing the quantum state of their nuclear spins, thus preserving coherences that are usually destroyed by optical pumping in the cooling process. As group-II-like atoms have a {sup 1}S{sub 0} closed-shell ground state, nuclear spin and electronic angular momentum are decoupled, allowing for their independent manipulation. The hyperfine interaction that couples these degrees of freedom in excited states can be suppressed through the application of external magnetic fields. Our protocol employs resolved-sideband cooling on the forbidden clock transition, {sup 1}S{sub 0}{yields}{sup 3}P{sub 0}, with quenching via coupling to the rapidly decaying {sup 1}P{sub 1} state, deep in the Paschen-Back regime. This makes it possible to laser cool neutral atomic qubits without destroying the quantum information stored in their nuclear spins, as shown in two examples, {sup 171}Yb and {sup 87}Sr.

  7. Single spin asymmetry AN in polarized proton-proton elastic scattering at √{ s} = 200 GeV

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alakhverdyants, A. V.; Alekseev, I.; Alford, J.; Anson, C. D.; Arkhipkin, D.; Aschenauer, E.; Averichev, G. S.; Balewski, J.; Banerjee, A.; Barnovska, Z.; Beavis, D. R.; Bellwied, R.; Betancourt, M. J.; Betts, R. R.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Brandin, A. V.; Brovko, S. G.; Bruna, E.; Bültmann, S.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Cai, X. Z.; Caines, H.; Calderón de la Barca Sánchez, M.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chung, P.; Chwastowski, J.; Codrington, M. J. M.; Corliss, R.; Cramer, J. G.; Crawford, H. J.; Cui, X.; Das, S.; Davila Leyva, A.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derradi de Souza, R.; Dhamija, S.; Didenko, L.; Ding, F.; Dion, A.; Djawotho, P.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elnimr, M.; Engelage, J.; Eppley, G.; Eun, L.; Evdokimov, O.; Fatemi, R.; Fazio, S.; Fedorisin, J.; Fersch, R. G.; Filip, P.; Finch, E.; Fisyak, Y.; Gagliardi, C. A.; Gangadharan, D. R.; Geurts, F.; Gibson, A.; Gliske, S.; Gorbunov, Y. N.; Grebenyuk, O. G.; Grosnick, D.; Gupta, S.; Guryn, W.; Haag, B.; Hajkova, O.; Hamed, A.; Han, L.-X.; Harris, J. W.; Hays-Wehle, J. P.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Huo, L.; Igo, G.; Jacobs, W. W.; Jena, C.; Judd, E. G.; Kabana, S.; Kang, K.; Kapitan, J.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Kesich, A.; Kikola, D. P.; Kiryluk, J.; Kisel, I.; Kisiel, A.; Kizka, V.; Klein, S. R.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Koroleva, L.; Korsch, W.; Kotchenda, L.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Lamont, M. A. C.; Landgraf, J. M.; LaPointe, S.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Leight, W.; LeVine, M. J.; Li, C.; Li, L.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lima, L. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Lu, Y.; Luo, X.; Luszczak, A.; Ma, G. L.; Ma, Y. G.; Madagodagettige Don, D. M. M. D.; Mahapatra, D. P.; Majka, R.; Mall, O. I.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; McShane, T. S.; Mioduszewski, S.; Mitrovski, M. K.; Mohammed, Y.; Mohanty, B.; Mondal, M. M.; Morozov, B.; Munhoz, M. G.; Mustafa, M. K.; Naglis, M.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nogach, L. V.; Novak, J.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E. W.; Oliveira, R. A. N.; Olson, D.; Ostrowski, P.; Pachr, M.; Page, B. S.; Pal, S. K.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Peryt, W.; Pile, P.; Planinic, M.; Pluta, J.; Plyku, D.; Poljak, N.; Porter, J.; Poskanzer, A. M.; Powell, C. B.; Pruneau, C.; Pruthi, N. K.; Przybycien, M.; Pujahari, P. R.; Putschke, J.; Qiu, H.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Redwine, R.; Reed, R.; Riley, C. K.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ross, J. F.; Ruan, L.; Rusnak, J.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandacz, A.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, B.; Schmitz, N.; Schuster, T. R.; Seele, J.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shao, M.; Sharma, B.; Sharma, M.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Singaraju, R. N.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solanki, D.; Sorensen, P.; deSouza, U. G.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Steadman, S. G.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Sumbera, M.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szanto de Toledo, A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarini, L. H.; Tarnowsky, T.; Thein, D.; Thomas, J. H.; Tian, J.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vanfossen, J. A.; Varma, R.; Vasconcelos, G. M. S.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wada, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, Q.; Wang, X. L.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Whitten, C.; Wieman, H.; Wissink, S. W.; Witt, R.; Witzke, W.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, H.; Xu, N.; Xu, Q. H.; Xu, W.; Xu, Y.; Xu, Z.; Xue, L.; Yang, Y.; Yang, Y.; Yepes, P.; Yi, Y.; Yip, K.; Yoo, I.-K.; Zawisza, M.; Zbroszczyk, H.; Zhang, J. B.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, X.; Zhu, Y. H.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2013-02-01

    We report a high precision measurement of the transverse single spin asymmetry AN at the center of mass energy √{ s} = 200 GeV in elastic proton-proton scattering by the STAR experiment at RHIC. The AN was measured in the four-momentum transfer squared t range 0.003 ⩽ | t | ⩽ 0.035 (GeV / c) 2, the region of a significant interference between the electromagnetic and hadronic scattering amplitudes. The measured values of AN and its t-dependence are consistent with a vanishing hadronic spin-flip amplitude, thus providing strong constraints on the ratio of the single spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated by the Pomeron amplitude at this √{ s}, we conclude that this measurement addresses the question about the presence of a hadronic spin flip due to the Pomeron exchange in polarized proton-proton elastic scattering.

  8. Single spin asymmetry AN in polarized proton-proton elastic scattering at s=200 GeV

    NASA Astrophysics Data System (ADS)

    STAR Collaboration; Adamczyk, L.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alakhverdyants, A. V.; Alekseev, I.; Alford, J.; Anson, C. D.; Arkhipkin, D.; Aschenauer, E.; Averichev, G. S.; Balewski, J.; Banerjee, A.; Barnovska, Z.; Beavis, D. R.; Bellwied, R.; Betancourt, M. J.; Betts, R. R.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Brandin, A. V.; Brovko, S. G.; Bruna, E.; Bültmann, S.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Cai, X. Z.; Caines, H.; Calderón de la Barca Sánchez, M.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chung, P.; Chwastowski, J.; Codrington, M. J. M.; Corliss, R.; Cramer, J. G.; Crawford, H. J.; Cui, X.; Das, S.; Davila Leyva, A.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derradi de Souza, R.; Dhamija, S.; Didenko, L.; Ding, F.; Dion, A.; Djawotho, P.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elnimr, M.; Engelage, J.; Eppley, G.; Eun, L.; Evdokimov, O.; Fatemi, R.; Fazio, S.; Fedorisin, J.; Fersch, R. G.; Filip, P.; Finch, E.; Fisyak, Y.; Gagliardi, C. A.; Gangadharan, D. R.; Geurts, F.; Gibson, A.; Gliske, S.; Gorbunov, Y. N.; Grebenyuk, O. G.; Grosnick, D.; Gupta, S.; Guryn, W.; Haag, B.; Hajkova, O.; Hamed, A.; Han, L.-X.; Harris, J. W.; Hays-Wehle, J. P.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Huo, L.; Igo, G.; Jacobs, W. W.; Jena, C.; Judd, E. G.; Kabana, S.; Kang, K.; Kapitan, J.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Kesich, A.; Kikola, D. P.; Kiryluk, J.; Kisel, I.; Kisiel, A.; Kizka, V.; Klein, S. R.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Koroleva, L.; Korsch, W.; Kotchenda, L.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Lamont, M. A. C.; Landgraf, J. M.; LaPointe, S.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Leight, W.; LeVine, M. J.; Li, C.; Li, L.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lima, L. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Lu, Y.; Luo, X.; Luszczak, A.; Ma, G. L.; Ma, Y. G.; Madagodagettige Don, D. M. M. D.; Mahapatra, D. P.; Majka, R.; Mall, O. I.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; McShane, T. S.; Mioduszewski, S.; Mitrovski, M. K.; Mohammed, Y.; Mohanty, B.; Mondal, M. M.; Morozov, B.; Munhoz, M. G.; Mustafa, M. K.; Naglis, M.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nogach, L. V.; Novak, J.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E. W.; Oliveira, R. A. N.; Olson, D.; Ostrowski, P.; Pachr, M.; Page, B. S.; Pal, S. K.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Peryt, W.; Pile, P.; Planinic, M.; Pluta, J.; Plyku, D.; Poljak, N.; Porter, J.; Poskanzer, A. M.; Powell, C. B.; Pruneau, C.; Pruthi, N. K.; Przybycien, M.; Pujahari, P. R.; Putschke, J.; Qiu, H.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Redwine, R.; Reed, R.; Riley, C. K.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ross, J. F.; Ruan, L.; Rusnak, J.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandacz, A.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, B.; Schmitz, N.; Schuster, T. R.; Seele, J.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shao, M.; Sharma, B.; Sharma, M.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Singaraju, R. N.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solanki, D.; Sorensen, P.; deSouza, U. G.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Steadman, S. G.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Sumbera, M.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szanto de Toledo, A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarini, L. H.; Tarnowsky, T.; Thein, D.; Thomas, J. H.; Tian, J.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vanfossen, J. A.; Varma, R.; Vasconcelos, G. M. S.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wada, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, Q.; Wang, X. L.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Whitten, C.; Wieman, H.; Wissink, S. W.; Witt, R.; Witzke, W.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, H.; Xu, N.; Xu, Q. H.; Xu, W.; Xu, Y.; Xu, Z.; Xue, L.; Yang, Y.; Yang, Y.; Yepes, P.; Yi, Y.; Yip, K.; Yoo, I.-K.; Zawisza, M.; Zbroszczyk, H.; Zhang, J. B.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, X.; Zhu, Y. H.; Zoulkarneeva, Y.; Zyzak, M.

