Science.gov

Sample records for single-crystalline rutile tio2

  1. Transport properties in single-crystalline rutile TiO2 nanorods

    NASA Astrophysics Data System (ADS)

    Chen, R. S.; Chen, C. A.; Wang, W. C.; Tsai, H. Y.; Huang, Y. S.

    2011-11-01

    Electronic transport properties of the single-crystalline titanium dioxide (TiO2) nanorods (NRs) with single rutile phase have been investigated. The conductivity values for the individual TiO2 NRs grown by metal-organic chemical vapor deposition are in the range of 1-10 Ω-1 cm-1. The temperature-dependent measurement shows the presence of two shallow donor levels/bands with activation energies at 8 and 28 meV, respectively. On the photoconductivity (PC), the TiO2 NRs exhibit the much higher normalized PC gain and sensitive excitation-power dependence than the polycrystalline nanotubes. The results demonstrate the superior photoconduction efficiency and distinct mechanism in the monocrystalline one-dimensional TiO2 nanostructures in comparison to the polycrystalline or nanoporous counterparts.

  2. Growth of aligned single-crystalline rutile TiO2 nanowires on arbitrary substrates and their application in dye-sensitized solar cells

    SciTech Connect

    Kumar, Akshay; Madaria, Anuj R.; Zhou, Chongwu

    2010-05-06

    TiO{sub 2} is a wide band gap semiconductor with important applications in photovoltaic cells and photocatalysis. In this paper, we report synthesis of single-crystalline rutile phase TiO{sub 2} nanowires on arbitrary substrates, including fluorine-doped tin oxide (FTO), glass slides, tin-doped indium oxide (ITO), Si/SiO{sub 2}, Si(100), Si(111), and glass rods. By controlling the growth parameters such as growth temperature, precursor concentrations, and so forth, we demonstrate that anisotropic growth of TiO{sub 2} is possible leading to various morphologies of nanowires. Optimization of the growth recipe leads to well-aligned vertical array of TiO{sub 2} nanowires on both FTO and glass substrates. Effects of various titanium precursors on the growth kinetics, especially on the growth rate of nanowires, are also studied. Finally, application of vertical array of TiO{sub 2} nanowires on FTO as the photoanode is demonstrated in dye-sensitized solar cell with an efficiency of 2.9 ± 0.2%.

  3. Antibacterial activity of single crystalline silver-doped anatase TiO2 nanowire arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangyu; Li, Meng; He, Xiaojing; Hang, Ruiqiang; Huang, Xiaobo; Wang, Yueyue; Yao, Xiaohong; Tang, Bin

    2016-05-01

    Well-ordered, one-dimensional silver-doped anatase TiO2 nanowire (AgNW) arrays have been prepared through a hydrothermal growth process on the sputtering-deposited AgTi layers. Electron microscope analyses reveal that the as-synthesized AgNW arrays exhibit a single crystalline phase with highly uniform morphologies, diameters ranging from 85 to 95 nm, and lengths of about 11 μm. Silver is found to be doped into TiO2 nanowire evenly and mainly exists in the zerovalent state. The AgNW arrays show excellent efficient antibacterial activity against Escherichia coli (E. coli), and all of the bacteria can be killed within 1 h. Additionally, the AgNW arrays can still kill E. coli after immersion for 60 days, suggesting the long-term antibacterial property. The technique reported here is environmental friendly for formation of silver-containing nanostructure without using any toxic organic solvents.

  4. Ultrahigh efficient single-crystalline TiO2 nanorod photoconductors

    NASA Astrophysics Data System (ADS)

    Chen, R. S.; Chen, C. A.; Tsai, H. Y.; Wang, W. C.; Huang, Y. S.

    2012-03-01

    Photoconductive gain and normalized gain, which determine the device and material properties on photoconduction, respectively, have been defined for single-crystalline titanium dioxide (TiO2) nanorods (NRs) with various diameter sizes. The gain values of the NR photodetectors can reach 105 easily at a low bias of 0.1 V. By excluding the contributions of experimental parameters, the optimal normalized gain of the indirect-bandgap TiO2 NRs at 5.4 × 10-5 m2V-1 is comparable with that estimated from the direct-bandgap ZnO nanowires. The average normalized gain value at 3.3 ± 2.2 × 10-5 m2V-1 obtained from eight individual TiO2 NRs with diameters ranging from 120 to 1250 nm is also over three orders of magnitude higher than the polycrystalline nanotube counterpart. The results demonstrate the superior photoconductivity efficiency in boundary-free titania one-dimensional nanostructure, which is crucial for ultraviolet photodetector, dye-sensitized solar cell, and photochemical device applications.

  5. The Critical Effect of Niobium Doping on the Formation of Mesostructured TiO2 : Single-Crystalline Ordered Mesoporous Nb-TiO2 and Plate-like Nb-TiO2 with Ordered Mesoscale Dimples.

    PubMed

    Kitahara, Masaki; Shimasaki, Yuta; Matsuno, Takamichi; Kuroda, Yoshiyuki; Shimojima, Atsushi; Wada, Hiroaki; Kuroda, Kazuyuki

    2015-09-01

    Highly ordered mesoporous niobium-doped TiO2 with a single-crystalline framework was prepared by using silica colloidal crystals with ca. 30 nm in diameter as templates. The preparation of colloidal crystals composed of uniform silica nanoparticles is a key to obtain highly ordered mesoporous Nb-doped TiO2 . The XPS measurements of Nb-doped TiO2 showed the presence of Nb(5+) and correspondingly Ti(3+) . With the increase in the amount of doped Nb, the crystalline phase of the product was converted from rutile into anatase, and the lattice spacings of both rutile and anatase phases increased. Surprisingly, the increase in the amount of Nb led to the formation of plate-like TiO2 with dimpled surfaces on one side, which was directly replicated from the surfaces of the colloidal silica crystals. PMID:26216465

  6. Oriented single crystalline TiO 2 nano-pillar arrays directly grown on titanium substrate in tetramethylammonium hydroxide solution

    NASA Astrophysics Data System (ADS)

    Dong, Xiang; Tao, Jie; Li, Yingying; Zhu, Hong

    2010-02-01

    Oriented single crystalline titanium dioxide (TiO 2) nano-pillar arrays were directly synthesized on the Ti plate in tetramethylammonium hydroxide (TMAOH) solution by one-pot hydrothermal method. The samples were characterized respectively by means of field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD). Results showed that the TiO 2 nano-pillar with a tetrahydral bipyramidal tip grew vertically on the titanium substrate. HRTEM and Raman results confirmed that the TiO 2 nano-pillar arrays were single crystalline anatase. The controls of morphology, size, and orientation of the nano-pillar could be achieved by varying the solution concentration and hydrothermal temperature. Furthermore, the special morphology of the TiO 2 nano-pillar arrays was caused by the selectively absorption of the tetramethylammonium (TMA) through hydrogen bonds on the lattice planes parallel to (0 0 1) of anatase TiO 2. Less grain boundaries and direct electrical pathway for electron transferring were crucial for the superior photoelectrochemical properties of the single anatase TiO 2 nano-pillar arrays. This approach provides a facile in situ method to synthesize TiO 2 nano-pillar arrays with a special morphology on titanium substrate.

  7. Hydrogen Impurity Defects in Rutile TiO2.

    PubMed

    Mo, Li-Bin; Wang, Yu; Bai, Yang; Xiang, Qing-Yun; Li, Qun; Yao, Wen-Qing; Wang, Jia-Ou; Ibrahim, Kurash; Wang, Huan-Hua; Wan, Cai-Hua; Cao, Jiang-Li

    2015-01-01

    Hydrogen-related defects play crucial roles in determining physical properties of their host oxides. In this work, we report our systematic experimental and theoretical (based on density functional theory) studies of the defect states formed in hydrogenated-rutile TiO2 in gaseous H2 and atomic H. In gas-hydrogenated TiO2, the incorporated hydrogen tends to occupy the oxygen vacancy site and negatively charged. The incorporated hydrogen takes the interstitial position in atom-hydrogenated TiO2, forming a weak O-H bond with the closest oxygen ion, and becomes positive. Both states of hydrogen affect the electronic structure of TiO2 mainly through changes of Ti 3d and O 2p states instead of the direct contributions of hydrogen. The resulted electronic structures of the hydrogenated TiO2 are manifested in modifications of the electrical and optical properties that will be useful for the design of new materials capable for green energy economy. PMID:26627134

  8. Hydrogen Impurity Defects in Rutile TiO2

    PubMed Central

    Mo, Li-Bin; Wang, Yu; Bai, Yang; Xiang, Qing-Yun; Li, Qun; Yao, Wen-Qing; Wang, Jia-Ou; Ibrahim, Kurash; Wang, Huan-Hua; Wan, Cai-Hua; Cao, Jiang-Li

    2015-01-01

    Hydrogen-related defects play crucial roles in determining physical properties of their host oxides. In this work, we report our systematic experimental and theoretical (based on density functional theory) studies of the defect states formed in hydrogenated-rutile TiO2 in gaseous H2 and atomic H. In gas-hydrogenated TiO2, the incorporated hydrogen tends to occupy the oxygen vacancy site and negatively charged. The incorporated hydrogen takes the interstitial position in atom-hydrogenated TiO2, forming a weak O-H bond with the closest oxygen ion, and becomes positive. Both states of hydrogen affect the electronic structure of TiO2 mainly through changes of Ti 3d and O 2p states instead of the direct contributions of hydrogen. The resulted electronic structures of the hydrogenated TiO2 are manifested in modifications of the electrical and optical properties that will be useful for the design of new materials capable for green energy economy. PMID:26627134

  9. Hydrogen Impurity Defects in Rutile TiO2

    NASA Astrophysics Data System (ADS)

    Mo, Li-Bin; Wang, Yu; Bai, Yang; Xiang, Qing-Yun; Li, Qun; Yao, Wen-Qing; Wang, Jia-Ou; Ibrahim, Kurash; Wang, Huan-Hua; Wan, Cai-Hua; Cao, Jiang-Li

    2015-12-01

    Hydrogen-related defects play crucial roles in determining physical properties of their host oxides. In this work, we report our systematic experimental and theoretical (based on density functional theory) studies of the defect states formed in hydrogenated-rutile TiO2 in gaseous H2 and atomic H. In gas-hydrogenated TiO2, the incorporated hydrogen tends to occupy the oxygen vacancy site and negatively charged. The incorporated hydrogen takes the interstitial position in atom-hydrogenated TiO2, forming a weak O-H bond with the closest oxygen ion, and becomes positive. Both states of hydrogen affect the electronic structure of TiO2 mainly through changes of Ti 3d and O 2p states instead of the direct contributions of hydrogen. The resulted electronic structures of the hydrogenated TiO2 are manifested in modifications of the electrical and optical properties that will be useful for the design of new materials capable for green energy economy.

  10. Studies of early growth mechanisms of hydroxyapatite on single crystalline rutile: a model system for bioactive surfaces.

    PubMed

    Lindahl, Carl; Borchardt, Per; Lausmaa, Jukka; Xia, Wei; Engqvist, Håkan

    2010-10-01

    Previous studies have shown that crystalline titanium oxide is in vitro bioactive and that there are differences in the HA formation mechanism depending on the crystalline direction of the titanium oxide surface. In the present study, the early adsorption of calcium and phosphate ions on three different surface directions of the single-crystal rutile TiO(2) substrate has been investigated. A crucial step in the nucleation of HA is believed to be the adsorption of Ca(2+) and PO(4)(3-) from phosphate buffer solutions. The (001), (100) and (110) single crystalline rutile surfaces were soaked in phosphate buffer saline solution for 10 min, 1 h and 24 h at 37°C. The surfaces were then analyzed using time-of-flight secondary ion mass spectrometry (TOF-SIMS) and X-ray photoelectron spectroscopy (XPS). The results show that the adsorption of Ca(2+) and PO(4)(3-) is faster on the (001) and (100) surfaces than on the (110) surface. This study also shows that TOF-SIMS can be used as a tool to better understand the adsorption of calcium and phosphate ions and the growth mechanism of HA. This knowledge could be used to tailor new bioactive surfaces for better biological reaction. PMID:20680412

  11. A facile strategy to fabricate high-quality single crystalline brookite TiO2 nanoarrays and their photoelectrochemical properties

    NASA Astrophysics Data System (ADS)

    Choi, Mingi; Yong, Kijung

    2014-10-01

    Vertically aligned high-quality single crystalline brookite TiO2 nanoarrays were synthesized for the first time using an environmentally benign one-step hydrothermal reaction. They have a unique bullet-shaped structure which has a length of 700-1000 nm and a width of 150-250 nm with a sharpened tip structure. By adjusting the concentration of NaOH in hydrothermal reaction, we could also synthesize other types of TiO2 nanostructures including anatase TiO2 nanotubes/nanowires. The morphologies and crystal structures of the products were confirmed by scanning electron microscopy, transmission electron microscopy and X-ray diffraction analysis. Their vertically aligned structures facilitate their application as photoanodes in photoelectrochemical cells, and the photoelectrochemical properties such as photocurrent density and open circuit voltage were measured in a three-electrode electrochemical cell with TiO2 nanoarrays, Ag/AgCl and a Pt flag as the working, reference and counter electrodes, respectively, incorporating a 0.1 M NaOH electrolyte solution. The fabricated brookite TiO2 nanoarrays exhibited a highly enhanced photocurrent density and a longer electron lifetime compared with anatase TiO2 nanoarrays with similar lengths.Vertically aligned high-quality single crystalline brookite TiO2 nanoarrays were synthesized for the first time using an environmentally benign one-step hydrothermal reaction. They have a unique bullet-shaped structure which has a length of 700-1000 nm and a width of 150-250 nm with a sharpened tip structure. By adjusting the concentration of NaOH in hydrothermal reaction, we could also synthesize other types of TiO2 nanostructures including anatase TiO2 nanotubes/nanowires. The morphologies and crystal structures of the products were confirmed by scanning electron microscopy, transmission electron microscopy and X-ray diffraction analysis. Their vertically aligned structures facilitate their application as photoanodes in photoelectrochemical

  12. Determination of electron and hole lifetimes of rutile and anatase TiO2 single crystals

    NASA Astrophysics Data System (ADS)

    Yamada, Yasuhiro; Kanemitsu, Yoshihiko

    2012-09-01

    The dynamical behavior of photoexcited states of TiO2 governs the activities of TiO2-based solar cells and photocatalysts. We determined the lifetimes of photoexcited electrons and holes in rutile and anatase TiO2 single crystals by combining advantages of time-resolved photoluminescence, photoconductance, and transient absorption spectroscopy. Electrons and holes in rutile show exponential decays with the lifetime of a few tens of nanoseconds, while non-exponential decays are observed in anatase, indicating the presence of multiple carrier trapping processes. We revealed the generic features of the carrier recombination processes in rutile and anatase TiO2.

  13. Well-Defined Nanostructured, Single-Crystalline TiO2 Electron Transport Layer for Efficient Planar Perovskite Solar Cells.

    PubMed

    Choi, Jongmin; Song, Seulki; Hörantner, Maximilian T; Snaith, Henry J; Park, Taiho

    2016-06-28

    An electron transporting layer (ETL) plays an important role in extracting electrons from a perovskite layer and blocking recombination between electrons in the fluorine-doped tin oxide (FTO) and holes in the perovskite layers, especially in planar perovskite solar cells. Dense TiO2 ETLs prepared by a solution-processed spin-coating method (S-TiO2) are mainly used in devices due to their ease of fabrication. Herein, we found that fatal morphological defects at the S-TiO2 interface due to a rough FTO surface, including an irregular film thickness, discontinuous areas, and poor physical contact between the S-TiO2 and the FTO layers, were inevitable and lowered the charge transport properties through the planar perovskite solar cells. The effects of the morphological defects were mitigated in this work using a TiO2 ETL produced from sputtering and anodization. This method produced a well-defined nanostructured TiO2 ETL with an excellent transmittance, single-crystalline properties, a uniform film thickness, a large effective area, and defect-free physical contact with a rough substrate that provided outstanding electron extraction and hole blocking in a planar perovskite solar cell. In planar perovskite devices, anodized TiO2 ETL (A-TiO2) increased the power conversion efficiency by 22% (from 12.5 to 15.2%), and the stabilized maximum power output efficiency increased by 44% (from 8.9 to 12.8%) compared with S-TiO2. This work highlights the importance of the ETL geometry for maximizing device performance and provides insights into achieving ideal ETL morphologies that remedy the drawbacks observed in conventional spin-coated ETLs. PMID:27183030

  14. Positron annihilation lifetime characterization of oxygen ion irradiated rutile TiO2

    NASA Astrophysics Data System (ADS)

    Luitel, Homnath; Sarkar, A.; Chakrabarti, Mahuya; Chattopadhyay, S.; Asokan, K.; Sanyal, D.

    2016-07-01

    Ferromagnetic ordering at room temperature has been induced in rutile phase of TiO2 polycrystalline sample by O ion irradiation. 96 MeV O ion induced defects in rutile TiO2 sample has been characterized by positron annihilation spectroscopic techniques. Positron annihilation results indicate the formation of cation vacancy (VTi, Ti vacancy) in these irradiated TiO2 samples. Ab initio density functional theoretical calculations indicate that in TiO2 magnetic moment can be induced either by creating Ti or O vacancies.

  15. Synthesis of anatase and rutile TiO2 nanostructures from natural ilmenite

    NASA Astrophysics Data System (ADS)

    Wahyuingsih, Sayekti; Ramelan, Ari Handono; Pramono, Edi; Sulistya, Ariantama Djati; Argawan, Panji Rofa; Dharmawan, Frenandha Dwi; Rinawati, Ludfiaastu; Hanif, Qonita Awliya; Sulistiyono, Eko; Firdiyono, Florentinus

    2016-02-01

    Nanostructure anatase and rutile type TiO2 were synthesized from dissolution roasted ilmenite from natural ilmenite sand as the starting materials. Anatase TiO2 and rutile TiO2 (high crystallinity) with the diameters of 20-100 nm were obtained by calcined soluble ilmenite sand produced by leaching process. Calcinations of the xerogel TiO2 from liquor products were conducted for 4 hours at temperature of 450 °C. The samples were characterized by XRD (X-ray diffraction), STA (simultant thermal analysis), TEM (Transmission Electron Microscopy), and BET surface area. Titania Anatase-Rutile form as a mixture were produced by titania slag with the hydrolysis product. While, in another route, complete titania anatase phase was produced through hydrolysis and condensation steps of leach liquors. This synthesis methods provide a simple route to fabricate nanostructure TiO2 from low cost material.

  16. Ultralong Rutile TiO2 Nanowire Arrays for Highly Efficient Dye-Sensitized Solar Cells.

    PubMed

    Li, Hailiang; Yu, Qingjiang; Huang, Yuewu; Yu, Cuiling; Li, Renzhi; Wang, Jinzhong; Guo, Fengyun; Jiao, Shujie; Gao, Shiyong; Zhang, Yong; Zhang, Xitian; Wang, Peng; Zhao, Liancheng

    2016-06-01

    Vertically aligned rutile TiO2 nanowire arrays (NWAs) with lengths of ∼44 μm have been successfully synthesized on transparent, conductive fluorine-doped tin oxide (FTO) glass by a facile one-step solvothermal method. The length and wire-to-wire distance of NWAs can be controlled by adjusting the ethanol content in the reaction solution. By employing optimized rutile TiO2 NWAs for dye-sensitized solar cells (DSCs), a remarkable power conversion efficiency (PCE) of 8.9% is achieved. Moreover, in combination with a light-scattering layer, the performance of a rutile TiO2 NWAs based DSC can be further enhanced, reaching an impressive PCE of 9.6%, which is the highest efficiency for rutile TiO2 NWA based DSCs so far. PMID:27097727

  17. Zr-doped rutile TiO2: a nuclear quadrupole interaction study

    NASA Astrophysics Data System (ADS)

    Banerjee, D.; Das, S. K.; Das, P.; Thakare, S. V.; Butz, T.

    2010-04-01

    Role of Zr atom on the quadrupole interaction of 181Ta in rutile TiO2 has been investigated by time differential perturbed angular correlation (TDPAC) study. The quadrupole frequency remains same as that in the pure rutile TiO2 but its distribution increases with the amount of Zr. This indicates a metal-metal interaction between probe atom and Zr-atom in the nearest neighbour.

  18. Enhanced Photoelectrochemical Performance from Rationally Designed Anatase/Rutile TiO2 Heterostructures.

    PubMed

    Cao, Fengren; Xiong, Jie; Wu, Fangli; Liu, Qiong; Shi, Zhiwei; Yu, Yanhao; Wang, Xudong; Li, Liang

    2016-05-18

    In a photoelectrochemical (PEC) cell for water splitting, the critical issue is charge separation and transport, which is usually completed by designing semiconductor heterojunctions. TiO2 anatase-rutile mixed junctions could largely improve photocatalytic properties, but impairs PEC water splitting performance. We designed and prepared two types of TiO2 heterostructures with the anatase thin film and rutile nanowire phases organized in different sequences. The two types of heterostructures were used as PEC photoanodes for water splitting and demonstrated completely opposite results. Rutile nanowires on anatase film demonstrated enhanced photocurrent density and onset potential, whereas strong negative performance was obtained from anatase film on rutile nanowire structures. The mechanism was investigated by photoresponse, light absorption and reflectance, and electrochemical impedance spectra. This work revealed the significant role of phase sequence in performance gain of anatase-rutile TiO2 heterostructured PEC photoanodes. PMID:27136708

  19. Preparation of rutile TiO(2) coating by thermal chemical vapor deposition for anticoking applications.

    PubMed

    Tang, Shiyun; Wang, Jianli; Zhu, Quan; Chen, Yaoqiang; Li, Xiangyuan

    2014-10-01

    To inhibit the metal catalytic coking and improve the oxidation resistance of TiN coating, rutile TiO2 coating has been directly designed as an efficient anticoking coating for n-hexane pyrolysis. TiO2 coatings were prepared on the inner surface of SS304 tubes by a thermal CVD method under varied temperatures from 650 to 900 °C. The rutile TiO2 coating was obtained by annealing the as-deposited TiO2 coating, which is an alternative route for the deposition of rutile TiO2 coating. The morphology, elemental and phase composition of TiO2 coatings were characterized by SEM, EDX and XRD, respectively. The results show that deposition temperature of TiO2 coatings has a strong effect on the morphology and thickness of as-deposited TiO2 coatings. Fe, Cr and Ni at.% of the substrate gradually changes to 0 when the temperature is increased to 800 °C. The thickness of TiO2 coating is more than 6 μm and uniform by metalloscopy, and the films have a nonstoichiometric composition of Ti3O8 when the deposition temperature is above 800 °C. The anticoking tests show that the TiO2 coating at a deposition temperature of 800 °C is sufficiently thick to cover the cracks and gaps on the surface of blank substrate and cut off the catalytic coke growth effect of the metal substrate. The anticoking ratio of TiO2 coating corresponding to each 5 cm segments is above 65% and the average anticoking ratio of TiO2 coating is up to 76%. Thus, the TiO2 coating can provide a very good protective layer to prevent the substrate from severe coking efficiently. PMID:25192018

  20. Ti3+-self doped brookite TiO2 single-crystalline nanosheets with high solar absorption and excellent photocatalytic CO2 reduction

    NASA Astrophysics Data System (ADS)

    Xin, Xiaoye; Xu, Tao; Wang, Lan; Wang, Chuanyi

    2016-03-01

    Black brookite TiO2 single-crystalline nanosheets with outstanding photocatalytic activity toward CO2 reduction is prepared by a facile oxidation-based hydrothermal reaction method combined with post-annealing treatment. Large amount of Ti3+ defects are introduced into the bulk of brookite nanoparticles, which increases the solar energy absorption and enhances the photocatalytic activity.

  1. Ti3+-self doped brookite TiO2 single-crystalline nanosheets with high solar absorption and excellent photocatalytic CO2 reduction.

    PubMed

    Xin, Xiaoye; Xu, Tao; Wang, Lan; Wang, Chuanyi

    2016-01-01

    Black brookite TiO2 single-crystalline nanosheets with outstanding photocatalytic activity toward CO2 reduction is prepared by a facile oxidation-based hydrothermal reaction method combined with post-annealing treatment. Large amount of Ti(3+) defects are introduced into the bulk of brookite nanoparticles, which increases the solar energy absorption and enhances the photocatalytic activity. PMID:27021203

  2. Ti3+-self doped brookite TiO2 single-crystalline nanosheets with high solar absorption and excellent photocatalytic CO2 reduction

    PubMed Central

    Xin, Xiaoye; Xu, Tao; Wang, Lan; Wang, Chuanyi

    2016-01-01

    Black brookite TiO2 single-crystalline nanosheets with outstanding photocatalytic activity toward CO2 reduction is prepared by a facile oxidation-based hydrothermal reaction method combined with post-annealing treatment. Large amount of Ti3+ defects are introduced into the bulk of brookite nanoparticles, which increases the solar energy absorption and enhances the photocatalytic activity. PMID:27021203

  3. Significant effects of reaction temperature on morphology, crystallinity, and photoelectrical properties of rutile TiO2 nanorod array films

    NASA Astrophysics Data System (ADS)

    Sun, Xianmiao; Sun, Qiong; Zhang, Qian; Zhu, Qianqian; Dong, Hongzhou; Dong, Lifeng

    2013-03-01

    Oriented single-crystalline TiO2 nanorod arrays have been extensively studied as the electrode of photoelectrochemical cells due to their unique properties. In this study, oriented rutile TiO2 nanorod arrays were directly synthesized on fluorine-doped tin oxide glass substrates by a facile hydrothermal method, and the effects of growth conditions (i.e. reaction temperature, growth time and titanium precursor) on their morphologies, crystal structures and photoelectrical properties were investigated. Reaction temperature played a more critical role in tailoring the surface morphology, crystal structures (i.e. length, diameter and crystallinity of nanorods) and photoelectrical properties of the nanorods than growth time did. With the increase in reaction temperature from 140 °C to 200 °C, both photocurrent density and external quantum efficiency (EQE) increased initially and then decreased, with a maximum value of 5.6 × 10-2 mA cm-2 at 170 °C and 2.7% at 160 °C, respectively. In addition, photoelectric measurements demonstrated that TiO2 nanorod arrays synthesized from TiCl4 at a relatively low reaction temperature exhibited a much higher EQE value than those obtained from titanium isopropoxide.

  4. Enhanced performance of natural dye sensitised solar cells fabricated using rutile TIO2 nanorods

    NASA Astrophysics Data System (ADS)

    Akila, Y.; Muthukumarasamy, N.; Agilan, S.; Mallick, Tapas K.; Senthilarasu, S.; Velauthapillai, Dhayalan

    2016-08-01

    Due to the lower cost, natural dye molecules are good alternatives for the ruthenium based sensitizers in the dye-sensitized solar cells. In this article, we have reported the natural sensitizer based dye-sensitized solar cells fabricated using TiO2 nanorods. Rutile phase TiO2 nanorods have been synthesized by template free hydrothermal method which results in TiO2 nanorods in the form of acropora corals. These TiO2 nanorods have been sensitized by flowers of Sesbania grandiflora, leaves of Camellia sinensis and roots of Rubia tinctorum. The maximum conversion efficiency of 1.53% has been obtained for TiO2 nanorods based solar cells sensitized with the leaves of Camellia sinensis. The flowers of Sesbania grandiflora and roots of Rubia tinctorum sensitized TiO2 nanorods based solar cells exhibited an efficiency of 0.65% and 1.28% respectively.

  5. The superior lithium storage capabilities of ultra-fine rutile TiO 2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Jun Song; Lou, Xiong Wen

    The lithium storage capabilities of ultra-fine rutile TiO 2 nanoparticles have been studied. Ultra-fine rutile TiO 2 nanoparticles with only several nanometers in size have been prepared by a modified wet-chemical method with a high yield. Unexpectedly, the rutile TiO 2 nanoparticles with 3 nm in size exhibit superior lithium storage properties. Specifically, they show long term cycling stability upon extended cycling for at least 300 cycles with a capacity loss of only 0.17% per cycle, and good rate capability up to a 30 C rate. The excellent reversible lithium storage capabilities could be attributed to the ultra-fine size giving rise to a very short diffusion path, and the relatively large surface area which provides more sites for lithium insertion.

  6. Plasmonic photocatalysis properties of Au nanoparticles precipitated anatase/rutile mixed TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Wen, Yan; Liu, Bitao; Zeng, Wei; Wang, Yuhua

    2013-09-01

    Anatase/rutile mixed titania nanotubes (TiO2 NTs) precipitated with gold nanoparticles (Au NPs), i.e. Au/TiO2, have been synthesized and investigated on visible photocatalysis properties. A deposition-precipitation (DP) method was adopted to reduce the gold precursor to Au NPs within the preformed TiO2 NTs by the emulsion electrospinning technique. The optimal visible photocatalytic activity was found in the sample Au3(DP350)/TiO2 with a loading of 3 wt% Au NPs and calcining at 350 °C. Through transmission electron microscopy, Au NPs of 4.16 nm diameter were observed at the interface between the anatase and rutile phases in the optimal Au3(DP350)/TiO2 sample, and these joint active sites at the interface were beneficial for charge separation. The obtained optimal photocatalytic efficiency of Au3(DP350)/TiO2 was ascribed to the synergistic effect of the enhanced visible absorption and the anatase/rutile mixed-phase composition, and the possible mechanism for this was discussed in detail.Anatase/rutile mixed titania nanotubes (TiO2 NTs) precipitated with gold nanoparticles (Au NPs), i.e. Au/TiO2, have been synthesized and investigated on visible photocatalysis properties. A deposition-precipitation (DP) method was adopted to reduce the gold precursor to Au NPs within the preformed TiO2 NTs by the emulsion electrospinning technique. The optimal visible photocatalytic activity was found in the sample Au3(DP350)/TiO2 with a loading of 3 wt% Au NPs and calcining at 350 °C. Through transmission electron microscopy, Au NPs of 4.16 nm diameter were observed at the interface between the anatase and rutile phases in the optimal Au3(DP350)/TiO2 sample, and these joint active sites at the interface were beneficial for charge separation. The obtained optimal photocatalytic efficiency of Au3(DP350)/TiO2 was ascribed to the synergistic effect of the enhanced visible absorption and the anatase/rutile mixed-phase composition, and the possible mechanism for this was discussed in

  7. Doping and compensation in Nb-doped anatase and rutile TiO2

    NASA Astrophysics Data System (ADS)

    Lee, Hsin-Yi; Robertson, John

    2013-06-01

    The substitutional Nb donor states in anatase and rutile TiO2 are calculated using the screened exchange hybrid density functional. The calculations find that Nb forms a shallow state in anatase and a deep state in rutile TiO2, as in experiment. Donors in anatase are found to become compensated in O-rich conditions because oxygen interstitial acceptors acquire a negative formation energy for Fermi energies high in the band gap. O-poor conditions permit doping, not by creating O vacancies but by inhibiting the formation of oxygen interstitials which compensate doping.

  8. Plasmonic photocatalysis properties of Au nanoparticles precipitated anatase/rutile mixed TiO2 nanotubes.

    PubMed

    Wen, Yan; Liu, Bitao; Zeng, Wei; Wang, Yuhua

    2013-10-21

    Anatase/rutile mixed titania nanotubes (TiO2 NTs) precipitated with gold nanoparticles (Au NPs), i.e. Au/TiO2, have been synthesized and investigated on visible photocatalysis properties. A deposition-precipitation (DP) method was adopted to reduce the gold precursor to Au NPs within the preformed TiO2 NTs by the emulsion electrospinning technique. The optimal visible photocatalytic activity was found in the sample Au3(DP350)/TiO2 with a loading of 3 wt% Au NPs and calcining at 350 °C. Through transmission electron microscopy, Au NPs of 4.16 nm diameter were observed at the interface between the anatase and rutile phases in the optimal Au3(DP350)/TiO2 sample, and these joint active sites at the interface were beneficial for charge separation. The obtained optimal photocatalytic efficiency of Au3(DP350)/TiO2 was ascribed to the synergistic effect of the enhanced visible absorption and the anatase/rutile mixed-phase composition, and the possible mechanism for this was discussed in detail. PMID:23963545

  9. Enhanced Photocatalytic H2 Production in Core-Shell Engineered Rutile TiO2.

    PubMed

    Yang, Yongqiang; Liu, Gang; Irvine, John T S; Cheng, Hui-Ming

    2016-07-01

    A rationally designed crystalline Ti(3+) core/amorphous Ti(4+) shell configuration can reverse the population disparity between holes and electrons reaching the surface of microsized rutile TiO2 photocatalyst, thus significantly enhancing its photocatalytic activity by two orders of magnitude in terms of the hydrogen production rate under the irradiation of UV-vis light. PMID:27159036

  10. Preparation of atomically flat rutile TiO2(001) surfaces for oxide film growth

    DOE PAGESBeta

    Wang, Yang; Lee, Shinbuhm; Vilmercati, P.; Lee, Ho Nyung; Weitering, Hanno; Snijders, Paul C.

    2016-01-01

    The availability of low-index rutile TiO2 single crystal substrates with atomically flat surfaces is essential for enabling epitaxialgrowth of rutile transition metal oxide films. The high surface energy of the rutile (001) surface often leads to surface faceting, which precludes the sputter and annealing treatment commonly used for the preparation of clean and atomically flat TiO2(110) substrate surfaces. In this work, we reveal that stable and atomically flat rutile TiO2(001) surfaces can be prepared with an atomically ordered reconstructedsurface already during a furnace annealing treatment in air. We tentatively ascribe this result to the decrease in surface energy associated withmore » the surface reconstruction, which removes the driving force for faceting. Despite the narrow temperature window where this morphology can initially be formed, we demonstrate that it persists in homoepitaxialgrowth of TiO2(001) thin films. The stabilization of surface reconstructions that prevent faceting of high-surface-energy crystal faces may offer a promising avenue towards the realization of a wider range of high quality epitaxial transition metal oxide heterostructures.« less

  11. Atomically flat reconstructed rutile TiO2(001) surfaces for oxide film growth

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Lee, S.; Vilmercati, P.; Lee, H. N.; Weitering, H. H.; Snijders, P. C.

    2016-02-01

    The availability of low-index rutile TiO2 single crystal substrates with atomically flat surfaces is essential for enabling epitaxial growth of rutile transition metal oxide films. The high surface energy of the rutile (001) surface often leads to surface faceting, which precludes the sputter and annealing treatment commonly used for the preparation of clean and atomically flat TiO2(110) substrate surfaces. In this work, we reveal that stable and atomically flat rutile TiO2(001) surfaces can be prepared with an atomically ordered reconstructed surface already during a furnace annealing treatment in air. We tentatively ascribe this result to the decrease in surface energy associated with the surface reconstruction, which removes the driving force for faceting. Despite the narrow temperature window where this morphology can initially be formed, we demonstrate that it persists in homoepitaxial growth of TiO2(001) thin films. The stabilization of surface reconstructions that prevent faceting of high-surface-energy crystal faces may offer a promising avenue towards the realization of a wider range of high quality epitaxial transition metal oxide heterostructures.

  12. Photoconductive detection of hydrogen in ZnO and rutile TiO2

    NASA Astrophysics Data System (ADS)

    Lavrov, E. V.; Mchedlidze, T.; Herklotz, F.

    2016-08-01

    Hydrogen donors in ZnO and rutile TiO2 are probed by means of photoconductivity and IR absorption. It is shown that the O-H bonds giving rise to the local vibrational modes (LVMs) of interstitial hydrogen at 3611 and 3290 cm-1 in the case of ZnO and TiO2, respectively, also occur in the photoconductivity spectra as Fano resonances. The effects of isotope substitution, concentration, sample thickness, influence of other donors present in both oxides are considered. Based on the shape and frequency of these resonances, it is concluded that the apparent ionization energy of interstitial hydrogen in rutile TiO2 is less than 300 meV. By a direct comparison, we also demonstrate that photoconductive detection of LVMs of defects in thin semiconductor films is superior to the standard IR absorption.

  13. Effect of Chemical Lithium Intercalation into Rutile TiO2 Nanorods

    SciTech Connect

    Vijayakumar, M.; Kerisit, Sebastien N.; Wang, Chong M.; Nie, Zimin; Rosso, Kevin M.; Yang, Zhenguo; Graff, Gordon L.; Liu, Jun; Hu, Jian Z.

    2009-08-13

    Rutile TiO2 nanorods were synthesized by hydrolysis of TiCl4 followed by a hydrothermal method. Lithium insertion into the rutile nanorods was achieved by a chemical lithium intercalation process. The structural evolution of nano-structured rutile upon lithium intercalation was characterized by several experimental techniques, namely, XRD, TEM and 6Li MAS NMR. The XRD and TEM studies indicate the formation of a new lithium titanate phase (LixTiO2) during lithium intercalation. Additionally, SAED patterns show that the lithium titanate phase has cubic symmetry. Finally, ultra-high magnetic field (21.1T) 6Li MAS NMR reveals that the lithium titanate phase adopts two different structures depending on lithium content. Taken together, the three techniques consistently show that the intercalation of lithium into rutile TiO2 nanorods causes two consecutive structural phase transformations to lithium titanate phases with spinel (Fd m) and rocksalt (Fm m) structures at x=0.46 and 0.88, respectively. In addition, the broad line widths in the 6Li MAS NMR spectrum of the rocksalt phase are indicative of a disordered structure. Density functional theory calculations of the rutile, spinel and rocksalt bulk phases as a function of lithium content corroborate the observed phase transformations. These phase transitions could account for the large irreversible capacity loss of nano-structured rutile anodes observed in electrochemical cycling experiments.

  14. High photocatalytic activity of mixed anatase-rutile phases on commercial TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ruu Siah, Wai; Lintang, Hendrik O.; Shamsuddin, Mustaffa; Yuliati, Leny

    2016-02-01

    Titanium dioxide (TiO2) is well-known as an active photocatalyst for degradation of various organic pollutants. Over the years, a wide range of TiO2 nanoparticles with different phase compositions, crystallinities, and surface areas have been developed. Due to the different methods and conditions used to synthesize these commercial TiO2 nanoparticles, the properties and photocatalytic performance would also be different from each other. In this study, the photocatalytic removal of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5- trichlorophenoxyacetic acid (2,4,5-T) was investigated on commercial Evonik P25, Evonik P90, Hombikat UV100 and Hombikat N100 TiO2 nanoparticles. Upon photocatalytic tests, it was found that overall, the photocatalytic activities of the P25 and the P90 were higher than the N100 and the UV100 for the removal of both 2,4-D and 2,4,5-T. The high activities of the P25 and the P90 could be attributed to their phase compositions, which are made up of a mixture of anatase and rutile phases of TiO2. Whereas, the UV100 and the N100 are made up of 100% anatase phase of TiO2. The synergistic effect of the anatase/rutile mixture was reported to slow down the recombination rate of photogenerated electron-hole pairs. Consequently, the photocatalytic activity was increased on these TiO2 nanoparticles.

  15. Improved lithium storage properties of electrospun TiO2 with tunable morphology: from porous anatase to necklace rutile

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Wang, Haiying; Zhou, Qiwen; Kong, Mengqi; Ye, Haitao; Yang, Gang

    2013-10-01

    Three-dimensional TiO2 with tunable morphology and crystalline phase was successfully prepared by the electrospinning technique and subsequent annealing. Porous-shaped anatase TiO2, cluster-shaped anatase TiO2, hierarchical-shaped rutile (minor) TiO2 and nano-necklace rutile (major) TiO2 were achieved at 500, 600, 700 and 800 °C, respectively. The mechanism of the formation of these tailored morphologies and crystallinity was investigated. Lithium insertion properties were evaluated by galvanostatic and potentiostatic modes in half-cell configurations. By combining the large surface area, open mesoporosity and stable crystalline phase, the porous-shaped anatase TiO2 exhibited the highest capacity, best rate and cycling performance among the four samples. The present results demonstrated the usefulness of three-dimensional TiO2 as an anode for lithium storage with improved electrode performance.Three-dimensional TiO2 with tunable morphology and crystalline phase was successfully prepared by the electrospinning technique and subsequent annealing. Porous-shaped anatase TiO2, cluster-shaped anatase TiO2, hierarchical-shaped rutile (minor) TiO2 and nano-necklace rutile (major) TiO2 were achieved at 500, 600, 700 and 800 °C, respectively. The mechanism of the formation of these tailored morphologies and crystallinity was investigated. Lithium insertion properties were evaluated by galvanostatic and potentiostatic modes in half-cell configurations. By combining the large surface area, open mesoporosity and stable crystalline phase, the porous-shaped anatase TiO2 exhibited the highest capacity, best rate and cycling performance among the four samples. The present results demonstrated the usefulness of three-dimensional TiO2 as an anode for lithium storage with improved electrode performance. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr02819d

  16. Growth and structure of MBE grown TiO2 anatase films with rutile nano-crystallites

    SciTech Connect

    Shao, Rui; Wang, Chong M.; McCready, David E.; Droubay, Timothy C.; Chambers, Scott A.

    2007-03-15

    We have grown TiO2 anatase films with rutile nanocrystalline inclusions using molecular beam epitaxy under different growth conditions. This model system is important for investigating the role of rutile/anatase interfaces in heterogeneous photocatalysis. To control the film structure, we grew a pure anatase (001) layer at a slow rate and then increased the growth rate to drive the nucleation of rutile particles. Structure analysis indicates that the rutile phase has four preferred orientations in the anatase film.

  17. Charge and magnetic states of rutile TiO2 doped with Cr ions.

    PubMed

    Kim, Rokyeon; Cho, Suyeon; Park, Won-Goo; Cho, Deok-Yong; Oh, Se-Jung; Saint-Martin, Romuald; Berthet, Patrick; Park, Je-Geun; Yu, Jaejun

    2014-04-01

    We observe that the electronic and magnetic properties of Cr-doped rutile TiO2 single crystals are highly dependent on growth conditions. The ferromagnetic component of magnetic susceptibility is observed to be enhanced for samples grown under oxygen-rich conditions. To understand the charge state of Cr dopants and their role in response to an external magnetic field, we carry out density functional theory calculations for Cr-doped rutile TiO2. Using the results of formation energy calculations in the presence of oxygen vacancies and Cr atom substitution at the Ti sites, we demonstrate that the Cr3+ state is a source of Curie-Weiss-type magnetic response, whereas the Cr4+ defect states contribute to the ferromagnetic component. We also provide the electronic structures of various defect configurations and attempt to explain the optical and electronic properties of the Cr-doped system. PMID:24651728

  18. Microstructure and dielectric properties of (Nb + In) co-doped rutile TiO2 ceramics

    NASA Astrophysics Data System (ADS)

    Li, Jinglei; Li, Fei; Zhuang, Yongyong; Jin, Li; Wang, Linghang; Wei, Xiaoyong; Xu, Zhuo; Zhang, Shujun

    2014-08-01

    The (Nb + In) co-doped TiO2 ceramics recently attracted considerable attention due to their colossal dielectric permittivity (CP) (˜100,000) and low dielectric loss (˜0.05). In this research, the 0.5 mol. % In-only, 0.5 mol. % Nb-only, and 0.5-7 mol. % (Nb + In) co-doped TiO2 ceramics were synthesized by standard conventional solid-state reaction method. Microstructure studies showed that all samples were in pure rutile phase. The Nb and In ions were homogeneously distributed in the grain and grain boundary. Impedance spectroscopy and I-V behavior analysis demonstrated that the ceramics may compose of semiconducting grains and insulating grain boundaries. The high conductivity of grain was associated with the reduction of Ti4+ ions to Ti3+ ions, while the migration of oxygen vacancy may account for the conductivity of grain boundary. The effects of annealing treatment and bias filed on electrical properties were investigated for co-doped TiO2 ceramics, where the electric behaviors of samples were found to be susceptible to the annealing treatment and bias field. The internal-barrier-layer-capacitance mechanism was used to explain the CP phenomenon, the effect of annealing treatment and nonlinear I-V behavior for co-doped rutile TiO2 ceramics. Compared with CaCu3Ti4O12 ceramics, the high activation energy of co-doped rutile TiO2 (3.05 eV for grain boundary) was thought to be responsible for the low dielectric loss.

  19. Hydrogen shallow donors in ZnO and rutile TiO2

    NASA Astrophysics Data System (ADS)

    Weber, Jörg; Lavrov, Edward V.; Herklotz, Frank

    2012-05-01

    A combined study of IR absorption, photoconductivity, photoluminescence and Raman measurements in ZnO samples supports the theoretical suggestions of a shallow bond-centered hydrogen donor and a shallow hydrogen donor within the oxygen vacancy. In rutile TiO2 we also identify a shallow hydrogen donor in contrast to recent theoretical predictions. A possible solution to this obvious discrepancy is proposed.

  20. Pyrocatechol as a surface capping molecule on rutile TiO 2 (110)

    NASA Astrophysics Data System (ADS)

    Syres, K. L.; Thomas, A. G.; Cant, D. J. H.; Hardman, S. J. O.; Preobrajenski, A.

    2012-02-01

    A 'cap and dip' method of adsorbing ruthenium di-2,2‧-bipyridyl-4,4‧-dicarboxylic acid diisocyanate (N3 dye) on a rutile TiO2 (110) surface was investigated using pyrocatechol as a capping molecule. This method involves cleaning the rutile surface in ultra-high vacuum (UHV), depositing pyrocatechol onto the surface to 'cap' the adsorption sites, removing from vacuum, 'dipping' in an N3 dye solution and returning to vacuum. Photoemission measurements following the return of the crystal to vacuum suggest that the pyrocatechol keeps the surface free from contamination on exposure to atmosphere. Photoemission spectra also indicate that the pyrocatechol capping molecules are replaced by the N3 dye in solution and that the N3 dye is adsorbed intact on the rutile TiO2 (110) surface. This technique may allow other large molecules, which are thermally unstable to evaporation in UHV, to be easily deposited onto TiO2 surfaces.

  1. Controlled formation of anatase and rutile TiO2 thin films by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Rafieian, Damon; Ogieglo, Wojciech; Savenije, Tom; Lammertink, Rob G. H.

    2015-09-01

    We discuss the formation of TiO2 thin films via DC reactive magnetron sputtering. The oxygen concentration during sputtering proved to be a crucial parameter with respect to the final film structure and properties. The initial deposition provided amorphous films that crystallise upon annealing to anatase or rutile, depending on the initial sputtering conditions. Substoichiometric films (TiOx<2), obtained by sputtering at relatively low oxygen concentration, formed rutile upon annealing in air, whereas stoichiometric films formed anatase. This route therefore presents a formation route for rutile films via lower (<500 °C) temperature pathways. The dynamics of the annealing process were followed by in situ ellipsometry, showing the optical properties transformation. The final crystal structures were identified by XRD. The anatase film obtained by this deposition method displayed high carriers mobility as measured by time-resolved microwave conductance. This also confirms the high photocatalytic activity of the anatase films.

  2. A DFT + U study of (Rh, Nb)-codoped rutile TiO2

    NASA Astrophysics Data System (ADS)

    Ghuman, Kulbir Kaur; Singh, Chandra Veer

    2013-02-01

    A systematic study of electronic structure and band gap states is conducted to analyze the monodoping and charge compensated codoping of rutile TiO2 with Rh and Nb, using the DFT + U approach. Doping of rutile TiO2 with Rh atoms induces hybridized O 2p and Rh 4d band gap states leading to a red shift of the optical absorption edge, consistent with previous experimental studies. Since Rh monodoping may induce recombination centers, charge compensated codoping with Rh and Nb is also explored. This codoping induces an electron transfer from Nb induced states to Rh 4d states, which suppresses the formation of Rh4+, thereby leading to a reduction in recombination centers and to the formation of more stable Rh3+. A combination of band gap reduction by 0.5 eV and the elimination of band gap states that account for recombination centers makes (Rh, Nb)-codoped TiO2 a more efficient and stable photocatalyst.

  3. Efficient phyto-synthesis and structural characterization of rutile TiO2 nanoparticles using Annona squamosa peel extract

    NASA Astrophysics Data System (ADS)

    Roopan, Selvaraj Mohana; Bharathi, A.; Prabhakarn, A.; Abdul Rahuman, A.; Velayutham, K.; Rajakumar, G.; Padmaja, R. D.; Lekshmi, Mohan; Madhumitha, G.

