Science.gov

Sample records for single spin control

  1. Electrical control of single spin dynamics

    NASA Astrophysics Data System (ADS)

    Petta, Jason

    2012-02-01

    Over ten years ago, Daniel Loss and David DiVincenzo proposed using the spin of a single electron as a quantum bit. At the time of the proposal, it was not possible to trap a single electron in a device and measure its spin, let alone demonstrate control of quantum coherence. In this talk I will describe recent progress in the field, focusing on two new methods for single spin control that have been developed by my group at Princeton. The first method is based on quantum interference and implements spin-interferometry on a chip. The second method utilizes the strong spin-orbit coupling of InAs. By shifting the orbital position of the electronic wavefunction at gigahertz frequencies, we can control the orientation of a single electron spin and measure the full g-tensor, which exhibits a large anisotropy due to spin-orbit interactions. Both methods for single spin control are orders of magnitude faster than conventional electron spin resonance and allow investigations of single spin coherence in the presence of fluctuating nuclear and spin-orbit fields. I will also describe recent efforts to transfer these methods to silicon quantum dots, where the effects of fluctuating nuclear fields are much smaller.

  2. Feedback control of nuclear spin bath for a single hole spin in a quantum dot

    NASA Astrophysics Data System (ADS)

    Pang, Hongliang; Gong, Zhirui; Yao, Wang

    2014-03-01

    In a semiconductor quantum dot, the nuclear spin bath plays an important role as the ultimate environment of an electron or hole spin at low temperature. Through dynamic nuclear spin polarization driven by an oscillating electric field, we show that feedback controls can be implemented on the nuclear spin bath of a single hole spin. The feedback controls utilize the anisotropic hyperfine interaction between the hole spin and the nuclear spins. The negative feedback can suppress the statistical fluctuations of the nuclear hyperfine field and lead to longer coherence time of the hole spin. Positive feedback can possibly lead to cat like state of nuclear spin bath. The efficiency of the controls schemes is investigated under different parameters and control strategies. The work is supported by the Croucher Foundation under the Croucher Innovation Award, and the Research Grant Council of Hong Kong (HKU706309P, HKU8/CRF/11G).

  3. Quantum nanophotonics: Controlling a photon with a single spin

    NASA Astrophysics Data System (ADS)

    Waks, Edo

    The implementation of quantum network and distributive quantum computation replies on strong interactions between stationary matter qubits and flying photons. The spin of a single electron confined in a quantum dot is considered as a promising matter qubit as it possesses microsecond coherence time and allows picosecond timescale control using optical pulses. The quantum dot spin can also interact with a photon by controlling the optical response of a strongly coupled cavity. In this talk I will discuss our recent work on an experimental realization of a spin-photon quantum phase switch using a single spin in a quantum dot strongly coupled to a photonic crystal cavity. We show large modulation of the cavity reflection spectrum by manipulating the spin states of the quantum dot, which enables us to control the quantum state of a reflected photon. We also show the complementary effect where the presence of a single photon switches the quantum state of the spin. The reported spin-photon quantum phase operation can switch spin or photon states in picoseconds timescale, representing an important step towards GHz semiconductor based quantum logic devices on-a-chip and solid-state implementations of quantum networks. Shuo Sun, Hyochul Kim, Glenn Solomon, co-authors.

  4. Heralded Control of Mechanical Motion by Single Spins.

    PubMed

    Rao, D D Bhaktavatsala; Momenzadeh, S Ali; Wrachtrup, Jörg

    2016-08-12

    We propose a method to achieve a high degree of control of nanomechanical oscillators by coupling their mechanical motion to single spins. Manipulating the spin alone and measuring its quantum state heralds the cooling or squeezing of the oscillator even for weak spin-oscillator couplings. We analytically show that the asymptotic behavior of the oscillator is determined by a spin-induced thermal filter function whose overlap with the initial thermal distribution of the oscillator determines its cooling, heating, or squeezing. Counterintuitively, the rate of cooling dependence on the instantaneous thermal occupancy of the oscillator renders robust cooling or squeezing even for high initial temperatures and damping rates. We further estimate how the proposed scheme can be used to control the motion of a thin diamond cantilever by coupling it to its defect centers at low temperature. PMID:27563995

  5. Heralded Control of Mechanical Motion by Single Spins

    NASA Astrophysics Data System (ADS)

    Rao, D. D. Bhaktavatsala; Momenzadeh, S. Ali; Wrachtrup, Jörg

    2016-08-01

    We propose a method to achieve a high degree of control of nanomechanical oscillators by coupling their mechanical motion to single spins. Manipulating the spin alone and measuring its quantum state heralds the cooling or squeezing of the oscillator even for weak spin-oscillator couplings. We analytically show that the asymptotic behavior of the oscillator is determined by a spin-induced thermal filter function whose overlap with the initial thermal distribution of the oscillator determines its cooling, heating, or squeezing. Counterintuitively, the rate of cooling dependence on the instantaneous thermal occupancy of the oscillator renders robust cooling or squeezing even for high initial temperatures and damping rates. We further estimate how the proposed scheme can be used to control the motion of a thin diamond cantilever by coupling it to its defect centers at low temperature.

  6. Quantum Optical Control of Single Spins in Diamond

    NASA Astrophysics Data System (ADS)

    Yale, Christopher Gordon

    The nitrogen-vacancy (NV) center in diamond has garnered great interest over the past decade as its electronic spin shows promise as a quantum bit (qubit) and nanoscale sensor. Consisting of a substitutional nitrogen adjacent to a vacant site within the carbon lattice of diamond, this defect exhibits millisecond-long spin coherence times extending beyond room temperature, spin-dependent optical addressability, coupling to intrinsic and nearby nuclear spins, and it can be controlled and manipulated through electrical, magnetic, and optical means. In particular, at cryogenic temperatures (T < 25 K), the NV center's excited state becomes sharp and optically resolvable, providing a solid-state quantum optical testbed. In this thesis, I describe several experiments that explore this quantum optical interface to facilitate the development of a photonic network of single spins linked and controlled by light. We begin by exploring how electric fields tune the orbital levels within the NV center through the DC Stark effect, finding a surprising photo-induced field that aids in the ability to tune multiple NV centers' optical transitions to degeneracy. We then develop techniques to fully control the spin state of the NV center by coupling through a lambda system, an energy configuration consisting of two lower levels coupled to one of higher energy. When a lambda system is optically driven, the spin becomes trapped in a dark state, or the eigenstate of the system that is not coupled to the light fields through destructive interference, forming the basis for the various types of control demonstrated. We demonstrate arbitrary-basis initialization and readout of the spin state through coherent population trapping, as well as the ability to rotate about any arbitrary basis through stimulated Raman transitions. Combining these techniques, we measure the NV center's spin coherence through a completely optical measurement. We then extend these lambda system techniques to

  7. Quantum control and engineering of single spins in diamond

    NASA Astrophysics Data System (ADS)

    Toyli, David M.

    The past two decades have seen intensive research efforts aimed at creating quantum technologies that leverage phenomena such as coherence and entanglement to achieve device functionalities surpassing those attainable with classical physics. While the range of applications for quantum devices is typically limited by their cryogenic operating temperatures, in recent years point defects in semiconductors have emerged as potential candidates for room temperature quantum technologies. In particular, the nitrogen vacancy (NV) center in diamond has gained prominence for the ability to measure and control its spin under ambient conditions and for its potential applications in magnetic sensing. Here we describe experiments that probe the thermal limits to the measurement and control of single NV centers to identify the origin of the system's unique temperature dependence and that define novel thermal sensing applications for single spins. We demonstrate the optical measurement and coherent control of the spin at temperatures exceeding 600 K and show that its addressability is eventually limited by thermal quenching of the optical spin readout. These measurements provide important information for the electronic structure responsible for the optical spin initialization and readout processes and, moreover, suggest that the coherence of the NV center's spin states could be harnessed for thermometry applications. To that end, we develop novel quantum control techniques that selectively probe thermally induced shifts in the spin resonance frequencies while minimizing the defect's interactions with nearby nuclear spins. We use these techniques to extend the NV center's spin coherence for thermometry by 45-fold to achieve thermal sensitivities approaching 10 mK Hz-1/2 . We show the versatility of these techniques by performing measurements in a range of magnetic environments and at temperatures as high as 500 K. Together with diamond's ideal thermal, mechanical, and chemical

  8. All-electric spin control in interference single electron transistors.

    PubMed

    Donarini, Andrea; Begemann, Georg; Grifoni, Milena

    2009-08-01

    Single particle interference lies at the heart of quantum mechanics. The archetypal double-slit experiment(1) has been repeated with electrons in vacuum(2,3) up to the more massive C(60) molecules.(4) Mesoscopic rings threaded by a magnetic flux provide the solid-state analogues.(5,6) Intramolecular interference has been recently discussed in molecular junctions.(7-11) Here we propose to exploit interference to achieve all-electrical control of a single electron spin in quantum dots, a highly desirable property for spintronics(12-14) and spin-qubit applications.(15-19) The device consists of an interference single electron transistor,(10,11) where destructive interference between orbitally degenerate electronic states produces current blocking at specific bias voltages. We show that in the presence of parallel polarized ferromagnetic leads the interplay between interference and the exchange interaction on the system generates an effective energy renormalization yielding different blocking biases for majority and minority spins. Hence, by tuning the bias voltage full control over the spin of the trapped electron is achieved. PMID:19719108

  9. Feedback control of nuclear spin bath of a single hole spin in a quantum dot

    NASA Astrophysics Data System (ADS)

    Pang, Hongliang; Gong, Zhirui; Yao, Wang

    2015-01-01

    For a III-V semiconductor quantum dot charged with a single hole, we investigate the feedback control of the nuclear spin bath through dynamical nuclear spin polarization. The scheme utilizes the hole-nuclear flip-flop by their anisotropic hyperfine interaction, where the flip direction of the nuclear spin can be conditioned on the sign of the overall hyperfine field through initialization processes that do not involve explicit measurement. We show that a negative feedback can be implemented to suppress the statistical fluctuations of the nuclear hyperfine field for enhancing the coherence time of the hole spin qubit. Positive feedback can prepare the nuclear spin ensemble into states where the nuclear hyperfine field distribution has two well separated peaks, realizing a quantum heat bath that cannot be described by a single effective temperature.

  10. Controlling superconducting spin flow with a single homogeneous ferromagnet: interference, torque and spin-flip immunity

    NASA Astrophysics Data System (ADS)

    Jacobsen, Sol; Kulagina, Iryna; Linder, Jacob

    Superconducting spintronics has the potential to overcome the Joule heating and short decay lengths of electron transport by harnessing the dissipationless spin currents of superconductors in thin-film devices. Using conventional singlet superconductive sources, such dissipationless currents have only been demonstrated experimentally using intricate magnetically inhomogeneous multilayers, which can be difficult to construct, control and measure. Here we present analytic and numerical results proving the possibility of both generating and controlling a long-ranged spin supercurrent using only one single homogeneous magnetic element (arXiv:1510.02488). The spin supercurrent generated in this way does not decay spatially, in stark contrast to normal spin currents that remain polarized only up to the spin relaxation length. Through a novel interference term between long-ranged and short-ranged Cooper pairs, we expose the existence of a superconductivity-mediated torque even without magnetic inhomogeneities, showing that the different components of the spin supercurrent polarization respond fundamentally differently to a change in the superconducting phase difference. This establishes a mechanism for tuning dissipationless spin and charge flow separately via superconductors. Supported by COST Action MP-1201 and RCN Grant Numbers 205591, 216700 and 24806.

  11. Ultrafast coherent optical control of a single diamond spin

    NASA Astrophysics Data System (ADS)

    Bassett, L. C.; Heremans, F. J.; Awschalom, D. D.; Burkard, G.

    2013-03-01

    As an optically addressable solid-state electronic spin, the nitrogen-vacancy (NV) center in diamond has great promise for applications in quantum information science and metrology. At temperatures below ~ 10 K, the NV center's optical fine structure facilitates coherent coupling between the electronic spin and light, providing the means for all-optical spin control and other applications in quantum optics. Here, using ultrafast optical pump-probe techniques, we investigate the interplay of orbital, vibrational, and spin dynamics on timescales ranging from femtoseconds to nanoseconds. These techniques provide a flexible and powerful probe of orbital dynamics in the NV center's optically excited state, and enable optical spin control with sub-picosecond resolution. Work supported by AFOSR, ARO, and DARPA.

  12. Complete quantum control of a single quantum dot spin using ultrafast optical pulses.

    PubMed

    Press, David; Ladd, Thaddeus D; Zhang, Bingyang; Yamamoto, Yoshihisa

    2008-11-13

    A basic requirement for quantum information processing systems is the ability to completely control the state of a single qubit. For qubits based on electron spin, a universal single-qubit gate is realized by a rotation of the spin by any angle about an arbitrary axis. Driven, coherent Rabi oscillations between two spin states can be used to demonstrate control of the rotation angle. Ramsey interference, produced by two coherent spin rotations separated by a variable time delay, demonstrates control over the axis of rotation. Full quantum control of an electron spin in a quantum dot has previously been demonstrated using resonant radio-frequency pulses that require many spin precession periods. However, optical manipulation of the spin allows quantum control on a picosecond or femtosecond timescale, permitting an arbitrary rotation to be completed within one spin precession period. Recent work in optical single-spin control has demonstrated the initialization of a spin state in a quantum dot, as well as the ultrafast manipulation of coherence in a largely unpolarized single-spin state. Here we demonstrate complete coherent control over an initialized electron spin state in a quantum dot using picosecond optical pulses. First we vary the intensity of a single optical pulse to observe over six Rabi oscillations between the two spin states; then we apply two sequential pulses to observe high-contrast Ramsey interference. Such a two-pulse sequence realizes an arbitrary single-qubit gate completed on a picosecond timescale. Along with the spin initialization and final projective measurement of the spin state, these results demonstrate a complete set of all-optical single-qubit operations. PMID:19005550

  13. Coherent control of a single ²⁹Si nuclear spin qubit.

    PubMed

    Pla, Jarryd J; Mohiyaddin, Fahd A; Tan, Kuan Y; Dehollain, Juan P; Rahman, Rajib; Klimeck, Gerhard; Jamieson, David N; Dzurak, Andrew S; Morello, Andrea

    2014-12-12

    Magnetic fluctuations caused by the nuclear spins of a host crystal are often the leading source of decoherence for many types of solid-state spin qubit. In group-IV semiconductor materials, the spin-bearing nuclei are sufficiently rare that it is possible to identify and control individual host nuclear spins. This Letter presents the first experimental detection and manipulation of a single ²⁹Si nuclear spin. The quantum nondemolition single-shot readout of the spin is demonstrated, and a Hahn echo measurement reveals a coherence time of T₂=6.3(7)  ms—in excellent agreement with bulk experiments. Atomistic modeling combined with extracted experimental parameters provides possible lattice sites for the ²⁹Si atom under investigation. These results demonstrate that single ²⁹Si nuclear spins could serve as a valuable resource in a silicon spin-based quantum computer. PMID:25541792

  14. Controlling superconducting spin flow with spin-flip immunity using a single homogeneous ferromagnet.

    PubMed

    Jacobsen, Sol H; Kulagina, Iryna; Linder, Jacob

    2016-01-01

    Spin transport via electrons is typically plagued by Joule heating and short decay lengths due to spin-flip scattering. It is known that dissipationless spin currents can arise when using conventional superconducting contacts, yet this has only been experimentally demonstrated when using intricate magnetically inhomogeneous multilayers, or in extreme cases such as half-metals with interfacial magnetic disorder. Moreover, it is unknown how such spin supercurrents decay in the presence of spin-flip scattering. Here, we present a method for generating a spin supercurrent by using only a single homogeneous magnetic element. Remarkably, the spin supercurrent generated in this way does not decay spatially, in stark contrast to normal spin currents that remain polarized only up to the spin relaxation length. We also expose the existence of a superconductivity-mediated torque even without magnetic inhomogeneities, showing that the different components of the spin supercurrent polarization respond fundamentally differently to a change in the superconducting phase difference. This establishes a mechanism for tuning dissipationless spin and charge flow separately, and confirms the advantage that superconductors can offer in spintronics. PMID:27045733

  15. Controlling superconducting spin flow with spin-flip immunity using a single homogeneous ferromagnet

    NASA Astrophysics Data System (ADS)

    Jacobsen, Sol H.; Kulagina, Iryna; Linder, Jacob

    2016-04-01

    Spin transport via electrons is typically plagued by Joule heating and short decay lengths due to spin-flip scattering. It is known that dissipationless spin currents can arise when using conventional superconducting contacts, yet this has only been experimentally demonstrated when using intricate magnetically inhomogeneous multilayers, or in extreme cases such as half-metals with interfacial magnetic disorder. Moreover, it is unknown how such spin supercurrents decay in the presence of spin-flip scattering. Here, we present a method for generating a spin supercurrent by using only a single homogeneous magnetic element. Remarkably, the spin supercurrent generated in this way does not decay spatially, in stark contrast to normal spin currents that remain polarized only up to the spin relaxation length. We also expose the existence of a superconductivity-mediated torque even without magnetic inhomogeneities, showing that the different components of the spin supercurrent polarization respond fundamentally differently to a change in the superconducting phase difference. This establishes a mechanism for tuning dissipationless spin and charge flow separately, and confirms the advantage that superconductors can offer in spintronics.

  16. Controlling superconducting spin flow with spin-flip immunity using a single homogeneous ferromagnet

    PubMed Central

    Jacobsen, Sol H.; Kulagina, Iryna; Linder, Jacob

    2016-01-01

    Spin transport via electrons is typically plagued by Joule heating and short decay lengths due to spin-flip scattering. It is known that dissipationless spin currents can arise when using conventional superconducting contacts, yet this has only been experimentally demonstrated when using intricate magnetically inhomogeneous multilayers, or in extreme cases such as half-metals with interfacial magnetic disorder. Moreover, it is unknown how such spin supercurrents decay in the presence of spin-flip scattering. Here, we present a method for generating a spin supercurrent by using only a single homogeneous magnetic element. Remarkably, the spin supercurrent generated in this way does not decay spatially, in stark contrast to normal spin currents that remain polarized only up to the spin relaxation length. We also expose the existence of a superconductivity-mediated torque even without magnetic inhomogeneities, showing that the different components of the spin supercurrent polarization respond fundamentally differently to a change in the superconducting phase difference. This establishes a mechanism for tuning dissipationless spin and charge flow separately, and confirms the advantage that superconductors can offer in spintronics. PMID:27045733

  17. Active Morphology Control for Concomitant Long Distance Spin Transport and Photoresponse in a Single Organic Device.

    PubMed

    Sun, Xiangnan; Bedoya-Pinto, Amilcar; Mao, Zupan; Gobbi, Marco; Yan, Wenjing; Guo, Yunlong; Atxabal, Ainhoa; Llopis, Roger; Yu, Gui; Liu, Yunqi; Chuvilin, Andrey; Casanova, Felix; Hueso, Luis E

    2016-04-01

    Long distance spin transport and photoresponse are demonstrated in a single F16 CuPc spin valve. By introducing a low-temperature strategy for controlling the morphology of the organic layer during the fabrication of a molecular spin valve, a large spin-diffusion length up to 180 nm is achieved at room temperature. Magnetoresistive and photoresponsive signals are simultaneously observed even in an air atmosphere. PMID:26823157

  18. Single spin magnetic resonance

    NASA Astrophysics Data System (ADS)

    Wrachtrup, Jörg; Finkler, Amit

    2016-08-01

    Different approaches have improved the sensitivity of either electron or nuclear magnetic resonance to the single spin level. For optical detection it has essentially become routine to observe a single electron spin or nuclear spin. Typically, the systems in use are carefully designed to allow for single spin detection and manipulation, and of those systems, diamond spin defects rank very high, being so robust that they can be addressed, read out and coherently controlled even under ambient conditions and in a versatile set of nanostructures. This renders them as a new type of sensor, which has been shown to detect single electron and nuclear spins among other quantities like force, pressure and temperature. Adapting pulse sequences from classic NMR and EPR, and combined with high resolution optical microscopy, proximity to the target sample and nanoscale size, the diamond sensors have the potential to constitute a new class of magnetic resonance detectors with single spin sensitivity. As diamond sensors can be operated under ambient conditions, they offer potential application across a multitude of disciplines. Here we review the different existing techniques for magnetic resonance, with a focus on diamond defect spin sensors, showing their potential as versatile sensors for ultra-sensitive magnetic resonance with nanoscale spatial resolution.

  19. Single spin magnetic resonance.

    PubMed

    Wrachtrup, Jörg; Finkler, Amit

    2016-08-01

    Different approaches have improved the sensitivity of either electron or nuclear magnetic resonance to the single spin level. For optical detection it has essentially become routine to observe a single electron spin or nuclear spin. Typically, the systems in use are carefully designed to allow for single spin detection and manipulation, and of those systems, diamond spin defects rank very high, being so robust that they can be addressed, read out and coherently controlled even under ambient conditions and in a versatile set of nanostructures. This renders them as a new type of sensor, which has been shown to detect single electron and nuclear spins among other quantities like force, pressure and temperature. Adapting pulse sequences from classic NMR and EPR, and combined with high resolution optical microscopy, proximity to the target sample and nanoscale size, the diamond sensors have the potential to constitute a new class of magnetic resonance detectors with single spin sensitivity. As diamond sensors can be operated under ambient conditions, they offer potential application across a multitude of disciplines. Here we review the different existing techniques for magnetic resonance, with a focus on diamond defect spin sensors, showing their potential as versatile sensors for ultra-sensitive magnetic resonance with nanoscale spatial resolution. PMID:27378060

  20. Coherent control of single spins in silicon carbide at room temperature.

    PubMed

    Widmann, Matthias; Lee, Sang-Yun; Rendler, Torsten; Son, Nguyen Tien; Fedder, Helmut; Paik, Seoyoung; Yang, Li-Ping; Zhao, Nan; Yang, Sen; Booker, Ian; Denisenko, Andrej; Jamali, Mohammad; Momenzadeh, S Ali; Gerhardt, Ilja; Ohshima, Takeshi; Gali, Adam; Janzén, Erik; Wrachtrup, Jörg

    2015-02-01

    Spins in solids are cornerstone elements of quantum spintronics. Leading contenders such as defects in diamond or individual phosphorus dopants in silicon have shown spectacular progress, but either lack established nanotechnology or an efficient spin/photon interface. Silicon carbide (SiC) combines the strength of both systems: it has a large bandgap with deep defects and benefits from mature fabrication techniques. Here, we report the characterization of photoluminescence and optical spin polarization from single silicon vacancies in SiC, and demonstrate that single spins can be addressed at room temperature. We show coherent control of a single defect spin and find long spin coherence times under ambient conditions. Our study provides evidence that SiC is a promising system for atomic-scale spintronics and quantum technology. PMID:25437256

  1. Single-spin CCD.

    PubMed

    Baart, T A; Shafiei, M; Fujita, T; Reichl, C; Wegscheider, W; Vandersypen, L M K

    2016-04-01

    Spin-based electronics or spintronics relies on the ability to store, transport and manipulate electron spin polarization with great precision. In its ultimate limit, information is stored in the spin state of a single electron, at which point quantum information processing also becomes a possibility. Here, we demonstrate the manipulation, transport and readout of individual electron spins in a linear array of three semiconductor quantum dots. First, we demonstrate single-shot readout of three spins with fidelities of 97% on average, using an approach analogous to the operation of a charge-coupled device (CCD). Next, we perform site-selective control of the three spins, thereby writing the content of each pixel of this 'single-spin charge-coupled device'. Finally, we show that shuttling an electron back and forth in the array hundreds of times, covering a cumulative distance of 80 μm, has negligible influence on its spin projection. Extrapolating these results to the case of much larger arrays points at a diverse range of potential applications, from quantum information to imaging and sensing. PMID:26727201

  2. Single-spin CCD

    NASA Astrophysics Data System (ADS)

    Baart, T. A.; Shafiei, M.; Fujita, T.; Reichl, C.; Wegscheider, W.; Vandersypen, L. M. K.

    2016-04-01

    Spin-based electronics or spintronics relies on the ability to store, transport and manipulate electron spin polarization with great precision. In its ultimate limit, information is stored in the spin state of a single electron, at which point quantum information processing also becomes a possibility. Here, we demonstrate the manipulation, transport and readout of individual electron spins in a linear array of three semiconductor quantum dots. First, we demonstrate single-shot readout of three spins with fidelities of 97% on average, using an approach analogous to the operation of a charge-coupled device (CCD). Next, we perform site-selective control of the three spins, thereby writing the content of each pixel of this ‘single-spin charge-coupled device’. Finally, we show that shuttling an electron back and forth in the array hundreds of times, covering a cumulative distance of 80 μm, has negligible influence on its spin projection. Extrapolating these results to the case of much larger arrays points at a diverse range of potential applications, from quantum information to imaging and sensing.

  3. Addressable single-spin control in multiple quantum dots coupled in series

    NASA Astrophysics Data System (ADS)

    Nakajima, Takashi

    2015-03-01

    Electron spin in semiconductor quantum dots (QDs) is promising building block of quantum computers for its controllability and potential scalability. Recent experiments on GaAs QDs have demonstrated necessary ingredients of universal quantum gate operations: single-spin rotations by electron spin resonance (ESR) which is virtually free from the effect of nuclear spin fluctuation, and pulsed control of two-spin entanglement. The scalability of this architecture, however, has remained to be demonstrated in the real world. In this talk, we will present our recent results on implementing single-spin-based qubits in triple, quadruple, and quintuple QDs based on a series coupled architecture defined by gate electrodes. Deterministic initialization of individual spin states and spin-state readout were performed by the pulse operation of detuning between two neighboring QDs. The spin state was coherently manipulated by ESR, where each spin in different QDs is addressed by the shift of the resonance frequency due to the inhomogeneous magnetic field induced by the micro magnet deposited on top of the QDs. Control of two-spin entanglement was also demonstrated. We will discuss key issues for implementing quantum algorithms based on three or more qubits, including the effect of a nuclear spin bath, single-shot readout fidelity, and tuning of multiple qubit devices. Our approaches to these issues will be also presented. This research is supported by Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST) from JSPS, IARPA project ``Multi-Qubit Coherent Operations'' through Copenhagen University, and Grant-in-Aid for Scientific Research from JSPS.

  4. Ultrafast Coherent Control of a Single Electron Spin in a Quantum Dot

    NASA Astrophysics Data System (ADS)

    Mikkelsen, Maiken H.

    2009-03-01

    Practical quantum information processing schemes require fast single-qubit operations. For spin-based qubits, this involves performing arbitrary coherent rotations of the spin state on timescales much faster than the spin coherence time. While we recently demonstrated the ability to initialize and monitor the evolution of single spins in quantum dots (QDs)ootnotetextM. H. Mikkelsen, J. Berezovsky, N. G. Stoltz, L. A. Coldren, D. D. Awschalom, Nature Physics 3, 770 (2007); J. Berezovsky, M. H. Mikkelsen, O. Gywat, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, Science 314, 1916 (2006)., here we present an all-optical scheme for ultrafast manipulation of these states through arbitrary angles. The GaAs QDs are embedded in a diode structure to allow controllable charging of the QDs and positioned within a vertical optical cavity to enhance the small single spin signal. By applying off-resonant optical pulses, we coherently rotate a single electron spin in a QD up to π radians on picosecond timescales ootnotetextJ. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, D. D. Awschalom, Science 320, 349 (2008)..We directly observe this spin manipulation using time-resolved Kerr rotation spectroscopy at T=10K. Measurements of the spin rotation as a function of laser detuning and intensity confirm that the optical Stark effect is the operative mechanism and the results are well-described by a model including the electron-nuclear spin interaction. Using short tipping pulses, this technique enables one to perform a large number of operations within the coherence time. This ability to perform arbitrary single-qubit operations enables sequential all-optical initialization, ultrafast control and detection of a single electron spin for quantum information purposes.

  5. Coherent control of single spins in a silicon carbide pn junction device at room temperature

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Yun; Widmann, Matthias; Booker, Ian; Niethammer, Matthias; Ohshima, Takeshi; Gali, Adam; Son, Nguyen T.; Janzén, Erik; Wrachtrup, Joerg

    Spins in single defects have been studied for quantum information science and quantum metrology. It has been proven that spins of the single nitrogen-vacancy (NV) centers in diamond can be used as a quantum bit, and a single spin sensor operating at ambient conditions. Recently, there has been a growing interest in a new material in which color centers similar to NV centers can be created and whose electrical properties can also be well controlled, thus existing electronic devices can easily be adapted as a platform for quantum applications. We recently reported that single spins of negatively charged silicon vacancies in SiC can be coherently controlled and long-lived at room temperature. As a next step, we isolated single silicon vacancies in a SiC pn junction device and investigated how the change in Fermi level, induced by applying bias, alters the charge state of silicon vacancies, thus affects the spin state control. This study will allow us to envision quantum applications based on single defects incorporated in modern electronic devices.

  6. Controlled Rephasing of Single Collective Spin Excitations in a Cold Atomic Quantum Memory

    NASA Astrophysics Data System (ADS)

    Albrecht, Boris; Farrera, Pau; Heinze, Georg; Cristiani, Matteo; de Riedmatten, Hugues

    2015-10-01

    We demonstrate active control of inhomogeneous dephasing and rephasing for single collective atomic spin excitations (spin waves) created by spontaneous Raman scattering in a quantum memory based on cold 87Rb atoms. The control is provided by a reversible external magnetic field gradient inducing an inhomogeneous broadening of the atomic hyperfine levels. We demonstrate experimentally that active rephasing preserves the single photon nature of the retrieved photons. Finally, we show that the control of the inhomogeneous dephasing enables the creation of time-separated spin waves in a single ensemble followed by a selective read-out in time. This is an important step towards the implementation of a functional temporally multiplexed quantum repeater node.

  7. Controlled Rephasing of Single Collective Spin Excitations in a Cold Atomic Quantum Memory.

    PubMed

    Albrecht, Boris; Farrera, Pau; Heinze, Georg; Cristiani, Matteo; de Riedmatten, Hugues

    2015-10-16

    We demonstrate active control of inhomogeneous dephasing and rephasing for single collective atomic spin excitations (spin waves) created by spontaneous Raman scattering in a quantum memory based on cold 87Rb atoms. The control is provided by a reversible external magnetic field gradient inducing an inhomogeneous broadening of the atomic hyperfine levels. We demonstrate experimentally that active rephasing preserves the single photon nature of the retrieved photons. Finally, we show that the control of the inhomogeneous dephasing enables the creation of time-separated spin waves in a single ensemble followed by a selective read-out in time. This is an important step towards the implementation of a functional temporally multiplexed quantum repeater node. PMID:26550854

  8. All-electrical control of a singlet-triplet qubit coupled to a single nuclear spin

    NASA Astrophysics Data System (ADS)

    Jacobson, N. Tobias; Harvey-Collard, Patrick; Baczewski, Andrew; Gamble, John; Rudolph, Martin; Nielsen, Erik; Muller, Richard; Carroll, Malcolm

    Donor nuclear spins in isotopically purified silicon have very long coherence times, suggesting that they may form high-quality quantum memories. We propose that coupling these nuclear spins to few-electron quantum dots could enable nuclear spin readout and two-qubit operations of the joint quantum dot and nuclear spin system without the need for electron spin resonance. As a step towards this goal, our group recently demonstrated coherent singlet/triplet electron spin rotations induced by the hyperfine interaction between electronic spin degrees of freedom and a single nuclear spin in isotopically purified silicon. In this talk, I will discuss the feasibility of universal all-electrical control of such a singlet/triplet electron spin qubit and explore the decoherence mechanisms that we expect to dominate. Finally, I will examine the relative merits of AC and pulsed DC gating schemes. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy National Nuclear Security Administration under Contract No. DE-AC04- 94AL85000.

  9. Controlled rephasing of single spin-waves in a quantum memory based on cold atoms

    NASA Astrophysics Data System (ADS)

    Farrera, Pau; Albrecht, Boris; Heinze, Georg; Cristiani, Matteo; de Riedmatten, Hugues; Quantum Photonics With Solids; Atoms Team

    2015-05-01

    Quantum memories for light allow a reversible transfer of quantum information between photons and long lived matter quantum bits. In atomic ensembles, this information is commonly stored in the form of single collective spin excitations (spin-waves). In this work we demonstrate that we can actively control the dephasing of the spin-waves created in a quantum memory based on a cold Rb87 atomic ensemble. The control is provided by an external magnetic field gradient, which induces an inhomogeneous broadening of the atomic hyperfine levels. We show that acting on this gradient allows to control the dephasing of individual spin-waves and to induce later a rephasing. The spin-waves are then mapped into single photons, and we demonstrate experimentally that the active rephasing preserves the sub-Poissonian statistics of the retrieved photons. Finally we show that this rephasing control enables the creation and storage of multiple spin-waves in different temporal modes, which can be selectively readout. This is an important step towards the implementation of a functional temporally multiplexed quantum memory for quantum repeaters. We acknowledge support from the ERC starting grant, the Spanish Ministry of Economy and Competitiveness, the Fondo Europeo de Desarrollo Regional, and the International PhD- fellowship program ``la Caixa''-Severo Ochoa @ICFO.