    2013-02-01

    We report a high precision measurement of the transverse single spin asymmetry AN at the center of mass energy s=200 GeV in elastic proton-proton scattering by the STAR experiment at RHIC. The AN was measured in the four-momentum transfer squared t range 0.003⩽|t|⩽0.035 (, the region of a significant interference between the electromagnetic and hadronic scattering amplitudes. The measured values of AN and its t-dependence are consistent with a vanishing hadronic spin-flip amplitude, thus providing strong constraints on the ratio of the single spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated by the Pomeron amplitude at this s, we conclude that this measurement addresses the question about the presence of a hadronic spin flip due to the Pomeron exchange in polarized proton-proton elastic scattering.

  9. Efficient calculation of nuclear spin-rotation constants from auxiliary density functional theory.

    PubMed

    Zuniga-Gutierrez, Bernardo; Camacho-Gonzalez, Monica; Bendana-Castillo, Alfonso; Simon-Bastida, Patricia; Calaminici, Patrizia; Köster, Andreas M

    2015-09-14

    The computation of the spin-rotation tensor within the framework of auxiliary density functional theory (ADFT) in combination with the gauge including atomic orbital (GIAO) scheme, to treat the gauge origin problem, is presented. For the spin-rotation tensor, the calculation of the magnetic shielding tensor represents the most demanding computational task. Employing the ADFT-GIAO methodology, the central processing unit time for the magnetic shielding tensor calculation can be dramatically reduced. In this work, the quality of spin-rotation constants obtained with the ADFT-GIAO methodology is compared with available experimental data as well as with other theoretical results at the Hartree-Fock and coupled-cluster level of theory. It is found that the agreement between the ADFT-GIAO results and the experiment is good and very similar to the ones obtained by the coupled-cluster single-doubles-perturbative triples-GIAO methodology. With the improved computational performance achieved, the computation of the spin-rotation tensors of large systems or along Born-Oppenheimer molecular dynamics trajectories becomes feasible in reasonable times. Three models of carbon fullerenes containing hundreds of atoms and thousands of basis functions are used for benchmarking the performance. Furthermore, a theoretical study of temperature effects on the structure and spin-rotation tensor of the H(12)C-(12)CH-DF complex is presented. Here, the temperature dependency of the spin-rotation tensor of the fluorine nucleus can be used to identify experimentally the so far unknown bent isomer of this complex. To the best of our knowledge this is the first time that temperature effects on the spin-rotation tensor are investigated. PMID:26374014

  10. Competition between electric field and magnetic field noise in the decoherence of a single spin in diamond

    NASA Astrophysics Data System (ADS)

    Jamonneau, P.; Lesik, M.; Tetienne, J. P.; Alvizu, I.; Mayer, L.; Dréau, A.; Kosen, S.; Roch, J.-F.; Pezzagna, S.; Meijer, J.; Teraji, T.; Kubo, Y.; Bertet, P.; Maze, J. R.; Jacques, V.

    2016-01-01

    We analyze the impact of electric field and magnetic field fluctuations in the decoherence of the electronic spin associated with a single nitrogen-vacancy (NV) defect in diamond. To this end, we tune the amplitude of a magnetic field in order to engineer spin eigenstates protected either against magnetic noise or against electric noise. The competition between these noise sources is analyzed quantitatively by changing their relative strength through modifications of the host diamond material. This study provides significant insights into the decoherence of the NV electronic spin, which is valuable for quantum metrology and sensing applications.

  11. Nuclear Magnetic Spin-Noise and Unusual Relaxation of Oxygen-17 in Water

    NASA Astrophysics Data System (ADS)

    Bendet-Taicher, Eli

    Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) have evolved into widely used techniques, providing diagnostic power in medicine and material sciences due to their high precision and non-invasive nature. Due to the small population differences between spin energy states, a significant sensitivity problem for NMR arises. The low sensitivity of NMR is probably its greatest limitation for applications to biological systems. An alternative probe tuning strategy based on the spin-noise response for application in standard one-dimensional and common high-resolution multidimensional standard biomolecular NMR experiments has shown an increase of up to 50% signal-to-noise (SNR) in one-dimensional NMR experiments and an increase of up to 22% in multi-dimensional ones. The method requires the adjustment of the optimal tuning condition, which may be offset by several hundreds kHz from the conventional tuning settings using the noise response of the water protons as an indicator. This work is described in the first part of the thesis (chapters 2--3). The second part (Chapter 4) of the thesis deals with anomalous oxygen-17 NMR relaxation behavior in water. Oxygen-17 (17O), which has spin of 5/2 and a natural abundance of 0.0373% possesses an electric quadrupole moment. Spin-lattice and spin-spin relaxation occur by the quadrupole interaction, while the J-coupling to 1H spins and exchange are deciding factors. T1 and T2 of 17O in water have been previously measured over a large range of temperatures. The spin-spin relaxation times of 17O as a function of temperature show an anomalous behaviour, expressed by a local maximum at the temperature of maximum density (TMD) of water. It is shown that the same anomalous behaviour shifts to the respective temperatures of maximum density for H2O/D2O solutions with different compositions and salt concentrations. This phenomenon can be correlated to the pH dependency of T2 of 17O in water, and water proton exchange rates at low temperatures that are close to TMD. The investigation of these effects forms the second topic in my thesis. In Chapter 1, some concepts of NMR are introduced as a background to the research work presented. In addition, quadrupolar dynamics of spin-5/2 nuclei is presented to provide the theoretical basis to understand the underlying concepts in Chapter 4. Chapters 2,3 are dedicated to the spin-noise phenomenon and its applications in enhancing SNR, which are based on recent articles, which I authored and co-authored [1, 2]. Chapter 4 is dedicated to research work that centers on the unusual spin-spin relaxation of 17O in water around the TMD. [1] E. Bendet-Taicher, N. Muller, A. Jerschow, Dependence of NMR noise line shapes on tuning, matching, and transmission line properties, Concepts Magn. Reson., 44 (2014) 1--11. [2] M. Nausner, M. Goger, E. Bendet-Taicher, J. Schlagnitweit, A. Jerschow, N. Muller, Signal enhancement in protein NMR using the spin-noise tuning optimum, J Biomol Nmr, 48 (2010) 157--167.

  12. A NEW METHOD FOR EXTRACTING SPIN-DEPENDENT NEUTRON STRUCTURE FUNCTIONS FROM NUCLEAR DATA

    SciTech Connect

    Kahn, Y.F.; Melnitchouk, W.

    2009-01-01

    High-energy electrons are currently the best probes of the internal structure of nucleons (protons and neutrons). By collecting data on electrons scattering off light nuclei, such as deuterium and helium, one can extract structure functions (SFs), which encode information about the quarks that make up the nucleon. Spin-dependent SFs, which depend on the relative polarization of the electron beam and the target nucleus, encode quark spins. Proton SFs can be measured directly from electron-proton scattering, but those of the neutron must be extracted from proton data and deuterium or helium-3 data because free neutron targets do not exist. At present, there is no reliable method for accurately determining spin-dependent neutron SFs in the low-momentum-transfer regime, where nucleon resonances are prominent and the functions are not smooth. The focus of this study was to develop a new method for extracting spin-dependent neutron SFs from nuclear data. An approximate convolution formula for nuclear SFs reduces the problem to an integral equation, for which a recursive solution method was designed. The method was then applied to recent data from proton and deuterium scattering experiments to perform a preliminary extraction of spin-dependent neutron SFs in the resonance region. The extraction method was found to reliably converge for arbitrary test functions, and the validity of the extraction from data was verifi ed using a Bjorken integral, which relates integrals of SFs to a known quantity. This new information on neutron structure could be used to assess quark-hadron duality for the neutron, which requires detailed knowledge of SFs in all kinematic regimes.