    2012-12-01

    In the present study, the biosynthesis of rutile TiO2 nanoparticles (TiO2 NPs) was achieved by a novel, biodegradable and convenient procedure using fruit peel Annona squamosa aqueous extract. This is the first report on the new, simple, rapid, eco-friendly and cheaper methods for the synthesis of rutile TiO2 NPs at lower temperature using agricultural waste. Rutile TiO2 NPs were characterized by UV, XRD, SEM, TEM and EDS studies. The UV-Vis spectrophotometer results were promising and showed a rapid production of TiO2 NPs with a surface plasmon resonance occurring at 284 nm. The formation of the TiO2 NPs as observed from the XRD spectrum is confirmed to be TiO2 particles in the rutile form as evidenced by the peaks at 2θ = 27.42°, 36.10°, 41.30° and 54.33° when compared with the literature. The TEM images showed polydisperse nanoparticles with spherical shapes and size 23 ± 2 nm ranges.

  4. Hydrothermal synthesis of rutile-anatase TiO2 nanobranched arrays for efficient dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kwon, Soon Jin; Im, Hyo Been; Nam, Jung Eun; Kang, Jin Kyu; Hwang, Taek Sung; Yi, Kwang Bok

    2014-11-01

    Rutile-anatase TiO2 nanobranched arrays were prepared in two sequential hydrothermal-synthesis steps. The morphologies and crystalline nanostructures of the samples were investigated by controlling growth time and the concentration of the titanium precursor. All samples were characterized by field-emission scanning electron microscopy and X-ray diffraction analysis. It was found that treating the surfaces of rutile TiO2 nanorods with aqueous TiCl4 solutions allows the anatase TiO2 nanobranches to grow perpendicular to the main rutile TiO2 nanorods attached to the FTO glass. Irregularly shaped, dense TiO2 structures formed in the absence of TiCl4 treatment. A light-to-electricity conversion efficiency of 3.45% was achieved using 2.3 μm tall TiO2 nanobranched arrays in a dye-sensitized solar cell. This value is significantly higher than that observed for pure rutile TiO2 nanorods.

  5. Graphene Oxide-Assisted Synthesis of Microsized Ultrathin Single-Crystalline Anatase TiO2 Nanosheets and Their Application in Dye-Sensitized Solar Cells.

    PubMed

    Chen, Biao; Sha, Junwei; Li, Wei; He, Fang; Liu, Enzuo; Shi, Chunsheng; He, Chunnian; Li, Jiajun; Zhao, Naiqin

    2016-02-01

    High-quality microsized ultrathin single-crystalline anatase TiO2 nanosheets (MS-TiO2) with exposed {001} facets were synthesized by a facile and low-cost two-step process that combines a graphene oxide (GO)-assisted hydrothermal method with calcination. Both GO and HF play an important role in the formation of well dispersed MS-TiO2. As a novel microsized (1-4 μm) ultrathin two-dimensional (2D) material, MS-TiO2 possesses much higher lateral size and aspect ratio compared to common 2D nanosized (30-60 nm) ultrathin TiO2 nanosheets (NS-TiO2), resulting in excellent electronic conductivity and superior electron transfer and diffusion properties. Here, we fabricated MS-TiO2 and NS-TiO2, both of which were incorporated with the TiO2 nanoparticles (P25) to constitute the hybrid photoanode of dye-sensitized solar cells (DSSCs), and explored the effect of the lateral size (nano- and micro-) of ultrathin TiO2 nanosheets on their electron transfer and diffusion properties. Benefiting from the faster electron transfer rate and short diffusion path of the MS-TiO2, the MS-TiO2/P25 gains the more superior performance compared to pure P25 and NS-TiO2/P25 in the application of DSSCs. Moreover, it is expected that the novel high aspect ratio MS-TiO2 may be applied in diverse fields including photocatalysis, photodetectors, lithium-ion batteries and others concerning the environment and energy. PMID:26745514

  6. Characterization of CO2 behavior on rutile TiO2 (110) surface

    SciTech Connect

    Yoon, Yeohoon

    2013-06-03

    The dynamic behavior of carbon dioxide (CO2) adsorbed on the rutile TiO2 (110) surface is studied by dispersion-corrected density functional theory (DFT) and combined ab initio molecular dynamics (AIMD). Understanding he behavior of CO2 is important regarding possible applications for treating CO2 in current environmental problems along with the consideration as a renewable energy source. Concerning the ability as a redusible support of TiO2 surface, a fundamental understanding of the interaction between CO2 and TiO2 surface will help extending the possibile applications. In the current study, CO2 interaction and dynamics behavior on the TiO2 surface is characterized including he effect of the oxygen vacancy (OV) defect. Also the coverage dependence of CO2 behavior is investigated since more contribution of the intermolecular interaction among CO2 molecules can be expected as the coverage increasing. This work is supported by the US Department of Energy (DOE), Office of Basic Science, Division of Chemical Sciences, Geosicences and Biosciences. Pacific Northwest National Laboratory (PNNL) is multiprogram national laboratory operated for DOE by Battelle. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

  7. Optical studies of cobalt implanted rutile TiO2 (110) surfaces

    NASA Astrophysics Data System (ADS)

    Joshi, Shalik Ram; Padmanabhan, B.; Chanda, Anupama; Mishra, Indrani; Malik, V. K.; Mishra, N. C.; Kanjilal, D.; Varma, Shikha

    2016-11-01

    Present study investigates the photoabsorption properties of single crystal rutile TiO2 (110) surfaces after they have been implanted with low fluences of cobalt ions. The surfaces, after implantation, demonstrate fabrication of nanostructures and anisotropic nano-ripple patterns. Creation of oxygen vacancies (Ti3+ states), development of cobalt nano-clusters as well as band gap modifications have also been observed. Results presented here demonstrate that fabrication of self organized nanostructures, upon implantation, along with the development of oxygen vacancies and ligand field transitions of cobalt ion promote the enhancement of photo-absorbance in both UV (∼2 times) and visible (∼5 times) regimes. These investigations on nanostructured TiO2 surfaces can be important for photo-catalysis.

  8. Theoretical analysis of STM experiments at rutile TiO 2 surfaces

    NASA Astrophysics Data System (ADS)

    Gülseren, O.; James, R.; Bullett, D. W.

    1997-04-01

    A first-principles atomic orbital-based electronic structure method is used to investigate the low index surfaces of rutile titanium dioxide (TiO 2). The method is relatively cheap in computational terms, making it attractive for the study of oxide surfaces, many of which undergo large reconstructions, and may be governed by the presence of oxygen vacancy defects. Calculated surface charge densities are presented for low-index surfaces of TiO 2, and the relation of these results to experimental scanning tunnelling microscopy images is discussed. Atomic resolution images at these surfaces tend to be produced at positive bias, probing states which largely consist of unoccupied Ti 3d bands, with a small contribution from O 2p. These experiments are particularly interesting since the O atoms tend to sit up to 1 Å above the Ti atoms, so providing a play-off between electronic and geometric structure in image formation.

  9. Carbon nanotubes enhanced Seebeck coefficient and power factor of rutile TiO2.

    PubMed

    Lai, Yao-Cheng; Tsai, Hsin-Jung; Hung, Chia-I; Fujishiro, Hiroyuki; Naito, Tomoyuki; Hsu, Wen-Kuang

    2015-03-28

    The Seebeck coefficient, according to Ioffe's approximation, is inversely proportional to carrier density and decreases with doping. Herein, we find that the incorporation of multi-walled carbon nanotubes into rutile TiO2 improves the electrical conductivity and Seebeck coefficient at a low filling fraction of tubes; moreover, the former was due to the lengthening of the mean free path and doping modified carrier mobility for the latter. Tube-oxide mixing also causes significant phonon drag at the interfaces and the reduced thermal conductivity was verified by the promoted figure of merit. PMID:25729788

  10. Direct View at Excess Electrons in TiO2 Rutile and Anatase

    NASA Astrophysics Data System (ADS)

    Setvin, Martin; Franchini, Cesare; Hao, Xianfeng; Schmid, Michael; Janotti, Anderson; Kaltak, Merzuk; Van de Walle, Chris G.; Kresse, Georg; Diebold, Ulrike

    2014-08-01

    A combination of scanning tunneling microscopy and spectroscopy and density functional theory is used to characterize excess electrons in TiO2 rutile and anatase, two prototypical materials with identical chemical composition but different crystal lattices. In rutile, excess electrons can localize at any lattice Ti atom, forming a small polaron, which can easily hop to neighboring sites. In contrast, electrons in anatase prefer a free-carrier state, and can only be trapped near oxygen vacancies or form shallow donor states bound to Nb dopants. The present study conclusively explains the differences between the two polymorphs and indicates that even small structural variations in the crystal lattice can lead to a very different behavior.

  11. Effect of TiO2 rutile nanorods on the photoelectrodes of dye-sensitized solar cells

    PubMed Central

    2013-01-01

    In order to enhance the electron transport on the photoelectrodes of dye-sensitized solar cells, one-dimensional rutile nanorods were prepared using electrospun TiO2 nanofibers. The grain size of the nanorods increased with increasing temperature. Electrochemical impedance spectroscopy measurements revealed reduced interface resistance of the cells with the one-dimensional rutile nanorods due to the improved electron transport and the enhanced electrolyte penetration. Intensity-modulated photocurrent/photovoltage spectroscopy showed that the one-dimensional rutile nanorods provided the electrons with a moving pathway and suppressed the recombination of photogenerated electrons. However, an excessive quantity of rutile nanorods created an obstacle to the electrons moving in the TiO2 thin film. The photoelectrode with 7 wt.% rutile nanorods optimized the performance of the dye-sensitized solar cells. PMID:23331863

  12. Thermal chemistry and photochemistry of hexafluoroacetone on rutile TiO2(110).

    PubMed

    Zehr, Robert T; Henderson, Michael A

    2010-07-28

    The ultraviolet (UV) photon-induced decomposition of hexafluoroacetone ((CF(3))(2)CO; HFA) adsorbed on the rutile TiO(2)(110) surface was investigated using photon stimulated desorption (PSD) and temperature programmed desorption (TPD). HFA adsorbs both molecularly and dissociatively on the reduced TiO(2)(110) surface. The initial approximately 0.2 ML (where 1 ML equates to the cation site density of the ideal surface) coverage of HFA thermally decomposes resulting in the formation of adsorbed trifluoroacetate groups, with further HFA exposure resulting in molecular adsorption. No evidence was found for HFA photochemistry on the reduced surface. HFA adsorbed and desorbed molecularly on a pre-oxidized TiO(2)(110) surface with only a minor amount (approximately 1%) of thermal decomposition in TPD. A new adsorption state at 350 K was assigned to the reversible formation of a photoactive HFA-diolate species [(CF(3))(2)COO]. UV irradiation depleted the 350 K state, resulting in evolution of CF(3), CO, and CO(2) in the gas phase and formation of surface bound trifluoroacetate groups. (18)O isotope scrambling experiments showed that the ejected CO(2) was from photodecomposition of the HFA-diolate species while the CO photoproduct was not. These results are in contrast to the photochemical behavior of acetone, butanone and acetaldehyde on TiO(2)(110), where UV irradiation resulted in the gas phase ejection of one of the carbonyl substituent groups as well as a stoichiometric amount of carboxylate left on the surface. We conclude that fluorination alters the electronic structure of adsorbed carbonyls on TiO(2)(110) in such a way as to promote complete fragmentation of the adsorbed carbonyl complex to form gas phase CO(2) as well as to open up additional photodissociation pathways leading to CO production. PMID:20523937

  13. Colossal Dielectric Behavior of Ga+Nb Co-Doped Rutile TiO2.

    PubMed

    Dong, Wen; Hu, Wanbiao; Berlie, Adam; Lau, Kenny; Chen, Hua; Withers, Ray L; Liu, Yun

    2015-11-18

    Stimulated by the excellent colossal permittivity (CP) behavior achieved in In+Nb co-doped rutile TiO2, in this work we investigate the CP behavior of Ga and Nb co-doped rutile TiO2, i.e., (Ga(0.5)Nb(0.5))(x)Ti(1-x)O2, where Ga(3+) is from the same group as In(3+) but with a much smaller ionic radius. Colossal permittivity of up to 10(4)-10(5) with an acceptably low dielectric loss (tan δ = 0.05-0.1) over broad frequency/temperature ranges is obtained at x = 0.5% after systematic synthesis optimizations. Systematic structural, defect, and dielectric characterizations suggest that multiple polarization mechanisms exist in this system: defect dipoles at low temperature (∼10-40 K), polaronlike electron hopping/transport at higher temperatures, and a surface barrier layer capacitor effect. Together these mechanisms contribute to the overall dielectric properties, especially apparent observed CP. We believe that this work provides comprehensive guidance for the design of new CP materials. PMID:26512874

  14. Unique adsorption behaviors of carboxylic acids at rutile TiO2(110)

    NASA Astrophysics Data System (ADS)

    Yu, Yan-Yan; Gong, Xue-Qing

    2015-11-01

    The coverage-dependent adsorption behavior of acetic acid (CH3COOH) on rutile TiO2(110) was investigated by means of density functional theory (DFT) calculations, corrected by on-site Coulomb corrections and long-range dispersion interactions. The p(2 × 1) and c(2 × 2) domains of dissociatively adsorbed acetic acid under different coverages have been studied in detail regarding their structural and energetic properties. Adsorptions of formic acid (HCOOH) and carbonic acid (H2CO3) were also considered for better understanding the adsorption behaviors of carboxylic acids. Our calculation results show that carboxylic acids prefer to dissociatively adsorb in bridging bidentate configuration, and it induces significant surface relaxation at the adsorption site, which also affects other surface atoms nearby. Interestingly, we have shown that such adsorption-induced relaxations still maintain bond symmetries for surface Ti cations within the p(2 × 1) domain while they are drastically broken within the c(2 × 2) domain, giving rise to unstable Ti cations at the surface. This work not only explains the long-lasting puzzle of the preferable occurrence of p(2 × 1) domain for the adsorbed carboxylic acids at rutile TiO2(110), it also proposes a novel scheme that metal oxide surfaces may follow when they are involved in the processes like surface functionalization and self-assembly.

  15. Vacancy Assisted Diffusion of Alkoxy Species on Rutile TiO2(110)

    SciTech Connect

    Zhang, Zhenrong; Rousseau, Roger J.; Gong, Jinlong; Li, Shao-Chun; Kay, Bruce D.; Ge, Qingfeng; Dohnalek, Zdenek

    2008-10-10

    The catalytic and photocatalytic properties of TiO2 have attracted widespread interest in a variety of applications, such as air purification, self-cleaning glass, water splitting, solar cells and wastewater treatment. In many cases the catalytic chemistry of reducible oxides is dominated by oxygen vacancy sites. For reduced rutile TiO2(110)-1×1, the bridge-bonded oxygen (BBO) vacancies (BBOV’s) are the most prevalent surface defects and, as has been shown, they can readily dissociate small molecules such as H2O, O2, and alcohols.Here we demonstrate for the first time that BBOV’s can also catalyze the transport of adsorbed species which is a key ingredient in heterogeneous catalytic processes. Specifically, we show that at elevated temperatures (≥ 400 K), mobile BBOV’s can assist the diffusion of alkoxy groups formed by the dissociation of alcohols at BBOV’s. This type of mechanism is likely applicable to other adsorbates bound to BBO atoms of TiO2(110).

  16. Fabrication of hierarchically structured rutile TiO2 nanorods on mica particles and their superhydrophilic coating without UV irridiation

    NASA Astrophysics Data System (ADS)

    Gao, Qiang; Wu, Xiaomei; Fan, Yueming; Zhou, Xiya

    2014-01-01

    In this work, we report a facile strategy to fabricate hierarchical rutile TiO2 thin film on mica substrates through hydrolysis of TiCl4 ethanolic solution in water. Scanning electron microscopy (SEM) and transmission electron microscope (TEM) analysis reveal that the rutile TiO2 film is composed of nanorods and nanoparticles. The nanorod crystals grew along the [1 0 1] direction, forming predominantly exposed {1 1 0} facets. Interestingly, rutile TiO2 coated mica particles can be directly applied as a general kind of building blocks to construct large-area super hydrophilic surfaces without UV irradiation by the simple spin-coating technique. The superhydrophilicity originates from the combination of the special rough structures of hierarchical nanorods and nanoflowers and the increased hydroxyl content caused by calcinations. More importantly, this property is very stable for half a year and could be used in self-cleaning surfaces.

  17. Fabrication of phase and morphology controlled pure rutile and rutile/anatase TiO2 nanostructures in functional ionic liquid/water

    NASA Astrophysics Data System (ADS)

    Shahi, Satwant Kaur; Kaur, Navneet; Singh, Vasundhara

    2016-01-01

    In this paper, pure rutile and anatase-rutile TiO2 nanoparticles have been successfully synthesised via a green route by hydrolysis of titanium tetrachloride with room temperature acidic ionic liquid 3-methyl-1-(3-sulfonylpropyl) imidazolium trifluoromethanesulfonate [HO3S(CH2)3MIM][CF3SO3] in aqueous medium. The influence of pH of the solution by varying molar ratio of substrate and ionic liquid has been investigated in both sol-gel and hydrothermal synthesis of TiO2 with significant variation in phase, phase composition (ratio of rutile to anatase) and morphology as indicated by various structural analysis such as XRD, TEM, BET, Raman and UV-vis absorption spectroscopy. The results indicate formation of a bunch of aligned thin flaky nano-rods of TiO2 which look like nano-flowers with a crystal size of 3-5 nm by sol-gel method, while in case of hydrothermal method well-defined rutile solid nanorods of TiO2 were formed with variable length in the range of 120-170 nm and 20-24 nm in width. The photocatalytic activity of the prepared TiO2 samples has been determined by the photodegradation of methyl orange dye (20 ppm) under UV light. Best photocatalytic activity was exhibited by sample S-2 prepared via sol-gel method.

  18. Quasiparticle and optical properties of rutile and anatase TiO2

    NASA Astrophysics Data System (ADS)

    Kang, Wei; Hybertsen, Mark S.

    2010-08-01

    Quasiparticle excitation energies and optical properties of TiO2 in the rutile and anatase structures are calculated using many-body perturbation-theory methods. Calculations are performed for a frozen crystal lattice; electron-phonon coupling is not explicitly considered. In the GW method, several approximations are compared and it is found that inclusion of the full frequency dependence as well as explicit treatment of the Ti semicore states are essential for accurate calculation of the quasiparticle energy-band gap. The calculated quasiparticle energies are in good agreement with available photoemission and inverse photoemission experiments. The results of the GW calculations, together with the calculated static screened Coulomb interaction, are utilized in the Bethe-Salpeter equation to calculate the dielectric function γ2(ω) for both the rutile and anatase structures. The results are in good agreement with experimental observations, particularly the onset of the main absorption features around 4 eV. For comparison to low-temperature optical-absorption measurements that resolve individual excitonic transitions in rutile, the low-lying discrete excitonic energy levels are calculated with electronic screening only. The lowest energy exciton found in the energy gap of rutile has a binding energy of 0.13 eV. In agreement with experiment, it is not dipole allowed but the calculated exciton energy exceeds that measured in absorption experiments by about 0.22 eV and the scale of the exciton binding energy is also too large. The quasiparticle energy alignment of rutile is calculated for nonpolar (110) surfaces. In the GW approximation, the valence-band maximum is 7.8 eV below the vacuum level, showing a small shift from density-functional theory results.

  19. In situ loading of CuS nanoflowers on rutile TiO2 surface and their improved photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Lu, Y. Y.; Zhang, Y. Y.; Zhang, J.; Shi, Y.; Li, Z.; Feng, Z. C.; Li, C.

    2016-05-01

    CuS nanoflowers, fabricated by an element-direct-reaction route using copper and sulfur powder, were loaded on rutile TiO2 (CuS/TiO2) at low temperature. CuS/TiO2 composites were utilized as the photocatalysts for the degradation of Methylene Blue (MB) and 4-chlorophenol (4-CP). X-ray diffraction (XRD), UV Raman spectroscopy, transmission electron microscopy (TEM), XPS, and UV-visible diffuse reflectance spectra were used to characterize the crystalline phase, morphology, particle size, and the optical properties of CuS/TiO2 samples. It is found that CuS/TiO2 photocatalyst, which CuS are loaded on the surface of rutile TiO2, exhibited enhanced photocatalytic degradation of MB (or 4-CP) than TiO2 or CuS. This indicates that CuS can enhance effectively the photocatalytic activity of rutile TiO2 by forming heterojunction between CuS and rutile TiO2, which is confirmed by photoluminescence (PL) spectra and TEM. Moreover, CuS content has a significant influence on photocatalytic activity and 2 wt% CuS/TiO2 showed the maximum photocatalytic activity for degradation of MB.

  20. Perpendicular rutile nanosheets on anatase nanofibers: Heterostructured TiO 2 nanocomposites via a mild solvothermal method

    NASA Astrophysics Data System (ADS)

    Zhang, Qijun; Sun, Chenghua; Yan, Jun; Hu, Xiujie; Zhou, Shuyun; Chen, Ping

    2010-07-01

    A novel hierarchically heterostructured TiO 2 nanocomposite, which consists of rutile nanosheets perpendicular standing on anatase nanofibers, is successfully created through a two-step approach. Firstly, the fibrous anatase TiO 2 framework is fabricated by a facile electrospinning method, then a layer of relative uniform rutile nanosheets grow on the fibers after a mild solvothermal reaction process. This work provides a convenient and effective route for fabricating desired three-dimensional nanocomposite and should be easily extended through to many other materials system.

  1. Construction of hydrophobic wood surfaces by room temperature deposition of rutile (TiO2) nanostructures

    NASA Astrophysics Data System (ADS)

    Zheng, Rongbo; Tshabalala, Mandla A.; Li, Qingyu; Wang, Hongyan

    2015-02-01

    A convenient room temperature approach was developed for growing rutile TiO2 hierarchical structures on the wood surface by direct hydrolysis and crystallization of TiCl3 in saturated NaCl aqueous solution. The morphology and the crystal structure of TiO2 coated on the wood surface were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The TiO2 morphology on the wood surface could be tuned by simply changing either the reaction time or pH value of the reaction mixture. After modification with perfluorodecyltriethoxysilane (PFDTS), the water contact angle (WCA) of the TiO2-treated wood (T1) surface increased to 140.0 ± 4.2°, which indicated a highly hydrophobic wood surface. In addition, compared with untreated control wood, PFDTS-TiO2 treatment (PFDTS-T1-treated) not only reduced liquid water uptake, but also delayed the onset of water saturation point of the wood substrate. The weight change of PFDTS-T1-treated wood after 24 h of water immersion was 19.3%, compared to 81.3% for the untreated control wood. After 867 h of water immersion, the weight change for the treated and untreated wood specimens was 117.1%, and 155.1%, respectively. The untreated control wood reached the steady state after 187 h, while the PFDTS-T1-treated wood did not reach the steady state until after 600 h of immersion.

  2. Ultrafast Multiphoton Pump-probe Photoemission Excitation Pathways in Rutile TiO2(110)

    SciTech Connect

    Argondizzo, Adam; Cui, Xuefeng; Wang, Cong; Sun, Huijuan; Shang, Honghui; Zhao, Jin; Petek, Hrvoje

    2015-04-27

    We investigate the spectroscopy and photoinduced electron dynamics within the conduction band of reduced rutile TiO2(110) surface by multiphoton photoemission (mPP) spectroscopy with wavelength tunable ultrafast (!20 fs) laser pulse excitation. Tuning the mPP photon excitation energy between 2.9 and 4.6 eV reveals a nearly degenerate pair of new unoccupied states located at 2.73 ± 0.05 and 2.85 ± 0.05 eV above the Fermi level, which can be analyzed through the polarization and sample azimuthal orientation dependence of the mPP spectra. Based on the calculated electronic structure and optical transition moments, as well as related spectroscopic evidence, we assign these resonances to transitions between Ti 3d bands of nominally t2g and eg symmetry, which are split by crystal field. The initial states for the optical transition are the reduced Ti3+ states of t2g symmetry populated by formation oxygen vacancy defects, which exist within the band gap of TiO2. Furthermore,we studied the electron dynamics within the conduction band of TiO2 by three-dimensional time-resolved pump-probe interferometric mPP measurements. The spectroscopic and time-resolved studies reveal competition between 2PP and 3PP processes where the t2g-eg transitions in the 2PP process saturate, and are overtaken by the 3PP process initiated by the band-gap excitation from the valence band of TiO2.

  3. Comment on "Structure and dynamics of liquid water on rutile TiO2(110)

    SciTech Connect

    Wesolowski, David J; Sofo, Jorge O.; Bandura, Andrei V.; Zhang, Zhan; Mamontov, Eugene; Predota, M.; Kumar, Nitin; Kubicki, James D.; Kent, Paul R; Vlcek, Lukas; Machesky, Michael L.; Fenter, Paul; Cummings, Peter T; Anovitz, Lawrence {Larry} M; Skelton, A A; Rosenqvist, Jorgen K

    2012-01-01

    Liu and co-workers [Phys. Rev. B 82, 161415 (2010)] discussed the long-standing debate regarding whether H2O molecules on the defect-free (110) surface of rutile ( -TiO2) sorb associatively, or there is dissociation of some or all first-layer water to produce hydroxyl surface sites. They conducted static density functional theory (DFT) and DFT molecular dynamics (DFT-MD) investigations using a range of cell configurations and functionals. We have reproduced their static DFT calculations of the influence of crystal slab thickness on water sorption energies. However, we disagree with several assertions made by these authors: (a) that second-layer water structuring and hydrogen bonding to surface oxygens and adsorbed water molecules are weak ; (b) that translational diffusion of water molecules in direct contact with the surface approaches that of bulk liquid water; and (c) that there is no dissociation of adsorbed water at this surface in contact with liquid water. These assertions directly contradict our publishedwork, which compared synchrotron x-ray crystal truncation rod, second harmonic generation, quasielastic neutron scattering, surface charge titration, and classical MD simulations of rutile (110) single-crystal surfaces and (110)-dominated powders in contact with bulk water, and (110)-dominated rutile nanoparticles with several monolayers of adsorbed water.

  4. Study on the catalytic activity of vanadium doped TiO2: Anatase-to-rutile phase transition

    NASA Astrophysics Data System (ADS)

    Zhang, Huiming; Bian, He; Zhang, Shiguo

    2016-01-01

    The catalytic activity of vanadium doped TiO2 in the ethylbenzene oxidative dehydrogenation with CO2 was studied experimentally and theoretically. The experimental results showed that the reduction of ethylbenzene conversion and the styrene selectivity was caused by the transition of anatase to rutile phase. Theoretical results showed that the transition of the anatase to rutile phase was mainly caused by vanadium ions and oxygen vacancies.

  5. The effect of concentration on Li diffusivity and conductivity in rutile TiO2.

    PubMed

    Yildirim, Handan; Greeley, Jeffrey P; Sankaranarayanan, Subramanian K R S

    2012-04-01

    Li transport characteristics are studied by means of density functional theory (DFT) and molecular dynamics (MD) simulations in order to investigate concentration effects on Li chemical diffusivity and conductivity in TiO(2) rutile. Our MD simulations predict one-dimensional diffusion of Li ions via jumps between the octahedral sites along the channels parallel to the c-axis. The diffusion barrier and diffusion coefficient (at room temperature) for the isolated Li, determined by means of DFT calculations, correspond to 60 meV and 9.1 × 10(-6) cm(2) s(-1), respectively. Such a small barrier suggests rapid mass transport along the channels. MD simulations are performed to evaluate the concentration dependent diffusivity profiles. The changes in Li energetics and dynamics are studied as a function of Li content, which is varied primarily between 10% and 50%. In addition, we consider a couple of compositions over 50% although this is above the intercalation limit. Our results suggest that Li diffusivity is strongly dependent on the Li ∶ TiO(2) ratio, and it decreases with increasing Li concentration. For instance, at room temperature, we find Li diffusivity for high concentrations (50% Li) to be three orders of magnitude slower than that for lower concentrations (10% Li). Our analyses on the energetics and dynamics suggest that the changes in the diffusivities originate from successive increases in the barriers with increasing concentration. The decrease in diffusivity as a function of increasing Li content is attributed to the fact that additional Li ions successively block the energetically preferred vacant sites along the channels. Our analyses also show that increasing Li concentration enhances the Li-Li repulsion within the channels, and as a result, diffusion is hindered. We also compare concentration-dependent diffusivities for Li diffusion in anatase, rutile and amorphous TiO(2). Interestingly, we find differing concentration dependence of the

  6. Photochemistry of 1,1,1-Trifluoroacetone on Rutile TiO2(110)

    SciTech Connect

    Zehr, Robert T.; Deskins, N. Aaron; Henderson, Michael A.

    2010-10-14

    The ultraviolet (UV) photon-induced photodecomposition of 1,1,1-trifluoroacetone (TFA) adsorbed on the rutile TiO2(110) surface has been investigated with photon stimulated desorption (PSD), temperature programmed desorption (TPD) and density functional theory (DFT). TFA adsorbed molecularly on the reduced surface (8% oxygen vacancies) in states desorbing below 300 K with trace thermal decomposition observed in TPD. Adsorption of TFA on a preoxidized TiO2(110) surface (accomplished by pre-exposure with 20 L O2) led to formation of a new TFA desorption state at 350 K, assigned to decomposition of a TFA-diolate species ((CF3)(CH3)COO). No TFA photochemistry was detected on the reduced surface. UV irradiation of TFA on the oxidized surface depleted TFA in the 350 K state, with TFA molecules in other TPD states unaffected. PSD measurements reveal that both carbonyl substituents (CH3 and CF3), as well as CO, were liberated during UV exposure at 95 K. Post-irradiation TPD showed evidence for both acetate (evolving as ketene at 650 K) and trifluoroacetate (evolving as CO2 at 600 K) as surface-bound photodecomposition products. The CO PSD product was not due to adsorbed CO, to mass spectrometer cracking of a CO-containing PSD product, or from background effects, but originated from complete fragmentation of an unidentified adsorbed TFA species. Thermodynamic analysis using DFT indicated that the photodecomposition of the TFA-diolate was likely not driven by thermodynamics alone as both pathways (CH3+trifluoroacetate and CF3+acetate) were detected when thermodynamics shows a clear preference for only one (CF3+acetate). These observations are in contrast to the photochemical behavior of acetone, butanone and acetaldehyde on TiO2(110), where only one of the two carbonyl substituent groups was observed, with a stoichiometric amount of carboxylate containing the other substituent left on the surface. We conclude that fluorination significantly alters the electronic structure of

  7. Thermal chemistry and photochemistry of hexafluoroacetone on rutile TiO2(110)

    SciTech Connect

    Zehr, Robert T.; Henderson, Michael A.

    2010-07-20

    The ultraviolet (UV) photon-induced decomposition of hexafluoroacetone (HFA) adsorbed on the rutile TiO2(110) surface was investigated using photon stimulated desorption (PSD) and temperature programmed desorption (TPD). The initial 0.2 ML coverage of HFA decomposed when adsorbed on the reduced TiO2(110) surface resulting in the formation of trifluoroacetate (evolving in TPD as CO, CO2, and C2F4 near 600 K). Further HFA exposure resulted in molecular adsorption. No evidence for photochemistry was observed on the reduced surface. HFA adsorbed and desorbed molecularly on a pre-oxidized TiO2(110) surface with only a minor amount (~1%) of thermal decomposition in TPD. A new adsorption state at 350 K was assigned to the reversible formation of a photoactive HFA-diolate species [(CF3)2COO]. UV irradiation depleted the 350 K state and resulted in the formation of surface bound trifluoroacetate. PSD experiments showed that CF3, CO, and CO2 were evolved during irradiation at 95 K. Post-irradiation TPD showed evidence for trifluoroacetate (desorbing as CO, CO2, and C2F4 near 600 K) as surface-bound photodecomposition products. 18O isotope scrambling experiments showed that the origin of the ejected CO2 was from photodecomposition of the HFA-diolate species. CO photodesorption was due to an as-yet unidentified adsorbed HFA species and not due to decomposition of the HFA-diolate. These results are in contrast to the photochemical behavior of acetone, butanone and acetaldehyde on TiO2(110), where UV irradiation resulted in the gas phase ejection of one of the carbonyl substituent groups as well as a stoichiometric amount of carboxylate left on the surface. We conclude that fluorination alters the electronic structure of adsorbed carbonyls on TiO2(110) in such a way as to promote complete fragmentation of the adsorbed carbonyl complex to form gas phase CO2 as well as open up additional photodissociation pathways leading to CO production.

  8. Stereospecific growth of densely populated rutile mesoporous TiO2 nanoplate films: a facile low temperature chemical synthesis approach

    NASA Astrophysics Data System (ADS)

    Lee, Go-Woon; Ambade, Swapnil B.; Cho, Young-Jin; Mane, Rajaram S.; Shashikala, V.; Yadav, Jyotiprakash; Gaikwad, Rajendra S.; Lee, Soo-Hyoung; Jung, Kwang-Deog; Han, Sung-Hwan; Joo, Oh-Shim

    2010-03-01

    We report for the first time, using a simple and environmentally benign chemical method, the low temperature synthesis of densely populated upright-standing rutile TiO2 nanoplate films onto a glass substrate from a mixture of titanium trichloride, hydrogen peroxide and thiourea in triply distilled water. The rutile TiO2 nanoplate films (the phase is confirmed from x-ray diffraction analysis, selected area electron diffraction, energy-dispersive x-ray analysis, and Raman shift) are 20-35 nm wide and 100-120 nm long. The chemical reaction kinetics for the growth of these upright-standing TiO2 nanoplate films is also interpreted. Films of TiO2 nanoplates are optically transparent in the visible region with a sharp absorption edge close to 350 nm, confirming an indirect band gap energy of 3.12 eV. The Brunauer-Emmet-Teller surface area, Barret-Joyner-Halenda pore volume and pore diameter, obtained from N2 physisorption studies, are 82 m2 g - 1, 0.0964 cm3 g - 1 and 3.5 nm, respectively, confirming the mesoporosity of scratched rutile TiO2 nanoplate powder that would be ideal for the direct fabrication of nanoscaled devices including upcoming dye-sensitized solar cells and gas sensors.

  9. TiO2 nanocrystals coated rutile nanorod microspheres as the scattering layers for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Gao, Mengyu; Wang, Hongzhi; Li, Yaogang; Zhang, Qinghong

    2013-12-01

    Anatase TiO2 nanocrystals were deposited on the rutile TiO2 nanorod microspheres (NCRNMs) via the controlled hydrolysis and condensation of titanium (IV) bis(ammonium lactato) dihydroxide (TALH) in the presence of polyethyleneimine (PEI). The anatase TiO2 nanocrystals prevented the growth of rutile TiO2 nanorod microspheres from sintering process. By coating of anatase nanocrystals, the decreasing of specific surface area of rutile TiO2 nanorod microspheres (RNMs) were efficiently inhibited. The specific surface area of NCRNM was 47.0 m2/g after sintering at 500 °C,which was 50% increment compared to RNM. The dye sensitized solar cells (DSSCs) were assembled using the semitransparent underlayers and NCRNM scattering layers as the photoanodes. The incident photon to current conversion efficiency (IPCE) analysis showed the DSSCs in the presence of NCRNMs adsorbed more dye molecules while kept a high light-harvesting efficiency. The cell covered with the NCRNM scattering layer had the efficiency of 7.33%, which was 20% increment compared to that of the absence one.

  10. Single step synthesis of rutile TiO2 nanoflower array film by chemical bath deposition method

    NASA Astrophysics Data System (ADS)

    Dhandayuthapani, T.; Sivakumar, R.; Ilangovan, R.

    2016-05-01

    Titanium oxide (TiO2) nanostructures such as nanorod arrays, nanotube arrays and nanoflower arrays have been extensively investigated by the researchers. Among them nanoflower arrays has shown superior performance than other nanostructures in Dye sensitized solar cell, photocatalysis and energy storage applications. Herein, a single step synthesis for rutile TiO2 nanoflower array films suitable for device applications has been reported. Rutile TiO2 nanoflower thin film was synthesized by chemical bath deposition method using NaCl as an additive. Bath temperature induced evolution of nanoflower thin film arrays was observed from the morphological study. X-ray diffraction study confirmed the presence of rutile phase polycrystalline TiO2. Micro-Raman study revealed the presence of surface phonon mode at 105 cm-1 due to the phonon confinement effect (finite size effect), in addition with the rutile Raman active modes of B1g (143 cm-1), Eg (442 cm-1) and A1g (607 cm-1). Further, the FTIR spectrum confirmed the presence of Ti-O-Ti bonding vibration. The Tauc plot showed the direct energy band gap nature of the film with the value of 2.9 eV.

  11. The hydroxylated and reduced rutile TiO2(011)-2 × 1 surfaces: A first-principles study

    NASA Astrophysics Data System (ADS)

    Yuan, Feng; Zhang, Haifeng; Lu, Shixiang; Xu, Wenguo

    2014-10-01

    The hydroxylated and reduced rutile TiO2(011)-2 × 1 surfaces have been investigated by means of first-principles density functional theory calculations. For the H adsorption and O vacancy on the rutile TiO2(011)-2 × 1 surface, we investigated three different surface O sites. Based on the adsorption and formation energy calculations, we find that the top O is an energetically preferential site for the adsorption of H atom or the formation of O vacancy. The calculated electronic structures indicate that the energetically preferential O site cannot create a band gap state; only the O vacancy at the side O site gives rise to a Ti-3d like defect level at the edge of the conduction band. It is worth mentioning that all considered configurations of the H adsorption and O vacancy on the rutile TiO2(011)-2 × 1 surface obviously enhance the optical absorptions in the areas of infrared, not just the rutile TiO2(011)-2 × 1 surface only has a good absorption edge in the visible light region.

  12. Dehydration and Dehydrogenation of Ethylene Glycol on Rutile TiO2(110)

    SciTech Connect

    Li, Zhenjun; Kay, Bruce D.; Dohnalek, Zdenek

    2013-08-07

    The interactions of ethylene glycol (EG) with partially reduced rutile TiO2(110) surface have been studied using temperature programmed desorption (TPD). The saturation coverage on the surface Ti rows is determined to be 0.43 monolayer (ML), slightly less than one EG per two Ti sites. Most of the adsorbed ethanol (~80%) undergoes further reactions to other products. Two major channels are observed, dehydration yielding ethylene and water and dehydrogenation yielding acetaldehyde and hydrogen. Hydrogen formation is rather surprising as it has not been observed previously on TiO2(110) from simple organic molecules. The coverage dependent yields of ethylene and acetaldehyde correlate well with that of water and hydrogen, respectively. Dehydration dominates at lower EG coverages (< 0.2 ML) and plateaus as the coverage is increased to saturation. Dehydrogenation is observed primarily at higher EG coverages (>0.2 ML). Our results suggest that the observed dehydration and dehydrogenation reactions proceed via different surface intermediates.

  13. Role of Water in Methanol Photochemistry on Rutile TiO2(110)

    SciTech Connect

    Shen, Mingmin; Henderson, Michael A.

    2012-08-07

    Photochemistry of the molecularly and dissociatively adsorbed forms of methanol on the vacuum-annealed rutile TiO2(110) surface was explored using temperature programmed desorption (TPD), both with and without coadsorbed water. Methoxy, and not methanol, was confirmed as the photochemically active form of adsorbed methanol on this surface. UV irradiation of methoxy-covered TiO2(110) lead to depletion of the methoxy coverage and formation of formaldehyde and a surface OH group. Coadsorbed water did not promote either molecular methanol photochemistry or thermal decomposition of methanol to methoxy. However, terminal OH groups (OHt), prepared by coadsorption of water and oxygen atoms, thermally converted molecularly adsorbed methanol to methoxy at 120 K, thus enabling photoactivity. While chemisorbed water molecules had no influence on methoxy photochemistry, water molecules hydrogen-bonded in the second layer to bridging oxygen (Obr) sites inhibited the methoxy photodecomposition to formaldehyde. From this we conclude that Obr sites accept protons from the hole-mediated conversion of methoxy to formaldehyde. These results provide new fundamental understanding of the hole-scavenging role of methanol in photochemical processes on TiO2-based materials and how water influences this photochemistry. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle under contract DEAC05-76RL01830. The research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

  14. Room temperature synthesized rutile TiO2 nanoparticles induced by laser ablation in liquid and their photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Liu, Peisheng; Cai, Weiping; Fang, Ming; Li, Zhigang; Zeng, Haibo; Hu, Jinlian; Luo, Xiangdong; Jing, Weiping

    2009-07-01

    TiO2 nanoparticles were prepared by one-step pulsed laser ablation of a titanium target immersed in a poly-(vinylpyrrolidone) solution at room temperature. The products were systematically characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy and x-ray photoelectron spectroscopy (XPS). The results indicated that the rutile TiO2 nanocrystalline particles were one-step synthesized at room temperature and the mean size in diameter is about 50 nm with a narrow size distribution. A probable formation process was proposed on the basis of the microstructure and the instantaneous plasma plume induced by the laser. Photocatalytic activity was monitored by degradation of a methylene blue solution. The as-prepared rutile TiO2 nanoparticles demonstrate a good photocatalytic performance. This work shows that pulsed laser ablation in liquid media is a good method to synthesize some nanosized materials which are difficult to produce by other conventional methods.

  15. Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO2 films

    PubMed Central

    Luttrell, Tim; Halpegamage, Sandamali; Tao, Junguang; Kramer, Alan; Sutter, Eli; Batzill, Matthias

    2014-01-01

    The prototypical photocatalyst TiO2 exists in different polymorphs, the most common forms are the anatase- and rutile-crystal structures. Generally, anatase is more active than rutile, but no consensus exists to explain this difference. Here we demonstrate that it is the bulk transport of excitons to the surface that contributes to the difference. Utilizing high –quality epitaxial TiO2 films of the two polymorphs we evaluate the photocatalytic activity as a function of TiO2-film thickness. For anatase the activity increases for films up to ~5 nm thick, while rutile films reach their maximum activity for ~2.5 nm films already. This shows that charge carriers excited deeper in the bulk contribute to surface reactions in anatase than in rutile. Furthermore, we measure surface orientation dependent activity on rutile single crystals. The pronounced orientation-dependent activity can also be correlated to anisotropic bulk charge carrier mobility, suggesting general importance of bulk charge diffusion for explaining photocatalytic anisotropies. PMID:24509651

  16. Vickers indentation hardness of stoichiometric and reduced single crystal TiO2 (rutile) from 25 to 800 C

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Deadmore, Daniel L.

    1993-01-01

    The indentation microhardness of stoichiometric and reduced single crystal rutile (TiO2) from 25 to 800 C is presented in this paper. The results serve two main purposes. One is to assess the effect of rutile's stoichiometry on its hardness. The other is to test recently suggested theory on solid lubrication with sub Stoichiometric rutile in an effort to better understand shear controlled phenomenon. Microhardness was measured using a Vickers diamond indentor on both vacuum and hydrogen reduced single crystal rutile from 25 to 800 C. The results indicate that stoichiometry and temperature have a pronounced effect on rutile's hardness. The measured effects lend support to theory on solid lubrication by enhanced crystallographic slip and suggest that solid lubricant materials may be produced by careful atomic level tailoring (stoichiometry control).

  17. Band Alignment and Controllable Electron Migration between Rutile and Anatase TiO2

    PubMed Central

    Mi, Yang; Weng, Yuxiang

    2015-01-01

    TiO2 is the most promising semiconductor for photocatalytic splitting of water for hydrogen and degradation of pollutants. The highly photocatalytic active form is its mixed phase of two polymorphs anatase and rutile rather than their pristine compositions. Such a synergetic effect is understood by the staggered band alignment favorable to spatial charge separation. However, electron migration in either direction between the two phases has been reported, the reason of which is still unknown. We determined the band alignment by a novel method, i.e., transient infrared absorption-excitation energy scanning spectra, showing their conduction bands being aligned, thus the electron migration direction is controlled by dynamical factors, such as varying the particle size of anatase, putting electron or hole scavengers on either the surface of anatase or rutile phases, or both. A quantitative criterion capable of predicting the migration direction under various conditions including particle size and surface chemical reactions is proposed, the predictions have been verified experimentally in several typical cases. This would give rise to a great potential in designing more effective titania photocatalysts. PMID:26169699

  18. Charge compensation in trivalent cation doped bulk rutile TiO2

    NASA Astrophysics Data System (ADS)

    Iwaszuk, Anna; Nolan, Michael

    2011-08-01

    Doping of TiO2 is a very active field, with a particularly large effort expended using density functional theory (DFT) to model doped TiO2; this interest has arisen from the potential for doping to be used in tuning the band gap of TiO2 for photocatalytic applications. Doping is also of importance for modifying the reactivity of an oxide. Finally, dopants can also be unintentionally incorporated into an oxide during processing, giving unexpected electronic properties. To unravel properly how doping impacts on the properties of a metal oxide requires a modelling approach that can describe such systems consistently. Unfortunately, DFT, as used in the majority of studies, is not suitable for application here and in many cases cannot even yield a qualitatively consistent description. In this paper we investigate the doping of bulk rutile TiO2 with trivalent cations, Al, Ga and In, using DFT, DFT corrected for on-site Coulomb interactions (DFT + U, with U on oxygen 2p states) and hybrid DFT (the screened exchange HSE06 exchange correlation functional) in an effort to better understand the performance of DFT in describing such fundamental doping scenarios and to analyse the process of charge compensation with these dopants. With all dopants, DFT delocalizes the oxygen hole polaron that results from substitution of Ti with the lower valence cation. DFT also finds an undistorted geometry and does not produce the characteristic polaron state in the band gap. DFT + U and hybrid DFT both localize the polaron, and this is accompanied by a distortion to the structure around the oxygen hole site. DFT + U and HSE06 both give a polaron state in the band gap. The band gap underestimation present in DFT + U means that the offset of the gap state from both the valence and the conduction band cannot be properly described, while the hybrid DFT offsets should be correct. We have investigated dopant charge compensation by formation of oxygen vacancies. Due to the large number of

  19. Electronic properties of atomic layer deposition films, anatase and rutile TiO2 studied by resonant photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Das, C.; Richter, M.; Tallarida, M.; Schmeisser, D.

    2016-07-01

    The TiO2 films are prepared by atomic layer deposition (ALD) method using titanium isopropoxide precursors at 250 °C and analyzed using resonant photoemission spectroscopy (resPES). We report on the Ti2p and O1s core levels, on the valence band (VB) spectra and x-ray absorption spectroscopy (XAS) data, and on the resonant photoelectron spectroscopy (resPES) profiles at the O1s and the Ti3p absorption edges. We determine the elemental abundance, the position of the VB maxima, the partial density of states (PDOS) in the VB and in the conduction band (CB) and collect these data in a band scheme. In addition, we analyze the band-gap states as well as the intrinsic states due to polarons and charge-transfer excitations. These states are found to cause multiple Auger decay processes upon resonant excitation. We identify several of these processes and determine their relative contribution to the Auger signal quantitatively. As our resPES data allow a quantitative analysis of these defect states, we determine the relative abundance of the PDOS in the VB and in CB and also the charge neutrality level. The anatase and rutile polymorphs of TiO2 are analyzed in the same way as the TiO2 ALD layer. The electronic properties of the TiO2 ALD layer are compared with the anatase and rutile polymorphs of TiO2. In our comparative study, we find that ALD has its own characteristic electronic structure that is distinct from that of anatase and rutile. However, many details of the electronic structure are comparable and we benefit from our spectroscopic data and our careful analysis to find these differences. These can be attributed to a stronger hybridization of the O2p and Ti3d4s states for the ALD films when compared to the anatase and rutile polymorphs.