  10. Measurement and control of single spins in diamond above 600 K

    NASA Astrophysics Data System (ADS)

    Toyli, David M.

    2013-03-01

    The nitrogen vacancy (NV) center in diamond stands out among spin qubit systems in large part because its spin can be controlled under ambient conditions whereas most other solid state qubits operate only at cryogenic temperatures. However, despite the intense interest in the NV center's room temperature properties for nanoscale sensing and quantum information applications, the ultimate thermal limits to its measurement and control have been largely unknown. We demonstrate that the NV center's spin can be optically addressed and coherently controlled at temperatures exceeding 600 K and show that its addressability is eventually limited by thermal quenching of the optical spin readout. These measurements, in combination with computational studies, provide important information about the electronic states that facilitate the optical spin measurement and, moreover, suggest that the coherence of the NV center's spin states could be utilized for thermometry. We infer that single spins in diamond offer temperature sensitivities better than 100 mK/√{ Hz} up to 600 K using conventional sensing techniques and show that advanced measurement schemes provide a pathway to reach 10 mK/√{ Hz} sensitivities. Together with diamond's ideal thermal and mechanical properties, these results suggest that NV center thermometers could be applied in cellular thermometry and scanning thermal microscopy. This work was funded by AFOSR, ARO, and DARPA.

  11. Electrically controlling single-spin qubits in a continuous microwave field

    PubMed Central

    Laucht, Arne; Muhonen, Juha T.; Mohiyaddin, Fahd A.; Kalra, Rachpon; Dehollain, Juan P.; Freer, Solomon; Hudson, Fay E.; Veldhorst, Menno; Rahman, Rajib; Klimeck, Gerhard; Itoh, Kohei M.; Jamieson, David N.; McCallum, Jeffrey C.; Dzurak, Andrew S.; Morello, Andrea

    2015-01-01

    Large-scale quantum computers must be built upon quantum bits that are both highly coherent and locally controllable. We demonstrate the quantum control of the electron and the nuclear spin of a single 31P atom in silicon, using a continuous microwave magnetic field together with nanoscale electrostatic gates. The qubits are tuned into resonance with the microwave field by a local change in electric field, which induces a Stark shift of the qubit energies. This method, known as A-gate control, preserves the excellent coherence times and gate fidelities of isolated spins, and can be extended to arbitrarily many qubits without requiring multiple microwave sources. PMID:26601166

  12. Electrically controlling single-spin qubits in a continuous microwave field.

    PubMed

    Laucht, Arne; Muhonen, Juha T; Mohiyaddin, Fahd A; Kalra, Rachpon; Dehollain, Juan P; Freer, Solomon; Hudson, Fay E; Veldhorst, Menno; Rahman, Rajib; Klimeck, Gerhard; Itoh, Kohei M; Jamieson, David N; McCallum, Jeffrey C; Dzurak, Andrew S; Morello, Andrea

    2015-04-01

    Large-scale quantum computers must be built upon quantum bits that are both highly coherent and locally controllable. We demonstrate the quantum control of the electron and the nuclear spin of a single (31)P atom in silicon, using a continuous microwave magnetic field together with nanoscale electrostatic gates. The qubits are tuned into resonance with the microwave field by a local change in electric field, which induces a Stark shift of the qubit energies. This method, known as A-gate control, preserves the excellent coherence times and gate fidelities of isolated spins, and can be extended to arbitrarily many qubits without requiring multiple microwave sources. PMID:26601166

  13. Controlled Complete Suppression of Single-Atom Inelastic Spin and Orbital Cotunneling.

    PubMed

    Bryant, Benjamin; Toskovic, Ranko; Ferrón, Alejandro; Lado, José L; Spinelli, Anna; Fernández-Rossier, Joaquín; Otte, Alexander F

    2015-10-14

    The inelastic portion of the tunnel current through an individual magnetic atom grants unique access to read out and change the atom's spin state, but it also provides a path for spontaneous relaxation and decoherence. Controlled closure of the inelastic channel would allow for the latter to be switched off at will, paving the way to coherent spin manipulation in single atoms. Here, we demonstrate complete closure of the inelastic channels for both spin and orbital transitions due to a controlled geometric modification of the atom's environment, using scanning tunneling microscopy (STM). The observed suppression of the excitation signal, which occurs for Co atoms assembled into chains on a Cu2N substrate, indicates a structural transition affecting the dz(2) orbital, effectively cutting off the STM tip from the spin-flip cotunneling path. PMID:26366713

  14. Dynamical control of the spin transition inside the thermal hysteresis loop of a spin-crossover single crystal

    NASA Astrophysics Data System (ADS)

    Boukheddaden, Kamel; Sy, Mouhamadou; Paez-Espejo, Miguel; Slimani, Ahmed; Varret, François

    2016-04-01

    We have succeeded to achieve experimentally, using an adapted optical microscopy setup, the reversible control of the front transformation between the low-spin (LS)-high-spin (HS) interface in the spin-crossover (SC) single crystal [{Fe(NCSe)(py)2}2(m-bpypz)] undergoing a first-order transition at 112 K with a 7 K hysteresis width. For that, we first generate a phase separation state (a HS/LS interface at equilibrium) inside the hysteresis loop by tuning the light intensity of the microscope. In the second step, this intensity is monitored in such a way to drive, through a photo-heating process, the interface motion. This photo-control is found to be reversible, accurate and requiring a very small amount of energy. In addition the integrity of the crystal is maintained even after a large number of cycling. The experimental observations, are well described as a reaction diffusion process accounting for the front propagation and the photo-heating effects.

  15. Controlling electronic access to the spin excitations of a single molecule in a tunnel junction

    NASA Astrophysics Data System (ADS)

    Hirjibehedin, Cyrus F.; Warner, Ben; El Hallak, Fadi; Prueser, Henning; Ajibade, Afolabi; Gill, Tobias G.; Fisher, Andrew J.; Persson, Mats

    Spintronic phenomena can be utilized to create new devices with applications in data storage and sensing. Scaling these down to the single molecule level requires controlling the properties of the current-carrying orbitals to enable access to spin states through phenomena such as inelastic electron tunneling. Here we show that the spintronic properties of a tunnel junction containing a single molecule can be controlled by their coupling to the local environment. For tunneling through iron phthalocyanine (FePc) on an insulating copper nitride (Cu2N) monolayer above Cu(001), we find that spin transitions may be strongly excited depending on the binding site of the central Fe atom. Different interactions between the Fe and the underlying Cu or N atoms shift the Fe d-orbitals with respect to the Fermi energy, and control the relative strength of the spin excitations, an effect that can described in a simple co-tunneling model. This work demonstrates the importance of the atomic-scale environment in the development of single molecule spintronic devices.

  16. Coherent optical control of the spin of a single hole in an InAs/GaAs quantum dot.

    PubMed

    Godden, T M; Quilter, J H; Ramsay, A J; Wu, Yanwen; Brereton, P; Boyle, S J; Luxmoore, I J; Puebla-Nunez, J; Fox, A M; Skolnick, M S

    2012-01-01

    We demonstrate coherent optical control of a single hole spin confined to an InAs/GaAs quantum dot. A superposition of hole-spin states is created by fast (10-100 ps) dissociation of a spin-polarized electron-hole pair. Full control of the hole spin is achieved by combining coherent rotations about two axes: Larmor precession of the hole spin about an external Voigt geometry magnetic field, and rotation about the optical axis due to the geometric phase shift induced by a picosecond laser pulse resonant with the hole-trion transition. PMID:22304289

  17. Doping controlled spin reorientation in dysprosium-samarium orthoferrite single crystals

    NASA Astrophysics Data System (ADS)

    Cao, Shixun; Zhao, Weiyao; Kang, Baojuan; Zhang, Jincang; Ren, Wei

    2015-03-01

    As one of the most important phase transitions, spin reorientation (SR) in rare earth transition metal oxides draws much attention of emerging materials technologies. The origin of SR is the competition between different spin configurations which possess different free energy. We report the control of spin reorientation (SR) transition in perovskite rare earth orthoferrite Dy1-xSmxFeO3, a whole family of single crystals grown by optical floating zone method from x =0 to 1. Temperature dependence of the magnetizations under zero-field-cooling (ZFC) and field-cooling (FC) processes are studied. We have found a remarkable linear change of SR transition temperature in Sm-rich samples for x>0.2, which covers an extremely wide temperature range including room temperature. The a-axis magnetization curves under FCC process bifurcate from and then jump down to that of warming process (ZFC and FCW curves) in single crystals when x =0.5-0.9, suggesting complicated 4f-3d electron interactions among Dy3+-Sm3+, Dy3+-Fe3+, and Sm3+-Fe3+ sublattices of diverse magnetic configurations for materials physics and design. The magnetic properties and the doping effect on SR transition temperature in these single crystals might be useful in the spintronics device application. This work is supported by the National Key Basic Research Program of China (Grant No. 2015CB921600), and the National Natural Science Foundation of China (NSFC, Nos. 51372149, 50932003, 11274222).

  18. Analysis of state-of-the-art single-thruster attitude control techniques for spinning penetrator

    NASA Astrophysics Data System (ADS)

    Raus, Robin; Gao, Yang; Wu, Yunhua; Watt, Mark

    2012-07-01

    The attitude dynamics and manoeuvre survey in this paper is performed for a mission scenario involving a penetrator-type spacecraft: an axisymmetric prolate spacecraft spinning around its minor axis of inertia performing a 90° spin axis reorientation manoeuvre. In contrast to most existing spacecraft only one attitude control thruster is available, providing a control torque perpendicular to the spin axis. Having only one attitude thruster on a spinning spacecraft could be preferred for spacecraft simplicity (lower mass, lower power consumption etc.), or it could be imposed in the context of redundancy/contingency operations. This constraint does yield restrictions on the thruster timings, depending on the ratio of minor to major moments of inertia among other parameters. The Japanese Lunar-A penetrator spacecraft proposal is a good example of such a single-thruster spin-stabilised prolate spacecraft. The attitude dynamics of a spinning rigid body are first investigated analytically, then expanded for the specific case of a prolate and axisymmetric rigid body and finally a cursory exploration of non-rigid body dynamics is made. Next two well-known techniques for manoeuvring a spin-stabilised spacecraft, the Half-cone/Multiple Half-cone and the Rhumb line slew, are compared with two new techniques, the Sector-Arc Slew developed by Astrium Satellites and the Dual-cone developed at Surrey Space Centre. Each technique is introduced and characterised by means of simulation results and illustrations based on the penetrator mission scenario and a brief robustness analysis is performed against errors in moments of inertia and spin rate. Also, the relative benefits of each slew algorithm are discussed in terms of slew accuracy, energy (propellant) efficiency and time efficiency. For example, a sequence of half-cone manoeuvres (a Multi-half-cone manoeuvre) tends to be more energy-efficient than one half-cone for the same final slew angle, but more time-consuming. As another

  19. TRANSVERSITY SINGLE SPIN ASYMMETRIES.

    SciTech Connect

    BOER,D.

    2001-04-27

    The theoretical aspects of two leading twist transversity single spin asymmetries, one arising from the Collins effect and one from the interference fragmentation functions, are reviewed. Issues of factorization, evolution and Sudakov factors for the relevant observables are discussed. These theoretical considerations pinpoint the most realistic scenarios towards measurements of transversity.

  20. Control of coherence among the spins of a single electron and the three nearest neighbor {sup 13}C nuclei of a nitrogen-vacancy center in diamond

    SciTech Connect

    Shimo-Oka, T.; Miwa, S.; Suzuki, Y.; Mizuochi, N.; Kato, H.; Yamasaki, S.; Jelezko, F.

    2015-04-13

    Individual nuclear spins in diamond can be optically detected through hyperfine couplings with the electron spin of a single nitrogen-vacancy (NV) center; such nuclear spins have outstandingly long coherence times. Among the hyperfine couplings in the NV center, the nearest neighbor {sup 13}C nuclear spins have the largest coupling strength. Nearest neighbor {sup 13}C nuclear spins have the potential to perform fastest gate operations, providing highest fidelity in quantum computing. Herein, we report on the control of coherences in the NV center where all three nearest neighbor carbons are of the {sup 13}C isotope. Coherence among the three and four qubits are generated and analyzed at room temperature.

  1. Magnetoelectric control of spin currents

    NASA Astrophysics Data System (ADS)

    Gómez, J. E.; Vargas, J. M.; Avilés-Félix, L.; Butera, A.

    2016-06-01

    The ability to control the spin current injection has been explored on a hybrid magnetoelectric system consisting of a (011)-cut ferroelectric lead magnesium niobate-lead titanate (PMNT) single crystal, a ferromagnetic FePt alloy, and a metallic Pt. With this PMNT/FePt/Pt structure we have been able to control the magnetic field position or the microwave excitation frequency at which the spin pumping phenomenon between FePt and Pt occurs. We demonstrate that the magnetoelectric heterostructure operating in the L-T (longitudinal magnetized-transverse polarized) mode couples the PMNT crystal to the magnetostrictive FePt/Pt bilayer, displaying a strong magnetoelectric coefficient of ˜140 Oe cm kV-1. Our results show that this mechanism can be effectively exploited as a tunable spin current intensity emitter and open the possibility to create an oscillating or a bistable switch to effectively manipulate spin currents.

  2. Electrical control of quantum dot spin qubits

    NASA Astrophysics Data System (ADS)

    Laird, Edward Alexander

    This thesis presents experiments exploring the interactions of electron spins with electric fields in devices of up to four quantum dots. These experiments are particularly motivated by the prospect of using electric fields to control spin qubits. A novel hyperfine effect on a single spin in a quantum dot is presented in Chapter 2. Fluctuations of the nuclear polarization allow single-spin resonance to be driven by an oscillating electric field. Spin resonance spectroscopy revealed a nuclear polarization built up inside the quantum dot device by driving the resonance. The evolution of two coupled spins is controlled by the combination of hyperfine interaction, which tends to cause spin dephasing, and exchange, which tends to prevent it. In Chapter 3, dephasing is studied in a device with tunable exchange, probing the crossover between exchange-dominated and hyperfine-dominated regimes. In agreement with theoretical predictions, oscillations of the spin conversion probability and saturation of dephasing are observed. Chapter 4 deals with a three-dot device, suggested as a potential qubit controlled entirely by exchange. Preparation and readout of the qubit state are demonstrated, together with one out of two coherent exchange operations needed for arbitrary manipulations. A new readout technique allowing rapid device measurement is described. In Chapter 5, an attempt to make a two-qubit gate using a four-dot device is presented. Although spin qubit operation has not yet been possible, the electrostatic interaction between pairs of dots was measured to be sufficient in principle for coherent qubit coupling.

  3. Single-parameter spin-pumping in driven metallic rings with spin-orbit coupling

    SciTech Connect

    Ramos, J. P.; Apel, V. M.; Foa Torres, L. E. F.; Orellana, P. A.

    2014-03-28

    We consider the generation of a pure spin-current at zero bias voltage with a single time-dependent potential. To such end we study a device made of a mesoscopic ring connected to electrodes and clarify the interplay between a magnetic flux, spin-orbit coupling, and non-adiabatic driving in the production of a spin and electrical current. By using Floquet theory, we show that the generated spin to charge current ratio can be controlled by tuning the spin-orbit coupling.

  4. Detection and Control of Individual Nuclear Spins Using a Weakly Coupled Electron Spin

    SciTech Connect

    Taminiau, T.H.; Wagenaar, J.J.T.; van der Sar, T.; Jelezko, F.; Dobrovitski, Viatcheslav V.; Hanson, R.

    2012-09-28

    We experimentally isolate, characterize, and coherently control up to six individual nuclear spins that are weakly coupled to an electron spin in diamond. Our method employs multipulse sequences on the electron spin that resonantly amplify the interaction with a selected nuclear spin and at the same time dynamically suppress decoherence caused by the rest of the spin bath. We are able to address nuclear spins with interaction strengths that are an order of magnitude smaller than the electron spin dephasing rate. Our results provide a route towards tomography with single-nuclear-spin sensitivity and greatly extend the number of available quantum bits for quantum information processing in diamond.

  5. Single-electron Spin Resonance in a Quadruple Quantum Dot

    PubMed Central

    Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R.; Amaha, Shinichi; Yoneda, Jun; Takeda, Kenta; Allison, Giles; Ito, Takumi; Sugawara, Retsu; Noiri, Akito; Ludwig, Arne; Wieck, Andreas D.; Tarucha, Seigo

    2016-01-01

    Electron spins in semiconductor quantum dots are good candidates of quantum bits for quantum information processing. Basic operations of the qubit have been realized in recent years: initialization, manipulation of single spins, two qubit entanglement operations, and readout. Now it becomes crucial to demonstrate scalability of this architecture by conducting spin operations on a scaled up system. Here, we demonstrate single-electron spin resonance in a quadruple quantum dot. A few-electron quadruple quantum dot is formed within a magnetic field gradient created by a micro-magnet. We oscillate the wave functions of the electrons in the quantum dots by applying microwave voltages and this induces electron spin resonance. The resonance energies of the four quantum dots are slightly different because of the stray field created by the micro-magnet and therefore frequency-resolved addressable control of each electron spin resonance is possible. PMID:27550534

  6. Single-electron Spin Resonance in a Quadruple Quantum Dot.

    PubMed

    Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R; Amaha, Shinichi; Yoneda, Jun; Takeda, Kenta; Allison, Giles; Ito, Takumi; Sugawara, Retsu; Noiri, Akito; Ludwig, Arne; Wieck, Andreas D; Tarucha, Seigo

    2016-01-01

    Electron spins in semiconductor quantum dots are good candidates of quantum bits for quantum information processing. Basic operations of the qubit have been realized in recent years: initialization, manipulation of single spins, two qubit entanglement operations, and readout. Now it becomes crucial to demonstrate scalability of this architecture by conducting spin operations on a scaled up system. Here, we demonstrate single-electron spin resonance in a quadruple quantum dot. A few-electron quadruple quantum dot is formed within a magnetic field gradient created by a micro-magnet. We oscillate the wave functions of the electrons in the quantum dots by applying microwave voltages and this induces electron spin resonance. The resonance energies of the four quantum dots are slightly different because of the stray field created by the micro-magnet and therefore frequency-resolved addressable control of each electron spin resonance is possible. PMID:27550534

  7. Tunneling spin injection into single layer graphene.

    PubMed

    Han, Wei; Pi, K; McCreary, K M; Li, Yan; Wong, Jared J I; Swartz, A G; Kawakami, R K

    2010-10-15

    We achieve tunneling spin injection from Co into single layer graphene (SLG) using TiO₂ seeded MgO barriers. A nonlocal magnetoresistance (ΔR(NL)) of 130  Ω is observed at room temperature, which is the largest value observed in any material. Investigating ΔR(NL) vs SLG conductivity from the transparent to the tunneling contact regimes demonstrates the contrasting behaviors predicted by the drift-diffusion theory of spin transport. Furthermore, tunnel barriers reduce the contact-induced spin relaxation and are therefore important for future investigations of spin relaxation in graphene. PMID:21231003

  8. Single-shot readout of a single nuclear spin.

    PubMed

    Neumann, Philipp; Beck, Johannes; Steiner, Matthias; Rempp, Florian; Fedder, Helmut; Hemmer, Philip R; Wrachtrup, Jörg; Jelezko, Fedor

    2010-07-30

    Projective measurement of single electron and nuclear spins has evolved from a gedanken experiment to a problem relevant for applications in atomic-scale technologies like quantum computing. Although several approaches allow for detection of a spin of single atoms and molecules, multiple repetitions of the experiment that are usually required for achieving a detectable signal obscure the intrinsic quantum nature of the spin's behavior. We demonstrated single-shot, projective measurement of a single nuclear spin in diamond using a quantum nondemolition measurement scheme, which allows real-time observation of an individual nuclear spin's state in a room-temperature solid. Such an ideal measurement is crucial for realization of, for example, quantum error correction protocols in a quantum register. PMID:20595582

  9. Single-Spin Asymmetries at CLAS

    SciTech Connect

    Avakian, Harutyun

    2003-05-01

    Single spin asymmetries (SSA) are crucial tools in the study of the spin structure of hadrons in pion electroproduction, since they are directly related to some hot topics,including transverse polarization distribution functions, fragmentation of polarized quarks and generalized parton distribution functions. At low beam energies, when the virtual photon has a relatively large angle with respect to the initial spin direction, the measured single-target spin-dependent sin φ moment in the cross section for the longitudinally polarized target contain contributions from the target spin components, both longitudinal and transverse with respect to the photon direction.This contribution presents preliminary results from Jefferson Lab's CLAS detector on beam and target SSA in pion azimuthal distributions in one particle inclusive electroproduction in the DIS regime (Q2 > 1GeV 2,W > 2GeV ) off a polarized NH3 target.

  10. Resolution of Single Spin Flips of a Single Proton

    NASA Astrophysics Data System (ADS)

    Mooser, A.; Kracke, H.; Blaum, K.; Bräuninger, S. A.; Franke, K.; Leiteritz, C.; Quint, W.; Rodegheri, C. C.; Ulmer, S.; Walz, J.

    2013-04-01

    The spin magnetic moment of a single proton in a cryogenic Penning trap was coupled to the particle’s axial motion with a superimposed magnetic bottle. Jumps in the oscillation frequency indicate spin flips and were identified using a Bayesian analysis.

  11. Resolution of single spin flips of a single proton.

    PubMed

    Mooser, A; Kracke, H; Blaum, K; Bräuninger, S A; Franke, K; Leiteritz, C; Quint, W; Rodegheri, C C; Ulmer, S; Walz, J

    2013-04-01

    The spin magnetic moment of a single proton in a cryogenic Penning trap was coupled to the particle's axial motion with a superimposed magnetic bottle. Jumps in the oscillation frequency indicate spin flips and were identified using a Bayesian analysis. PMID:25166966

  12. Single spin asymmetries in electroproduction at CLAS

    SciTech Connect

    Harut Avakian; Latifa Elouadrhiri

    2004-06-02

    We present measurements of spin asymmetries in semi-inclusive processes in hard scattering kinematics using a 5.7 GeV electron beam and the CEBAF Large Acceptance Spectrometer (CLAS) at JLab. Scattering of longitudinally polarized electrons of an unpolarized liquid-hydrogen and off a polarized NH{sub 3} targets was studied over a wide range of kinematics. Non-zero single-beam and single-target spin asymmetries have been observed in semi-inclusive pion production in hard-scattering kinematics (Q{sup 2} > 1.2 GeV{sup 2}, W{sup 4} > 4 GeV{sup 2}). Systematic studies of factorization of x and z dependences have been done for different spin-dependent and spin-independent observables. No significant x/z dependence has been observed within statistical uncertainties, which is consistent with factorization of hard scattering and fragmentation processes.

  13. Manipulating single electron spins and coherence in quantum dots

    NASA Astrophysics Data System (ADS)

    Awschalom, David

    2008-05-01

    The non-destructive detection of a single electron spin in a quantum dot (QD) is demonstrated using a time- averaged magneto-optical Kerr rotation measurementootnotetextJ. Berezovsky, M. H. Mikkelsen, O. Gywat, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, Science 314, 1916 (2006).. This technique provides a means to directly probe the spin off- resonance, thus minimally disturbing the system. Furthermore, the ability to sequentially initialize, manipulate, and read out the state of a qubit, such as an electron spin in a quantum dot, is necessary for virtually any scheme for quantum information processing. In addition to the time-averaged measurements, we have extended the single dot KR technique into the time domain with pulsed pump and probe lasers, allowing the observation of the coherent evolution of an electron spin stateootnotetextM. H. Mikkelsen, J. Berezovsky, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, Nature Physics 3, 770 (2007).. The dot is formed by interface fluctuations of a GaAs quantum well and embedded in a diode structure to allow controllable gating/charging of the QD. To enhance the small single spin signal, the QD is positioned within a vertical optical cavity. Observations of coherent single spin precession in an applied magnetic field allow a direct measurement of the electron g-factor and transverse spin lifetime. These measurements reveal information about the relevant spin decoherence mechanisms, while also providing a sensitive probe of the local nuclear spin environment. Finally, we have recently eveloped a scheme for high speed all-optical manipulation of the spin state that enables multiple operations within the coherence timeootnotetextJ. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, accepted for publication (2008).. The results represent progress toward the control and coupling of single spins and photons for quantum information processingootnotetextS. Ghosh, W.H. Wang, F. M. Mendoza, R. C

  14. Spin-transfer torque on a single magnetic adatom

    NASA Astrophysics Data System (ADS)

    Delgado, Fernando; José Palacios, Juan; Fernández-Rossier, Joaquín

    2010-03-01

    We theoretically show how the spin orientation of a single magnetic adatom can be controlled by spin polarized electrons in a scanning tunnelling microscope configuration. The underlying physical mechanism is spin assisted inelastic tunnelling. Experiments with Mn adatoms deposited on a Cu2N surface have been reported for non-polarized currents [1-2]. We show that by changing the direction of the applied current, the orientation of the magnetic adatom can be completely reversed on a time scale that ranges from a few nanoseconds to microseconds, depending on bias and temperature. The changes in the adatom magnetization direction are, in turn, reflected in the tunnelling conductance. Therefore, this effect opens the possibility of writing/reading a single spin without the need of a local magnetic field.[4pt] [1] C.F. Hirjibehedin, C. P. Lutz, A. J. Heinrich, Science 312, 1021 (2006).[0pt] [2] C. Hirjibehedin et al., Science 317, 1199 (2007).

  15. Nanoscale imaging of paramagnetic spin labels using a single spin in diamond

    NASA Astrophysics Data System (ADS)

    Ariyaratne, Amila; Myers, Bryan; Pelliccione, Matthew; Jayich, Ania

    Spin-labeling molecules with paramagnetic species is a powerful technique for probing molecular structure. However, current techniques are ensemble measurements, inherently lacking the sensitivity to detect a single spin or the conformational properties of a single biomolecule. In this talk, we demonstrate an imaging technique that has the promise of single-spin imaging and ultimately molecular structure imaging. We present two-dimensional nanoscale imaging of a monolayer of gadolinium (Gd) atomic spin labels at ambient conditions. The sensing element is a single nitrogen-vacancy (NV) center in diamond. A patterned monolayer of Gd atoms self-assembled on a Si atomic force microscopy tip is controllably interacted with and detected by the NV center. The fluctuating magnetic field generated by GHz-scale Gd spin flips relaxes the NV center in a manner that depends strongly on the Gd-NV separation. Using this technique, we demonstrate a Gd-induced reduction of the T1 relaxation time of the NV center with nm spatial resolution. Our results indicate that nanometer-scale imaging of individual electronic spins at ambient conditions is within reach. This will ultimately enable the study of structural and functional studies of single biomolecules in their native, folded state.

  16. A single-atom electron spin qubit in silicon.

    PubMed

    Pla, Jarryd J; Tan, Kuan Y; Dehollain, Juan P; Lim, Wee H; Morton, John J L; Jamieson, David N; Dzurak, Andrew S; Morello, Andrea

    2012-09-27

    A single atom is the prototypical quantum system, and a natural candidate for a quantum bit, or qubit--the elementary unit of a quantum computer. Atoms have been successfully used to store and process quantum information in electromagnetic traps, as well as in diamond through the use of the nitrogen-vacancy-centre point defect. Solid-state electrical devices possess great potential to scale up such demonstrations from few-qubit control to larger-scale quantum processors. Coherent control of spin qubits has been achieved in lithographically defined double quantum dots in both GaAs (refs 3-5) and Si (ref. 6). However, it is a formidable challenge to combine the electrical measurement capabilities of engineered nanostructures with the benefits inherent in atomic spin qubits. Here we demonstrate the coherent manipulation of an individual electron spin qubit bound to a phosphorus donor atom in natural silicon, measured electrically via single-shot read-out. We use electron spin resonance to drive Rabi oscillations, and a Hahn echo pulse sequence reveals a spin coherence time exceeding 200 µs. This time should be even longer in isotopically enriched (28)Si samples. Combined with a device architecture that is compatible with modern integrated circuit technology, the electron spin of a single phosphorus atom in silicon should be an excellent platform on which to build a scalable quantum computer. PMID:22992519

  17. Controlling spin relaxation with a cavity

    NASA Astrophysics Data System (ADS)

    Bienfait, A.; Pla, J. J.; Kubo, Y.; Zhou, X.; Stern, M.; Lo, C. C.; Weis, C. D.; Schenkel, T.; Vion, D.; Esteve, D.; Morton, J. J. L.; Bertet, P.

    2016-03-01

    Spontaneous emission of radiation is one of the fundamental mechanisms by which an excited quantum system returns to equilibrium. For spins, however, spontaneous emission is generally negligible compared to other non-radiative relaxation processes because of the weak coupling between the magnetic dipole and the electromagnetic field. In 1946, Purcell realized that the rate of spontaneous emission can be greatly enhanced by placing the quantum system in a resonant cavity. This effect has since been used extensively to control the lifetime of atoms and semiconducting heterostructures coupled to microwave or optical cavities, and is essential for the realization of high-efficiency single-photon sources. Here we report the application of this idea to spins in solids. By coupling donor spins in silicon to a superconducting microwave cavity with a high quality factor and a small mode volume, we reach the regime in which spontaneous emission constitutes the dominant mechanism of spin relaxation. The relaxation rate is increased by three orders of magnitude as the spins are tuned to the cavity resonance, demonstrating that energy relaxation can be controlled on demand. Our results provide a general way to initialize spin systems into their ground state and therefore have applications in magnetic resonance and quantum information processing. They also demonstrate that the coupling between the magnetic dipole of a spin and the electromagnetic field can be enhanced up to the point at which quantum fluctuations have a marked effect on the spin dynamics; as such, they represent an important step towards the coherent magnetic coupling of individual spins to microwave photons.

  18. Controlling spin relaxation with a cavity.

    PubMed

    Bienfait, A; Pla, J J; Kubo, Y; Zhou, X; Stern, M; Lo, C C; Weis, C D; Schenkel, T; Vion, D; Esteve, D; Morton, J J L; Bertet, P

    2016-03-01

    Spontaneous emission of radiation is one of the fundamental mechanisms by which an excited quantum system returns to equilibrium. For spins, however, spontaneous emission is generally negligible compared to other non-radiative relaxation processes because of the weak coupling between the magnetic dipole and the electromagnetic field. In 1946, Purcell realized that the rate of spontaneous emission can be greatly enhanced by placing the quantum system in a resonant cavity. This effect has since been used extensively to control the lifetime of atoms and semiconducting heterostructures coupled to microwave or optical cavities, and is essential for the realization of high-efficiency single-photon sources. Here we report the application of this idea to spins in solids. By coupling donor spins in silicon to a superconducting microwave cavity with a high quality factor and a small mode volume, we reach the regime in which spontaneous emission constitutes the dominant mechanism of spin relaxation. The relaxation rate is increased by three orders of magnitude as the spins are tuned to the cavity resonance, demonstrating that energy relaxation can be controlled on demand. Our results provide a general way to initialize spin systems into their ground state and therefore have applications in magnetic resonance and quantum information processing. They also demonstrate that the coupling between the magnetic dipole of a spin and the electromagnetic field can be enhanced up to the point at which quantum fluctuations have a marked effect on the spin dynamics; as such, they represent an important step towards the coherent magnetic coupling of individual spins to microwave photons. PMID:26878235

  19. Nonlinear Single Spin Spectrum Analyzer

    NASA Astrophysics Data System (ADS)

    Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Ozeri, Roee

    2014-03-01

    Qubits have been used as linear spectrum analyzers of their environments, through the use of decoherence spectroscopy. Here we solve the problem of nonlinear spectral analysis, required for discrete noise induced by a strongly coupled environment. Our nonperturbative analytical model shows a nonlinear signal dependence on noise power, resulting in a spectral resolution beyond the Fourier limit as well as frequency mixing. We develop a noise characterization scheme adapted to this nonlinearity. We then apply it using a single trapped ion as a sensitive probe of strong, non-Gaussian, discrete magnetic field noise. Finally, we experimentally compared the performance of equidistant vs Uhrig modulation schemes for spectral analysis. Phys. Rev. Lett. 110, 110503 (2013). Synopsis at http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.110.110503 Current position: NIST, Boulder, CO.

  20. Strong mechanical driving of a single electron spin

    NASA Astrophysics Data System (ADS)

    Barfuss, A.; Teissier, J.; Neu, E.; Nunnenkamp, A.; Maletinsky, P.