  13. Robust micromagnet design for fast electrical manipulations of single spins in quantum dots

    NASA Astrophysics Data System (ADS)

    Yoneda, Jun; Otsuka, Tomohiro; Takakura, Tatsuki; Pioro-Ladrire, Michel; Brunner, Roland; Lu, Hong; Nakajima, Takashi; Obata, Toshiaki; Noiri, Akito; Palmstrm, Christopher J.; Gossard, Arthur C.; Tarucha, Seigo

    2015-08-01

    Tailoring spin coupling to electric fields is central to spintronics and spin-based quantum information processing. We present an optimal micromagnet design that produces appropriate stray magnetic fields to mediate fast electrical spin manipulations in nanodevices. We quantify the practical requirements for spatial field inhomogeneity and tolerance for misalignment with spins, and propose a design scheme to improve the spin-rotation frequency (to exceed 50 MHz in GaAs nanostructures). We then validate our design by experiments in separate devices. Our results will open a route to rapidly control solid-state electron spins with limited lifetimes and to study coherent spin dynamics in solids.

  14. Rotor Design for High Pressure Magic Angle Spinning Nuclear Magnetic Resonance

    SciTech Connect

    Turcu, Romulus V.F.; Hoyt, David W.; Rosso, Kevin M.; Sears, Jesse A.; Loring, John S.; Felmy, Andrew R.; Hu, Jian Z.

    2013-01-01

    High pressure magic angle spinning (MAS) nuclear magnetic resonance (NMR) with a sample spinning rate exceeding 2.1 kHz and pressure greater than 165 bar has never been realized. In this work, a new sample cell design is reported, suitable for constructing cells of different sizes. Using a 7.5 mm high pressure MAS rotor as an example, internal pressure as high as 200 bar at a sample spinning rate of 6 kHz is achieved. The new high pressure MAS rotor is re-usable and compatible with most commercial NMR set-ups, exhibiting low 1H and 13C NMR background and offering maximal NMR sensitivity. As an example of its many possible applications, this new capability is applied to determine reaction products associated with the carbonation reaction of a natural mineral, antigorite ((Mg,Fe2+)3Si2O5(OH)4), in contact with liquid water in water-saturated supercritical CO2 (scCO2) at 150 bar and 50 deg C. This mineral is relevant to the deep geologic disposal of CO2, but its iron content results in too many sample spinning sidebands at low spinning rate. Hence, this chemical system is a good case study to demonstrate the utility of the higher sample spinning rates that can be achieved by our new rotor design. We expect this new capability will be useful for exploring solid-state, including interfacial, chemistry at new levels of high-pressure in a wide variety of fields.

  15. Quantum measurement of a mesoscopic spin ensemble

    SciTech Connect

    Giedke, G.; Taylor, J. M.; Lukin, M. D.; D'Alessandro, D.; Imamoglu, A.

    2006-09-15

    We describe a method for precise estimation of the polarization of a mesoscopic spin ensemble by using its coupling to a single two-level system. Our approach requires a minimal number of measurements on the two-level system for a given measurement precision. We consider the application of this method to the case of nuclear-spin ensemble defined by a single electron-charged quantum dot: we show that decreasing the electron spin dephasing due to nuclei and increasing the fidelity of nuclear-spin-based quantum memory could be within the reach of present day experiments.

  16. Spin-orbit effects on nuclear state preparation at the S -T+ anti-crossing in double quantum dots

    NASA Astrophysics Data System (ADS)

    Rancic, Marko; Burkard, Guido

    2014-03-01

    We explore the interplay of spin-orbit and hyperfine effects on the nuclear preparation schemes in two-electron double quantum dots, e.g. in GaAs. The quantity of utmost interest is the electron spin decoherence time T2* in dependence of the number of sweeps through the electron spin singlet S triplet T+ anti-crossing. Decoherence of the electron spin is caused by the difference field induced by the nuclear spins. We study the case where a singlet S(2 , 0) is initialized, in which both electrons are in the left dot. Subsequently, the system is driven repeatedly through the anti-crossing and back using linear electrical bias sweeps. Our model describes the passage through the anti-crossing with a large number of equally spaced, step-like parameter increments. We develop a numerical method describing the nuclear spins fully quantum mechanically, which allows us to track their dynamics. Both Rashba and Dresselhaus spin-orbit terms do depend on the angle ? between the [ 110 ] crystallographic and the inter-dot axis. Our results show that the suppression of decoherence (and therefore the enhancement of T2*) is inversely proportional to the strength of the spin-orbit interaction, which is tuned by varying the angle ?. We acknowledge the S3Nano Marie Curie ITN for support and funding.

  17. Effects of the covalent linker groups on the spin transport properties of single nickelocene molecules attached to single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wei, Peng; Sun, Lili; Benassi, Enrico; Shen, Ziyong; Sanvito, Stefano; Hou, Shimin

    2012-05-01

    The understanding of how the spin moment of a magnetic molecule transfers to a carbon nanotube, when the molecule is attached to it, is crucial for designing novel supramolecular spin devices. Here we explore such an issue by modeling the spin transport of a single-walled carbon nanotube grafted with one nickelocene molecule. In particular we investigate how the electron transport becomes spin-polarized depending on the specific linking group bonding nickelocene to the nanotube. We consider as linkers both aziridine and pyrrolidine rings and the amide group. Our calculations show that, at variance with aziridine, both pyrrolidine and amide, do alter the sp2 character of the binding site of the nanotube and thus affect the transmission around the Fermi level. However, only aziridine allows transferring the spin polarization of the nickelocene to the nanotube, whose conductance at the Fermi level becomes spin-polarized. This suggests the superiority of aziridine as a linker for grafting magnetic molecules onto carbon nanotubes with efficient spin filtering functionality.

  18. High-frequency electrical charge and spin control in a single InGaAs quantum dot

    NASA Astrophysics Data System (ADS)

    Nannen, J.; Quitsch, W.; Eliasson, S.; Kümmell, T.; Bacher, G.

    2012-01-01

    We report on the charging behavior of a single self-assembled InGaAs quantum dot with unpolarized and spin-polarized electrons under direct current (DC) and high-frequency biasing. The tunnel coupling of the quantum dot to a spin-polarized electron reservoir leads to characteristic voltage dependence of the polarization of the neutral and the negatively charged exciton emissions in a magnetic field under DC biasing conditions. Via high-frequency adaptation of the device, electrical control of the charge state of the single quantum dot in the gigahertz regime is achieved. A technique for optical preparation of single holes and subsequent electrical charging via high-frequency voltage pulses allows for an ultrafast injection and readout of spin-polarized electrons on a subnanosecond timescale.

  19. Rapid gravitational wave parameter estimation with a single spin: Systematic uncertainties in parameter estimation with the SpinTaylorF2 approximation

    NASA Astrophysics Data System (ADS)

    Miller, B.; O'Shaughnessy, R.; Littenberg, T. B.; Farr, B.

    2015-08-01

    Reliable low-latency gravitational wave parameter estimation is essential to target limited electromagnetic follow-up facilities toward astrophysically interesting and electromagnetically relevant sources of gravitational waves. In this study, we examine the trade-off between speed and accuracy. Specifically, we estimate the astrophysical relevance of systematic errors in the posterior parameter distributions derived using a fast-but-approximate waveform model, SpinTaylorF2 (stf2), in parameter estimation with lalinference_mcmc. Though efficient, the stf2 approximation to compact binary inspiral employs approximate kinematics (e.g., a single spin) and an approximate waveform (e.g., frequency domain versus time domain). More broadly, using a large astrophysically motivated population of generic compact binary merger signals, we report on the effectualness and limitations of this single-spin approximation as a method to infer parameters of generic compact binary sources. For most low-mass compact binary sources, we find that the stf2 approximation estimates compact binary parameters with biases comparable to systematic uncertainties in the waveform. We illustrate by example the effect these systematic errors have on posterior probabilities most relevant to low-latency electromagnetic follow-up: whether the secondary has a mass consistent with a neutron star (NS); whether the masses, spins, and orbit are consistent with that neutron star's tidal disruption; and whether the binary's angular momentum axis is oriented along the line of sight.

  20. Research program in nuclear and solid state physics. [including pion absorption spectra and muon spin precession

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The survey of negative pion absorption reactions on light and medium nuclei was continued. Muon spin precession was studied using an iron target. An impulse approximation model of the pion absorption process implied that the ion will absorb almost exclusively on nucleon pairs, single nucleon absorption being suppressed by energy and momentum conservation requirements. For measurements on both paramagnetic and ferromagnetic iron, the external magnetic field was supplied by a large C-type electromagnet carrying a current of about 100 amperes.