  20. Hierarchically structured microspheres for high-efficiency rutile TiO(2)-based dye-sensitized solar cells.

    PubMed

    Ye, Meidan; Zheng, Dajiang; Wang, Mengye; Chen, Chang; Liao, Wenming; Lin, Changjian; Lin, Zhiqun

    2014-02-26

    Peachlike rutile TiO2 microsphere films were successfully produced on transparent conducting fluorine-doped tin oxide substrate via a facile, one-pot chemical bath route at low temperature (T = 80-85 °C) by introducing polyethylene glycol (PEG) as steric dispersant. The formation of TiO2 microspheres composed of nanoneedles was attributed to the acidic medium for the growth of 1D needle-shaped building blocks where the steric interaction of PEG reduced the aggregation of TiO2 nanoneedles and the Ostwald ripening process. Dye-sensitized solar cells (DSSCs) assembled by employing these complex rutile TiO2 microspheres as photoanodes exhibited a light-to-electricity conversion efficiency of 2.55%. It was further improved to a considerably high efficiency of 5.25% upon a series of post-treatments (i.e., calcination, TiCl4 treatment, and O2 plasma exposure) as a direct consequence of the well-crystallized TiO2 for fast electron transport, the enhanced capacity of dye loading, the effective light scattering, and trapping from microstructures. PMID:24467178

  1. Defect energetics in α-Al2O3 and rutile TiO2

    NASA Astrophysics Data System (ADS)

    Catlow, C. R. A.; James, R.; Mackrodt, W. C.; Stewart, R. F.

    1982-01-01

    We report a theoretical survey of defect energetics in α-Al2O3 and rutile TiO2 which we relate to structural and transport properties of these materials. The study of these crystals has required us to modify our computational methods based on the Mott-Littleton theory, which were previously confined to the treatment of cubic materials. We discuss the theoretical aspects of a new and quite general computational procedure, HADES III, which can be used for defect calculations on crystals of any symmetry. Our discussion pays particular attention to the effects on the calculated energetics of the use of Mott-Littleton methods adapted for anisotropic crystals. Other features, considered in detail, are the sensitivity of calculated defect energies to the choice of lattice potential and to the size of the atomistically simulated region surrounding the defect. We also compare our results for α-Al2O3 and those of an earlier study of Dienes et al. Our calculations are then used to discuss the simplest features of the defect properties of pure and doped α-Al2O3 and TiO2. The present results support the dominance of Schottky disorder in both crystals; cation Frenkel energies are high and anion Frenkel pairs may be of significance in α-Al2O3. In addition we present a survey of doped alumina and of the effect of oxygen partial pressure on the defect structure of this material. Our results suggest that defect clustering will have a major influence on the properties of doped Al2O3.

  2. Patterning of rutile TiO2 surface by ion beam lithography through full-solid masks.

    PubMed

    Sanz, R; Jaafar, M; Hernández-Vélez, M; Asenjo, A; Vázquez, M; Jensen, J

    2010-06-11

    In this work we present and discuss the nanopatterning of rutile TiO(2) single crystal surfaces following their irradiation with energetic heavy ions through a stencil mask of Ni filled self-ordered porous anodic alumina. After etching in HF a corrugated surface morphology is obtained composed of parallel alternate furrows and ridges (or nanobars) 50 nm in diameter and with 100 nm pitch. In addition, isolated, but collapsed, TiO(2) nanorods are seen lying on the patterned surface. The stability of the nanopatterned surface under high temperatures treatments and crystalline properties are analyzed. PMID:20463385

  3. Self-assembly of multilevel branched rutile-type TiO2 structures via oriented lateral and twin attachment

    NASA Astrophysics Data System (ADS)

    Jordan, Vanja; Javornik, Uroš; Plavec, Janez; Podgornik, Aleš; Rečnik, Aleksander

    2016-04-01

    Recent breakthrough of novel hierarchic materials, orchestrated through oriented attachment of crystal subunits, opened questions on what is the mechanism of their self-assembly. Using rutile-type TiO2, synthesized by hydrothermal reaction of Ti(IV)-butoxide in highly acidic aqueous medium, we uncovered the key processes controlling this nonclassical crystallization process. Formation of complex branched mesocrystals of rutile is accomplished by oriented assembly of precipitated fibers along the two low-energy planes, i.e. {110} and {101}, resulting in lateral attachment and twinning. Phase analysis of amorphous material enclosed in pockets between imperfectly assembled rutile fibers clearly shows harmonic ordering resembling that of the adjacent rutile structure. To our understanding this may be the first experimental evidence indicating the presence of electromagnetic force-fields that convey critical structural information through which oriented attachment of nanocrystals is made possible.

  4. Self-assembly of multilevel branched rutile-type TiO2 structures via oriented lateral and twin attachment

    PubMed Central

    Jordan, Vanja; Javornik, Uroš; Plavec, Janez; Podgornik, Aleš; Rečnik, Aleksander

    2016-01-01

    Recent breakthrough of novel hierarchic materials, orchestrated through oriented attachment of crystal subunits, opened questions on what is the mechanism of their self-assembly. Using rutile-type TiO2, synthesized by hydrothermal reaction of Ti(IV)-butoxide in highly acidic aqueous medium, we uncovered the key processes controlling this nonclassical crystallization process. Formation of complex branched mesocrystals of rutile is accomplished by oriented assembly of precipitated fibers along the two low-energy planes, i.e. {110} and {101}, resulting in lateral attachment and twinning. Phase analysis of amorphous material enclosed in pockets between imperfectly assembled rutile fibers clearly shows harmonic ordering resembling that of the adjacent rutile structure. To our understanding this may be the first experimental evidence indicating the presence of electromagnetic force-fields that convey critical structural information through which oriented attachment of nanocrystals is made possible. PMID:27063110

  5. Cluster synthesis of monodisperse rutile-TiO2 nanoparticles and dielectric TiO2-vinylidene fluoride oligomer nanocomposites.

    PubMed

    Balasubramanian, Balamurugan; Kraemer, Kristin L; Valloppilly, Shah R; Ducharme, Stephen; Sellmyer, David J

    2011-10-01

    The embedding of oxide nanoparticles in polymer matrices produces a greatly enhanced dielectric response by combining the high dielectric strength and low loss of suitable host polymers with the high electric polarizability of nanoparticles. The fabrication of oxide-polymer nanocomposites with well-controlled distributions of nanoparticles is, however, challenging due to the thermodynamic and kinetic barriers between the polymer matrix and nanoparticle fillers. In the present study, monodisperse TiO(2) nanoparticles having an average particle size of 14.4 nm and predominant rutile phase were produced using a cluster-deposition technique without high-temperature thermal annealing and subsequently coated with uniform vinylidene fluoride oligomer (VDFO) molecules using a thermal evaporation source, prior to deposition as TiO(2)-VDFO nanocomposite films on suitable substrates. The molecular coatings on TiO(2) nanoparticles serve two purposes, namely to prevent the TiO(2) nanoparticles from contacting each other and to couple the nanoparticle polarization to the matrix. Parallel-plate capacitors made of TiO(2)-VDFO nanocomposite film as the dielectric exhibit minimum dielectric dispersion and low dielectric loss. Dielectric measurements also show an enhanced effective dielectric constant in TiO(2)-VDFO nanocomposites as compared to that of pure VDFO. This study demonstrates for the first time a unique electroactive particle coating in the form of a ferroelectric VDFO that has high-temperature stability as compared to conventionally used polymers for fabricating dielectric oxide-polymer nanocomposites. PMID:21911930

  6. Cluster synthesis of monodisperse rutile-TiO2 nanoparticles and dielectric TiO2-vinylidene fluoride oligomer nanocomposites

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Balamurugan; Kraemer, Kristin L.; Valloppilly, Shah R.; Ducharme, Stephen; Sellmyer, David J.

    2011-10-01

    The embedding of oxide nanoparticles in polymer matrices produces a greatly enhanced dielectric response by combining the high dielectric strength and low loss of suitable host polymers with the high electric polarizability of nanoparticles. The fabrication of oxide-polymer nanocomposites with well-controlled distributions of nanoparticles is, however, challenging due to the thermodynamic and kinetic barriers between the polymer matrix and nanoparticle fillers. In the present study, monodisperse TiO2 nanoparticles having an average particle size of 14.4 nm and predominant rutile phase were produced using a cluster-deposition technique without high-temperature thermal annealing and subsequently coated with uniform vinylidene fluoride oligomer (VDFO) molecules using a thermal evaporation source, prior to deposition as TiO2-VDFO nanocomposite films on suitable substrates. The molecular coatings on TiO2 nanoparticles serve two purposes, namely to prevent the TiO2 nanoparticles from contacting each other and to couple the nanoparticle polarization to the matrix. Parallel-plate capacitors made of TiO2-VDFO nanocomposite film as the dielectric exhibit minimum dielectric dispersion and low dielectric loss. Dielectric measurements also show an enhanced effective dielectric constant in TiO2-VDFO nanocomposites as compared to that of pure VDFO. This study demonstrates for the first time a unique electroactive particle coating in the form of a ferroelectric VDFO that has high-temperature stability as compared to conventionally used polymers for fabricating dielectric oxide-polymer nanocomposites.

  7. Cluster synthesis of monodisperse rutile-TiO2 nanoparticles and dielectric TiO2-vinylidene fluoride oligomer nanocomposites

    SciTech Connect

    Balasubramanian, B; Kraemer, KL; Valloppilly, SR; Ducharme, S; Sellmyer, DJ

    2011-09-13

    The embedding of oxide nanoparticles in polymer matrices produces a greatly enhanced dielectric response by combining the high dielectric strength and low loss of suitable host polymers with the high electric polarizability of nanoparticles. The fabrication of oxide-polymer nanocomposites with well-controlled distributions of nanoparticles is, however, challenging due to the thermodynamic and kinetic barriers between the polymer matrix and nanoparticle fillers. In the present study, monodisperse TiO2 nanoparticles having an average particle size of 14.4 nm and predominant rutile phase were produced using a cluster-deposition technique without high-temperature thermal annealing and subsequently coated with uniform vinylidene fluoride oligomer (VDFO) molecules using a thermal evaporation source, prior to deposition as TiO2-VDFO nanocomposite films on suitable substrates. The molecular coatings on TiO2 nanoparticles serve two purposes, namely to prevent the TiO2 nanoparticles from contacting each other and to couple the nanoparticle polarization to the matrix. Parallel-plate capacitors made of TiO2-VDFO nanocomposite film as the dielectric exhibit minimum dielectric dispersion and low dielectric loss. Dielectric measurements also show an enhanced effective dielectric constant in TiO2-VDFO nanocomposites as compared to that of pure VDFO. This study demonstrates for the first time a unique electroactive particle coating in the form of a ferroelectric VDFO that has high-temperature stability as compared to conventionally used polymers for fabricating dielectric oxide-polymer nanocomposites.

  8. Adsorption of small hydrocarbons on rutile TiO2(110)

    DOE PAGESBeta

    Chen, Long; Smith, R. Scott; Kay, Bruce D.; Dohnalek, Zdenek

    2015-11-21

    Here, temperature programmed desorption and molecular beam scattering were used to study the adsorption and desorption of small hydrocarbons (n-alkanes, 1-alkenes and 1-alkynes of C1–C4) on rutile TiO2(110). We show that the sticking coefficients for all the hydrocarbons are close to unity (> 0.95) at an adsorption temperature of 60 K. The desorption energies for hydrocarbons of the same chain length increase from n-alkanes to 1-alkenes and to 1-alkynes. This trend is likely a consequence of additional dative bonding of the alkene and alkyne π system to the coordinatively unsaturated Ti5c sites. Similar to previous studies on the adsorption ofmore » n-alkanes on metal and metal oxide surfaces, we find that the desorption energies within each group (n-alkanes vs. 1-alkenes vs. 1-alkynes) from Ti5c sites increase linearly with the chain length. The absolute saturation coverages of each hydrocarbon on Ti5c sites were also determined. The saturation coverage of CH4, is found to be ~ 2/3 monolayer (ML). The saturation coverages of C2–C4 hydrocarbons are found nearly independent of the chain length with values of ~ 1/2 ML for n-alkanes and 1-alkenes and 2/3 ML for 1-alkynes. This result is surprising considering their similar sizes.« less

  9. Adsorption of small hydrocarbons on rutile TiO2(110)

    NASA Astrophysics Data System (ADS)

    Chen, Long; Smith, R. Scott; Kay, Bruce D.; Dohnálek, Zdenek

    2016-08-01

    Temperature programmed desorption and molecular beam scattering were used to study the adsorption and desorption of small hydrocarbons (n-alkanes, 1-alkenes and 1-alkynes of C1-C4) on rutile TiO2(110). We show that the sticking coefficients for all the hydrocarbons are close to unity (> 0.95) at an adsorption temperature of 60 K. The desorption energies for hydrocarbons of the same chain length increase from n-alkanes to 1-alkenes and to 1-alkynes. This trend is likely a consequence of additional dative bonding of the alkene and alkyne π system to the coordinatively unsaturated Ti5c sites. Similar to previous studies on the adsorption of n-alkanes on metal and metal oxide surfaces, we find that the desorption energies within each group (n-alkanes vs. 1-alkenes vs. 1-alkynes) from Ti5c sites increase linearly with the chain length. The absolute saturation coverages of each hydrocarbon on Ti5c sites were also determined. The saturation coverage of CH4, is found to be ~ 2/3 monolayer (ML). The saturation coverages of C2-C4 hydrocarbons are found nearly independent of the chain length with values of ~ 1/2 ML for n-alkanes and 1-alkenes and 2/3 ML for 1-alkynes. This result is surprising considering their similar sizes.

  10. Effect of cobalt implantation on structural and optical properties of rutile TiO2(110)

    NASA Astrophysics Data System (ADS)

    Joshi, Shalik Ram; Padmanabhan, B.; Chanda, Anupama; Malik, V. K.; Mishra, N. C.; Kanjilal, D.; Varma, Shikha

    2016-07-01

    Photo-absorption properties of Co implantation in rutile TiO2(110) have been investigated. Nearly five times enhancement in absorbance of visible light and 1.7 times increase in UV light have been observed. Formation of crystalline CoTiO3 and Ti1- x Co x O2 phases at high and low fluences, respectively, demonstrates a crucial role in increasing the photo-absorbance, especially in the visible regime. Ti-rich nanostructures and Ti3+ vacancies that develop after ion implantation also reveal significant contribution in these observations. These Co implanted rutile TiO2 surfaces will be useful for visible light photo-catalysis.

  11. A novel and efficient surfactant-free synthesis of Rutile TiO2 microflowers with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Nair, Radhika V.; Jijith, M.; Gummaluri, Venkata Siva; Vijayan, C.

    2016-05-01

    Rutile TiO2 microflowers with three-dimensional spiky flower like architecture at the nanometer level are obtained by a fast single step surfactant free ethylene glycol based solvothermal scheme of synthesis. These structures are characterized by X-ray Diffraction (XRD), Field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM) and Raman spectroscopy. These measurements confirm Rutile phase of TiO2 flowers with very high crystallinity. Photodegradation of Rhodamine B with UV exposure is investigated by UV-Visible spectroscopy measurements in the presence of these samples. They are shown to have high photocatalytic activity due to the large surface area contributed by the highly dense spiky nanostructures. The plasmonic (Au) loading in these structures are shown to significantly enhance the photocatalytic activity.

  12. Rutile to anatase phase transition induced by N doping in highly oriented TiO2 films.

    PubMed

    Breeson, Andrew C; Sankar, Gopinathan; Goh, Gregory Kia Liang; Palgrave, Robert G

    2016-09-21

    Highly oriented TiO2 thin films were deposited onto Al2O3(0001), SrTiO3(001), and LaAlO3(001) substrates by spin coating a titanium alkoxide precursor solution followed by annealing. The films were nitrogen doped by two different routes: either by adding tetramethyethylenediamine (TMEDA) to the precursor solution or alternatively by high temperature ammonolysis. Undoped TiO2 films were highly oriented and the phase was dependent on the substrate. N doping by ammonolysis led to transformation of rutile films to anatase, confirmed by XRD and by XPS valence band spectroscopy. Significant differences were observed in the spatial distribution of the nitrogen dopant depending upon which synthesis method was used. These two factors may shed light on the increased photocatalytic efficiencies reported in N doped TiO2. PMID:27546382

  13. Molecular dynamics study on surface structure and surface energy of rutile TiO 2 (1 1 0)

    NASA Astrophysics Data System (ADS)

    Song, Dai-Ping; Liang, Ying-Chun; Chen, Ming-Jun; Bai, Qing-Shun

    2009-03-01

    The formula for surface energy was modified in accordance with the slab model of molecular dynamics (MDs) simulations, and MD simulations were performed to investigate the relaxed structure and surface energy of perfect and pit rutile TiO 2(1 1 0). Simulation results indicate that the slab with a surface more than four layers away from the fixed layer expresses well the surface characteristics of rutile TiO 2 (1 1 0) surface; and the surface energy of perfect rutile TiO 2 (1 1 0) surface converges to 1.801±0.001 J m -2. The study on perfect and pit slab models proves the effectiveness of the modified formula for surface energy. Moreover, the surface energy of pit surface is higher than that of perfect surface and exhibits an upper-concave parabolic increase and a step-like increase with increasing the number of units deleted along [0 0 1] and [1 1 0], respectively. Therefore, in order to obtain a higher surface energy, the direction along which atoms are cut out should be chosen in accordance with the pit sizes: [ 1¯10] direction for a small pit size and [0 0 1] direction for a big pit size; or alternatively the odd units of atoms along [1 1 0] direction are removed.

  14. Degradation of polycyclic aromatic hydrocarbons in crumb tyre rubber catalysed by rutile TiO2 under UV irradiation.

    PubMed

    Yu, Kai; Huang, Linyue; Lou, Lan-Lan; Chang, Yue; Dong, Yanling; Wang, Huan; Liu, Shuangxi

    2015-01-01

    The polycyclic aromatic hydrocarbons (PAHs) in crumb tyre rubber were firstly degraded under UV irradiation in the presence of rutile TiO2 and hydrogen peroxide. The effects of light intensity, catalyst amount, oxidant amount, initial pH value, co-solvent content, and reaction time on degradation efficiency of typical PAHs in crumb tyre rubber were studied. The results indicated that UV irradiation, rutile TiO2, and hydrogen peroxide were beneficial to the degradation of PAHs and co-solvent could accelerate the desorption of PAHs from crumb tyre rubber. Up to 90% degradation efficiency of total 16 PAHs could be obtained in the presence of rutile TiO2 (1 wt%) and hydrogen peroxide (1.0 mL) under 1800 µW cm(-2) UV irradiation for 48 h. The high molecular weight PAHs (such as benz(a)pyrene) were more difficult to be degraded than low molecular weight PAHs (such as phenanthrene, chrysene). Moreover, through the characterization of reaction solution and degradation products via GC-MS, it was proved that the PAHs in crumb tyre rubber were successfully degraded. PMID:25323028

  15. A simple and low temperature process for super-hydrophilic rutile TiO 2 thin films growth

    NASA Astrophysics Data System (ADS)

    Mane, R. S.; Joo, Oh-Shim; Min, Sun-Ki; Lokhande, C. D.; Han, Sung-Hwan

    2006-11-01

    We investigate an environmentally friendly aqueous solution system for rutile TiO 2 violet color nanocrystalline thin films growth on ITO substrate at room temperature. Film shows considerable absorption in visible region with excitonic maxima at 434 nm. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), UV-vis, water surface contact angle and energy dispersive X-ray analysis (EDX) techniques in addition to actual photo-image that shows purely rutile phase of TiO 2 with violet color, super-hydrophilic and densely packed nanometer-sized spherical grains of approximate diameter 3.15 ± 0.4 nm, characterize the films. Band gap energy of 4.61 eV for direct transition was obtained for the rutile TiO 2 films. Film surface shows super-hydrophilic behavior, as exhibited water contact angle was 7°. Strong visible absorption (not due to chlorine) leaves future challenge to use these films in extremely thin absorber (ETA) solar cells.

  16. Controlling the Al-doping profile and accompanying electrical properties of rutile-phased TiO2 thin films.

    PubMed

    Jeon, Woojin; Rha, Sang Ho; Lee, Woongkyu; Yoo, Yeon Woo; An, Cheol Hyun; Jung, Kwang Hwan; Kim, Seong Keun; Hwang, Cheol Seong

    2014-05-28

    The role of Al dopant in rutile-phased TiO2 films in the evaluation of the mechanism of leakage current reduction in Al-doped TiO2 (ATO) was studied in detail. The leakage current of the ATO film was strongly affected by the Al concentration at the interface between the ATO film and the RuO2 electrode. The conduction band offset of the interface increased with the increase in the Al dopant concentration in the rutile TiO2, which reduced the leakage current in the voltage region pertinent to the next-generation dynamic random access memory application. However, the Al doping in the anatase TiO2 did not notably increase the conduction band offset even with a higher Al concentration. The detailed analyses of the leakage conduction mechanism based on the quantum mechanical transfer-matrix method showed that Schottky emission and Fowler-Nordheim tunneling was the dominant leakage conduction mechanism in the lower and higher voltage regions, respectively. The chemical analyses using X-ray photoelectron spectroscopy corroborated the electrical test results. PMID:24749990

  17. Visible light photocatalytic activity of rutile TiO2 fiber clusters in the degradation of terephthalic acid

    NASA Astrophysics Data System (ADS)

    Yener, H. Banu; Helvacı, Şerife Ş.

    2015-09-01

    Rutile TiO2 nanoparticles, in different structural and morphological properties, were produced by the hydrolysis of titanium tetrachloride in a highly acidic reaction media at moderate temperatures without calcination. Their photocatalytic activities were investigated in the liquid-phase degradation of terephthalic acid under visible light illumination. The parameters, which are the concentration of the titanium tetrachloride solution (0.1-1 M) and reaction temperature (60-95 °C), effective on the properties of the particles, and their photocatalytic performances, were investigated. The XRD patterns indicated a pure rutile crystal structure at moderate temperatures without need of calcination. The FEGSEM images showed the formation of flower-, pinecone-, and sphere-like clusters consisting of interconnected nanofibers. The N2 adsorption-desorption isotherms pointed out the microporous structure of the clusters. Band gap energies were found to be varying between 3.02 and 3.08 eV due to the well-developed rutile crystallite structure. Systematic studies elucidated that the optimum reactant concentration and reaction temperature are 0.5 M TiCl4 and 95 °C, respectively. The rutile clusters synthesized at the optimum reaction conditions exhibited 99 % of the photocatalytic degradation of TPA under visible light illumination at shorter irradiation times compared with commercial P25 TiO2.

  18. Temperature-programmed desorption study of NO reactions on rutile TiO2(110)-1 × 1

    NASA Astrophysics Data System (ADS)

    Kim, Boseong; Dohnálek, Zdenek; Szanyi, János; Kay, Bruce D.; Kim, Yu Kwon

    2016-10-01

    Systematic temperature-programmed desorption (TPD) studies of NO adsorption and reactions on rutile TiO2(110)-1 × 1 surface reveal several distinct reaction channels in a temperature range of 50-500 K. NO readily reacts on TiO2(110) to form N2O, which desorbs between 50 and 200 K (LT N2O channels), which leaves the TiO2 surface populated with adsorbed oxygen atoms (Oa) as a by-product of N2O formation. In addition, we observe simultaneous desorption peaks of NO and N2O at 270 K (HT1 N2O) and 400 K (HT2 N2O), respectively, both of which are attributed to reaction-limited processes. No N-derived reaction product desorbs from TiO2(110) surface above 500 K or higher, while the surface may be populated with Oa's and oxidized products such as NO2 and NO3. The adsorbate-free TiO2 surface with oxygen vacancies can be regenerated by prolonged annealing at 850 K or higher. Detailed analysis of the three N2O desorption yields reveals that the surface species for the HT channels are likely to be various forms of NO dimers.

  19. Thin-film growth of (110) rutile TiO2 on (100) Ge substrate by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoshihisa; Nagata, Takahiro; Yamashita, Yoshiyuki; Nabatame, Toshihide; Ogura, Atsushi; Chikyow, Toyohiro

    2016-06-01

    The deposition conditions of (100) rutile TiO2 grown on p-type (100) Ge substrates by pulsed laser deposition (PLD) were optimized to improve the electrical properties of the TiO2/Ge structure. Increasing the substrate temperature (T sub) enhanced the grain growth, the surface roughness of the film, and Ge diffusion into the TiO2 layer. The growth rate, which was controlled by the laser density in PLD (L d), affected the Ge diffusion. L d of 0.35 J/cm2 (0.37 nm/min) enhanced the Ge diffusion and improved the crystallinity and surface roughness at a temperature of 450 °C, at which GeO x undergoes decomposition and desorption. However, the Ge diffusion into TiO2 degraded the electrical properties. By using the optimized conditions (L d = 0.7 J/cm2 and T sub = 420 °C) with postannealing, the TiO2/Ge structure showed an improvement in the leakage current of 3 orders of magnitude and the capacitance–voltage property characteristics indicated the formation of a p–n junction.

  20. Temperature-programmed desorption study of NO reactions on rutile TiO2(110)-1×1

    DOE PAGESBeta

    Kim, Boseong; Dohnalek, Zdenek; Szanyi, Janos; Kay, Bruce D.; Kim, Yu Kwon

    2016-02-24

    In this study, systematic temperature-programmed desorption (TPD) studies of NO adsorption and reactions on rutile TiO2(110)-1 × 1 surface reveal several distinct reaction channels in a temperature range of 50–500 K. NO readily reacts on TiO2(110) to form N2O, which desorbs between 50 and 200 K (LT N2O channels), which leaves the TiO2 surface populated with adsorbed oxygen atoms (Oa) as a by-product of N2O formation. In addition, we observe simultaneous desorption peaks of NO and N2O at 270 K (HT1 N2O) and 400 K (HT2 N2O), respectively, both of which are attributed to reaction-limited processes. No N-derived reaction productmore » desorbs from TiO2(110) surface above 500 K or higher, while the surface may be populated with Oa's and oxidized products such as NO2 and NO3. The adsorbate-free TiO2 surface with oxygen vacancies can be regenerated by prolonged annealing at 850 K or higher. Detailed analysis of the three N2O desorption yields reveals that the surface species for the HT channels are likely to be various forms of NO dimers.« less

  1. Ethanol photo-oxidation on a rutile TiO2(110) single crystal surface.

    PubMed

    Nadeem, A M; Muir, J M R; Connelly, K A; Adamson, B T; Metson, B J; Idriss, H

    2011-05-01

    The reaction of ethanol has been studied on the surface of rutile TiO(2)(110) by Temperature Programmed Desorption (TPD), online mass spectrometry under UV excitation and photoelectron spectroscopy while the adsorption energies of the molecular and dissociative modes of ethanol were computed using the DFT/GGA method. The most stable configuration is the dissociative adsorption in line with experimental results at room temperature. At 0.5 ML coverage the adsorption energy was found equal to 80 kJ mol(-1) for the dissociative mode (ethoxide, CH(3)CH(2)O(a) + H(a)) followed by the molecular mode (67 kJ mol(-1)). The orientation of the ethoxides along the [001] or [110] direction had minor effect on the adsorption energy although affected differently the Ti and O surface atomic positions. TPD after ethanol adsorption at 300 K indicated two main reactions: dehydration to ethylene and dehydrogenation to acetaldehyde. Pre-dosing the surface with ethanol at 300 K followed by exposure to UV resulted in the formation of acetaldehyde and hydrogen. The amount of acetaldehyde could be directly linked to the presence of gas phase O(2) in the vacuum chamber. The order of this photo-catalytic reaction with respect to O(2) was found to be 0.5. Part of acetaldehyde further reacted with O(2) under UV excitation to give surface acetate species. Because the rate of photo-oxidation of acetates (acetic acid) was slower than that of ethoxides (ethanol), the surface ended up by being covered with large amounts of acetates. A reaction mechanism for acetaldehyde, hydrogen and acetate formation under UV excitation is proposed. PMID:21225073

  2. Rapid Charge Transport in Dye-Sensitized Solar Cells Made from Vertically Aligned Single-Crystal Rutile TiO2 Nanowires

    SciTech Connect

    Feng, X.; Zhu, K.; Frank, A. J.; Grimes, C. A.; Mallouk, T. E.

    2012-03-12

    A rapid solvothermal approach was used to synthesize aligned 1D single-crystal rutile TiO2 nanowire (NW) arrays on transparent conducting substrates as electrodes for dye-sensitized solar cells. The NW arrays showed a more than 200 times faster charge transport (see picture) and a factor four lower defect state density than conventional rutile nanoparticle films.

  3. Thermal behaviour of ultra-thin Co overlayers on rutile TiO 2(1 0 0) surface

    NASA Astrophysics Data System (ADS)

    Chai, J. W.; Pan, J. S.; Wang, S. J.; Huan, C. H. A.; Lau, G. S.; Zheng, Y. B.; Xu, S.

    2005-09-01

    Thermal behaviour of ultra-thin Co overlayers on rutile TiO 2(1 0 0) surface has been studied by in situ X-ray photoelectron spectroscopy (XPS). Metal Co overlayers of about 30 Å have been deposited at room temperature on rutile TiO 2(1 0 0) surfaces, followed by annealing to different temperatures. It was found that the interfacial reaction between the Co overlayers and TiO 2(1 0 0) surfaces occurred upon annealing to temperatures above 400 °C. Above these temperatures, all metallic Co atoms were oxidized into the Co 2+ state, while some Ti 4+ were reduced to Ti 3+ with increasing temperature. Ex situ surface morphology studies by atomic force microscopy (AFM) suggest that thermal annealing resulted in the agglomeration of the metal film deposited at room temperature and the formation of islands. Annealing to higher temperature led to the dissociation of the small Co islands due to Co oxidation while the larger islands remained and grew continuously. Two types of island nanostructures were observed by ex situ high-resolution transmission electron microscopy (HRTEM).

  4. Electrical switching effect of a single-unit-cell CrO2 layer on rutile TiO2 surface

    NASA Astrophysics Data System (ADS)

    Li, Si-Da; Liu, Bang-Gui

    2014-03-01

    Rutile CrO2 is the most important half-metallic material with nearly 100% spin polarization at the Fermi level, and rutile TiO2 is a wide-gap semiconductor with many applications. Here, we show through first-principles investigation that a single-unit-cell CrO2 layer on rutile TiO2 (001) surface is ferromagnetic and semiconductive with a gap of 0.54 eV, and its electronic state transits abruptly to a typical metallic state when an electrical field is applied. Consequently, this makes an interesting electrical switching effect which may be useful in designing spintronic devices.

  5. Influence of strain on water adsorption and dissociation on rutile TiO2(110) surface.

    PubMed

    Yang, Long; Shu, Da-Jun; Li, Shao-Chun; Wang, Mu

    2016-06-01

    The influence of externally applied strain on water adsorption and dissociation on a defect-free rutile TiO2(110) surface is studied by using first-principles calculations. We found that while compressive strain makes water adsorption and dissociation less favorable, tensile strain increases the energy gain of water adsorption, and decreases the energy cost of water dissociation. Specifically, dissociative water becomes more stable than molecular water when an 8% tensile in-plane strain is applied. Moreover, the dissociation barrier decreases with increasing strain more rapidly for more isolated water. The rate of decrease of this barrier for nearly isolated water is 0.017 eV per 1% biaxial strain. This demonstrates that applying strain is a possible way to engineer the surface adsorption and dissociation of water on a TiO2(110) surface, and therefore engineer the relevant surface reactivity. PMID:27138099

  6. Unravelling Site-Specific Photo-Reactions of Ethanol on Rutile TiO2(110)

    PubMed Central

    Hansen, Jonas Ø.; Bebensee, Regine; Martinez, Umberto; Porsgaard, Soeren; Lira, Estephania; Wei, Yinying; Lammich, Lutz; Li, Zheshen; Idriss, Hicham; Besenbacher, Flemming; Hammer, Bjørk; Wendt, Stefan

    2016-01-01

    Finding the active sites of catalysts and photo-catalysts is crucial for an improved fundamental understanding and the development of efficient catalytic systems. Here we have studied the photo-activated dehydrogenation of ethanol on reduced and oxidized rutile TiO2(110) in ultrahigh vacuum conditions. Utilizing scanning tunnelling microscopy, various spectroscopic techniques and theoretical calculations we found that the photo-reaction proceeds most efficiently when the reactants are adsorbed on regular Ti surface sites, whereas species that are strongly adsorbed at surface defects such as O vacancies and step edges show little reaction under reducing conditions. We propose that regular Ti surface sites are the most active sites in photo-reactions on TiO2. PMID:26915303

  7. Unravelling Site-Specific Photo-Reactions of Ethanol on Rutile TiO2(110)

    NASA Astrophysics Data System (ADS)

    Hansen, Jonas Ø.; Bebensee, Regine; Martinez, Umberto; Porsgaard, Soeren; Lira, Estephania; Wei, Yinying; Lammich, Lutz; Li, Zheshen; Idriss, Hicham; Besenbacher, Flemming; Hammer, Bjørk; Wendt, Stefan

    2016-02-01

    Finding the active sites of catalysts and photo-catalysts is crucial for an improved fundamental understanding and the development of efficient catalytic systems. Here we have studied the photo-activated dehydrogenation of ethanol on reduced and oxidized rutile TiO2(110) in ultrahigh vacuum conditions. Utilizing scanning tunnelling microscopy, various spectroscopic techniques and theoretical calculations we found that the photo-reaction proceeds most efficiently when the reactants are adsorbed on regular Ti surface sites, whereas species that are strongly adsorbed at surface defects such as O vacancies and step edges show little reaction under reducing conditions. We propose that regular Ti surface sites are the most active sites in photo-reactions on TiO2.

  8. Unravelling Site-Specific Photo-Reactions of Ethanol on Rutile TiO2(110).

    PubMed

    Hansen, Jonas Ø; Bebensee, Regine; Martinez, Umberto; Porsgaard, Soeren; Lira, Estephania; Wei, Yinying; Lammich, Lutz; Li, Zheshen; Idriss, Hicham; Besenbacher, Flemming; Hammer, Bjørk; Wendt, Stefan

    2016-01-01

    Finding the active sites of catalysts and photo-catalysts is crucial for an improved fundamental understanding and the development of efficient catalytic systems. Here we have studied the photo-activated dehydrogenation of ethanol on reduced and oxidized rutile TiO2(110) in ultrahigh vacuum conditions. Utilizing scanning tunnelling microscopy, various spectroscopic techniques and theoretical calculations we found that the photo-reaction proceeds most efficiently when the reactants are adsorbed on regular Ti surface sites, whereas species that are strongly adsorbed at surface defects such as O vacancies and step edges show little reaction under reducing conditions. We propose that regular Ti surface sites are the most active sites in photo-reactions on TiO2. PMID:26915303

  9. Multi-Timescale Investigation of Radiation Damage near TiO2 Rutile Grain Boundaries

    SciTech Connect

    Xian-Ming Bai; Blas P. Uberuaga

    2012-04-01

    Although grain boundaries (GBs) have been experimentally demonstrated to serve as sinks for absorbing radiation induced defects and improving the radiation tolerance of materials, the detailed atomistic interactions between defects and GBs leading to this enhanced tolerance are not well understood. In oxide ceramics the interactions are further complicated as defects can be charged and grain boundaries may exhibit space charge and charge dipole effects. Here, we use two atomistic modeling methods to examine the role of GBs in a model oxide system, rutile TiO2, in modifying defect production during irradiation events. The GB studied is a symmetric tilt GB with a rotation axis of [100] and a rotation angle of 15.25{sup o}. We use molecular dynamics to investigate defect production near the GB at both 300K and 1000 K and find that the damage production is sensitive to the initial distance of the primary knock-on atom (PKA) from the GB. We find three distinct regimes in which GBs have different effects on modifying defect production. Similar to GBs in metals, the GB absorbs more interstitials than vacancies at certain distances while this behavior of biased loading of interstitials diminishes at other distances. Further, we obtain the statistics of both interstitial and vacancy clusters 2 produced in collision cascades in terms of their compositions at two temperatures. We find that perfectly stoichiometric defect clusters (Schottky and anti-Schottky clusters) represent a small fraction of the total defect clusters produced. Moreover, a significant reduction in the number of interstitial clusters at 1000 K compared to 300 K is thought to be a consequence of enhanced migration of interstitials towards the GB. Finally the kinetic properties of certain defect clusters are investigated with temperature accelerated dynamics, without any priori assumptions of migration mechanisms. We find that small interstitial clusters become mobile at high temperatures while small vacancy

  10. Nanofabrication of PTCDA molecular chains on rutile TiO(2)(011)-(2 × 1) surfaces.

    PubMed

    Tekiel, Antoni; Godlewski, Szymon; Budzioch, Janusz; Szymonski, Marek

    2008-12-10

    The adsorption of 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) on a rutile TiO(2)(011)-(2 × 1) surface is studied using ultra-high vacuum scanning tunneling microscopy. The self-assembly process is dominated by the fine interplay between the lateral intermolecular interactions and the binding to the substrate. By means of temperature-induced change in the adsorption configuration and the activation of diffusion, the molecules are assembled into one-dimensional chains oriented along the [Formula: see text] crystallographic direction. PMID:21730668

  11. The growth of TiO 2 (rutile) single crystals using the FZ method under high oxygen pressure

    NASA Astrophysics Data System (ADS)

    Park, Jong Kwan; Shim, Kwang Bo; Auh, Keun Ho; Tanaka, Isao

    2002-04-01

    High purity TiO 2 (rutile) single crystals were grown using the floating zone process by applying oxygen pressures of 0.3, 0.4, 0.5, and 0.8 MPa, respectively. All of the as-grown single crystals were dark blue and transparent, and differed only slightly from their appearance by observation of the naked eye. Crystals grown under high oxygen pressure had just a few low-angle grain boundaries, except for the periphery of the crystal, compared to the rutile crystals grown under ambient oxygen pressure. In particular, a single crystal grown under an oxygen pressure of 0.5 MPa contains no low-angle grain boundaries, indicating that it can be used for optical devices.

  12. Influence of deposition temperature on the growth of rutile TiO2 nanostructures by CBD method on seed layer prepared by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Selman, Abbas M.; Hassan, Z.

    2013-12-01

    Rutile titanium dioxide (TiO2) nanostructures were successfully fabricated using the simple chemical bath deposition method at various deposition temperatures. These nanostructures were fabricated on (100 ± 10 nm) TiO2 seed layer coated glass, which was prepared via radio frequency (RF) magnetron sputtering at a substrate temperature of 350 °C. The synthesized TiO2 nanostructures were annealed at 550 °C for 2 h and examined via X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), photoluminescence (PL), and Raman spectroscopy. The XRD patterns showed the presence of the peaks characteristic of rutile phase. The band gap of the TiO2 nanostructures was calculated using the UV-vis absorption spectrum and was determined to be between 3.15 and 3.24 eV. The Raman spectra contained three characteristic bands at 232, 446 and 612 cm-1, which correspond to the tetragonal TiO2 rutile. The results showed good quality of nanocrystalline TiO2 rutile phase.

  13. Potential neurological lesion after nasal instillation of TiO(2) nanoparticles in the anatase and rutile crystal phases.

    PubMed

    Wang, Jiangxue; Chen, Chunying; Liu, Ying; Jiao, Fang; Li, Wei; Lao, Fang; Li, Yufeng; Li, Bai; Ge, Cuicui; Zhou, Guoqiang; Gao, Yuxi; Zhao, Yuliang; Chai, Zhifang

    2008-12-15

    Nanoscale titanium dioxide (TiO(2)) is massively produced and widely used in living environment, which hence make the potential risk to human health. Central nervous system (CNS) is the potential susceptible target of inhaled nanoparticles, but the studies on this aspect are limited so far. We report the accumulation and toxicity results in vivo of two crystalline phases of TiO(2) nanoparticles (80nm, rutile and 155nm, anatase; purity >99%). The female mice were intranasally instilled with 500microg of TiO(2) nanoparticles suspension every other day for 30 days. Synchrotron radiation X-ray fluorescence analysis (SRXRF) and inductively coupled plasma mass spectrometry (ICP-MS) were used to determine the contents of titanium in murine brain. Then, the pathological examination of brain tissue, oxidative stress-mediated responses, and levels of neurochemicals in the brain of exposed mice were also analyzed. The obvious morphological changes of hippocampal neurons and increased GFAP-positive astrocytes in the CA4 region were observed, which were in good agreements with higher Ti contents in the hippocampus region. Oxidative stress occurred obviously in whole brain of exposed mice such as lipid peroxidation, protein oxidation and increased activities of catalase, as well as the excessive release of glutamic acid and nitric oxide. These findings indicate anatase TiO(2) nanoparticles exhibited higher concern on some tested biological effects. To summarize, results provided the preliminary evidence that nasal instilled TiO(2) nanoparticles could be translocated into the central nervous system and cause potential lesion of brain, and the hippocampus would be the main target within brain. PMID:18992307

  14. First-principles GGA+U study of the different conducting properties in pentavalent-ion-doped anatase and rutile TiO2

    NASA Astrophysics Data System (ADS)

    Yang, Kesong; Dai, Ying; Huang, Baibiao; Feng, Yuan Ping

    2014-07-01

    The electronic properties of pentavalent-ion (Nb5+, Ta5+, and I5+) doped anatase and rutile TiO2 are studied using spin-polarized GGA + U calculations. Our calculated results indicate that these two phases of TiO2 exhibit different conductive behavior upon doping. For doped anatase TiO2, some up-spin-polarized Ti 3d states lie near the conduction band bottom and cross the Fermi level, showing an n-type half-metallic character. For doped rutile TiO2, the Fermi level is pinned between two up-spin-polarized Ti 3d gap states, showing an insulating character. In addition to the Nb (Ta)-doped anatase TiO2, we propose that the I-doped anatase TiO2 can also be a potential transparent conducting oxide, which is worthy of further experimental verification. These findings clarify the long-standing controversy of whether GGA + U calculation can successfully predict the conducting property in the Nb (Ta)-doped anatase phase and the insulating property in the rutile phase. Moreover, our results show that the symmetry breaking can cause a metal-insulating transition in pentavalent-ion-doped anatase TiO2, though this symmetry breaking may not occur spontaneously because of the relatively high energy barrier.

  15. Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells

    SciTech Connect

    Park, N. G.; van de Lagemaat, J.; Frank, A. J.

    2000-01-01

    The objective of this work is to develop and optimize the new dye-sensitized solar cell technology. In view of the infancy of rutile material development for solar cells, the PV response of the dye-sensitized rutile-based solar cell is remarkably close to that of the anatase-based cell.

  16. Ammonia formation from NO reaction with surface hydroxyls on rutile TiO2 (110) - 1×1

    SciTech Connect

    Kim, Boseong; Kay, Bruce D.; Dohnalek, Zdenek; Kim, Yu Kwon

    2015-01-15

    The reaction of NO with hydroxylated rutile TiO2(110)-1×1 surface (h-TiO2) was investigated as a function of NO coverage using temperature-programmed desorption. Our results show that NO reaction with h-TiO2 leads to formation of NH3 which is observed to desorb at ~ 400 K. Interestingly, the amount of NH3 produced depends nonlinearly on the coverage of NO. The yield increases up to a saturation value of ~1.3×1013 NH3/cm2 at a NO dose of 5×1013 NO/cm2, but subsequently decreases at higher NO doses. Preadsorbed H2O is found to have a negligible effect on the NH3 desorption yield. Additionally, no NH3 is formed in the absence of surface hydroxyls (HOb’s) upon coadsorption of NO and H2O on a stoichiometric TiO2(110) (s-TiO2(110)). Based on these observations, we conclude that nitrogen from NO has a strong preference to react with HOb’s on the bridge-bonded oxygen rows (but not with H2O) to form NH3. The absolute NH3 yield is limited by competing reactions of HOb species with titanium-bound oxygen adatoms to form H2O. Our results provide new mechanistic insight about the interactions of NO with hydroxyl groups on TiO2(110) .

  17. Adsorption of dopamine on rutile TiO2 (110): a photoemission and near-edge X-ray absorption fine structure study.

    PubMed

    Jackman, Mark J; Syres, Karen L; Cant, David J H; Hardman, Samantha J O; Thomas, Andrew G

    2014-07-29

    Synchrotron radiation photoelectron spectroscopy and near-edge X-ray absorption fine structure (NEXAFS) techniques have been used to study the adsorption of dopamine on a rutile TiO2 (110) single crystal. Photoemission results suggest that dopamine bonds through the oxygen molecules in a bidentate fashion. From the data, it is ambiguous whether the oxygens bond to the same 5-fold coordinated surface titanium atom or bridges across two, although based on the bonding of pyrocatechol on rutile TiO2 (110), it is likely that the dopamine bridges two titanium atoms. Using the searchlight effect, the carbon K-edge near-edge X-ray absorption fine structure NEXAFS spectra recorded for dopamine on rutile TiO2 (110) show the phenyl ring to be oriented at 78° ± 5° from the surface and twisted 11 ± 10° relative to the (001) direction. PMID:25003716

  18. Four-faceted nanowires generated from densely-packed TiO2 rutile surfaces: Ab initio calculations

    NASA Astrophysics Data System (ADS)

    Evarestov, R. A.; Zhukovskii, Yu. F.

    2013-02-01

    Two-dimensional (2D) slabs and monoperiodic (1D) nanowires orthogonal to the slab surface of rutile-based TiO2 structure terminated by densely-packed surfaces and facets, respectively, have been simulated in the current study. The procedure of structural generation of nanowires (NWs) from titania slabs (2D → 1D) is described. We have simulated: (i) (110), (100), (101) and (001) slabs of different thicknesses as well as (ii) [001]- and [110]-oriented nanowires of different diameters terminated by either four types of related {110} facets or alternating {11¯0} and {001} facets, respectively. Nanowires have been described using both the Ti atom-centered rotation axes as well as the hollow site-centered axes passing through the interstitial sites between the Ti and O atoms closest to the axes. For simulations on TiO2 slabs and NWs, we have performed large-scale ab initio Density Functional Theory (DFT) and hybrid DFT-Hartree Fock (DFT-HF) calculations with the total geometry optimization within the Generalized Gradient Approximation (GGA) in the form of the Perdew-Becke-Ernzenhof exchange-correlation functionals (PBE and PBE0, respectively), using the formalism of linear combination of localized atomic functions (LCAO) implemented in CRYSTAL09 code. Both structural and electronic properties of enumerated rutile-based titania slabs and nanowires have been calculated. According to the results of our surface energy calculations, the most stable rutile-based titania slab is terminated by (110) surfaces whereas the energetically favorable [001]-oriented NWs are also terminated by {110} facets only, thus confirming results of previous studies.

  19. Ethanol photocatalysis on rutile TiO2(110): the role of defects and water

    PubMed Central

    Walenta, Constantin A.; Kollmannsberger, Sebastian L.; Kiermaier, Josef; Winbauer, Andreas; Tschurl, Martin

    2015-01-01

    In this work we present a stoichiometric reaction mechanism for the photocatalytic ethanol oxidation on TiO2(110). The reaction products are analyzed either under reaction conditions or after irradiation at lower temperatures. Water is identified as a quantitative by-product, which resides in a defect site. These water molecules cause a blocking of the defect sites which results in poisoning of the catalyst. By different preparation techniques of the TiO2(110) surface, the role of surface defects is further elucidated and the role of molecular oxygen is investigated. Based on the investigation, a complete photochemical reaction mechanism is given, which provides insights into general photon driven oxidation mechanisms on TiO2. PMID:26264863

  20. Interaction of the ionic liquid [BMP][TFSA] with rutile TiO2(110) and coadsorbed lithium.

    PubMed

    Uhl, Benedikt; Hekmatfar, Maral; Buchner, Florian; Behm, R Jürgen

    2016-03-01

    Aiming at a fundamental understanding of the processes at the electrode|ionic liquid interface in Li ion batteries, we investigated the interaction of the ionic liquid n-butyl-n-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide [BMP][TFSA] and of Li with a reduced rutile TiO2(110) (1 × 1) surface as well as the interaction between [BMP][TFSA] and Li on the TiO2(110) surface under ultrahigh vacuum (UHV) conditions by X-ray photoelectron spectroscopy and scanning tunnelling microscopy. Between 80 K and 340 K [BMP][TFSA] adsorbs molecularly on the surface and at higher temperatures decomposition is observed, resulting in products such as Sad, Fad and TiNx. The decomposition pattern is compared to proposals based on theory. Small amounts of Li intercalate even at 80 K into TiO2(110), forming Li(+) and Ti(3+) species. The stoichiometry in the near surface region corresponds to Li7Ti5O12. For higher coverages in the range of several monolayers part of the Li remains on the surface, forming a Li2O cover layer. At 300 K, Ti(3+) species become sufficiently mobile to diffuse into the bulk. Li post-deposition on a [BMP][TFSA] covered TiO2(110) surface at 80 K results in two competing reactions, Li intercalation and reaction with the IL, resulting in the decomposition of the IL. Upon warming up, the Ti(3+) formed at low T is consumed by reaction with the IL adlayer and intermediate decomposition products. Post-deposition of [BMP][TFSA] (300 K) on a surface pre-covered with a Li2O/Li7Ti5O12 layer results in the partial reaction of [BMP][TFSA] with the Li(+) and Ti(3+) species, which gets completed at higher temperatures. PMID:26869155

  1. Sol-gel synthesis of mesoporous anatase-brookite and anatase-brookite-rutile TiO2 nanoparticles and their photocatalytic properties.