    2015-10-01

    Quantum devices for sensing and computing applications require coherent quantum systems, which can be manipulated in fast and robust ways. Such quantum control is typically achieved using external electromagnetic fields, which drive the system’s orbital, charge or spin degrees of freedom. However, most existing approaches require complex and unwieldy gate structures, and with few exceptions are limited to the regime of weak coherent driving. Here, we present a novel approach to coherently drive a single electronic spin using internal strain fields in an integrated quantum device. Specifically, we employ time-varying strain in a diamond cantilever to induce long-lasting, coherent oscillations of an embedded nitrogen-vacancy (NV) centre spin. We perform direct spectroscopy of the phonon-dressed states emerging from this drive and observe hallmarks of the sought-after strong-driving regime, where the spin rotation frequency exceeds the spin splitting. Furthermore, we employ our continuous strain driving to significantly enhance the NV’s spin coherence time. Our room-temperature experiments thereby constitute an important step towards strain-driven, integrated quantum devices and open new perspectives to investigate unexplored regimes of strongly driven multilevel systems and exotic spin dynamics in hybrid spin-oscillator devices.

  1. Nonlinear Single Spin Spectrum Analayzer

    NASA Astrophysics Data System (ADS)

    Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Ozeri, Roee

    2014-05-01

    Qubits are excellent probes of their environment. When operating in the linear regime, they can be used as linear spectrum analyzers of the noise processes surrounding them. These methods fail for strong non-Gaussian noise where the qubit response is no longer linear. Here we solve the problem of nonlinear spectral analysis, required for strongly coupled environments. Our non-perturbative analytic model shows a nonlinear signal dependence on noise power, resulting in a spectral resolution beyond the Fourier limit as well as frequency mixing. We developed a noise characterization scheme adapted to this non-linearity. We then applied it using a single trapped 88Sr+ ion as the a sensitive probe of strong, non-Gaussian, discrete magnetic field noise. With this method, we attained a ten fold improvement over the standard Fourier limit. Finally, we experimentally compared the performance of equidistant vs. Uhrig modulation schemes for spectral analysis. Phys. Rev. Lett. 110, 110503 (2013), Synopsis at http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.110.110503 Current position: National Institute of Standards and Tehcnology, Boulder, CO.

  2. Single-spin stochastic optical reconstruction microscopy

    PubMed Central

    Pfender, Matthias; Aslam, Nabeel; Waldherr, Gerald; Neumann, Philipp; Wrachtrup, Jörg

    2014-01-01

    We experimentally demonstrate precision addressing of single-quantum emitters by combined optical microscopy and spin resonance techniques. To this end, we use nitrogen vacancy (NV) color centers in diamond confined within a few ten nanometers as individually resolvable quantum systems. By developing a stochastic optical reconstruction microscopy (STORM) technique for NV centers, we are able to simultaneously perform sub–diffraction-limit imaging and optically detected spin resonance (ODMR) measurements on NV spins. This allows the assignment of spin resonance spectra to individual NV center locations with nanometer-scale resolution and thus further improves spatial discrimination. For example, we resolved formerly indistinguishable emitters by their spectra. Furthermore, ODMR spectra contain metrology information allowing for sub–diffraction-limit sensing of, for instance, magnetic or electric fields with inherently parallel data acquisition. As an example, we have detected nuclear spins with nanometer-scale precision. Finally, we give prospects of how this technique can evolve into a fully parallel quantum sensor for nanometer resolution imaging of delocalized quantum correlations. PMID:25267655

  3. Theory of optical spin control in quantum dot microcavities

    NASA Astrophysics Data System (ADS)

    Smirnov, D. S.; Glazov, M. M.; Ivchenko, E. L.; Lanco, L.

    2015-09-01

    We present a microscopic theory of optical initialization, control, and detection for a single electron spin in a quantum dot embedded into a zero-dimensional microcavity. The strong coupling regime of the trion and the cavity mode is addressed. We demonstrate that efficient spin orientation by a single circularly polarized pulse is possible in relatively weak transverse magnetic fields. The possibilities for spin control by additional circularly polarized pulse are analyzed. Under optimal conditions the Kerr and Faraday rotation angles induced by the spin polarized electron may reach tens of degrees.

  4. Collins Mechanism Contributions to Single Spin Asymmetry

    SciTech Connect

    Yuan,F.

    2009-05-26

    We present recent developments on the single transverse spin physics, in particular, the Collins mechanism contributions in various hadronic reactions, such as semi-inclusive hadron production in DIS process, azimuthal distribution of hadron in high energy jet in pp collisions. We will demonstrate that the transverse momentum dependent and collinear factorization approaches are consistent with each other in the description of the Collins effects in the semi-inclusive hadron production in DIS process.

  5. Single Spin Asymmetries from a Single Wilson Loop

    NASA Astrophysics Data System (ADS)

    Boer, Daniël; Echevarria, Miguel G.; Mulders, Piet J.; Zhou, Jian

    2016-03-01

    We study the leading-power gluon transverse-momentum-dependent distributions (TMDs) of relevance to the study of asymmetries in the scattering off transversely polarized hadrons. Next-to-leading-order perturbative calculations of these TMDs show that at large transverse momentum they have common dynamical origins but that in the limit of a small longitudinal momentum fraction x , only one origin remains. We find that in this limit, only the dipole-type gluon TMDs survive and become identical to each other. At small x , they are all given by the expectation value of a single Wilson loop inside the transversely polarized hadron, the so-called spin-dependent odderon. This universal origin of transverse spin asymmetries at small x is of importance to current and future experimental studies, paving the way to a better understanding of the role of gluons in the three-dimensional structure of spin-polarized protons.

  6. Single Spin Asymmetries from a Single Wilson Loop.

    PubMed

    Boer, Daniël; Echevarria, Miguel G; Mulders, Piet J; Zhou, Jian

    2016-03-25

    We study the leading-power gluon transverse-momentum-dependent distributions (TMDs) of relevance to the study of asymmetries in the scattering off transversely polarized hadrons. Next-to-leading-order perturbative calculations of these TMDs show that at large transverse momentum they have common dynamical origins but that in the limit of a small longitudinal momentum fraction x, only one origin remains. We find that in this limit, only the dipole-type gluon TMDs survive and become identical to each other. At small x, they are all given by the expectation value of a single Wilson loop inside the transversely polarized hadron, the so-called spin-dependent odderon. This universal origin of transverse spin asymmetries at small x is of importance to current and future experimental studies, paving the way to a better understanding of the role of gluons in the three-dimensional structure of spin-polarized protons. PMID:27058070

  7. Quantum-dot-spin single-photon interface.

    PubMed

    Yilmaz, S T; Fallahi, P; Imamoğlu, A

    2010-07-16

    Using background-free detection of spin-state-dependent resonance fluorescence from a single-electron charged quantum dot with an efficiency of 0.1%, we realize a classical single spin-photon interface where the detection of a scattered photon with 300 ps time resolution projects the quantum dot spin to a definite spin eigenstate with fidelity exceeding 99%. The bunching of resonantly scattered photons reveals information about electron spin dynamics. High-fidelity fast spin-state initialization heralded by a single photon enables the realization of quantum information processing tasks such as nondeterministic distant spin entanglement. Given that we could suppress the measurement backaction to well below the natural spin-flip rate, realization of a quantum nondemolition measurement of a single spin could be achieved by increasing the fluorescence collection efficiency by a factor exceeding 10 using a photonic nanostructure. PMID:20867763

  8. Control Spin Current and Data Recording on Spin Storage Medium

    NASA Astrophysics Data System (ADS)

    Krupa, M. M.

    2014-12-01

    The paper presents the results of experimental studies of the physical mechanisms and dynamics of magnetization reversal of the films Al2O3/Tb25Co5Fe70/Al2O3, Al2O3/Tb22Co5Fe73/Al2O3, Al2O3/Tb19Co5Fe76/Al2O3, Al2O3/Co30Fe70/Al2O3 with a single magnetic layer and the films Al2O3/Tb22Co5Fe73/Pr6O11/Tb19Co5Fe76/Al2O3, Al2O3/Co80Fe20/Pr6O11/Co30Fe70/Al2O3 with two magnetic layers radiated by picosecond (τi ≈ 80 ps) and femtosecond (τi ≈ 130 fs) laser pulses. The experimental samples of spin transistors and data recording devices on the spin storage medium are also described. The results of studies have shown that magnetic switching effects in the nanolayers under femtosecond laser pulses can be used for creation of systems of high-speed controlling of spin currents with the response time τ ≤ 10-11s. Conclusions from the studies are the following: thermomagnetic switching under the influence of an external magnetic field or a demagnetization field, magnetic switching of antiferromagnetic films under the influence of an effective internal field of antiferromagnetic interaction between magnetic sublattices rare-earth and transitive metals, magnetic switching under the influence of a magnetic field of the inverse Faraday effect, or under the influence of a magnetic field of a spin current. The magnetic switching of magnetic layers under action of the magnetic field of a spin current is the most important for practical use in elements of spintronics. This mechanism of magnetic reversal takes place only in multilayer nanofilms and the heterogeneous multilayer magnetic nanofilms are the base material for creation of spintronic devices. The great advantage of the magnetization reversal of magnetic nanolayers of the spin current is that the mechanism of magnetization reversal is working in the films with perpendicular anisotropy and in the films with in-plane anisotropy. The injection of polarized electrons can also be realized using short electrical pulses. That is

  9. Quantum logic readout and cooling of a single dark electron spin

    NASA Astrophysics Data System (ADS)

    Shi, Fazhan; Zhang, Qi; Naydenov, Boris; Jelezko, Fedor; Du, Jiangfeng; Reinhard, Friedemann; Wrachtrup, Jörg

    2013-05-01

    We study a single dark N2 electron spin defect in diamond, which is magnetically coupled to a nearby nitrogen-vacancy (NV) center. We perform pulsed electron spin resonance on this single spin by mapping its state to the NV center spin and optically reading out the latter. Moreover, we show that the NV center's spin polarization can be transferred to the electron spin by combined two decoupling control-NOT gates. These two results allow us to extend the NV center's two key properties—optical spin polarization and detection—to any electron spin in its vicinity. This enables dark electron spins to be used as local quantum registers and engineerable memories.

  10. Ultrafast optical control of individual quantum dot spin qubits

    NASA Astrophysics Data System (ADS)

    De Greve, Kristiaan; Press, David; McMahon, Peter L.; Yamamoto, Yoshihisa

    2013-09-01

    Single spins in semiconductor quantum dots form a promising platform for solid-state quantum information processing. The spin-up and spin-down states of a single electron or hole, trapped inside a quantum dot, can represent a single qubit with a reasonably long decoherence time. The spin qubit can be optically coupled to excited (charged exciton) states that are also trapped in the quantum dot, which provides a mechanism to quickly initialize, manipulate and measure the spin state with optical pulses, and to interface between a stationary matter qubit and a ‘flying’ photonic qubit for quantum communication and distributed quantum information processing. The interaction of the spin qubit with light may be enhanced by placing the quantum dot inside a monolithic microcavity. An entire system, consisting of a two-dimensional array of quantum dots and a planar microcavity, may plausibly be constructed by modern semiconductor nano-fabrication technology and could offer a path toward chip-sized scalable quantum repeaters and quantum computers. This article reviews the recent experimental developments in optical control of single quantum dot spins for quantum information processing. We highlight demonstrations of a complete set of all-optical single-qubit operations on a single quantum dot spin: initialization, an arbitrary SU(2) gate, and measurement. We review the decoherence and dephasing mechanisms due to hyperfine interaction with the nuclear-spin bath, and show how the single-qubit operations can be combined to perform spin echo sequences that extend the qubit decoherence from a few nanoseconds to several microseconds, more than 5 orders of magnitude longer than the single-qubit gate time. Two-qubit coupling is discussed, both within a single chip by means of exchange coupling of nearby spins and optically induced geometric phases, as well as over longer-distances. Long-distance spin-spin entanglement can be generated if each spin can emit a photon that is

  11. Ultrafast optical control of individual quantum dot spin qubits.

    PubMed

    De Greve, Kristiaan; Press, David; McMahon, Peter L; Yamamoto, Yoshihisa

    2013-09-01

    Single spins in semiconductor quantum dots form a promising platform for solid-state quantum information processing. The spin-up and spin-down states of a single electron or hole, trapped inside a quantum dot, can represent a single qubit with a reasonably long decoherence time. The spin qubit can be optically coupled to excited (charged exciton) states that are also trapped in the quantum dot, which provides a mechanism to quickly initialize, manipulate and measure the spin state with optical pulses, and to interface between a stationary matter qubit and a 'flying' photonic qubit for quantum communication and distributed quantum information processing. The interaction of the spin qubit with light may be enhanced by placing the quantum dot inside a monolithic microcavity. An entire system, consisting of a two-dimensional array of quantum dots and a planar microcavity, may plausibly be constructed by modern semiconductor nano-fabrication technology and could offer a path toward chip-sized scalable quantum repeaters and quantum computers. This article reviews the recent experimental developments in optical control of single quantum dot spins for quantum information processing. We highlight demonstrations of a complete set of all-optical single-qubit operations on a single quantum dot spin: initialization, an arbitrary SU(2) gate, and measurement. We review the decoherence and dephasing mechanisms due to hyperfine interaction with the nuclear-spin bath, and show how the single-qubit operations can be combined to perform spin echo sequences that extend the qubit decoherence from a few nanoseconds to several microseconds, more than 5 orders of magnitude longer than the single-qubit gate time. Two-qubit coupling is discussed, both within a single chip by means of exchange coupling of nearby spins and optically induced geometric phases, as well as over longer-distances. Long-distance spin-spin entanglement can be generated if each spin can emit a photon that is entangled

  12. Single transverse spin asymmetry of forward neutrons

    NASA Astrophysics Data System (ADS)

    Kopeliovich, B. Z.; Potashnikova, I. K.; Schmidt, Iván; Soffer, J.

    2011-12-01

    We calculate the single transverse spin asymmetry AN(t), for inclusive neutron production in pp collisions at forward rapidities relative to the polarized proton in the energy range of RHIC. Absorptive corrections to the pion pole generate a relative phase between the spin-flip and nonflip amplitudes, leading to a transverse spin asymmetry which is found to be far too small to explain the magnitude of AN observed in the PHENIX experiment. A larger contribution, which does not vanish at high energies, comes from the interference of pion and a1-Reggeon exchanges. The unnatural parity of a1 guarantees a substantial phase shift, although the magnitude is strongly suppressed by the smallness of diffractive πp→a1p cross section. We replace the Regge a1 pole by the Regge cut corresponding to the πρ exchange in the 1+S state. The production of such a state, which we treat as an effective pole a, forms a narrow peak in the 3π invariant mass distribution in diffractive πp interactions. The cross section is large, so one can assume that this state saturates the spectral function of the axial current and we can determine its coupling to nucleons via the partially conserved axial-vector-current constraint Goldberger-Treiman relation and the second Weinberg sum rule. The numerical results of the parameter-free calculation of AN are in excellent agreement with the PHENIX data.

  13. Pulsed nuclear pumping and spin diffusion in a single charged quantum dot.

    PubMed

    Ladd, Thaddeus D; Press, David; De Greve, Kristiaan; McMahon, Peter L; Friess, Benedikt; Schneider, Christian; Kamp, Martin; Höfling, Sven; Forchel, Alfred; Yamamoto, Yoshihisa

    2010-09-01

    We report the observation of a feedback process between the nuclear spins in a single charged quantum dot under coherently pulsed optical excitation and its trion transition. The optical pulse sequence intersperses resonant narrow-band pumping for spin initialization with off-resonant ultrafast pulses for coherent electron-spin rotation. A hysteretic sawtooth pattern in the free-induction decay of the single electron spin is observed; a mathematical model indicates a competition between optical nuclear pumping and nuclear spin-diffusion. This effect allows dynamic tuning of the electron Larmor frequency to a value determined by the pulse timing, potentially allowing more complex coherent control operations. PMID:20867546

  14. Measuring mechanical motion with a single spin

    NASA Astrophysics Data System (ADS)

    Bennett, S. D.; Kolkowitz, S.; Unterreithmeier, Q. P.; Rabl, P.; Bleszynski Jayich, A. C.; Harris, J. G. E.; Lukin, M. D.

    2012-12-01

    We study theoretically the measurement of a mechanical oscillator using a single two-level system as a detector. In a recent experiment, we used a single electronic spin associated with a nitrogen-vacancy center in diamond to probe the thermal motion of a magnetized cantilever at room temperature (Kolkowitz et al 2012 Science 335 1603). Here, we present a detailed analysis of the sensitivity limits of this technique, as well as the possibility to measure the zero-point motion of the oscillator. Further, we discuss the issue of measurement backaction in sequential measurements and find that although backaction heating can occur, it does not prohibit the detection of zero-point motion. Throughout the paper, we focus on the experimental implementation of a nitrogen-vacancy center coupled to a magnetic cantilever; however, our results are applicable to a wide class of spin-oscillator systems. The implications for the preparation of nonclassical states of a mechanical oscillator are also discussed.

  15. Ultrahigh spin thermopower and pure spin current in a single-molecule magnet

    PubMed Central

    Luo, Bo; Liu, Juan; Lü, Jing-Tao; Gao, Jin-Hua; Yao, Kai-Lun

    2014-01-01

    Using the non-equilibrium Green's function (NEGF) formalism within the sequential regime, we studied ultrahigh spin thermopower and pure spin current in single-molecule magnet(SMM), which is attached to nonmagnetic metal wires with spin bias and angle (θ) between the easy axis of SMM and the spin orientation in the electrodes. A pure spin current can be generated by tuning the gate voltage and temperature difference with finite spin bias and the arbitrary angle except of . In the linear regime, large thermopower can be obtained by modifying Vg and the angles (θ). These results are useful in fabricating and advantaging SMM devices based on spin caloritronics. PMID:24549224

  16. Single spin optically detected magnetic resonance with 60-90 GHz (E-band) microwave resonators.

    PubMed

    Aslam, Nabeel; Pfender, Matthias; Stöhr, Rainer; Neumann, Philipp; Scheffler, Marc; Sumiya, Hitoshi; Abe, Hiroshi; Onoda, Shinobu; Ohshima, Takeshi; Isoya, Junichi; Wrachtrup, Jörg

    2015-06-01

    Magnetic resonance with ensembles of electron spins is commonly performed around 10 GHz, but also at frequencies above 240 GHz and in corresponding magnetic fields of over 9 T. However, experiments with single electron and nuclear spins so far only reach into frequency ranges of several 10 GHz, where existing coplanar waveguide structures for microwave (MW) delivery are compatible with single spin readout techniques (e.g., electrical or optical readout). Here, we explore the frequency range up to 90 GHz, with magnetic fields of up to ≈3 T for single spin magnetic resonance in conjunction with optical spin readout. To this end, we develop MW resonators with optical single spin access. In our case, rectangular 60-90 GHz (E-band) waveguides guarantee low-loss supply of microwaves to the resonators. Three dimensional cavities, as well as coplanar waveguide resonators, enhance MW fields by spatial and spectral confinement with a MW efficiency of 1.36 mT/√W. We utilize single nitrogen vacancy (NV) centers as hosts for optically accessible spins and show that their properties regarding optical spin readout known from smaller fields (<0.65 T) are retained up to fields of 3 T. In addition, we demonstrate coherent control of single nuclear spins under these conditions. Furthermore, our results extend the applicable magnetic field range of a single spin magnetic field sensor. Regarding spin based quantum registers, high fields lead to a purer product basis of electron and nuclear spins, which promises improved spin lifetimes. For example, during continuous single-shot readout, the (14)N nuclear spin shows second-long longitudinal relaxation times. PMID:26133855

  17. Dynamic control of spin wave spectra using spin-polarized currents

    SciTech Connect

    Wang, Qi; Zhang, Huaiwu Tang, Xiaoli; Bai, Feiming; Zhong, Zhiyong; Fangohr, Hans

    2014-09-15

    We describe a method of controlling the spin wave spectra dynamically in a uniform nanostripe waveguide through spin-polarized currents. A stable periodic magnetization structure is observed when the current flows vertically through the center of nanostripe waveguide. After being excited, the spin wave is transmitted at the sides of the waveguide. Numerical simulations of spin-wave transmission and dispersion curves reveal a single, pronounced band gap. Moreover, the periodic magnetization structure can be turned on and off by the spin-polarized current. The switching process from full rejection to full transmission takes place within less than 3 ns. Thus, this type magnonic waveguide can be utilized for low-dissipation spin wave based filters.

  18. Single Spin Asymmetry in Charmonium Production

    NASA Astrophysics Data System (ADS)

    Godbole, Rohini M.; Kaushik, Abhiram; Misra, Anuradha; Rawoot, Vaibhav

    2015-09-01

    We present estimates of single spin asymmetry (SSA) in the electroproduction of taking into account the transverse momentum dependent (TMD) evolution of the gluon Sivers function and using Color Evaporation Model of charmonium production. We estimate SSA for JLab, HERMES, COMPASS and eRHIC energies using recent parameters for the quark Sivers functions which are fitted using an evolution kernel in which the perturbative part is resummed up to next-to-leading logarithms accuracy. We find that these SSAs are much smaller as compared to our first estimates obtained using DGLAP evolution but are comparable to our estimates obtained using TMD evolution where we had used approximate analytical solution of the TMD evolution equation for the purpose.

  19. Single transverse-spin asymmetry in QCD

    NASA Astrophysics Data System (ADS)

    Koike, Yuji

    2014-09-01

    So far large single transverse-spin asymmetries (SSA) have been observed in many high-energy processes such as semi-inclusive deep inelastic scattering and proton-proton collisions. Since the conventional parton model and perturbative QCD can not accomodate such large SSAs, the framework for QCD hard processes had to be extended to understand the mechanism of SSA. In this extended frameworks of QCD, intrinsic transverse momentum of partons and the multi-parton (quark-gluon and pure-gluonic) correlations in the hadrons, which were absent in the conventional framework, play a crucial role to cause SSAs, and well-defined formulation of these effects has been a big challenge for QCD theorists. Study on these effects has greatly promoted our understanding on QCD dynamics and hadron structure. In this talk, I will present an overview on these theoretical activity, emphasizing the important role of the Drell-Yan process.

  20. Concept for room temperature single-spin tunneling force microscopy with atomic spatial resolution

    NASA Astrophysics Data System (ADS)

    Payne, Adam

    A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy (AFM) system noise. The results show that the approach could provide single-spin measurement of electrically isolated defect states with atomic spatial resolution at room temperature.

  1. Atomic-resolution single-spin magnetic resonance detection concept based on tunneling force microscopy

    NASA Astrophysics Data System (ADS)

    Payne, A.; Ambal, K.; Boehme, C.; Williams, C. C.

    2015-05-01

    A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single-electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy system noise. The results show that the approach could provide single-spin measurement of electrically isolated qubit states with atomic spatial resolution at room temperature.

  2. Theory of quantum control of spin-photon dynamics and spin decoherence in semiconductors

    NASA Astrophysics Data System (ADS)

    Yao, Wang

    Single electron spin in a semiconductor quantum dot (QD) and single photon wavepacket propagating in an optical waveguide are investigated as carriers of quantum bit (qubit) for information processing. Cavity quantum electrodynamics of the coupled system composed of charged QD, microcavity and waveguide provides a quantum interface for the interplay of stationary spin qubits and flying photon qubits via cavity assisted optical control. This interface forms the basis for a wide range of essential functions of a quantum network, including transferring, swapping, and entangling qubits at distributed quantum nodes as well as a deterministic source and an efficient detector of a single photon wavepacket with arbitrarily specified shape. The cavity assisted optical process also made possible ultrafast initialization and QND readout of the spin qubit in QD. In addition, the strong optical nonlinearity of dot-cavity-waveguide coupled system enables phase gate and entanglement operation for flying single photon qubits in waveguides. The coherence of the electron spin is the wellspring of these quantum applications being investigated. At low temperature and strong magnetic field, the dominant cause of electron spin decoherence is the coupling with the interacting lattice nuclear spins. We present a quantum solution to the coupled dynamics of the electron with the nuclear spin bath. The decoherence is treated in terms of quantum entanglement of the electron with the nuclear pair-flip excitations driven by the various nuclear interactions. A novel nuclear interaction, mediated by virtue spin-flips of the single electron, plays an important role in single spin free-induction decay (FID). The spin echo not only refocuses the dephasing by inhomogeneous broadening in ensemble dynamics but also eliminates the decoherence by electron-mediated nuclear interaction. Thus, the decoherence times for single spin FID and ensemble spin echo are significantly different. The quantum theory of

  3. Optically controlled spins in semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Economou, Sophia

    2010-03-01

    Spins in charged semiconductor quantum dots are currently generating much interest, both from a fundamental physics standpoint, as well as for their potential technological relevance. Being naturally a two-level quantum system, each of these spins can encode a bit of quantum information. Optically controlled spins in quantum dots possess several desirable properties: their spin coherence times are long, they allow for all-optical manipulation---which translates into fast logic gates---and their coupling to photons offers a straightforward route to exchange of quantum information between spatially separated sites. Designing the laser fields to achieve the unprecedented amount of control required for quantum information tasks is a challenging goal, towards which there has been recent progress. Special properties of hyperbolic secant optical pulses enabled the design of single qubit rotations, initially developed about the growth axis z [1], and later about an arbitrary direction [2]. Recently we demonstrated our theoretical proposal [1] in an ensemble of InAs/GaAs quantum dots by implementing ultrafast rotations about the z axis by an arbitrary angle [3], with the angle of rotation as a function of the optical detuning in excellent agreement with the theoretical prediction. We also developed two-qubit conditional control in a quantum dot `molecule' using the electron-hole exchange interaction [4]. In addition to its importance in quantum dot-based quantum computation, our two-qubit gate can also play an important role in photonic cluster state generation for measurement-based quantum computing [5]. [1] S. E. Economou, L. J. Sham, Y. Wu, D. S. Steel, Phys. Rev. 74, 205415 (2006) [2] S. E. Economou and T. L. Reinecke, Phys. Rev. Lett., 99, 217401 (2007) [3] A. Greilich, S. E. Economou et al, Nature Phys. 5, 262 (2009) [4] S. E. Economou and T. L. Reinecke, Phys. Rev. B, 78, 115306 (2008) [5] S. E. Economou, N. H. Lindner, and T. Rudolph, in preparation

  4. Controlling the quantum dynamics of a mesoscopic spin bath in diamond

    PubMed Central

    de Lange, Gijs; van der Sar, Toeno; Blok, Machiel; Wang, Zhi-Hui; Dobrovitski, Viatcheslav; Hanson, Ronald

    2012-01-01

    Understanding and mitigating decoherence is a key challenge for quantum science and technology. The main source of decoherence for solid-state spin systems is the uncontrolled spin bath environment. Here, we demonstrate quantum control of a mesoscopic spin bath in diamond at room temperature that is composed of electron spins of substitutional nitrogen impurities. The resulting spin bath dynamics are probed using a single nitrogen-vacancy (NV) centre electron spin as a magnetic field sensor. We exploit the spin bath control to dynamically suppress dephasing of the NV spin by the spin bath. Furthermore, by combining spin bath control with dynamical decoupling, we directly measure the coherence and temporal correlations of different groups of bath spins. These results uncover a new arena for fundamental studies on decoherence and enable novel avenues for spin-based magnetometry and quantum information processing. PMID:22536480

  5. Spin Hall controlled magnonic microwaveguides

    SciTech Connect

    Demidov, V. E.; Urazhdin, S.; Rinkevich, A. B.; Reiss, G.; Demokritov, S. O.

    2014-04-14

    We use space-resolved magneto-optical spectroscopy to study the influence of spin Hall effect on the excitation and propagation of spin waves in microscopic magnonic waveguides. We find that the spin Hall effect not only increases the spin-wave propagation length, but also results in an increased excitation efficiency due to the increase of the dynamic susceptibility in the vicinity of the inductive antenna. We show that the efficiency of the propagation length enhancement is strongly dependant on the type of the excited spin-wave mode and its wavelength.

  6. Single spin magnetometry with nitrogen-vacancy centers in diamond

    NASA Astrophysics Data System (ADS)

    Chisholm, Nicholas Edward Kennedy

    The nitrogen-vacancy (NV) center in diamond is a solid-state point defect with an electronic spin that has accessible quantum mechanical properties. At room temperature, the electronic ground state sub-levels of the NV center can be initialized and read out using optical pumping, as well as coherently controlled using microwave frequency fields. This thesis focuses on using the spin state of the NV center for highly-sensitive magnetometry under ambient conditions. In particular, when the diamond surface is properly prepared, we demonstrate that NV centers can be used to measure the magnetic fluctuations stemming from individual molecules and ions attached or adsorbed to the surface. This thesis begins by introducing the physical and electronic structure of the NV center at room temperature, followed by the fundamental measurements that allow us to use the NV center as a sensitive magnetometer. Combining our sensitive NV center magnetometer with techniques from chemistry and atomic force microscopy (AFM), we demonstrate the all-optical detection of a single-molecule electron spin at room temperature. Finally, we discuss the time-resolved detection of individual electron spins adsorbing onto the surface of nano-diamonds. By extending our techniques to nano-diamonds, we move closer towards textit{in vitro} magnetic field sensing that could be pivotal for better disease diagnosis and drug development.

  7. Unvail the Mysterious of the Single Spin Asymmetry

    SciTech Connect

    Yuan, Feng

    2010-01-05

    Single transverse-spin asymmetry in high energy hadronic reaction has been greatly investigated from both experiment and theory sides in the last few years. In this talk, I will summarize some recent theoretical developments, which, in my opinion, help to unvail the mysterious of the single spin asymmetry.

  8. RHIC spin flipper AC dipole controller

    SciTech Connect

    Oddo, P.; Bai, M.; Dawson, C.; Gassner, D.; Harvey, M.; Hayes, T.; Mernick, K.; Minty, M.; Roser, T.; Severino, F.; Smith, K.

    2011-03-28

    The RHIC Spin Flipper's five high-Q AC dipoles which are driven by a swept frequency waveform require precise control of phase and amplitude during the sweep. This control is achieved using FPGA based feedback controllers. Multiple feedback loops are used to and dynamically tune the magnets. The current implementation and results will be presented. Work on a new spin flipper for RHIC (Relativistic Heavy Ion Collider) incorporating multiple dynamically tuned high-Q AC-dipoles has been developed for RHIC spin-physics experiments. A spin flipper is needed to cancel systematic errors by reversing the spin direction of the two colliding beams multiple times during a store. The spin flipper system consists of four DC-dipole magnets (spin rotators) and five AC-dipole magnets. Multiple AC-dipoles are needed to localize the driven coherent betatron oscillation inside the spin flipper. Operationally the AC-dipoles form two swept frequency bumps that minimize the effect of the AC-dipole dipoles outside of the spin flipper. Both AC bumps operate at the same frequency, but are phase shifted from each other. The AC-dipoles therefore require precise control over amplitude and phase making the implementation of the AC-dipole controller the central challenge.

  9. Macroscopic rotation of photon polarization induced by a single spin.

    PubMed

    Arnold, Christophe; Demory, Justin; Loo, Vivien; Lemaître, Aristide; Sagnes, Isabelle; Glazov, Mikhaïl; Krebs, Olivier; Voisin, Paul; Senellart, Pascale; Lanco, Loïc

    2015-01-01

    Entangling a single spin to the polarization of a single incoming photon, generated by an external source, would open new paradigms in quantum optics such as delayed-photon entanglement, deterministic logic gates or fault-tolerant quantum computing. These perspectives rely on the possibility that a single spin induces a macroscopic rotation of a photon polarization. Such polarization rotations induced by single spins were recently observed, yet limited to a few 10(-3) degrees due to poor spin-photon coupling. Here we report the enhancement by three orders of magnitude of the spin-photon interaction, using a cavity quantum electrodynamics device. A single hole spin in a semiconductor quantum dot is deterministically coupled to a micropillar cavity. The cavity-enhanced coupling between the incoming photons and the solid-state spin results in a polarization rotation by ± 6° when the spin is optically initialized in the up or down state. These results open the way towards a spin-based quantum network. PMID:25687134

  10. Spin coherence in a Mn3 single-molecule magnet

    NASA Astrophysics Data System (ADS)

    Abeywardana, Chathuranga; Mowson, Andrew M.; Christou, George; Takahashi, Susumu

    2016-01-01

    Spin coherence in single crystals of the spin S = 6 single-molecule magnet (SMM) [Mn3O(O2CEt)3(mpko)3]+ (abbreviated Mn3) has been investigated using 230 GHz electron paramagnetic resonance spectroscopy. Coherence in Mn3 was uncovered by significantly suppressing dipolar contribution to the decoherence with complete spin polarization of Mn3 SMMs. The temperature dependence of spin decoherence time (T2) revealed that the dipolar decoherence is the dominant source of decoherence in Mn3 and T2 can be extended up to 267 ns by quenching the dipolar decoherence.