  1. A spinning thermometer to monitor microwave heating and glass transitions in dynamic nuclear polarization.

    PubMed

    Miéville, Pascal; Vitzthum, Veronika; Caporini, Marc A; Jannin, Sami; Gerber-Lemaire, Sandrine; Bodenhausen, Geoffrey

    2011-11-01

    As previously demonstrated by Thurber and Tycko, the peak position of (79)Br in potassium bromide (KBr) allows one to determine the temperature of a spinning sample. We propose to adapt the original design by using a compact KBr tablet placed at the bottom of the magic angle spinning rotor, separated from the sample under investigation by a thin disk made of polytetrafluoroethylene (or 'Teflon'®). This design allows spinning the sample up to at least 16 kHz. The KBr tablet can remain in the rotor when changing the sample under investigation. Calibration in the range of 98 < T < 320 K has been carried out in a static rotor by inserting a platinum thermometer. The accuracy is better than ± 0.9 K, even in the presence of microwave irradiation. Irradiation with 5 W microwaves at 263 GHz leads to a small temperature increase of 3.6 ± 1.4 K in either static or spinning samples. The dynamic nuclear polarization enhancement decreases with increasing temperature, in particular when a frozen glassy sample undergoes a glass transition. PMID:22002542

  2. Processing, spinning, and fabrication of continuous fibers of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Booker, Richard Delane

    Single-walled carbon nanotubes (SWNTs) show great promise for use in a wide range of applications. One of the most promising avenues for attaining these applications is the dispersion of SWNTs at high concentrations in superacids and processing into macroscopic articles such as fibers or films. Fibers spun from SWNT/superacid dispersions indicate that the morphology of the starting SWNT material influences the final morphology of the as-spun fiber. Here, we describe a method (termed disentanglement) of dispersing SWNTs in superacids and treating them using a high-shear, rotor/stator homogenizer, followed by coagulation to recover the solid SWNT material for use in fiber spinning. Several lines of experimental evidence (rheology and optical microscopy of the SWNTs in solution, scanning electron microscopy (SEM) of the coagulated material, and SEM of fibers spun from the coagulated material) show that this disentanglement treatment radically improves the degree of alignment in the SWNTs' morphology, which in turn improves the dispersibility and processability. Raman microscopy and thermogravimetric analysis (TGA) before and after homogenization show that the treatment does not damage the SWNTs. Although this technique is particularly important as a pre-processing step for fiber spinning of neat SWNT fibers, it is also useful for neat SWNT films, SWNT/polymer composites, and surfactant- or polymer-stabilized SWNT dispersions. Macroscopic neat SWNT fibers were successfully produced and characterized. Studies on coagulated fiber morphology suggest that slow acid removal is crucial to minimizing voids. Better SWNT coalescence and alignment were obtained by using appropriate coagulant and dope concentration. SWNTs were disentangled and dissolved at high concentrations (8 - 10 wt%) in 102% sulfuric acid. Fibers were subsequently extruded by dry-jet wet spinning into ice water and polyvinyl alcohol (PVA) / ice water. Drawing the fiber continuously while spinning further aligned the SWNTs within the fiber. The use of PVA (< 1%) in the coagulant slowed acid removal allowing better SWNT coalescence without damaging the SWNT electrical properties. The resulting combination of pre-processing and fiber drawing shows a threefold improvement in fiber tensile strength.

  3. Single-spin asymmetries in the leptoproduction of transversely polarized Λ hyperons

    SciTech Connect

    Kanazawa, K.; Metz, A.; Pitonyak, D.; Schlegel, M.

    2015-04-13

    We analyze single-spin asymmetries (SSAs) in the leptoproduction of transversely polarized Λ hyperons within the collinear twist-3 formalism. We calculate both the distribution and fragmentation terms in two different gauges (lightcone and Feynman) and show that the results are identical. This is the first time that the fragmentation piece has been analyzed for transversely polarized hadron production within the collinear twist-3 framework. In lightcone gauge we use the same techniques that were employed in computing the analogous piece in p↑ p → π X, which has become an important part to that reaction. With this in mind, we also verify the gauge invariance of the formulas for the transverse SSA in the leptoproduction of pions. (author)

  4. Helicity asymmetry E measurement for single π0 photoproduction with a frozen spin target

    NASA Astrophysics Data System (ADS)

    Iwamoto, Hideko; CLAS Collaboration

    2012-04-01

    The helicity asymmetry for single neutral pion photoproduction was measured using the CLAS detector in Hall B at the Thomas Jefferson National Accelerator Facility. This measurement used longitudinally polarized protons and circularly polarized photons with photon energis between 0.35 GeV to 2.4 GeV. The target was a frozen-spin butanol (C4H9OH) target, polarized at about 85%. The helicity asymmetry E for the γp→pπ0 was measured with missing-mass technique at the high statistics of about 12×106 events. The experimental results are compared to three available theoretical predictions, SAID, MAID, and EBAC. The preliminary results are in good agreement with the model calculations at low Eγ energy bins. However, a significant deviation is observed at high energy bins. Therefore, the new data will help to constrain the parameters of the theoretical models.

  5. Scanning localized magnetic fields in microfluidic system using single spin in diamond nanocrystal.

    NASA Astrophysics Data System (ADS)

    Lim, Kangmook; Shapiro, Benjamin; Taylor, Jacob; Waks, Edo

    2015-03-01

    We demonstrate localized magnetometry using a single nitrogen vacancy (NV) center in the microfluidic devices. Our approach enables three dimensional manipulation of a magnetic object in solution with nanoscale spatial accuracy, and also enables us to orient its dipole moment. A diamond nanocrystal is integrated into the microfluidic device and serves as a local magnetic field probe. We vary the position of a magnetic object in liquid and map out its magnetic field distribution by perform continuous electron spin resonance (ESR) measurement on the NV center. These results open up the possibility for using NV centers as nanosized magnetometers with high sensitivity in microfluidic device for applications in chemical sensing, biological sensing and microscopy.

  6. Longitudinal double spin asymmetries in single hadron quasi-real photoproduction at high pT

    NASA Astrophysics Data System (ADS)

    Adolph, C.; Akhunzyanov, R.; Alexeev, M. G.; Alexeev, G. D.; Amoroso, A.; Andrieux, V.; Anosov, V.; Augustyniak, W.; Austregesilo, A.; Azevedo, C. D. R.; Badełek, B.; Balestra, F.; Barth, J.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E. R.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Büchele, M.; Burtin, E.; Chang, W.-C.; Chiosso, M.; Choi, I.; Chung, S.-U.; Cicuttin, A.; Crespo, M. L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O. Yu.; Dhara, L.; Donskov, S. V.; Doshita, N.; Duic, V.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.; Eversheim, P. D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; Finger, M.; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J. M.; Frolov, V.; Fuchey, E.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Giordano, F.; Gnesi, I.; Gorzellik, M.; Grabmüller, S.; Grasso, A.; Grosse Perdekamp, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; Hahne, D.; von Harrach, D.; Hashimoto, R.; Heinsius, F. H.; Herrmann, F.; Hinterberger, F.; Horikawa, N.; d'Hose, N.; Hsieh, C.-Y.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Joosten, R.; Jörg, P.; Kabuß, E.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Kotzinian, A. M.; Kouznetsov, O.; Krämer, M.; Kremser, P.; Krinner, F.; Kroumchtein, Z. V.; Kuchinski, N.; Kuhn, R.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A. A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lichtenstadt, J.; Longo, R.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G. K.; Marchand, C.; Marianski, B.; Martin, A.; Marzec, J.; Matoušek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Miyachi, Y.; Montuenga, P.; Nagaytsev, A.; Nerling, F.; Neyret, D.; Nikolaenko, V. I.; Nový, J.; Nowak, W.-D.; Nukazuka, G.; Nunes, A. S.; Olshevsky, A. G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J.-C.; Pereira, F.; Pešek, M.; Peshekhonov, D. V.; Platchkov, S.; Pochodzalla, J.; Polyakov, V. A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Rossiyskaya, N. S.; Ryabchikov, D. I.; Rychter, A.; Samoylenko, V. D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I. A.; Sbrizzai, G.; Schiavon, P.; Schmidt, K.; Schmieden, H.; Schönning, K.; Schopferer, S.; Selyunin, A.; Shevchenko, O. Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Sozzi, F.; Srnka, A.; Stolarski, M.; Sulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Tosello, F.; Tskhay, V.; Uhl, S.; Veloso, J.; Virius, M.; Weisrock, T.; Wilfert, M.; ter Wolbeek, J.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zink, A.

    2016-02-01

    We measured the longitudinal double spin asymmetries ALL for single hadron muoproduction off protons and deuterons at photon virtuality Q2 < 1(GeV / c) 2 for transverse hadron momenta pT in the range 1 GeV / c to 4 GeV / c. They were determined using COMPASS data taken with a polarised muon beam of 160 GeV / c or 200 GeV / c impinging on polarised 6LiD or NH3 targets. The experimental asymmetries are compared to next-to-leading order pQCD calculations, and are sensitive to the gluon polarisation ΔG inside the nucleon in the range of the nucleon momentum fraction carried by gluons 0.05

  7. Single-spin asymmetries in the leptoproduction of transversely polarized Λ hyperons

    DOE PAGESBeta

    Kanazawa, K.; Metz, A.; Pitonyak, D.; Schlegel, M.

    2015-04-13

    We analyze single-spin asymmetries (SSAs) in the leptoproduction of transversely polarized Λ hyperons within the collinear twist-3 formalism. We calculate both the distribution and fragmentation terms in two different gauges (lightcone and Feynman) and show that the results are identical. This is the first time that the fragmentation piece has been analyzed for transversely polarized hadron production within the collinear twist-3 framework. In lightcone gauge we use the same techniques that were employed in computing the analogous piece in p↑ p → π X, which has become an important part to that reaction. With this in mind, we also verifymore » the gauge invariance of the formulas for the transverse SSA in the leptoproduction of pions. (author)« less

  8. Longitudinal-transverse double-spin asymmetries in single-inclusive leptoproduction of hadrons

    NASA Astrophysics Data System (ADS)

    Kanazawa, K.; Metz, A.; Pitonyak, D.; Schlegel, M.