    PubMed

    Mutuma, Bridget K; Shao, Godlisten N; Kim, Won Duck; Kim, Hee Taik

    2015-03-15

    TiO2 photocatalysts with a mixture of different TiO2 crystal polymorphs have customarily been synthesized hydrothermally at high temperatures using complicated and expensive equipment. In this study TiO2 nanoparticles with a mixture of TiO2 crystals were synthesized using a modified sol-gel method at low temperature. In order to form nanoparticles with different polymorphs a series of samples were obtained at pH 2, 4, 7 and 9. Raw samples were calcined at different temperatures ranging from 200 to 800°C to evaluate the effect of the calcination temperature on the physico-chemical properties of the samples. XRD results revealed that a mixture of anatase and brookite can be obtained in the as-synthesized samples and in those calcined up to 800°C depending on the pH used to obtain the final product. Indeed, a mixture of anatase brookite and rutile; or a sample with only rutile phase can be yielded through further calcination of the as-prepared samples at temperatures ⩾600°C due to phase transformation. The photocatalytic performance of the samples with a mixture of anatase-brookite; anatase-brookite-rutile; and anatase-rutile (Degussa P25 TiO2) was exquisitely investigated in the degradation of methylene blue solutions. The samples obtained at pH 2 and calcined at 200°C possessed the highest activity of all due to its superior properties. This study elucidates a facile method suitable for the synthesis of TiO2 with different mixtures of TiO2 polymorphs with desirable properties for various applications. PMID:25514642

  2. Half-metallic behaviour in doped TiO2 (rutile) with double impurities: ab initio calculation

    NASA Astrophysics Data System (ADS)

    Fakhim Lamrani, A.; Belaiche, M.; Benyoussef, A.; El Kenz, A.

    2013-12-01

    Dilute magnetic oxides are without doubt among the most interesting classes of magnetic materials. However, the nature of their electronic structure and magnetic exchange is far from understood. Here, we apply the ab initio augmented spherical wave (ASW) method, with corrected generalised gradient approximation to study the electronic structure and magnetic properties of doped TiO2 rutile with double impurities. The study reveals a half-metallic ferromagnetic behaviour for Ti1-2x Cr x Mo x O2, and the local magnetic moments of the impurities and their oxidation states agree with the charge transfer between Cr and Mo, which would lead to the ferromagnetic state through the double-exchange mechanism in transition metal oxides.

  3. Transformations of PTCDA structures on rutile TiO2 induced by thermal annealing and intermolecular forces.

    PubMed

    Godlewski, Szymon; Prauzner-Bechcicki, Jakub S; Glatzel, Thilo; Meyer, Ernst; Szymoński, Marek

    2015-01-01

    Transformations of molecular structures formed by perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) molecules on a rutile TiO2(110) surface are studied with low-temperature scanning tunnelling microscopy. We demonstrate that metastable molecular assemblies transform into differently ordered structures either due to additional energy provided by thermal annealing or when the influence of intermolecular forces is increased by the enlarged amount of deposited molecules. Proper adjustment of molecular coverage and substrate temperature during deposition allows for fabrication of desired assemblies. Differences between PTCDA/TiO2(110) and PTCDA/TiO2(011) systems obtained through identical experimental procedures are discussed. PMID:26199854

  4. Three-dimensional interaction force and tunneling current spectroscopy of point defects on rutile TiO2(110)

    NASA Astrophysics Data System (ADS)

    Baykara, Mehmet Z.; Mönig, Harry; Schwendemann, Todd C.; Ünverdi, Ã.-zhan; Altman, Eric I.; Schwarz, Udo D.

    2016-02-01

    The extent to which point defects affect the local chemical reactivity and electronic properties of an oxide surface was evaluated with picometer resolution in all three spatial dimensions using simultaneous atomic force/scanning tunneling microscopy measurements performed on the (110) face of rutile TiO2. Oxygen atoms were imaged as protrusions in both data channels, corresponding to a rarely observed imaging mode for this prototypical metal oxide surface. Three-dimensional spectroscopy of interaction forces and tunneling currents was performed on individual surface and subsurface defects as a function of tip-sample distance. An interstitial defect assigned to a subsurface hydrogen atom is found to have a distinct effect on the local density of electronic states on the surface, but no detectable influence on the tip-sample interaction force. Meanwhile, spectroscopic data acquired on an oxygen vacancy highlight the role of the probe tip in chemical reactivity measurements.

  5. Tracking Site-specific C-C Coupling of Formaldehyde Molecules on Rutile TiO2(110)

    SciTech Connect

    Zhu, Ke; Xia, Yaobiao; Tang, Miru; Wang, Zhitao; Jan, Bryan; Lyubinetsky, Igor; Ge, Qingfeng; Dohnalek, Zdenek; Park, Kenneth T.; Zhang, Zhenrong

    2015-06-25

    Direct imaging of site-specific reactions of individual mole-cules as a function of temperature is a long-sought goal in molecular science. Here, we report the direct visualization of molecular coupling of formaldehyde on reduced rutile TiO2(110) surfaces as we track the same set of molecules when the temperature is increased from 75 to 170 K using scanning tunneling microscope (STM). Our recent study showed that formaldehyde preferably adsorbs on bridging-bonded oxygen (Ob) vacancy (VO) defect site. Herein, images from the same area as the temperature is increased show that VO-bound formaldehyde couples with Ti-bound formaldehyde forming a diolate intermediate. Exposure of formaldehyde at room temperature leads to diolate as the majority species on the surface and no VO-bound formaldehyde is observed. The diolate species are the key reaction intermediates in the formation of ethylene reported in previous ensemble-averaged studies.

  6. Transformations of PTCDA structures on rutile TiO2 induced by thermal annealing and intermolecular forces

    PubMed Central

    Godlewski, Szymon; Glatzel, Thilo; Meyer, Ernst; Szymoński, Marek

    2015-01-01

    Summary Transformations of molecular structures formed by perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) molecules on a rutile TiO2(110) surface are studied with low-temperature scanning tunnelling microscopy. We demonstrate that metastable molecular assemblies transform into differently ordered structures either due to additional energy provided by thermal annealing or when the influence of intermolecular forces is increased by the enlarged amount of deposited molecules. Proper adjustment of molecular coverage and substrate temperature during deposition allows for fabrication of desired assemblies. Differences between PTCDA/TiO2(110) and PTCDA/TiO2(011) systems obtained through identical experimental procedures are discussed. PMID:26199854

  7. N incorporation and electronic structure in N-doped TiO2(110) rutile

    SciTech Connect

    Cheung, Sau H.; Nachimuthu, Ponnusamy; Joly, Alan G.; Engelhard, Mark H.; Bowman, Michael K.; Chambers, Scott A.

    2007-02-08

    Epitaxial TiO2-xNx film growth under anion-rich conditions is characterized by nearly balanced incorporation rates for substitutional N (NO) and interstitial Ti (Tii). Tii donors fully compensate and stabilize N3-, but preclude the formation of p-type material. Hybridization occurs between Tii(IV) and NO3-, but the value of x is limited to ~0.02 under these conditions. Tii(IV)-NO3- states occur above the valence band maximum of pure TiO2, riving rise to enhanced optical absorption in the visible up to ~2.5 eV. Much higher NO and Tii concentrations result from using cation-rich conditions.

  8. Transport and Retention of TiO2 Rutile Nanoparticles in Saturated Porous Media: Influence of Solution pH, Ionic Strength, and the Presence of Humic Acid

    EPA Science Inventory

    The influence of solution pH, ionic strength, and varying concentrations of the Suwannee River Humic Acid (SRHA) on the transport of titanium dioxide (TiO2, rutile) nanoparticle aggregates (nTiO2) in saturated porous media was investigated through systematically examining the tra...

  9. Transport and Retention of TiO2 Rutile Nanoparticles in Saturated Porous Media at Low-Ionic-Strength Conditions: Measurements and Mechanisms

    EPA Science Inventory

    The mechanisms governing the transport and retention kinetics of titanium dioxide (TiO2, rutile) nanoparticle (NP) aggregates were investigated in saturated porous media. Experiments were carried out under a range of well-controlled ionic strength (from DI water up to 1 mM) and...

  10. A DFT study of water adsorption on rutile TiO2 (110) surface: The effects of surface steps.

    PubMed

    Zheng, Ting; Wu, Chunya; Chen, Mingjun; Zhang, Yu; Cummings, Peter T

    2016-07-28

    The associative and dissociative adsorption of water molecules at low-coverage situations on rutile TiO2 (110) surface with step defects was investigated by the density functional theory calculations. Structural optimization of the hydroxylated/hydrated configurations at step edges along the 11̄1 crystal directions and the dynamic process of water dissociation were discussed to get a better description of the water/TiO2 interface. Our results indicate that steps on the TiO2 (110) surface could be an active site for water dissociation. The results of geometry optimization suggest that the stability of hydroxylated configuration is largely dependent on the locations of the H species and the recombination of water molecules from hydroxyls is observed in the fully hydroxylated condition. However, these hydroxyls can be stabilized by the associatively absorbed water nearby by forming competitive intermolecular hydrogen bonds. The dynamics of water dissociation and hydrogen diffusion were studied by the first principles molecular dynamics simulation and our results suggest that the hydrogen released by water dissociation can be transferred among the adsorbates, such as the unsaturated oxygen atoms-H2O-hydroxyl (TiO-H2O-OH) complex at step edges, or gradually diffuses to the bulk water system in the form of hydronium (H3O(+)) at higher water coverage. PMID:27475381

  11. Characterization of individual molecular adsorption geometries by atomic force microscopy: Cu-TCPP on rutile TiO2 (110).

    PubMed

    Jöhr, Res; Hinaut, Antoine; Pawlak, Rémy; Sadeghi, Ali; Saha, Santanu; Goedecker, Stefan; Such, Bartosz; Szymonski, Marek; Meyer, Ernst; Glatzel, Thilo

    2015-09-01

    Functionalized materials consisting of inorganic substrates with organic adsorbates play an increasing role in emerging technologies like molecular electronics or hybrid photovoltaics. For such applications, the adsorption geometry of the molecules under operating conditions, e.g., ambient temperature, is crucial because it influences the electronic properties of the interface, which in turn determine the device performance. So far detailed experimental characterization of adsorbates at room temperature has mainly been done using a combination of complementary methods like photoelectron spectroscopy together with scanning tunneling microscopy. However, this approach is limited to ensembles of adsorbates. In this paper, we show that the characterization of individual molecules at room temperature, comprising the determination of the adsorption configuration and the electrostatic interaction with the surface, can be achieved experimentally by atomic force microscopy (AFM) and Kelvin probe force microscopy (KPFM). We demonstrate this by identifying two different adsorption configurations of isolated copper(ii) meso-tetra (4-carboxyphenyl) porphyrin (Cu-TCPP) on rutile TiO2 (110) in ultra-high vacuum. The local contact potential difference measured by KPFM indicates an interfacial dipole due to electron transfer from the Cu-TCPP to the TiO2. The experimental results are verified by state-of-the-art first principles calculations. We note that the improvement of the AFM resolution, achieved in this work, is crucial for such accurate calculations. Therefore, high resolution AFM at room temperature is promising for significantly promoting the understanding of molecular adsorption. PMID:26342363

  12. A DFT study of water adsorption on rutile TiO2 (110) surface: The effects of surface steps

    NASA Astrophysics Data System (ADS)

    Zheng, Ting; Wu, Chunya; Chen, Mingjun; Zhang, Yu; Cummings, Peter T.

    2016-07-01

    The associative and dissociative adsorption of water molecules at low-coverage situations on rutile TiO2 (110) surface with step defects was investigated by the density functional theory calculations. Structural optimization of the hydroxylated/hydrated configurations at step edges along the <" separators="1 1 ¯ 1 > crystal directions and the dynamic process of water dissociation were discussed to get a better description of the water/TiO2 interface. Our results indicate that steps on the TiO2 (110) surface could be an active site for water dissociation. The results of geometry optimization suggest that the stability of hydroxylated configuration is largely dependent on the locations of the H species and the recombination of water molecules from hydroxyls is observed in the fully hydroxylated condition. However, these hydroxyls can be stabilized by the associatively absorbed water nearby by forming competitive intermolecular hydrogen bonds. The dynamics of water dissociation and hydrogen diffusion were studied by the first principles molecular dynamics simulation and our results suggest that the hydrogen released by water dissociation can be transferred among the adsorbates, such as the unsaturated oxygen atoms-H2O-hydroxyl (TiO-H2O-OH) complex at step edges, or gradually diffuses to the bulk water system in the form of hydronium (H3O+) at higher water coverage.

  13. Characterization of individual molecular adsorption geometries by atomic force microscopy: Cu-TCPP on rutile TiO2 (110)

    NASA Astrophysics Data System (ADS)

    Jöhr, Res; Hinaut, Antoine; Pawlak, Rémy; Sadeghi, Ali; Saha, Santanu; Goedecker, Stefan; Such, Bartosz; Szymonski, Marek; Meyer, Ernst; Glatzel, Thilo

    2015-09-01

    Functionalized materials consisting of inorganic substrates with organic adsorbates play an increasing role in emerging technologies like molecular electronics or hybrid photovoltaics. For such applications, the adsorption geometry of the molecules under operating conditions, e.g., ambient temperature, is crucial because it influences the electronic properties of the interface, which in turn determine the device performance. So far detailed experimental characterization of adsorbates at room temperature has mainly been done using a combination of complementary methods like photoelectron spectroscopy together with scanning tunneling microscopy. However, this approach is limited to ensembles of adsorbates. In this paper, we show that the characterization of individual molecules at room temperature, comprising the determination of the adsorption configuration and the electrostatic interaction with the surface, can be achieved experimentally by atomic force microscopy (AFM) and Kelvin probe force microscopy (KPFM). We demonstrate this by identifying two different adsorption configurations of isolated copper(ii) meso-tetra (4-carboxyphenyl) porphyrin (Cu-TCPP) on rutile TiO2 (110) in ultra-high vacuum. The local contact potential difference measured by KPFM indicates an interfacial dipole due to electron transfer from the Cu-TCPP to the TiO2. The experimental results are verified by state-of-the-art first principles calculations. We note that the improvement of the AFM resolution, achieved in this work, is crucial for such accurate calculations. Therefore, high resolution AFM at room temperature is promising for significantly promoting the understanding of molecular adsorption.

  14. Potential Energy Surfaces of Oxygen Vacancies in Rutile TiO2: Configuration Coordinate and Migration Barrier Schemes

    NASA Astrophysics Data System (ADS)

    Kazempour, Ali

    2013-09-01

    Applying the screened hybrid functional Heyd-Scuseria-Ernzerhof (HSE) method, we studied the polaronic degree of freedom of different charged oxygen vacancies Vo in rutile TiO2. The HSE method not only corrects the band gap, but also allows for correct polaron localization. Due to the important role of phonon in oxygen vacancy associated levels in the gap, we calculated configuration coordinate (CC) potential energy surfaces for all charged Vo's. Our calculated CC diagrams with effective impression on host states, show significant improvement of electron-lattice interaction compared to semi(local) DFT methods. The obtained values of stokes shifts for sequential transitions of charged vacancies agree well with experimental evidences which confirm Ti3+ centers are responsible for photoluminescence. In addition, we explored the effect of polaron localization on diffusive mechanism of Vo along most open [001] direction. Calculated values of migration barriers for V o2+ are found to be in quantitative agreement with experimental migration energy [E. Iguchi and K. Yajima, J. Phys. Soc. Jpn.32 (1971) 1415] of 2.4 eV. These results highlight the small polaronic behavior of Vo's and is consistent with studies suggest the polaronic hopping model for electron transport of n-type conductivity in reduced TiO2 [J.-F. Baumard and F. Gervais, Phys. Rev. B15 (1977) 2316-2323].

  15. The influence of anatase-rutile mixed phase and ZnO blocking layer on dye-sensitized solar cells based on TiO2nanofiberphotoanodes

    PubMed Central

    2013-01-01

    High performance is expected in dye-sensitized solar cells (DSSCs) that utilize one-dimensional (1-D) TiO2 nanostructures owing to the effective electron transport. However, due to the low dye adsorption, mainly because of their smooth surfaces, 1-D TiO2 DSSCs show relatively lower efficiencies than nanoparticle-based ones. Herein, we demonstrate a very simple approach using thick TiO2 electrospun nanofiber films as photoanodes to obtain high conversion efficiency. To improve the performance of the DSCCs, anatase-rutile mixed-phase TiO2 nanofibers are achieved by increasing sintering temperature above 500°C, and very thin ZnO films are deposited by atomic layer deposition (ALD) method as blocking layers. With approximately 40-μm-thick mixed-phase (approximately 15.6 wt.% rutile) TiO2 nanofiber as photoanode and 15-nm-thick compact ZnO film as a blocking layer in DSSC, the photoelectric conversion efficiency and short-circuit current are measured as 8.01% and 17.3 mA cm−2, respectively. Intensity-modulated photocurrent spectroscopy and intensity-modulated photovoltage spectroscopy measurements reveal that extremely large electron diffusion length is the key point to support the usage of thick TiO2 nanofibers as photoanodes with very thin ZnO blocking layers to obtain high photocurrents and high conversion efficiencies. PMID:23286741

  16. Self-induced synthesis of phase-junction TiO2 with a tailored rutile to anatase ratio below phase transition temperature

    PubMed Central

    Wang, Wei-Kang; Chen, Jie-Jie; Zhang, Xing; Huang, Yu-Xi; Li, Wen-Wei; Yu, Han-Qing

    2016-01-01

    The surface phase junction of nanocrystalline TiO2 plays an essential role in governing its photocatalytic activity. Thus, facile and simple methods for preparing phase-junction TiO2 photocatalysts are highly desired. In this work, we show that phase-junction TiO2 is directly synthesized from Ti foil by using a simple calcination method with hydrothermal solution as the precursor below the phase transition temperature. Moreover, the ratio of rutile to anatase in the TiO2 samples could be readily tuned by changing the ratio of weight of Ti foil to HCl, which is used as the hydrothermal precursor, as confirmed by the X-ray diffraction analysis. In the photocatalytic reaction by the TiO2 nanocomposite, a synergistic effect between the two phases within a certain range of the ratio is clearly observed. The results suggest that an appropriate ratio of anatase to rutile in the TiO2 nanocomposite can create more efficient solid-solid interfaces upon calcination, thereby facilitating interparticle charge transfer in the photocatalysis. PMID:26864501

  17. Growth and characterization of rutile TiO2 nanorods on various substrates with fabricated fast-response metal-semiconductor-metal UV detector based on Si substrate

    NASA Astrophysics Data System (ADS)

    Selman, Abbas M.; Hassan, Z.

    2015-07-01

    Rutile-phase titanium dioxide nanorods (NRs) were synthesized successfully on p-type silicon (Si) (1 1 1), c-plane sapphire (Al2O3), glass coated with fluorine-doped tin oxide (FTO), glass, and quartz substrates via chemical bath deposition method. All substrates were seeded with a TiO2 seed layer synthesized with a radio frequency reactive magnetron sputtering system prior to NRs growth. The effect of substrate type on structural, morphological, and optical properties of rutile TiO2 NRs was studied. X-ray diffraction, Raman spectroscopy, and field-emission scanning electron microscopy analyses showed the tetragonal rutile structure of the synthesized TiO2 NRs. Optical properties were examined with photoluminescence (PL) spectroscopy of the grown rutile NRs on all substrates, with the spectra exhibiting one strong ultraviolet emission peak intensity compared with broad visible peak. The optimal sample of rutile NRs was grown on Si substrate. Thus, a fast-response metal-semiconductor-metal ultraviolet (UV) detector was fabricated. Upon exposure to 365 nm light (2.3 mW/cm2) at 5 V bias, the device displays 2.62 × 10-5 A photocurrent, and the response and recovery times are calculated as 18.5 and 19.1 ms, respectively. These results demonstrate that the fabricated high-quality photodiode is a promising candidate as a low-cost UV photodetector for commercially integrated photoelectronic applications.

  18. Evolution of structural and optical properties of rutile TiO2 thin films synthesized at room temperature by chemical bath deposition method

    NASA Astrophysics Data System (ADS)

    Mayabadi, A. H.; Waman, V. S.; Kamble, M. M.; Ghosh, S. S.; Gabhale, B. B.; Rondiya, S. R.; Rokade, A. V.; Khadtare, S. S.; Sathe, V. G.; Pathan, H. M.; Gosavi, S. W.; Jadkar, S. R.

    2014-02-01

    Nanocrystalline thin films of TiO2 were prepared on glass substrates from an aqueous solution of TiCl3 and NH4OH at room temperature using the simple and cost-effective chemical bath deposition (CBD) method. The influence of deposition time on structural, morphological and optical properties was systematically investigated. TiO2 transition from a mixed anatase-rutile phase to a pure rutile phase was revealed by low-angle XRD and Raman spectroscopy. Rutile phase formation was confirmed by FTIR spectroscopy. Scanning electron micrographs revealed that the multigrain structure of as-deposited TiO2 thin films was completely converted into semi-spherical nanoparticles. Optical studies showed that rutile thin films had a high absorption coefficient and a direct bandgap. The optical bandgap decreased slightly (3.29-3.07 eV) with increasing deposition time. The ease of deposition of rutile thin films at low temperature is useful for the fabrication of extremely thin absorber (ETA) solar cells, dye-sensitized solar cells, and gas sensors.

  19. Structural studies of TiO2/wood coatings prepared by hydrothermal deposition of rutile particles from TiCl4 aqueous solutions on spruce (Picea Abies) wood

    NASA Astrophysics Data System (ADS)

    Pori, Pavel; Vilčnik, Aljaž; Petrič, Marko; Sever Škapin, Andrijana; Mihelčič, Mohor; Šurca Vuk, Angela; Novak, Urban; Orel, Boris

    2016-05-01

    A low temperature approach was developed for the deposition of rutile TiO2 particles on a wood surface by hydrolysis of TiCl4 in aqueous solutions acidified with HCl, and crystallization at 75 and 90 °C (1 h). Prior to hydrothermal treatment, Picea Abies wood was first soaked in a 0.5 mmol/l aqueous solution containing anionic surfactant sodium dodecyl sulphate (SDS, Sigma Aldrich) for 2 h at 80 °C. The crystal structure of the hydrothermally made rutile particles was determined with XRD, while the morphology of the deposited TiO2 particles and their distribution in the wood were examined with SEM and EDX measurements. The penetration and amount of deposited rutile particles could be modified by changing the deposition conditions. Thicker layers were obtained from more concentrated aqueous TiCl4 solutions with and without added HCl, and with longer deposition times and higher temperatures of the hydrothermal treatment. The interaction of TiO2 particles with hemicellulose and lignin in wood was established from infrared attenuated total reflection (FT-IR ATR) and Raman spectra measurements, from which the spectra of wood were subtracted. Analysis of the subtraction spectra showed the presence of titania particles on the wood surface, revealing also the establishment of TiO2-wood coordinative bonds of titanium ions with hemicellulose and lignin. The red frequency shift of the OH stretching modes suggested interaction of the TiO2 particles with water molecules of wood. TiO2 deposited on wood treated with SDS became hydrophobic (water contact angles (WCA) of 150°), contrasting the properties of untreated wood with a deposited TiO2 particle coating, which remained hydrophilic.

  20. Effects of nano anatase-rutile TiO2 volume fraction with natural dye containing anthocyanin on the dye sensitized solar cell performance

    NASA Astrophysics Data System (ADS)

    Agustini, S.; Wahyuono, R. A.; Sawitri, D.; Risanti, D. D.

    2013-09-01

    Since its first development, efforts to improve efficiency of Dye Sensitized Solar Cell (DSSC) are continuously carried out, either through selection of dye materials, the type of semiconductor, counter electrode design or the sandwiched structure. It is widely known that anatase and rutile are phases of TiO2 that often being used for fabrication of DSSC. Rutile is thermodynamically more stable phase having band-gap suitable for absorption of sunlight spectrum. On the other hand, anatase has higher electrical conductivity, capability to adsorp dye as well as higher electron diffusion coefficient than those of rutile. Present research uses mangosteen pericarp and Rhoeo spathacea extracted in ethanol as natural dye containing anthocyanin. These dyes were characterized by using UV-Vis and FTIR, showing that the absorption maxima peaks obtained at 389 nm and 413 nm, for mangosteen and Rhoeo spathacea, respectively. The nano TiO2 was prepared by means of co-precipitation method. The particle size were 9-11 nm and 54.5 nm for anatase and rutile, respectively, according to Scherrer's equation. DSSCs were fabricated in various volume fractions of anatase and rutile TiO2. The fabricated DSSCs were tested under 17 mW/cm2 of solar irradiation. The current-voltage (I-V) characteristic of DSSCs employing 75%: 25% volume fraction of anatase and rutile TiO2 have outstanding result than others. The highest conversion efficiencies of 0.037% and 0.013% are obtained for DSSC employing natural dye extract from mangosteen pericarp and Rhoeo spathacea, respectively.

  1. Assessing the effects of surface-bound humic acid on the phototoxicity of anatase and rutile TiO2 nanoparticles in vitro.

    PubMed

    He, Xiaojia; Sanders, Sabrieon; Aker, Winfred G; Lin, Yunfeng; Douglas, Jessica; Hwang, Huey-Min

    2016-04-01

    In this study, the cytotoxicity of two different crystal phases of TiO2 nanoparticles, with surface modification by humic acid (HA), to Escherichia coli, was assessed. The physicochemical properties of TiO2 nanoparticles were thoroughly characterized. Three different initial concentrations, namely 50, 100, and 200ppm, of HA were used for synthesis of HA coated TiO2 nanoparticles (denoted as A/RHA50, A/RHA100, and A/RHA200, respectively). Results indicate that rutile (LC50 (concentration that causes 50% mortality compared the control group)=6.5) was more toxic than anatase (LC50=278.8) under simulated sunlight (SSL) irradiation, possibly due to an extremely narrow band gap. It is noted that HA coating increased the toxicity of anatase, but decreased that of rutile. Additionally, AHA50 and RHA50 had the biggest differences compared to uncoated anatase and rutile with LC50 of 201.9 and 21.6, respectively. We then investigated the formation of reactive oxygen species (ROS) by TiO2 nanoparticles in terms of hydroxyl radicals (OH) and superoxide anions (O2(-)). Data suggested that O2(-) was the main ROS that accounted for the higher toxicity of rutile upon SSL irradiation. We also observed that HA coating decreased the generation of OH and O2(-) on rutile, but increased O2(-) formation on anatase. Results from TEM analysis also indicated that HA coated rutile tended to be attached to the surface of E. coli more than anatase. PMID:27090694

  2. On the consistency of QCBED structure factor measurements for TiO2 (Rutile)

    DOE PAGESBeta

    Jiang, Bin; Zuo, Jian -Min; Friis, Jesper; Spence, John C. H.

    2003-09-16

    The same Bragg reflection in TiO2 from twelve different CBED patterns (from different crystals, orientations and thicknesses) are analysed quantitatively in order to evaluate the consistency of the QCBED method for bond-charge mapping. The standard deviation in the resulting distribution of derived X-ray structure factors is found to be an order of magnitude smaller than that in conventional X-ray work, and the standard error (0.026% for FX(110)) is slightly better than obtained by the X-ray Pendellosung method applied to silicon. This is sufficiently accuracy to distinguish between atomic, covalent and ionic models of bonding. We describe the importance of extractingmore » experimental parameters from CCD camera characterization, and of surface oxidation and crystal shape. Thus, the current experiments show that the QCBED method is now a robust and powerful tool for low order structure factor measurement, which does not suffer from the large extinction (multiple scattering) errors which occur in inorganic X-ray crystallography, and may be applied to nanocrystals. Our results will be used to understand the role of d electrons in the chemical bonding of TiO2.« less

  3. Conversion of 1,2-Propylene Glycol on Rutile TiO2(110)

    SciTech Connect

    Chen, Long; Li, Zhenjun; Smith, R. Scott; Kay, Bruce D.; Dohnalek, Zdenek

    2014-07-17

    We have studied the reactions of 1,2-propylene glycol (1,2-PG), DOCH(CH3)CH2OD, on partially reduced, hydroxylated and oxidized TiO2(110) surfaces using temperature programmed desorption. On reduced TiO2(110), propylene, propanal, and acetone are identified as primary carbon-containing products. While the propylene formation channel dominates at low 1,2-PG coverages, all of the above-mentioned products are observed at high coverages. The carbon-containing products are accompanied by the formation of D2O and D2. The observation of only deuterated products shows that the source of hydrogen (D) is from the 1,2-PG hydroxyls. The role of bridging oxygen vacancy (VO) sites was further investigated by titrating them via hydroxylation and oxidation. The results show that hydroxylation does not change the reactivity because the VO sites are regenerated at 500 K, which is a temperature lower than the 1,2-PG product formation temperature. In contrast, surface oxidation causes significant changes in the product distribution, with increased acetone and propanal formation and decreased propylene formation. Additionally D2 is completely eliminated as an observed product at the expense of D2O formation.

  4. Deposition and characterization of binary Al 2O 3/SiO 2 coating layers on the surfaces of rutile TiO 2 and the pigmentary properties

    NASA Astrophysics Data System (ADS)

    Zhang, Yunsheng; Yin, Hengbo; Wang, Aili; Ren, Min; Gu, Zhuomin; Liu, Yumin; Shen, Yutang; Yu, Longbao; Jiang, Tingshun

    2010-12-01

    Binary Al 2O 3/SiO 2-coated rutile TiO 2 composites were prepared by a liquid-phase deposition method starting from Na 2SiO 3·9H 2O and NaAlO 2. The chemical structure and morphology of binary Al 2O 3/SiO 2 coating layers were investigated by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, TG-DSC, Zeta potential, powder X-ray diffraction, and transmission electron microscopy techniques. Binary Al 2O 3/SiO 2 coating layers both in amorphous phase were formed at TiO 2 surfaces. The silica coating layers were anchored at TiO 2 surfaces via Si-O-Ti bonds and the alumina coating layers were probably anchored at the SiO 2-coated TiO 2 surfaces via Al-O-Si bonds. The formation of continuous and dense binary Al 2O 3/SiO 2 coating layers depended on the pH value of reaction solution and the alumina loading. The binary Al 2O 3/SiO 2-coated TiO 2 composites had a high dispersibility in water. The whiteness and brightness of the binary Al 2O 3/SiO 2-coated TiO 2 composites were higher than those of the naked rutile TiO 2 and the SiO 2-coated TiO 2 samples. The relative light scattering index was found to depend on the composition of coating layers.

  5. Adhesion of sodium dodecyl sulfate surfactant monolayers with TiO2 (rutile and anatase) surfaces

    SciTech Connect

    Darkins, Robert; Sushko, Maria L.; Liu, Jun; Duffy, Dorothy M.

    2013-09-17

    Surfactants are widely used as templates to control the nucleation and growth of nanostructured metal oxides such as titania. To gain insight into the origin of surfactant-titania interactions responsible for polymorph and orientation selection, we simulate the self-assembly of an anionic surfactant monolayer on various low-index titania surfaces and for a range of densities. We characterize the binding in each case and compute the adhesion energies, finding anatase (100) and rutile (110) to be the strongest-binding surfaces. The sodium counterions in the monolayer are found to dominate the adhesion. It is also observed that the assembly is directed predominantly by surface-monolayer electrostatic complementarity.

  6. The tetragonal-like to rutile structural phase transition in epitaxial VO2/TiO2 (001) thick films

    NASA Astrophysics Data System (ADS)

    Qiu, Hongbo; Yang, Memgmeng; Dong, Yongqi; Xu, Han; Hong, Bin; Gu, Yueliang; Yang, Yuanjun; Zou, Chongwen; Luo, Zhenlin; Gao, Chen

    2015-11-01

    A controllable metal-insulator transition (MIT) of VO2 has been highly desired due to its huge potential applications in memory storage, smart windows or optical switching devices. Recently, interfacial strain engineering has been recognized as an effective approach to tuning the MIT of epitaxial VO2 films. However, the strain-involved structural evolution during the MIT process is still not clear, which prevents comprehensively understanding and utilizing interfacial strain engineering in VO2 films. In this work, we have systematically studied the epitaxial VO2 thick films grown on TiO2 (001) single crystal substrate and the structural transition at the boundary of MIT region. By using in situ temperature-dependent high-resolution x-ray diffractions, a tetragonal-like (‘T-like’) to ‘rutile’ structural phase transition is identified during the MIT process. The room-temperature crystal phase of epitaxial VO2/TiO2(001) thick film is clarified to be tetragonal-like, neither strained-rutile phase nor monoclinic phase. The calculated atomic structure of this T-like phase VO2 resembles that of the M1 phase VO2, which has been verified by their similar Raman spectra. More, the crystal lattices of the coexisted phases in the MIT region were revealed in detail. The current findings will not only show some clues on the MIT mechanism study from the structural point of view, but also favor the interface engineering assisted VO2-based devices and applications in the future.

  7. First-principles DFT +GW study of oxygen vacancies in rutile TiO2

    NASA Astrophysics Data System (ADS)

    Malashevich, Andrei; Jain, Manish; Louie, Steven G.

    2014-02-01

    We perform first-principles calculations of the quasiparticle defect states, charge transition levels, and formation energies of oxygen vacancies in rutile titanium dioxide. The calculations are done within the recently developed combined DFT +GW formalism, including the necessary electrostatic corrections for the supercells with charged defects. We find the oxygen vacancy to be a negative U defect, where U is the defect electron addition energy. For Fermi level values below ˜2.8 eV (relative to the valence-band maximum), we find the +2 charge state of the vacancy to be the most stable, while above 2.8 eV we find that the neutral charge state is the most stable.

  8. Solar light decomposition of DFP on the surface of anatase and rutile TiO 2 prepared by hydrothermal treatment of microemulsions

    NASA Astrophysics Data System (ADS)

    Kiselev, A.; Andersson, M.; Mattson, A.; Shchukarev, A.; Sjöberg, S.; Palmqvist, A.; Österlund, L.

    2005-06-01

    The photocatalytic decomposition of diisopropylfluorophosphate (DFP) over nanostructured anatase and rutile TiO 2 powder was investigated by FTIR and XPS. Upon irradiation with artificial solar light DFP decomposed on both polymorphs as evidenced by FTIR. For both crystalline structures acetone and subsequently coordinated formate and carbonate were observed on the surface during the photocatalytic reaction as the isopropyl groups dissociated from DFP. XPS revealed that small amounts of phosphates and inorganic fluoride (Ti sbnd F) gradually built up on both TiO 2 surfaces, while organic F was present only on the rutile phase. From repeated cycles of intermittent DFP adsorption and irradiation measurements, the decomposition rates and formation of residuals on the surface were deduced. It was found that the overall oxidation yield is higher on anatase than rutile. The oxidation rate decreases with increasing irradiation time, an effect that is more pronounced on rutile. We find that both the difference between the polymorphs and the initial decrease of the oxidation yield can largely be explained by variations in surface area rather than poisoning by PO x or F species. In particular, we observe a dramatic decrease of the specific area of rutile as a function of photocatalytic oxidation cycle.

  9. Conversion of 1,3-Propylene Glycol on Rutile TiO2(110)

    SciTech Connect

    Chen, Long; Li, Zhenjun; Smith, R. Scott; Kay, Bruce D.; Dohnalek, Zdenek

    2014-10-09

    The adsorption of 1,3-propylene glycol (1,3-PG) on partially reduced TiO2(110) and its conversion to products have been studied by a combination of molecular beam dosing and temperature programmed desorption (TPD). When the Ti surface sites are saturated by 1,3-PG, ~80% of the molecules undergo further reactions to yield products that are liberated during the TPD ramp. In contrast to ethylene glycol (EG) and 1,2- propylene glycol (1,2-PG) that yield only alkenes and water at very low coverages (< 0.05 ML), two additional products, HCHO and C2H4, along with propylene (CH3CHCH2) and water are observed for 1,3-PG. Identical TPD line shapes and desorption yields for HCHO and C2H4 suggest that these products result from C-C bond cleavage and are coupled. At higher 1,3-PG coverages (> 0.1 ML), propanal (CH3CH2CHO) and two additional products, 1-propanol (CH3CH2CH2OH) and acrolein (CH2CHCHO), are observed. The desorption of 1-propanol is found to be coupled with the desorption of acrolein, suggesting that these products are formed by the disproportionation of two 1,3-PG molecules. The coverage dependent TPD results further show that propylene formation dominates at low coverages (< 0.3 ML), while the decomposition and disproportionation channels increase rapidly at higher coverages and reach yields comparable to that of propylene at the 1,3-PG saturation coverage of 0.5 ML. The observed surface chemistry clearly shows how the molecular structure of glycols influences their reaction pathways on oxide surfaces.

  10. Hydrothermal Etching Treatment to Rutile TiO2 Nanorod Arrays for Improving the Efficiency of CdS-Sensitized TiO2 Solar Cells.

    PubMed

    Wan, Jingshu; Liu, Rong; Tong, Yuzhu; Chen, Shuhuang; Hu, Yunxia; Wang, Baoyuan; Xu, Yang; Wang, Hao

    2016-12-01

    Highly ordered TiO2 nanorod arrays (NRAs) were directly grown on an F:SnO2 (FTO) substrate without any seed layer by hydrothermal route. For a larger surface area, the second-step hydrothermal treatment in hydrochloric acid was carried out to the as-prepared TiO2 NRAs. The results showed that the center portion of the TiO2 nanorods were dissolved in the etching solution to form a nanocave at the initial etching process. As the etching time extended, the tip parts of the nanocave wall split into lots of nanowires with a reduced diameter, giving rise to a remarkable increase of specific surface area for the TiO2 NRAs. The TiO2 films after etching treatment were sensitized by CdS quantum dots (QDs) to fabricate quantum dot-sensitized solar cells (QDSSCs), which exhibited a significant improvement in the photocurrent density in comparison with that of the un-treated device, this mainly attributed to the enhancement of QD loading and diffused reflectance ability. Through modifying the etching TiO2 films with TiCl4, a relatively high power conversion efficiency (PCE) of 3.14 % was obtained after optimizing the etching time. PMID:26754938

  11. Hydrothermal Etching Treatment to Rutile TiO2 Nanorod Arrays for Improving the Efficiency of CdS-Sensitized TiO2 Solar Cells

    NASA Astrophysics Data System (ADS)

    Wan, Jingshu; Liu, Rong; Tong, Yuzhu; Chen, Shuhuang; Hu, Yunxia; Wang, Baoyuan; Xu, Yang; Wang, Hao

    2016-01-01

    Highly ordered TiO2 nanorod arrays (NRAs) were directly grown on an F:SnO2 (FTO) substrate without any seed layer by hydrothermal route. For a larger surface area, the second-step hydrothermal treatment in hydrochloric acid was carried out to the as-prepared TiO2 NRAs. The results showed that the center portion of the TiO2 nanorods were dissolved in the etching solution to form a nanocave at the initial etching process. As the etching time extended, the tip parts of the nanocave wall split into lots of nanowires with a reduced diameter, giving rise to a remarkable increase of specific surface area for the TiO2 NRAs. The TiO2 films after etching treatment were sensitized by CdS quantum dots (QDs) to fabricate quantum dot-sensitized solar cells (QDSSCs), which exhibited a significant improvement in the photocurrent density in comparison with that of the un-treated device, this mainly attributed to the enhancement of QD loading and diffused reflectance ability. Through modifying the etching TiO2 films with TiCl4, a relatively high power conversion efficiency (PCE) of 3.14 % was obtained after optimizing the etching time.

  12. Molecular simulation of C 60 adsorption onto a TiO 2 rutile (1 1 0) surface

    NASA Astrophysics Data System (ADS)

    Carvalho, A. J. Palace; Ramalho, J. P. Prates

    2010-06-01

    A Monte Carlo molecular simulation study is presented on the adsorption and growth of C 60 films on the surface of the (1 1 0) face of rutile. Simulations are performed for a temperature of 600 K using atomistic models both for the fullerene molecules and the TiO 2 surface. It is found in this work that C 60 is adsorbed preferably in an ordered arrangement along the surface depressions over the exposed undercoordinated Ti cations. At low densities adsorption occurs preferably at alternate rows, with locations in consecutive rows being occupied appreciably only at higher C 60 densities. At low densities, the fullerene molecules tend to aggregate into islands in the surface plane. Additional layers of C 60 form only as the density increases, and do so before a monolayer is completed in all consecutive rows. Full monolayer capacity obtained at the highest densities is about 0.9 C 60 molecules per nm 2, but this is only achieved by completing the packing of molecules in interstices at a slightly upper level. The fraction of the molecules that lie closest to the surface only amounts to 0.6 molecules per nm 2.

  13. Tailoring the electronic and optical properties of rutile TiO2 by (Nb + Sb, C) codoping from DFT + U calculations

    NASA Astrophysics Data System (ADS)

    Fang, Yu; Cheng, Daojian; Niu, Mang; Yi, Yongjun; Wu, Wei

    2013-04-01

    The electronic structures and optical properties of the rutile TiO2 doped by C, (2Sb, C), (2Nb, C), (Nb + Sb, C) have been investigated by density functional theory plus U calculations. It is found that (2Sb, C), (2Nb, C), (Nb + Sb, C) codoping results in band gap narrowing, due to the appearance of the mid-bandgap states from C 2p and the introduction of Sb 5s and Nb 4d states. In addition, the rutile TiO2 codoped by (Nb + Sb, C) and (2Nb, C) is much more effective for the enhancement of visible light absorption than that for C monodoping and (2Sb, C) codoping.

  14. A study of the impurity structure for 3d 3 (Cr 3+ and Mn 4+) ions doped into rutile TiO 2 crystal

    NASA Astrophysics Data System (ADS)

    Açıkgöz, Muhammed

    2012-02-01

    The local environment around 3d 3 (Cr 3+ and Mn 4+) ions doped into rutile TiO 2 crystals has been investigated using superposition model (SPM) analysis. The zero-field splitting (ZFS) parameters (ZFSPs) D and E are modeled for the Cr 3+ and Mn 4+ ions at both the substitutional Ti sites with local symmetry orthorhombic D2h and the interstitial sites (ISs) with the same symmetry. Several model parameter sets are adopted so as to acquire the best agreement between the calculated ZFSPs and those measured by electron magnetic resonance (EMR). The feasible values of the structural distortions (Δ RY, Δ RXZ and Δ θ) resulting from dopant Cr 3+ and Mn 4+ ions are determined. As a result, it is confirmed that Mn 4+ ions substitute for Ti 4+ sites in rutile TiO 2 crystal; however, it is suggested that Cr 3+ ions may replace at not only Ti 4+ site but also IS.

  15. Effective charge separation in the rutile TiO2 nanorod-coupled α-Fe2O3 with exceptionally high visible activities

    PubMed Central

    Luan, Peng; Xie, Mingzheng; Liu, Dening; Fu, Xuedong; Jing, Liqiang

    2014-01-01

    Herein, we have fabricated rutile TiO2 nanorod-coupled α-Fe2O3 by a wet-chemical process. It is demonstrated that the visible activities for photoelectrochemical water oxidation and for degrading pollutant of α-Fe2O3 are greatly enhanced after coupling a proper amount of rutile nanorods. The enhanced activity is attributed to the prolonged lifetime and improved separation of photogenerated charges mainly by the transient surface photovoltage responses. Interestingly, the observed EPR signals (with g⊥ = 1.963 and g|| = 1.948) of Ti3+ in the fabricated TiO2-Fe2O3 nanocomposite at ultra low temperature (1.8 k) after visible laser excitation, along with the electrochemical impedance spectra and the normalized photocurrent action spectra, testify evidently that the spacial transfers of visible-excited high-energy electrons of α-Fe2O3 to TiO2 could happen. Moreover, it is confirmed that it is more favorable for the uncommon electron transfers of α-Fe2O3 to rutile than to anatase. This is responsible for the much obvious enhancement of visible activity of Fe2O3 after coupling with rutile TiO2, compared with anatase and phase-mixed P25 ones. This work would help us to deeply understand the uncommon photophysical processes, and also provide a feasible route to improve the photocatalytic performance of visible-response semiconductor photocatalyst for water splitting and pollutant degradation. PMID:25154460

  16. Rutile TiO2 Mesocrystals/Reduced Graphene Oxide with High-Rate and Long-Term Performance for Lithium-Ion Batteries

    PubMed Central

    Lan, Tongbin; Qiu, Heyuan; Xie, Fengyan; Yang, Jie; Wei, Mingdeng

    2015-01-01

    An in situ hydrothermal route is developed for fabricating rutile TiO2 mesocrystals/reduced graphene oxide nanosheets (TGR) hybrids in the presence of dodecylbenzenesulphonic acid (ADBS). These rutile TiO2 mesocrystals with a Wulff shape are composed of ultra-tiny rod-like subunits with the same oriented direction and closely wrapped by the nanosheets of reduced graphene oxide (RGO). It is found that ADBS played a key role for the formation of mesocrystals during the self-assembly process, which pillared the graphene oxide (GO) nanosheets and involved the aggregation of the mesocrystal subunits. Furthermore, the TGR hybrids are used as an anode material and exhibited a large capacity over 150 mA h g−1 at 20 C after 1000 cycles, and high rate capability up to 40 C. These high performance characteristics may be due to the intrinsic characteristics of rutile TiO2 mesocrystals constructed from ultra-tiny subunits and hybridized with super conductive RGO nanosheets. PMID:25688035

  17. Locating structures and evolution pathways of reconstructed rutile TiO2(011) using genetic algorithm aided density functional theory calculations.

    PubMed

    Ding, Pan; Gong, Xue-Qing

    2016-05-01

    Titanium dioxide (TiO2) is an important metal oxide that has been used in many different applications. TiO2 has also been widely employed as a model system to study basic processes and reactions in surface chemistry and heterogeneous catalysis. In this work, we investigated the (011) surface of rutile TiO2 by focusing on its reconstruction. Density functional theory calculations aided by a genetic algorithm based optimization scheme were performed to extensively sample the potential energy surfaces of reconstructed rutile TiO2 structures that obey (2 × 1) periodicity. A lot of stable surface configurations were located, including the global-minimum configuration that was proposed previously. The wide variety of surface structures determined through the calculations performed in this work provide insight into the relationship between the atomic configuration of a surface and its stability. More importantly, several analytical schemes were proposed and tested to gauge the differences and similarities among various surface structures, aiding the construction of the complete pathway for the reconstruction process. PMID:27115517

  18. Reduced Step Edges on Rutile TiO2(110) as Competing Defects to Oxygen Vacancies on the Terraces and Reactive Sites for Ethanol Dissociation

    NASA Astrophysics Data System (ADS)

    Martinez, U.; Hansen, J. Ø.; Lira, E.; Kristoffersen, H. H.; Huo, P.; Bechstein, R.; Lægsgaard, E.; Besenbacher, F.; Hammer, B.; Wendt, S.

    2012-10-01

    The rutile TiO2(110) surface is the most studied surface of titania and considered as a prototype of transition metal oxide surfaces. Reactions on flat TiO2(110)-(1×1) surfaces are well studied, but the processes occurring on the step edges have barely been considered. Based on scanning tunneling microscopy studies, we here present experimental evidence for the existence of O vacancies along the ⟨11¯1⟩R step edges (OS vac.’s) on rutile TiO2(110). Both the distribution of bridging O vacancies on the terraces and temperature-programed reaction experiments of ethanol-covered TiO2(110) point to the existence of the OS vac.’s. Based on experiments and density functional theory calculations, we show that OS vac.’s are reactive sites for ethanol dissociation via O-H bond scission. Implications of these findings are discussed.