  11. Spin noise spectroscopy in semiconductors: from a billion down to single spins

    NASA Astrophysics Data System (ADS)

    Hübner, J.; Dahbashi, R.; Berski, F.; Wiegand, J.; Kuhn, H.; Lonnemann, J.; Oestreich, M.

    2014-08-01

    Spin noise spectroscopy in semiconductors has matured during the past nine years into a versatile and well developed technique being capable to unveil the intrinsic and unaltered spin dynamics in a wide range of semiconductor systems. Originating from atom and quantum optics as a potential true quantum non-demolition measurement technique, SNS is capable of unearthing the intricate dynamics of free or localized electron and hole spins in semiconductors being eventually coupled to the nuclear spin bath as well. In this contribution, we review shortly the major steps which inspired the success of spin noise spectroscopy in semiconductors and present the most recent extensions into the low-invasive detection regime of the spin dynamics for the two extreme limits of very high and extremely low rates of spin decoherence, respectively. On the one hand, merging ultrafast laser spectroscopy with spin noise spectroscopy enables the detection of spin noise with picosecond resolution, i.e., with THz bandwidths yielding access to otherwise concealed microscopic electronic processes. On the other hand, we present very high sensitivity SNS being capable to measure the extremely long spin coherence of single holes enclosed in individual quantum dots venturing a step forward towards true optical quantum non-demolition experiments in semiconductors. In addition, higher-order spin noise statistics of, e.g., single charges can give information beyond the linear response regime governed by the fundamental fluctuationdissipation theorem and thereby possibly shed some light on the nested coupling between electronic and nuclear spins.

  12. Pumped Spin-Current in Single Quantum Dot with Spin-Dependent Electron Temperature

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Wang, Song; Du, Xiaohong

    2016-05-01

    Spin-dependent electron temperature effect on the spin pump in a single quantum dot connected to Normal and/or Ferromagnetic leads are investigated with the help of master equation method. Results show that spin heat accumulation breaks the tunneling rates balance at the thermal equilibrium state thus the charge current and the spin current are affected to some extent. Pure spin current can be obtained by adjusting pumping intensity or chemical potential of the lead. Spin heat accumulation of certain material can be detected by measuring the charge current strength in symmetric leads architectures. In practical devices, spin-dependent electron temperature effect is quite significant and our results should be useful in quantum information processing and spin Caloritronics.

  13. Pumped Spin-Current in Single Quantum Dot with Spin-Dependent Electron Temperature

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Wang, Song; Du, Xiaohong

    2016-09-01

    Spin-dependent electron temperature effect on the spin pump in a single quantum dot connected to Normal and/or Ferromagnetic leads are investigated with the help of master equation method. Results show that spin heat accumulation breaks the tunneling rates balance at the thermal equilibrium state thus the charge current and the spin current are affected to some extent. Pure spin current can be obtained by adjusting pumping intensity or chemical potential of the lead. Spin heat accumulation of certain material can be detected by measuring the charge current strength in symmetric leads architectures. In practical devices, spin-dependent electron temperature effect is quite significant and our results should be useful in quantum information processing and spin Caloritronics.

  14. Clocked single-spin source based on a spin-split superconductor

    NASA Astrophysics Data System (ADS)

    Dittmann, Niklas; Splettstoesser, Janine; Giazotto, Francesco

    2016-08-01

    We propose an accurate clocked single-spin source for ac-spintronic applications. Our device consists of a superconducting island covered by a ferromagnetic insulator (FI) layer through which it is coupled to superconducting leads. Single-particle transfer relies on the energy gaps and the island's charging energy, and is enabled by a bias and a time-periodic gate voltage. Accurate spin transfer is achieved by the FI layer which polarizes the island, provides spin-selective tunneling barriers and improves the precision by suppressing Andreev reflection. We analyze realistic material combinations and experimental requirements which allow for a clocked spin current in the MHz regime.

  15. Spin resonance strength calculation through single particle tracking for RHIC

    SciTech Connect

    Luo, Y.; Dutheil, Y.; Huang, H.; Meot, F.; Ranjbar, V.

    2015-05-03

    The strengths of spin resonances for the polarized-proton operation in the Relativistic Heavy Ion Collider are currently calculated with the code DEPOL, which numerically integrates through the ring based on an analytical approximate formula. In this article, we test a new way to calculate the spin resonance strengths by performing Fourier transformation to the actual transverse magnetic fields seen by a single particle traveling through the ring. Comparison of calculated spin resonance strengths is made between this method and DEPOL.

  16. Single Spin Asymmetry in Strongly Correlated Quark Model

    SciTech Connect

    Musulmanbekov, G.

    2007-06-13

    The Single Transverse - Spin Asymmetry (SSA) is analysed in the framework of the Strongly Correlated Quark Model proposed by author, where the proton spin emerges from the orbital momenta of quark and qluon condensates circulating around the valence quarks. It is shown that dominating factors of appearance of SSA are the orbiting around the valence quarks sea quark and qluon condensates and spin dependent quark-quark cross sections.

  17. Quantum control and squeezing of collective spins

    NASA Astrophysics Data System (ADS)

    Montano, Enrique

    Quantum control of many body atomic spins is often pursued in the context of an atom-light quantum interface, where a quantized light field acts as a "quantum bus" that can be used to entangle distant atoms. One key challenge is to improve the coherence of the atom-light interface and the amount of atom-light entanglement it can generate, given the constraints of working with multilevel atoms and optical fields in a 3D geometry. We have explored new ways to achieve this, through rigorous optimization of the spatial geometry, and through control of the internal atomic state. Our basic setup consists of a quantized probe beam passing through an atom cloud held in a dipole trap, first generating spin-probe entanglement through the Faraday interaction, and then using backaction from a measurement of the probe polarization to squeeze the collective atomic spin. The relevant figure of merit is the metrologically useful spin squeezing determined by the enhancement in the resolution of rotations of the collective spin, relative to the commonly used spin coherent state. With an optimized free-space geometry, and by using a 2-color probe scheme to suppress tensor light shifts, we achieve 3(2) dB of metrologically useful spin squeezing. We can further increase atom-light coupling by implementing internal state control to prepare spin states with larger initial projection noise relative to the spin coherent state. Under the right conditions this increase in projection noise can lead to stronger measurement backaction and increased atom-atom entanglement. With further internal state control the increased atom-atom entanglement can then be mapped to a basis where it corresponds to improved squeezing of, e.g., the physical spin-angular momentum or the collective atomic clock pseudospin. In practice, controlling the collective spin of N ~ 106 atoms in this fashion is an extraordinarily difficult challenge because errors in the control of individual atoms tend to be highly

  18. Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide.

    PubMed

    Fuchs, F; Stender, B; Trupke, M; Simin, D; Pflaum, J; Dyakonov, V; Astakhov, G V

    2015-01-01

    Vacancy-related centres in silicon carbide are attracting growing attention because of their appealing optical and spin properties. These atomic-scale defects can be created using electron or neutron irradiation; however, their precise engineering has not been demonstrated yet. Here, silicon vacancies are generated in a nuclear reactor and their density is controlled over eight orders of magnitude within an accuracy down to a single vacancy level. An isolated silicon vacancy serves as a near-infrared photostable single-photon emitter, operating even at room temperature. The vacancy spins can be manipulated using an optically detected magnetic resonance technique, and we determine the transition rates and absorption cross-section, describing the intensity-dependent photophysics of these emitters. The on-demand engineering of optically active spins in technologically friendly materials is a crucial step toward implementation of both maser amplifiers, requiring high-density spin ensembles, and qubits based on single spins. PMID:26151881

  19. Quantum Computation and Quantum Metrology based on Single Electron Spin in Diamond

    NASA Astrophysics Data System (ADS)

    Du, Jiangfeng

    2015-03-01

    It is of great challenge to perform the accurate controlling the electron spin qubits in realistic system, due to the noises aroused from the noisy spin bath and the driving field. Firstly, we adopted dynamically corrected gates to realize robust and high-fidelity quantum gates. In this work, the quantum gate's performance was pushed to T1r limit. Then, a new Rabi Oscillations (ROs) resulting from Landau-Zener (LZ) transitions is observed useful to suppress the fluctuations of the driving field. Besides, quantum error correction is experimentally employed to overcome the noise effect in diamonds. Precise quantum control and effectively supressing noise of the environment are of great importance for quantum metrology. We succeeded in sensing and atomic-scale analysis of single nuclear spin clusters in diamond at room temperature, and also have succeed to detect a few nuclear spins with single spin sensitivity.

  20. Macroscopic rotation of photon polarization induced by a single spin

    PubMed Central

    Arnold, Christophe; Demory, Justin; Loo, Vivien; Lemaître, Aristide; Sagnes, Isabelle; Glazov, Mikhaïl; Krebs, Olivier; Voisin, Paul; Senellart, Pascale; Lanco, Loïc

    2015-01-01

    Entangling a single spin to the polarization of a single incoming photon, generated by an external source, would open new paradigms in quantum optics such as delayed-photon entanglement, deterministic logic gates or fault-tolerant quantum computing. These perspectives rely on the possibility that a single spin induces a macroscopic rotation of a photon polarization. Such polarization rotations induced by single spins were recently observed, yet limited to a few 10−3 degrees due to poor spin–photon coupling. Here we report the enhancement by three orders of magnitude of the spin–photon interaction, using a cavity quantum electrodynamics device. A single hole spin in a semiconductor quantum dot is deterministically coupled to a micropillar cavity. The cavity-enhanced coupling between the incoming photons and the solid-state spin results in a polarization rotation by ±6° when the spin is optically initialized in the up or down state. These results open the way towards a spin-based quantum network. PMID:25687134

  1. Transverse single-spin asymmetries: Challenges and recent progress

    DOE PAGESBeta

    Metz, Andreas; Pitonyak, Daniel; Schafer, Andreas; Schlegel, Marc; Vogelsang, Werner; Zhou, Jian

    2014-11-25

    In this study, transverse single-spin asymmetries are among the most intriguing observables in hadronic physics. Though such asymmetries were already measured for the first time about four decades ago, their origin is still under debate. Here we consider transverse single-spin asymmetries in semi-inclusive lepton–nucleon scattering, in nucleon–nucleon scattering, and in inclusive lepton–nucleon scattering. It is argued that, according to recent work, the single-spin asymmetries for those three processes may be simultaneously described in perturbative QCD, where the re-scattering of the active partons plays a crucial role. A comparison of single-spin asymmetries in different reactions can also shed light on themore » universality of transverse momentum dependent parton correlation functions. In particular, we discuss what existing data may tell us about the predicted process dependence of the Sivers function.« less

  2. Transverse single-spin asymmetries: Challenges and recent progress

    SciTech Connect

    Metz, Andreas; Pitonyak, Daniel; Schafer, Andreas; Schlegel, Marc; Vogelsang, Werner; Zhou, Jian

    2014-11-25

    In this study, transverse single-spin asymmetries are among the most intriguing observables in hadronic physics. Though such asymmetries were already measured for the first time about four decades ago, their origin is still under debate. Here we consider transverse single-spin asymmetries in semi-inclusive lepton–nucleon scattering, in nucleon–nucleon scattering, and in inclusive lepton–nucleon scattering. It is argued that, according to recent work, the single-spin asymmetries for those three processes may be simultaneously described in perturbative QCD, where the re-scattering of the active partons plays a crucial role. A comparison of single-spin asymmetries in different reactions can also shed light on the universality of transverse momentum dependent parton correlation functions. In particular, we discuss what existing data may tell us about the predicted process dependence of the Sivers function.

  3. Nanometer-scale probing of spin waves using single electron spins

    NASA Astrophysics Data System (ADS)

    van der Sar, Toeno; Casola, Francesco; Walsworth, Ronald; Yacoby, Amir

    2015-05-01

    We have developed a new approach to exploring magnetic excitations in correlated-electron systems, based on single electronic spins in atom-like defects diamond known as nitrogen-vacancy (NV) color centers. We demonstrate the power of this approach by detecting spin-wave excitations in a ferromagnetic microdisc with nanoscale spatial sensitivity over a broad range of frequencies and magnetic fields. We show how spin-wave resonances can be exploited for on-chip amplification of microwave magnetic fields, allowing strongly increased spin manipulation rates and single-spin magnetometry with enhanced sensitivity. Finally, we show the possibility to detect the magnetic spin noise produced by a thin (~ 30 nm) layer of a patterned ferromagnet. For the interpretation of our results, we develop a general framework describing single-spin stray field detection in terms of a filter function sensitive mostly to spin fluctuations with wavevector ~ 1 / d , where d is the NV-ferromagnet distance. Our results pave the way towards quantitative and non-perturbative detection of spectral properties in nanomagnets, establishing NV center magnetometry as an emergent probe of collective spin dynamics in condensed matter.

  4. Large Conductance Switching in a Single-Molecule Device through Room Temperature Spin-Dependent Transport.

    PubMed

    Aragonès, Albert C; Aravena, Daniel; Cerdá, Jorge I; Acís-Castillo, Zulema; Li, Haipeng; Real, José Antonio; Sanz, Fausto; Hihath, Josh; Ruiz, Eliseo; Díez-Pérez, Ismael

    2016-01-13

    Controlling the spin of electrons in nanoscale electronic devices is one of the most promising topics aiming at developing devices with rapid and high density information storage capabilities. The interface magnetism or spinterface resulting from the interaction between a magnetic molecule and a metal surface, or vice versa, has become a key ingredient in creating nanoscale molecular devices with novel functionalities. Here, we present a single-molecule wire that displays large (>10000%) conductance switching by controlling the spin-dependent transport under ambient conditions (room temperature in a liquid cell). The molecular wire is built by trapping individual spin crossover Fe(II) complexes between one Au electrode and one ferromagnetic Ni electrode in an organic liquid medium. Large changes in the single-molecule conductance (>100-fold) are measured when the electrons flow from the Au electrode to either an α-up or a β-down spin-polarized Ni electrode. Our calculations show that the current flowing through such an interface appears to be strongly spin-polarized, thus resulting in the observed switching of the single-molecule wire conductance. The observation of such a high spin-dependent conductance switching in a single-molecule wire opens up a new door for the design and control of spin-polarized transport in nanoscale molecular devices at room temperature. PMID:26675052

  5. Spin sensing and magnetic design at the single atom level

    NASA Astrophysics Data System (ADS)

    Khajetoorians, Alexander

    2015-03-01

    Unraveling many of the current dilemmas in nanoscience hinges on the advancement of techniques which can probe the spin degrees of freedom with high spatial, energy, and ultimately high temporal resolution. With the development of sub-Kelvin high-magnetic field STM, two complementary methods, namely spin-polarized scanning tunneling spectroscopy (SP-STS) and inelastic STS (ISTS), can address single spins at the atomic scale with unprecedented precession. While SP-STS reads out the projection of the impurity magnetization, ISTS detects the excitations of this magnetization as a function of an external magnetic field. They are thus the analogs of magnetometry and spin resonance measurements pushed to the single atom limit. I have recently demonstrated that it is possible to reliably combine single atom magnetometry with an atom-by-atom bottom-up fabrication to realize complex atomic-scale magnets with tailored properties on metallic surfaces. I will discuss the current state of the art of this growing field as it pertains to single spin information storage, and how the functionality of coupled magnetic adatoms can be tailored on surfaces. Finally, I will present an outlook on future perspectives in the field of single atom magnetism and the promising application of single spin detection to broader scopes in nanoscience as a whole.

  6. Nuclear magnetic resonance spectroscopy with single spin sensitivity.

    PubMed

    Müller, C; Kong, X; Cai, J-M; Melentijević, K; Stacey, A; Markham, M; Twitchen, D; Isoya, J; Pezzagna, S; Meijer, J; Du, J F; Plenio, M B; Naydenov, B; McGuinness, L P; Jelezko, F

    2014-01-01

    Nuclear magnetic resonance spectroscopy and magnetic resonance imaging at the ultimate sensitivity limit of single molecules or single nuclear spins requires fundamentally new detection strategies. The strong coupling regime, when interaction between sensor and sample spins dominates all other interactions, is one such strategy. In this regime, classically forbidden detection of completely unpolarized nuclei is allowed, going beyond statistical fluctuations in magnetization. Here we realize strong coupling between an atomic (nitrogen-vacancy) sensor and sample nuclei to perform nuclear magnetic resonance on four (29)Si spins. We exploit the field gradient created by the diamond atomic sensor, in concert with compressed sensing, to realize imaging protocols, enabling individual nuclei to be located with Angstrom precision. The achieved signal-to-noise ratio under ambient conditions allows single nuclear spin sensitivity to be achieved within seconds. PMID:25146503

  7. Nuclear magnetic resonance spectroscopy with single spin sensitivity

    PubMed Central

    Müller, C.; Kong, X.; Cai, J.-M.; Melentijević, K.; Stacey, A.; Markham, M.; Twitchen, D.; Isoya, J.; Pezzagna, S.; Meijer, J.; Du, J. F.; Plenio, M. B.; Naydenov, B.; McGuinness, L. P.; Jelezko, F.

    2014-01-01

    Nuclear magnetic resonance spectroscopy and magnetic resonance imaging at the ultimate sensitivity limit of single molecules or single nuclear spins requires fundamentally new detection strategies. The strong coupling regime, when interaction between sensor and sample spins dominates all other interactions, is one such strategy. In this regime, classically forbidden detection of completely unpolarized nuclei is allowed, going beyond statistical fluctuations in magnetization. Here we realize strong coupling between an atomic (nitrogen–vacancy) sensor and sample nuclei to perform nuclear magnetic resonance on four 29Si spins. We exploit the field gradient created by the diamond atomic sensor, in concert with compressed sensing, to realize imaging protocols, enabling individual nuclei to be located with Angstrom precision. The achieved signal-to-noise ratio under ambient conditions allows single nuclear spin sensitivity to be achieved within seconds. PMID:25146503

  8. Quantum entanglement and spin control in silicon nanocrystal.

    PubMed

    Berec, Vesna

    2012-01-01

    Selective coherence control and electrically mediated exchange coupling of single electron spin between triplet and singlet states using numerically derived optimal control of proton pulses is demonstrated. We obtained spatial confinement below size of the Bohr radius for proton spin chain FWHM. Precise manipulation of individual spins and polarization of electron spin states are analyzed via proton induced emission and controlled population of energy shells in pure (29)Si nanocrystal. Entangled quantum states of channeled proton trajectories are mapped in transverse and angular phase space of (29)Si <100> axial channel alignment in order to avoid transversal excitations. Proton density and proton energy as impact parameter functions are characterized in single particle density matrix via discretization of diagonal and nearest off-diagonal elements. We combined high field and low densities (1 MeV/92 nm) to create inseparable quantum state by superimposing the hyperpolarizationed proton spin chain with electron spin of (29)Si. Quantum discretization of density of states (DOS) was performed by the Monte Carlo simulation method using numerical solutions of proton equations of motion. Distribution of gaussian coherent states is obtained by continuous modulation of individual spin phase and amplitude. Obtained results allow precise engineering and faithful mapping of spin states. This would provide the effective quantum key distribution (QKD) and transmission of quantum information over remote distances between quantum memory centers for scalable quantum communication network. Furthermore, obtained results give insights in application of channeled protons subatomic microscopy as a complete versatile scanning-probe system capable of both quantum engineering of charged particle states and characterization of quantum states below diffraction limit linear and in-depth resolution.PACS NUMBERS: 03.65.Ud, 03.67.Bg, 61.85.+p, 67.30.hj. PMID:23028884

  9. Quantum Entanglement and Spin Control in Silicon Nanocrystal

    PubMed Central

    Berec, Vesna

    2012-01-01

    Selective coherence control and electrically mediated exchange coupling of single electron spin between triplet and singlet states using numerically derived optimal control of proton pulses is demonstrated. We obtained spatial confinement below size of the Bohr radius for proton spin chain FWHM. Precise manipulation of individual spins and polarization of electron spin states are analyzed via proton induced emission and controlled population of energy shells in pure 29Si nanocrystal. Entangled quantum states of channeled proton trajectories are mapped in transverse and angular phase space of 29Si axial channel alignment in order to avoid transversal excitations. Proton density and proton energy as impact parameter functions are characterized in single particle density matrix via discretization of diagonal and nearest off-diagonal elements. We combined high field and low densities (1 MeV/92 nm) to create inseparable quantum state by superimposing the hyperpolarizationed proton spin chain with electron spin of 29Si. Quantum discretization of density of states (DOS) was performed by the Monte Carlo simulation method using numerical solutions of proton equations of motion. Distribution of gaussian coherent states is obtained by continuous modulation of individual spin phase and amplitude. Obtained results allow precise engineering and faithful mapping of spin states. This would provide the effective quantum key distribution (QKD) and transmission of quantum information over remote distances between quantum memory centers for scalable quantum communication network. Furthermore, obtained results give insights in application of channeled protons subatomic microscopy as a complete versatile scanning-probe system capable of both quantum engineering of charged particle states and characterization of quantum states below diffraction limit linear and in-depth resolution. PACS numbers: 03.65.Ud, 03.67.Bg, 61.85.+p, 67.30.hj PMID:23028884

  10. Charge noise, spin-orbit coupling, and dephasing of single-spin qubits

    SciTech Connect

    Bermeister, Adam; Keith, Daniel; Culcer, Dimitrie

    2014-11-10

    Quantum dot quantum computing architectures rely on systems in which inversion symmetry is broken, and spin-orbit coupling is present, causing even single-spin qubits to be susceptible to charge noise. We derive an effective Hamiltonian for the combined action of noise and spin-orbit coupling on a single-spin qubit, identify the mechanisms behind dephasing, and estimate the free induction decay dephasing times T{sub 2}{sup *} for common materials such as Si and GaAs. Dephasing is driven by noise matrix elements that cause relative fluctuations between orbital levels, which are dominated by screened whole charge defects and unscreened dipole defects in the substrate. Dephasing times T{sub 2}{sup *} differ markedly between materials and can be enhanced by increasing gate fields, choosing materials with weak spin-orbit, making dots narrower, or using accumulation dots.

  11. Controlling spin relaxation with a cavity

    NASA Astrophysics Data System (ADS)

    Bienfait, Audrey; Pla, Jarryd; Kubo, Yuimaru; Zhou, Xin; Stern, Michael; Lo, Cheuk; Weis, Christopher; Schenkel, Thomas; Vion, Denis; Esteve, Daniel; Morton, John; Bertet, Patrice

    Spontaneous emission of radiation is one of the fundamental relaxation mechanisms for a quantum system. For spins, however, it is negligible compared to non-radiative relaxation processes due to their weak coupling to the electromagnetic field. In 1946, Purcell realized that spontaneous emission is strongly enhanced when the quantum system is placed in a resonant cavity - an effect now used to control the lifetime of systems with an electrical dipole. Here, by coupling donor spins in silicon to a high quality factor superconducting microwave cavity of small mode volume, we reach the regime where spontaneous emission constitutes the dominant spin relaxation channel. The relaxation rate is increased by three orders of magnitude when the spins are tuned to the cavity resonance, showing it can be engineered and controlled on-demand. Our results provide a novel way to initialize any spin into its ground state, with applications in magnetic resonance and quantum information processing. They also show for the first time an alteration of spin dynamics by quantum fluctuations, a step towards the coherent magnetic coupling of a spin to microwave photons.

  12. Single molecule spin resonance spectroscopy and imaging by diamond-sensor

    NASA Astrophysics Data System (ADS)

    Du, Jiangfeng

    Single-molecule magnetic resonance spectroscopy and imaging is one of the ultimate goals in magnetic resonance and will has great applications in a broad range of scientific areas, from life science to physics and chemistry. The spin of a single nitrogen vacancy (NV) center in diamond is a highly sensitive magnetic-field sensor, which has been proposed for detection of single molecules or nanoscale targets. We and co-workers have successfully obtained the first single-protein spin resonance spectroscopy under ambient conditions, high-resolution vector microwave imaging, and realized atomic-scale structure analysis of single nuclear-spin clusters in diamond. Moreover, we have tried to improve the quantum control technique and succeed to achieve fault-tolerant universal quantum gates. As the last part, I will briefly introduce our most recently work on single protein imaging in situ in cell.

  13. Control of Spin States in Triple Quantum Dots

    NASA Astrophysics Data System (ADS)

    Sachrajda, Andrew

    2015-03-01

    A brief review will be given on coherent behaviour in serial triple quantum dots in AlGaAs/GaAs heterostructure related to multi-spin states. One series of experiments involves the application of coherent superpositions of multi-electron states to the transfer of single spins and two-spin states non-locally between edge quantum dots while maintaining the center quantum dot occupation fixed at one or zero electrons. A second series of experiments involves the identification of coherent leakage mechanisms away from targeted encoded three-spin states qubits. Finally, results will be shown which reveal an unexpected control of the gap at the S-T + anticrossing by taking advantage of different nuclear dynamic polarization pumping rates.

  14. Attitude orientation control for a spinning satellite

    NASA Astrophysics Data System (ADS)

    Frost, Gerald

    The Department of the Air Force, Headquarters Space Systems Division, and the National Aeronautics and Space Administration (NASA) are currently involved in litigation with Hughes Aircraft Company over the alledged infringement of the 'Williams patent,' which describes a method for attitude control of a spin-stabilized vehicle. Summarized here is pre-1960 RAND work on this subject and information obtained from RAND personnel knowledgeable on this subject. It was concluded that there is no RAND documentation that directly parallels the 'Williams patent' concept. Also, the TIROS II magnetic torque attitude control method is reviewed. The TIROS II meteorological satellite, launched on November 23, 1960, incorporated a magnetic actuation system for spin axis orientation control. The activation system was ground controlled to orient the satellite spin axis to obtain the desired pointing direction for optical and infrared sensor subsystems.

  15. Spectral control of spin qubits in diamond photonic structures

    NASA Astrophysics Data System (ADS)

    Acosta, Victor; Santori, Charles; Faraon, Andrei; Huang, Zhihong; Beausoleil, Raymond

    2012-06-01

    Integrated photonic networks based on cavity-coupled spin impurities offer a promising platform for scalable quantum computing. A key ingredient for this technology involves heralding entanglement by interfering indistinguishable photons emitted by pairs of identical spin qubits. The nitrogen-vacancy (NV) center in diamond is an attractive candidate for such a spin-photon interface, as it exhibits long-lived electronic spin coherence, rapid spin manipulation and readout, and the coexistence of both robust cycling and spin-altering Lambda-type transitions. We discuss current research in our lab to control the spectral properties of single NV centers by dynamic Stark tuning [1] and cavity Purcell enhancement [2]. In particular, we report progress on fabricating photonic structures in ultra-pure diamond, where NV centers are likely to have favorable optical properties. [4pt] [1] V. M. Acosta et al., Dynamic stabilization of the optical resonances of single nitrogen-vacancy centers in diamond, arXiv:1112.5490v1 [quant-ph]. [0pt] [2] A. Faraon et al., Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond, Submitted.

  16. Cryogenic single-chip electron spin resonance detector

    NASA Astrophysics Data System (ADS)

    Gualco, Gabriele; Anders, Jens; Sienkiewicz, Andrzej; Alberti, Stefano; Forró, László; Boero, Giovanni

    2014-10-01

    We report on the design and characterization of a single-chip electron spin resonance detector, operating at a frequency of about 20 GHz and in a temperature range extending at least from 300 K down to 4 K. The detector consists of an LC oscillator formed by a 200 μm diameter single turn aluminum planar coil, a metal-oxide-metal capacitor, and two metal-oxide-semiconductor field effect transistors used as negative resistance network. At 300 K, the oscillator has a frequency noise of 20 Hz/Hz1/2 at 100 kHz offset from the 20 GHz carrier. At 4 K, the frequency noise is about 1 Hz/Hz1/2 at 10 kHz offset. The spin sensitivity measured with a sample of DPPH is 108 spins/Hz1/2 at 300 K and down to 106 spins/Hz1/2 at 4 K.

  17. Electronic spin transport and spin precession in single graphene layers at room temperature.

    PubMed

    Tombros, Nikolaos; Jozsa, Csaba; Popinciuc, Mihaita; Jonkman, Harry T; van Wees, Bart J

    2007-08-01

    Electronic transport in single or a few layers of graphene is the subject of intense interest at present. The specific band structure of graphene, with its unique valley structure and Dirac neutrality point separating hole states from electron states, has led to the observation of new electronic transport phenomena such as anomalously quantized Hall effects, absence of weak localization and the existence of a minimum conductivity. In addition to dissipative transport, supercurrent transport has also been observed. Graphene might also be a promising material for spintronics and related applications, such as the realization of spin qubits, owing to the low intrinsic spin orbit interaction, as well as the low hyperfine interaction of the electron spins with the carbon nuclei. Here we report the observation of spin transport, as well as Larmor spin precession, over micrometre-scale distances in single graphene layers. The 'non-local' spin valve geometry was used in these experiments, employing four-terminal contact geometries with ferromagnetic cobalt electrodes making contact with the graphene sheet through a thin oxide layer. We observe clear bipolar (changing from positive to negative sign) spin signals that reflect the magnetization direction of all four electrodes, indicating that spin coherence extends underneath all of the contacts. No significant changes in the spin signals occur between 4.2 K, 77 K and room temperature. We extract a spin relaxation length between 1.5 and 2 mum at room temperature, only weakly dependent on charge density. The spin polarization of the ferromagnetic contacts is calculated from the measurements to be around ten per cent. PMID:17632544

  18. Electronic spin transport and spin precession in single graphene layers at room temperature

    NASA Astrophysics Data System (ADS)

    Tombros, Nikolaos; Jozsa, Csaba; Popinciuc, Mihaita; Jonkman, Harry T.; van Wees, Bart J.

    2007-08-01

    Electronic transport in single or a few layers of graphene is the subject of intense interest at present. The specific band structure of graphene, with its unique valley structure and Dirac neutrality point separating hole states from electron states, has led to the observation of new electronic transport phenomena such as anomalously quantized Hall effects, absence of weak localization and the existence of a minimum conductivity. In addition to dissipative transport, supercurrent transport has also been observed. Graphene might also be a promising material for spintronics and related applications, such as the realization of spin qubits, owing to the low intrinsic spin orbit interaction, as well as the low hyperfine interaction of the electron spins with the carbon nuclei. Here we report the observation of spin transport, as well as Larmor spin precession, over micrometre-scale distances in single graphene layers. The `non-local' spin valve geometry was used in these experiments, employing four-terminal contact geometries with ferromagnetic cobalt electrodes making contact with the graphene sheet through a thin oxide layer. We observe clear bipolar (changing from positive to negative sign) spin signals that reflect the magnetization direction of all four electrodes, indicating that spin coherence extends underneath all of the contacts. No significant changes in the spin signals occur between 4.2K, 77K and room temperature. We extract a spin relaxation length between 1.5 and 2μm at room temperature, only weakly dependent on charge density. The spin polarization of the ferromagnetic contacts is calculated from the measurements to be around ten per cent.

  19. Single hadron transverse spin asymmetries from COMPASS

    SciTech Connect

    Bradamante, Franco

    2007-06-13

    Transverse spin physics is an important part of the scientific programme of the COMPASS experiment at CERN. The analysis of the data taken with the target polarized orthogonally to the 160 GeV/c muon beam momentum has allowed to measure for the first time the Collins and Sivers asymmetries of the deuteron. Both for the positive and the negative hadrons produced in semi-inclusive DIS the measured asymmetries are small and, within errors, compatible with zero. New results for {pi}{+-} ans K{+-} are presented here.

  20. Observation of Spin Flips with a Single Trapped Proton

    SciTech Connect

    Ulmer, S.; Rodegheri, C. C.; Blaum, K.; Kracke, H.; Mooser, A.; Walz, J.; Quint, W.

    2011-06-24

    Radio-frequency induced spin transitions of one individual proton are observed. The spin quantum jumps are detected via the continuous Stern-Gerlach effect, which is used in an experiment with a single proton stored in a cryogenic Penning trap. This is an important milestone towards a direct high-precision measurement of the magnetic moment of the proton and a new test of the matter-antimatter symmetry in the baryon sector.