    2015-03-01

    We analyze the longitudinal-transverse double-spin asymmetry in lepton-nucleon collisions where a single hadron is detected in the final state, i.e., ? ? N? ? h X. This is a subleading-twist observable in collinear factorization, and we look at twist-3 effects in both the transversely polarized nucleon and the unpolarized outgoing hadron. Results are anticipated for this asymmetry from both HERMES and Jefferson Lab Hall A, and it could be measured as well at COMPASS and a future Electron-Ion Collider. We also perform a numerical study of the distribution term, which, when compared to upcoming experimental results, could allow one to learn about the "worm-gear"-type function g (x) as well as assess the role of quark-gluon-quark correlations in the initial-state nucleon and twist-3 effects in the fragmenting unpolarized hadron.

  9. Single and double spin asymmetries for pion electro-production from the deuteron in the resonance region

    NASA Astrophysics Data System (ADS)

    Careccia, Sharon L.

    The single and double spin asymmetries At and Aet have been measured in pi- electro-production off the deuteron using a longitudinally polarized electron beam and a polarized ND3 target. The electron beam was polarized using a strained GaAs cathode and the target was polarized using Dynamic Nuclear Polarization. The data were collected at beam energies of 1.6, 1.7, 2.5 and 4.2 GeV in Hall B at Jefferson Lab in the spring of 2001. The final state particles were detected in the CEBAF Large Acceptance Spectrometer (CLAS). The d(e,e'pi-p)p exclusive channel was identified using the missing mass technique and the asymmetries were extracted as a function of the momentum transfer Q2, invariant mass W, and center of mass pion angles cos(theta*) and φ*. The results are generally in agreement with the phenomenological model MAID at low energies, but there are discrepancies in the 2nd and 3rd resonance regions, as well as at forward angles.

  10. Neutron single spin asymmetries from semi-inclusive deep inelastic scattering off transversely polarized {sup 3}He

    SciTech Connect

    Scopetta, Sergio

    2007-03-01

    A study of semi-inclusive deep inelastic scattering off transversely polarized {sup 3}He is presented. The formal expressions of the Collins and Sivers contributions to the azimuthal single spin asymmetry for the production of leading pions are derived, in impulse approximation, and estimated in the kinematics of forth-coming experiments at JLab. The AV18 interaction has been used for a realistic description of the nuclear dynamics; the nucleon structure has been described by proper parametrizations of data or suitable model calculations. The initial transverse momentum of the struck quark has been properly included in the calculation. The crucial issue of extracting the neutron information from {sup 3}He data, planned to shed some light on the puzzling experimental scenario arisen from recent measurements for the proton and the deuteron, is thoroughly discussed. It is found that a model independent procedure, widely used in inclusive deep inelastic scattering to take into account the momentum and energy distributions of the bound nucleons in {sup 3}He, can be applied also in the kinematics of the planned JLab experiments, although fragmentation functions, not only parton distributions, are involved. The possible role played by final state interactions in the process under investigation is addressed.

  11. Dynamic Nuclear Polarization of membrane proteins: covalently bound spin-labels at protein-protein interfaces

    PubMed Central

    Wylie, Benjamin J; Dzikovski, Boris G.; Pawsey, Shane; Caporini, Marc; Rosay, Melanie; Freed, Jack H.; McDermott, Ann E.

    2016-01-01

    We demonstrate that dynamic nuclear polarization (DNP) of membrane proteins in lipid bilayers may be achieved using a novel polarizing agent: pairs of spin labels covalently bound to a protein of interest interacting at an intermolecular interaction surface. For gramicidin A, nitroxide tags attached to the N-terminal intermolecular interface region become proximal only when bimolecular channels forms in the membrane. We obtained signal enhancements of 6-fold for the dimeric protein. The enhancement affect was comparable to that of a doubly tagged sample of gramicidin C, with intramolecular spin pairs. This approach could be a powerful and selective means for signal enhancement in membrane proteins, and for recognizing intermolecular interfaces. PMID:25828256

  12. Nuclear Spin relaxation mediated by Fermi-edge electrons in n-type GaAs

    NASA Astrophysics Data System (ADS)

    Kotur, M.; Dzhioev, R. I.; Kavokin, K. V.; Korenev, V. L.; Namozov, B. R.; Pak, P. E.; Kusrayev, Yu. G.

    2014-03-01

    A method based on the optical orientation technique was developed to measure the nuclear-spin lattice relaxation time T 1 in semiconductors. It was applied to bulk n-type GaAs, where T 1 was measured after switching off the optical excitation in magnetic fields from 400 to 1200 G at low (< 30 K) temperatures. The spin-lattice relaxation of nuclei in the studied sample with n D = 9 × 1016 cm-3 was found to be determined by hyperfine scattering of itinerant electrons (Korringa mechanism) which predicts invariability of T 1 with the change in magnetic field and linear dependence of the relaxation rate on temperature. This result extends the experimentally verified applicability of the Korringa relaxation law in degenerate semiconductors, previously studied in strong magnetic fields (several Tesla), to the moderate field range.

  13. Magic radio-frequency dressing of nuclear spins in high-accuracy optical clocks.

    PubMed

    Zanon-Willette, Thomas; de Clercq, Emeric; Arimondo, Ennio

    2012-11-30

    A Zeeman-insensitive optical clock atomic transition is engineered when nuclear spins are dressed by a nonresonant radio-frequency field. For fermionic species as (87)Sr, (171)Yb, and (199)Hg, particular ratios between the radio-frequency driving amplitude and frequency lead to "magic" magnetic values where a net cancelation of the Zeeman clock shift and a complete reduction of first-order magnetic variations are produced within a relative uncertainty below the 10(-18) level. An Autler-Townes continued fraction describing a semiclassical radio-frequency dressed spin is numerically computed and compared to an analytical quantum description including higher-order magnetic field corrections to the dressed energies. PMID:23368116

  14. Impact of hadronic and nuclear corrections on global analysis of spin-dependent parton distributions

    SciTech Connect

    Jimenez-Delgado, Pedro; Accardi, Alberto; Melnitchouk, Wally

    2014-02-01

    We present the first results of a new global next-to-leading order analysis of spin-dependent parton distribution functions from the most recent world data on inclusive polarized deep-inelastic scattering, focusing in particular on the large-x and low-Q^2 regions. By directly fitting polarization asymmetries we eliminate biases introduced by using polarized structure function data extracted under nonuniform assumptions for the unpolarized structure functions. For analysis of the large-x data we implement nuclear smearing corrections for deuterium and 3He nuclei, and systematically include target mass and higher twist corrections to the g_1 and g_2 structure functions at low Q^2. We also explore the effects of Q^2 and W^2 cuts in the data sets, and the potential impact of future data on the behavior of the spin-dependent parton distributions at large x.

  15. Finite-temperature calculations for spin-polarized asymmetric nuclear matter with the lowest order constrained variational method

    SciTech Connect

    Bigdeli, M.; Bordbar, G. H.; Poostforush, A.

    2010-09-15

    The lowest order constrained variational technique has been used to investigate some of the thermodynamic properties of spin-polarized hot asymmetric nuclear matter, such as the free energy, symmetry energy, susceptibility, and equation of state. We have shown that the symmetry energy of the nuclear matter is substantially sensitive to the value of spin polarization. Our calculations show that the equation of state of the polarized hot asymmetric nuclear matter is stiffer for higher values of the polarization as well as the isospin asymmetry parameter. Our results for the free energy and susceptibility show that spontaneous ferromagnetic phase transition cannot occur for hot asymmetric matter.

  16. Nuclear spin-lattice relaxation-time reduction in small particles

    NASA Astrophysics Data System (ADS)

    Rabbani, S. R.; Edmonds, D. T.

    1994-09-01

    A method is described of reducing the nuclear spin-lattice relaxation time in a polycrystalline solid without the introduction of any paramagnetic impurities. It relies on the fact that the relaxation times of nuclei on a surface are usually much shorter than those in the bulk due to greater freedom of movement. Simply reducing the particle size by grinding or other methods is shown to be effective in markedly reducing the spin-lattice relaxation time of all the nuclei in the specimen because of the good thermal contact between like nuclei in the interior and surface of small particles. The nuclear quadrupole resonance (NQR) of 14N, 2D, or 23Na was measured for the same specimens with different particle sizes by nuclear quadrupole double resonance to ensure that the chemical structure of the compound did not alter due to the grinding. In all samples studied, except sodium thiosulphate, the NQR spectrum was unaffected by the grinding except that the time necessary to collect the data was reduced. In the case of sodium thiosulphate a marked change in the NQR spectrum was observed despite the fact that no change in chemical composition could be detected. Data is presented which demonstrates the effectiveness of the technique and a simple model of the underlying mechanism is described.

  17. Generalized nuclear Fukui functions in the framework of spin-polarized density-functional theory

    SciTech Connect

    Chamorro, E.; Proft, F. de; Geerlings, P.