  19. Comparison between sol-gel-derived anatase- and rutile-structured TiO2 coatings in soft-tissue environment.

    PubMed

    Rossi, S; Moritz, N; Tirri, T; Peltola, T; Areva, S; Jokinen, M; Happonen, R-P; Närhi, T

    2007-09-15

    The bioactivity of the surface reactive TiO(2) coatings for medical implants can be locally modified by CO(2) laser processing to match with the properties of surrounding tissues. The TiO(2) coatings heat-treated at 500 degrees C exhibit in vitro bioactivity. With further CO(2) laser treatment they exhibit enhanced in vitro bioactivity. The aim of this in vivo study was to compare the performance of heat-treated anatase-structured TiO(2) coatings with preheat-treated and CO(2) laser-treated rutile-structured coatings in terms of their ability to attach soft connective tissues. The coatings were characterized with TF-XRD and AFM. TiO(2)-coated discs were implanted in rats. The samples were analyzed with routine histology, SEM-EDS, and TEM. In both groups, already at 3 days, soft connective tissues were in immediate contact with the surface. No thick crystalline CaP layer was detected by SEM-EDS, but a thin amorphous CaP layer was detected by XPS. No gap between the cell membrane and the coating could be observed in TEM pictures. No differences were observed between the anatase- and rutile-structured coatings in terms of tissue responses. Further studies are needed to verify if the tissues are adherent to the surface of the implant. PMID:17335031

  20. TiO2 thin films with rutile phase prepared by DC magnetron co-sputtering at room temperature: Effect of Cu incorporation

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Li, Yujie; Ba, Xin; Huang, Lin; Yu, Ying

    2015-08-01

    The thin films for pure TiO2 and that incorporated with Cu ion were deposited by DC magnetron co-sputtering with Ar gas. The crystal texture, surface morphology, energy gap and optical properties of the prepared films have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectrometer (XPS), UV-vis spectrophotometer, and Raman spectroscopy. The results show that as-deposited TiO2 film mainly possesses anatase structure at room temperature with pure Ar gas, but the introduction of Cu can alter the phase structure of crystallite TiO2. XRD patterns and Raman spectra indicate that the Cu incorporation with high concentration (ACu/ATi + ACu ≈ 20%) favors the formation of rutile phase. Moreover, the Cu incorporation into TiO2 lattice induces band gap narrowing. Band structures and density of states have been analyzed based on density functional theory (DFT) and periodic models in order to investigate the influence of the Cu incorporation on the electronic structure of TiO2. Both experimental data and electronic structure calculations evidence the fact that the change in film structure from the anatase to the rutile phase can be ascribed to the possible incorporation of Cu1+ in the sites previously occupied by Ti4+, and the presence of Cu results in important effect on the electronic states, which is mainly related to the 3d Cu orbitals in the gap and in the vicinity of the valence band edges for TiO2.

  1. Visible Light Absorption of N-Doped TiO2 Rutile Using (LR/RT)-TDDFT and Active Space EOMCCSD Calculations

    SciTech Connect

    Govind, Niranjan; Lopata, Kenneth A.; Rousseau, Roger J.; Andersen, Amity; Kowalski, Karol

    2011-11-03

    We have performed detailed ground and excited state calculations of pure and N-doped TiO2 rutile to model and analyze the experimentally observed UV/Vis spectrum. Using our embedding model we have performed both linear-response (LR) and real-time (RT) TDDFT calculations of the excited states of the pure and N-doped systems. We have also studied the lowest excitations using high-level active space equation-of-motion coupled cluster (EOMCC) approaches involving all single and inter-band double excitations. We compare and contrast the nature of the excitations in detail for the pure and doped systems and also provide an analysis of the excited-state density using our RT-TDDFT calculations. Our calculations indicate a lowering of the band gap and verify the role of the N3- states on the observed spectrum of N-doped TiO2 rutile as suggested by experimental findings. Both RT-TDDFT and EOMCC calculations show that the excitations in pure TiO2 are more delocalized compared with the N-doped system.

  2. Tm-doped TiO2 and Tm2Ti2O7 pyrochlore nanoparticles: enhancing the photocatalytic activity of rutile with a pyrochlore phase

    PubMed Central

    De los Santos, Desiré M; Aguilar, Teresa; Sánchez-Coronilla, Antonio; Fernández-Lorenzo, Concha; Alcántara, Rodrigo; Piñero, Jose Carlos; Blanco, Ginesa; Martín-Calleja, Joaquín

    2015-01-01

    Summary Tm-doped TiO2 nanoparticles were synthesized using a water-controlled hydrolysis reaction. Analysis was performed in order to determine the influence of the dopant concentration and annealing temperature on the phase, crystallinity, and electronic and optical properties of the resulting material. Various characterization techniques were utilized such as X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and UV–vis spectroscopy. For the samples annealed at 773 and 973 K, anatase phase TiO2 was obtained, predominantly internally doped with Tm3+. ICP–AES showed that a doping concentration of up to 5.8 atom % was obtained without reducing the crystallinity of the samples. The presence of Tm3+ was confirmed by X-ray photoelectron spectroscopy and UV–vis spectroscopy: the incorporation of Tm3+ was confirmed by the generation of new absorption bands that could be assigned to Tm3+ transitions. Furthermore, when the samples were annealed at 1173 K, a pyrochlore phase (Tm2Ti2O7) mixed with TiO2 was obtained with a predominant rutile phase. The photodegradation of methylene blue showed that this pyrochlore phase enhanced the photocatalytic activity of the rutile phase. PMID:25821701

  3. Phonon quarticity induced by changes in phonon-tracked hybridization during lattice expansion and its stabilization of rutile TiO2

    DOE PAGESBeta

    Lan, Tian; Li, Chen W.; Hellman, O.; Kim, D. S.; Muñoz, Jorge A.; Smith, Hillary; Abernathy, Douglas L.; Fultz, B.

    2015-08-11

    Although the rutile structure of TiO2 is stable at high temperatures, the conventional quasiharmonic approximation predicts that several acoustic phonons decrease anomalously to zero frequency with thermal expansion, incorrectly predicting a structural collapse at temperatures well below 1000 K. In this paper, inelastic neutron scattering was used to measure the temperature dependence of the phonon density of states (DOS) of rutile TiO2 from 300 to 1373 K. Surprisingly, these anomalous acoustic phonons were found to increase in frequency with temperature. First-principles calculations showed that with lattice expansion, the potentials for the anomalous acoustic phonons transform from quadratic to quartic, stabilizingmore » the rutile phase at high temperatures. In these modes, the vibrational displacements of adjacent Ti and O atoms cause variations in hybridization of 3d electrons of Ti and 2p electrons of O atoms. Finally, with thermal expansion, the energy variation in this “phonon-tracked hybridization” flattens the bottom of the interatomic potential well between Ti and O atoms, and induces a quarticity in the phonon potential.« less

  4. Phonon quarticity induced by changes in phonon-tracked hybridization during lattice expansion and its stabilization of rutile TiO2

    NASA Astrophysics Data System (ADS)

    Lan, Tian; Li, C. W.; Hellman, O.; Kim, D. S.; Muñoz, J. A.; Smith, H.; Abernathy, D. L.; Fultz, B.

    2015-08-01

    Although the rutile structure of TiO2 is stable at high temperatures, the conventional quasiharmonic approximation predicts that several acoustic phonons decrease anomalously to zero frequency with thermal expansion, incorrectly predicting a structural collapse at temperatures well below 1000 K. Inelastic neutron scattering was used to measure the temperature dependence of the phonon density of states (DOS) of rutile TiO2 from 300 to 1373 K. Surprisingly, these anomalous acoustic phonons were found to increase in frequency with temperature. First-principles calculations showed that with lattice expansion, the potentials for the anomalous acoustic phonons transform from quadratic to quartic, stabilizing the rutile phase at high temperatures. In these modes, the vibrational displacements of adjacent Ti and O atoms cause variations in hybridization of 3 d electrons of Ti and 2 p electrons of O atoms. With thermal expansion, the energy variation in this "phonon-tracked hybridization" flattens the bottom of the interatomic potential well between Ti and O atoms, and induces a quarticity in the phonon potential.

  5. Photochemical Properties, Composition, and Structure in Molecular Beam Epitaxy Grown Fe “Doped” and (Fe,N) Codoped Rutile TiO2(110)

    SciTech Connect

    Mangham, Andrew N.; Govind, Niranjan; Bowden, Mark E.; Shutthanandan, V.; Joly, Alan G.; Henderson, Michael A.; Chambers, Scott A.

    2011-08-11

    We have investigated the surface photochemical properties of Fe "doped" and (Fe,N) co-doped homoepitaxial rutile TiO2 (110) films grown by plasma assisted molecular beam epitaxy. Fe does not incorporate as an electronic dopant in the rutile lattice, but rather segregates to the film surface. However, co-deposition of Fe with N enhances the solubility of Fe, and DFT calculations suggest that co-dopant complex formation is the driving force behind the enhanced solubility. The co-doped films, in which a few atomic percent of Ti (O) are replaced with Fe (N), exhibit significant disorder compared to undoped films grown under the same conditions, presumably due to dopant-induced strain. Co-doping redshifts the rutile bandgap into the visible. However, the film surfaces are photochemically inert with respect to hole-mediated decomposition of adsorbed trimethyl acetate. The absence of photochemical activity may result from dopant-induced trap and/or recombination sites within the film. This study indicates that enhanced visible light absorptivity in TiO2 does not necessarily result in visible light initiated surface photochemistry.

  6. Manipulating the charge state of Au clusters on rutile TiO2(110) single crystal surfaces through molecular reactions probed by infrared spectroscopy.

    PubMed

    Cao, Yunjun; Hu, Shujun; Yu, Min; Wang, Tingting; Huang, Shiming; Yan, Shishen; Xu, Mingchun

    2016-07-14

    The charge state of Au clusters deposited on rutile TiO2(110) single crystal surfaces was studied by UHV-FTIRS using CO as a probe. The as-deposited Au clusters on oxidized TiO2(110) surfaces are electrically neutral and are identified by the 2105-2112 cm(-1) vibrational frequency of adsorbed CO depending on Au coverage. Annealing Au/TiO2(110) in a moderate O2 atmosphere at 400 K blue shifts the CO vibrational frequency by only 2-3 cm(-1) both on bare TiO2(110) surfaces and on Au clusters. However, NO exposure blue shifts the CO vibrational frequency by 16-26 cm(-1) for CO adsorbed on Au atoms near the interface and by 3-4 cm(-1) for CO adsorbed on top of Au clusters. As the acceptors of the intense charge transfer from Au, the Oa atoms generated through (NO)2→ N2O + Oa reactions on the small fraction of the bare TiO2(110) surface reside around the Au/TiO2(110) interface perimeter, causing the neutral Au(0) to be cationic Au(δ+) states. This is a new approach to manipulate the charge state of Au clusters on oxide surfaces, which may be helpful in regulating the catalytic redox reactions on oxide supported metal systems. PMID:27306113

  7. Growth and characterization of well-aligned densely-packed rutile TiO(2) nanocrystals on sapphire substrates via metal-organic chemical vapor deposition.

    PubMed

    Chen, C A; Chen, Y M; Korotcov, A; Huang, Y S; Tsai, D S; Tiong, K K

    2008-02-20

    Well-aligned densely-packed rutile TiO(2) nanocrystals (NCs) have been grown on sapphire (SA) (100) and (012) substrates via metal-organic chemical vapor deposition (MOCVD), using titanium-tetraisopropoxide (TTIP, Ti(OC(3)H(7))(4)) as a source reagent. The surface morphology as well as structural and spectroscopic properties of the as-deposited NCs were characterized using field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), selected-area electron diffractometry (SAED), x-ray diffraction (XRD) and micro-Raman spectroscopy. FESEM micrographs reveal that vertically aligned NCs were grown on SA(100), whereas the NCs on the SA(012) were grown with a tilt angle of ∼33° from the normal to substrates. TEM and SAED measurements showed that the TiO(2) NCs on SA(100) with square cross section have their long axis directed along the [001] direction. The XRD results reveal TiO(2) NCs with either (002) orientation on SA(100) substrate or (101) orientation on SA(012) substrate. A strong substrate effect on the alignment of the growth of TiO(2) NCs has been demonstrated and the probable mechanism for the formation of these NCs has been discussed. PMID:21817648

  8. Growth and characterization of well-aligned densely-packed rutile TiO2 nanocrystals on sapphire substrates via metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Chen, C. A.; Chen, Y. M.; Korotcov, A.; Huang, Y. S.; Tsai, D. S.; Tiong, K. K.

    2008-02-01

    Well-aligned densely-packed rutile TiO2 nanocrystals (NCs) have been grown on sapphire (SA) (100) and (012) substrates via metal-organic chemical vapor deposition (MOCVD), using titanium-tetraisopropoxide (TTIP, Ti(OC3H7)4) as a source reagent. The surface morphology as well as structural and spectroscopic properties of the as-deposited NCs were characterized using field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), selected-area electron diffractometry (SAED), x-ray diffraction (XRD) and micro-Raman spectroscopy. FESEM micrographs reveal that vertically aligned NCs were grown on SA(100), whereas the NCs on the SA(012) were grown with a tilt angle of ~33° from the normal to substrates. TEM and SAED measurements showed that the TiO2 NCs on SA(100) with square cross section have their long axis directed along the [001] direction. The XRD results reveal TiO2 NCs with either (002) orientation on SA(100) substrate or (101) orientation on SA(012) substrate. A strong substrate effect on the alignment of the growth of TiO2 NCs has been demonstrated and the probable mechanism for the formation of these NCs has been discussed.

  9. Molecular mechanics of the cooperative adsorption of a Pro-Hyp-Gly tripeptide on a hydroxylated rutile TiO2(110) surface mediated by calcium ions.

    PubMed

    Zheng, Ting; Wu, Chunya; Chen, Mingjun; Zhang, Yu; Cummings, Peter T

    2016-07-20

    The interaction of amino acids with inorganic materials at interfaces plays an important role in enhancing the biocompatibility of titanium-based alloys. The adsorption of a tripeptide, i.e. Pro-Hyp-Gly, on the hydroxylated rutile TiO2(110) surface was investigated by the MD simulations. The changes in free energy during the adsorption of both the tripeptide and calcium ions were calculated by using the PMF method in order to obtain the adsorption strength. The results suggested that the adsorption of the tripeptide on the TiO2 surface through the carboxyl groups in glycine residues can be more stable compared with other binding conformations. Special attention was focused on the cooperative adsorption of the tripeptide with the assistance of calcium ions. Calcium ions preferred to absorb at the tetradentate or monodentate sites on the negatively charged TiO2 surface. As a result of the strong attraction between the carboxyl group and calcium ions, the tripeptide can be pulled down to the surface by following the trajectory of the calcium ions, forming an indirect interaction with a sandwich structure of peptide-cation-TiO2. However, this indirect interaction could eventually transform to the direct adsorption of the tripeptide on the TiO2 surface with higher binding energy. The results may help to interpret the adsorption of peptides on inorganic materials in aqueous solution with ions. PMID:27383367

  10. Thermally-Driven Processes on Rutile TiO2(110)-(1x1): A Direct View at the Atomic Scale

    SciTech Connect

    Dohnalek, Zdenek; Lyubinetsky, Igor; Rousseau, Roger J.

    2010-05-01

    The technological importance of TiO2 has led to a broad effort aimed at understanding the elementary steps that underlie catalytic and photocatalytic reactions. The most stable surface, rutile TiO2(110), in particular, has became a prototypical model for fundamental studies of TiO2. In this critical review we have selected oxygen, water, and alcohols to evaluate recent progress relevant for applications in the areas of water splitting and oxidation of organic contaminants. We first focus on the characterization of defects and the distribution of excess charge that results from their formation. The subsequent section demonstrates the role of individual surface sites and the effect of available charge in the adsorption processes. The discussion of adsorbate dynamics follows, providing models for intrinsic and extrinsic diffusion processes as well as rotational dynamics of anchored alkoxy species. The final section summarizes our current understanding of TiO2(110) catalyzed reactions between water, oxygen, and their dissociation products.

  11. Self-assembling of Zn porphyrins on a (110) face of rutile TiO2-The anchoring role of carboxyl groups

    NASA Astrophysics Data System (ADS)

    Zajac, Lukasz; Olszowski, Piotr; Godlewski, Szymon; Bodek, Lukasz; Such, Bartosz; Jöhr, Res; Pawlak, Remy; Hinaut, Antoine; Glatzel, Thilo; Meyer, Ernst; Szymonski, Marek

    2016-08-01

    The ordering of zinc containing porphyrin molecules on surface of rutile TiO2(110)-(1×1) has been investigated using scanning tunneling microscopy (STM) in ultra-high vacuum at room temperature. It is demonstrated that a carboxylic group (COOH) has a profound impact on the immobilization of the molecules. At coverages below 0.1 monolayer only molecules equipped with the group COOH could be anchored to the surface and imaged with STM. At higher coverage both species, with and without the carboxyl substituent, assemble into ordered structures, forming complete monolayers. It is found, however, that the rhomboid unit cells of these structures exhibit differences in size.

  12. Structural properties of rutile TiO2 nanoparticles accumulated in a model of gastrointestinal epithelium elucidated by micro-beam x-ray absorption fine structure spectroscopy

    NASA Astrophysics Data System (ADS)

    Veronesi, G.; Brun, E.; Fayard, B.; Cotte, M.; Carrière, M.

    2012-05-01

    Micro-beam x-ray absorption fine structure spectroscopy was used to investigate rutile TiO2 nanoparticles internalized into gastrointestinal cells during their crossing of a gut model barrier. Nanoparticles diluted in culture medium tend to accumulate in cells after 48 h exposure; however, no spectral differences arise between particles in cellular and in acellular environments, as corroborated by quantitative analysis. This finding establishes that no modification of the lattice properties of the nanoparticles occurs upon interaction with the barrier. These measurements demonstrate the possibility of interrogating nanoparticles in situ within cells, suggesting a way to investigate their fate when incorporated in biological hosts.

  13. The nuclear quadrupole interaction at 111Cd and 181Ta sites in anatase and rutile TiO2: A TDPAC study

    NASA Astrophysics Data System (ADS)

    Das, Satyendra K.; Thakare, Sanjay V.; Butz, Tilman

    2009-03-01

    The nuclear quadrupole interaction of the I=5/2 state of the nuclear probes 111Cd and 181Ta in the anatase and rutile polymorphs of bulk TiO2 was studied using the time differential perturbed angular correlation (TDPAC). The fast-slow coincidence setup is based on the CAMAC electronics. For anatase, the asymmetry of the electric field gradient was eta=0.22(1) and a quadrupole interaction frequency: 44.01(3) Mrad/s was obtained for 181Ta. For rutile, the respective values are eta=0.56(1) and quadrupole frequency=130.07(9) Mrad/s. The values for rutile match closely with the literature values. In case of the 111Cd probe produced from the beta decay of 111Ag, the quadrupole interaction frequency and the asymmetry parameter for anatase was negligible. This indicates an unperturbed angular correlation in anatase. On the other hand for rutile, the quadrupole frequency is 61.74(2) Mrad/s and the asymmetry is 0.23(1) for 111Cd probe. The results have been interpreted in terms of the surrounding atom positions in the lattice and the charge state of the probe nucleus.

  14. Enhanced photocatalytic activity of Cl-residual rutile TiO2 nanorods after targeted co-modification with phosphoric and boric acids.

    PubMed

    Wu, Jing; Cui, Haiqin; Zhang, Xuliang; Luan, Yunbo; Jing, Liqiang

    2015-06-28

    The promotion of O2 adsorption on semiconductor surfaces for effectively capturing photogenerated electrons in the photocatalytic degradation of pollutants is highly desired. In this study, the targeted co-modification of residual chlorine rutile TiO2 nanorods with phosphoric and boric acids has been accomplished for the first time by simple wet chemical processes. The key to targeted co-modification is to connect -P-OH and -B-OH to the Cl-residual TiO2 surfaces by -Ti-OH and -Ti-Cl, respectively, consequently forming -Ti-O-P-OH and -Ti-Cl:B-OH ends. By means of the atmosphere-controlled surface photovoltage spectroscopy, the degrees for capturing photogenerated electrons by the adsorbed O2 as receptors on the resulting TiO2 nanorods are quantitatively analyzed. It is confirmed that the targeted co-modification could greatly promote the capture of the photogenerated electrons compared to the phosphate and borate modification alone. This is attributed to increased amounts of adsorbed O2 based on electrochemical O2 reduction and O2 temperature-programmed desorption measurements, further leading to the enhanced separation of photogenerated charges, characterized by an increase in the amount of produced hydroxyl radicals. This is responsible for the obviously enhanced photocatalytic activity of TiO2 nanorods towards the degradation of colorless gas-phase acetaldehyde and liquid-phase phenol. This work would provide us a feasible route for the co-modification with inorganic acids to synthesize efficient nanosized TiO2-based photocatalysts. PMID:26017969

  15. Exceptional performance of photoelectrochemical water oxidation of single-crystal rutile TiO2 nanorods dependent on the hole trapping of modified chloride.

    PubMed

    Zhang, Xuliang; Cui, Haiqin; Humayun, Muhammad; Qu, Yang; Fan, Naiying; Sun, Xiaojun; Jing, Liqiang

    2016-01-01

    It is highly desired to effectively trap photogenerated holes for efficient photoelectrochemical (PEC) water oxidation to evolve O2 on oxide semiconductors. Herein, it is found for the first time mainly based on the time-resolved- and atmosphere-controlled- surface photovoltage responses that the modified chloride would effectively trap photogenerated holes so as to prolong the charge lifetime and hence promote charge separation of single-crystal rutile TiO2 nanorods. Its strong capacity to trap holes, comparable to the widely-used methanol and Co(II) phosphate, is well responsible for the exceptional photoactivities for PEC water oxidation to evolve O2 on rutile nanorods with a proper amount of chloride modified, about 2.5-time high as that on the resulting anatase nanoparticles, even 10-time if the surface area is considered. Moreover, it is suggested that the hole trapping role of chemically-adsorbed chloride is related to its lonely-pair electrons, and to the subsequently-produced intermediate Cl atoms with proper electronegativity for evolving O2. Interestingly, this finding is also applicable to the chloride-modified anatase TiO2. This work will provide a feasible strategy to design high-activity nanostructured semiconductor photoanodes for PEC water oxidation, even for overall water splitting. PMID:26906953

  16. The unexpectedly rich reconstructions of rutile TiO2(011)-(2 × 1) surface and the driving forces behind their formation: an ab initio evolutionary study.

    PubMed

    Wang, Qinggao; Oganov, Artem R; Feya, Oleg D; Zhu, Qiang; Ma, Dongwei

    2016-07-20

    In this paper, we employ state-of-the-art theoretical approaches to elucidate the structures of the (011) surface of rutile (R-)TiO2. An unexpectedly rich chemistry has been uncovered. Titanyl-TiO2 and titanyl-Ti2O3 reconstructions can be used for rationalizing the experimental findings, matching the STM images and the changes in the band gap. From the viewpoint of thermodynamics, the predicted MF(111)-TiO reconstruction is more reasonable than the previously proposed MF(111)-TiO3 model, although there is a structural similarity. The richness of surface phases, the formation of which is driven by thermodynamic conditions and surface stress release, implies the multifunctionality of the R-TiO2(011) surface. After the clarification of TiO2(011) and TiO2(110) surface structures {PRL, 2014, 113, 266101} (the most important surfaces of rutile), the origin of the Brønsted acidity of R-TiO2, which has remained a mystery at the atomic level, can also be addressed in the near future. PMID:27086932

  17. Exceptional performance of photoelectrochemical water oxidation of single-crystal rutile TiO2 nanorods dependent on the hole trapping of modified chloride

    PubMed Central

    Zhang, Xuliang; Cui, Haiqin; Humayun, Muhammad; Qu, Yang; Fan, Naiying; Sun, Xiaojun; Jing, Liqiang

    2016-01-01

    It is highly desired to effectively trap photogenerated holes for efficient photoelectrochemical (PEC) water oxidation to evolve O2 on oxide semiconductors. Herein, it is found for the first time mainly based on the time-resolved- and atmosphere-controlled- surface photovoltage responses that the modified chloride would effectively trap photogenerated holes so as to prolong the charge lifetime and hence promote charge separation of single-crystal rutile TiO2 nanorods. Its strong capacity to trap holes, comparable to the widely-used methanol and Co(II) phosphate, is well responsible for the exceptional photoactivities for PEC water oxidation to evolve O2 on rutile nanorods with a proper amount of chloride modified, about 2.5-time high as that on the resulting anatase nanoparticles, even 10-time if the surface area is considered. Moreover, it is suggested that the hole trapping role of chemically-adsorbed chloride is related to its lonely-pair electrons, and to the subsequently-produced intermediate Cl atoms with proper electronegativity for evolving O2. Interestingly, this finding is also applicable to the chloride-modified anatase TiO2. This work will provide a feasible strategy to design high-activity nanostructured semiconductor photoanodes for PEC water oxidation, even for overall water splitting. PMID:26906953

  18. Interaction of carboxylic acids with rutile TiO2(110): IR-investigations of terephthalic and benzoic acid adsorbed on a single crystal substrate

    NASA Astrophysics Data System (ADS)

    Buchholz, Maria; Xu, Mingchun; Noei, Heshmat; Weidler, Peter; Nefedov, Alexei; Fink, Karin; Wang, Yuemin; Wöll, Christof

    2016-01-01

    The adsorption of two carboxylic acids, benzoic acid (BA) and terephthalic acid (TPA), on a single crystal rutile TiO2(110) substrate was studied using infrared reflection-absorption spectroscopy (IRRAS) in conjunction with DFT calculations. On the basis of the high-quality IR data (in particular for the OH bands), various adsorbate species with different geometries could be identified. The adsorption of both, BA and TPA, on TiO2(110) leads to deprotonation of carboxylic acids and protonation of substrate O-atoms. At low coverage, the deprotonated BA molecule adsorbs on TiO2(110) in an upright, bidentate configuration, while the TPA molecule adopts a flat-lying geometry with both carboxylates bound to the surface in a monodentate geometry. At higher coverages, a transition from flat-lying to upright-oriented TPA molecules occurs. At saturation coverage, both BA and TPA molecules undergo dimerization indicating the presence of pronounced attractive intermolecular interactions. We propose that the BA dimers are stabilized by the interaction between adjacent phenyl rings, while the TPA dimerization is attributed to the formation of double hydrogen bonds between adjacent apical carboxylic groups.

  19. Insights into Acetone Photochemistry on Rutile TiO2(110). 1. Off-Normal CH3 Ejection from Acetone Diolate.

    SciTech Connect

    Petrik, Nikolay G.; Henderson, Michael A.; Kimmel, Gregory A.

    2015-06-04

    Thermal- and photon-stimulated reactions of acetone co-adsorbed with oxygen on rutile TiO2(110) surface are studied with infrared reflection-adsorption spectroscopy (IRAS) combined with temperature programmed desorption and angle-resolved photon stimulated desorption. IRAS results show that n2-acetone diolate ((CH3)2COO) is produced via thermally-activated reactions between the chemisorbed oxygen with co-adsorbed acetone. Formation of acetone diolate is also consistent with 18O / 16O isotopic exchange experiments. During UV irradiation at 30 K, CH3 radicals are ejected from the acetone diolate with a distribution that is peaked at .-. +- 66 degrees from the surface normal along the azimuth (i.e. perpendicular to the rows of bridging oxygen and Ti5c ions). This distribution is also consistent with the orientation of the C–CH3 bonds in the n2-acetone diolate on TiO2(110). The acetone diolate peaks disappear from the IRAS spectra after UV irradiation and new peaks are observed and associated with n2-acetate. The data presented here demonstrate direct signatures of the proposed earlier 2-step mechanism for acetone photooxidation on TiO2(110)

  20. A mixture of anatase and rutile TiO2 nanoparticles induces histamine secretion in mast cells

    PubMed Central

    2012-01-01

    Background Histamine released from mast cells, through complex interactions involving the binding of IgE to FcεRI receptors and the subsequent intracellular Ca2+ signaling, can mediate many allergic/inflammatory responses. The possibility of titanium dioxide nanoparticles (TiO2 NPs), a nanomaterial pervasively used in nanotechnology and pharmaceutical industries, to directly induce histamine secretion without prior allergen sensitization has remained uncertain. Results TiO2 NP exposure increased both histamine secretion and cytosolic Ca2+ concentration ([Ca2+]C) in a dose dependent manner in rat RBL-2H3 mast cells. The increase in intracellular Ca2+ levels resulted primarily from an extracellular Ca2+ influx via membrane L-type Ca2+ channels. Unspecific Ca2+ entry via TiO2 NP-instigated membrane disruption was demonstrated with the intracellular leakage of a fluorescent calcein dye. Oxidative stress induced by TiO2 NPs also contributed to cytosolic Ca2+ signaling. The PLC-IP3-IP3 receptor pathways and endoplasmic reticulum (ER) were responsible for the sustained elevation of [Ca2+]C and histamine secretion. Conclusion Our data suggests that systemic circulation of NPs may prompt histamine release at different locales causing abnormal inflammatory diseases. This study provides a novel mechanistic link between environmental TiO2 NP exposure and allergen-independent histamine release that can exacerbate manifestations of multiple allergic responses. PMID:22260553

  1. Release of Phosphorous Impurity from TiO2 Anatase and Rutile Nanoparticles in Aquatic Environments and Its Implications

    EPA Science Inventory

    Phosphorus-bearing materials as an additive have been popularly used in nanomaterial synthesis and the residual phosphorus within the nanoparticles (NPs) can be of an environmental concern. For instance, phosphorus within pristine commercial TiO2 NPs greatly influences the surfac...

  2. Silicon Impurity Release and Surface Transformation of TiO2 Anatase and Rutile Nanoparticles in Water Environments

    EPA Science Inventory

    Surface transformation can affect the stability, reactivity, and toxicity of titanium dioxide (TiO2) nanoparticles (NPs) when released to water environments. Herein, we investigated the release kinetics of Si impurity frequently introduced during NP synthesis and the resulting ef...

  3. Effect of particle size on the phase behavior of Li-intercalated TiO 2-rutile

    NASA Astrophysics Data System (ADS)

    Koudriachova, M. V.

    With the aid of ab initio calculations, we compare the phase behavior upon lithiation of rutile particles of different sizes and morphologies. A rationale for the differences in their structural behavior is provided by combining concepts from Crystal Field Theory and semi-empirical concepts, such as bond length variation, minimal volume expansion, with accounts for the effects of diffusion and the anisotropy of the Li-distribution. It is shown that the phase behavior of spaghetti-like nano-particles differs from bulk rutile as a result of an extended single phase insertion domain and increased disorder of Li-ions. As Li-ions strive to minimize their repulsions by increasing their mutual separation a regular network of Li-ions is formed, being a precursor to the transformation of the rutile host lattice into spinel.

  4. Densely-packed ZnTPPs Monolayer on the Rutile TiO2(110)-(1×1) Surface: Adsorption Behavior and Energy Level Alignment

    PubMed Central

    Rangan, Sylvie; Ruggieri, Charles; Bartynski, Robert; Martínez, José Ignacio; Flores, Fernando; Ortega, José

    2016-01-01

    The adsorption of a densely packed Zinc(II) tetraphenylporphyrin monolayer on a rutile TiO2(110)-(1×1) surface has been studied using a combination of experimental and theoretical methods, aimed at analyzing the relation between adsorption behavior and barrier height formation. The adsorption configuration of ZnTPP was determined from scanning tunnel microscopy (STM) imaging, density functional theory (DFT) calculations and STM image simulation. The corresponding energy alignment was experimentally determined from X-ray and UV-photoemission spectroscopies and inverse photoemission spectroscopy. These results were found in good agreement with an appropriately corrected DFT model, pointing to the importance of local bonding and intermolecular interactions in the establishment of barrier heights. PMID:26998188

  5. Different orientations of large rigid organic chromophores at the rutile TiO2 surface controlled by different binding geometries of specific anchor groups

    NASA Astrophysics Data System (ADS)

    Gundlach, L.; Szarko, J.; Socaciu-Siebert, L. D.; Neubauer, A.; Ernstorfer, R.; Willig, F.

    2007-03-01

    Polarization and angle-resolved two-photon photoelectron spectroscopy was employed to determine the adsorption geometry of di-tert-butyl-perylene when anchored via two different acid groups on rutile TiO2(110) . With the carboxylic acid group as anchor and a rigid bridge group the binding geometry of the chromophore was found with the long molecular axis perpendicular to the surface. In contrast, with the phosphonic acid as anchor group the long axis of perylene showed a tilt angle of around 66° with respect to the surface normal and an alignment in the direction perpendicular to [001]. Our experimental results agree with adsorption geometries recently predicted from DFT calculations by Persson’s group.

  6. First-principles molecular dynamics simulations of uranyl ion interaction at the water/rutile TiO2(110) interface

    NASA Astrophysics Data System (ADS)

    Sebbari, K.; Roques, J.; Simoni, E.; Domain, C.; Perron, H.; Catalette, H.

    2012-08-01

    The effects of temperature and solvation on uranyl ion adsorption at the water/rutile TiO2(110) interface are investigated by Density Functional Theory (DFT) in both static and Born-Oppenheimer molecular dynamics approaches. According to experimental observations, uranyl ion can form two surface complexes in a pH range from 1.5 to 4.5. Based on these observations, the structures of the complexes at 293 K are first calculated in agreement with vacuum static calculations. Then, an increase in temperature (293 to 425 K) induces the reinforcement of uranyl ion adsorption due to the release of water molecules from the solvation shell of uranyl ion. Finally, temperature can modify the nature of the surface species.

  7. A study on native defects and magnetic properties in undoped rutile TiO2 using LDA and LDA+UO p+UTi d methods

    NASA Astrophysics Data System (ADS)

    Shi, Li-Bin; Wang, Yong Ping

    2016-05-01

    The native defects and magnetic properties in undoped rutile TiO2 are studied using local density approximation (LDA) and LDA adding Hubbard parameters (U) schemes. The band gap is adjusted to experimental value of 3.0 eV by combination of UTi d=4.2 eV and UO p=4.8 eV. This LDA+U methodology overcomes the band-gap problem and renders the approach more predictive. The formation energies of oxygen vacancy (VO), oxygen interstitial (Oi), titanium vacancy (VTi), titanium interstitial (Tii), oxygen anti-sites (OTi), and titanium anti-sites (TiO) are investigated by the LDA and LDA+U methods. In addition, some ground state configurations can be obtained by optimization of total spin. It is found that native defects can induce spin polarization and produce magnetic moment.

  8. Distinct Effects of Humic Acid on Transport and Retention of TiO2 Rutile Nanoparticles in Saturated Sand Columns

    EPA Science Inventory

    The distinct effects of humic acid (HA, 0−10 mg L−1) on the transport of titanium dioxide (rutile) nanoparticles (nTiO2) through saturated sand columns were observed under conditions of environmental relevance (ionic strength 3−200 mM NaCl, pH 5.7 and 9.0). Specifically, the tra...

  9. Distinct Effects of Humic Acid on Transport and Retention of TiO2 Rutile Nanoparticles in Saturated Sand Column

    EPA Science Inventory

    Distinct effects of humic acid (HA, 0 – 10 mg L-1) on the transport of titanium dioxide (rutile) nanoparticles (nTiO2) through saturated sand columns were observed under conditions of environmental relevance (ionic strength 3 – 200 mM NaCl, pH 5.7 and 9.0). Specifical...

  10. Low-Temperature Desorption of N2O from NO on Rutile TiO2(110)-1x1

    SciTech Connect

    Kim, Boseong; Li, Zhenjun; Kay, Bruce D.; Dohnalek, Zdenek; Kim, Yu Kwon

    2014-05-08

    We find that NO dosed on rutile TiO2(110)-1×1 at substrate temperatures as low as 50 K readily reacts to produce N2O which desorbs promptly from the surface leaving an oxygen adatom behind. The desorption rate of N2O reaches a maximum value after 1 – 2 sec at an NO flux of 1.2 ×1014 NO/cm2∙sec and then decreases rapidly as the initially clean, reduced TiO2(110) surface with ~5% oxygen vacancies (VO’s) becomes covered with oxygen adatoms and unreacted NO. The maximum desorption rate is also found to increase as the substrate temperature is raised up to about 100 K. Interestingly, the N2O desorption during the low-temperature (LT) NO dose is strongly suppressed when molecular oxygen is predosed, whereas it persists on the surface with VO’s passivated by surface hydroxyls. Our results show that the surface charge, not the VO sites, plays a dominant role in the LT N2O desorption induced by a facile NO reduction at such low temperatures.

  11. Phonon Dispersion, Electronic Structure and Photocatalytic Properties of Rutile TiO2 doped with X-doped (X =N, B and Pt)

    NASA Astrophysics Data System (ADS)

    Gupta, Sanjeev K.; Jha, Prafulla K.; Lukačević, Igor

    2013-03-01

    First principles calculations were performed on the electronic, vibrational and Raman spectra of substitutional N, B and Pt-doped rutile titanium dioxide (TiO2) , within the density functional theory (DFT), using the plane-wave pseudopotential method as implemented in the ABINIT package. Of all the photocatalytic materials TiO2 has been shown as the most useful one, with the most efficient photoactivity, the highest stability and the lowest cost. Moreover, it is safe for humans and the environment. The development of new types of photocatalytic cells is driven by the need for clean and sustainable energy. In this respect best doped materials are considered as a promising route for departing from the traditional photocatalytic cells. The physical insight provided by computational modeling may help in developing improved photocatalytic devices. To this end it is important to obtain an accurate description of the electronic structure and phonon dynamics, including the fundamental gaps and level alignment at the doped-TiO2 interface.

  12. Controllable hydrothermal synthesis of rutile TiO2 hollow nanorod arrays on TiCl4 pretreated Ti foil for DSSC application

    NASA Astrophysics Data System (ADS)

    Xi, Min; Zhang, Yulan; Long, Lizhen; Li, Xinjun

    2014-11-01

    Rutile TiO2 nanorod arrays (TNRs) were achieved by hydrothermal process on TiCl4 pretreated Ti foil. Subsequently, TNRs were hydrothermally etched in HCl solution to form hollow TiO2 nanorod arrays (H-TNRs). The TiCl4 pretreatment plays key roles in enhancement of Ti foil corrosion resistance ability and crystal nucleation introduction for TNRs growth. TNRs with desired morphology can be obtained by controlling TiCl4 concentration and the amount of tetrabutyl titanate (TTB) accordingly. TNRs with the length of ~1.5 μm and diameter of ~200 nm, obtained on 0.15 M TiCl4 pretreated Ti foil with 0.6 mL TTB, exhibits relatively higher photocurrent. The increased pore volume of the H-TNRs has contributed to the increased surface area which is benefit for Dye-Sensitized Solar Cells (DSSC) application. And the 180 °C-H-TNRs photoanode obtained from the 0.15-TiCl4-TNRs sample demonstrated 128.9% enhancement of photoelectric efficiency of DSSC compared to that of the original TNR photoanode.

  13. Characterization of the Active Surface Species Responsible for UV-Induced Desorption of O2 from the Rutile TiO2(110) Surface

    SciTech Connect

    Henderson, Michael A.; Shen, Mingmin; Wang, Zhitao; Lyubinetsky, Igor

    2013-03-21

    We have examined the chemical and photochemical properties of molecular oxygen on the (110) surface of rutile TiO2 at 100 K using electron energy loss spectroscopy (EELS), photon stimulated desorption (PSD) and scanning tunneling microscopy (STM). Oxygen chemisorbs on the TiO2(110) surface at 100 K through charge transfer from surface Ti3+ sites. The charge transfer process is evident in EELS by a decrease in the intensity of the Ti3+ d-to-d transition in EELS at ~0.9 eV and formation of a new loss ~2.8 eV. Based on comparisons with the available homogeneous and heterogeneous literature for complexed/adsorbed O2, the species responsible for the 2.8 eV peak can be assigned to a surface peroxo (O2 2-) state of O2. This species was identified as the active form of adsorbed O2 on TiO2(110) for PSD. The adsorption site of this peroxo species was assigned to that of a regular five-cooridinated Ti4+ (Ti5c) site based on comparisons between the UV exposure dependent behavior of O2 in STM, PSD and EELS data. Assignment of the active form of adsorbed O2 to a peroxo species at normal Ti5c sites necessitates reevaluation of the simple mechanism in which a single valence band hole neutralizes a singly charged O2 species (superoxo or O2-) leading to desorption of O2 from a physisorbed potential energy surface. This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, and the Chemical Imaging Initiative at Pacific Northwest National Laboratory (PNNL), and was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at PNNL.

  14. The effect of oxygen vacancies on the binding interactions of NH3 with rutile TiO2(110) -1×1

    SciTech Connect

    Kim, Boseong; Li, Zhenjun; Kay, Bruce D.; Dohnalek, Zdenek; Kim, Yu Kwon

    2012-11-21

    A series of NH3 temperature-programmed desorption (TPD) spectra was taken after the NH3 dose at 70 K on rutile TiO2(110)-1×1 surfaces with the oxygen vacancy (VO) concentrations of ~0% (p-TiO2) and 5% (r-TiO2), respectively, to study the effect of VO’s on the desorption energy of NH3 as a function of the coverage, θ. Our results show that at zero coverage limit, the desorption energy of NH3 on r-TiO2 is 115 kJ/mol, which is 10 kJ/mol less than that on p-TiO2. The desorption energy from the Ti4+ sites decreases with increasing θ due to the repulsive NH3 - NH3 interactions and approaches ~ 55 kJ/mol upon the saturation of Ti4+ sites (θ = 1 monolayer, ML) on both p- and r-TiO2. The absolute saturation coverage is determined to be about 10% smaller on r-TiO2 than that on p-TiO2. Further, the trailing edges of the NH3 TPD spectra on the hydroxylated TiO2(110) (h-TiO2) appear to be the same as that on r-TiO2 while those on oxidized TiO2(110) (o-TiO2) shift to higher temperatures. We present the detailed analysis of the results and reconcile the observed differences based on the repulsive adsorbate-adsorbate interactions between neighboring NH3 molecules and the surface charge associated with the presence of VO’s. Besides NH3, no other reaction products are observed in the TPD spectra.

  15. Modification of the microstructure and electronic properties of rutile TiO2 thin films with 79 MeV Br ion irradiation

    NASA Astrophysics Data System (ADS)

    Rath, Haripriya; Dash, P.; Singh, U. P.; Avasthi, D. K.; Kanjilal, D.; Mishra, N. C.

    2015-12-01

    Modifications induced by 79 MeV Br ions in rutile titanium dioxide thin films, synthesized by dc magnetron sputtering are presented. Irradiations did not induce any new XRD peak corresponding to any other phase. The area and the width of the XRD peaks were considerably affected by irradiation, and peaks shifted to lower angles. But the samples retained their crystallinity at the highest fluence (1 × 1013 ions cm-2) of irradiation even though the electronic energy loss of 79 MeV Br ions far exceeds the reported threshold value for amorphization of rutile TiO2. Fitting of the fluence dependence of the XRD peak area to Poisson equation yielded the radius of ion tracks as 2.4 nm. Ion track radius obtained from the simulation based on the thermal spike model matches closely with that obtained from the fluence dependence of the area under XRD peaks. Williamson-Hall analysis of the XRD spectra indicated broadening and shifting of the peaks are a consequence of irradiation induced defect accumulation leading to microstrains, as was also indicated by Raman and UV-Visible absorption study.

  16. Low-frequency dielectric properties of intrinsic and Al-doped rutile TiO2 thin films grown by the atomic layer deposition technique

    NASA Astrophysics Data System (ADS)

    Kassmi, M.; Pointet, J.; Gonon, P.; Bsiesy, A.; Vallée, C.; Jomni, F.

    2016-06-01

    Dielectric spectroscopy is carried out for intrinsic and aluminum-doped TiO2 rutile films which are deposited on RuO2 by the atomic layer deposition technique. Capacitance and conductance are measured in the 0.1 Hz-100 kHz range, for ac electric fields up to 1 MVrms/cm. Intrinsic films have a much lower dielectric constant than rutile crystals. This is ascribed to the presence of oxygen vacancies which depress polarizability. When Al is substituted for Ti, the dielectric constant further decreases. By considering Al-induced modification of polarizability, a theoretical relationship between the dielectric constant and the Al concentration is proposed. Al doping drastically decreases the loss in the very low frequency part of the spectrum. However, Al doping has almost no effect on the loss at high frequencies. The effect of Al doping on loss is discussed through models of hopping transport implying intrinsic oxygen vacancies and Al related centers. When increasing the ac electric field in the MVrms/cm range, strong voltage non-linearities are evidenced in undoped films. The conductance increases exponentially with the ac field and the capacitance displays negative values (inductive behavior). Hopping barrier lowering is proposed to explain high-field effects. Finally, it is shown that Al doping strongly improves the high-field dielectric behavior.

  17. Structure of epitaxial (Fe,N) codoped rutile TiO2 thin films by x-ray absorption

    SciTech Connect

    Kaspar, Tiffany C.; Ney, A.; Mangham, Andrew N.; Heald, Steve M.; Joly, Yves; Ney, V.; Wilhelm, F.; Rogalev, A.; Yakou, Flora; Chambers, Scott A.

    2012-07-23

    Homoepitaxial thin films of Fe:TiO2 and (Fe,N):TiO2 were deposited on rutile(110) by molecular beam epitaxy. X-ray absorption near edge spectroscopy (XANES) spectra were collected at the Ti L-edge, Fe L-edge, O K-edge, N K-edge, and Ti K-edge. No evidence of structural disorder associated with a high concentration of oxygen vacancies is observed. Substitution of Fe for Ti could not be confirmed, although secondary phase Fe2O3 and metallic Fe can be ruled out. The similarity of the N K-edge spectra to O, and the presence of a strong x-ray linear dichroism (XLD) signal for the N K-edge, indicates that N is substitutional for O in the rutile lattice, and is not present as a secondary phase such as TiN. Simulations of the XANES spectra qualitatively confirm substitution, although N appears to be present in more than one local environment. Neither Fe:TiO2 nor (Fe,N):TiO2 exhibit intrinsic room temperature ferromagnetism, despite the presence of mixed valence Fe(II)/Fe(III) in the reduced (Fe,N):TiO2 film.

  18. Structure of epitaxial (Fe,N) codoped rutile TiO2 thin films by x-ray absorption

    NASA Astrophysics Data System (ADS)

    Kaspar, T. C.; Ney, A.; Mangham, A. N.; Heald, S. M.; Joly, Y.; Ney, V.; Wilhelm, F.; Rogalev, A.; Yakou, F.; Chambers, S. A.

    2012-07-01

    Homoepitaxial thin films of Fe:TiO2 and (Fe,N):TiO2 were deposited on rutile(110) by molecular beam epitaxy. X-ray absorption near edge spectroscopy (XANES) spectra were collected at the Ti L-edge, Fe L-edge, Ti K-edge, O K-edge, and N K-edge. No evidence of structural disorder associated with a high concentration of oxygen vacancies is observed. Substitution of Fe for Ti could be inferred, and secondary phases such as Fe2O3, Fe3O4, and FeTiO3 can be ruled out. The similarity of the N K-edge spectra to O, and the presence of a strong x-ray linear dichroism signal for the N K-edge, indicates that N is substitutional for O in the rutile lattice and is not present as a secondary phase such as TiN. Simulations of the XANES spectra confirm substitution, although N appears to be present in more than one local environment. Neither Fe:TiO2 nor (Fe,N):TiO2 exhibit intrinsic room temperature ferromagnetism, despite the presence of mixed valent Fe(II)/Fe(III) in the reduced (Fe,N):TiO2 film.

  19. Water adsorption on rutile TiO2(110) for applications in solar hydrogen production: A systematic hybrid-exchange density functional study

    NASA Astrophysics Data System (ADS)

    Patel, M.; Mallia, G.; Liborio, L.; Harrison, N. M.

    2012-07-01

    Periodic hybrid-exchange density functional theory calculations are used to predict the structure of water on the rutile TiO2(110) surface (Θ⩽ 1 ML), which is an important first step towards understanding the photocatalytic processes that occur in solar water splitting. A detailed model describing the water-water and water-surface interactions is developed by exploring thoroughly the adsorption energetics. The possible adsorption mode—molecular, dissociative, or mixed—and the binding energy are studied as a function of coverage and arrangement, thus separation, of adsorbed species. These dependencies (coverage and arrangement) have a significant influence on the nature of the interactions involved in the H2O-TiO2 system. The importance of both direct intermolecular and surface-mediated interactions between surface species is emphasized. Finally, to gain insight into the photooxidation of adsorbed species at the surface, the electronic structure of the predicted adsorbate-substrate geometries is analyzed in terms of total and projected density of states.