  1. Spin reorientation transition in dysprosium-samarium orthoferrite single crystals

    NASA Astrophysics Data System (ADS)

    Zhao, Weiyao; Cao, Shixun; Huang, Ruoxiang; Cao, Yiming; Xu, Kai; Kang, Baojuan; Zhang, Jincang; Ren, Wei

    2015-03-01

    We report the control of spin reorientation (SR) transition in perovskite D y1 -xS mxFe O3 , a whole family of single crystals grown by an optical floating zone method from x =0 to 1 with an interval of 0.1. Powder x-ray diffractions and Rietveld refinements indicate that lattice parameters a and c increase linearly with Sm doping concentration, whereas b keeps a constant. Temperature dependence of the magnetizations under zero-field-cooling (ZFC) and field-cooling (FC) processes are studied in detail. We have found a remarkable linear change of SR transition temperature in Sm-rich samples for x >0.2 , which covers an extremely wide temperature range including room temperature. The a -axis magnetization curves under the FC during cooling (FCC) process bifurcate from and then jump back to that of the ZFC and FC warming process in single crystals when x =0.5 -0.9 , suggesting complicated 4 f -3 d electron interactions among D y3 + -S m3 +,D y3 + -F e3 + , and S m3 + -F e3 + sublattices of diverse magnetic configurations. The magnetic properties from the doping effect on SR transition temperature in these single crystals might be useful in the material physics and device design applications.

  2. Gaussian approximation and single-spin measurement in magnetic resonance force microscopy with spin noise

    SciTech Connect

    Raghunathan, Shesha; Brun, Todd A.; Goan, Hsi-Sheng

    2010-11-15

    A promising technique for measuring single electron spins is magnetic resonance force microscopy (MRFM), in which a microcantilever with a permanent magnetic tip is resonantly driven by a single oscillating spin. The most effective experimental technique is the oscillating cantilever-driven adiabatic reversals (OSCAR) protocol, in which the signal takes the form of a frequency shift. If the quality factor of the cantilever is high enough, this signal will be amplified over time to the point where it can be detected by optical or other techniques. An important requirement, however, is that this measurement process occurs on a time scale that is short compared to any noise which disturbs the orientation of the measured spin. We describe a model of spin noise for the MRFM system and show how this noise is transformed to become time dependent in going to the usual rotating frame. We simplify the description of the cantilever-spin system by approximating the cantilever wave function as a Gaussian wave packet and show that the resulting approximation closely matches the full quantum behavior. We then examine the problem of detecting the signal for a cantilever with thermal noise and spin with spin noise, deriving a condition for this to be a useful measurement.

  3. Spin Manipulation by Creation of Single-Molecule Radical Cations

    NASA Astrophysics Data System (ADS)

    Karan, Sujoy; Li, Na; Zhang, Yajie; He, Yang; Hong, I.-Po; Song, Huanjun; Lü, Jing-Tao; Wang, Yongfeng; Peng, Lianmao; Wu, Kai; Michelitsch, Georg S.; Maurer, Reinhard J.; Diller, Katharina; Reuter, Karsten; Weismann, Alexander; Berndt, Richard

    2016-01-01

    All-trans-retinoic acid (ReA), a closed-shell organic molecule comprising only C, H, and O atoms, is investigated on a Au(111) substrate using scanning tunneling microscopy and spectroscopy. In dense arrays single ReA molecules are switched to a number of states, three of which carry a localized spin as evidenced by conductance spectroscopy in high magnetic fields. The spin of a single molecule may be reversibly switched on and off without affecting its neighbors. We suggest that ReA on Au is readily converted to a radical by the abstraction of an electron.

  4. Single-Spin Asymmetries and Transversity in QCD

    SciTech Connect

    Brodsky, S.J.; /SLAC

    2005-12-14

    Initial- and final-state interactions from gluon exchange, normally neglected in the parton model, have a profound effect in QCD hard-scattering reactions, leading to leading-twist single-spin asymmetries, diffractive deep inelastic scattering, diffractive hard hadronic reactions, as well as nuclear shadowing and antishadowing-leading-twist physics not incorporated in the light-front wavefunctions of the target computed in isolation. The physics of such processes thus require the understanding of QCD at the amplitude level; in particular, the physics of spin requires an understanding of the phase structure of final-state and initial-state interactions, as well as the structure of the basic wavefunctions of hadrons themselves. I also discuss transversity in exclusive channels, including how one can use single-spin asymmetries to determine the relative phases of the timelike baryon form factors, as well as the anomalous physics of the normal-normal spin-spin correlation observed in large-angle proton-proton elastic scattering. As an illustration of the utility of light-front wavefunctions, the transversity distribution of a single electron is computed, as defined from its two-particle QED quantum fluctuations.

  5. Attitude control of a spinning rocket via thrust vectoring

    SciTech Connect

    White, J.E.

    1990-12-19

    Two controllers are developed to provide attitude control of a spinning rocket that has a thrust vectoring capability. The first controller has a single-input/single-output design that ignores the gyroscopic coupling between the control channels. The second controller has a multi-input/multi-output structure that is specifically intended to account for the gyroscopic coupling effects. A performance comparison between the two approached is conducted for a range of roll rates. Each controller is tested for the ability to track step commands, and for the amount of coupling impurity. Both controllers are developed via a linear-quadratic-regulator synthesis procedure, which is motivated by the multi-input/multi-output nature of second controller. Time responses and a singular value analysis are used to evaluate controller performance. This paper describes the development and comparison of two controllers that are designed to provide attitude control of a spinning rocket that is equipped with thrust vector control. 12 refs., 13 figs., 2 tabs.

  6. Magnetically controlled single-electron shuttle

    NASA Astrophysics Data System (ADS)

    Ilinskaya, O. A.; Kulinich, S. I.; Krive, I. V.; Shekhter, R. I.; Jonson, M.

    2015-01-01

    A theory of single-electron shuttling in an external magnetic field in nanoelectromechanical system with magnetic leads is presented. We consider partially spin-polarized electrons in the leads and electron transport in both the Coulomb blockade regime and in the limit of large bias voltages when the Coulomb blockade is lifted. The influence of the degree of spin polarization on shuttle instability is considered. It is shown that there is certain degree of spin polarization above which the magnetic field ceases to control electron transport. In the Coulomb blockade regime the dependence of the threshold magnetic field, which separates the "shuttle" and vibron regimes, on the degree of polarization is evaluated. The possibility of re-entrant transitions to the shuttle phase is discussed.

  7. Computational quantum chemistry for single Heisenberg spin couplings made simple: Just one spin flip required

    SciTech Connect

    Mayhall, Nicholas J.; Head-Gordon, Martin

    2014-10-07

    We highlight a simple strategy for computing the magnetic coupling constants, J, for a complex containing two multiradical centers. On the assumption that the system follows Heisenberg Hamiltonian physics, J is obtained from a spin-flip electronic structure calculation where only a single electron is excited (and spin-flipped), from the single reference with maximum S{sup ^}{sub z}, M, to the M − 1 manifold, regardless of the number of unpaired electrons, 2M, on the radical centers. In an active space picture involving 2M orbitals, only one β electron is required, together with only one α hole. While this observation is extremely simple, the reduction in the number of essential configurations from exponential in M to only linear provides dramatic computational benefits. This (M, M − 1) strategy for evaluating J is an unambiguous, spin-pure, wave function theory counterpart of the various projected broken symmetry density functional theory schemes, and likewise gives explicit energies for each possible spin-state that enable evaluation of properties. The approach is illustrated on five complexes with varying numbers of unpaired electrons, for which one spin-flip calculations are used to compute J. Some implications for further development of spin-flip methods are discussed.

  8. Nonlinear single-spin spectrum analyzer.

    PubMed

    Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Ozeri, Roee

    2013-03-15

    Qubits have been used as linear spectrum analyzers of their environments. Here we solve the problem of nonlinear spectral analysis, required for discrete noise induced by a strongly coupled environment. Our nonperturbative analytical model shows a nonlinear signal dependence on noise power, resulting in a spectral resolution beyond the Fourier limit as well as frequency mixing. We develop a noise characterization scheme adapted to this nonlinearity. We then apply it using a single trapped ion as a sensitive probe of strong, non-Gaussian, discrete magnetic field noise. Finally, we experimentally compared the performance of equidistant vs Uhrig modulation schemes for spectral analysis. PMID:25166519

  9. Nonlinear Single-Spin Spectrum Analyzer

    NASA Astrophysics Data System (ADS)

    Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Ozeri, Roee

    2013-03-01

    Qubits have been used as linear spectrum analyzers of their environments. Here we solve the problem of nonlinear spectral analysis, required for discrete noise induced by a strongly coupled environment. Our nonperturbative analytical model shows a nonlinear signal dependence on noise power, resulting in a spectral resolution beyond the Fourier limit as well as frequency mixing. We develop a noise characterization scheme adapted to this nonlinearity. We then apply it using a single trapped ion as a sensitive probe of strong, non-Gaussian, discrete magnetic field noise. Finally, we experimentally compared the performance of equidistant vs Uhrig modulation schemes for spectral analysis.

  10. Fast electron spin resonance controlled manipulation of spin injection into quantum dots

    SciTech Connect

    Merz, Andreas Siller, Jan; Schittny, Robert; Krämmer, Christoph; Kalt, Heinz; Hetterich, Michael

    2014-06-23

    In our spin-injection light-emitting diodes, electrons are spin-polarized in a semimagnetic ZnMnSe spin aligner and then injected into InGaAs quantum dots. The resulting electron spin state can be read out by measuring the circular polarization state of the emitted light. Here, we resonantly excite the Mn 3d electron spin system with microwave pulses and perform time-resolved measurements of the spin dynamics. We find that we are able to control the spin polarization of the injected electrons on a microsecond timescale. This electron spin resonance induced spin control could be one of the ingredients required to utilize the quantum dot electrons or the Mn spins as qubits.

  11. Long-range spin-triplet correlations and edge spin currents in diffusive spin-orbit coupled SNS hybrids with a single spin-active interface.

    PubMed

    Alidoust, Mohammad; Halterman, Klaus

    2015-06-17

    Utilizing a SU(2) gauge symmetry technique in the quasiclassical diffusive regime, we theoretically study finite-sized two-dimensional intrinsic spin-orbit coupled superconductor/normal-metal/superconductor (S/N/S) hybrid structures with a single spin-active interface. We consider intrinsic spin-orbit interactions (ISOIs) that are confined within the N wire and absent in the s-wave superconducting electrodes (S). Using experimentally feasible parameters, we demonstrate that the coupling of the ISOIs and spin moment of the spin-active interface results in maximum singlet-triplet conversion and accumulation of spin current density at the corners of the N wire nearest the spin-active interface. By solely modulating the superconducting phase difference, we show how the opposing parities of the charge and spin currents provide an effective venue to experimentally examine pure edge spin currents not accompanied by charge currents. These effects occur in the absence of externally imposed fields and moreover are insensitive to the arbitrary orientations of the interface spin moment. The experimental implementation of these robust edge phenomena are also discussed. PMID:25996592

  12. Long-range spin-triplet correlations and edge spin currents in diffusive spin-orbit coupled SNS hybrids with a single spin-active interface

    NASA Astrophysics Data System (ADS)

    Alidoust, Mohammad; Halterman, Klaus

    2015-06-01

    Utilizing a SU(2) gauge symmetry technique in the quasiclassical diffusive regime, we theoretically study finite-sized two-dimensional intrinsic spin-orbit coupled superconductor/normal-metal/superconductor (S/N/S) hybrid structures with a single spin-active interface. We consider intrinsic spin-orbit interactions (ISOIs) that are confined within the N wire and absent in the s-wave superconducting electrodes (S). Using experimentally feasible parameters, we demonstrate that the coupling of the ISOIs and spin moment of the spin-active interface results in maximum singlet-triplet conversion and accumulation of spin current density at the corners of the N wire nearest the spin-active interface. By solely modulating the superconducting phase difference, we show how the opposing parities of the charge and spin currents provide an effective venue to experimentally examine pure edge spin currents not accompanied by charge currents. These effects occur in the absence of externally imposed fields and moreover are insensitive to the arbitrary orientations of the interface spin moment. The experimental implementation of these robust edge phenomena are also discussed.

  13. Single-shot readout of spin qubits in Si/SiGe quantum dots

    NASA Astrophysics Data System (ADS)

    Simmons, Christie

    2012-02-01

    Si/SiGe quantum dots are an attractive option for spin qubit development, because of the long coherence times for electron spins in silicon, arising from weak hyperfine interaction and low spin orbit coupling. I will present measurements of gate-defined single and double quantum dots formed in Si/SiGe semiconductor heterostuctures. Control of the gate voltages on these dots enables tuning of the tunnel coupling to the leads and to other dots. Careful tuning of these tunnel rates, in combination with fast, pulsed-gate manipulation and spin-to-charge conversion, allow spin state measurement using an integrated quantum point contact as a local charge detector. Single spin qubit readout relies on the Zeeman energy splitting from an external magnetic field for spin-to-charge conversion. Two-electron singlet-triplet qubits, on the other hand, can be measured by using Pauli spin blockade of tunneling between the dots to readout the qubit even at zero magnetic field. I will present real-time, single-shot readout measurements of both individual spin [1] and singlet-triplet qubits [2] in gated Si/SiGe quantum dots. Work performed in collaboration with J. R. Prance, Zhan Shi, B. J. Van Bael, Teck Seng Koh, D. E. Savage, M. G. Lagally, R. Joynt, L. R. Schreiber, L. M. K. Vandersypen, M. Friesen, S. N. Coppersmith, and M. A. Eriksson. [4pt] [1] C. B. Simmons et al. Physical Review Letters 106, 156804 (2011). [0pt] [2] J. R. Prance, et al., e-print: http://lanl.arxiv.org/abs/1110.6431

  14. Single-proton spin detection by diamond magnetometry.

    PubMed

    Loretz, M; Rosskopf, T; Boss, J M; Pezzagna, S; Meijer, J; Degen, C L

    2014-10-16

    Extending magnetic resonance imaging to the atomic scale has been a long-standing aspiration, driven by the prospect of directly mapping atomic positions in molecules with three-dimensional spatial resolution. We report detection of individual, isolated proton spins by a nitrogen-vacancy (NV) center in a diamond chip covered by an inorganic salt. The single-proton identity was confirmed by the Zeeman effect and by a quantum coherent rotation of the weakly coupled nuclear spin. Using the hyperfine field of the NV center as an imaging gradient, we determined proton-NV distances of less than 1 nm. PMID:25323696

  15. Entangled absorption of a single photon with a single spin in diamond.

    PubMed

    Kosaka, Hideo; Niikura, Naeko

    2015-02-01

    Quantum entanglement, a key resource for quantum information science, is inherent in a solid. It has been recently shown that entanglement between a single optical photon and a single spin qubit in a solid is generated via spontaneous emission. However, entanglement generation by measurement is rather essential for quantum operations. We here show that the physics behind the entangled emission can be time reversed to demonstrate entangled absorption mediated by an inherent spin-orbit entanglement in a single nitrogen vacancy center in diamond. Optical arbitrary spin state preparation and complete spin state tomography reveal the fidelity of the entangled absorption to be 95%. With the entangled emission and absorption of a photon, materials can be spontaneously entangled or swap their quantum state based on the quantum teleportation scheme. PMID:25699440

  16. Nanometre-scale probing of spin waves using single-electron spins

    PubMed Central

    van der Sar, Toeno; Casola, Francesco; Walsworth, Ronald; Yacoby, Amir

    2015-01-01

    Pushing the frontiers of condensed-matter magnetism requires the development of tools that provide real-space, few-nanometre-scale probing of correlated-electron magnetic excitations under ambient conditions. Here we present a practical approach to meet this challenge, using magnetometry based on single nitrogen-vacancy centres in diamond. We focus on spin-wave excitations in a ferromagnetic microdisc, and demonstrate local, quantitative and phase-sensitive detection of the spin-wave magnetic field at ∼50 nm from the disc. We map the magnetic-field dependence of spin-wave excitations by detecting the associated local reduction in the disc's longitudinal magnetization. In addition, we characterize the spin–noise spectrum by nitrogen-vacancy spin relaxometry, finding excellent agreement with a general analytical description of the stray fields produced by spin–spin correlations in a 2D magnetic system. These complementary measurement modalities pave the way towards imaging the local excitations of systems such as ferromagnets and antiferromagnets, skyrmions, atomically assembled quantum magnets, and spin ice. PMID:26249673

  17. Spin-valley qubit in nanostructures of monolayer semiconductors: Optical control and hyperfine interaction

    NASA Astrophysics Data System (ADS)

    Wu, Yue; Tong, Qingjun; Liu, Gui-Bin; Yu, Hongyi; Yao, Wang

    2016-01-01

    We investigate the optical control possibilities of spin-valley qubit carried by single electrons localized in nanostructures of monolayer TMDs, including small quantum dots formed by lateral heterojunction and charged impurities. The quantum controls are discussed when the confinement induces valley hybridization and when the valley hybridization is absent. We show that the bulk valley and spin optical selection rules can be inherited in different forms in the two scenarios, both of which allow the definition of spin-valley qubit with desired optical controllability. We also investigate nuclear spin-induced decoherence and quantum control of electron-nuclear spin entanglement via intervalley terms of the hyperfine interaction. Optically controlled two-qubit operations in a single quantum dot are discussed.

  18. Coherent spin control by electromagnetic vacuum fluctuations

    SciTech Connect

    Wang Jing; Liu Renbao; Zhu Bangfen; Sham, L. J.; Steel, D. G.

    2011-05-15

    In coherent control, electromagnetic vacuum fluctuations usually cause coherence loss through irreversible spontaneous emission. However, since the dissipation via emission is essentially due to correlation of the fluctuations, when emission ends in a superposition of multiple final states, correlation between different pathways may build up if the 'which way' information is not fully resolved (i.e., the emission spectrum is broader than the transition energy range). Such correlation can be exploited for spin-flip control in a {Lambda}-type three-level system, which manifests itself as an all-optical spin echo in nonlinear optics with two orders of optical fields saved as compared with stimulated Raman processes. This finding represents a class of optical nonlinearity induced by electromagnetic vacuum fluctuations.

  19. Electrical control of spin in topological insulators

    NASA Astrophysics Data System (ADS)

    Chang, Kai

    2012-02-01

    All-electrical manipulation of electron spin in solids becomes a central issue of quantum information processing and quantum computing. The many previous proposals are based on spin-orbit interactions in semiconductors. Topological insulator, a strong spin-orbit coupling system, make it possible to control the spin transport electrically. Recent calculations proved that external electric fields can drive a HgTe quantum well from normal band insulator phase to topological insulator phase [1]. Since the topological edge states are robust against local perturbation, the controlling of edge states using local fields is a challenging task. We demonstrate that a p-n junction created electrically in HgTe quantum wells with inverted band structure exhibits interesting intraband and interband tunneling processes. We find a perfect intraband transmission for electrons injected perpendicularly to the interface of the p-n junction. The opacity and transparency of electrons through the p-n junction can be tuned by changing the incidence angle, the Fermi energy and the strength of the Rashba spin-orbit interaction (RSOI). The occurrence of a conductance plateau due to the formation of topological edge states in a quasi-one-dimensional p-n junction can be switched on and off by tuning the gate voltage. The spin orientation can be substantially rotated when the samples exhibit a moderately strong RSOI [2]. An electrical switching of the edge-state transport can also be realized using quantum point contacts in quantum spin Hall bars. The switch-on/off of the edge channel is caused by the finite size effect of the quantum point contact and therefore can be manipulated by tuning the voltage applied on the split gate [3,4]. The magnetic ions doped on the surface of 3D TI can be correlated through the helical electrons. The RKKY interaction mediated by the helical Dirac electrons consists of the Heisenberg-like, Ising-like, and Dzyaloshinskii-Moriya (DM)-like terms, which can be tuned

  20. Anisotropic nuclear spin relaxation in single-crystal xenon

    NASA Astrophysics Data System (ADS)

    Kuzma, N. N.; Babich, D.; Happer, W.

    2002-04-01

    We extend the theory of longitudinal spin relaxation of 129Xe nuclei in frozen xenon to the case of single-crystal samples, where the relaxation rate depends on the direction of the applied magnetic field with respect to the crystalline axes. For sufficiently large magnetic fields, the relaxation is dominated by spin-flip Raman scattering of lattice phonons. Two closely related interactions couple the lattice phonons to the spins of 129Xe nuclei: the nuclear spin-rotation interaction between nearest-neighbor atoms, which leads to an isotropic, field-independent relaxation rate, and the paramagnetic antishielding of the externally applied field at the site of 129Xe nuclei by the electrons of neighboring Xe atoms. The latter interaction, also known as the chemical shift anisotropy (CSA) interaction, leads to an anisotropic relaxation rate proportional to the square of the applied field. This mechanism dominates spin relaxation at fields of the order of the Debye field BD=kBTD/μB=82 T.

  1. Control of Single Wheel Robots

    NASA Astrophysics Data System (ADS)

    Xu, Yangsheng; Ou, Yongsheng

    This monograph presents a novel concept of a mobile robot, which is a single-wheel, gyroscopically stabilized robot. The robot is balanced by a spinning wheel attached through a two-link manipulator at the wheel bearing, and actuated by a drive motor. This configuration conveys significant advantages including insensitivity to attitude disturbances, high maneuverability, low rolling resistance, ability to recover from falls, and amphibious capability for potential applications on both land and water.

  2. Single-copy entanglement in a gapped quantum spin chain.

    PubMed

    Hadley, Christopher

    2008-05-01

    The single-copy entanglement of a given many-body quantum system is defined [J. Eisert and M. Cramer, Phys. Rev. A 72, 042112 (2005)10.1103/PhysRevA.72.042112] as the maximal entanglement deterministically distillable from a bipartition of a single specimen of that system. For critical (gapless) spin chains, it was recently shown that this is exactly half the von Neumann entropy [R. Orús, J. I. Latorre, J. Eisert, and M. Cramer, Phys. Rev. A 73, 060303(R) (2006)], itself defined as the entanglement distillable in the asymptotic limit-i.e., given an infinite number of copies of the system. It is an open question as to what the equivalent behavior for gapped systems is. In this Letter, I show that for the paradigmatic spin-S Affleck-Kennedy-Lieb-Tasaki chain (the archetypal gapped chain), the single-copy entanglement is equal to the von Neumann entropy; i.e., all the entanglement present may be distilled from a single specimen. PMID:18518329

  3. Probing Spin Accumulation induced Magnetocapacitance in a Single Electron Transistor

    PubMed Central

    Lee, Teik-Hui; Chen, Chii-Dong

    2015-01-01

    The interplay between spin and charge in solids is currently among the most discussed topics in condensed matter physics. Such interplay gives rise to magneto-electric coupling, which in the case of solids was named magneto-electric effect, as predicted by Curie on the basis of symmetry considerations. This effect enables the manipulation of magnetization using electrical field or, conversely, the manipulation of electrical polarization by magnetic field. The latter is known as the magnetocapacitance effect. Here, we show that non-equilibrium spin accumulation can induce tunnel magnetocapacitance through the formation of a tiny charge dipole. This dipole can effectively give rise to an additional serial capacitance, which represents an extra charging energy that the tunneling electrons would encounter. In the sequential tunneling regime, this extra energy can be understood as the energy required for a single spin to flip. A ferromagnetic single-electron-transistor with tunable magnetic configuration is utilized to demonstrate the proposed mechanism. It is found that the extra threshold energy is experienced only by electrons entering the islands, bringing about asymmetry in the measured Coulomb diamond. This asymmetry is an unambiguous evidence of spin accumulation induced tunnel magnetocapacitance, and the measured magnetocapacitance value is as high as 40%. PMID:26348794

  4. Controlling spin-dependent localization and directed transport in a bipartite lattice

    NASA Astrophysics Data System (ADS)

    Luo, Yunrong; Lu, Gengbiao; Kong, Chao; Hai, Wenhua

    2016-04-01

    We study coherent control of spin-dependent dynamical localization (DL) and directed transport (DT) of a spin-orbit-coupled single atom held in a driven optical bipartite lattice. Under the high-frequency limit and nearest-neighbor tight-binding approximation, we find a new decoupling mechanism between states with the same (different) spins, which leads to two sets of analytical solutions describing DL and DT with (without) spin flipping. The analytical results are numerically confirmed, and perfect agreements are found. Extending the research to a system of spin-orbit-coupled single atoms, the spin current and quantum information transport with controllable propagation speed and distance are investigated. The results can be experimentally tested in the current setups and may be useful in quantum information processing.

  5. Ultrafast spin-motion entanglement and interferometry with a single atom.

    PubMed

    Mizrahi, J; Senko, C; Neyenhuis, B; Johnson, K G; Campbell, W C; Conover, C W S; Monroe, C

    2013-05-17

    We report entanglement of a single atom's hyperfine spin state with its motional state in a time scale of less than 3 ns. We engineer a short train of intense laser pulses to impart a spin-dependent momentum transfer of ± 2 ħk. Using pairs of momentum kicks, we create an atomic interferometer and demonstrate collapse and revival of spin coherence as the motional wave packet is split and recombined. The revival after a pair of kicks occurs only when the second kick is delayed by an integer multiple of the harmonic trap period, a signature of entanglement and disentanglement of the spin with the motion. Such quantum control opens a new regime of ultrafast entanglement in atomic qubits. PMID:25167401

  6. Photoelectron spin-polarization control in the topological insulator Bi2Se3.

    PubMed

    Zhu, Z-H; Veenstra, C N; Zhdanovich, S; Schneider, M P; Okuda, T; Miyamoto, K; Zhu, S-Y; Namatame, H; Taniguchi, M; Haverkort, M W; Elfimov, I S; Damascelli, A

    2014-02-21

    We study the manipulation of the spin polarization of photoemitted electrons in Bi2Se3 by spin- and angle-resolved photoemission spectroscopy. General rules are established that enable controlling the photoelectron spin-polarization. We demonstrate the ± 100% reversal of a single component of the measured spin-polarization vector upon the rotation of light polarization, as well as full three-dimensional manipulation by varying experimental configuration and photon energy. While a material-specific density-functional theory analysis is needed for the quantitative description, a minimal yet fully generalized two-atomic-layer model qualitatively accounts for the spin response based on the interplay of optical selection rules, photoelectron interference, and topological surface-state complex structure. It follows that photoelectron spin-polarization control is generically achievable in systems with a layer-dependent, entangled spin-orbital texture. PMID:24579623

  7. Probing the spin states of a single acceptor atom.

    PubMed

    van der Heijden, Joost; Salfi, Joe; Mol, Jan A; Verduijn, Jan; Tettamanzi, Giuseppe C; Hamilton, Alex R; Collaert, Nadine; Rogge, Sven

    2014-03-12

    We demonstrate a single-hole transistor using an individual acceptor dopant embedded in a silicon channel. Magneto-transport spectroscopy reveals that the ground state splits as a function of magnetic field into four states, which is unique for a single hole bound to an acceptor in a bulk semiconductor. The two lowest spin states are heavy (|m(j)| = 3/2) and light (|m(j)| = 1/2) hole-like, a two-level system that can be electrically driven and is characterized by a magnetic field dependent and long relaxation time, which are properties of interest for qubits. Although the bulklike spin splitting of a boron atom is preserved in our nanotransistor, the measured Landé g-factors, |g(hh)| = 0.81 ± 0.06 and |g(lh)| = 0.85 ± 0.21 for heavy and light holes respectively, are lower than the bulk value. PMID:24571637

  8. Single-copy entanglement in critical quantum spin chains

    NASA Astrophysics Data System (ADS)

    Eisert, J.; Cramer, M.

    2005-10-01

    We consider the single-copy entanglement as a quantity to assess quantum correlations in the ground state in quantum many-body systems. We show for a large class of models that already on the level of single specimens of spin chains, criticality is accompanied with the possibility of distilling a maximally entangled state of arbitrary dimension from a sufficiently large block deterministically, with local operations and classical communication. These analytical results—which refine previous results on the divergence of block entropy as the rate at which maximally entangled pairs can be distilled from many identically prepared chains—are made quantitative for general isotropic translationally invariant spin chains that can be mapped onto a quasifree fermionic system, and for the anisotropic XY model. For the XX model, we provide the asymptotic scaling of ˜(1/6)log2(L) , and contrast it with the block entropy.

  9. High fidelity readout of a single electron spin

    NASA Astrophysics Data System (ADS)

    Keselman, Anna; Glickman, Yinnon; Akerman, Nitzan; Kotler, Shlomi; Dallal, Yehonatan; Ozeri, Roee

    2010-03-01

    We use the two spin states of the valence electron of a single trapped ^88Sr^+ ion as a physical qubit implementation. For qubit readout one of the qubit states is shelved to a metastable D level using a narrow linewidth 674nm diode laser followed by state-selective fluorescence detection. Careful analysis of the resulting photon detection statistics allows for a minimal detection error of 2 . 10-3, compatible with recent estimates of the fault-tolerance required error threshold.

  10. Gate-tuned spin to charge conversion in semiconducting single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Shigematsu, Ei; Nagano, Hiroshi; Dushenko, Sergey; Ando, Yuichiro; Tsuda, Tetsuya; Kuwabata, Susumu; Takenobu, Taishi; Tanaka, Takeshi; Kataura, Hiromichi; Shinjo, Teruya; Shiraishi, Masashi

    Interconversion of spin and charge current is a hot topic in the molecular spintronics. It was achieved for the first time in a conducting conjugated polymer 1, and shortly followed by spin-charge conversion in graphene. However, control over carrier type has not been shown yet. In this study we focused on single-walled carbon nanotubes (SWNT). Spin injection into semiconductor from metal ferromagnet is challenging due to the presence of Schottky barrier and conductance mismatch problem. To bypass it, we used ionic liquid electric gate and ferrimagnetic insulator. We prepared SWNT layer on top of ferrimagnetic yttrium iron garnet substrate. Using spin pumping we successfully observed spin-charge conversion in metallic SWNT. As for a semiconducting SWNT, we applied a top gate using ionic liquid. The drain-source current vs. gate voltage dependence showed tuning of the Fermi level and changing of carrier type. Under gate voltage application we measured electromotive force induced by spin pumping. Detected voltage changed its sign together with carrier type. This is first evidence of spin-charge conversion in carbon nanotubes 2. 1 K. Ando et al., Nature Mater. 12, 622 (2013). 2 E. Shigematsu et al., submitted.

  11. Controlling and imaging chiral spin textures

    NASA Astrophysics Data System (ADS)

    Chen, Gong

    Chirality in magnetic materials is fundamentally interesting and holds potential for logic and memory applications. Using spin-polarized low-energy electron microscopy at National Center for Electron Microscopy, we recently observed chiral domain walls in thin films. We developed ways to tailor the Dzyaloshinskii-Moriya interaction, which drives the chirality, by interface engineering and by forming ternary superlattices. We find that spin-textures can be switched between left-handed, right-handed, cycloidal, helical and mixed domain wall structures by controlling uniaxial strain in magnetic films. We also demonstrate an experimental approach to stabilize skyrmions in magnetic multilayers without external magnetic field. These results exemplify the rich physics of chirality associated with interfaces of magnetic materials

  12. Controlling spin polarization in graphene by cloaking magnetic and spin-orbit scatterers

    NASA Astrophysics Data System (ADS)

    Oliver, Diego; Rappoport, Tatiana G.

    2016-07-01

    We consider spin-dependent scatterers with large scattering cross sections in graphene—a Zeeman-like and an intrinsic spin-orbit coupling impurity—and show that a gated ring around them can be engineered to produce an efficient control of the spin-dependent transport, like current spin polarization and spin Hall angle. Our analysis is based on a spin-dependent partial-waves expansion of the electronic wave functions in the continuum approximation, described by the Dirac equation.

  13. Control in Highly Focused Top-Spinning. Brief Report.

    ERIC Educational Resources Information Center

    Berkson, Gershon

    1998-01-01

    Three studies analyzed stimulus feedback and the concept of control with three children and two adults having autism. The first study explored feedback from spinning tops, while the second and third emphasized control of various stimuli including spinning tops. Results indicate that autistic individuals' common interest in spinning tops is…

  14. Spin blockade effect in single-molecule transistors

    NASA Astrophysics Data System (ADS)

    Luo, Guangpu; Park, Kyungwha

    Recently single-molecule transistors consisting of individual single-molecule magnets trapped between electrodes have been experimentally realized and electron transport properties through individual single-molecule magnets have been measured. For a single-molecule magnet the (2S+1)-fold degeneracy of magnetic levels in a given spin multiplet is lifted even in the absence of external magnetic field, due to the magnetic anisotropy induced by spin-orbit coupling. This anisotropic nature of single-molecule magnets allowed one to discover interesting, unexpected transport properties. A recent theoretical study showed that an Eu-based anisotropic magnetic molecule can switch its magnetic anisotropy between magnetic easy plane and easy axis upon varying the charge state of the molecule. Motivated by this report, we investigate how this switch of magnetic anisotropy influences the electron transport through the molecule, by considering sequential electron tunneling. We calculate current-voltage characteristics by solving the master equation based on the model Hamiltonians. We explore this interesting effect in the absence and presence of external magnetic field. Funding from NSF DMR-1206354.