    2005-08-22

    An extension of Cohen's nuclear Fukui function is presented in the spin-polarized framework of density-functional theory (SP-DFT). The resulting new nuclear Fukui function indices {phi}{sub N{alpha}} and {phi}{sub S{alpha}} are intended to be the natural descriptors for the responses of the nuclei to changes involving charge transfer at constant multiplicity and also the spin polarization at constant number of electrons. These generalized quantities allow us to gain new insights within a perturbative scheme based on DFT. Calculations of the electronic and nuclear SP-DFT quantities are presented within a Kohn-Sham framework of chemical reactivity for a sample of molecules, including H{sub 2}O, H{sub 2}CO, and some simple nitrenes (NX) and phosphinidenes (PX), with X=H, Li, F, Cl, OH, SH, NH{sub 2}, and PH{sub 2}. Results have been interpreted in terms of chemical bonding in the context of Berlin's theorem, which provides a separation of the molecular space into binding and antibinding regions.

  18. Nuclear spin relaxation study of aqueous raffinose solution in the presence of a gadolinium contrast agent.

    PubMed

    Ghalebani, Leila; Kruk, Danuta; Kowalewski, Jozef

    2005-03-01

    Paramagnetic enhancement of nuclear spin-lattice relaxation rates (PREs) was measured in aqueous solution of the trisaccharide raffinose in the presence of a gadolinium(III) complex, GdDTPA-BMA, used as a magnetic resonance imaging contrast agent. The relaxation enhancement of aqueous protons was measured over a broad range of magnetic fields, using field-cycling apparatus in addition to conventional spectrometers. The nuclear magnetic relaxation dispersion profile thus obtained was interpreted with a recently developed model, allowing for both inner- and outer-sphere relaxation. The relaxation enhancement for the carbon-13 nuclei in raffinose was studied under high-resolution conditions at three magnetic fields, whereas the sugar proton PRE was measured at two fields. The PRE of the sugar nuclei could be interpreted in a consistent way, assuming that it was caused by the outer-sphere mechanism. The electron spin relaxation was found to be a less important source of modulation of the electron-nuclear dipole-dipole interaction than the mutual translational diffusion. PMID:15625722

  19. Resonance-inclined optical nuclear spin polarization of liquids in diamond structures

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Schwarz, I.; Jelezko, F.; Retzker, A.; Plenio, M. B.

    2016-02-01

    Dynamic nuclear polarization (DNP) of molecules in a solution at room temperature has the potential to revolutionize nuclear magnetic resonance spectroscopy and imaging. The prevalent methods for achieving DNP in solutions are typically most effective in the regime of small interaction correlation times between the electron and nuclear spins, limiting the size of accessible molecules. To solve this limitation, we design a mechanism for DNP in the liquid phase that is applicable for large interaction correlation times. Importantly, while this mechanism makes use of a resonance condition similar to solid-state DNP, the polarization transfer is robust to a relatively large detuning from the resonance due to molecular motion. We combine this scheme with optically polarized nitrogen-vacancy (NV) center spins in nanodiamonds to design a setup that employs optical pumping and is therefore not limited by room temperature electron thermal polarization. We illustrate numerically the effectiveness of the model in a flow cell containing nanodiamonds immobilized in a hydrogel, polarizing flowing water molecules 4700-fold above thermal polarization in a magnetic field of 0.35 T, in volumes detectable by current NMR scanners.

  20. Comparison of different methods for calculating the paramagnetic relaxation enhancement of nuclear spins as a function of the magnetic field

    NASA Astrophysics Data System (ADS)

    Belorizky, Elie; Fries, Pascal H.; Helm, Lothar; Kowalewski, Jozef; Kruk, Danuta; Sharp, Robert R.; Westlund, Per-Olof

    2008-02-01

    The enhancement of the spin-lattice relaxation rate for nuclear spins in a ligand bound to a paramagnetic metal ion [known as the paramagnetic relaxation enhancement (PRE)] arises primarily through the dipole-dipole (DD) interaction between the nuclear spins and the electron spins. In solution, the DD interaction is modulated mostly by reorientation of the nuclear spin-electron spin axis and by electron spin relaxation. Calculations of the PRE are in general complicated, mainly because the electron spin interacts so strongly with the other degrees of freedom that its relaxation cannot be described by second-order perturbation theory or the Redfield theory. Three approaches to resolve this problem exist in the literature: The so-called slow-motion theory, originating from Swedish groups [Benetis et al., Mol. Phys. 48, 329 (1983); Kowalewski et al., Adv. Inorg. Chem. 57, (2005); Larsson et al., J. Chem. Phys. 101, 1116 (1994); T. Nilsson et al., J. Magn. Reson. 154, 269 (2002)] and two different methods based on simulations of the dynamics of electron spin in time domain, developed in Grenoble [Fries and Belorizky, J. Chem. Phys. 126, 204503 (2007); Rast et al., ibid. 115, 7554 (2001)] and Ann Arbor [Abernathy and Sharp, J. Chem. Phys. 106, 9032 (1997); Schaefle and Sharp, ibid. 121, 5387 (2004); Schaefle and Sharp, J. Magn. Reson. 176, 160 (2005)], respectively. In this paper, we report a numerical comparison of the three methods for a large variety of parameter sets, meant to correspond to large and small complexes of gadolinium(III) and of nickel(II). It is found that the agreement between the Swedish and the Grenoble approaches is very good for practically all parameter sets, while the predictions of the Ann Arbor model are similar in a number of the calculations but deviate significantly in others, reflecting in part differences in the treatment of electron spin relaxation. The origins of the discrepancies are discussed briefly.

  1. Absolute NMR shielding scales and nuclear spin-rotation constants in (175)LuX and (197)AuX (X = (19)F, (35)Cl, (79)Br and (127)I).

    PubMed

    Demissie, Taye B; Jaszuński, Michał; Komorovsky, Stanislav; Repisky, Michal; Ruud, Kenneth

    2015-10-28

    We present nuclear spin-rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants, and shielding spans of all the nuclei in (175)LuX and (197)AuX (X = (19)F, (35)Cl, (79)Br, (127)I), calculated using coupled-cluster singles-and-doubles with a perturbative triples (CCSD(T)) correction theory, four-component relativistic density functional theory (relativistic DFT), and non-relativistic DFT. The total nuclear spin-rotation constants determined by adding the relativistic corrections obtained from DFT calculations to the CCSD(T) values are in general in agreement with available experimental data, indicating that the computational approach followed in this study allows us to predict reliable results for the unknown spin-rotation constants in these molecules. The total NMR absolute shielding constants are determined for all the nuclei following the same approach as that applied for the nuclear spin-rotation constants. In most of the molecules, relativistic effects significantly change the computed shielding constants, demonstrating that straightforward application of the non-relativistic formula relating the electronic contribution to the nuclear spin-rotation constants and the paramagnetic contribution to the shielding constants does not yield correct results. We also analyze the origin of the unusually large absolute shielding constant and its relativistic correction of gold in AuF compared to the other gold monohalides. PMID:26520517

  2. Optical measurement of the effect of electric fields on the nuclear spin coherence of rare-earth ions in solids.

    PubMed

    Macfarlane, R M; Arcangeli, A; Ferrier, A; Goldner, Ph

    2014-10-10

    We show that the coherence properties of the nuclear spin states of rare-earth ions in solids can be manipulated by small applied electric fields. This was done by measuring the Stark effect on the nuclear quadrupole transitions of (151)Eu in Y(2)SiO(5) (YSO) using a combination of Raman heterodyne optical detection and Stark modulated quadrupole echoes to achieve high sensitivity. The measured Stark coefficients were 0.42 and 1.0 Hz cm/V for the two quadrupole transitions at 34.54 and 46.20 MHz, respectively. The long decoherence time of the nuclear spin states (25 ms) allowed us to make the measurements in very low electric fields of ∼ 10 V/cm, which produced 100% modulation of the nuclear spin echo, and to measure Stark shifts of ∼ 1 Hz or 20 ppm of the inhomogeneous linewidth. PMID:25375743

  3. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic

    NASA Astrophysics Data System (ADS)

    Lovchinsky, I.; Sushkov, A. O.; Urbach, E.; de Leon, N. P.; Choi, S.; De Greve, K.; Evans, R.; Gertner, R.; Bersin, E.; Müller, C.; McGuinness, L.; Jelezko, F.; Walsworth, R. L.; Park, H.; Lukin, M. D.

    2016-02-01

    Nuclear magnetic resonance spectroscopy is a powerful tool for the structural analysis of organic compounds and biomolecules but typically requires macroscopic sample quantities. We use a sensor, which consists of two quantum bits corresponding to an electronic spin and an ancillary nuclear spin, to demonstrate room temperature magnetic resonance detection and spectroscopy of multiple nuclear species within individual ubiquitin proteins attached to the diamond surface. Using quantum logic to improve readout fidelity and a surface-treatment technique to extend the spin coherence time of shallow nitrogen-vacancy centers, we demonstrate magnetic field sensitivity sufficient to detect individual proton spins within 1 second of integration. This gain in sensitivity enables high-confidence detection of individual proteins and allows us to observe spectral features that reveal information about their chemical composition.