  20. Comparison of the electronic structure of anatase and rutile TiO2 single-crystal surfaces using resonant photoemission and x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Thomas, A. G.; Flavell, W. R.; Mallick, A. K.; Kumarasinghe, A. R.; Tsoutsou, D.; Khan, N.; Chatwin, C.; Rayner, S.; Smith, G. C.; Stockbauer, R. L.; Warren, S.; Johal, T. K.; Patel, S.; Holland, D.; Taleb, A.; Wiame, F.

    2007-01-01

    A comparison of the electronic structure of rutile (110), anatase (101), and anatase (001) single-crystal surfaces has been made using resonant photoemission and x-ray absorption spectroscopy. Under identical preparative conditions, the anatase (101) surface shows the lowest Ti3d and 4sp hybridization in the states close to the valence-band maximum of the three surfaces. It also shows the highest concentration of surface-oxygen vacancies. The effect on the electronic structure of modifying the surface preparative route and thus the concentration of surface-oxygen vacancies is examined. The σ -antibonding Ti3deg/O2p hybridization (probed by XAS) is reduced by the removal of surface-oxygen. Photoemission shows that as the number of surface-defects is increased, the O2p-Ti3dt2gπ -bonding interaction is disrupted. For the anatase (101) surface it is found that as the number of surface-oxygen vacancies is increased, the Ti3d and 4sp contributions at the valence-band maximum are reduced. We discuss the correlation between electronic structure and photocatalytic activity of the different polymorphs of TiO2 .

  1. Investigation of hydrogen bonds and temperature effects on the water monolayer adsorption on rutile TiO 2 (110) by first-principles molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Sebbari, K.; Domain, C.; Roques, J.; Perron, H.; Simoni, E.; Catalette, H.

    2011-07-01

    Density Functional Theory (DFT), based on both static and Born-Oppenheimer Molecular Dynamics approaches, has been used to investigate the effect of hydrogen bonds and temperature on the water monolayer adsorption on the rutile TiO2 (110) face. It was demonstrated that the difference between some previous theoretical results and experimental data is due to too slim slab thickness model and/or too small surface area. According to the present static calculations, water monolayer adsorbs molecularly on the five-fold titanium atoms of an optimised five-layer slab thickness, due to the stabilising lateral hydrogen bonds between molecules. From the molecular dynamics simulations, two adsorption mechanisms were described as a function of temperature. Finally, it was pointed out that the dynamics of water adsorption is strongly influenced by the structural model used. When temperature increases, the monolayer dissociates gradually. However, because of the periodic boundary conditions, the 1 × 1 surface unit needs to be extended to at least 2 × 5 to get an accurate representation of the monolayer dissociation ratio. In these conditions, this ratio is around 20%, 25% and 33% at 270, 350 and 425 K, respectively.

  2. H2O2-assisted photocatalysis on flower-like rutile TiO2 nanostructures: Rapid dye degradation and inactivation of bacteria

    NASA Astrophysics Data System (ADS)

    Kőrösi, László; Prato, Mirko; Scarpellini, Alice; Kovács, János; Dömötör, Dóra; Kovács, Tamás; Papp, Szilvia

    2016-03-01

    Hierarchically assembled flower-like rutile TiO2 (FLH-R-TiO2) nanostructures were successfully synthesized from TiCl4 at room temperature without the use of surfactants or templates. An initial sol-gel synthesis at room temperature allowed long-term hydrolysis and condensation of the precursors. The resulting FLH-R-TiO2 possessed relatively high crystallinity (85 wt%) and consisted of rod-shaped subunits assembling into cauliflower-like nanostructures. Hydrothermal evolution of FLH-R-TiO2 at different temperatures (150, 200 and 250 °C) was followed by means of X-ray diffraction, transmission and scanning electron microscopy. These FLH-R-TiO2 nanostructures were tested as photocatalysts under simulated daylight (full-spectrum lighting) in the degradation of methyl orange and in the inactivation of a multiresistant bacterium, Klebsiella pneumoniae. The effects of hydrothermal treatment on the structure, photocatalytic behavior and antibacterial activity of FLH-R-TiO2 are discussed.

  3. Atomic layer deposition of rutile and TiO2-II from TiCl4 and O3 on sapphire: Influence of substrate orientation on thin film structure

    NASA Astrophysics Data System (ADS)

    Möldre, Kristel; Aarik, Lauri; Mändar, Hugo; Niilisk, Ahti; Rammula, Raul; Tarre, Aivar; Aarik, Jaan

    2015-10-01

    Atomic layer deposition of TiO2 from TiCl4 and ozone on single crystal α-Al2O3 substrates was investigated and the possibility to control the phase composition by the substrate orientation was demonstrated. Epitaxial growth of rutile and high-pressure TiO2-II on α-Al2O3(0 0 0 1) and rutile on α-Al2O3(0 1 1¯ 2) were obtained at 400-600 °C. On α-Al2O3(0 0 0 1), the epitaxial relationships were determined to be [0 1 0]R // [2 1¯ 1¯ 0]S and [0 0 1]R // [0 1 1¯ 0]S for rutile and sapphire, and [0 0 1]II // [2 1¯ 1¯ 0]S and [0 1¯ 0]II // [0 1 1¯ 0]S for TiO2-II and sapphire. The TiO2-II concentration up to 50% was obtained in the films deposited at 425-500 °C. On α-Al2O3(0 1 1¯ 2), the epitaxial relationship of rutile was [0 1 0]R // [2 1¯ 1¯ 0]S and [0 0 1]R // [0 1 1¯ 0]S. The densities of epitaxial films reached 4.2-4.3 g/cm3 on substrates with both orientations but the epitaxial quality was markedly higher on α-Al2O3(0 0 0 1).

  4. H2 adsorption and dissociation on PdO(101) films supported on rutile TiO2 (110) facet: elucidating the support effect by DFT calculations.

    PubMed

    Sun, Xiongfei; Peng, Xing; Xu, Xianglan; Jin, Hua; Wang, Hongming; Wang, Xiang

    2016-09-01

    To explore metal oxide-support interactions and their effect, H2 adsorption and dissociation on PdO(101)/TiO2(110) films with different film thicknesses, in comparison with that on pure PdO(101) surface without TiO2(110) support, were studied by density functional theory calculation. A monolayer PdO(101) film supported on TiO2 facet shows different properties to a pure PdO(101) surface. On the monolayer PdO(101)/TiO2(110) film, TiO2 support leads to stronger molecular adsorption of H2 on coordinatively unsaturated Pd top sites than that on a pure PdO surface. H2 dissociation with the formation of OH was preferred thermodynamically but slightly unfavorable kinetically on the monolayer PdO film due to the TiO2 support effect. Graphical abstract On the monolayer PdO(101)/TiO2(110) film, the TiO2 support effect leads to stronger H2 molecular adsorption on coordinatively unsaturated Pd top sites than on pure PdO surface. H2 dissociation with the formation of OH is preferred thermodynamically but slightly unfavorable kinetically on the film due to the TiO2 support effect. PMID:27491853

  5. Tin-doped rutile titanium dioxide nanowires: luminescence, gas sensor, and field emission properties.

    PubMed

    Wu, Jyh Ming

    2012-02-01

    Sn-doped rutile TiO2 nanowires were synthesized by a thermal reactive evaporation route. Field emission scanning electron microscopy (FESEM) imaging reveals that the Sn-doped TiO2 nanowires exhibited diameters of 80-150 nm and 2-3 microns in length. High-resolution transmission electron microscopy (HRTEM) imaging makes it possible to observe that Sn-doped TiO2 nanowires show a certain lattices fringe of approximately 0.32 nm, which demonstrates that the nanowires are single crystalline with rutile structure and grow along the [110] axis. Cathodoluminescence (CL) reflected that on the surface of Sn-doped TiO2 nanowires, many oxygen vacancies and defect states were formed during the crystal growth. These defect states raised a broad emission peak around the red-orange band. The ethanol sensing properties of Sn-doped rutile TiO2 nanowires at a temperature of 190 degrees C for the ethanol concentrations of 50, 100, 150, 200, 400, 500, and 600 ppm, correspond to the sensor' sensitivity of 7, 12, 18, 19, 23, and 26%, respectively. The sensitivity increased with an increase in the ethanol concentration. As-synthesized TiO2 nanowires revealed a turn-on field, approximately 5.1 V/microm, at a current density of 1 microAcm(-2). PMID:22629973

  6. Impact of nonadiabatic charge transfer on the rate of redox chemistry of carbon oxides on rutile TiO2 (110) surface

    SciTech Connect

    Yoon, Yeohoon; Wang, Yanggang; Rousseau, Roger J.; Glezakou, Vassiliki Alexandra

    2015-03-06

    We present the results of a density functional theory (DFT) within the LDA+U approximation on large models of partially reduced TiO2 (110) rutile surface to investigate the nature of charge transfer and the role of non-adiabatic effects on three prototypical redox reactions: (i) O2 adsorption (ii) CO oxidation and (iii) CO2 reduction. Charge-constrained DFT (cDFT) is used to estimate kinetic parameters for a Marcus theory rate law that accounts for adiabatic coupling effects on reaction rates. We find that for O2 adsorption, the coupling between adiabatic states is strong, leading to fast charge transfer rates. The lowest energy structures at high coverage consist of two chemisorbed O2-, one adsorbed at a VO site and the other adsorbed at an adjacent Ti5C site. For CO oxidation, however, all reactions are kinetically hindered on the ground state due to the weak adiabatic coupling at the state crossing, such that one has to overcome two kinetically unfavorable charge transfer events to drive the process (non-adiabatically) on the thermal ground state. The process can be driven by photochemical means but would result in an adsorbed radical [OCOO-] intermediate species. Similarly, CO2 reduction also proceeds via a non-adiabatic charge transfer to form an adsorbed CO2- species followed by a second non-adiabatic charge transfer to produce CO. Our analysis provides important computational guidelines for modeling these types of processes. We thank Z. Dohnalek, M. Hendersen, G. Kimmel, H. Metieu, and N. Petrik for invaluable discussions. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences and performed at the Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated for DOE by Battelle. Computational resources were provided at W. R. Wiley Environmental Molecular Science Laboratory (EMSL), a national scientific user facility sponsored by the

  7. Atomic layer deposition of rutile-phase TiO2 on RuO2 from TiCl4 and O3: Growth of high-permittivity dielectrics with low leakage current

    NASA Astrophysics Data System (ADS)

    Aarik, Jaan; Arroval, Tõnis; Aarik, Lauri; Rammula, Raul; Kasikov, Aarne; Mändar, Hugo; Hudec, Boris; Hušeková, Kristina; Fröhlich, Karol

    2013-11-01

    Crystallization of TiO2 thin films grown by atomic layer deposition from TiCl4 and O3 on RuO2 layers was investigated with the aim to develop alternative methods for preparation of high-permittivity dielectrics with low leakage current density for capacitor structures of memory devices. The lowest substrate temperature allowing reproducible growth of TiO2 with a rate exceeding 0.01 nm per cycle was determined to be around 225 °C. The highest deposition temperature used was limited to 450 °C because of RuO2 decomposition at higher temperatures. The TiO2 films deposited on RuO2 electrodes at substrate temperatures of 225-450 °C contained rutile phase. Reference films deposited on Si substrates were amorphous when deposited at 225 °C and contained anatase when deposited at 250 °C and higher temperatures. At temperatures 250-450 °C, the growth rate values of 10-25 nm thick films ranged from 0.04 to 0.07 nm per cycle being somewhat higher on RuO2 than on Si substrates. The dependence of the mean growth rate on the substrate material was mainly due to differences in nucleation and became weaker with increasing film thickness. Relative permittivity measured for TiO2 in the Pt/TiO2/RuO2 structures at a frequency of 10 kHz ranged from 106 to 126. The TiO2 films with the lowest leakage current densities were grown at 300-350 °C. Leakage current densities as low as (5-7)×10-8 A/cm2 at an applied voltage of 0.8 V were recorded for capacitor structures with capacitance-equivalent dielectric thicknesses of 0.41-0.45 nm.

  8. Quasi-intrinsic colossal permittivity in Nb and In co-doped rutile TiO2 nanoceramics synthesized through a oxalate chemical-solution route combined with spark plasma sintering.

    PubMed

    Han, HyukSu; Dufour, Pascal; Mhin, Sungwook; Ryu, Jeong Ho; Tenailleau, Christophe; Guillemet-Fritsch, Sophie

    2015-07-14

    Nb and In co-doped rutile TiO2 nanoceramics (n-NITO) were successfully synthesized through a chemical-solution route combined with a low temperature spark plasma sintering (SPS) technique. The particle morphology and the microstructure of n-NITO compounds were nanometric in size. Various techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric (TG)/differential thermal analysis (DTA), Fourier transform infrared (FTIR), and Raman spectroscopy were used for the structural and compositional characterization of the synthesized compound. The results indicated that the as-synthesized n-NITO oxalate as well as sintered ceramic have a co-doped single phase of titanyl oxalate and rutile TiO2, respectively. Broadband impedance spectroscopy revealed that novel colossal permittivity (CP) was achieved in n-NITO ceramics exhibiting excellent temperature-frequency stable CP (up to 10(4)) as well as low dielectric loss (∼5%). Most importantly, detailed impedance data analyses of n-NITO compared to microcrystalline NITO (μ-NITO) demonstrated that the origin of CP in NITO bulk nanoceramics might be related with the pinned electrons in defect clusters and not to extrinsic interfacial effects. PMID:26058428

  9. O2 adsorption on MO2 (M=Ru, Ir, Sn) films supported on rutile TiO2(110) by DFT calculations: Probing the nature of metal oxide-support interaction.

    PubMed

    Xu, Xianglan; Sun, Xiongfei; Sun, Baozhen; Peng, Honggen; Liu, Wenming; Wang, Xiang

    2016-07-01

    To explore metal oxide-support interaction and its effect on O2 adsorption, periodic DFT calculations were used to explore the most preferred O2 molecular and dissociative adsorption on stoichiometric (MO2) and defective (MO2-x) (M=Ru, Ir, Sn) films supported on rutile TiO2(110), and compared with that on pure surfaces without TiO2(110) support. For defective RuO2-x films, it is revealed that the TiO2(110) support and the film thickness have an evident impact on the O2 adsorbed species. On the contrary, the two factors show little influence for defective IrO2-x and SnO2-x films. The analyses for Bader charge and density of states indicate that the reducibility change of the unsaturated surface Ru atoms, which are adjacent to the bridge oxygen vacancies, is responsible for this O2 adsorption alteration. These results provide insights into the oxide-oxide interaction, and its effect on the properties of supported oxide catalysts. PMID:27060230

  10. Self-induced preparation of TiO2 nanowires by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Du, Jun; Gu, Xin; Guo, Haizhi; Liu, Jiao; Wu, Qi; Zou, Jianguo

    2015-10-01

    High-density single-crystalline TiO2 nanowires are successfully fabricated on a TiSi2 layer using a new self-induced catalyst-free method by APCVD. The results show that the high aspect ratio nanowires with diameters of 20-50 nm and lengths of about 3 μm are obtained on a TiSi2 layer at 720 °C. The length of TiO2 nanowires increases with the preparation time until Ti is exhausted. The nanowires shape changes with the concentration of O2 and temperature. When the temperature is above 720 °C or the flux of O2 is over 6 sccm, the density and length of nanowires decrease under the combined effect of the increasing lateral surface diffusion and longitudinal growth. The formation of TiO2 nanowires comes along with the consumption of TiSi2, TiO2 nanowires grow along the [001] direction of the tetragonal rutile TiO2 crystal from the bottom, with the tip being pushed upwards. The growth process is proposed which is consistent with our experiment results.

  11. Effect of gas flow rates on the anatase-rutile transformation temperature of nanocrystalline TiO2 synthesised by chemical vapour synthesis.

    PubMed

    Ahmad, Md Imteyaz; Bhattacharya, S S; Fasel, Claudia; Hahn, Horst

    2009-09-01

    Of the three crystallographic allotropes of nanocrystalline titania (rutile, anatase and brookite), anatase exhibits the greatest potential for a variety of applications, especially in the area of catalysis and sensors. However, with rutile being thermodynamically the most stable phase, anatase tends to transform into rutile on heating to temperatures in the range of 500 degrees C to 700 degrees C. Efforts made to stabilize the anatase phase at higher temperatures by doping with metal oxides suffer from the problems of having a large amorphous content on synthesis as well as the formation of secondary impurity phases on doping. Recent studies have suggested that the as-synthesised phase composition, crystallite size, initial surface area and processing conditions greatly influence the anatase to rutile transformation temperature. In this study nanocrystalline titania was synthesised in the anatase form bya chemical vapour synthesis (CVS) method using titanium tetra iso-propoxide (TTIP) as a precursor under varying flow rates of oxygen and helium. The anatase to rutile transformation was studied using high temperature X-ray diffraction (HTXRD) and simultaneous thermogravimetric analysis (STA), followed by transmission electron microscopy (TEM). It was demonstrated that the anatase-rutile transformation temperatures were dependent on the oxygen to helium flow rate ratio during CVS and the results are presented and discussed. PMID:19928267

  12. Titanium atoms dimerization phenomenon and magnetic properties of titanium-antisite (TiO) and chromium doped rutile TiO2, ab-initio calculation

    NASA Astrophysics Data System (ADS)

    Zarhri, Z.; Ziat, Y.; El Rhazouani, O.; Benyoussef, A.; Elkenz, A.

    2016-07-01

    The ab-initio calculations based on the Korringa Kohn Rostoker approximation approach combined with coherent potential approximation (KKR-CPA), were used to study the magnetic properties of the titanium anti-site (TiO) and chromium (Cr) doped TiO2. In the considered systems, we used different concentrations for TiO defect and Cr doping. In TiO2(0.98)(TiO)0.02, the obtained results indicate that TiO is a donor having half-metal behavior. TiO[3d] band is located at the Fermi level, although isn't 100% polarized, the ferromagnetic (FM) state is verified as being more stable than disordered local moment (DLM) state. For Ti0.98Cr0.02O2 the Cr doping introduced new states which give the material half-metallic feature. The majority spin of Cr impurities are located at the Fermi level and the conduction electrons around the Fermi level are 100% spin polarized. This indicates the stability of (FM) state. Moreover, in Ti0.98Cr0.02O2(0.98)(TiO)0.02, the top of the valence band is shifted to lower energy compared to pure TiO2, and the n-type of TiO2 is verified. The majority spin of Cr[3d] are located at 0.025 Ry close to the Fermi level. The predicted Curie temperatures (Tc) were calculated using the mean field approximation (MFA) and we predicted that TiO defect in Cr doped TiO2 makes Tc higher. This kind of defect makes the material useful for spinotronics's applications and devices.

  13. Single crystalline magnetite nanotubes.

    PubMed

    Liu, Zuqin; Zhang, Daihua; Han, Song; Li, Chao; Lei, Bo; Lu, Weigang; Fang, Jiye; Zhou, Chongwu

    2005-01-12

    We descried a method to synthesize single crystalline Fe3O4 nanotubes by wet-etching the MgO inner cores of MgO/Fe3O4 core-shell nanowires. Homogeneous Fe3O4 nanotubes with controllable length, diameter, and wall thickness have been obtained. Resistivity of the Fe3O4 nanotubes was estimated to be approximately 4 x 10-2 Omega cm at room temperature. Magnetoresistance of approximately 1% was observed at T = 77 K when a magnetic field of B = 0.7 T was applied. The synthetic strategy presented here may be extended to a variety of materials such as YBCO, PZT, and LCMO which should provide ideal candidates for fundamental studies of superconductivity, piezoelectricity, and ferromagnetism in nanoscale structures. PMID:15631421

  14. Nonthermal Water Splitting on Rutile TiO2: Electron-Stimulated Production of H-2 and O-2 in Amorphous Solid Water Films on TiO2(110)

    SciTech Connect

    Petrik, Nikolay G.; Kimmel, Gregory A.

    2009-03-19

    Electron-stimulated desorption (ESD) of H2, O2 and H2O from 0 - 60 ML films of amorphous solid water (ASW) adsorbed on TiO2(110) are investigated as function of film thickness and isotopic composition. For 100 eV incident electrons, both the H2 and O2 ESD yields have maxima when the ASW coverage is ~ 20 monolayer (ML), while the H2O ESD yield increases monotonically with water coverage. All the products reach a coverage-independent yield above 40 - 50 ML. Experiments using isotopically layered films of H2O and D2O demonstrate that the molecular hydrogen is produced in reactions that occur preferentially at or near both the ASW/TiO2 interface and the ASW/vacuum interface. However, electronic excitations or ionic defects created within the interior of the ASW films by the energetic electrons can subsequently migrate to the interfaces where they initiate reactions. Electron irradiation of ASW films results in the formation of bridge-bonded hydroxyls on the TiO2(110). These hydroxyls do not contribute to the H2 produced near the ASW/TiO2 interface. Instead, the results suggest that this H2 is produced from a stable precursor, trapped near the substrate. The proposed mechanism for the H2 production near the ASW/TiO2(110) interface is supported by a kinetic model that semi-quantitatively reproduces the main features of the non-thermal reactions.

  15. Investigation of Water Nucleation on Designed Single Crystalline Oxide Surfaces - a Step Towards Understanding the Complex Behavior of Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Du, Y.; Wang, B.; Lyubinetsky, I.; Laskin, A.; Kulkarni, G.; Knopf, D. A.; Guenther, A. B.

    2014-12-01

    The interaction between water molecules and solid surfaces during water/ice nucleation is of extreme importance in physical, biological, geological, and environmental research. Aerosols in the atmosphere, including inorganic mineral dust particles and organic compounds from biogenic and anthropogenic sources, are recognized to be effective ice nuclei (IN) that lead to the formation of ice crystals. These ice crystals play important roles in climate through their interactions with solar and terrestrial radiation. However, a detailed understanding is hampered by the fact that the aerosols vary in size, chemical composition, morphology, crystal orientation, and local defects. In EMSL, some of those challenges can be addressed by utilizing state-of-the-art synthesis and characterization capabilities. By using molecular beam epitaxy (MBE), we are able to synthesis materials, such as TiO2 and Fe2O3, that are commonly found in mineral dusts in their single crystalline thin film form with controlled surface termination. Fundamental studies on these designed surfaces allow us to vary some of the variables independently so that a concrete cause and effect relationship can be established. In this study, we grow epitaxial rutile TiO2(110) and anatase TiO2(001) films and investigate water adsorption and water nucleation processes on these surfaces by ultra-high vacuum scanning tunneling microscopy (STM) and environmental scanning electron microscopy (E-SEM). The surface reaction dynamics revealed can be of critical importance in understanding the water/ice nucleation process on complex aerosols.

  16. Effects of variations in precursor concentration on the growth of rutile TiO2 nanorods on Si substrate with fabricated fast-response metal-semiconductor-metal UV detector

    NASA Astrophysics Data System (ADS)

    Selman, Abbas M.; Hassan, Z.

    2015-06-01

    This study aimed to investigate the effects of variations in precursor concentration (TiCl3 solution) on the structural, morphological, and optical properties of rutile titanium dioxide (TiO2) nanorods and fabricated metal-semiconductor-metal UV detector depending on the optimal sample. The nanorods were prepared from an aqueous solution of titanium (III) chloride (TiCl3) on p-type, (1 1 1)-oriented Si substrates at different concentrations of TiCl3 solutions (2, 3, 4, and 5 mM). The experimental results showed that the TiO2 nanorods grown at 4 mM concentration exhibited optimal structural properties. A fast-response metal-semiconductor-metal UV detector was fabricated by depositing Pt contacts on the front of the optimal sample via RF reactive magnetron sputtering. Upon exposure to 365 nm light (2.3 mW/cm2) at 5 V bias voltage, the device showed 44.4 sensitivity. In addition, the internal gain was 1.45, and the photoresponse peak was 70 mA/W. The response and the recovery times were calculated to be 7.8 ms upon illumination to a pulse UV light (365 nm) at 5 V bias voltage.

  17. Synergistic manipulation of micro-nanostructures and composition: anatase/rutile mixed-phase TiO2 hollow micro-nanospheres with hierarchical mesopores for photovoltaic and photocatalytic applications

    NASA Astrophysics Data System (ADS)

    Zhu, Qing; Qian, Jieshu; Pan, Hao; Tu, Luo; Zhou, Xingfu

    2011-09-01

    The construction of nanocrystals with controllable composition and desirable micro-nanostructures is a well-known challenge. A combination of favorable composition and optimized micro-nanostructures can enhance the performance of a material significantly. Using TiO2 as an example, we demonstrate here a facile approach to prepare anatase/rutile mixed-phase TiO2 hollow micro-nanospheres with hierarchical mesopores. Our strategy relies on polymer-assisted assembly of ~ 5 nm nano-building blocks into three-dimensional hierarchical hollow micro-nanospheres in a mixed alcohol-water solution. This superior micro-nanostructure endows the sample with hierarchical mesopores and a high surface area of 106 m2 g - 1. We also show that, due to the synergetic effects of the mixed-phase composition and the micro-nanostructures, the sample exhibited significantly improved photovoltaic performance and similar photocatalytic performance compared with the commercial Degussa P25. These results suggested that our sample has great potential for future photovoltaic and photocatalytic applications.

  18. Effects of Carbon Allotrope Interface on the Photoactivity of Rutile One-Dimensional (1D) TiO2 Coated with Anatase TiO2 and Sensitized with CdS Nanocrystals.

    PubMed

    Pathak, Pawan; Israel, Luis Henrique; Pereira, Ellen Jessica Monterio; Subramanian, Vaidyanathan Ravi

    2016-06-01

    The assembly of a large-bandgap one-dimensional (1D) oxide-conductive carbon-chalcogenide nanocomposite and its surface, optical, and photoelectrochemical properties are presented. Microscopy, surface analysis, and optical spectroscopy results are reported to provide insights into the assembly of the nanostructure. We have investigated (i) how the various carbon allotropes (C60), reduced graphene oxide (RGO), carbon nanotubes (CNTs), and graphene quantum dots (GQDs) can be integrated at the interface of the 1D TiO2 and zero-dimensional (0D) CdS nanocrystals; (ii) the carbon allotrope and CdS loading effects; (iii) the impact of the carbon allotrope presence on 0D CdS nanocrystals; and (iv) how they promote light absorbance. Subsequently, the functioning of the integrated nanostructured assembly in a photoelectrochemical cell has been systematically investigated. These studies include (i) chronoamperometry, (ii) impedance measurements or EIS, and (iii) linear sweep voltammetry. The results indicate that the presence of a GQD interface shows the most enhancement in the photoelectrochemical properties. The optimized photocurrent values were respectively noted to be 2.8, 2.2, 1.9, and 1.6 mA/cm(2), indicating JGQD > JRGO > JCNT > Jfullerene. Furthermore, the annealing conditions have indicated that ammonia treatment leads to an increase in the photoelectrochemical responses when using any form of the carbon allotropes. PMID:27121182

  19. A method for the concentration of fine-grained rutile (TiO2) from sediment and sedimentary rocks by chemical leaching

    USGS Publications Warehouse

    Commeau, Judith A.; Valentine, Page C.

    1991-01-01

    Most of the sample analyzed by the method described were marine muds collected from the Gulf of Maine (Valentine and Commeau, 1990). The silt and clay fraction (up to 99 wt% of the sediment) is composed of clay minerals (chiefly illite-mica and chlorite), silt-size quartz and feldspar, and small crystals (2-12 um) of rutile and hematite. The bulk sediment samples contained an average of 2 to 3 wt percent CaCO3. Tiher samples analyzed include red and gray Carboniferous and Triassic sandstones and siltstones exposed around the Bay of Fundy region and Paleozoic sandstones, siltstones, and shales from northern Maine and New Brunswick. These rocks are probable sources for the fine-grained rutile found in the Gulf of Maine.

  20. Structural characterization of mineral with rutile inclusions (TiO2) and manganocolumbite (MnNb2O6) by means of X-ray

    NASA Astrophysics Data System (ADS)

    Arcila, J. F.; Hincapié, A. F.

    2013-11-01

    A sample of mineral obtained in the department of Vichada was characterized by the technique of X-ray diffraction in powder samples, in order to determine the crystallographic phases present. After analyzing diffraction patterns, as a result, the mineral had inclusions of Rutile (86.3%) and Manganocolumbita (13.7%). Next, a simulation of the crystal structure of these minerals from the data entered in the databases was carried on. Later, the Rietveld method was used, from this refinement, the new diffraction pattern and the new network parameters were obtained. For the Rutile it was obtained a tetragonal structure, and for the Manganocolumbita an orthorhombic structure was obtained. The characterization is justified among other aspects due to the important applications of these materials in industry and technology, such as Rutile is used in welding rod coatings, in Industries cardboard paper and ink impression among many other uses, the Manganocolumbita is used in special alloys resistant to high temperatures, it also is directly related to the tantalite in coltan formation.

  1. Solid state perovskite solar modules by vacuum-vapor assisted sequential deposition on Nd:YVO4 laser patterned rutile TiO2 nanorods

    NASA Astrophysics Data System (ADS)

    Fakharuddin, Azhar; Palma, Alessandro L.; Di Giacomo, Francesco; Casaluci, Simone; Matteocci, Fabio; Wali, Qamar; Rauf, Muhammad; Di Carlo, Aldo; Brown, Thomas M.; Jose, Rajan

    2015-12-01

    The past few years have witnessed remarkable progress in solution-processed methylammonium lead halide (CH3NH3PbX3, X = halide) perovskite solar cells (PSCs) with reported photoconversion efficiency (η) exceeding 20% in laboratory-scale devices and reaching up to 13% in their large area perovskite solar modules (PSMs). These devices mostly employ mesoporous TiO2 nanoparticles (NPs) as an electron transport layer (ETL) which provides a scaffold on which the perovskite semiconductor can grow. However, limitations exist which are due to trap-limited electron transport and non-complete pore filling. Herein, we have employed TiO2 nanorods (NRs), a material offering a two-fold higher electronic mobility and higher pore-filing compared to their particle analogues, as an ETL. A crucial issue in NRs’ patterning over substrates is resolved by using precise Nd:YVO4 laser ablation, and a champion device with η ∼ 8.1% is reported via a simple and low cost vacuum-vapor assisted sequential processing (V-VASP) of a CH3NH3PbI3 film. Our experiments showed a successful demonstration of NRs-based PSMs via the V-VASP technique which can be applied to fabricate large area modules with a pin-hole free, smooth and dense perovskite layer which is required to build high efficiency devices.

  2. Determination of Phase Ratio in Polymorphic Materials by X-Ray Absorption Spectroscopy: The Case of Anatase and Rutile Phase Mixture in TiO2

    SciTech Connect

    Smith, M. F.; Klysubun, W.; Kityakarn, S.; Worayingyong, A.; Zhang, S. B.; Wei, S. H.; Onkaw, D.; Songsiriritthigul, P.; Rujirawat, S.; Limpijumnong, S.

    2009-01-01

    We demonstrate that x-ray absorption spectroscopy (XAS) can be used as an unconventional characterization technique to determine the proportions of different crystal phases in polymorphic samples. As an example, we show that ratios of anatase and rutile phases contained in the TiO{sub 2} samples obtained by XAS are in agreement with conventional x-ray diffraction (XRD) measurements to within a few percent. We suggest that XAS measurement is a useful and reliable technique that can be applied to study the phase composition of highly disordered or nanoparticle polymorphic materials, where traditional XRD technique might be difficult.

  3. Probing the local electronic structure of the cross-linked (1 × 2) reconstruction of rutile TiO2(110)

    NASA Astrophysics Data System (ADS)

    Yim, Chi Ming; Pang, Chi Lun; Thornton, Geoff

    2016-08-01

    The electronic structure of cross-linked TiO2(110)-(1 × 2) has been investigated using scanning tunneling spectroscopy (STS) and by monitoring changes in ultraviolet photoelectron spectroscopy (UPS) following exposure of the surface to O2. STS reveals two states located in the bandgap, at 0.7 and 1.5 eV below the Fermi level. The population of these two states varies over different parts of the (1 × 2)-reconstructed surface. An additional state at 1.1 eV above the Fermi level is observed at the double link part of the structure. All of the bandgap states are attenuated following exposure to O2, while the workfunction is increased. We attribute this to an electron transfer from the surface to the adsorbed oxygen.

  4. Adsorption sites of single noble metal atoms on the rutile TiO2 (1 1 0) surface influenced by different surface oxygen vacancies.

    PubMed

    Matsunaga, Katsuyuki; Chang, Teng-Yuan; Ishikawa, Ryo; Dong, Qian; Toyoura, Kazuaki; Nakamura, Atsutomo; Ikuhara, Yuichi; Shibata, Naoya

    2016-05-01

    Atomic adsorption of Au and Pt on the rutile (1 1 0) surface was investigated by atomic-resolution aberration-corrected scanning transmission electron microscopy (STEM) measurements combined with density functional theory calculations. Au single atoms were deposited on the surface in a vacuum condition, and the observed results were compared with Pt single atoms on the same surface prepared by the same experimental manner. It was found that Au single atoms are stably adsorbed only at the bridging oxygen vacancy sites, which is quite different from Pt single atoms exhibiting the most frequently observed adsorption at the basal oxygen vacancy sites. Such a difference in oxygen-vacancy effect between Au and Pt can be explained by electronic structures of the surface vacancies as well as characters of outermost atomic orbitals of Au and Pt. PMID:27033403

  5. Adsorption sites of single noble metal atoms on the rutile TiO2 (1 1 0) surface influenced by different surface oxygen vacancies

    NASA Astrophysics Data System (ADS)

    Matsunaga, Katsuyuki; Chang, Teng-Yuan; Ishikawa, Ryo; Dong, Qian; Toyoura, Kazuaki; Nakamura, Atsutomo; Ikuhara, Yuichi; Shibata, Naoya

    2016-05-01

    Atomic adsorption of Au and Pt on the rutile (1 1 0) surface was investigated by atomic-resolution aberration-corrected scanning transmission electron microscopy (STEM) measurements combined with density functional theory calculations. Au single atoms were deposited on the surface in a vacuum condition, and the observed results were compared with Pt single atoms on the same surface prepared by the same experimental manner. It was found that Au single atoms are stably adsorbed only at the bridging oxygen vacancy sites, which is quite different from Pt single atoms exhibiting the most frequently observed adsorption at the basal oxygen vacancy sites. Such a difference in oxygen-vacancy effect between Au and Pt can be explained by electronic structures of the surface vacancies as well as characters of outermost atomic orbitals of Au and Pt.

  6. CO2 Adsorption, Diffusion and Electron-Induced Chemistry on Rutile TiO2(110) – A Low-Temperature Scanning Tunneling Microscopy Study

    SciTech Connect

    Sutter, P.; Acharya, D.P.; Camillone III, N.

    2011-06-23

    Low-temperature scanning tunneling microscopy (STM) has been used to study the adsorption of CO{sub 2} on rutile TiO{sub 2}(110) from 80 to 180 K. For low CO{sub 2} doses, two molecular adsorption sites with different binding energies are identified, which are effectively isolated from one another by an apparent activation barrier to their interconversion. We identify the less tightly bound adsorption site as CO{sub 2} adsorbed atop 5-fold coordinated titanium surface atoms (Ti{sub 5f}), without binding preferentially near oxygen vacancies. CO{sub 2} desorption from Ti{sub 5f} occurs at 140 K. The more strongly bound site involves molecular CO{sub 2} binding at bridging oxygen vacancies (V{sub O,br}). We observe two distinct configurations of V{sub O,br} bound CO{sub 2} molecules. Despite its being bound to the vacancy, CO{sub 2} does not dissociate thermally but remains intact up to the desorption temperature of {approx}175 K. At an elevated tunneling bias, the STM tip can selectively dissociate these CO{sub 2} molecules and thus trigger the healing of individual V{sub O,br}. At higher coverage, CO{sub 2} adsorption occurs predominantly at the more abundant Ti{sub 5f} sites, with the distribution of CO{sub 2} molecules being determined by interactions both along the [001] and [110] directions.

  7. Formation of a thermally stable bilayer of coadsorbed intact and deprotonated thymine exploiting the surface corrugation of rutile TiO2(110).

    PubMed

    Duncan, D A; Pfisterer, J H K; Deimel, P S; Acres, R G; Fritton, M; Feulner, P; Barth, J V; Allegretti, F

    2016-07-27

    The adsorption of thymine, a pyrimidine based nucleobase, was studied on the (110) termination of rutile titanium dioxide in order to understand the thermal stability and gross structural parameters of the interaction between a strongly polar adsorbate and a highly corrugated transition metal oxide surface. Near-edge X-ray absorption fine structure (NEXAFS), X-ray photoelectron spectroscopy (XPS), temperature programmed XPS and temperature programmed desorption indicated the growth of a room temperature stable bilayer, which could only be removed by annealing to 450 K. The remaining first layer was remarkably robust, surviving annealing up to 550 K before undergoing N-H bond scission. The comparison to XPS of a sub-monolayer exposure of 1-methyluracil shows that the origin of the room temperature stable bilayer is not intermolecular interactions. This discovery, alongside the deprotonation of one of the first layer's pyrimidinic nitrogen atoms at room temperature, suggests that the thymine molecules in the first layer bind to the undercoordinated surface Ti atoms, and the second layer thymine molecules coordinate with the bridging oxygen atoms which protrude above the Ti surface plane on the (110) surface. The NEXAFS results indicate an almost upright orientation of the molecules in both layers, with a 30 ± 10° tilt away from the surface normal. PMID:27402290

  8. Oxygen-Induced Restructuring of Rutile TiO(2)(110): Formation Mechanism, Atomic Models, and Influence on Surface Chemistry

    SciTech Connect

    Li, Min; Hebenstreit, Wilhelm; Diebold, Ulrike; Henderson, Michael A.; Jennison, Dwight R.

    1999-07-07

    The rutile TiO{sub 2} (110) (1x1) surface is considered the prototypical ''well-defined'' system in the surface science of metal oxides. Its popularity results partly from two experimental advantages: bulk-reduced single crystals do not exhibit charging, and stoichiometric surfaces--as judged by electron spectroscopes--can be prepared reproducibly by sputtering and annealing in oxygen. We present results that show that this commonly-applied preparation procedure may result in a surface structure that is by far more complex than generally anticipated. Flat, (1x1) terminated surfaces are obtained by sputtering and annealing in ultrahigh vacuum. When re-annealed in oxygen at moderate temperatures (470 K to 660 K), irregular networks of partially-connected, pseudohexagonal rosettes (6.5 x 6 {angstrom} wide), one-unit cell wide strands, and small ({approximately} tens of {angstrom}) (1x1) islands appear. This new surface phase is formed through reaction of oxygen gas with interstitial Ti from the reduced bulk. Because it consists of an incomplete, kinetically-limited (1x1) layer, this phenomenon has been termed restructuring. We report a combined experimental and theoretical study that systematically explores this restructuring process. The influence of several parameters (annealing time, temperature, pressure, sample history, gas) on the surface morphology is investigated using STM. The surface coverage of the added phase as well as the kinetics of the restructuring process are quantified by LEIS and SSIMS measurements in combination with annealing in {sup 18}O-enriched gas. Atomic models of the essential structural elements are presented and are shown to be stable with first-principles density functional calculations. The effect of oxygen-induced restructuring on surface chemistry and its importance for TiO{sub 2} and other bulk-reduced oxide materials is briefly discussed.

  9. Single crystalline mesoporous silicon nanowires

    SciTech Connect

    Hochbaum, A.I.; Gargas, Daniel; Jeong Hwang, Yun; Yang, Peidong

    2009-08-04

    Herein we demonstrate a novel electroless etching synthesis of monolithic, single-crystalline, mesoporous silicon nanowire arrays with a high surface area and luminescent properties consistent with conventional porous silicon materials. These porous nanowires also retain the crystallographic orientation of the wafer from which they are etched. Electron microscopy and diffraction confirm their single-crystallinity and reveal the silicon surrounding the pores is as thin as several nanometers. Confocal fluorescence microscopy showed that the photoluminescence (PL) of these arrays emanate from the nanowires themselves, and their PL spectrum suggests that these arrays may be useful as photocatalytic substrates or active components of nanoscale optoelectronic devices.

  10. Hierarchical assembly of ultrathin hexagonal SnS2 nanosheets onto electrospun TiO2 nanofibers: enhanced photocatalytic activity based on photoinduced interfacial charge transfer

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenyi; Shao, Changlu; Li, Xinghua; Sun, Yangyang; Zhang, Mingyi; Mu, Jingbo; Zhang, Peng; Guo, Zengcai; Liu, Yichun

    2012-12-01

    Well-designed hierarchical nanostructures with one dimensional (1D) TiO2 nanofibers (120-350 nm in diameter and several micrometers in length) and ultrathin hexagonal SnS2 nanosheets (40-70 nm in lateral size and 4-8 nm in thickness) were successfully synthesized by combining the electrospinning technique (for TiO2 nanofibers) and a hydrothermal growth method (for SnS2 nanosheets). The single-crystalline SnS2 nanosheets with a 2D layered structure were uniformly grown onto the electrospun TiO2 nanofibers consisted of either anatase (A) phase or anatase-rutile (AR) mixed phase TiO2 nanoparticles. The definite heterojunction interface between SnS2 nanosheets and TiO2 (A or R) nanoparticles were investigated by high resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS). Moreover, the as-prepared SnS2/TiO2 hierarchical nanostructures as nanoheterojunction photocatalysts exhibited excellent UV and visible light photocatalytic activities for the degradation of organic dyes (rhodamine B and methyl orange) and phenols (4-nitrophenol), remarkably superior to the TiO2 nanofibers and the SnS2 nanosheets, mainly owing to the photoinduced interfacial charge transfer based on the photosynergistic effect of the SnS2/TiO2 heterojunction. Significantly, the SnS2/TiO2 (AR) hierarchical nanostructures as the tricomponent heterojunction system possessed stronger photocatalytic activity than the bicomponent heterojunction system of SnS2/TiO2 (A) hierarchical nanostructures or TiO2 (AR) nanofibers, which was discussed in terms of the three-way photosynergistic effect between SnS2, TiO2 (A) and TiO2 (R) component in the SnS2/TiO2 (AR) heterojunction resulting in the high separation efficiency of photoinduced electron-hole pairs, as evidenced by photoluminescence (PL) and surface photovoltage spectra (SPS).Well-designed hierarchical nanostructures with one dimensional (1D) TiO2 nanofibers (120-350 nm in diameter and several micrometers in length

  11. Single crystalline mesoporous silicon nanowires

    SciTech Connect

    Hochbaum, Allon; Dargas, Daniel; Hwang, Yun Jeong; Yang, Peidong

    2009-08-18

    Herein we demonstrate a novel electroless etching synthesis of monolithic, single-crystalline, mesoporous silicon nanowire arrays with a high surface area and luminescent properties consistent with conventional porous silicon materials. The photoluminescence of these nanowires suggest they are composed of crystalline silicon with small enough dimensions such that these arrays may be useful as photocatalytic substrates or active components of nanoscale optoelectronic devices. A better understanding of this electroless route to mesoporous silicon could lead to facile and general syntheses of different narrow bandgap semiconductor nanostructures for various applications.

  12. Photocatalytic degradation of diethyl phthalate using TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Singla, Pooja; Pandey, O. P.; Singh, K.

    2014-04-01

    TiO2 nanoparticles predominantly in rutile phase are synthesized by ultrasonication assisted sol-gel method. TiO2 powder is characterized using X-ray powder diffraction and UV-vis diffuse reflectance. TiO2 is used as catalyst in photocatalytic degradation of Diethyl Phthalate. TiO2 exhibits good photocatalytic activity for the degradation of diethyl phthalate.

  13. On the Crystal Structural Control of Sputtered TiO2 Thin Films.

    PubMed

    Jia, Junjun; Yamamoto, Haruka; Okajima, Toshihiro; Shigesato, Yuzo

    2016-12-01

    In this study, we focused on the origin on the selective deposition of rutile and anatase TiO2 thin films during the sputtering process. The observation on microstructural evolution of the TiO2 films by transmission electron microscopy revealed the coexistence of rutile and anatase TiO2 phases in the initial stage under the preferential growth conditions for the anatase TiO2; the observations further revealed that the anatase phase gradually dominated the crystal structure with increasing film thickness. These results suggest that the bombardment during the sputtering deposition did not obviously affect the TiO2 crystal structure, and this was also confirmed by off-axis magnetron sputtering experiments. We also investigated the mechanism of the effect of Sn impurity doping on the crystal structure using first-principles calculations. It is found that the formation energy of Sn-doped rutile TiO2 is lower than that of Sn-doped anatase TiO2; this suggests that the Sn-doped TiO2 favours the rutile phase. These results offer a guideline for the utilization of selective deposition of rutile and anatase TiO2 thin films in various industrial applications. PMID:27389344

  14. On the Crystal Structural Control of Sputtered TiO2 Thin Films

    NASA Astrophysics Data System (ADS)

    Jia, Junjun; Yamamoto, Haruka; Okajima, Toshihiro; Shigesato, Yuzo

    2016-07-01

    In this study, we focused on the origin on the selective deposition of rutile and anatase TiO2 thin films during the sputtering process. The observation on microstructural evolution of the TiO2 films by transmission electron microscopy revealed the coexistence of rutile and anatase TiO2 phases in the initial stage under the preferential growth conditions for the anatase TiO2; the observations further revealed that the anatase phase gradually dominated the crystal structure with increasing film thickness. These results suggest that the bombardment during the sputtering deposition did not obviously affect the TiO2 crystal structure, and this was also confirmed by off-axis magnetron sputtering experiments. We also investigated the mechanism of the effect of Sn impurity doping on the crystal structure using first-principles calculations. It is found that the formation energy of Sn-doped rutile TiO2 is lower than that of Sn-doped anatase TiO2; this suggests that the Sn-doped TiO2 favours the rutile phase. These results offer a guideline for the utilization of selective deposition of rutile and anatase TiO2 thin films in various industrial applications.

  15. Size-tunable TiO2 nanorod microspheres synthesised via a one-pot solvothermal method and used as the scattering layer for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Rui, Yichuan; Li, Yaogang; Zhang, Qinghong; Wang, Hongzhi

    2013-11-01

    TiO2 microspheres assembled by single crystalline rutile TiO2 nanorods were synthesized by one-pot solvothermal treatment at 180 °C based on an aqueous-organic mixture solution containing n-hexane, distilled water, titanium n-butoxide and hydrochloric acid. The spheres had a radiative structure from the center, and their diameters were controlled in the range from 1 to 5 μm by adjusting the volume of the reactant water. Nitrogen adsorption-desorption isotherms showed that all the as-prepared microspheres had relatively high specific surface areas of about 50 m2 g-1. The 1 μm sized TiO2 nanorod microspheres were fabricated as a scattering overlayer in DSSCs, leading to a remarkable improvement in the power conversion efficiency: 8.22% of the bi-layer DSSCs versus 7.00% for the reference cell made of a single-layer film prepared from nanocrystalline TiO2. Such improvement was mainly attributed to the enhanced light harvesting and dye loading brought by the effective scattering centers.TiO2 microspheres assembled by single crystalline rutile TiO2 nanorods were synthesized by one-pot solvothermal treatment at 180 °C based on an aqueous-organic mixture solution containing n-hexane, distilled water, titanium n-butoxide and hydrochloric acid. The spheres had a radiative structure from the center, and their diameters were controlled in the range from 1 to 5 μm by adjusting the volume of the reactant water. Nitrogen adsorption-desorption isotherms showed that all the as-prepared microspheres had relatively high specific surface areas of about 50 m2 g-1. The 1 μm sized TiO2 nanorod microspheres were fabricated as a scattering overlayer in DSSCs, leading to a remarkable improvement in the power conversion efficiency: 8.22% of the bi-layer DSSCs versus 7.00% for the reference cell made of a single-layer film prepared from nanocrystalline TiO2. Such improvement was mainly attributed to the enhanced light harvesting and dye loading brought by the effective scattering

  16. Instability of hydrogenated TiO2.

    PubMed

    Nandasiri, Manjula I; Shutthanandan, Vaithiyalingam; Manandhar, Sandeep; Schwarz, Ashleigh M; Oxenford, Lucas; Kennedy, John V; Thevuthasan, Suntharampillai; Henderson, Michael A

    2015-11-19

    Hydrogenated TiO2 (H-TiO2) is touted as a viable visible light photocatalyst. We report a systematic study on the thermal stability of H-implanted TiO2 using nuclear reaction analysis (NRA), Rutherford backscattering spectrometry, ultraviolet photoelectron spectroscopy, and X-ray photoelectron spectroscopy. Protons (40 keV) implanted at a ∼2 atom % level within a ∼120 nm wide profile of rutile TiO2(110) were situated ∼300 nm below the surface. NRA revealed that this H-profile broadened toward the surface after annealing at 373 K, dissipated out of the crystal into vacuum at 473 K, and was absent within the beam sampling depth (∼800 nm) at 523 K. Photoemission showed that the surface was reduced in concert with these changes. Similar anneals had no effect on pristine TiO2(110). The facile bulk diffusivity of H in rutile at low temperatures, as well as its interfacial activity toward reduction, significantly limits the utilization of H-TiO2 as a photocatalyst. PMID:26545303

  17. Instability of Hydrogenated TiO2

    SciTech Connect

    Nandasiri, Manjula I.; Shutthanandan, V.; Manandhar, Sandeep; Schwarz, Ashleigh M.; Oxenford, Lucas S.; Kennedy, John V.; Thevuthasan, Suntharampillai; Henderson, Michael A.