  15. Controlling Magnetization using Spin Orbit Torque

    NASA Astrophysics Data System (ADS)

    Salahuddin, Sayeef

    2015-03-01

    Recently it has been shown that spin orbit coupling (SOC) and/or broken inversion symmetry in vertical heterostructures can generate accumulation of spins when a charge current is flowing through them. In doing so, it can exert a torque on an adjacent magnet. Indeed, high Z metals (Ta, Pt, W, etc.) with strong SOC have been used to inject spin currents into adjacent ferromagnetic layers and thereby to induce magnetic switching, oscillation, domain wall movement etc. SOC physics promises to significantly reduce the required current for current induced magnetic switching for next generation data-storage applications. In this presentation we shall discuss some of our recent work on SOC induced control of magnets with perpendicular magnetic anisotropy (PMA). A current flowing in-plane presents interesting symmetry problems with respect to a PMA magnet. We shall discuss how these symmetry relations can be utilized for switching of and domain wall movement in the PMA magnets. In addition to storage applications, we shall also discuss possibility of exploiting SOC for spintronic logic applications.

  16. Optimal control of spin-stabilized spacecraft with telescoping appendages

    NASA Technical Reports Server (NTRS)

    Bainum, P. M.; Sellappan, R.

    1976-01-01

    The control of a spin-stabilized spacecraft consisting of a rigid central hub and one or two movable offset telescoping booms (with end masses) is considered. The equations of rotational motion are linearized about either of two desired final states. A control law for the boom end mass position is sought such that a quadratic cost functional involving the weighted components of angular velocity plus the control is minimized when the final time is unspecified and involves the solution of the matrix Riccati algebraic equation. For three axis control more than one offset boom (orthogonal to each other) is required. For two-axis control with a single boom offset from a symmetrical hub, an analytic solution is obtained; when this system is used for nutation decay the time constant is one order of magnitude smaller than previously achieved using nonoptimal control logic. For the general case results are obtained numerically.

  17. Control of electron spin decoherence caused by electron nuclear spin dynamics in a quantum dot

    NASA Astrophysics Data System (ADS)

    Liu, Ren-Bao; Yao, Wang; Sham, L. J.

    2007-07-01

    Control of electron spin decoherence in contact with a mesoscopic bath of many interacting nuclear spins in an InAs quantum dot is studied by solving the coupled quantum dynamics. The nuclear spin bath, because of its bifurcated evolution predicated on the electron spin up or down state, measures the which-state information of the electron spin and hence diminishes its coherence. The many-body dynamics of the nuclear spin bath is solved with a pair-correlation approximation. In the relevant timescale, nuclear pair-wise flip flops, as elementary excitations in the mesoscopic bath, can be mapped into the precession of non-interacting pseudo-spins. Such mapping provides a geometrical picture for understanding the decoherence and for devising control schemes. A close examination of nuclear bath dynamics reveals a wealth of phenomena and new possibilities of controlling the electron spin decoherence. For example, when the electron spin is flipped by a π-pulse at τ, its coherence will partially recover at \\sqrt{2}\\tau as a consequence of quantum disentanglement from the mesoscopic bath. In contrast to the re-focusing of inhomogeneously broadened phases by conventional spin-echoes, the disentanglement is realized through shepherding quantum evolution of the bath state via control of the quantum object. A concatenated construction of pulse sequences can eliminate the decoherence with arbitrary accuracy, with the nuclear nuclear spin interaction strength acting as the controlling small parameter.

  18. Tuning the spin dynamics of single molecule magnets via dipolar interactions

    NASA Astrophysics Data System (ADS)

    Hofmann, A.; Salman, Z.

    2014-12-01

    We present calculations of the dipolar field distribution acting on a single molecule magnet due to its neighbours in thin films. The calculations are presented for different packing/configuration scenarios, with different easy axis orientations. The potential for controlling the molecular spin dynamics by tuning the molecule-substrate interaction and its competition with intra-molecular interactions is discussed. We argue that by altering the configuration of the molecular moments, and thus their dipolar interactions, one can enhance or slow down their spin dynamics.

  19. Nanomechanical single-qubit gates and iSWAP gate of single-electron spins in a carbon nanotube

    NASA Astrophysics Data System (ADS)

    Wang, Heng; Burkard, Guido

    2015-03-01

    A universal gate set for quantum computation can be built with one-qubit and iSWAP gates. We theoretically investigate mechanically-induced single-electron spin resonance in a quantum dot and a phonon mediated iSWAP gate of two separate single electron spins in two quantum dots on a suspended carbon nanotube which is driven by an external electric field. The intrinsic spin-phonon coupling between the spin and the mechanical mode is induced by the spin-orbit coupling. Arbitrary-angle rotations about arbitrary axes of the single electron spin can be achieved by varying the frequency and the strength of the external electric driving field. If two single-electron spins in two quantum dots couple to the same vibrational mode simultaneously, the two spins are indirectly coupled via phonon exchange. Both electron spin resonance and the iSWAP gate can be turned off by suppressing the spin-phonon coupling by electrostatically shifting the electron wave function on the nanotube. Combining iSWAP and single spin gates, maximally entangled states of two spins can be generated in a single step.

  20. Nuclear-driven electron spin rotations in a coupled silicon quantum dot and single donor system

    NASA Astrophysics Data System (ADS)

    Harvey-Collard, Patrick; Jacobson, Noah Tobias; Rudolph, Martin; Ten Eyck, Gregory A.; Wendt, Joel R.; Pluym, Tammy; Lilly, Michael P.; Pioro-Ladrière, Michel; Carroll, Malcolm S.

    Single donors in silicon are very good qubits. However, a central challenge is to couple them to one another. To achieve this, many proposals rely on using a nearby quantum dot (QD) to mediate an interaction. In this work, we demonstrate the coherent coupling of electron spins between a single 31P donor and an enriched 28Si metal-oxide-semiconductor few-electron QD. We show that the electron-nuclear spin interaction can drive coherent rotations between singlet and triplet electron spin states. Moreover, we are able to tune electrically the exchange interaction between the QD and donor electrons. The combination of single-nucleus-driven rotations and voltage-tunable exchange provides all elements for future all-electrical control of a spin qubit, and requires only a single dot and no additional magnetic field gradients. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  1. Mechanical spin control of nitrogen-vacancy centers in diamond.

    PubMed

    MacQuarrie, E R; Gosavi, T A; Jungwirth, N R; Bhave, S A; Fuchs, G D

    2013-11-27

    We demonstrate direct coupling between phonons and diamond nitrogen-vacancy (NV) center spins by driving spin transitions with mechanically generated harmonic strain at room temperature. The amplitude of the mechanically driven spin signal varies with the spatial periodicity of the stress standing wave within the diamond substrate, verifying that we drive NV center spins mechanically. These spin-phonon interactions could offer a route to quantum spin control of magnetically forbidden transitions, which would enhance NV-based quantum metrology, grant access to direct transitions between all of the spin-1 quantum states of the NV center, and provide a platform to study spin-phonon interactions at the level of a few interacting spins. PMID:24329469

  2. High-fidelity readout and control of a nuclear spin qubit in silicon.

    PubMed

    Pla, Jarryd J; Tan, Kuan Y; Dehollain, Juan P; Lim, Wee H; Morton, John J L; Zwanenburg, Floris A; Jamieson, David N; Dzurak, Andrew S; Morello, Andrea

    2013-04-18

    Detection of nuclear spin precession is critical for a wide range of scientific techniques that have applications in diverse fields including analytical chemistry, materials science, medicine and biology. Fundamentally, it is possible because of the extreme isolation of nuclear spins from their environment. This isolation also makes single nuclear spins desirable for quantum-information processing, as shown by pioneering studies on nitrogen-vacancy centres in diamond. The nuclear spin of a (31)P donor in silicon is very promising as a quantum bit: bulk measurements indicate that it has excellent coherence times and silicon is the dominant material in the microelectronics industry. Here we demonstrate electrical detection and coherent manipulation of a single (31)P nuclear spin qubit with sufficiently high fidelities for fault-tolerant quantum computing. By integrating single-shot readout of the electron spin with on-chip electron spin resonance, we demonstrate quantum non-demolition and electrical single-shot readout of the nuclear spin with a readout fidelity higher than 99.8 percent-the highest so far reported for any solid-state qubit. The single nuclear spin is then operated as a qubit by applying coherent radio-frequency pulses. For an ionized (31)P donor, we find a nuclear spin coherence time of 60 milliseconds and a one-qubit gate control fidelity exceeding 98 percent. These results demonstrate that the dominant technology of modern electronics can be adapted to host a complete electrical measurement and control platform for nuclear-spin-based quantum-information processing. PMID:23598342

  3. Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator

    PubMed Central

    Ovartchaiyapong, Preeti; Lee, Kenneth W.; Myers, Bryan A.; Jayich, Ania C. Bleszynski

    2014-01-01

    The development of hybrid quantum systems is central to the advancement of emerging quantum technologies, including quantum information science and quantum-assisted sensing. The recent demonstration of high-quality single-crystal diamond resonators has led to significant interest in a hybrid system consisting of nitrogen–vacancy centre spins that interact with the resonant phonon modes of a macroscopic mechanical resonator through crystal strain. However, the nitrogen–vacancy spin–strain interaction has not been well characterized. Here, we demonstrate dynamic, strain-mediated coupling of the mechanical motion of a diamond cantilever to the spin of an embedded nitrogen–vacancy centre. Via quantum control of the spin, we quantitatively characterize the axial and transverse strain sensitivities of the nitrogen–vacancy ground-state spin. The nitrogen–vacancy centre is an atomic scale sensor and we demonstrate spin-based strain imaging with a strain sensitivity of 3 × 10−6 strain Hz−1/2. Finally, we show how this spin-resonator system could enable coherent spin–phonon interactions in the quantum regime. PMID:25034828

  4. Continuous control of spin polarization using a magnetic field

    NASA Astrophysics Data System (ADS)

    Gifford, J. A.; Zhao, G. J.; Li, B. C.; Tracy, Brian D.; Zhang, J.; Kim, D. R.; Smith, David J.; Chen, T. Y.

    2016-05-01

    The giant magnetoresistance (GMR) of a point contact between a Co/Cu multilayer and a superconductor tip varies for different bias voltage. Direct measurement of spin polarization by Andreev reflection spectroscopy reveals that the GMR change is due to a change in spin polarization. This work demonstrates that the GMR structure can be utilized as a spin source and that the spin polarization can be continuously controlled by using an external magnetic field.

  5. QUANTUM INFORMATION. Coherent coupling of a single spin to microwave cavity photons.

    PubMed

    Viennot, J J; Dartiailh, M C; Cottet, A; Kontos, T

    2015-07-24

    Electron spins and photons are complementary quantum-mechanical objects that can be used to carry, manipulate, and transform quantum information. To combine these resources, it is desirable to achieve the coherent coupling of a single spin to photons stored in a superconducting resonator. Using a circuit design based on a nanoscale spin valve, we coherently hybridize the individual spin and charge states of a double quantum dot while preserving spin coherence. This scheme allows us to achieve spin-photon coupling up to the megahertz range at the single-spin level. The cooperativity is found to reach 2.3, and the spin coherence time is about 60 nanoseconds. We thereby demonstrate a mesoscopic device suitable for nondestructive spin readout and distant spin coupling. PMID:26206930

  6. Quantifying the quantum gate fidelity of single-atom spin qubits in silicon by randomized benchmarking.

    PubMed

    Muhonen, J T; Laucht, A; Simmons, S; Dehollain, J P; Kalra, R; Hudson, F E; Freer, S; Itoh, K M; Jamieson, D N; McCallum, J C; Dzurak, A S; Morello, A

    2015-04-22

    Building upon the demonstration of coherent control and single-shot readout of the electron and nuclear spins of individual (31)P atoms in silicon, we present here a systematic experimental estimate of quantum gate fidelities using randomized benchmarking of 1-qubit gates in the Clifford group. We apply this analysis to the electron and the ionized (31)P nucleus of a single P donor in isotopically purified (28)Si. We find average gate fidelities of 99.95% for the electron and 99.99% for the nuclear spin. These values are above certain error correction thresholds and demonstrate the potential of donor-based quantum computing in silicon. By studying the influence of the shape and power of the control pulses, we find evidence that the present limitation to the gate fidelity is mostly related to the external hardware and not the intrinsic behaviour of the qubit. PMID:25783435

  7. Completely independent electrical control of spin and valley in a silicene field effect transistor.

    PubMed

    Zhai, Xuechao; Jin, Guojun

    2016-09-01

    One-atom-thick silicene is a silicon-based hexagonal-lattice material with buckled structure, where an electron fuses multiple degrees of freedom including spin, sublattice pseudospin and valley. We here demonstrate that a valley-selective spin filter (VSSF) that supports single-valley and single-spin transport can be realized in a silicene field effect transistor constructed of an npn junction, where an antiferromagnetic exchange field and a perpendicular electric field are applied in the p-doped region. The nontrivial VSSF property benefits from an electrically controllable state of spin-polarized single-valley Dirac cone. By reversing the electric field direction, the device can operate as a spin-reversed but valley-unreversed filter due to the dependence of band gap on spin and valley. Further, we find that all the possible spin-valley configurations of VSSF can be achieved just by tuning the electric field. Our findings pave the way to the realization of completely independent electrical control of spin and valley in silicene circuits. PMID:27385325

  8. Completely independent electrical control of spin and valley in a silicene field effect transistor

    NASA Astrophysics Data System (ADS)

    Zhai, Xuechao; Jin, Guojun

    2016-09-01

    One-atom-thick silicene is a silicon-based hexagonal-lattice material with buckled structure, where an electron fuses multiple degrees of freedom including spin, sublattice pseudospin and valley. We here demonstrate that a valley-selective spin filter (VSSF) that supports single-valley and single-spin transport can be realized in a silicene field effect transistor constructed of an npn junction, where an antiferromagnetic exchange field and a perpendicular electric field are applied in the p-doped region. The nontrivial VSSF property benefits from an electrically controllable state of spin-polarized single-valley Dirac cone. By reversing the electric field direction, the device can operate as a spin-reversed but valley-unreversed filter due to the dependence of band gap on spin and valley. Further, we find that all the possible spin-valley configurations of VSSF can be achieved just by tuning the electric field. Our findings pave the way to the realization of completely independent electrical control of spin and valley in silicene circuits.

  9. Rotary balance data for a typical single-engine general aviation design for an angle-of-attack range of 20 to 90 deg. 3: Influence of control deflection on predicted model D spin modes

    NASA Technical Reports Server (NTRS)

    Ralston, J. N.; Barnhart, B. P.

    1984-01-01

    The influence of control deflections on the rotational flow aerodynamics and on predicted spin modes is discussed for a 1/6-scale general aviation airplane model. The model was tested for various control settings at both zero and ten degree sideslip angles. Data were measured, using a rotary balance, over an angle-of-attack range of 30 deg to 90 deg, and for clockwise and counter-clockwise rotations covering an omegab/2V range of 0 to 0.5.

  10. Intrinsic spin and momentum relaxation in organic single-crystalline semiconductors probed by ESR and Hall measurements

    NASA Astrophysics Data System (ADS)

    Tsurumi, Junto; Häusermann, Roger; Watanabe, Shun; Mitsui, Chikahiko; Okamoto, Toshihiro; Matsui, Hiroyuki; Takeya, Jun

    Spin and charge momentum relaxation mechanism has been argued among organic semiconductors with various methods, devices, and materials. However, little is known in organic single-crystalline semiconductors because it has been hard to obtain an ideal organic crystal with an excellent crystallinity and controllability required for accurate measurements. By using more than 1-inch sized single crystals which are fabricated via contentious edge-casting method developed by our group, we have successfully demonstrated a simultaneous determination of spin and momentum relaxation time for gate-induced charges of 3,11-didecyldinaphtho[2,3- d:2',3'- d']benzo[1,2- b:4,5- b']dithiophene, by combining electron spin resonance (ESR) and Hall effect measurements. The obtained temperature dependences of spin and momentum relaxation times are in good agreement in terms of power law with a factor of approximately -2. It is concluded that Elliott-Yafet spin relaxation mechanism can be dominant at room temperature regime (200 - 300 K). Probing characteristic time scales such as spin-lattice, spin-spin, and momentum relaxation times, demonstrated in the present work, would be a powerful tool to elucidate fundamental spin and charge transport mechanisms. We acknowledge the New Energy and Industrial Technology Developing Organization (NEDO) for financial support.

  11. Observation of spin-charge conversion in chemical-vapor-deposition-grown single-layer graphene

    SciTech Connect

    Ohshima, Ryo; Sakai, Atsushi; Ando, Yuichiro; Shiraishi, Masashi; Shinjo, Teruya; Kawahara, Kenji; Ago, Hiroki

    2014-10-20

    Conversion of pure spin current to charge current in single-layer graphene (SLG) is investigated by using spin pumping. Large-area SLG grown by chemical vapor deposition is used for the conversion. Efficient spin accumulation in SLG by spin pumping enables observing an electromotive force produced by the inverse spin Hall effect (ISHE) of SLG. The spin Hall angle of SLG is estimated to be 6.1 × 10{sup −7}. The observed ISHE in SLG is ascribed to its non-negligible spin-orbit interaction in SLG.

  12. Spin-flip configuration interaction singles with exact spin-projection: Theory and applications to strongly correlated systems

    NASA Astrophysics Data System (ADS)

    Tsuchimochi, Takashi

    2015-10-01

    Spin-flip approaches capture static correlation with the same computational scaling as the ordinary single reference methods. Here, we extend spin-flip configuration interaction singles (SFCIS) by projecting out intrinsic spin-contamination to make it spin-complete, rather than by explicitly complementing it with spin-coupled configurations. We give a general formalism of spin-projection for SFCIS, applicable to any spin states. The proposed method is viewed as a natural unification of SFCIS and spin-projected CIS to achieve a better qualitative accuracy at a low computational cost. While our wave function ansatz is more compact than previously proposed spin-complete SF approaches, it successfully offers more general static correlation beyond biradicals without sacrificing good quantum numbers. It is also shown that our method is invariant with respect to open-shell orbital rotations, due to the uniqueness of spin-projection. We will report benchmark calculations to demonstrate its qualitative performance on strongly correlated systems, including conical intersections that appear both in ground-excited and excited-excited degeneracies.

  13. Spin-flip configuration interaction singles with exact spin-projection: Theory and applications to strongly correlated systems

    SciTech Connect

    Tsuchimochi, Takashi

    2015-10-14

    Spin-flip approaches capture static correlation with the same computational scaling as the ordinary single reference methods. Here, we extend spin-flip configuration interaction singles (SFCIS) by projecting out intrinsic spin-contamination to make it spin-complete, rather than by explicitly complementing it with spin-coupled configurations. We give a general formalism of spin-projection for SFCIS, applicable to any spin states. The proposed method is viewed as a natural unification of SFCIS and spin-projected CIS to achieve a better qualitative accuracy at a low computational cost. While our wave function ansatz is more compact than previously proposed spin-complete SF approaches, it successfully offers more general static correlation beyond biradicals without sacrificing good quantum numbers. It is also shown that our method is invariant with respect to open-shell orbital rotations, due to the uniqueness of spin-projection. We will report benchmark calculations to demonstrate its qualitative performance on strongly correlated systems, including conical intersections that appear both in ground-excited and excited-excited degeneracies.

  14. Electrically controllable spin pumping in graphene via rotating magnetization

    NASA Astrophysics Data System (ADS)

    Rahimi, Mojtaba A.; Moghaddam, Ali G.

    2015-07-01

    We investigate pure spin pumping in graphene by imposing a ferromagnet (F) with rotating magnetization on top of it. Using the generalized scattering approach for adiabatic spin pumping, we obtain the spin current pumped through magnetic graphene to the normal (N) region. This spin current which can be easily controlled by gate voltages, reaches sufficiently large values measurable in current experimental setups. The spin current reaches its maximum when one of the spins is completely filtered because of its vanishing density of states in the ferromagnetic part. In order to study the effect of the ferromagnetic part length on the pumped spin current, the N—F—N structure is considered. It is found that in contrast to the metallic ferromagnetic materials the transverse spin coherence length can be comparable to the length of F. Subsequently, due to the quantum interferences inside the middle F region, the spin current becomes an oscillatory function of JL/\\hbar {{v}\\text{F}} in which J is the spin splitting and L is the length of F. Finally controllability of the pumped spin into two different normal sides in the N—F—N hybrid device gives rise to the spin battery effect.

  15. Decoherence imaging of spin ensembles using a scanning single-electron spin in diamond

    PubMed Central

    Luan, Lan; Grinolds, Michael S.; Hong, Sungkun; Maletinsky, Patrick; Walsworth, Ronald L.; Yacoby, Amir

    2015-01-01

    The nitrogen-vacancy (NV) defect center in diamond has demonstrated great capability for nanoscale magnetic sensing and imaging for both static and periodically modulated target fields. However, it remains a challenge to detect and image randomly fluctuating magnetic fields. Recent theoretical and numerical works have outlined detection schemes that exploit changes in decoherence of the detector spin as a sensitive measure for fluctuating fields. Here we experimentally monitor the decoherence of a scanning NV center in order to image the fluctuating magnetic fields from paramagnetic impurities on an underlying diamond surface. We detect a signal corresponding to roughly 800 μB in 2 s of integration time, without any control on the target spins, and obtain magnetic-field spectral information using dynamical decoupling techniques. The extracted spatial and temporal properties of the surface paramagnetic impurities provide insight to prolonging the coherence of near-surface qubits for quantum information and metrology applications. PMID:25631646

  16. Enhancement of spin polarization in transport through protein-like single-helical molecules

    NASA Astrophysics Data System (ADS)

    Wu, Hai-Na; Wang, Xiao; Zhang, Ya-Jing; Yi, Guang-Yu; Gong, Wei-Jiang

    2016-06-01

    We investigate the spin-polarized electron transport through the single-helical molecules connected with two normal metallic leads. On the basis of an effective model Hamiltonian, influences of the structural parameters on the conductance and the spin polarization are calculated by using the Landauer-Büttiker formula. The optimal structural parameters for the maximal spin polarization are analyzed. Our results show that the dephasing term is an important factor to enhance the spin polarization, in addition to the intrinsic parameters of the single-helical molecule. This work can be helpful in optimizing the spin polarization in the protein-like single-helical molecules.

  17. Electric field controlled spin interference in a system with Rashba spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Ciftja, Orion

    2016-05-01

    There have been intense research efforts over the last years focused on understanding the Rashba spin-orbit coupling effect from the perspective of possible spintronics applications. An important component of this line of research is aimed at control and manipulation of electron's spin degrees of freedom in semiconductor quantum dot devices. A promising way to achieve this goal is to make use of the tunable Rashba effect that relies on the spin-orbit interaction in a two-dimensional electron system embedded in a host semiconducting material that lacks inversion-symmetry. This way, the Rashba spin-orbit coupling effect may potentially lead to fabrication of a new generation of spintronic devices where control of spin, thus magnetic properties, is achieved via an electric field and not a magnetic field. In this work we investigate theoretically the electron's spin interference and accumulation process in a Rashba spin-orbit coupled system consisting of a pair of two-dimensional semiconductor quantum dots connected to each other via two conducting semi-circular channels. The strength of the confinement energy on the quantum dots is tuned by gate potentials that allow "leakage" of electrons from one dot to another. While going through the conducting channels, the electrons are spin-orbit coupled to a microscopically generated electric field applied perpendicular to the two-dimensional system. We show that interference of spin wave functions of electrons travelling through the two channels gives rise to interference/conductance patterns that lead to the observation of the geometric Berry's phase. Achieving a predictable and measurable observation of Berry's phase allows one to control the spin dynamics of the electrons. It is demonstrated that this system allows use of a microscopically generated electric field to control Berry's phase, thus, enables one to tune the spin-dependent interference pattern and spintronic properties with no need for injection of spin

  18. Spin-dependent thermoelectronic transport of a single molecule magnet Mn(dmit){sub 2}

    SciTech Connect

    Su, Zhongbo; Wei, Xinyuan; Yang, Zhongqin; An, Yipeng

    2014-05-28

    We investigate spin-dependent thermoelectronic transport properties of a single molecule magnet Mn(dmit){sub 2} sandwiched between two Au electrodes using first-principles density functional theory combined with nonequilibrium Green's function method. By applying a temperature difference between the two Au electrodes, spin-up and spin-down currents flowing in opposite directions can be induced due to asymmetric distribution of the spin-up and spin-down transmission spectra around the Fermi level. A pure spin current and 100% spin polarization are achieved by tuning back-gate voltage to the system. The spin caloritronics of the molecule with a perpendicular conformation is also explored, where the spin-down current is blocked strongly. These results suggest that Mn(dmit){sub 2} is a promising material for spin caloritronic applications.

  19. Electronic measurement and control of spin transport in silicon

    NASA Astrophysics Data System (ADS)

    Appelbaum, Ian; Huang, Biqin; Monsma, Douwe J.

    2007-05-01

    The spin lifetime and diffusion length of electrons are transport parameters that define the scale of coherence in spintronic devices and circuits. As these parameters are many orders of magnitude larger in semiconductors than in metals, semiconductors could be the most suitable for spintronics. So far, spin transport has only been measured in direct-bandgap semiconductors or in combination with magnetic semiconductors, excluding a wide range of non-magnetic semiconductors with indirect bandgaps. Most notable in this group is silicon, Si, which (in addition to its market entrenchment in electronics) has long been predicted a superior semiconductor for spintronics with enhanced lifetime and transport length due to low spin-orbit scattering and lattice inversion symmetry. Despite this promise, a demonstration of coherent spin transport in Si has remained elusive, because most experiments focused on magnetoresistive devices; these methods fail because of a fundamental impedance mismatch between ferromagnetic metal and semiconductor, and measurements are obscured by other magnetoelectronic effects. Here we demonstrate conduction-band spin transport across 10μm undoped Si in a device that operates by spin-dependent ballistic hot-electron filtering through ferromagnetic thin films for both spin injection and spin detection. As it is not based on magnetoresistance, the hot-electron spin injection and spin detection avoids impedance mismatch issues and prevents interference from parasitic effects. The clean collector current shows independent magnetic and electrical control of spin precession, and thus confirms spin coherent drift in the conduction band of silicon.

  20. Single-spin manipulation by electric fields and adsorption of molecules

    NASA Astrophysics Data System (ADS)

    Tao, Kun; Xue, Desheng; Polyakov, O. P.; Stepanyuk, V. S.

    2016-07-01

    Performing ab initio calculations, we reveal that the magnetic anisotropy (MA) and the spin direction of a single adatom can be manipulated with a combination of electric fields and adsorption of molecules. Choosing the Fe adatom on the Cu2N /Cu (001 ) surface as a typical model system, we show that the MA of the pristine Fe adatom and the Fe adatom with an additional H or F atom adsorption remarkably changes by applying an external electric field. Moreover, we show that the F adsorption leads to the spin-reorientation transition of the Fe adatom from in plane to out of plane. Controlling the magnetization dynamics of a single magnetic adatom by molecule adsorption is demonstrated.

  1. Zero-Point Spin-Fluctuations of Single Adatoms.

    PubMed

    Ibañez-Azpiroz, Julen; Dos Santos Dias, Manuel; Blügel, Stefan; Lounis, Samir

    2016-07-13

    Stabilizing the magnetic signal of single adatoms is a crucial step toward their successful usage in widespread technological applications such as high-density magnetic data storage devices. The quantum mechanical nature of these tiny objects, however, introduces intrinsic zero-point spin-fluctuations that tend to destabilize the local magnetic moment of interest by dwindling the magnetic anisotropy potential barrier even at absolute zero temperature. Here, we elucidate the origins and quantify the effect of the fundamental ingredients determining the magnitude of the fluctuations, namely, the (i) local magnetic moment, (ii) spin-orbit coupling, and (iii) electron-hole Stoner excitations. Based on a systematic first-principles study of 3d and 4d adatoms, we demonstrate that the transverse contribution of the fluctuations is comparable in size to the magnetic moment itself, leading to a remarkable ≳50% reduction of the magnetic anisotropy energy. Our analysis gives rise to a comprehensible diagram relating the fluctuation magnitude to characteristic features of adatoms, providing practical guidelines for designing magnetically stable nanomagnets with minimal quantum fluctuations. PMID:27248465

  2. Quasi-Classical Origins of Single Transverse Spin Asymmetries

    NASA Astrophysics Data System (ADS)

    Sievert, Matthew; Kovchegov, Yuri

    2013-10-01

    We consider semi-inclusive deep inelastic scattering and the Drell-Yan process on a transversely-polarized proton at high energies. We model the small- x wave function of the proton using the McLerran-Venugopalan (MV) model, which has been reasonably successful in describing high-energy proton data. The MV model, originally formulated for a heavy ion with a large number ~ A of independent color charges, is a quasi-classical description that should apply to any dense system of color charges, including a proton at very high energies. Here we incorporate spin dependence into the MV framework and analyze several microscopic scattering channels that lead to the generation of a single transverse spin asymmetry. In particular, we study asymmetries mediated by intrinsic orbital angular momentum, asymmetries produced locally by rescattering on the same constituent, and asymmetries that couple to the odderon. This analysis yields a simple, intuitive, quasi-classical picture in which one can understand understand the famous sign-reversal of the Sivers asymmetry between semi-inclusive deep inelastic scattering and the Drell-Yan process. Sponsored in part by DOE Grant No. DE-SC0004286.

  3. Single-spin precessing gravitational waveform in closed form

    NASA Astrophysics Data System (ADS)

    Lundgren, Andrew; O'Shaughnessy, R.

    2014-02-01

    In coming years, gravitational-wave detectors should find black hole-neutron star (BH-NS) binaries, potentially coincident with astronomical phenomena like short gamma ray bursts. These binaries are expected to precess. Gravitational-wave science requires a tractable model for precessing binaries, to disentangle precession physics from other phenomena like modified strong field gravity, tidal deformability, or Hubble flow; and to measure compact object masses, spins, and alignments. Moreover, current searches for gravitational waves from compact binaries use templates where the binary does not precess and are ill-suited for detection of generic precessing sources. In this paper we provide a closed-form representation of the single-spin precessing waveform in the frequency domain by reorganizing the signal as a sum over harmonics, each of which resembles a nonprecessing waveform. This form enables simple analytic calculations of the Fisher matrix for use in template bank generation and coincidence metrics, and jump proposals to improve the efficiency of Markov chain Monte Carlo sampling. We have verified that for generic BH-NS binaries, our model agrees with the time-domain waveform to 2%. Straightforward extensions of the derivations outlined here (and provided in full online) allow higher accuracy and error estimates.

  4. Information transmission and control in a chaotically kicked spin chain

    NASA Astrophysics Data System (ADS)

    Aubourg, Lucile; Viennot, David

    2016-06-01

    We study spin chains submitted to disturbed kick trains described by classical dynamical processes. The spin chains are coupled by Heisenberg and Ising-Z models. We consider chaotic processes by using the kick irregularity in the multipartite system (the spin chain). We show that both couplings transmit the chaos disorder differently along the spin chain but conserve the horizon of coherence (when the disorder into the kick bath is transmitted to the spin chain). An example of information transmission between the spins of the chain coupled by a Heisenberg interaction shows the interest of the horizon of coherence. The use of some chosen stationary kicks disturbed by a chaotic environment makes it possible to modify the information transmission between the spins and to perform a free control during the horizon of coherence.

  5. Electric control of spin in monolayer WSe₂ field effect transistors.

    PubMed

    Gong, Kui; Zhang, Lei; Liu, Dongping; Liu, Lei; Zhu, Yu; Zhao, Yonghong; Guo, Hong

    2014-10-31

    We report first-principles theoretical investigations of quantum transport in a monolayer WSe2 field effect transistor (FET). Due to strong spin-orbit interaction (SOI) and the atomic structure of the two-dimensional lattice, monolayer WSe2 has an electronic structure that exhibits Zeeman-like up-down spin texture near the K and K' points of the Brillouin zone. In a FET, the gate electric field induces an extra, externally tunable SOI that re-orients the spins into a Rashba-like texture thereby realizing electric control of the spin. The conductance of FET is modulated by the spin texture, namely by if the spin orientation of the carrier after the gated channel region, matches or miss-matches that of the FET drain electrode. The carrier current I(τ, s) in the FET is labelled by both the valley index and spin index, realizing valleytronics and spintronics in the same device. PMID:25287881

  6. Controllable spin polarization and spin filtering in a zigzag silicene nanoribbon

    SciTech Connect

    Farokhnezhad, Mohsen Esmaeilzadeh, Mahdi Pournaghavi, Nezhat; Ahmadi, Somaieh

    2015-05-07

    Using non-equilibrium Green's function, we study the spin-dependent electron transport properties in a zigzag silicene nanoribbon. To produce and control spin polarization, it is assumed that two ferromagnetic strips are deposited on the both edges of the silicene nanoribbon and an electric field is perpendicularly applied to the nanoribbon plane. The spin polarization is studied for both parallel and anti-parallel configurations of exchange magnetic fields induced by the ferromagnetic strips. We find that complete spin polarization can take place in the presence of perpendicular electric field for anti-parallel configuration and the nanoribbon can work as a perfect spin filter. The spin direction of transmitted electrons can be easily changed from up to down and vice versa by reversing the electric field direction. For parallel configuration, perfect spin filtering can occur even in the absence of electric field. In this case, the spin direction can be changed by changing the electron energy. Finally, we investigate the effects of nonmagnetic Anderson disorder on spin dependent conductance and find that the perfect spin filtering properties of nanoribbon are destroyed by strong disorder, but the nanoribbon retains these properties in the presence of weak disorder.