  4. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic.

    PubMed

    Lovchinsky, I; Sushkov, A O; Urbach, E; de Leon, N P; Choi, S; De Greve, K; Evans, R; Gertner, R; Bersin, E; Müller, C; McGuinness, L; Jelezko, F; Walsworth, R L; Park, H; Lukin, M D

    2016-02-19

    Nuclear magnetic resonance spectroscopy is a powerful tool for the structural analysis of organic compounds and biomolecules but typically requires macroscopic sample quantities. We use a sensor, which consists of two quantum bits corresponding to an electronic spin and an ancillary nuclear spin, to demonstrate room temperature magnetic resonance detection and spectroscopy of multiple nuclear species within individual ubiquitin proteins attached to the diamond surface. Using quantum logic to improve readout fidelity and a surface-treatment technique to extend the spin coherence time of shallow nitrogen-vacancy centers, we demonstrate magnetic field sensitivity sufficient to detect individual proton spins within 1 second of integration. This gain in sensitivity enables high-confidence detection of individual proteins and allows us to observe spectral features that reveal information about their chemical composition. PMID:26847544

  5. Vanishing electron g factor and long-lived nuclear spin polarization in weakly strained nanohole-filled GaAs/AlGaAs quantum dots

    NASA Astrophysics Data System (ADS)

    Ulhaq, A.; Duan, Q.; Zallo, E.; Ding, F.; Schmidt, O. G.; Tartakovskii, A. I.; Skolnick, M. S.; Chekhovich, E. A.

    2016-04-01

    GaAs/AlGaAs quantum dots grown by in situ droplet etching and nanohole in-filling offer a combination of strong charge confinement, optical efficiency, and high spatial symmetry advantageous for polarization entanglement and spin-photon interface. Here, we study experimentally electron and nuclear spin properties of such dots. We find nearly vanishing electron g factors (ge<0.05 ), providing a potential route for electrically driven spin control schemes. Optical manipulation of the nuclear spin environment is demonstrated with nuclear spin polarization up to 65 % achieved. Nuclear magnetic resonance spectroscopy reveals two distinct types of quantum dots: with tensile and with compressive strain along the growth axis. In both types of dots, the magnitude of strain ɛb<0.02 % is nearly three orders of magnitude smaller than in self-assembled dots: On the one hand, this provides a route for eliminating a major source of electron spin decoherence arising from nuclear quadrupolar interactions, and on the other hand such strain is sufficient to suppress nuclear spin diffusion leading to a stable nuclear spin bath with nuclear spin lifetimes exceeding 500 s. The spin properties revealed in this work make this new type of quantum dot an attractive alternative to self-assembled dots for the applications in quantum information technologies.

  6. Quantum Monte-Carlo simulation of spin-one antiferromagnets with single-ion anisotropy

    NASA Astrophysics Data System (ADS)

    Kato, Yasuyuki; Wierschem, Keola; Nishida, Yusuke; Batista, Cristian; Sengupta, Pinaki

    2013-03-01

    We study a spin-one Heisenberg model with uniaxial single-ion anisotropy, D, and Zeeman coupling to a magnetic field, B, parallel to the symmetry axis. We compute the (D / J , B / J) quantum phase diagram for square and simple cubic lattices by combining analytical and Quantum Monte Carlo approaches, and find a transition between XY-antiferromagnetic and ferronematic phases that spontaneously break the U(1) symmetry of the model. In the language of bosonic gases, this is a transition between a Bose-Einstein condensate (BEC) of single bosons and a BEC of pairs. For the efficient simulation of ferronematic phase, we developed and implemented a new multi-discontinuity algorithm based on the directed-loop algorithm. The ordinary quantum Monte-Carlo methods fall into freezing problems when we apply them to this system at large D / J and finite B / J ~ 1 . The new method does not suffer from the freezing problems. This research used resources of the NERSCC (DOE Contract No. DE-AC02-05CH11231). Work at LANL was performed under the auspices of a J. Robert Oppenheimer Fellowship and the U.S. DOE contract No. DE-AC52-06NA25396 through the LDRD program.

  7. Frozen spin targets in ribosomal structure research.

    PubMed

    Stuhrmann, H B

    1991-01-01

    Polarized neutron scattering strongly depends on nuclear spin polarisation, particularly on proton spin polarisation. A single proton in a deuterated environment then is as efficient as 10 electrons in X-ray anomalous diffraction. Neutron scattering from the nuclear spin label is controlled by the polarisation of neutron spins and nuclear spins. Pure deuteron spin labels and proton spin labels are created by NMR saturation. We report on results obtained from the large subunit of E. coli ribosomes which have been obtained at the research reactor of GKSS using the polarized target facility developed by CERN. The nuclear spins were oriented with respect to an external field by dynamic nuclear polarisation. Proton spin polarisations of more than 80% were obtained in ribosomes at temperatures below 0.5 K. At T = 130 mK the relaxation time of the polarized target is one month (frozen spin target). Polarized small-angle neutron scattering of the in situ structure of rRNA and the total ribosomal protein (TP) has been determined from the frozen spin targets of the large ribosomal subunit, which has been deuterated in the TP and rRNA respectively. The results agree with those from neutron scattering in H2O/D2O mixtures obtained at room temperature. This is a necessary prerequisite for the planned determination of the in situ structure of individual ribosomal proteins and especially of that of ribosome bound mRNA and tRNAs. PMID:1720669

  8. Level density inputs in nuclear reaction codes and the role of the spin cutoff parameter

    DOE PAGESBeta

    Voinov, A. V.; Grimes, S. M.; Brune, C. R.; Burger, A.; Gorgen, A.; Guttormsen, M.; Larsen, A. C.; Massey, T. N.; Siem, S.

    2014-09-03

    Here, the proton spectrum from the 57Fe(α,p) reaction has been measured and analyzed with the Hauser-Feshbach model of nuclear reactions. Different input level density models have been tested. It was found that the best description is achieved with either Fermi-gas or constant temperature model functions obtained by fitting them to neutron resonance spacing and to discrete levels and using the spin cutoff parameter with much weaker excitation energy dependence than it is predicted by the Fermi-gas model.

  9. Interlayer transport of nuclear spin polarization in ν = 2/3 quantum Hall states

    SciTech Connect

    Tsuda, S.; Nguyen, M. H.; Terasawa, D.; Fukuda, A.; Zheng, Y. D.; Arai, T.; Sawada, A.

    2013-12-04

    We investigated the interlayer diffusion of nuclear spin polarization (NSP) by using the phase transition point of quantum Hall states at a Landau level filling factor of ν ν 2/3 in a double quantum well sample. When the NSP is current-pumped in one layer, the magnetoresistance in the other layer is enhanced after a delay of 150 s and the raising speed of this layer is lower than that of the pumped layer. The delay and lower value of the raising speed are explained by the diffusion of NSP.

  10. Nuclear-spin relaxation of ²º⁷Pb in ferroelectric powders

    SciTech Connect

    Bouchard, Louis S.; Sushkov, Alexander O.; Budker, Dmitry; Ford, Joe; Lipton, Andrew S.

    2008-02-05

    The ²º⁷Pb nuclear system (nuclear spin I = 1/2; magnetic Moment μ ≈0.58 μN; isotopic abundance ≈ 22%) in ferroelectric solids has been proposed for a search for a Schiff moment associated with simultaneous violation of parity (P) and time-reversal invariance (T) in fundamental interactions [1] (see also a discussion of the sensitivity of such search in Ref. [2]). The idea is that, due to the Schiff moment, a ferroelectric sample would acquire a P,T-odd magnetic polarization along the direction of its electric polarization. In conclusion, we have presented the first experimental study of relaxation properties of ²º⁷Pb in PT and PZT below room temperature. We find that above T≈ 50 K, longitudinal relaxation rate follows the T² dependence characteristic of the two-phonon Raman process. On the other hand, as the temperature is decreased below T≈ 50 K, the longitudinal relaxation rates drop slower than ∝T2 (as opposed to ∝T7 expected for the Raman process), and the relaxation is probably due to a direct process associated with paramagnetic impurities and nuclear-spin diffusion. While the longitudinal relaxation times T₁ vary between several seconds and over an hour in the temperature range between 290 and 10 K, the transverse relaxation time T₂ is found to be ≈1.5 ms for all temperatures and all powder samples studied. D: we never discuss the origin of T₂ relaxation. Maybe we should. 1.5 ms is only a bit shorter from what would be expected from nuclear spin-spin interactions. Any comments? At some point Sasha asked Oleg to calculate T₂ exactly for PT and PZT, but I forgot what was the result. If such calculation exists, it would be great to compare with the expt. result. The obtained results provide an important input in the design of the experiments to search for P,T-violating effects in solid ferroelectrics

  11. Instrumentation for solid-state dynamic nuclear polarization with magic angle spinning NMR

    NASA Astrophysics Data System (ADS)

    Rosay, Melanie; Blank, Monica; Engelke, Frank

    2016-03-01

    Advances in dynamic nuclear polarization (DNP) instrumentation and methodology have been key factors in the recent growth of solid-state DNP NMR applications. We review the current state of the art of solid-state DNP NMR instrumentation primarily based on available commercial platforms. We start with a general system overview, including options for microwave sources and DNP NMR probes, and then focus on specific developments for DNP at 100 K with magic angle spinning (MAS). Gyrotron microwave sources, passive components to transmit microwaves, the DNP MAS probe, a cooling device for low-temperature MAS, and sample preparation procedures including radicals for DNP are considered.