    2015-11-06

    Hydrogenated TiO2 (H-TiO2) is toted as a viable visible light photocatalyst. We report a systematic study on the thermal stability of H-implanted TiO2 using X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA). Protons (40 keV) implanted at a ~2 atom % level within a ~120 nm wide profile of rutile TiO2(110) were situated ~300 nm below the surface. NRA revealed that this H-profile broadened preferentially toward the surface after annealing at 373 K, dissipated out of the crystal into vacuum at 473 K, and was absent within the beam sampling depth (~800 nm) at 523 K. Photoemission showed that the surface was reduced in concert with these changes. Similar anneals had no effect on pristine TiO2(110). The facile bulk diffusivity of H in rutile, as well as its activity toward interfacial reduction, significantly limits the utilization of H-TiO2 as a photocatalyst. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. The research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

  18. A maskless synthesis of TiO2-nanofiber-based hierarchical structures for solid-state dye-sensitized solar cells with improved performance

    PubMed Central

    2014-01-01

    TiO2 hierarchical nanostructures with secondary growth have been successfully synthesized on electrospun nanofibers via surfactant-free hydrothermal route. The effect of hydrothermal reaction time on the secondary nanostructures has been studied. The synthesized nanostructures comprise electrospun nanofibers which are polycrystalline with anatase phase and have single crystalline, rutile TiO2 nanorod-like structures growing on them. These secondary nanostructures have a preferential growth direction [110]. UV–vis spectroscopy measurements point to better dye loading capability and incident photon to current conversion efficiency spectra show enhanced light harvesting of the synthesized hierarchical structures. Concomitantly, the dye molecules act as spacers between the conduction band electrons of TiO2 and holes in the hole transporting medium, i.e., spiro-OMeTAD and thus enhance open circuit voltage. The charge transport and recombination effects are characterized by electrochemical impedance spectroscopy measurements. As a result of improved light harvesting, dye loading, and reduced recombination losses, the hierarchical nanofibers yield 2.14% electrochemical conversion efficiency which is 50% higher than the efficiency obtained by plain nanofibers. PMID:24410851

  19. Remarkable Charge Separation and Photocatalytic Efficiency Enhancement through Interconnection of TiO2 Nanoparticles by Hydrothermal Treatment.

    PubMed

    Ide, Yusuke; Inami, Nozomu; Hattori, Hideya; Saito, Kanji; Sohmiya, Minoru; Tsunoji, Nao; Komaguchi, Kenji; Sano, Tsuneji; Bando, Yoshio; Golberg, Dmitri; Sugahara, Yoshiyuki

    2016-03-01

    Although tremendous effort has been directed to synthesizing advanced TiO2 , it remains difficult to obtain TiO2 exhibiting a photocatalytic efficiency higher than that of P25, a benchmark photocatalyst. P25 is composed of anatase, rutile, and amorphous TiO2 particles, and photoexcited electron transfer and subsequent charge separation at the anatase-rutile particle interfaces explain its high photocatalytic efficiency. Herein, we report on a facile and rational hydrothermal treatment of P25 to selectively convert the amorphous component into crystalline TiO2 , which is deposited between the original anatase and rutile particles to increase the particle interfaces and thus enhance charge separation. This process produces a new TiO2 exhibiting a considerably enhanced photocatalytic efficiency. This method of synthesizing this TiO2 , inspired by a recently burgeoning zeolite design, promises to make TiO2 applications more feasible and effective. PMID:26891152

  20. Acetaldehyde Photochemistry on TiO2(110)

    SciTech Connect

    Zehr, Robert T.; Henderson, Michael A.

    2008-07-01

    The ultraviolet (UV) photon induced decomposition of acetaldehyde adsorbed on the oxidized rutile TiO2(110) surface was studied with photon stimulated desorption (PSD) and thermal programmed desorption (TPD). Acetaldehyde desorbs molecularly from TiO2(110) with minor decomposition channels yielding butene on the reduced TiO2 surface and acetate on the oxidized TiO2 surface. Acetaldehyde adsorbed on oxidized TiO2(110) undergoes a facile thermal reaction to form a photoactive acetaldehyde-oxygen complex. UV irradiation of the acetaldehyde-oxygen complex initiated photofragmentation of the complex resulting in the ejection of methyl radical into gas phase and conversion of the surface bound fragment to formate.

  1. Effect of TiO2 blocking layer on TiO2 nanorod arrays based dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Sivakumar, R.; Paulraj, M.

    2016-05-01

    Highly ordered rutile titanium dioxide nanorod (TNR) arrays (1.2 to 6.2 μm thickness) were grown on TiO2 blocking layer chemically deposited on fluorine doped tin oxide (FTO) substrate and were used as photo-electrodes to fabricate dye sensitized solar cells (DSSC's). Homogeneous layer of TiO2 on FTO was achieved by using aqueous peroxo- titanium complex (PTC) solutions via chemical bath deposition. Structural and morphological properties of the prepared samples were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) measurements. TNR arrays (6.2 μm) with TiO2 blocking layer showed higher energy conversion efficiency (1.46%) than that without TiO2 blocking layer. The reason can be ascertained to the suppression of electron-hole recombination at the semiconductor/electrolyte interface by the effect of TiO2 blocking layer.

  2. Dramatic activity of mixed-phase TiO2 photocatalyst synthesized by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Li, Huiquan; Xu, Bolian; Fan, Yining

    2013-02-01

    The mixed-phase TiO2 photocatalysts with different anatase/rutile/brookite ratios and high specific surface area (157-218 m2/g) were prepared by hydrothermal method at 100 °C and the effect of rutile content in TiO2 on the BET surface area, light absorption and separation efficiency of photogenerated charge carriers was studied and correlated to the photocatalytic activity of TiO2. Rutile content increased from 0% to 100% by increasing the amount of TiCl4 in aqueous phase and the initial pH value of reaction solution played an important role in the phase composition of TiO2. The photocatalytic mechanism of mixed-phase TiO2 was discussed.

  3. Phase dependent photocatalytic activity of Ag loaded TiO2 films under sun light

    NASA Astrophysics Data System (ADS)

    Madhavi, V.; Kondaiah, P.; Shaik, Habibuddin; Rao, G. Mohan

    2016-02-01

    Well-crystallized anatase and mixed (anatase-rutile) phase TiO2 thin films were deposited by DC magnetron sputtering technique at various DC powers in the range of 80-140 W. Pure anatase phase was observed in the TiO2 films deposited at low power of 80 W. Films deposited at 120 W were composed of both anatase and rutile phases. At higher power of 140 W, the films are rutile dominated and the rutile percentage increased from 0 to 82% with increase of DC power. The same results of phase change were confirmed by Raman studies. The surface morphology of the TiO2 films showed that the density of the films increased with increase of sputter power. The optical band gap of the films varied from 3.35 to 3.14 eV with increase of DC power. The photocatalytic activity of the TiO2 films increased with increasing DC power up to 120 W and after that it decreases. We found that the TiO2 films deposited at 120 W with 48% of rutile phase, exhibited high photocatalytic activity (43% of degradation) under UV light compared with other TiO2 films. After loading the optimized Ag nanoparticles on the mixed phase TiO2 films, the photocatalytic activity shifted from UV to visible region with enhancement of photocatalytic activity (55% of degradation).

  4. Structural, Optical and Thermal Investigations of TiO2 and S-Doped TiO2 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Divyanshu; Kumar, Ashavani

    2011-12-01

    Titanium dioxide (TiO2) and sulfur doped titanium dioxide (S-doped TiO2) nanoparticles are synthesized by Coprecipitation technique using titanium trichloride (TiCl3) as precursor, ammonium hydroxide (NH4OH) as solvent and sodium sulfite as source of sulfur. The X-ray diffraction (xrd) pattern reveals that TiO2 Nanoparticles are in anatase phase and anatase content decreases with increasing S-doping. The Differential Scanning Calorimetry (DSC) analysis elucidates the metastable anatase phase changes to stable rutile phase at 746 °C temperature. The UV/Vis study predicts larger band gap of TiO2 Nanoparticles as compare to bulk and blue shift with increasing S-doping.

  5. Nitrogen doped TiO2 nano-particles: Phase control by solution combustion method

    NASA Astrophysics Data System (ADS)

    Bapna, Komal; Choudhary, R. J.; Phase, D. M.; Shastri, Sheetal; Prasad, R.; Ahuja, B. L.

    2016-05-01

    N-doped TiO2 nano powders were prepared by sol-gel solution combustion method. The influence of different fuels (urea and citric acid) used in obtaining N-TiO2 nano particles in similar conditions (heat treatment, amount of precursors) has been investigated. The growth of different phases of TiO2 (anatase and rutile) is strongly affected by the ligands and the dehydration reaction. Reduction in the band gap of TiO2 and features observed in the XPS spectra confirm the incorporation of N into TiO2 matrix.

  6. Elementary photocatalytic chemistry on TiO2 surfaces.

    PubMed

    Guo, Qing; Zhou, Chuanyao; Ma, Zhibo; Ren, Zefeng; Fan, Hongjun; Yang, Xueming

    2016-07-01

    Photocatalytic hydrogen production and pollutant degradation provided both great opportunities and challenges in the field of sustainable energy and environmental science. Over the past few decades, we have witnessed fast growing interest and efforts in developing new photocatalysts, improving catalytic efficiency and exploring the reaction mechanism at the atomic and molecular levels. Owing to its relatively high efficiency, nontoxicity, low cost and high stability, TiO2 becomes one of the most extensively investigated metal oxides in semiconductor photocatalysis. Fundamental studies on well characterized single crystals using ultrahigh vacuum based surface science techniques could provide key microscopic insight into the underlying mechanism of photocatalysis. In this review, we have summarized recent progress in the photocatalytic chemistry of hydrogen, water, oxygen, carbon monoxide, alcohols, aldehydes, ketones and carboxylic acids on TiO2 surfaces. We focused this review mainly on the rutile TiO2(110) surface, but some results on the rutile TiO2(011), anatase TiO2(101) and (001) surfaces are also discussed. These studies provided fundamental insights into surface photocatalysis as well as stimulated new investigations in this exciting field. At the end of this review, we have discussed how these studies can help us to develop new photocatalysis models. PMID:26335268

  7. Cubic anatase TiO2 nanocrystals with enhanced photocatalytic CO2 reduction activity.

    PubMed

    Xu, Quanlong; Yu, Jiaguo; Zhang, Jun; Zhang, Jinfeng; Liu, Gang

    2015-05-01

    Single-crystalline anatase TiO2 nanocubes with exposed {100} and {001} facets, prepared by hydrothermal and calcination methods, display especially high photocatalytic activity toward CO2 reduction to methane and methanol, due to the synergistic effects of better crystallization, a more negative conduction band position and co-exposed {100} and {001} facets. PMID:25864947

  8. Preparation of atomically flat TiO2(001) surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Weitering, Hanno H.; Snijders, Paul C.

    2015-03-01

    Transition metal oxides with the rutile structure (MO2, M = e.g. Ti, V, or Nb) have highly directional partially occupied t2g orbitals. Some of these orbitals form quasi-1D electronic bands along the rutile c-axis, and Peierls-like ordering phenomena have been observed in VO2 and NbO2. Tailoring the electronic properties of these materials via quantum confinement requires epitaxial growth on suitable substrates such as low index TiO2 surfaces. Because of the high surface energy of rutile TiO2(001), the standard approach of sputtering and annealing usually introduces faceting. Here we demonstrate a facile method to create atomically flat, non-faceted TiO2(001) surfaces. Using scanning tunneling microscopy we observe terraces with a width of approximately 150 nm. Step heights of approximately 0.3 nm are observed, consistent with the c lattice parameter of rutile TiO2. Low energy electron diffraction patterns reveal sharp diffraction spots with an in-plane lattice constant of 0.358 nm which is consistent with a (1x1) ordering of the (001) plane. These TiO2(001) single crystal surfaces can serve as an ideal substrate for further growth of rutile heterostructures. Research sponsored by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  9. Electronic and optical properties of TiO2 and its polymorphs by Z-scan method

    NASA Astrophysics Data System (ADS)

    Divya, S.; V, P. N. Nampoori; P, Radhakrishnan; A, Mujeeb

    2014-08-01

    TiO2 is a material which has attracted considerable attention from the scientific community for its innumerable properties. TiO2 is known to exist in nature in three different crystalline structures: rutile, anatase, and brookite. Anatase and rutile TiO2 films have been widely characterized for their potential applications in solar cells, self-cleaning coatings, and photocatalysis. In the present report, the third-order nonlinear susceptibilities of TiO2 and its polymorphs, anatase, and rutile, prepared by the sol—gel technique followed by heat treatment are investigated using the Z-scan technique at a wavelength of 532 nm with a duration of 7 ns. Imaginary and real values of χ(3) for amorphous, anatase, and rutile are also calculated and found to be 5 × 10-19 m2/V2, 27 × 10-19 m2/V2, 19 × 10-19 m2/V2, respectively. It is found that the values of the optical constants of amorphous TiO2 after heat treatment vary considerably. It is assumed that this could be due to the variation in the electronic structure of TiO2 synchronous with the formation of its polymorphs, anatase, and rutile. Amorphous TiO2 is marked by the localization of the tail states near the band gap, whereas its crystalline counterparts are characterized by completely delocalized tail states.

  10. BIOLOGICAL RESPONSE TO NANO-SCALE TIO2: ROLE OF PARTICLE DOSE, SHAPE AND RETENTION

    PubMed Central

    Silva, Rona M.; TeeSy, Christel; Franzi, Lisa; Weir, Alex; Westerhoff, Paul; Evans, James E.; Pinkerton, Kent E.

    2015-01-01

    TiO2 is one of the most widely used nanomaterials, valued for its highly refractive, photocatalytic and pigmenting properties. TiO2 is also classified by the International Agency for Research on Cancer (IARC) as a possible human carcinogen. The objectives of this study were to establish a lowest observed effect level (LOEL) for nano-scale TiO2, determine TiO2 uptake in the lungs, and estimate toxicity based on physico-chemical properties and retention in the lungs. In vivo lung toxicity of nano-scale TiO2 using varying forms of well-characterized, highly-dispersed TiO2 was assessed. Anatase/rutile P25 spheres (TiO2-P25), pure anatase spheres (TiO2-A), and anatase nanobelts (TiO2-NB) were tested. To determine the effects of dose and particle characteristics, male Sprague-Dawley rats were given TiO2 (0, 20, 70, or 200 µg) via intratracheal instillation. Broncho-alveolar lavage fluid (BALF) and lung tissue were obtained for analysis 1 and 7 days post exposure. Despite abundant TiO2 inclusions in all exposed animals, only TiO2-NB elicited any significant degree of inflammation seen in BALF at the 1-day time-point. This inflammation resolved by 7 days; although, TiO2 particles had not cleared from alveolar macrophages recovered from the lung. Histological examination showed TiO2-NB caused cellular changes at day 1 which were still evident at day 7. We conclude TiO2-NB is the most inflammatory with a lowest observable effect level of 200 µg at 1 day post instillation. PMID:24156719

  11. Controlled synthesis of single-crystalline graphene

    SciTech Connect

    Xueshen, Wang Jinjin, Li Qing, Zhong; Yuan, Zhong; Mengke, Zhao; Yonggang, Liu

    2014-03-15

    This paper reports the controlled synthesis of single-crystalline graphene on the back side of copper foil using CH{sub 4} as the precursor. The influence of growth time and the pressure ratio of CH{sub 4}/H{sub 2} on the structure of graphene are examined. An optimized polymer-assisted method is used to transfer the synthesized graphene onto a SiO{sub 2}/Si substrate. Scanning electron microscopy and Raman spectroscopy are used to characterize the graphene.

  12. A Single-Crystalline Mesoporous Quartz Superlattice.

    PubMed

    Matsuno, Takamichi; Kuroda, Yoshiyuki; Kitahara, Masaki; Shimojima, Atsushi; Wada, Hiroaki; Kuroda, Kazuyuki

    2016-05-10

    There has been significant interest in the crystallization of nanostructured silica into α-quartz because of its physicochemical properties. We demonstrate a single-crystalline mesoporous quartz superlattice, a silica polymorph with unprecedentedly ordered hierarchical structures on both the several tens of nanometers scale and the atomic one. The mesoporous quartz superlattice consists of periodically arranged α-quartz nanospheres whose crystalline axes are mostly oriented in an assembly. The superlattice is prepared by thermal crystallization of amorphous silica nanospheres constituting a colloidal crystal. We found that the deposition of a strong flux of Li(+) only on the surface of silica nanospheres is effective for crystallization. PMID:27060365

  13. Two-Dimensional Hollow TiO2 Nanoplates with Enhanced Photocatalytic Activity.

    PubMed

    Song, Chuang; Wang, Lanfang; Gao, Feng; Lu, Qingyi

    2016-04-25

    Two-dimensional anatase TiO2 hollow nanoplates were firstly synthesized through a facile synthesis route by using α-Fe2 O3 nanoplates as removable templates. Two-dimensional hollow TiO2 nanoplates with different ratios of anatase and rutile phases were obtained by adjusting the calcining temperature. The average diameters were around 600 nm, and the shell thickness was approximately 30 nm. The photocatalytic performance of TiO2 was investigated by decomposing rhodamine B under simulated sunlight. Among the TiO2 samples, the anatase TiO2 hollow nanoplates manifested a significant enhancement in the photocatalytic performances. The excellent catalytic performance can be attributed to the unique structure of the two-dimensional anatase TiO2 hollow nanoplates, including a large surface area and increased dye-photocatalyst contact areas as well as more active sites for photodegradation. PMID:26996999

  14. Heterostructured TiO2 Nanorod@Nanobowl Arrays for Efficient Photoelectrochemical Water Splitting.

    PubMed

    Wang, Wenhui; Dong, Jingya; Ye, Xiaozhou; Li, Yang; Ma, Yurong; Qi, Limin

    2016-03-01

    Heterostructured TiO2 nanorod@nanobowl (NR@NB) arrays consisting of rutile TiO2 nanorods grown on the inner surface of arrayed anatase TiO2 nanobowls are designed and fabricated as a new type of photoanodes for photoelectrochemical (PEC) water splitting. The unique heterostructures with a hierarchical architecture are readily fabricated by interfacial nanosphere lithography followed by hydrothermal growth. Owing to the two-dimensionally arrayed structure of anatase nanobowls and the nearly radial alignment of rutile nanorods, the TiO2 NR@NB arrays provide multiple scattering centers and hence exhibit an enhanced light harvesting ability. Meanwhile, the large surface area of the NR@NB arrays enhances the contact with the electrolyte while the nanorods offer direct pathways for fast electron transfer. Moreover, the rutile/anatase phase junction in the NR@NB heterostructure improves charge separation because of the facilitated electron transfer. Accordingly, the PEC measurements of the TiO2 NR@NB arrays on the fluoride-doped tin oxide (FTO) substrate show significantly enhanced photocatalytic properties for water splitting. Under AM1.5G solar light irradiation, the unmodified TiO2 NR@NB array photoelectrode yields a photocurrent density of 1.24 mA cm(-2) at 1.23 V with respect to the reversible hydrogen electrode, which is almost two times higher than that of the TiO2 nanorods grown directly on the FTO substrate. PMID:26779803

  15. Solubility of TiO2 in Olivine from 1 to 8 Gpa

    NASA Astrophysics Data System (ADS)

    Tinker, D.; Lesher, C. E.

    2001-12-01

    Laboratory experiments have been conducted to determine the solubility of TiO2 in olivine from 1 to 8 GPa, between 1127° and 1560° C. These experiments were performed in the piston cylinder device (1 and 2 GPa) and the MA6/MA8 multianvil apparatus (3 to 8 GPa), using starting materials consisting of San Carlos olivine and 20 wt % TiO2 powder. Excess TiO2 forms rutile in all run products. The presence of rutile imposes unit activity of TiO2 in olivine and, thus, we measure maximum solubilities of Ti in olivine. This situation differs from studies in which olivine is in equilibrium with ilmenite [1,2,3]. Electron microprobe analyses of run products show that the TiO2 content of olivine has positive pressure dependence between 1 and 8 GPa. Olivine contains 0.2 wt % TiO2 between 1 and 3 GPa, at 1127° and 1460° C; TiO2 contents increase to 0.5 wt % between 3 and 8 GPa. Dobrzhinetskaya et al. [1] and Green et al. [2] observed a similar positive pressure dependence on TiO2 solubility in olivine between 6 and 14 GPa. However, TiO2 contents of olivine from 6 to 8 GPa in these studies are lower than TiO2 contents we find between 6 and 8 GPa. Lower TiO2 contents presumably reflect ilmenite-olivine equilibria. In contrast, Okamoto et al. [3] and Ulmer and Trommsdorff [4] did not report a positive pressure dependence on TiO2 solubility in olivine, although rutile was stable in the experiments of [4]. The positive pressure dependence of TiO2 solubility is important for the interpretation of high pressure metamorphic rocks containing abundant exsolved titanate rods, which on recombination can yield 0.6 wt % TiO2 in host olivine before exsolution [5]. We estimate from our data that olivine containing 0.6 wt % TiO2 originated at a minimum depth of 10 GPa. The positive pressure dependence of TiO2 in olivine offers an additional pathway for the transport of Ti and other high field strength elements into the mantle, and these elements may later be recovered by rising mantle plumes

  16. Hierarchical Oriented Anatase TiO2 Nanostructure arrays on Flexible Substrate for Efficient Dye-sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Wu, Wu-Qiang; Rao, Hua-Shang; Xu, Yang-Fan; Wang, Yu-Fen; Su, Cheng-Yong; Kuang, Dai-Bin

    2013-05-01

    The vertically oriented anatase single crystalline TiO2 nanostructure arrays (TNAs) consisting of TiO2 truncated octahedrons with exposed {001} facets or hierarchical TiO2 nanotubes (HNTs) consisting of numerous nanocrystals on Ti-foil substrate were synthesized via a two-step hydrothermal growth process. The first step hydrothermal reaction of Ti foil and NaOH leads to the formation of H-titanate nanowire arrays, which is further performed the second step hydrothermal reaction to obtain the oriented anatase single crystalline TiO2 nanostructures such as TiO2 nanoarrays assembly with truncated octahedral TiO2 nanocrystals in the presence of NH4F aqueous or hierarchical TiO2 nanotubes with walls made of nanocrystals in the presence of pure water. Subsequently, these TiO2 nanostructures were utilized to produce dye-sensitized solar cells in a backside illumination pattern, yielding a significant high power conversion efficiency (PCE) of 4.66% (TNAs, JSC = 7.46 mA cm-2, VOC = 839 mV, FF = 0.75) and 5.84% (HNTs, JSC = 10.02 mA cm-2, VOC = 817 mV, FF = 0.72), respectively.

  17. Preparation and photoluminescence properties of europium ions doped TiO2 nanocrystals.

    PubMed

    Liu, Hai; Yu, Lixin

    2013-07-01

    In this paper, pure and Eu3+ doped TiO2 nanocrystals (NCs) have been fabricated successfully by a two steps of sol-gel and hydrothermal methods. The microstructures, morphologies and photoluminescent properties of Eu(3+)-TiO2 were investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and photoluminescence spectroscopy (PL). XRD and PL results show that the existent of rare earth can inhibit the transformation of TiO2 NCs from anatase to rutile phase and can improve the luminescence intensity of the prepared samples. The room-temperature PL emission of the as-grown samples is dominated by the 5D(0)-7F(j) transitions of Eu3+ ions. But the luminescence intensity drops dramatically when the annealing temperature reaches a relatively high degree because of the formation of the rutile phase of TiO2 NCs hosts. PMID:23901539

  18. Nature of Rutile Nuclei in Anatase-to-Rutile Phase Transition.

    PubMed

    Zhu, Sheng-Cai; Xie, Song-Hai; Liu, Zhi-Pan

    2015-09-01

    The solid phase transition of TiO2, in particular anatase to rutile, has been extensively studied in the past 30 years. To seek the nucleation site at the beginning of phase transition is highly challenging, which asks for new theoretical techniques with high spatial and temporal resolution. This work reports the first evidence on the atomic structure of the nucleation sites in the TiO2 anatase-to-rutile phase transition. Novel automated theoretical methods, namely stochastic surface walking based pathway sampling methods, are utilized to resolve the lowest energy pathways at the initial stage of phase transition. We show that among common anatase surfaces, only the (112) ridged surface provides the nucleation site for phase transition, which can lead to the formation of both TiO2-II and brookite thin slabs. The TiO2-II phase is kinetically preferred product; the propagation into the subsurface is still hindered by high barriers that is the origin for the slow kinetics of nuclei formation. The rutile nuclei are thus not rutile phase but nascent metastable TiO2-II phase in an anatase matrix. The phase transition kinetics is found to be sensitive to the compressive strain and the crystallographic directions. The results rationalize the size and morphology dependence of the anisotropic phase transition kinetics of anatase particles and could facilitate the rational design of material via controlled solid phase transition. PMID:26289453

  19. Multiphoton Effects in Rutile.

    NASA Astrophysics Data System (ADS)

    Royce, Gerald A.

    Multiphoton effects are investigated in crystalline rutile TiO(,2) using Nd:YAG laser photons. The 1.06 micron laser is operated in Q-switched mode with intensities up to 1.4 x 10('6) watts/cm('2) on the rutile crystal. Photoconductivity measurements provide data indicating a mixture of modes for electrons to be photoionized. Assuming aluminum impurity as the contributing sites, the first order photionization cross section is found to be 1.5 x 10('-26) cm('2) and second order cross section is found to be 7.7 x 10('-51) cm('4)-s. No appreciable change in cross section is observed for circular versus linear polarization of the laser. Observations of the photo-emission of the laser illuminated crystal provide radiative relaxation times on the order of 100 nanoseconds with emission peaks at 4500 and 5000 angstroms plus a near infrared continuum out to 1 micron. The thermoluminescence of rutile shows a number of trapping levels between 0.4 and 0.8 eV below the conduction band. These are attributed to an aluminum impurity.

  20. Photocatalytic Properties of TiO2 Porous Network Film.

    PubMed

    Yu, Lianqing; Zhi, Qianqian; Huang, Chengxing; Zhang, Yaping; Dong, Kaituo; Neppolian, B

    2015-09-01

    Three-dimensional porous network TiO2 film (PW-film) and nanoparticles film were synthesized on surface of the Ti foil by a facile method to investigate both the photoelectrochemical and photocatalytic properties. The prepared samples were characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM) and X-ray diffraction spectroscopy (XRD) techniques. Methylene blue was used as a target molecule to estimate the photocatalytic activity of the films. Results revealed that the hydrothermal temperature and time have great influence on the crystal type and film morphology of TiO2 catalysts. A higher hydrothermal temperature is benefit for the formation of anatase phase of TiO2 nanotubes with PW-film, which had a large number of nodes. After investigation of the photoelectrochemical properties, a maximum photoconversion efficiency of 4.79% is observed for nanoparticles film with rutile phase of TiO2 under UV light illumination, which was incredible 2 times higher than that of the PW-film with anatase phase. It was shown that the morphology of TiO2 film contributes more significant effect on photocatalytic and photoelectric performance than its crystal type. PMID:26716214

  1. Does photocatalytic activity of TiO2 nanoparticles correspond to photo-cytotoxicity? Cellular uptake of TiO2 nanoparticles is important in their photo-cytotoxicity.

    PubMed

    Horie, Masanori; Sugino, Sakiko; Kato, Haruhisa; Tabei, Yosuke; Nakamura, Ayako; Yoshida, Yasukazu

    2016-05-01

    Titanium dioxide (TiO2) nanoparticles are important industrial nano-objects with wide applications, including as photocatalysts and sunscreen components. Recently, the phototoxicity of TiO2 nanoparticles has been a concern. However, phototoxicity caused by photocatalytic activity may differ between anatase and rutile nanoparticles. In the present study, we compared the phototoxicity of anatase and rutile nanoparticles. Human keratinocyte HaCaT cells were treated with stable TiO2 nanoparticle suspensions. Without UVA irradiation, TiO2 nanoparticles did not affect mitochondrial activity or cell membranes. However, exposure to rutile nanoparticle suspensions inhibited cell growth and induced HO-1 gene expression without UVA irradiation. These effects may be explained by the hydrophobic surface of rutile nanoparticles. Next, TiO2-exposed cells were irradiated with UVA for 4 h and effects of TiO2 nanoparticles on cells were examined. The rutile nanoparticles did not show any cellular effects after UVA irradiation. However, the anatase nanoparticles caused strong phototoxicity. Decreased mitochondrial activity, cell membrane damage and the induction of oxidative stress were observed in the cells exposed to anatase nanoparticles with UVA irradiation. Cellular uptake of the nanoparticles was observed in both anatase- and rutile-exposed cells. These results suggest that internalized anatase nanoparticles are important for phototoxicity. Additionally, the exposure of a 3D skin model to TiO2 nanoparticles did not result in significant toxicity. In conclusion, rutile nanoparticles used in sunscreen did not exhibit phototoxic activity. Despite the strong phototoxic activity of anatase nanoparticles in cell cultures, they demonstrated no phototoxicity using a 3D skin model. PMID:27142467

  2. Preparation of TiO2 Nanocrystallite Powders Coated with 9 mol% ZnO for Cosmetic Applications in Sunscreens

    PubMed Central

    Ko, Horng-Huey; Chen, Hui-Ting; Yen, Feng-Ling; Lu, Wan-Chen; Kuo, Chih-Wei; Wang, Moo-Chin

    2012-01-01

    The preparation of TiO2 nanocrystallite powders coated with and without 9 mol% ZnO has been studied for cosmetic applications in sunscreens by a co-precipitation process using TiCl4 and Zn(NO3)2·6H2O as starting materials. XRD results show that the phases of anatase TiO2 and rutile TiO2 coexist for precursor powders without added ZnO (T-0Z) and calcined at 523 to 973 K for 2 h. When the T-0Z precursor powders are calcined at 1273 K for 2 h, only the rutile TiO2 appears. In addition, when the TiO2 precursor powders contain 9 mol% ZnO (T-9Z) are calcined at 873 to 973 K for 2 h, the crystallized samples are composed of the major phase of rutile TiO2 and the minor phases of anatase TiO2 and Zn2Ti3O8. The analyses of UV/VIS/NIR spectra reveal that the absorption of the T-9Z precursor powders after being calcined has a red-shift effect in the UV range with increasing calcination temperature. Therefore, the TiO2 nanocrystallite powders coated with 9 mol% ZnO can be used as the attenuate agent in the UV-A region for cosmetic applications in sunscreens. PMID:22408415

  3. Modification of dense TiO2 particles using polyethylene glycol template: Synthesis, characterization, and photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Dostanić, J.; Lončarević, D.; Radosavljević-Mihajlović, A.; Jovanović, D. M.

    2015-12-01

    In this study, an effort has been made to prepare TiO2 materials by sol-gel technique using polyethylene glycol (PEG) as pore directing agent. Different PEG amounts were used during samples preparation in order to investigate the change in intrinsic material properties. The photocatalytic activity of prepared catalysts was estimated by measuring the decomposition of arylazo pyridone dye. The optimum template amount was determined, resulting in catalyst with enhanced textural properties, optimal anatase/rutile ratio and hence improved photocatalytic properties. Specific surface area and anatase/rutile ratio were found to be the main contributing factors to the catalyst activity. A synergistic effect between anatase and rutile TiO2 has been observed, since the presence of relatively inactive rutile phase enhanced the photoactivity of mixed TiO2.

  4. Impact of bimetal electrodes on dielectric properties of TiO2 and Al-doped TiO2 films.

    PubMed

    Kim, Seong Keun; Han, Sora; Jeon, Woojin; Yoon, Jung Ho; Han, Jeong Hwan; Lee, Woongkyu; Hwang, Cheol Seong

    2012-09-26

    Rutile structured Al-doped TiO(2) (ATO) and TiO(2) films were grown on bimetal electrodes (thin Ru/thick TiN, Pt, and Ir) for high-performance capacitors. The work function of the top Ru layer decreased on TiN and increased on Pt and Ir when it was thinner than ~2 nm, suggesting that the lower metal within the electrodes influences the work function of the very thin Ru layer. The use of the lower electrode with a high work function for bottom electrode eventually improves the leakage current properties of the capacitor at a very thin Ru top layer (≤2 nm) because of the increased Schottky barrier height at the interface between the dielectric and the bottom electrode. The thin Ru layer was necessary to achieve the rutile structured ATO and TiO(2) dielectric films. PMID:22869517

  5. Photoconductivity studies on amorphous and crystalline TiO2 films doped with gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Valverde-Aguilar, G.; García-Macedo, J. A.; Rentería-Tapia, V.; Aguilar-Franco, M.

    2011-06-01

    In this work, amorphous and crystalline TiO2 films were synthesized by the sol-gel process at room temperature. The TiO2 films were doped with gold nanoparticles. The films were spin-coated on glass wafers. The crystalline samples were annealed at 100°C for 30 minutes and sintered at 520°C for 2 h. All films were characterized using X-ray diffraction, transmission electronic microscopy and UV-Vis absorption spectroscopy. Two crystalline phases, anatase and rutile, were formed in the matrix TiO2 and TiO2/Au. An absorption peak was located at 570 nm (amorphous) and 645 nm (anatase). Photoconductivity studies were performed on these films. The experimental data were fitted with straight lines at darkness and under illumination at 515 nm and 645 nm. This indicates an ohmic behavior. Crystalline TiO2/Au films are more photoconductive than the amorphous ones.

  6. Effects of annealed temperature on the properties of TiO2 thin films

    NASA Astrophysics Data System (ADS)

    Kumar, Avesh

    2016-05-01

    In this work, the structural, morphological and electrical properties of TiO2 thin films are studied. The phase transformation of TiO2 from anatase to rutile is occurred at a certain temperature. This transformation increases defects concentration onthe surface of the film which acts as trapping sites for carriers, thereby affecting the Fermi level of TiO2 film.Quantitative estimation of Fermi level shifting is measured in terms of work function measurement using scanning Kelvin probe measurement. Work function of TiO2 was found to decrease with increasing annealed temperature indicating shifting of Fermi level towards conduction band. Position of Fermi level plays an important role in phase transformation and electronic properties of TiO2.

  7. Characterization and acetone gas sensing properties of electrospun TiO2 nanorods

    NASA Astrophysics Data System (ADS)

    Bian, Haiqin; Ma, Shuyi; Sun, Aimin; Xu, Xiaoli; Yang, Guijin; Gao, Jiming; Zhang, Zhengmei; Zhu, Haibin

    2015-05-01

    In this work, random network structure of titanium dioxides (TiO2) nanorods was synthesized by calcining electrospun TiO2/PVP hybrid rods. Structural, optical and acetone gas sensing properties of the nanorods were investigated. The TiO2 nanorods are polycrystalline with a mixture of anatase and rutile structures. The diameter of TiO2 nanorods is about 500 nm. The photoluminescence (PL) spectra measurement at room temperature revealed that a broad emission band including the two emission peaks are about at 401 and 467 nm. The sensor shows the high response, good reproducibility and selectivity for acetone (CH3COCH) with a fast response and recovery time at 500 °C. In addition, the acetone sensing mechanism of the TiO2 nanorods sensors is discussed.

  8. A simple hydrothermal preparation of TiO 2 nanomaterials using concentrated hydrochloric acid

    NASA Astrophysics Data System (ADS)

    Nguyen Phan, Thuy-Duong; Pham, Hai-Dinh; Viet Cuong, Tran; Jung Kim, Eui; Kim, Sunwook; Woo Shin, Eun

    2009-12-01

    A TiO 2 nanostructure was synthesized via a simple method using only concentrated hydrochloric acid as the morphological/crystallographic controlling agent. Microscopy images showed that the texture of the TiO 2 powder could be easily engineered and tuned by tailoring the HCl volume, creating cuboid, flower, cauliflower, and ball-shaped particles. Three-dimensional TiO 2 microparticles resulted from the self-assembly of nanostructured sub-units including nanocubes, nanoprisms, and nanorods. The crystalline anatase and rutile phases were also identified depending on the acidic medium. HCl played a key role in orchestrating the structures and morphologies of the TiO 2 nanoscale materials. The phase transformation and morphological changes were strongly related to the crystal growth mechanism of the TiO 2 nanostructure.

  9. Controllable Synthesis and Tunable Photocatalytic Properties of Ti3+-doped TiO2

    PubMed Central

    Ren, Ren; Wen, Zhenhai; Cui, Shumao; Hou, Yang; Guo, Xiaoru; Chen, Junhong

    2015-01-01

    Photocatalysts show great potential in environmental remediation and water splitting using either artificial or natural light. Titanium dioxide (TiO2)-based photocatalysts are studied most frequently because they are stable, non-toxic, readily available, and highly efficient. However, the relatively wide band gap of TiO2 significantly limits its use under visible light or solar light. We herein report a facile route for controllable synthesis of Ti3+-doped TiO2 with tunable photocatalytic properties using a hydrothermal method with varying amounts of reductant, i.e., sodium borohydride (NaBH4). The resulting TiO2 showed color changes from light yellow, light grey, to dark grey with the increasing amount of NaBH4. The present method can controllably and effectively reduce Ti4+ on the surface of TiO2 and induce partial transformation of anatase TiO2 to rutile TiO2, with the evolution of nanoparticles into hierarchical structures attributable to a high pressure and strong alkali environment in the synthesis atmosphere; in this way, the photocatalytic activity of Ti3+-doped TiO2 under visible-light can be tuned. The as-developed strategy may open up a new avenue for designing and functionalizing TiO2 materials for enhancing visible light absorption, narrowing band gap, and improving photocatalytic activity. PMID:26044406

  10. A comparative study of TiO2 nanoparticles synthesized in premixed and diffusion flames

    NASA Astrophysics Data System (ADS)

    Ma, Hsiao-Kang; Yang, Hsiung-An

    2010-12-01

    Previous studies have been shown that synthesis of titania (TiO2) crystalline phase purity could be effectively controlled by the oxygen concentration through titanium tetra-isopropoxide (TTIP) via premixed flame from a Bunsen burner. In this study, a modified Hencken burner was used to synthesize smaller TiO2 nanoparticles via short diffusion flames. The frequency of collisions among particles would decrease and reduce TiO2 nanoparticle size in a short diffusion flame height. The crystalline structure of the synthesized nanoparticles was characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), Barrett-Joyner-Halenda (BJH) and Brunauer-Emmett-Teller (BET) measurements. The characteristic properties of TiO2 nanoparticles synthesized from a modified Hencken burner were compared with the results from a Bunsen burner and commercial TiO2 (Degussa P25). The results showed that the average particle size of 6.63 nm from BET method was produced by a modified Hencken burner which was smaller than the TiO2 in a Bunsen burner and commercial TiO2. Moreover, the rutile content of TiO2 nanoparticles increased as the particle collecting height increased. Also, the size of TiO2 nanoparticles was highly dependent on the TTIP loading and the collecting height in the flame.

  11. Controllable Synthesis and Tunable Photocatalytic Properties of Ti(3+)-doped TiO2.

    PubMed

    Ren, Ren; Wen, Zhenhai; Cui, Shumao; Hou, Yang; Guo, Xiaoru; Chen, Junhong

    2015-01-01

    Photocatalysts show great potential in environmental remediation and water splitting using either artificial or natural light. Titanium dioxide (TiO2)-based photocatalysts are studied most frequently because they are stable, non-toxic, readily available, and highly efficient. However, the relatively wide band gap of TiO2 significantly limits its use under visible light or solar light. We herein report a facile route for controllable synthesis of Ti(3+)-doped TiO2 with tunable photocatalytic properties using a hydrothermal method with varying amounts of reductant, i.e., sodium borohydride (NaBH4). The resulting TiO2 showed color changes from light yellow, light grey, to dark grey with the increasing amount of NaBH4. The present method can controllably and effectively reduce Ti(4+) on the surface of TiO2 and induce partial transformation of anatase TiO2 to rutile TiO2, with the evolution of nanoparticles into hierarchical structures attributable to a high pressure and strong alkali environment in the synthesis atmosphere; in this way, the photocatalytic activity of Ti(3+)-doped TiO2 under visible-light can be tuned. The as-developed strategy may open up a new avenue for designing and functionalizing TiO2 materials for enhancing visible light absorption, narrowing band gap, and improving photocatalytic activity. PMID:26044406

  12. Natural dye sensitized TiO2 nanorods assembly of broccoli shape based solar cells.

    PubMed

    Yuvapragasam, Akila; Muthukumarasamy, N; Agilan, S; Velauthapillai, Dhayalan; Senthil, T S; Sundaram, Senthilarasu

    2015-07-01

    TiO2 nanorods based thin films with rutile phase have been synthesized using template free low temperature hydrothermal method. The scanning electron microscope images showed that the prepared TiO2 samples were made of TiO2 nanorods and the nanorods had arranged by itself to form a broccoli like shape. The X-ray diffraction studies revealed that the prepared TiO2 samples exhibit rutile phase. The grown TiO2 nanorods had been sensitized using the flowers of Sesbania (S) grandiflora, leaves of Camellia (C) sinensis and roots of Rubia (R) tinctorum. Dye sensitized solar cells had been fabricated using the natural dye sensitized TiO2 nanorods based thin film photoelectrode and the open circuit voltage and short circuit current density were found to lie in the range of 0.45-0.6 V and 5.6-6.4 mA/cm(2) respectively. The photovoltaic performance of all the fabricated natural dye sensitized TiO2 solar cells indicate that natural dyes have the potential to be used as effective sensitizer in dye sensitized solar cells. PMID:25974906

  13. Enhanced photocatalytic activity in anodized WO3-loaded TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Nazari, M.; Golestani-Fard, F.; Bayati, R.; Eftekhari-Yekta, B.

    2015-04-01

    In this work, TiO2 and WO3-grafted TiO2 nanotubes were grown via anodizing of titanium substrates in tungstate containing electrolytes. The samples were characterized in detail by XRD, XPS, SEM, EDX, and UV-Vis spectrophotometry techniques. Besides, photocatalytic characteristics were evaluated through measuring the degradation rate of 4-chlorophenol to establish a correlation between structure and photochemical properties. We were able to control morphology and growth mode of nanotubes from a tubular to a worm-like structure by changing the electrolyte composition. The samples possessed an anatase-rutile matrix where the anatase/rutile ratio was found to increase with the concentration of tungstate in the electrolyte. We attributed this observation to change in electrical conductivity of the electrolyte and the heat generated on the substrates. It was unambiguously revealed that a composite of WO3 and TiO2 forms and, in parallel, tungsten is doped into the crystalline lattice of TiO2. The maximum photocatalytic reaction rate constant for TiO2 and WO3-TiO2 samples was determined to be 0.0131 and 0.0174 min-1 respectively. The grafting TiO2 nanotubes with WO3 enhances the photocatalytic activity mainly due to the hindrance of charge carrier recombination and the formation of a more acidic surface. We established a correlation between structure, stoichiometry, and photocatalytic characteristics of nanotubes.

  14. Near-infrared electroluminescence from light-emitting devices based on Nd-doped TiO2/p+-Si heterostructures

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Lv, Chunyan; Zhu, Chen; Li, Si; Ma, Xiangyang; Yang, Deren

    2014-05-01

    We report on near-infrared (NIR) electroluminescence (EL) from the light-emitting devices based on Nd-doped TiO2/p+-Si heterostructures. NIR emissions peaking at ˜910, 1090, and 1370 nm, originated from intra-4f transitions in Nd3+ ions, can be activated by a forward bias voltage as low as ˜5 V. Such NIR EL is triggered by the energy transferred from TiO2 host to Nd3+ ions. It is found that the coexistence of anatase and rutile phases in the TiO2 host enables the device to exhibit pronounced Nd-related EL without concurrent emission from the TiO2 host itself, quite other than the case of existing only anatase phase in TiO2 host. We tentatively suggest that the anatase/rutile interface states play important role in the energy transfer from TiO2 host to Nd3+ ions.

  15. Photocatalytical Antibacterial Activity of Mixed-Phase TiO2 Nanocomposite Thin Films against Aggregatibacter actinomycetemcomitans.