  7. p -shell carrier assisted dynamic nuclear spin polarization in single quantum dots at zero external magnetic field

    NASA Astrophysics Data System (ADS)

    Fong, C. F.; Ota, Y.; Harbord, E.; Iwamoto, S.; Arakawa, Y.

    2016-03-01

    Repeated injection of spin-polarized carriers in a quantum dot (QD) leads to the polarization of nuclear spins, a process known as dynamic nuclear spin polarization (DNP). Here, we report the observation of p-shell carrier assisted DNP in single QDs at zero external magnetic field. The nuclear field—measured by using the Overhauser shift of the singly charged exciton state of the QDs—continues to increase, even after the carrier population in the s-shell saturates. This is also accompanied by an abrupt increase in nuclear spin buildup time as p-shell emission overtakes that of the s shell. We attribute the observation to p-shell electrons strongly altering the nuclear spin dynamics in the QD, supported by numerical simulation results based on a rate equation model of coupling between electron and nuclear spin system. Dynamic nuclear spin polarization with p-shell carriers could open up avenues for further control to increase the degree of nuclear spin polarization in QDs.

  8. Calculation of TMD Evolution for Transverse Single Spin Asymmetry Measurements

    SciTech Connect

    Mert Aybat, Ted Rogers, Alexey Prokudin

    2012-06-01

    In this letter, we show that it is necessary to include the full treatment of QCD evolution of Transverse Momentum Dependent parton densities to explain discrepancies between HERMES data and recent COMPASS data on a proton target for the Sivers transverse single spin asymmetry in Semi-Inclusive Deep Inelastic Scattering (SIDIS). Calculations based on existing fits to TMDs in SIDIS, and including evolution within the Collins-Soper-Sterman with properly defined TMD PDFs are shown to provide a good explanation for the discrepancy. The non-perturbative input needed for the implementation of evolution is taken from earlier analyses of unpolarized Drell-Yan (DY) scattering at high energy. Its success in describing the Sivers function in SIDIS data at much lower energies is strong evidence in support of the unifying aspect of the QCD TMD-factorization formalism.

  9. Global fitting of single spin asymmetry: an attempt

    SciTech Connect

    Alexey Prokudin,Zhong-Bo Kang

    2012-04-01

    We present an attempt of global analysis of Semi-Inclusive Deep Inelastic Scattering (SIDIS) $\\ell p^\\uparrow \\to \\ell' \\pi X$ data on single spin asymmetries and data on left-right asymmetry $A_N$ in $p^\\uparrow p \\to \\pi X$ in order to simultaneously extract information on Sivers function and twist-three quark-gluon Efremov-Teryaev-Qiu-Sterman (ETQS) function. We explore different possibilities such as node of Sivers function in $x$ or $k_\\perp$ in order to explain ``sign mismatch'' between these functions. We show that $\\pi^\\pm$ SIDIS data and $\\pi^0$ STAR data can be well described in a combined TMD and twist-3 fit, however $\\pi^\\pm$ BRAHMS data are not described in a satisfactory way. This leaves open a question to the solution of the ``sign mismatch''. Possible explanations are then discussed.

  10. Indirect control of antiferromagnetic domain walls with spin current.

    PubMed

    Wieser, R; Vedmedenko, E Y; Wiesendanger, R

    2011-02-11

    The indirect controlled displacement of an antiferromagnetic domain wall by a spin current is studied by Landau-Lifshitz-Gilbert spin dynamics. The antiferromagnetic domain wall can be shifted both by a spin-polarized tunnel current of a scanning tunneling microscope or by a current driven ferromagnetic domain wall in an exchange coupled antiferromagnetic-ferromagnetic layer system. The indirect control of antiferromagnetic domain walls opens up a new and promising direction for future spin device applications based on antiferromagnetic materials. PMID:21405493

  11. Universal control and error correction in multi-qubit spin registers in diamond.

    PubMed

    Taminiau, T H; Cramer, J; van der Sar, T; Dobrovitski, V V; Hanson, R

    2014-03-01

    Quantum registers of nuclear spins coupled to electron spins of individual solid-state defects are a promising platform for quantum information processing. Pioneering experiments selected defects with favourably located nuclear spins with particularly strong hyperfine couplings. To progress towards large-scale applications, larger and deterministically available nuclear registers are highly desirable. Here, we realize universal control over multi-qubit spin registers by harnessing abundant weakly coupled nuclear spins. We use the electron spin of a nitrogen-vacancy centre in diamond to selectively initialize, control and read out carbon-13 spins in the surrounding spin bath and construct high-fidelity single- and two-qubit gates. We exploit these new capabilities to implement a three-qubit quantum-error-correction protocol and demonstrate the robustness of the encoded state against applied errors. These results transform weakly coupled nuclear spins from a source of decoherence into a reliable resource, paving the way towards extended quantum networks and surface-code quantum computing based on multi-qubit nodes. PMID:24487650

  12. Robust micromagnet design for fast electrical manipulations of single spins in quantum dots

    NASA Astrophysics Data System (ADS)

    Yoneda, Jun; Otsuka, Tomohiro; Takakura, Tatsuki; Pioro-Ladrière, Michel; Brunner, Roland; Lu, Hong; Nakajima, Takashi; Obata, Toshiaki; Noiri, Akito; Palmstrøm, Christopher J.; Gossard, Arthur C.; Tarucha, Seigo

    2015-08-01

    Tailoring spin coupling to electric fields is central to spintronics and spin-based quantum information processing. We present an optimal micromagnet design that produces appropriate stray magnetic fields to mediate fast electrical spin manipulations in nanodevices. We quantify the practical requirements for spatial field inhomogeneity and tolerance for misalignment with spins, and propose a design scheme to improve the spin-rotation frequency (to exceed 50 MHz in GaAs nanostructures). We then validate our design by experiments in separate devices. Our results will open a route to rapidly control solid-state electron spins with limited lifetimes and to study coherent spin dynamics in solids.

  13. Single-axis gyroscopic motion with uncertain angular velocity about spin axis

    NASA Technical Reports Server (NTRS)

    Singh, S. N.

    1977-01-01

    A differential game approach is presented for studying the response of a gyro by treating the controlled angular velocity about the input axis as the evader, and the bounded but uncertain angular velocity about the spin axis as the pursuer. When the uncertain angular velocity about the spin axis desires to force the gyro to saturation a differential game problem with two terminal surfaces results, whereas when the evader desires to attain the equilibrium state the usual game with single terminal manifold arises. A barrier, delineating the capture zone (CZ) in which the gyro can attain saturation and the escape zone (EZ) in which the evader avoids saturation is obtained. The CZ is further delineated into two subregions such that the states in each subregion can be forced on a definite target manifold. The application of the game theoretic approach to Control Moment Gyro is briefly discussed.

  14. Understanding and controlling spin-systems using electron spin resonance techniques

    NASA Astrophysics Data System (ADS)

    Martens, Mathew

    Single molecule magnets (SMMs) posses multi-level energy structures with properties that make them attractive candidates for implementation into quantum information technologies. However there are some major hurdles that need to be overcome if these systems are to be used as the fundamental components of an eventual quantum computer. One such hurdle is the relatively short coherence times these systems display which severely limits the amount of time quantum information can remain encoded within them. In this dissertation, recent experiments conducted with the intent of bringing this technology closer to realization are presented. The detailed knowledge of the spin Hamiltonian and mechanisms of decoherence in SMMs are absolutely essential if these systems are to be used in technologies. To that effect, experiments were done on a particularly promising SMM, the complex K6[VIV15AsIII 6O42(H2O)] · 8H2O, known as V15. High-field electron spin resonance (ESR) measurements were performed on this system at the National High Magnetic Field Laboratory. The resulting spectra allowed for detailed analysis of the V15 spin Hamiltonian which will be presented as well as the most precise values yet reported for the g-factors of this system. Additionally, the line widths of the ESR spectra are studied in depth and found to reveal that fluctuations within the spin-orbit interaction are a mechanism for decoherence in V15. A new model for decoherence is presented that describes very well both the temperature and field orientation dependences of the measured ESR line widths. Also essential is the ability to control spin-states of SMMs. Presented in this dissertation as well is the demonstration of the coherent manipulation of the multi-state spin system Mn2+ diluted in MgO by means of a two-tone pulse drive. Through the detuning between the excitation and readout radio frequency pulses it is possible to select the number of photons involved in a Rabi oscillation as well as increase

  15. Protecting nickel with graphene spin-filtering membranes: A single layer is enough

    SciTech Connect

    Martin, M.-B.; Dlubak, B.; Piquemal-Banci, M.; Collin, S.; Petroff, F.; Anane, A.; Fert, A.; Seneor, P.; Yang, H.; Blume, R.; Schloegl, R.

    2015-07-06

    We report on the demonstration of ferromagnetic spin injectors for spintronics which are protected against oxidation through passivation by a single layer of graphene. The graphene monolayer is directly grown by catalytic chemical vapor deposition on pre-patterned nickel electrodes. X-ray photoelectron spectroscopy reveals that even with its monoatomic thickness, monolayer graphene still efficiently protects spin sources against oxidation in ambient air. The resulting single layer passivated electrodes are integrated into spin valves and demonstrated to act as spin polarizers. Strikingly, the atom-thick graphene layer is shown to be sufficient to induce a characteristic spin filtering effect evidenced through the sign reversal of the measured magnetoresistance.

  16. All-Optical Preparation of Coherent Dark States of a Single Rare Earth Ion Spin in a Crystal

    NASA Astrophysics Data System (ADS)

    Xia, Kangwei; Kolesov, Roman; Wang, Ya; Siyushev, Petr; Reuter, Rolf; Kornher, Thomas; Kukharchyk, Nadezhda; Wieck, Andreas D.; Villa, Bruno; Yang, Sen; Wrachtrup, Jörg

    2015-08-01

    All-optical addressing and coherent control of single solid-state based quantum bits is a key tool for fast and precise control of ground-state spin qubits. So far, all-optical addressing of qubits was demonstrated only in a very few systems, such as color centers and quantum dots. Here, we perform high-resolution spectroscopic of native and implanted single rare earth ions in solid, namely, a cerium ion in yttrium aluminum garnet (YAG) crystal. We find narrow and spectrally stable optical transitions between the spin sublevels of the ground and excited optical states. Utilizing these transitions we demonstrate the generation of a coherent dark state in electron spin sublevels of a single Ce3 + ion in YAG by coherent population trapping.

  17. Quantum interference of stored dual-channel spin-wave excitations in a single tripod system

    SciTech Connect

    Wang Hai; Li Shujing; Xu Zhongxiao; Zhao Xingbo; Zhang Lijun; Li Jiahua; Wu Yuelong; Xie Changde; Peng Kunchi; Xiao Min

    2011-04-15

    We present an experimental demonstration of dual-channel memory in a single tripod atomic system. The total readout signal exhibits either constructive or destructive interference when the dual-channel spin-wave excitations (SWEs) are retrieved by two reading beams with a controllable relative phase. When the two reading beams have opposite phases, the SWEs will remain in the medium, which can be retrieved later with two in-phase reading beams. Such a phase-sensitive storage and retrieval scheme can be used to measure and control the relative phase between the two SWEs in the memory medium, which may find applications in quantum-information processing.

  18. Single-shot readout of multiple nuclear spin qubits in diamond under ambient conditions.

    PubMed

    Dréau, A; Spinicelli, P; Maze, J R; Roch, J-F; Jacques, V

    2013-02-01

    We use the electronic spin of a single nitrogen-vacancy defect in diamond to observe the real-time evolution of neighboring single nuclear spins under ambient conditions. Using a diamond sample with a natural abundance of (13)C isotopes, we first demonstrate high fidelity initialization and single-shot readout of an individual (13)C nuclear spin. By including the intrinsic (14)N nuclear spin of the nitrogen-vacancy defect in the quantum register, we then report the simultaneous observation of quantum jumps linked to both nuclear spin species, providing an efficient initialization of the two qubits. These results open up new avenues for diamond-based quantum information processing including active feedback in quantum error correction protocols and tests of quantum correlations with solid-state single spins at room temperature. PMID:23432227

  19. Electron spin control of optically levitated nanodiamonds in vacuum

    NASA Astrophysics Data System (ADS)

    Hoang, Thai; Ahn, Jonghoon; Bang, Jaehoon; Li, Tongcang

    2016-05-01

    Electron spins of diamond nitrogen-vacancy (NV) centers are important quantum resources for nanoscale sensing and quantum information. Combining such NV spin systems with levitated optomechanical resonators will provide a hybrid quantum system for many novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centers in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this novel system, we also investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect.

  20. Controlling spins in adsorbed molecules by a chemical switch

    PubMed Central

    Wäckerlin, Christian; Chylarecka, Dorota; Kleibert, Armin; Müller, Kathrin; Iacovita, Cristian; Nolting, Frithjof; Jung, Thomas A.; Ballav, Nirmalya

    2010-01-01

    The development of chemical systems with switchable molecular spins could lead to the architecture of materials with controllable magnetic or spintronic properties. Here, we present conclusive evidence that the spin of an organometallic molecule coupled to a ferromagnetic substrate can be switched between magnetic off and on states by a chemical stimulus. This is achieved by nitric oxide (NO) functioning as an axial ligand of cobalt(II)tetraphenylporphyrin (CoTPP) ferromagnetically coupled to nickel thin-film (Ni(001)). On NO addition, the coordination sphere of Co2+ is modified and a NO–CoTPP nitrosyl complex is formed, which corresponds to an off state of the Co spin. Thermal dissociation of NO from the nitrosyl complex restores the on state of the Co spin. The NO-induced reversible off–on switching of surface-adsorbed molecular spins observed here is attributed to a spin trans effect. PMID:20975713

  1. Dual-spin attitude control for outer planet missions

    NASA Technical Reports Server (NTRS)

    Ward, R. S.; Tauke, G. J.

    1977-01-01

    The applicability of dual-spin technology to a Jupiter orbiter with probe mission was investigated. Basic mission and system level attitude control requirements were established and preliminary mechanization and control concepts developed. A comprehensive 18-degree-of-freedom digital simulation was utilized extensively to establish control laws, study dynamic interactions, and determined key sensitivities. Fundamental system/subsystem constraints were identified, and the applicability of dual-spin technology to a Jupiter orbiter with probe mission was validated.

  2. Control of atomic spin squeezing via quantum coherence

    NASA Astrophysics Data System (ADS)

    Shao, Xuping; Ling, Yang; Yang, Xihua; Xiao, Min

    2016-06-01

    We propose a scheme to generate and control atomic spin squeezing via atomic coherence induced by the strong coupling and probe fields in the Λ-type electromagnetically-induced-transparency configuration in an atomic ensemble. Manipulation of squeezing of the two components in the plane orthogonal to the mean atomic spin direction and generation of nearly perfect squeezing in either component can be achieved by varying the relative intensities of the coupling and probe fields. This method provides a flexible and convenient way to create and control atomic spin squeezing, which may find potential applications in high-precision atomic-physics measurement, quantum coherent control, and quantum information processing.

  3. Efficient spin filter and spin valve in a single-molecule magnet Fe4 between two graphene electrodes

    NASA Astrophysics Data System (ADS)

    Zu, Feng-Xia; Gao, Guo-Ying; Fu, Hua-Hua; Xiong, Lun; Zhu, Si-Cong; Peng, Li; Yao, Kai-Lun

    2015-12-01

    We propose a magnetic molecular junction consisting of a single-molecule magnet Fe4 connected two graphene electrodes and investigate transport properties, using the nonequilibrium Green's function method in combination with spin-polarized density-functional theory. The results show that the device can be used as a nearly perfect spin filter with efficiency approaching 100%. Our calculations provide crucial microscopic information how the four iron cores of the chemical structure are responsible for the spin-resolved transmissions. Moreover, it is also found that the device behaves as a highly efficient spin valve, which is an excellent candidate for spintronics of molecular devices. The idea of combining single-molecule magnets with graphene provides a direction in designing a new class of molecular spintronic devices.

  4. Efficient spin filter and spin valve in a single-molecule magnet Fe{sub 4} between two graphene electrodes

    SciTech Connect

    Zu, Feng-Xia; Gao, Guo-Ying; Fu, Hua-Hua; Peng, Li; Yao, Kai-Lun; Xiong, Lun; Zhu, Si-Cong

    2015-12-21

    We propose a magnetic molecular junction consisting of a single-molecule magnet Fe{sub 4} connected two graphene electrodes and investigate transport properties, using the nonequilibrium Green's function method in combination with spin-polarized density-functional theory. The results show that the device can be used as a nearly perfect spin filter with efficiency approaching 100%. Our calculations provide crucial microscopic information how the four iron cores of the chemical structure are responsible for the spin-resolved transmissions. Moreover, it is also found that the device behaves as a highly efficient spin valve, which is an excellent candidate for spintronics of molecular devices. The idea of combining single-molecule magnets with graphene provides a direction in designing a new class of molecular spintronic devices.

  5. Initialization of a spin qubit in a site-controlled nanowire quantum dot

    NASA Astrophysics Data System (ADS)

    Lagoudakis, Konstantinos G.; McMahon, Peter L.; Fischer, Kevin A.; Puri, Shruti; Müller, Kai; Dalacu, Dan; Poole, Philip J.; Reimer, Michael E.; Zwiller, Val; Yamamoto, Yoshihisa; Vučković, Jelena

    2016-05-01

    A fault-tolerant quantum repeater or quantum computer using solid-state spin-based quantum bits will likely require a physical implementation with many spins arranged in a grid. Self-assembled quantum dots (QDs) have been established as attractive candidates for building spin-based quantum information processing devices, but such QDs are randomly positioned, which makes them unsuitable for constructing large-scale processors. Recent efforts have shown that QDs embedded in nanowires can be deterministically positioned in regular arrays, can store single charges, and have excellent optical properties, but so far there have been no demonstrations of spin qubit operations using nanowire QDs. Here we demonstrate optical pumping of individual spins trapped in site-controlled nanowire QDs, resulting in high-fidelity spin-qubit initialization. This represents the next step towards establishing spins in nanowire QDs as quantum memories suitable for use in a large-scale, fault-tolerant quantum computer or repeater based on all-optical control of the spin qubits.

  6. Controllable generation of a spin-triplet supercurrent in a Josephson spin valve

    NASA Astrophysics Data System (ADS)

    Iovan, Adrian; Golod, Taras; Krasnov, Vladimir M.

    2014-10-01

    It has been predicted theoretically that an unconventional odd-frequency spin-triplet component of a superconducting order parameter can be induced in multilayered ferromagnetic structures with noncollinear magnetization. In this work, we study experimentally nanoscale devices, in which a ferromagnetic spin valve is embedded into a Josephson junction. We demonstrate two ways of in situ analysis of such Josephson spin valves: via magnetoresistance measurements and via in situ magnetometry based on flux quantization in the junction. We observe that supercurrent through the device depends on the relative orientation of magnetizations of the two ferromagnetic layers and is enhanced in the noncollinear state of the spin valve. We attribute this phenomenon to controllable generation of the spin-triplet superconducting component in a ferromagnet.

  7. Nearly Perfect Spin Filter, Spin Valve and Negative Differential Resistance Effects in a Fe4-based Single-molecule Junction

    NASA Astrophysics Data System (ADS)

    Zu, Fengxia; Liu, Zuli; Yao, Kailun; Gao, Guoying; Fu, Huahua; Zhu, Sicong; Ni, Yun; Peng, Li

    2014-05-01

    The spin-polarized transport in a single-molecule magnet Fe4 sandwiched between two gold electrodes is studied, using nonequilibrium Green's functions in combination with the density-functional theory. We predict that the device possesses spin filter effect (SFE), spin valve effect (SVE), and negative differential resistance (NDR) behavior. Moreover, we also find that the appropriate chemical ligand, coupling the single molecule to leads, is a key factor for manipulating spin-dependent transport. The device containing the methyl ligand behaves as a nearly perfect spin filter with efficiency approaching 100%, and the transport is dominated by transmission through the Fe4 metal center. However, in the case of phenyl ligand, the spin filter effect seems to be reduced, but the spin valve effect is significantly enhanced with a large magnetoresistance ratio, reaching 1800%. This may be attributed to the blocking effect of the phenyl ligands in mediating transport. Our findings suggest that such a multifunctional molecular device, possessing SVE, NDR and high SFE simultaneously, would be an excellent candidate for spintronics of molecular devices.

  8. Nearly Perfect Spin Filter, Spin Valve and Negative Differential Resistance Effects in a Fe4-based Single-molecule Junction

    PubMed Central

    Zu, Fengxia; Liu, Zuli; Yao, Kailun; Gao, Guoying; Fu, Huahua; Zhu, Sicong; Ni, Yun; Peng, Li

    2014-01-01

    The spin-polarized transport in a single-molecule magnet Fe4 sandwiched between two gold electrodes is studied, using nonequilibrium Green's functions in combination with the density-functional theory. We predict that the device possesses spin filter effect (SFE), spin valve effect (SVE), and negative differential resistance (NDR) behavior. Moreover, we also find that the appropriate chemical ligand, coupling the single molecule to leads, is a key factor for manipulating spin-dependent transport. The device containing the methyl ligand behaves as a nearly perfect spin filter with efficiency approaching 100%, and the transport is dominated by transmission through the Fe4 metal center. However, in the case of phenyl ligand, the spin filter effect seems to be reduced, but the spin valve effect is significantly enhanced with a large magnetoresistance ratio, reaching 1800%. This may be attributed to the blocking effect of the phenyl ligands in mediating transport. Our findings suggest that such a multifunctional molecular device, possessing SVE, NDR and high SFE simultaneously, would be an excellent candidate for spintronics of molecular devices. PMID:24787446

  9. All-optical control of a solid-state spin using coherent dark states.

    PubMed

    Yale, Christopher G; Buckley, Bob B; Christle, David J; Burkard, Guido; Heremans, F Joseph; Bassett, Lee C; Awschalom, David D

    2013-05-01

    The study of individual quantum systems in solids, for use as quantum bits (qubits) and probes of decoherence, requires protocols for their initialization, unitary manipulation, and readout. In many solid-state quantum systems, these operations rely on disparate techniques that can vary widely depending on the particular qubit structure. One such qubit, the nitrogen-vacancy (NV) center spin in diamond, can be initialized and read out through its special spin-selective intersystem crossing, while microwave electron spin resonance techniques provide unitary spin rotations. Instead, we demonstrate an alternative, fully optical approach to these control protocols in an NV center that does not rely on its intersystem crossing. By tuning an NV center to an excited-state spin anticrossing at cryogenic temperatures, we use coherent population trapping and stimulated Raman techniques to realize initialization, readout, and unitary manipulation of a single spin. Each of these techniques can be performed directly along any arbitrarily chosen quantum basis, removing the need for extra control steps to map the spin to and from a preferred basis. Combining these protocols, we perform measurements of the NV center's spin coherence, a demonstration of this full optical control. Consisting solely of optical pulses, these techniques enable control within a smaller footprint and within photonic networks. Likewise, this unified approach obviates the need for both electron spin resonance manipulation and spin addressability through the intersystem crossing. This method could therefore be applied to a wide range of potential solid-state qubits, including those which currently lack a means to be addressed. PMID:23610403

  10. Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin

    PubMed Central

    Arroyo-Camejo, Silvia; Lazariev, Andrii; Hell, Stefan W.; Balasubramanian, Gopalakrishnan

    2014-01-01

    At its most fundamental level, circuit-based quantum computation relies on the application of controlled phase shift operations on quantum registers. While these operations are generally compromised by noise and imperfections, quantum gates based on geometric phase shifts can provide intrinsically fault-tolerant quantum computing. Here we demonstrate the high-fidelity realization of a recently proposed fast (non-adiabatic) and universal (non-Abelian) holonomic single-qubit gate, using an individual solid-state spin qubit under ambient conditions. This fault-tolerant quantum gate provides an elegant means for achieving the fidelity threshold indispensable for implementing quantum error correction protocols. Since we employ a spin qubit associated with a nitrogen-vacancy colour centre in diamond, this system is based on integrable and scalable hardware exhibiting strong analogy to current silicon technology. This quantum gate realization is a promising step towards viable, fault-tolerant quantum computing under ambient conditions. PMID:25216026

  11. Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin.

    PubMed

    Arroyo-Camejo, Silvia; Lazariev, Andrii; Hell, Stefan W; Balasubramanian, Gopalakrishnan

    2014-01-01

    At its most fundamental level, circuit-based quantum computation relies on the application of controlled phase shift operations on quantum registers. While these operations are generally compromised by noise and imperfections, quantum gates based on geometric phase shifts can provide intrinsically fault-tolerant quantum computing. Here we demonstrate the high-fidelity realization of a recently proposed fast (non-adiabatic) and universal (non-Abelian) holonomic single-qubit gate, using an individual solid-state spin qubit under ambient conditions. This fault-tolerant quantum gate provides an elegant means for achieving the fidelity threshold indispensable for implementing quantum error correction protocols. Since we employ a spin qubit associated with a nitrogen-vacancy colour centre in diamond, this system is based on integrable and scalable hardware exhibiting strong analogy to current silicon technology. This quantum gate realization is a promising step towards viable, fault-tolerant quantum computing under ambient conditions. PMID:25216026

  12. Charge-Insensitive Single-Atom Spin-Orbit Qubit in Silicon

    NASA Astrophysics Data System (ADS)

    Salfi, Joe; Mol, Jan A.; Culcer, Dimitrie; Rogge, Sven

    2016-06-01

    High fidelity entanglement of an on-chip array of spin qubits poses many challenges. Spin-orbit coupling (SOC) can ease some of these challenges by enabling long-ranged entanglement via electric dipole-dipole interactions, microwave photons, or phonons. However, SOC exposes conventional spin qubits to decoherence from electrical noise. Here, we propose an acceptor-based spin-orbit qubit in silicon offering long-range entanglement at a sweet spot where the qubit is protected from electrical noise. The qubit relies on quadrupolar SOC with the interface and gate potentials. As required for surface codes, 105 electrically mediated single-qubit and 104 dipole-dipole mediated two-qubit gates are possible in the predicted spin lifetime. Moreover, circuit quantum electrodynamics with single spins is feasible, including dispersive readout, cavity-mediated entanglement, and spin-photon entanglement. An industrially relevant silicon-based platform is employed.

  13. Charge-Insensitive Single-Atom Spin-Orbit Qubit in Silicon.

    PubMed

    Salfi, Joe; Mol, Jan A; Culcer, Dimitrie; Rogge, Sven

    2016-06-17

    High fidelity entanglement of an on-chip array of spin qubits poses many challenges. Spin-orbit coupling (SOC) can ease some of these challenges by enabling long-ranged entanglement via electric dipole-dipole interactions, microwave photons, or phonons. However, SOC exposes conventional spin qubits to decoherence from electrical noise. Here, we propose an acceptor-based spin-orbit qubit in silicon offering long-range entanglement at a sweet spot where the qubit is protected from electrical noise. The qubit relies on quadrupolar SOC with the interface and gate potentials. As required for surface codes, 10^{5} electrically mediated single-qubit and 10^{4} dipole-dipole mediated two-qubit gates are possible in the predicted spin lifetime. Moreover, circuit quantum electrodynamics with single spins is feasible, including dispersive readout, cavity-mediated entanglement, and spin-photon entanglement. An industrially relevant silicon-based platform is employed. PMID:27367400

  14. A quantum phase switch between a single solid-state spin and a photon.

    PubMed

    Sun, Shuo; Kim, Hyochul; Solomon, Glenn S; Waks, Edo

    2016-06-01

    Interactions between single spins and photons are essential for quantum networks and distributed quantum computation. Achieving spin-photon interactions in a solid-state device could enable compact chip-integrated quantum circuits operating at gigahertz bandwidths. Many theoretical works have suggested using spins embedded in nanophotonic structures to attain this high-speed interface. These proposals implement a quantum switch where the spin flips the state of the photon and a photon flips the spin state. However, such a switch has not yet been realized using a solid-state spin system. Here, we report an experimental realization of a spin-photon quantum switch using a single solid-state spin embedded in a nanophotonic cavity. We show that the spin state strongly modulates the polarization of a reflected photon, and a single reflected photon coherently rotates the spin state. These strong spin-photon interactions open up a promising direction for solid-state implementations of high-speed quantum networks and on-chip quantum information processors using nanophotonic devices. PMID:26854569

  15. Protein imaging. Single-protein spin resonance spectroscopy under ambient conditions.

    PubMed

    Shi, Fazhan; Zhang, Qi; Wang, Pengfei; Sun, Hongbin; Wang, Jiarong; Rong, Xing; Chen, Ming; Ju, Chenyong; Reinhard, Friedemann; Chen, Hongwei; Wrachtrup, Jörg; Wang, Junfeng; Du, Jiangfeng

    2015-03-01

    Magnetic resonance is essential in revealing the structure and dynamics of biomolecules. However, measuring the magnetic resonance spectrum of single biomolecules has remained an elusive goal. We demonstrate the detection of the electron spin resonance signal from a single spin-labeled protein under ambient conditions. As a sensor, we use a single nitrogen vacancy center in bulk diamond in close proximity to the protein. We measure the orientation of the spin label at the protein and detect the impact of protein motion on the spin label dynamics. In addition, we coherently drive the spin at the protein, which is a prerequisite for studies involving polarization of nuclear spins of the protein or detailed structure analysis of the protein itself. PMID:25745170

  16. Spin-controlled mechanics in nanoelectromechanical systems

    NASA Astrophysics Data System (ADS)

    Radić, D.

    2015-03-01

    We consider a dc-electronic tunneling transport through a carbon nanotube suspended between normal-metal source and arbitrarily spin-polarized drain lead in the presence of an external magnetic field. We show that magnetomotive coupling between electrical current through the nanotube and its mechanical vibrations may lead to an electromechanical instability and give an onset of self-excited mechanical vibrations depending on spin polarization of the drain lead and frequency of vibrations. The self-excitation mechanism is based on correlation between the occupancy of quantized Zeeman-split electronic states in the nanotube and the direction of velocity of its mechanical motion. It is an effective gating effect by the presence of electron in the spin state which, through the Coulomb blockade, permits tunneling of electron to the drain predominantly only during a particular phase of mechanical vibration thus coherently changing mechanical momentum and leading into instability if mechanical damping is overcome.

  17. Global fitting of single spin asymmetry: An attempt

    NASA Astrophysics Data System (ADS)

    Kang, Zhong-Bo; Prokudin, Alexei

    2012-04-01

    We present an attempt of global analysis of semi-inclusive deep inelastic scattering ℓp↑→ℓ'πX data on single spin asymmetries and data on left-right asymmetry AN in p↑p→πX in order to simultaneously extract information on the Sivers function and the twist-three quark-gluon Efremov-Teryaev-Qiu-Sterman function. We explore different possibilities such as the node of the Sivers function in x or k⊥ in order to explain “sign mismatch” between these functions. We show that π± semi-inclusive deep inelastic scattering data and π0 STAR data can be well described in a combined fit based on both the transverse momentum dependent and collinear twist-three factorization formalisms; however, π± BRAHMS data are not described in a satisfactory way. This leaves the question open of a solution to the “sign mismatch.” Possible explanations are then discussed.

  18. Spin-path entanglement in single-neutron interferometer experiments

    SciTech Connect

    Hasegawa, Yuji; Erdoesi, Daniel

    2011-09-23

    There are two powerful arguments against the possibility of extending quantum mechanics (QM) into a more fundamental theory yielding a deterministic description of nature. One is the experimental violation of Bell inequalities, which discards local hidden-variable theories as a possible extension to QM. The other is the Kochen-Specker (KS) theorem, which stresses the incompatibility of QM with a larger class of hidden-variable theories, known as noncontextual hidden-variable theories. We performed experiments with neutron interferometer, which exploits spin-path entanglements in single neutrons. A Bell-like state is generated to demonstrate a violation of the Bell-like inequality and phenomena in accordance with KS theorem: both experiments study quantum contextuality and show clear evidence of the incompatibility of noncontextual hidden variable theories with QM. The value S = 2.202{+-}0.007 Neither-Less-Than-Nor-Equal-To 2 is obtained in the new measurement of the Bell-like inequality, which shows a larger violation than the previous measurement. For the study of KS theorem, the obtained violation 2.291{+-}0.008 Neither-Less-Than-Nor-Equal-To 1 clearly shows that quantum mechanical predictions cannot be reproduced by noncontextual hidden variable theories.