  12. Instrumentation for solid-state dynamic nuclear polarization with magic angle spinning NMR.

    PubMed

    Rosay, Melanie; Blank, Monica; Engelke, Frank

    2016-03-01

    Advances in dynamic nuclear polarization (DNP) instrumentation and methodology have been key factors in the recent growth of solid-state DNP NMR applications. We review the current state of the art of solid-state DNP NMR instrumentation primarily based on available commercial platforms. We start with a general system overview, including options for microwave sources and DNP NMR probes, and then focus on specific developments for DNP at 100K with magic angle spinning (MAS). Gyrotron microwave sources, passive components to transmit microwaves, the DNP MAS probe, a cooling device for low-temperature MAS, and sample preparation procedures including radicals for DNP are considered. PMID:26920834

  13. Electron-mediated nuclear-spin interactions between distant nitrogen-vacancy centers.

    PubMed

    Bermudez, A; Jelezko, F; Plenio, M B; Retzker, A

    2011-10-01

    We propose a scheme enabling controlled quantum coherent interactions between separated nitrogen-vacancy centers in diamond in the presence of strong magnetic fluctuations. The proposed scheme couples nuclear qubits employing the magnetic dipole-dipole interaction between the electron spins and, crucially, benefits from the suppression of the effect of environmental magnetic field fluctuations thanks to a strong microwave driving. This scheme provides a basic building block for a full-scale quantum-information processor or quantum simulator based on solid-state technology. PMID:22107276

  14. Electron-Mediated Nuclear-Spin Interactions between Distant Nitrogen-Vacancy Centers

    NASA Astrophysics Data System (ADS)

    Bermudez, A.; Jelezko, F.; Plenio, M. B.; Retzker, A.

    2011-10-01

    We propose a scheme enabling controlled quantum coherent interactions between separated nitrogen-vacancy centers in diamond in the presence of strong magnetic fluctuations. The proposed scheme couples nuclear qubits employing the magnetic dipole-dipole interaction between the electron spins and, crucially, benefits from the suppression of the effect of environmental magnetic field fluctuations thanks to a strong microwave driving. This scheme provides a basic building block for a full-scale quantum-information processor or quantum simulator based on solid-state technology.

  15. Indistinguishable tunable single photons emitted by spin-flip Raman transitions in InGaAs quantum dots.

    PubMed

    He, Yu; He, Yu-Ming; Wei, Y-J; Jiang, X; Chen, M-C; Xiong, F-L; Zhao, Y; Schneider, Christian; Kamp, Martin; Höfling, Sven; Lu, Chao-Yang; Pan, Jian-Wei

    2013-12-01

    This Letter reports all-optically tunable and highly indistinguishable single Raman photons from a driven single quantum dot spin. The frequency, linewidth, and lifetime of the Raman photons are tunable by varying the driving field power and detuning. Under continuous-wave excitation, subnatural linewidth single photons from off-resonant Raman scattering show an indistinguishability of 0.98(3). Under π pulse excitation, spin- and time-tagged Raman fluorescence photons show an almost vanishing multiphoton emission probability of 0.01(2) and a two-photon quantum interference visibility of 0.95(3). Lastly, Hong-Ou-Mandel interference is demonstrated between two single photons emitted from remote, independent quantum dots with an unprecedented visibility of 0.87(4). PMID:24476302

  16. Next-to-Leading Order Calculation of the Single Transverse Spin Asymmetry in the Drell-Yan Process

    SciTech Connect

    Vogelsang, Werner; Yuan, Feng

    2009-03-30

    We calculate the next-to-leading order perturbative QCD corrections to the transverse momentum weighted single transverse spin asymmetry in Drell-Yan lepton pair production in hadronic collisions. We identify the splitting function relevant for the scale evolution of the twist-three quark-gluon correlation function. We comment on the consequences of our results for phenomenology.

  17. Spin-Orbit Coupling at the Level of a Single Electron

    NASA Astrophysics Data System (ADS)

    Maisi, V. F.; Hofmann, A.; Röösli, M.; Basset, J.; Reichl, C.; Wegscheider, W.; Ihn, T.; Ensslin, K.

    2016-04-01

    We utilize electron counting techniques to distinguish a spin-conserving fast tunneling process and a slower process involving spin flips in AlGaAs /GaAs -based double quantum dots. By studying the dependence of the rates on the interdot tunnel coupling of the two dots, we find that as many as 4% of the tunneling events occur with a spin flip related to spin-orbit coupling in GaAs. Our measurement has a fidelity of 99% in terms of resolving whether a tunneling event occurred with a spin flip or not.

  18. 2H-decoupling-accelerated 1H spin diffusion in dynamic nuclear polarization with photoexcited triplet electrons

    NASA Astrophysics Data System (ADS)

    Negoro, M.; Nakayama, K.; Tateishi, K.; Kagawa, A.; Takeda, K.; Kitagawa, M.

    2010-10-01

    In dynamic nuclear polarization (DNP) experiments applied to organic solids for creating nonequilibrium, high H1 spin polarization, an efficient buildup of H1 polarization is attained by partially deuterating the material of interest with an appropriate H1 concentration. In such a dilute H1 spin system, it is shown that the H1 spin diffusion rate and thereby the buildup efficiency of H1 polarization can further be enhanced by continually applying radiofrequency irradiation for deuterium decoupling during the DNP process. As experimentally confirmed in this work, the electron spin polarization of the photoexcited triplet state is mainly transferred only to those H1 spins, which are in the vicinity of the electron spins, and H1 spin diffusion transports the localized H1 polarization over the whole sample volume. The H1 spin diffusion coefficients are estimated from DNP repetition interval dependence of the initial buildup rate of H1 polarization, and the result indicates that the spin diffusion coefficient is enhanced by a factor of 2 compared to that without H2 decoupling.

  19. A single-residue deletion alters the lipid selectivity of a K+ channel-associated peptide in the beta-conformation: spin label electron spin resonance studies.

    PubMed Central

    Horváth, L I; Knowles, P F; Kovachev, P; Findlay, J B; Marsh, D

    1997-01-01

    Lipid-peptide interactions with the 27-residue peptide of sequence KLEALYILMVLGFFGFFTLGIMLSYIR reconstituted as beta-sheet assemblies in dimyristoylphosphatidylcholine bilayers have been studied by electron spin resonance (ESR) spectroscopy with spin-labeled lipids. The peptide corresponds to residues 42-68 of the IsK voltage-gated K+ channel protein and contains the single putative transmembrane span of this protein. Lipid-peptide interactions give rise to a second component in the ESR spectra of lipids spin-labeled on the 14C atom of the chain that corresponds to restriction of the lipid mobility by direct interaction with the peptide assemblies. From the dependence on the lipid/peptide ratio, the stoichiometry of lipid interaction is found to be about two phospholipids/peptide monomer. The sequence of selectivity for lipid association with the peptide assemblies is in the order phosphatidic acid > stearic acid = phosphatidylserine > phosphatidylglycerol = phosphatidylcholine. Comparison with previous data for a corresponding 26-residue mutant peptide with a single deletion of the apolar residue Leu2 (Horvath et al., 1995. Biochemistry 34:3893-3898), indicates a very similar mode of membrane incorporation for native and mutant peptides, but a strongly modified pattern and degree of specificity for the interaction with negatively charged lipids. The latter is interpreted in terms of the relative orientations of the charged amino acid side chains in the beta-sheet assemblies of the native and deletion-mutant peptides. Images FIGURE 4 PMID:9370453

  20. A new sample environment for cryogenic nuclear resonance scattering experiments on single crystals and microsamples at P01, PETRA III

    NASA Astrophysics Data System (ADS)

    Rackwitz, Sergej; Faus, Isabelle; Schmitz, Markus; Kelm, Harald; Krüger, Hans-Jörg; Andersson, K. Kristoffer; Hersleth, Hans-Petter; Achterhold, Klaus; Schlage, Kai; Wille, Hans-Christian; Schünemann, Volker; Wolny, Juliusz A.

    2014-04-01

    In order to carry out orientation dependent nuclear resonance scattering (NRS) experiments on small single crystals of e.g. iron proteins and/or chemical complexes but also on surfaces and other micrometer-sized samples a 2-circle goniometer including sample positioning optics has been installed at beamline P01, PETRA III, DESY, Hamburg. This sample environment is now available for all users of this beamline. Sample cooling is performed with a cryogenic gas stream which allows NRS measurements in the temperature range from 80 up to 400 K. In a first test this new sample environment has been used in order to investigate the orientation dependence of the nuclear inelastic scattering (NIS) signature of (i) a dinuclear iron(II) spin crossover (SCO) system and (ii) a hydrogen peroxide treated metmyoglobin single crystal.