  19. Experimental Study of Single Spin Asymmetries and TMDs

    NASA Astrophysics Data System (ADS)

    Chen, Jian-Ping

    2014-01-01

    Single Spin Asymmetries and Transverse Momentum Dependent (TMD) distribution study has been one of the main focuses of hadron physics in recent years. The initial exploratory Semi-Inclusive Deep-Inelastic-Scattering (SIDIS) experiments with transversely polarized proton and deuteron targets from HERMES and COMPASS attracted great attention and lead to very active efforts in both experiments and theory. A SIDIS experiment on the neutron with a polarized 3He target was performed at JLab. Recently published results as well as new preliminary results are shown. Precision TMD experiments are planned at JLab after the 12 GeV energy upgrade. Three approved experiments with a new SoLID spectrometer on both the proton and neutron will provide high precision TMD data in the valence quark region. In the long-term future, an Electron-Ion Collider (EIC) as proposed in US (MEIC@JLab and E-RHIC@BNL) will provide precision TMD data of the gluons and the sea. A new opportunity just emerged in China that a low-energy EIC (1st stage EIC@HIAF) may provide precision TMD data in the sea quark region, complementary to the proposed EIC in US.

  20. Control of propagating spin waves via spin transfer torque in a metallic bilayer waveguide

    NASA Astrophysics Data System (ADS)

    An, Kyongmo; Birt, Daniel R.; Pai, Chi-Feng; Olsson, Kevin; Ralph, Daniel C.; Buhrman, Robert A.; Li, Xiaoqin

    2014-04-01

    We investigate the effect of a direct current on propagating spin waves in a CoFeB/Ta bilayer structure. Using the micro-Brillouin light scattering technique, we observe that the spin-wave damping and amplitude may be attenuated or amplified depending on the direction of the current and the applied magnetic field. Our work suggests an effective approach for electrically controlling the propagation of spin waves in a magnetic waveguide and may be useful in a number of applications such as phase-locked nano-oscillators and hybrid information-processing devices.

  1. Spin-controlled plasmonics via optical Rashba effect

    SciTech Connect

    Shitrit, Nir; Yulevich, Igor; Kleiner, Vladimir; Hasman, Erez

    2013-11-18

    Observation of the optical Rashba effect in plasmonics is reported. Polarization helicity degeneracy removal, associated with the inversion symmetry violation, is attributed to the surface symmetry design via anisotropic nanoantennas with space-variant orientations. By utilizing the Rashba-induced momentum in a nanoscale kagome metastructure, we demonstrated a spin-based surface plasmon multidirectional excitation under a normal-incidence illumination. The spin-controlled plasmonics via spinoptical metasurfaces provides a route for spin-based surface-integrated photonic nanodevices and light-matter interaction control, extending the light manipulation capabilities.

  2. Electric Control of Spin Helicity in a Magnetic Ferroelectric

    SciTech Connect

    Yamasaki, Y.; Goto, T.; Sagayama, H.; Matsuura, M.; Hirota, K.; Arima, T.; Tokura, Y.

    2007-04-06

    Magnetic ferroelectrics or multiferroics, which are currently extensively explored, may provide a good arena to realize a novel magnetoelectric function. Here we demonstrate the genuine electric control of the spiral magnetic structure in one such magnetic ferroelectric, TbMnO{sub 3}. A spin-polarized neutron scattering experiment clearly shows that the spin helicity, clockwise or counterclockwise, is controlled by the direction of spontaneous polarization and hence by the polarity of the small electric field applied on cooling.

  3. Optical pumping of a single hole spin in a quantum dot

    NASA Astrophysics Data System (ADS)

    Gerardot, Brian D.; Brunner, Daniel; Dalgarno, Paul A.; Öhberg, Patrik; Seidl, Stefan; Kroner, Martin; Karrai, Khaled; Stoltz, Nick G.; Petroff, Pierre M.; Warburton, Richard J.

    2008-01-01

    The spin of an electron is a natural two-level system for realizing a quantum bit in the solid state. For an electron trapped in a semiconductor quantum dot, strong quantum confinement highly suppresses the detrimental effect of phonon-related spin relaxation. However, this advantage is offset by the hyperfine interaction between the electron spin and the 104 to 106 spins of the host nuclei in the quantum dot. Random fluctuations in the nuclear spin ensemble lead to fast spin decoherence in about ten nanoseconds. Spin-echo techniques have been used to mitigate the hyperfine interaction, but completely cancelling the effect is more attractive. In principle, polarizing all the nuclear spins can achieve this but is very difficult to realize in practice. Exploring materials with zero-spin nuclei is another option, and carbon nanotubes, graphene quantum dots and silicon have been proposed. An alternative is to use a semiconductor hole. Unlike an electron, a valence hole in a quantum dot has an atomic p orbital which conveniently goes to zero at the location of all the nuclei, massively suppressing the interaction with the nuclear spins. Furthermore, in a quantum dot with strong strain and strong quantization, the heavy hole with spin-3/2 behaves as a spin-1/2 system and spin decoherence mechanisms are weak. We demonstrate here high fidelity (about 99 per cent) initialization of a single hole spin confined to a self-assembled quantum dot by optical pumping. Our scheme works even at zero magnetic field, demonstrating a negligible hole spin hyperfine interaction. We determine a hole spin relaxation time at low field of about one millisecond. These results suggest a route to the realization of solid-state quantum networks that can intra-convert the spin state with the polarization of a photon.

  4. Periodic attitude control of a slowly spinning spacecraft.

    NASA Technical Reports Server (NTRS)

    Todosiev, E. P.

    1973-01-01

    A periodic attitude control system is presented which permits control of secular errors of a slowly spinning spacecraft operating in a high disturbance environment. Attitude errors of the spin-axis are detected by sun sensors (or rate gyros) and are controlled by a periodic control law which modulates external control torques generated by mass expulsion torquers. Attitude stability during the uncontrolled periods is obtained passively via the vehicle spin momentum. Equations of motion, a system block diagram, and design parameters are presented for a typical spacecraft application. Simulation results are included which demonstrate the feasibility of the novel control concept. Salient features of the periodic control approach are implementation simplicity, excellent response, and a propellant utilization efficiency greater than 75 percent.

  5. Electron spin control of optically levitated nanodiamonds in vacuum.

    PubMed

    Hoang, Thai M; Ahn, Jonghoon; Bang, Jaehoon; Li, Tongcang

    2016-01-01

    Electron spins of diamond nitrogen-vacancy (NV) centres are important quantum resources for nanoscale sensing and quantum information. Combining NV spins with levitated optomechanical resonators will provide a hybrid quantum system for novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centres in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this system, we investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. We also observe that oxygen and helium gases have different effects on both the photoluminescence and the ESR contrast of nanodiamond NV centres, indicating potential applications of NV centres in oxygen gas sensing. Our results pave the way towards a levitated spin-optomechanical system for studying macroscopic quantum mechanics. PMID:27432560

  6. Spin-transfer torque based damping control of parametrically excited spin waves in a magnetic insulator

    NASA Astrophysics Data System (ADS)

    Lauer, V.; Bozhko, D. A.; Brächer, T.; Pirro, P.; Vasyuchka, V. I.; Serga, A. A.; Jungfleisch, M. B.; Agrawal, M.; Kobljanskyj, Yu. V.; Melkov, G. A.; Dubs, C.; Hillebrands, B.; Chumak, A. V.

    2016-01-01

    The damping of spin waves parametrically excited in the magnetic insulator Yttrium Iron Garnet (YIG) is controlled by a dc current passed through an adjacent normal-metal film. The experiment is performed on a macroscopically sized YIG(100 nm)/Pt(10 nm) bilayer of 4 × 2 mm2 lateral dimensions. The spin-wave relaxation frequency is determined via the threshold of the parametric instability measured by Brillouin light scattering spectroscopy. The application of a dc current to the Pt film leads to the formation of a spin-polarized electron current normal to the film plane due to the spin Hall effect. This spin current exerts a spin transfer torque in the YIG film and, thus, changes the spin-wave damping. Depending on the polarity of the applied dc current with respect to the magnetization direction, the damping can be increased or decreased. The magnitude of its variation is proportional to the applied current. A variation in the relaxation frequency of ± 7.5 % is achieved for an applied dc current density of 5 × 1010 A/m2.

  7. Spin-related thermoelectric conversion in lateral spin-valve devices with single-crystalline Co2FeSi electrodes

    NASA Astrophysics Data System (ADS)

    Yamasaki, Kento; Oki, Soichiro; Yamada, Shinya; Kanashima, Takeshi; Hamaya, Kohei

    2015-04-01

    We demonstrate the conversion between a heat current and a spin current in Cu-based lateral spin valves (LSVs) with single-crystalline Co2FeSi (CFS) electrodes. We can observe the thermally induced spin injection from CFS into Cu resulting from the spin-dependent Seebeck effect, and the heat current generated by the spin-dependent Peltier effect can be detected even in the LSV structures. This study is an important step toward understanding heat-spin conversion in single-crystalline materials with various electronic band structures.

  8. Coherent Control of Collective Atomic Spins

    NASA Astrophysics Data System (ADS)

    Trail, Collin M.

    2011-12-01

    In this thesis I explore the use of collective spin angular momentum as a platform for quantum information processing. In the limit of a large number of atoms, the collective variables of atomic systems have a natural connection to the bosonic algebra of light (known as the Holstein-Primakoff or HP approximation) where components of the collective spin angular momentum effectively act as quadratures, making them natural systems for coupling to light. I have sought to improve previous schemes for the spin squeezing of atomic ensembles, such as the proposal of Takeuchi et. al. based on coherent quantum feedback [39]. In this scheme a beam of linearly polarized light passes through the atomic ensemble (prepared in a coherent state), coupling to the atoms through a state-dependent index of refraction (the Faraday effect). The light is then passed through a wave-plate and reflected back through the atoms for a second pass. This double-pass scheme leads to an effective nonlinearity as the atomic fluctuations are mapped onto the light on the first pass and then back on to the atoms in the second pass. The light acts as a bus coupling each atom to each of the others. This nonlinear interaction forms a shearing of the atomic coherent state that results in squeezing. The light is entangled to the atoms through these interactions, and remains entangled as it escapes the system. This leads to decoherence of the atoms as the light is lost to the environment, reducing the amount of spin squeezing achieved. The first step towards improving the double-pass scheme was to add a quantum eraser step in which the light is disentangled from the squeezed atoms. By first measuring one quadrature of the light, and then performing a measurement-dependent rotation on the atomic ensemble, it is possible to decouple the atoms and light so that the loss of the light does not reduce the atomic squeezing. This results in an improvement of the rate of atomic spin squeezing. A complete model

  9. Longitudinal spin separation of light and its performance in three-dimensionally controllable spin-dependent focal shift

    PubMed Central

    Liu, Sheng; Li, Peng; Zhang, Yi; Gan, Xuetao; Wang, Meirong; Zhao, Jianlin

    2016-01-01

    Spin Hall effect of light, which is normally explored as a transverse spin-dependent separation of a light beam, has attracted enormous research interests. However, it seems there is no indication for the existence of the longitudinal spin separation of light. In this paper, we propose and experimentally realize the spin separation along the propagation direction by modulating the Pancharatnam-Berry (PB) phase. Due to the spin-dependent divergence and convergence determined by the PB phase, a focused Gaussian beam could split into two opposite spin states, and focuses at different distances, representing the longitudinal spin separation. By combining this longitudinal spin separation with the transverse one, we experimentally achieve the controllable spin-dependent focal shift in three dimensional space. This work provides new insight on steering the spin photons, and is expected to explore novel applications of optical trapping, manipulating, and micromachining with higher degree of freedom. PMID:26882995

  10. Longitudinal spin separation of light and its performance in three-dimensionally controllable spin-dependent focal shift.

    PubMed

    Liu, Sheng; Li, Peng; Zhang, Yi; Gan, Xuetao; Wang, Meirong; Zhao, Jianlin

    2016-01-01

    Spin Hall effect of light, which is normally explored as a transverse spin-dependent separation of a light beam, has attracted enormous research interests. However, it seems there is no indication for the existence of the longitudinal spin separation of light. In this paper, we propose and experimentally realize the spin separation along the propagation direction by modulating the Pancharatnam-Berry (PB) phase. Due to the spin-dependent divergence and convergence determined by the PB phase, a focused Gaussian beam could split into two opposite spin states, and focuses at different distances, representing the longitudinal spin separation. By combining this longitudinal spin separation with the transverse one, we experimentally achieve the controllable spin-dependent focal shift in three dimensional space. This work provides new insight on steering the spin photons, and is expected to explore novel applications of optical trapping, manipulating, and micromachining with higher degree of freedom. PMID:26882995

  11. Detection of single electron spin resonance in a double quantum dota)

    NASA Astrophysics Data System (ADS)

    Koppens, F. H. L.; Buizert, C.; Vink, I. T.; Nowack, K. C.; Meunier, T.; Kouwenhoven, L. P.; Vandersypen, L. M. K.

    2007-04-01

    Spin-dependent transport measurements through a double quantum dot are a valuable tool for detecting both the coherent evolution of the spin state of a single electron, as well as the hybridization of two-electron spin states. In this article, we discuss a model that describes the transport cycle in this regime, including the effects of an oscillating magnetic field (causing electron spin resonance) and the effective nuclear fields on the spin states in the two dots. We numerically calculate the current flow due to the induced spin flips via electron spin resonance, and we study the detector efficiency for a range of parameters. The experimental data are compared with the model and we find a reasonable agreement.

  12. Single-Quantum Coherence Filter for Strongly Coupled Spin Systems for Localized 1H NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Trabesinger, Andreas H.; Mueller, D. Christoph; Boesiger, Peter

    2000-08-01

    A pulse sequence for localized in vivo1H NMR spectroscopy is presented, which selectively filters single-quantum coherence built up by strongly coupled spin systems. Uncoupled and weakly coupled spin systems do not contribute to the signal output. Analytical calculations using a product operator description of the strongly coupled AB spin system as well as in vitro tests demonstrate that the proposed filter produces a signal output for a strongly coupled AB spin system, whereas the resonances of a weakly coupled AX spin system and of uncoupled spins are widely suppressed. As a potential application, the detection of the strongly coupled AA‧BB‧ spin system of taurine at 1.5 T is discussed.

  13. Dual Control of Giant Field-like Spin Torque in Spin Filter Tunnel Junctions

    PubMed Central

    Tang, Y. -H.; Chu, F. -C.; Kioussis, Nicholas

    2015-01-01

    We predict a giant field-like spin torque, , in spin-filter (SF) barrier tunnel junctions in sharp contrast to existing junctions based on nonmagnetic passive barriers. We demonstrate that has linear bias behavior, is independent of the SF thickness, and has odd parity with respect to the SF’s exchange splitting. Thus, it can be selectively controlled via external bias or external magnetic field which gives rise to sign reversal of via magnetic field switching. The underlying mechanism is the interlayer exchange coupling between the noncollinear magnetizations of the SF and free ferromagnetic electrode via the nonmagnetic insulating (I) spacer giving rise to giant spin-dependent reflection at the SF/I interface. These findings suggest that the proposed field-like-spin-torque MRAM may provide promising dual functionalities for both ‘reading’ and ‘writing’ processes which require lower critical current densities and faster writing and reading speeds. PMID:26095146

  14. Dual Control of Giant Field-like Spin Torque in Spin Filter Tunnel Junctions.

    PubMed

    Tang, Y-H; Chu, F-C; Kioussis, Nicholas

    2015-01-01

    We predict a giant field-like spin torque, T[symbol in text], in spin-filter (SF) barrier tunnel junctions in sharp contrast to existing junctions based on nonmagnetic passive barriers. We demonstrate that has linear bias behavior, is independent of the SF thickness, and has odd parity with respect to the SF's exchange splitting. Thus, it can be selectively controlled via external bias or external magnetic field which gives rise to sign reversal of T[symbol in text] via magnetic field switching. The underlying mechanism is the interlayer exchange coupling between the noncollinear magnetizations of the SF and free ferromagnetic electrode via the nonmagnetic insulating (I) spacer giving rise to giant spin-dependent reflection at the SF/I interface. These findings suggest that the proposed field-like-spin-torque MRAM may provide promising dual functionalities for both 'reading' and 'writing' processes which require lower critical current densities and faster writing and reading speeds. PMID:26095146

  15. Dual Control of Giant Field-like Spin Torque in Spin Filter Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Tang, Y.-H.; Chu, F.-C.; Kioussis, Nicholas

    2015-06-01

    We predict a giant field-like spin torque, , in spin-filter (SF) barrier tunnel junctions in sharp contrast to existing junctions based on nonmagnetic passive barriers. We demonstrate that has linear bias behavior, is independent of the SF thickness, and has odd parity with respect to the SF’s exchange splitting. Thus, it can be selectively controlled via external bias or external magnetic field which gives rise to sign reversal of via magnetic field switching. The underlying mechanism is the interlayer exchange coupling between the noncollinear magnetizations of the SF and free ferromagnetic electrode via the nonmagnetic insulating (I) spacer giving rise to giant spin-dependent reflection at the SF/I interface. These findings suggest that the proposed field-like-spin-torque MRAM may provide promising dual functionalities for both ‘reading’ and ‘writing’ processes which require lower critical current densities and faster writing and reading speeds.

  16. Dissipative Quantum Control of a Spin Chain

    NASA Astrophysics Data System (ADS)

    Morigi, Giovanna; Eschner, Jürgen; Cormick, Cecilia; Lin, Yiheng; Leibfried, Dietrich; Wineland, David J.

    2015-11-01

    A protocol is discussed for preparing a spin chain in a generic many-body state in the asymptotic limit of tailored nonunitary dynamics. The dynamics require the spectral resolution of the target state, optimized coherent pulses, engineered dissipation, and feedback. As an example, we discuss the preparation of an entangled antiferromagnetic state, and argue that the procedure can be applied to chains of trapped ions or Rydberg atoms.

  17. Decoherence of a single spin coupled to an interacting spin bath

    NASA Astrophysics Data System (ADS)

    Wu, Ning; Fröhling, Nina; Xing, Xi; Hackmann, Johannes; Nanduri, Arun; Anders, Frithjof B.; Rabitz, Herschel

    2016-01-01

    Decoherence of a central spin coupled to an interacting spin bath via inhomogeneous Heisenberg coupling is studied by two different approaches, namely an exact equations of motion (EOMs) method and a Chebyshev expansion technique (CET). By assuming a wheel topology of the bath spins with uniform nearest-neighbor X X -type intrabath coupling, we examine the central spin dynamics with the bath prepared in two different types of bath initial conditions. For fully polarized baths in strong magnetic fields, the polarization dynamics of the central spin exhibits a collapse-revival behavior in the intermediate-time regime. Under an antiferromagnetic bath initial condition, the two methods give excellently consistent central spin decoherence dynamics for finite-size baths of N ≤14 bath spins. The decoherence factor is found to drop off abruptly on a short time scale and approach a finite plateau value which depends on the intrabath coupling strength nonmonotonically. In the ultrastrong intrabath coupling regime, the plateau values show an oscillatory behavior depending on whether N /2 is even or odd. The observed results are interpreted qualitatively within the framework of the EOM and perturbation analysis. The effects of anisotropic spin-bath coupling and inhomogeneous intrabath bath couplings are briefly discussed. Possible experimental realization of the model in a modified quantum corral setup is suggested.

  18. Study of an Active Control System for a Spinning Body

    NASA Technical Reports Server (NTRS)

    Adams, J. J.

    1961-01-01

    The mission requirements for some satellites require that they spin continuously and at the same time maintain a precise direction of the spin axis. An analog-computer study has been made of an attitude control system which is suitable for such a satellite. The control system provides the necessary attitude control through the use of a spinning wheel, which will provide precession torques, commanded by an automatic closed-loop servomechanism system. The sensors used in the control loop are rate gyroscopes for damping of any wobble motion and a sun seeker for attitude control. The results of the study show that the controller can eliminate the wobble motion of the satellite resulting from a rectangular pulse moment disturbance and then return the spin axis to the reference space axis. The motion is damped to half amplitude in less than one cycle of the wobble motion. The controller can also reduce the motion resulting from a step change in product of inertia both by causing the new principal axis to be steadily alined with the spin vector and by reducing the cone angle generated by the reference body axis. These methods will reduce the motion whether the satellite is a disk, sphere, or rod configuration.

  19. Controlling the dark exciton spin eigenstates by external magnetic field

    NASA Astrophysics Data System (ADS)

    Gantz, L.; Schmidgall, E. R.; Schwartz, I.; Don, Y.; Waks, E.; Bahir, G.; Gershoni, D.

    2016-07-01

    We study the dark exciton's behavior as a coherent physical two-level spin system (qubit) using an external magnetic field in the Faraday configuration. Our studies are based on polarization-sensitive intensity autocorrelation measurements of the optical transition resulting from the recombination of a spin-blockaded biexciton state, which heralds the dark exciton and its spin state. We demonstrate control over the dark exciton eigenstates without degrading its decoherence time. Our observations agree well with computational predictions based on a master equation model.

  20. High-sensitivity single NV magnetometry by spin-to-charge state mapping

    NASA Astrophysics Data System (ADS)

    Jaskula, Jean-Christophe; Shields, Brendan; Bauch, Erik; Lukin, Mikhail; Walsworth, Ronald; Trifonov, Alexei

    2015-05-01

    Nitrogen-Vacancy (NV) centers in diamond are atom-like quantum system in a solid state matrix whom its structure allows optical readout of the electronic spin. However, the optimal duration of optical readout is limited by a singlet state lifetime making single shot spin readout out of reach. On the other side, the NV center charge state readout can be extremely efficient (up to 99% fidelity) by using excitation at 594 nm. We will present a new method of spin readout utilizing a spin-depending photoionization process to map the electronic spin state of the NV onto the its charge state. Moreover, pre-selection on the charged state allows to minimize data acquisition time. This scheme improves single NV AC magnetometry by a factor of 5 and will benefit other single NV center experiments as well.

  1. Noise-resistant optimal spin squeezing via quantum control

    NASA Astrophysics Data System (ADS)

    Pichler, T.; Caneva, T.; Montangero, S.; Lukin, M. D.; Calarco, T.

    2016-01-01

    Entangled atomic states, such as spin-squeezed states, represent a promising resource for a new generation of quantum sensors and atomic clocks. We demonstrate that optimal control techniques can be used to substantially enhance the degree of spin squeezing in strongly interacting many-body systems, even in the presence of noise and imperfections. Specifically, we present a protocol that is robust to noise and outperforms conventional methods. Potential experimental implementations are discussed.

  2. Microscopic control of 29Si nuclear spins near phosphorus donors in silicon

    NASA Astrophysics Data System (ADS)

    Järvinen, J.; Zvezdov, D.; Ahokas, J.; Sheludyakov, S.; Vainio, O.; Lehtonen, L.; Vasiliev, S.; Fujii, Y.; Mitsudo, S.; Mizusaki, T.; Gwak, M.; Lee, SangGap; Lee, Soonchil; Vlasenko, L.

    2015-09-01

    We demonstrate an efficient control of 29Si nuclear spins for specific lattice sites near 31P donors in silicon at temperatures below 1 K and in a high magnetic field of 4.6 T. Excitation of the forbidden electron-nuclear transitions leads to a pattern of well-resolved holes and peaks in the electron spin resonance (ESR) lines of 31P . The pattern originates from dynamic polarization (DNP) of the 29Si nuclear spins near the donors via the solid effect. DNP of 29Si is demonstrated also with the Overhauser effect where the allowed ESR transitions are excited. In this case mostly the remote 29Si nuclei having weak interaction with the donors are polarized, which results in a single hole and a sharp peak pair in the ESR spectrum. Our work shows that the solid effect can be used for initialization of 29Si nuclear spin qubits near the donors.

  3. Quantum gates controlled by spin chain soliton excitations

    SciTech Connect

    Cuccoli, Alessandro; Nuzzi, Davide; Vaia, Ruggero; Verrucchi, Paola

    2014-05-07

    Propagation of soliton-like excitations along spin chains has been proposed as a possible way for transmitting both classical and quantum information between two distant parties with negligible dispersion and dissipation. In this work, a somewhat different use of solitons is considered. Solitons propagating along a spin chain realize an effective magnetic field, well localized in space and time, which can be exploited as a means to manipulate the state of an external spin (i.e., a qubit) that is weakly coupled to the chain. We have investigated different couplings between the qubit and the chain, as well as different soliton shapes, according to a Heisenberg chain model. It is found that symmetry properties strongly affect the effectiveness of the proposed scheme, and the most suitable setups for implementing single qubit quantum gates are singled out.

  4. Stars Can't Spin Out of Control (Artist's Animation)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Click on the image for QuickTime Movie of Stars Can't Spin Out of Control

    This artist's animation demonstrates how a dusty planet-forming disk can slow down a whirling young star, essentially saving the star from spinning itself to death. Evidence for this phenomenon comes from NASA's Spitzer Space Telescope.

    The movie begins by showing a developing star (red ball). The star is basically a giant ball of gas that is collapsing onto itself. As it shrinks, it spins faster and faster, like a skater folding in his or her arms. The green lines represent magnetic fields.

    As gravity continues to pull matter inward, the star spins so fast, it starts to flatten out. The same principle applies to the planet Saturn, whose spin has caused it to be slightly squashed or oblate.

    A forming star can theoretically whip around fast enough to overcome gravity and flatten itself into a state where it can no longer become a full-fledged star. But stars don't spin out of control, possibly because swirling disks of dust slow them down. Such disks can be found orbiting young stars, and are filled with dust that might ultimately stick together to form planets.

    The second half of the animation demonstrates how a disk is thought to keep its star's speed in check. A developing star is shown twirling inside its disk. As it turns, its magnetic fields pass through the disk and get bogged down like a spoon in molasses. This locks the star's rotation to the slower-turning disk, so the star, while continuing to shrink, does not spin faster.

    Spitzer found evidence for star-slowing disks in a survey of nearly 500 forming stars in the Orion nebula. It observed that slowly spinning stars are five times more likely to host disks than rapidly spinning stars.

  5. Probing Johnson noise and ballistic transport in normal metals with a single-spin qubit

    NASA Astrophysics Data System (ADS)

    Kolkowitz, S.; Safira, A.; High, A. A.; Devlin, R. C.; Choi, S.; Unterreithmeier, Q. P.; Patterson, D.; Zibrov, A. S.; Manucharyan, V. E.; Park, H.; Lukin, M. D.

    2015-03-01

    Thermally induced electrical currents, known as Johnson noise, cause fluctuating electric and magnetic fields in proximity to a conductor. These fluctuations are intrinsically related to the conductivity of the metal. We use single-spin qubits associated with nitrogen-vacancy centers in diamond to probe Johnson noise in the vicinity of conductive silver films. Measurements of polycrystalline silver films over a range of distances (20 to 200 nanometers) and temperatures (10 to 300 kelvin) are consistent with the classically expected behavior of the magnetic fluctuations. However, we find that Johnson noise is markedly suppressed next to single-crystal films, indicative of a substantial deviation from Ohm’s law at length scales below the electron mean free path. Our results are consistent with a generalized model that accounts for the ballistic motion of electrons in the metal, indicating that under the appropriate conditions, nearby electrodes may be used for controlling nanoscale optoelectronic, atomic, and solid-state quantum systems.

  6. Experimental limits on the fidelity of adiabatic geometric phase gates in a single solid-state spin qubit

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Nusran, N. M.; Slezak, B. R.; Gurudev Dutt, M. V.

    2016-05-01

    While it is often thought that the geometric phase is less sensitive to fluctuations in the control fields, a very general feature of adiabatic Hamiltonians is the unavoidable dynamic phase that accompanies the geometric phase. The effect of control field noise during adiabatic geometric quantum gate operations has not been probed experimentally, especially in the canonical spin qubit system that is of interest for quantum information. We present measurement of the Berry phase and carry out adiabatic geometric phase gate in a single solid-state spin qubit associated with the nitrogen-vacancy center in diamond. We manipulate the spin qubit geometrically by careful application of microwave radiation that creates an effective rotating magnetic field, and observe the resulting Berry phase signal via spin echo interferometry. Our results show that control field noise at frequencies higher than the spin echo clock frequency causes decay of the quantum phase, and degrades the fidelity of the geometric phase gate to the classical threshold after a few (∼10) operations. This occurs inspite of the geometric nature of the state preparation, due to unavoidable dynamic contributions. We have carried out systematic analysis and numerical simulations to study the effects of the control field noise and imperfect driving waveforms on the quantum phase gate.

  7. Floquet control of quantum dissipation in spin chains

    NASA Astrophysics Data System (ADS)

    Chen, Chong; An, Jun-Hong; Luo, Hong-Gang; Sun, C. P.; Oh, C. H.

    2015-05-01

    Controlling the decoherence induced by the interaction of quantum system with its environment is a fundamental challenge in quantum technology. Utilizing Floquet theory, we explore the constructive role of temporal periodic driving in suppressing decoherence of a spin-1/2 particle coupled to a spin bath. It is revealed that, accompanying the formation of a Floquet bound state in the quasienergy spectrum of the whole system including the system and its environment, the dissipation of the spin system can be inhibited and the system tends to coherently synchronize with the driving. It can be seen as an analog to the decoherence suppression induced by the structured environment in spatially periodic photonic crystal setting. Comparing with other decoherence control schemes, our protocol is robust against the fluctuation of control parameters and easy to realize in practice. It suggests a promising perspective of periodic driving in decoherence control.

  8. Optical Control of Semiconductor Quantum Dot Spin Qubits with Microcavity Exciton-Polaritons

    NASA Astrophysics Data System (ADS)

    Puri, Shruti; McMahon, Peter L.; Yamamoto, Yoshihisa

    2015-03-01

    Topological surface codes demand the least stringent threshold conditions and are most promising for implementing large quantum algorithms. Based on the resource requirements to reach fault tolerance, we develop a hardware platform for large scale quantum computation with semiconductor quantum dot (QD) electron spin qubits. The current proposals for implementation of two-qubit gates and quantum non demolition (QND) readout in a QuDOS (Quantum Dots with Optically Controlled Spins) architecture suffer from large error rates. In our scheme, the optical manipulation of the QD spin qubits is carried out using their Coulomb exchange interaction with optically excited, spin-polarized, laterally confined quantum well (LcQW) exciton-polaritons. The small mass of polaritons protects them from interaction with their solid-state environment (phonons) and enables strong coupling between spin qubits separated by a few microns. Furthermore, the excitation manifold of the QD is well separated from that of the LcQW polaritons, preventing a spin-flip event during readout. We will outline schemes for implementing fast, high-fidelity, single qubit gate, two-qubit geometric phase gate and single-shot QND measurement and analyze important decoherence mechanisms. The work being presented was carried out at Stanford University. Currently the author is at University of Sherbrooke, Canada.

  9. The Kondo Effect and Controlled Spin Entanglement in Coupled Double-Quantum-Dots

    NASA Astrophysics Data System (ADS)

    Chang, Albert M.

    2005-07-01

    Semiconductor double-quantum dots represent an ideal system for studying the novel spin physics of localized spins. On each quantum dot when the number of electrons is odd and the net spin is 1/2, a strong coupling of this localized spin to conducting electrons in the leads gives rise to Kondo correlation. On the other hand, in the coupled double-quantum-dot if the inter-dot antiferromagnetic interaction is strong, the two spins can form a correlated spin-singlet state, quenching the Kondo effect. This competition between Kondo and antiferromagnetic correlation is studied in a controlled manner by tuning the inter-dot tunnel coupling. Increasing the inter-dot tunneling, we observe a continuous transition from a single-peaked to a double-peaked Kondo resonance in the differential conductance. On the double-peaked side, the differential conductance becomes suppressed at zero source-drain bias. The observed strong suppression of the differential conductance at zero bias provides direct evidence signaling the formation of an entangled spin-singlet state. This evidence for entanglement and the tunability of our devices bode well for quantum computation applications.

  10. Twist-3 spin observables for single-hadron production in DIS

    SciTech Connect

    Gamberg, Leonard P.; Kanazawa, Koichi; Kang, Zhong-Bo; Metz, Andreas; Pitonyak, Daniel A.; Prokudin, Alexei; Schlegel, Marc

    2015-09-01

    Recently, three twist-3 spin asymmetries for single-inclusive hadron production in deep-inelastic lepton-nucleon scattering have been computed using collinear factorization and the leading order approximation. Here we summarize the main findings of these studies.