    PubMed

    Yeniyol, Sinem; Mutlu, Ilven; He, Zhiming; Yüksel, Behiye; Boylan, Robert Joseph; Ürgen, Mustafa; Karabuda, Zihni Cüneyt; Basegmez, Cansu; Ricci, John Lawrence

    2015-01-01

    Mixed-phase TiO2 nanocomposite thin films consisting of anatase and rutile prepared on commercially pure Ti sheets via the electrochemical anodization and annealing treatments were investigated in terms of their photocatalytic activity for antibacterial use around dental implants. The resulting films were characterized by scanning electron microscopy (SEM), and X-ray diffraction (XRD). The topology was assessed by White Light Optical Profiling (WLOP) in the Vertical Scanning Interferometer (VSI) mode. Representative height descriptive parameters of roughness R a and R z were calculated. The photocatalytic activity of the resulting TiO2 films was evaluated by the photodegradation of Rhodamine B (RhB) dye solution. The antibacterial ability of the photocatalyst was examined by Aggregatibacter actinomycetemcomitans suspensions in a colony-forming assay. XRD showed that anatase/rutile mixed-phase TiO2 thin films were predominantly in anatase and rutile that were 54.6 wt% and 41.9 wt%, respectively. Craters (2-5 µm) and protruding hills (10-50 µm) on Ti substrates were produced after electrochemical anodization with higher R a and R z surface roughness values. Anatase/rutile mixed-phase TiO2 thin films showed 26% photocatalytic decolorization toward RhB dye solution. The number of colonizing bacteria on anatase/rutile mixed-phase TiO2 thin films was decreased significantly in vitro. The photocatalyst was effective against A. actinomycetemcomitans colonization. PMID:26576430

  16. Photocatalytical Antibacterial Activity of Mixed-Phase TiO2 Nanocomposite Thin Films against Aggregatibacter actinomycetemcomitans

    PubMed Central

    Yeniyol, Sinem; Mutlu, Ilven; He, Zhiming; Yüksel, Behiye; Boylan, Robert Joseph; Ürgen, Mustafa; Karabuda, Zihni Cüneyt; Basegmez, Cansu; Ricci, John Lawrence

    2015-01-01

    Mixed-phase TiO2 nanocomposite thin films consisting of anatase and rutile prepared on commercially pure Ti sheets via the electrochemical anodization and annealing treatments were investigated in terms of their photocatalytic activity for antibacterial use around dental implants. The resulting films were characterized by scanning electron microscopy (SEM), and X-ray diffraction (XRD). The topology was assessed by White Light Optical Profiling (WLOP) in the Vertical Scanning Interferometer (VSI) mode. Representative height descriptive parameters of roughness Ra and Rz were calculated. The photocatalytic activity of the resulting TiO2 films was evaluated by the photodegradation of Rhodamine B (RhB) dye solution. The antibacterial ability of the photocatalyst was examined by  Aggregatibacter actinomycetemcomitans suspensions in a colony-forming assay. XRD showed that anatase/rutile mixed-phase TiO2 thin films were predominantly in anatase and rutile that were 54.6 wt% and 41.9 wt%, respectively. Craters (2–5 µm) and protruding hills (10–50 µm) on Ti substrates were produced after electrochemical anodization with higher Ra and Rz surface roughness values. Anatase/rutile mixed-phase TiO2 thin films showed 26% photocatalytic decolorization toward RhB dye solution. The number of colonizing bacteria on anatase/rutile mixed-phase TiO2 thin films was decreased significantly in vitro. The photocatalyst was effective against A. actinomycetemcomitans colonization. PMID:26576430

  17. Biological response to nano-scale titanium dioxide (TiO2): role of particle dose, shape, and retention.

    PubMed

    Silva, Rona M; Teesy, Christel; Franzi, Lisa; Weir, Alex; Westerhoff, Paul; Evans, James E; Pinkerton, Kent E

    2013-01-01

    Titanium dioxide (TiO2) is one of the most widely used nanomaterials, valued for its highly refractive, photocatalytic, and pigmenting properties. TiO2 is also classified by the International Agency for Research on Cancer (IARC) as a possible human carcinogen. The objectives of this study were to (1) establish a lowest-observed-effect level (LOEL) for nano-scale TiO2, (2) determine TiO2 uptake in the lungs, and (3) estimate toxicity based on physicochemical properties and retention in the lungs. In vivo lung toxicity of nano-scale TiO2 using varying forms of well-characterized, highly dispersed TiO2 was assessed. Anatase/rutile P25 spheres (TiO2-P25), pure anatase spheres (TiO2-A), and anatase nanobelts (TiO2-NB) were tested. To determine the effects of dose and particle characteristics, male Sprague-Dawley rats were administered TiO2 (0, 20, 70, or 200 μg) via intratracheal instillation. Bronchoalveolar lavage fluid (BALF) and lung tissue were obtained for analysis 1 and 7 d post exposure. Despite abundant TiO2 inclusions in all exposed animals, only TiO2-NB displayed any significant degree of inflammation seen in BALF at the 1-d time point. This inflammation resolved by 7 d, although TiO2 particles had not cleared from alveolar macrophages recovered from the lung. Histological examination showed TiO2-NB produced cellular changes at d 1 that were still evident at d 7. Data indicate TiO2-NB is the most inflammatory with a LOEL of 200 μg at 1 d post instillation. PMID:24156719

  18. Hydrogen plasma reduced black TiO2sbnd B nanowires for enhanced photoelectrochemical water-splitting

    NASA Astrophysics Data System (ADS)

    Tian, Zhangliu; Cui, Huolei; Zhu, Guilian; Zhao, Wenli; Xu, JiJian; Shao, Feng; He, Jianqiao; Huang, Fuqiang

    2016-09-01

    Black TiO2 with various nanostructures and phase constitutions have been reported to exhibit excellent photocatalytic and photoelectrochemical (PEC) performance. Here, we report the fabrication of black nanostructured TiO2sbnd B through hydrogen plasma assisted reduction and its enhanced PEC properties for the first time. Both the obtained TiO2sbnd B and black TiO2sbnd B are single crystalline nanowires, while the black TiO2sbnd B samples exhibit much stronger visible and infrared light absorption. The optimal black TiO2sbnd B sample obtained by hydrogen plasma treatment at 425 °C yields a photocurrent density of 0.85 mA cm-2, a rather low onset potential of -0.937 VAg/AgCl and a high applied bias photon-to-current efficiency (ABPE) of 0.363%, which is far superior to the TiO2sbnd B (0.15 mA cm-2 photocurrent, -0.917 VAg/AgCl onset potential and 0.138% ABPE). The significantly enhanced PEC performance of the black TiO2sbnd B is ascribed to the introduction of moderate surface oxygen vacancies. These results indicate that the black TiO2sbnd B is a promising material for PEC application and solar energy utilization.

  19. Photocatalytic performance of nitrogen, osmium co-doped TiO2 for removal of eosin yellow in water under simulated solar radiation.

    PubMed

    Kuvarega, Alex T; Krause, Rui W M; Mamba, Bhekie B

    2013-07-01

    Nitrogen, osmium co-doped TiO2 photocatalysts were prepared by a modified sol-gel method using ammonia as the nitrogen source and osmium tetroxide as the source of osmium. The role of rutile phase OsO2 in enhancing the photocatalytic activity of rutile TiO2 towards the degradation of Eosin Yellow was investigated. The materials were characterised by various techniques that include FTIR, Raman, XRD, SEM, EDS, TEM, TGA and DRUV-Vis. The amorphous, oven dried sample was transformed to the anatase and then the rutile phase with increasing calcination temperature. DRUV-Vis analysis revealed a red shift in absorption with increasing calcination temperature, confirmed by a decrease in the band gap of the material. The photocatalytic activity of N, Os co-doped TiO2 was evaluated using eosin yellow degradation and activity increased with increase in calcination temperature under simulated solar irradiation. The rutile phase of the co-doped TiO2 was found to be more effective in degrading the dye (k(a) = 1.84 x 10(-2) min(-1)) compared to the anatase co-doped phase (k(a) = 9.90 x 10(-3) min(-1)). The enhanced photocatalytic activity was ascribed to the synergistic effects of rutile TiO2 and rutile OsO2 in the N, Os co-doped TiO2. PMID:23901525

  20. Solar-light photocatalytic disinfection using crystalline/amorphous low energy bandgap reduced TiO2

    NASA Astrophysics Data System (ADS)

    Kim, Youngmin; Hwang, Hee Min; Wang, Luyang; Kim, Ikjoon; Yoon, Yeoheung; Lee, Hyoyoung

    2016-04-01

    A generation of reactive oxygen species (ROS) from TiO2 under solar light has been long sought since the ROS can disinfect organic pollutants. We found that newly developed crystalline/amorphous reduced TiO2 (rTiO2) that has low energy bandgap can effectively generate ROS under solar light and successfully remove a bloom of algae. The preparation of rTiO2 is a one-pot and mass productive solution-process reduction using lithium-ethylene diamine (Li-EDA) at room temperature. Interestingly only the rutile phase of TiO2 crystal was reduced, while the anatase phase even in case of both anatase/rutile phased TiO2 was not reduced. Only reduced TiO2 materials can generate ROS under solar light, which was confirmed by electron spin resonance. Among the three different types of Li-EDA treated TiO2 (anatase, rutile and both phased TiO2), the both phased rTiO2 showed the best performance to produce ROS. The generated ROS effectively removed the common green algae Chlamydomonas. This is the first report on algae degradation under solar light, proving the feasibility of commercially available products for disinfection.

  1. Solar-light photocatalytic disinfection using crystalline/amorphous low energy bandgap reduced TiO2.

    PubMed

    Kim, Youngmin; Hwang, Hee Min; Wang, Luyang; Kim, Ikjoon; Yoon, Yeoheung; Lee, Hyoyoung

    2016-01-01

    A generation of reactive oxygen species (ROS) from TiO2 under solar light has been long sought since the ROS can disinfect organic pollutants. We found that newly developed crystalline/amorphous reduced TiO2 (rTiO2) that has low energy bandgap can effectively generate ROS under solar light and successfully remove a bloom of algae. The preparation of rTiO2 is a one-pot and mass productive solution-process reduction using lithium-ethylene diamine (Li-EDA) at room temperature. Interestingly only the rutile phase of TiO2 crystal was reduced, while the anatase phase even in case of both anatase/rutile phased TiO2 was not reduced. Only reduced TiO2 materials can generate ROS under solar light, which was confirmed by electron spin resonance. Among the three different types of Li-EDA treated TiO2 (anatase, rutile and both phased TiO2), the both phased rTiO2 showed the best performance to produce ROS. The generated ROS effectively removed the common green algae Chlamydomonas. This is the first report on algae degradation under solar light, proving the feasibility of commercially available products for disinfection. PMID:27121120

  2. Solar-light photocatalytic disinfection using crystalline/amorphous low energy bandgap reduced TiO2

    PubMed Central

    Kim, Youngmin; Hwang, Hee Min; Wang, Luyang; Kim, Ikjoon; Yoon, Yeoheung; Lee, Hyoyoung

    2016-01-01

    A generation of reactive oxygen species (ROS) from TiO2 under solar light has been long sought since the ROS can disinfect organic pollutants. We found that newly developed crystalline/amorphous reduced TiO2 (rTiO2) that has low energy bandgap can effectively generate ROS under solar light and successfully remove a bloom of algae. The preparation of rTiO2 is a one-pot and mass productive solution-process reduction using lithium-ethylene diamine (Li-EDA) at room temperature. Interestingly only the rutile phase of TiO2 crystal was reduced, while the anatase phase even in case of both anatase/rutile phased TiO2 was not reduced. Only reduced TiO2 materials can generate ROS under solar light, which was confirmed by electron spin resonance. Among the three different types of Li-EDA treated TiO2 (anatase, rutile and both phased TiO2), the both phased rTiO2 showed the best performance to produce ROS. The generated ROS effectively removed the common green algae Chlamydomonas. This is the first report on algae degradation under solar light, proving the feasibility of commercially available products for disinfection. PMID:27121120

  3. Influence of Material Properties on TiO2 Nanoparticle Agglomeration

    PubMed Central

    Zhou, Dongxu; Ji, Zhaoxia; Jiang, Xingmao; Dunphy, Darren R.; Brinker, Jeffrey; Keller, Arturo A.

    2013-01-01

    Emerging nanomaterials are being manufactured with varying particle sizes, morphologies, and crystal structures in the pursuit of achieving outstanding functional properties. These variations in these key material properties of nanoparticles may affect their environmental fate and transport. To date, few studies have investigated this important aspect of nanoparticles' environmental behavior. In this study, the aggregation kinetics of ten different TiO2 nanoparticles (5 anatase and 5 rutile each with varying size) was systematically evaluated. Our results show that, as particle size increases, the surface charge of both anatase and rutile TiO2 nanoparticles shifts toward a more negative value, and, accordingly, the point of zero charge shifts toward a lower value. The colloidal stability of anatase sphere samples agreed well with DLVO theoretical predictions, where an increase in particle size led to a higher energy barrier and therefore greater critical coagulation concentration. In contrast, the critical coagulation concentration of rutile rod samples correlated positively with the specific surface area, i.e., samples with higher specific surface area exhibited higher stability. Finally, due to the large innate negative surface charge of all the TiO2 samples at the pH value (pH = 8) tested, the addition of natural organic matter was observed to have minimal effect on TiO2 aggregation kinetics, except for the smallest rutile rods that showed decreased stability in the presence of natural organic matter. PMID:24282573

  4. Lithium insertion in nanostructured TiO(2)(B) architectures.

    PubMed

    Dylla, Anthony G; Henkelman, Graeme; Stevenson, Keith J

    2013-05-21

    Electric vehicles and grid storage devices have potentialto become feasible alternatives to current technology, but only if scientists can develop energy storage materials that offer high capacity and high rate capabilities. Chemists have studied anatase, rutile, brookite and TiO2(B) (bronze) in both bulk and nanostructured forms as potential Li-ion battery anodes. In most cases, the specific capacity and rate of lithiation and delithiation increases as the materials are nanostructured. Scientists have explained these enhancements in terms of higher surface areas, shorter Li(+) diffusion paths and different surface energies for nanostructured materials allowing for more facile lithiation and delithiation. Of the most studied polymorphs, nanostructured TiO2(B) has the highest capacity with promising high rate capabilities. TiO2(B) is able to accommodate 1 Li(+) per Ti, giving a capacity of 335 mAh/g for nanotubular and nanoparticulate TiO2(B). The TiO2(B) polymorph, discovered in 1980 by Marchand and co-workers, has been the focus of many recent studies regarding high power and high capacity anode materials with potential applications for electric vehicles and grid storage. This is due to the material's stability over multiple cycles, safer lithiation potential relative to graphite, reasonable capacity, high rate capability, nontoxicity, and low cost (Bruce, P. G.; Scrosati, B.; Tarascon, J.-M. Nanomaterials for Rechargeable Lithium Batteries. Angew. Chem., Int. Ed.2008, 47, 2930-2946). One of the most interesting properties of TiO2(B) is that both bulk and nanostructured forms lithiate and delithiate through a surface redox or pseudocapacitive charging mechanism, giving rise to stable high rate charge/discharge capabilities in the case of nanostructured TiO2(B). When other polymorphs of TiO2 are nanostructured, they still mainly intercalate lithium through a bulk diffusion-controlled mechanism. TiO2(B) has a unique open crystal structure and low energy Li

  5. Photocatalysis of Phenolic Compounds with Synthesized Nanoparticles TiO2/Sn2

    NASA Astrophysics Data System (ADS)

    Khuanmar, Kulyakorn; Wirojanagud, Wanpen; Kajitvichyanukul, Puangrat; Maensiri, Santi

    This study was aimed to determine the photocatalytic degradation of phenolic compounds contaminated in the pulp and paper wastewater with the synthesized nanoparticle TiO2/Sn2 and the commercial TiO2 (Sigma Aldrich). The studied phenolic compounds included 2-methoxy phenol (guaiacol), 2,6-dimethoxy phenol (syringol) and phenol. The synthesized TiO2/Sn2 was prepared by sol-gel technique, mixture of titanium solution and ethanol/polymer with 2% of tin. The characterization of the synthesized TiO2/Sn2 and the commercial TiO2 were performed by XRD, BET and SEM. The synthesized TiO2/Sn2 were: mixed phase of anatase:rutile of 85: 15, 14 nm crystalline size of anatase (101) and 47 nm rutile (110) and 65.7 m2 g-1 surface area by BET. On the other hand the commercial TiO2 (Sigma aldrich) only showed the anatase phase with particle size of 41 nm and 10.9 m2 g-1 surface area by BET. The photocatalytic degradation were tested on the individual and mixed phenolic compounds. The phenolic compound solution suspended with the catalyst was irradiated with UV light. The photocatalytic degradation of phenolic compounds by such two types was significantly different. TiO2/Sn2 presented the sequential degradation as syringol > guaiacol > phenol for both individual and mixed phenolic compounds. While the commercial TiO2 indicated the degradation as phenol>guaiacol>syringol for the individual phenolic compound and the reverse order of degradation as syringol>guaiacol>phenol for the mixed compounds.

  6. Design of Novel Visible Light Active Photocatalyst Materials: Surface Modified TiO2.

    PubMed

    Nolan, Michael; Iwaszuk, Anna; Lucid, Aoife K; Carey, John J; Fronzi, Marco

    2016-07-01

    Work on the design of new TiO2 based photocatalysts is described. The key concept is the formation of composite structures through the modification of anatase and rutile TiO2 with molecular-sized nanoclusters of metal oxides. Density functional theory (DFT) level simulations are compared with experimental work synthesizing and characterizing surface modified TiO2 . DFT calculations are used to show that nanoclusters of metal oxides such as TiO2 , SnO/SnO2 , PbO/PbO2 , ZnO and CuO are stable when adsorbed at rutile and anatase surfaces, and can lead to a significant red shift in the absorption edge which will induce visible light absorption; this is the first requirement for a useful photocatalyst. The origin of the red shift and the fate of excited electrons and holes are determined. For p-block metal oxides the oxidation state of Sn and Pb can be used to modify the magnitude of the red shift and its mechanism. Comparisons of recent experimental studies of surface modified TiO2 that validate our DFT simulations are described. These nanocluster-modified TiO2 structures form the basis of a new class of photocatalysts which will be useful in oxidation reactions and with a correct choice of nanocluster modified can be applied to other reactions. PMID:26833714

  7. Solid state precursor strategy for synthesizing hollow TiO2 boxes with a high percentage of reactive {001} facets exposed.

    PubMed

    Xie, Shuifen; Han, Xiguang; Kuang, Qin; Fu, Jie; Zhang, Lei; Xie, Zhaoxiong; Zheng, Lansun

    2011-06-21

    Three-dimensional, hollow, anatase TiO(2) boxes, each was enclosed by six single-crystalline TiO(2) plates exposed with highly reactive {001} facets, were facilely obtained by calcining a cubic TiOF(2) solid precursor at 500-600 °C. The formation of such particular nanostructures is attributed to the hard self-template restriction and the adsorption of F(-) ions from the TiOF(2). PMID:21559545

  8. Influence of rhodamine 6G doping on the optical properties of TiO2 sol-gel films

    NASA Astrophysics Data System (ADS)

    Tomás, S. A.; Stolik, S.; Palomino, R.; Lozada, R.; Persson, C.; Pepe, I.; da Silva, A. Ferreira

    2005-10-01

    Amorphous titanium dioxide (TiO2) thin films doped with rhodamine 6G (R6G) were deposited on glass substrates by the sol-gel process. The optical properties of the films were characterized by photoacoustic, excitation, and fluorescence spectroscopies. The absorption spectra of the R6G-doped TiO2 films exhibited two well-defined absorption regions: an absorption band over 2.0 eV attributed to rhodamine 6G and a band above 3.0 eV corresponding to TiO2 absorption. While the onset of the R6G absorption band was shifted by 0.06 eV towards lower energies as the R6G doping concentration increased within the interval of 0.01-0.10 mol %, the onset to high absorption (TiO2 band) for the doped films decreased only by 0.01 eV within the same interval. In addition, the optical absorption of undoped rutile-phase bulk TiO2 was calculated and compared to the experimental results. The estimated theoretical value of rutile TiO2 sample was 3.0 eV. This theoretical result shows good agreement when compared with the experimental data of undoped TiO2 sol-gel films, as well as the undoped TiO2 film prepared by sputtering.

  9. Plasma sprayed rutile titania-nanosilver antibacterial coatings

    NASA Astrophysics Data System (ADS)

    Gao, Jinjin; Zhao, Chengjian; Zhou, Jingfang; Li, Chunxia; Shao, Yiran; Shi, Chao; Zhu, Yingchun

    2015-11-01

    Rutile titania (TiO2) coatings have superior mechanical properties and excellent stability that make them preferential candidates for various applications. In order to prevent infection arising from bacteria, significant efforts have been focused on antibacterial TiO2 coatings. In the study, titania-nanosilver (TiO2/Ag) coatings with five different kinds of weight percentages of silver nanoparticles (AgNPs) were prepared by plasma spray. The feedstock powders, which had a composition of rutile TiO2 powders containing 1-10,000 ppm AgNPs, were double sintered and deposited on stainless steel substrates with optimized spraying parameters. X-Ray diffraction and scanning electron microscopy were used to analysize the phase composition and surface morphology of TiO2/Ag powders and coatings. Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were employed to examine the antibacterial activity of the as-prepared coatings by bacterial counting method. The results showed that silver existed homogeneously in the TiO2/Ag coatings and no crystalline changed happened in the TiO2 structure. The reduction ratios on the TiO2/Ag coatings with 10 ppm AgNPs were as high as 94.8% and 95.6% for E. coli and S. aureus, respectively, and the TiO2/Ag coatings with 100-1000 ppm AgNPs exhibited 100% bactericidal activity against E. coli and S. aureus, which indicated the TiO2/Ag coatings with more than 10 ppm AgNPs had strong antibacterial activity. Moreover, the main factors influencing the antibacterial properties of TiO2/Ag coatings were discussed with grain size and the content of silver as well as the microstructure of the coatings.

  10. Donor defects and small polarons on the TiO2(110) surface

    NASA Astrophysics Data System (ADS)

    Moses, P. G.; Janotti, A.; Franchini, C.; Kresse, G.; Van de Walle, C. G.

    2016-05-01

    The role of defects in the chemical activity of the rutile TiO2(110) surface remains a rich topic of research, despite the rutile (110) being one of the most studied surfaces of transition-metal oxides. Here, we present results from hybrid functional calculations that reconcile apparently disparate views on the impact of donor defects, such as oxygen vacancies and hydrogen impurities, on the electronic structure of the (110) rutile surface. We find that the bridging oxygen vacancy and adsorbed or substitutional hydrogen are actually shallow donors, which do not induce gap states. The excess electrons from these donor centers tend to localize in the form of small polarons, which are the factual cause of the deep states ˜1 eV below the conduction band, often observed in photoelectron spectroscopy measurements. Our results offer a new framework for understanding the surface electronic structure of TiO2 and related oxides.

  11. Influence of TiO2 Nanorod Arrays on the Bilayered Photoanode for Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Cao, Ya; Li, Zhen; Wang, Yang; Zhang, Tao; Li, Yinchang; Liu, Xueqin; Li, Fei

    2016-06-01

    A TiO2 bilayered structure consisting of TiO2 nanoparticles (TiO2NP) as an overlayer and single-crystal rutile TiO2 nanorods (TiO2 NRs) as an underlayer on a transparent conductive fluorine-doped tin oxide substrate was designed as the photoanode of dye-sensitized solar cells (DSSCs) through a facile hydrothermal treatment followed by a doctor-blade method. DSSCs based on the hierarchical TiO2 nano-architecture photoelectrode shows a power conversion efficiency of 7.39% because the relatively large specific surface area of TiO2NP increased the dye absorption, and oriented one-dimensional TiO2 NRs enhanced the light harvesting capability, accelerating interfacial electron transport. In particular, we observed the growth morphology of the TiO2 nanorod arrays in the bilayered photoanode and the influence of the whole solar cell. The result indicated that the TiO2 NRs layer clearly impacted the photoelectron chemical properties, while the vertical and intensive nanorod arrays significantly increased their performance.

  12. Phase stability frustration on ultra-nanosized anatase TiO2

    PubMed Central

    Patra, Snehangshu; Davoisne, Carine; Bouyanfif, Houssny; Foix, Dominique; Sauvage, Frédéric

    2015-01-01

    This work sheds light on the exceptional robustness of anatase TiO2 when it is downsized to an extreme value of 4 nm. Since at this size the surface contribution to the volume becomes predominant, it turns out that the material becomes significantly resistant against particles coarsening with temperature, entailing a significant delay in the anatase to rutile phase transition, prolonging up to 1000 °C in air. A noticeable alteration of the phase stability diagram with lithium insertion is also experienced. Lithium insertion in such nanocrystalline anatase TiO2 converts into a complete solid solution until almost Li1TiO2, a composition at which the tetragonal to orthorhombic transition takes place without the formation of the emblematic and unwished rock salt Li1TiO2 phase. Consequently, excellent reversibility in the electrochemical process is experienced in the whole portion of lithium content. PMID:26042388

  13. Self-assembled TiO2-Graphene Hybrid Nanostructures for Enhanced Li-ion Insertion

    SciTech Connect

    Wang, Donghai; Choi, Daiwon; Li, Juan; Yang, Zhenguo; Nie, Zimin; Kou, Rong; Hu, Dehong; Wang, Chong M.; Saraf, Laxmikant V.; Zhang, Jiguang; Aksay, Ilhan A.; Liu, Jun

    2009-04-01

    We used anionic sulfate surfactants to assist the stabilization of graphene in aqueous solutions and facilitate the self-assembly of in-situ grown nanocrystalline TiO2, rutile and anatase, with graphene. These nanostructured TiO2-graphene hybrid materials were used for investigation of Li-ion insertion properties. The hybrid materials showed significantly enhanced Li-ion insertion/extraction in TiO2. The specific capacity was more than doubled at high charge rates, as compared with the pure TiO2 phase. The improved capacity at high charge-discharge rate may be attributed to increased electrode conductivity in presence of a percolated graphene network embedded into the metal oxide electrodes.

  14. Phase stability frustration on ultra-nanosized anatase TiO2.

    PubMed

    Patra, Snehangshu; Davoisne, Carine; Bouyanfif, Houssny; Foix, Dominique; Sauvage, Frédéric

    2015-01-01

    This work sheds light on the exceptional robustness of anatase TiO2 when it is downsized to an extreme value of 4 nm. Since at this size the surface contribution to the volume becomes predominant, it turns out that the material becomes significantly resistant against particles coarsening with temperature, entailing a significant delay in the anatase to rutile phase transition, prolonging up to 1000 °C in air. A noticeable alteration of the phase stability diagram with lithium insertion is also experienced. Lithium insertion in such nanocrystalline anatase TiO2 converts into a complete solid solution until almost Li1TiO2, a composition at which the tetragonal to orthorhombic transition takes place without the formation of the emblematic and unwished rock salt Li1TiO2 phase. Consequently, excellent reversibility in the electrochemical process is experienced in the whole portion of lithium content. PMID:26042388

  15. Bilayer hollow/spindle-like anatase TiO2 photoanode for high efficiency dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Guanxi; Zhu, Xunjin; Yu, Jiaguo

    2015-03-01

    Derived from a hollow TiO2 nanoparticle (HNP) as underlayer and a TiO2 spindle (SP) as light scattering overlayer, a new bilayer single-crystalline photoanode (HNP/SP) is fabricated for dye-sensitized solar cell (DSSC) application. The prepared bilayer TiO2 photoanode and two comparative HNP/HNP and SP/SP ones are fully characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, UV-vis absorption spectroscopy and N2 adsorption-desorption isotherms. An overall photoelectric conversion efficiency of 8.65% has been achieved for HNP/SP DSSC, which is 25% higher than that of HNP/HNP DSSC, and also far superior to that of SP/SP or conventional P25 DSSC. The improved photovoltaic performance of HNP/SP DSSC is attributed to the synergic effects, i.e. the single-crystalline bilayer structure favoring for rapid interfacial electron transport, the relatively large specific surface area of HNP for effective dye adsorption, and the 1D geometry of single-crystalline TiO2 spindles for direct electron transport pathway and strong light scattering effect.

  16. Crystallinity of anodic TiO2 nanotubes and bioactivity.

    PubMed

    An, Sang-Hyun; Narayanan, Ramaswamy; Matsumoto, Takuya; Lee, Hyo-Jin; Kwon, Tae-Yub; Kim, Kyo-Han

    2011-06-01

    Anodic TiO2 nanotubes were produced on titanium at 20 V using 1 M Na2SO4 and 0.5 wt% NaF. Oxidation for 3 hours produced amorphous tubes of diameter 100 nm and thicknesses 2 microm. Heat-treatments were done for 3 hours at different temperatures. 300 degrees C treatment converted the amorphous coatings to anatase. 550 and 700 degrees C treatments formed dual anatase and rutile; 850 degrees C treatment crystallized to rutile. The treatment at 700 degrees C produced an oxide surface with higher roughness, lower wetting angle and higher coating adhesion. Bioactivity of the as-oxidized and heated coatings were evaluated by treating them in a simulated body fluid (SBF) to form hydroxyapatite (HA) and the rates of HA formation were compared. Deposits of HA could be seen on the dual oxide structure within 3 days. HA was detected after 7 days in the anatase structure and only after 21 days in the amorphous and rutile structures. In vitro cell culture tests done using mouse osteoblasts indicated that, the 700 degrees C-heated surface showed higher levels of cell activity than the other surfaces. It is concluded that the dual rutile and anatase structure formed by heating the oxide at 700 degrees C is the best of the five surfaces tested. PMID:21770121

  17. Density functional theory study of dopants in polycrystalline TiO2

    NASA Astrophysics Data System (ADS)

    Körner, Wolfgang; Elsässer, Christian

    2011-05-01

    We present a density functional theory (DFT) study of doped rutile and anatase TiO2 in which we investigate the impact of grain boundaries on the physics of atomic defects. The main goal is to obtain information about the positions of the defect levels generated by an oxygen vacancy, a titanium interstitial, cation dopants Nb, Al, and Ga, and an anion dopant N in the electronic band gap having in mind the application of TiO2 as a transparent conducting oxide (TCO) or its use in heterogeneous catalysis. Due to the known deficiency of the local density approximation (LDA) of DFT to yield accurate values for band gap energies for insulators such as TiO2, a self-interaction correction (SIC) to the LDA is employed. The main result of our study is that grain boundaries do affect the defect formation energies as well as the position and shape of the dopant-induced electronic energy levels significantly with respect to the single crystal. According to our study Nb doping may lead to n-conducting TiO2 whereas doping with N, Al, or Ga is not promising in order to achieve p-conducting TiO2. Furthermore an increase in the photoconductivity of TiO2:N and the colorlessness of TiO2:Al may be explained by our results.

  18. Light-induced antifungal activity of TiO 2 nanoparticles/ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Haghighi, N.; Abdi, Y.; Haghighi, F.

    2011-09-01

    Antifungal activity of TiO2/ZnO nanostructures under visible light irradiation was investigated. A simple chemical method was used to synthesize ZnO nanowires. Zinc acetate dihydrate, Polyvinyl Pyrrolidone and deionized water were used as precursor, capping and solvent, respectively. TiO2 nanoparticles were deposited on ZnO nanowires using an atmospheric pressure chemical vapor deposition system. X-ray diffraction pattern of TiO2/ZnO nano-composite has represented the diffraction peaks relating to the crystal planes of the TiO2 (anatase and rutile) and ZnO. TiO2/ZnO nanostructure antifungal effect on Candida albicans biofilms was studied and compared with the activity of TiO2 nanoparticles and ZnO nanowires. The high efficiency photocatalytic activity of TiO2 nanoparticles leads to increased antifungal activity of ZnO nanowires. Scanning electron microscope was utilized to study the morphology of the as prepared nanostructures and the degradation of the yeast.

  19. Facile preparation and enhanced microwave absorption properties of core-shell composite spheres composited of Ni cores and TiO2 shells.

    PubMed

    Zhao, Biao; Shao, Gang; Fan, Bingbing; Zhao, Wanyu; Xie, Yajun; Zhang, Rui

    2015-04-14

    Core-shell microspheres with Ni cores and two phases of TiO2 (anatase, rutile) shells have been successfully synthesized. The crystal structure, morphology and microwave absorption properties of the as-prepared composites were analyzed by X-ray diffraction, field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, and vector network analysis. The core-shell rutile TiO2-coated Ni exhibits better antioxidation ability than that of pure Ni due to the presence of the rutile TiO2 shell, which is confirmed by the thermal gravimetric analysis (TGA). In comparison with bare Ni, these two composites show better microwave absorption properties. The minimum reflection loss (RL) is -38.0 dB at 11.1 GHz with a thickness of only 1.8 mm for the Ni@TiO2 (rutile) composite. The enhanced absorption capability arises from the efficient complementarities between the magnetic loss and dielectric loss, multiple interfacial polarization, high thermal conductivity of rutile TiO2 and microwave attenuation constant. These results show that the thin high-efficiency rutile TiO2-coated Ni composite is a great potential microwave absorbing material for practical applications. PMID:25745675

  20. Electronic properties of vanadium-doped TiO2.

    PubMed

    Islam, Mazharul M; Bredow, Thomas; Gerson, Andrea

    2011-12-01

    The electronic properties of vanadium-doped rutile TiO(2) are investigated theoretically with a Hartree-Fock/DFT hybrid approach. The most common oxidation states (V(2+), V(3+), V(4+), and V(5+)) in different spin states are investigated and their relative stability is calculated. The most stable spin states are quartet, quintet, doublet, and singlet for V(2+), V(3+), V(4+), and V(5+) doping, respectively. By comparing the formation energy with respect to the parent oxides and gas-phase oxygen (ΔE), we conclude that V(4+) (ΔE=145.3 kJ mol(-1)) is the most likely oxidation state for vanadium doping with the possibility of V(5+) doping (ΔE=283.5 kJ mol(-1)). The energetic and electronic properties are converged with dopant concentrations in the range of 0.9 to 3.2%, which is within the experimentally accessible range. The investigation of electronic properties shows that V(4+) doping creates both occupied and unoccupied vanadium states in the band gap and V(5+) doping creates unoccupied states at the bottom of the conduction band. In both cases there is a significant reduction of the band gap by 0.65 to 0.75 eV compared to that of undoped rutile TiO(2). PMID:22025455

  1. Structure and Formation Mechanism of Black TiO2 Nanoparticles

    DOE PAGESBeta

    Tian, Mengkun; Mahjouri-Samani, Masoud; Eres, Gyula; Sachan, Ritesh; Yoon, Mina; Chisholm, Matthew F.; Wang, Kai; Puretzky, Alexander A.; Rouleau, Christopher M.; Geohegan, David B.; et al

    2015-10-27

    The remarkable properties of black TiO2 are due to its disordered surface shell surrounding a crystalline core. However, the chemical composition and the atomic and electronic structure of the disordered shell and its relationship to the core remain poorly understood. Using advanced transmission electron microscopy methods, we show that the outermost layer of black TiO2 nanoparticles consists of a disordered Ti2O3 shell. The measurements show a transition region that connects the disordered Ti2O3 shell to the perfect rutile core consisting first of four to five monolayers of defective rutile, containing clearly visible Ti interstitial atoms, followed by an ordered reconstructionmore » layer of Ti interstitial atoms. Our data suggest that this reconstructed layer presents a template on which the disordered Ti2O3 layers form by interstitial diffusion of Ti ions. In contrast to recent reports that attribute TiO2 band-gap narrowing to the synergistic action of oxygen vacancies and surface disorder of nonspecific origin, our results point to Ti2O3, which is a narrow-band-gap semiconductor. In conclusion, as a stoichiometric compound of the lower oxidation state Ti3+ it is expected to be a more robust atomic structure than oxygen-deficient TiO2 for preserving and stabilizing Ti3+ surface species that are the key to the enhanced photocatalytic activity of black TiO2.« less

  2. TiO2 hierarchical nanostructures: Hydrothermal fabrication and application in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Liang, Jia; Zhang, Gengmin; Yang, Jin; Sun, Wentao; Shi, Mingji

    2015-01-01

    Arrays of TiO2 hierarchical nanostructures that consisted of rutile nanorods and anatase branches were hydrothermally fabricated and employed as photoanodes in dye-sensitized solar cells (DSSCs). Each hierarchical nanostructure array was attained in two steps. First, a primary nanorod array was synthesized in aqueous solutions of hydrochloric acid (HCl) and tetrabutyl titanate (C16H36O4Ti); subsequently, secondary branches were grown on the nanorods in aqueous solutions of ammonium hexafluorotitanate ((NH4)2TiF6) and boric acid (H3BO3). The secondary anatase branches filled part of the space among the primary rutile nanorods and gave rise to a larger surface area. Light-harvesting capability of the DSSCs with TiO2 hierarchical nanostructures as photoanodes was appreciably improved because more dye molecules could be loaded on the photoanodes and more light could be scattered inside the DSSCs. Therefore, the conversion efficiencies of the DSSCs were doubled by replacing the photoanode of primary TiO2 nanorod array with the photoanodes of TiO2 hierarchical nanostructure arrays. Furthermore, in order to reach a compromise between the photoanode surface area and the inter-nanorod space volume, the growth time of the secondary TiO2 anatase branches was optimized.

  3. Colloidal TiO2 nanocrystals prepared from peroxotitanium complex solutions: phase evolution from different precursors.

    PubMed

    Seok, Sang Il; Vithal, Muga; Chang, Jeong Ah

    2010-06-01

    We report the preparation of nanocrystalline anatase and rutile TiO(2) from aqueous peroxotitanium complex (PTC) solutions and their characterization by powder X-ray diffraction (XRD), infrared spectroscopy, and Raman spectroscopy. The phase evolution of TiO(2) prepared using PTC derived from different precursors, i.e., TiCl(4) and titanium tetraisopropoxide (TTIP), is related to the nature of the intermediate steps. Phase-pure nanoanatase was formed in PTC solution derived from TiCl(4), while a mixture of minor anatase and dominant rutile were prepared from PTC when TTIP was used as precursor. On the other hand, in the case of calcining PTC powders in air, a pure anatase phase of TiO(2) was obtained, regardless of the precursor used. Thus, the formation and attachment of hydrated TiO(6) units or TiO(2)·xH(2)O under a different environment, especially pH, plays a critical role in determining the phase during the crystallization of TiO(2). PMID:20227087

  4. Efficient Photocatalytic Activities of TiO2 Hollow Fibers with Mixed Phases and Mesoporous Walls

    PubMed Central

    Hou, Huilin; Shang, Minghui; Wang, Lin; Li, Wenge; Tang, Bin; Yang, Weiyou

    2015-01-01

    Currently, Degussa P25, with the typical mixed phases of anatase and rutile TiO2, is widely applied as the commercial photocatalysts. However, there are still some of obstacles for the P25 nanoparticles with totally high photocatalytic activities, especially for the catalytic stability due to their inevitable aggregation of the nanoparticles when used as the photocatalysts. In the present work, we reported the exploration of a novel TiO2 photocatalyst, which could offer an ideal platform for synergetic combination of the mixed-phase composition, hollow architecture and mesoporous walls for the desired excellent photocatalytic efficiency and robust stability. The mesoporous TiO2 hollow nanofibers were fabricated via a facile single capillary electrospinning technique, in which the foaming agents were used for creating mesopores throughout the walls of the hollow fibers. The obtained hollow fibers exhibit a high purity and possess the mixed phases of 94.6% anatase and 5.4% rutile TiO2. As compared to P25, the as-fabricated mesoporous TiO2 hollow fibers exhibited much higher efficient photocatalytic activities and stabilities toward the hydrogen evolution with a rate of ~499.1 μmol g−1·h−1 and ~99.5% degradation Rhodamine B (RhB) in 60 min, suggesting their promising application in efficient photocatalysts. PMID:26470013

  5. Low Frequency Ultrasonication of Degussa P25 TiO2 and Its Superior Photocatalytic Properties.

    PubMed

    Vijayarangamuthu, K; Han, EunJi; Jeon, Ki-Joon

    2016-05-01

    We report the simple and effective method for enhancing the photocatalytic properties of Degussa P25 TiO2 by low frequency ultrasonication. The improvement in the crystallinity of ultrasonicated TiO2 was confirmed by the X-ray diffraction and Raman spectroscopy studies. Further, the X-ray photoelectron spectroscopy was utilized to study the changes in chemical nature and band edge due to the effect of ultrasonication and H2O2 solvent. The transmission electron microscope (TEM) was used to analysis the surface distortion. The Moire fringes in TEM were examined to understand the partial transformation of amorphous to crystalline anatase structure and overlapping of rutile over anatase crystal. The photocatalytic results indicated improvement in the degradation of methylene blue dye. The degradation efficiency was estimated to be 86% for ultrasonicated TiO2, which is higher as compared to 40% of P25. The rate constant values revealed four times superior degradation property of ultrasonicated TiO2. The improvement in the photocatalytic efficiency was correlated to the formation of rutile/anatase TiO2 aggregation and its consequences on electron-hole recombination. PMID:27483763

  6. Efficient Photocatalytic Activities of TiO2 Hollow Fibers with Mixed Phases and Mesoporous Walls.

    PubMed

    Hou, Huilin; Shang, Minghui; Wang, Lin; Li, Wenge; Tang, Bin; Yang, Weiyou

    2015-01-01

    Currently, Degussa P25, with the typical mixed phases of anatase and rutile TiO2, is widely applied as the commercial photocatalysts. However, there are still some of obstacles for the P25 nanoparticles with totally high photocatalytic activities, especially for the catalytic stability due to their inevitable aggregation of the nanoparticles when used as the photocatalysts. In the present work, we reported the exploration of a novel TiO2 photocatalyst, which could offer an ideal platform for synergetic combination of the mixed-phase composition, hollow architecture and mesoporous walls for the desired excellent photocatalytic efficiency and robust stability. The mesoporous TiO2 hollow nanofibers were fabricated via a facile single capillary electrospinning technique, in which the foaming agents were used for creating mesopores throughout the walls of the hollow fibers. The obtained hollow fibers exhibit a high purity and possess the mixed phases of 94.6% anatase and 5.4% rutile TiO2. As compared to P25, the as-fabricated mesoporous TiO2 hollow fibers exhibited much higher efficient photocatalytic activities and stabilities toward the hydrogen evolution with a rate of ~499.1 μmol g(-1)·h(-1) and ~99.5% degradation Rhodamine B (RhB) in 60 min, suggesting their promising application in efficient photocatalysts. PMID:26470013

  7. Efficient Photocatalytic Activities of TiO2 Hollow Fibers with Mixed Phases and Mesoporous Walls

    NASA Astrophysics Data System (ADS)

    Hou, Huilin; Shang, Minghui; Wang, Lin; Li, Wenge; Tang, Bin; Yang, Weiyou

    2015-10-01

    Currently, Degussa P25, with the typical mixed phases of anatase and rutile TiO2, is widely applied as the commercial photocatalysts. However, there are still some of obstacles for the P25 nanoparticles with totally high photocatalytic activities, especially for the catalytic stability due to their inevitable aggregation of the nanoparticles when used as the photocatalysts. In the present work, we reported the exploration of a novel TiO2 photocatalyst, which could offer an ideal platform for synergetic combination of the mixed-phase composition, hollow architecture and mesoporous walls for the desired excellent photocatalytic efficiency and robust stability. The mesoporous TiO2 hollow nanofibers were fabricated via a facile single capillary electrospinning technique, in which the foaming agents were used for creating mesopores throughout the walls of the hollow fibers. The obtained hollow fibers exhibit a high purity and possess the mixed phases of 94.6% anatase and 5.4% rutile TiO2. As compared to P25, the as-fabricated mesoporous TiO2 hollow fibers exhibited much higher efficient photocatalytic activities and stabilities toward the hydrogen evolution with a rate of ~499.1 μmol g-1·h-1 and ~99.5% degradation Rhodamine B (RhB) in 60 min, suggesting their promising application in efficient photocatalysts.

  8. Band gap enhancement of glancing angle deposited TiO2 nanowire array

    NASA Astrophysics Data System (ADS)

    Chinnamuthu, P.; Mondal, A.; Singh, N. K.; Dhar, J. C.; Chattopadhyay, K. K.; Bhattacharya, Sekhar

    2012-09-01

    Vertically oriented TiO2 nanowire (NW) arrays were fabricated by glancing angle deposition technique. Field emission-scanning electron microscopy shows the formation of two different diameters ˜80 nm and ˜40 nm TiO2 NW for 120 and 460 rpm azimuthal rotation of the substrate. The x-ray diffraction and Raman scattering depicted the presence of rutile and anatase phase TiO2. The overall Raman scattering intensity decreased with nanowire diameter. The role of phonon confinement in anatase and rutile peaks has been discussed. The red (7.9 cm-1 of anatase Eg) and blue (7.4 cm-1 of rutile Eg, 7.8 cm-1 of rutile A1g) shifts of Raman frequencies were observed. UV-vis absorption measurements show the main band absorption at 3.42 eV, 3.48 eV, and ˜3.51 eV for thin film and NW prepared at 120 and 460 rpm, respectively. Three fold enhance photon absorption and intense light emission were observed for NW assembly. The photoluminescence emission from the NW assembly revealed blue shift in main band transition due to quantum confinement in NW structures.

  9. Novel TiO2/C nanocomposites: synthesis, characterization, and application as a photocatalyst for the degradation of organic pollutants.

    PubMed

    da Costa, Elias; Zamora, Patricio P; Zarbin, Aldo J G

    2012-02-15

    Novel TiO(2)/carbon nanocomposites were prepared through the pyrolysis of TiO(2)/poly(furfuryl alcohol) hybrid materials, which were obtained by the sol-gel method, starting from titanium tetraisopropoxide (TTIP) and furfuryl alcohol (FA) precursors. Six different TiO(2)/C samples were prepared based on different TiO(2) nanoparticle sizes and TiO(2)/FA ratios. All of the samples were characterized using X-ray diffraction, infrared, and Raman spectroscopy. The results indicated effective FA polymerization onto the TiO(2) (anatase) nanoparticles, polymer conversion to disordered carbon following the pyrolysis, and a simultaneous TiO(2) anatase-rutile phase transition. The resulting TiO(2)/carbon composites were used as photocatalysts in the advanced oxidative process (AOP) for the degradation of reactive organic dyes in aqueous solution. The results indicate excellent photocatalytic performance (degradation of 99% of the dye after 60 min) with several advantages over traditional TiO(2)-based photocatalysts. PMID:22056275

  10. Nanostructured TiO2 films for dye-sensitized solar cells prepared by the sol-gel method.

    PubMed

    Jin, Young Sam; Kim, Kyung Hwan; Park, Sang Joon; Yoon, Hyon Hee; Choi, Hyung Wook

    2011-12-01

    TiO2 films were prepared on glass substrates using the sol-gel process for a dye-sensitized solar cell application. The TiO2 sol was prepared using hydrolysis/polycondensation. Titanium (IV) Tetra Isopropoxide (TTIP) was used as precursor and Nitric acid (HNO3) was used as a catalyst for the peptization. The crystal structure and morphology of the prepared materials were characterized by XRD, and an SEM. The observations confirmed the nanocrystalline nature of the TiO2. The reaction parameters, such as the catalyst concentrations, the calcination time, and the calcination temperature were varied during the synthesis in order to achieve nanosize TiO2 particles. The prepared TiO2 particles were coated onto FTO glass using a screen printing technique. The prepared TiO2 films were characterized by UV-vis. The TiO2 particles calcinated at low temperatures showed an anatase phase they grew into a rutile phase when the calcination temperature increased. The size and structure of the TiO2 particles were adjusted to specific surface areas. It was found that the conversion efficiency of the DSSC was highly affected by the properties of the TiO2 particles. PMID:22409037

  11. Tricrystalline TiO2 with enhanced photocatalytic activity and durability for removing volatile organic compounds from indoor air.

    PubMed

    Chen, Kunyang; Zhu, Lizhong; Yang, Kun

    2015-06-01

    It is important to develop efficient and economic techniques for removing volatile organic compounds (VOCs) in indoor air. Heterogeneous TiO2-based semiconductors are a promising technology for achieving this goal. Anatase/brookite/rutile tricrystalline TiO2 with mesoporous structure was synthesized by a low-temperature hydrothermal route in the presence of HNO3. The obtained samples were characterized by X-ray diffraction and N2 adsorption-desorption isotherm. The photocatalytic activity was evaluated by photocatalytic decomposition of toluene in air under UV light illumination. The results show that tricrystalline TiO2 exhibited higher photocatalytic activity and durability toward gaseous toluene than bicrystalline TiO2, due to the synergistic effects of high surface area, uniform mesoporous structure and junctions among mixed phases. The tricrystalline TiO2 prepared at RHNO3=0.8, containing 80.7% anatase, 15.6% brookite and 3.7% rutile, exhibited the highest photocatalytic activity, about 3.85-fold higher than that of P25. The high activity did not significantly degrade even after five reuse cycles. In conclusion, it is expected that our study regarding gas-phase degradation of toluene over tricrystalline TiO2 will enrich the chemistry of the TiO2-based materials as photocatalysts for environmental remediation and stimulate further research interest on this intriguing topic. PMID:26040745

  12. Raman spectroscopy of ball-milled TiO 2

    NASA Astrophysics Data System (ADS)

    Gajović, A.; Stubičar, M.; Ivanda, M.; Furić, K.

    2001-05-01

    Raman spectroscopy was applied to study structural and dimensional changes during high-energy ball milling of TiO 2 anatase. Milling was performed for up to 10 h using two different sets of grinding tools (wolfram carbide (WC) and agate). The diminution of the TiO 2 particle to nanometric size was monitoring by low-frequency Raman spectroscopy. The nanometric sizes were confirmed by transmission electron microscopy (TEM). After short milling time by WC the bands of high-pressure TiO 2 II phase (α-PbO 2 structure) were detected in Raman spectrum. Prolonged milling time was needed for transformation to rutil. When milling was performed by agate, the time necessary for both phase transitions was longer, presumably because of lower ball-to-powder weight ratio. The low-frequency Raman band of the prolonged milled samples was broad, which suggests the wide dispersion in nano-particle dimensions. The position of the low-frequency band in longer-milled samples indicated dimensions smaller than 20 nm, since the diameter of the particle is inversely proportional to the low-frequency mode of the spherical particles. These results were in agreement with the TEM results.

  13. A single crystalline InP nanowire photodetector

    NASA Astrophysics Data System (ADS)

    Yan, Xin; Li, Bang; Wu, Yao; Zhang, Xia; Ren, Xiaomin

    2016-08-01

    Single crystalline nanowires are critical for achieving high-responsivity, high-speed, and low-noise nanoscale photodetectors. Here, we report a metal-semiconductor-metal photodetector based on a single crystalline InP nanowire. The nanowires are grown by a self-catalyzed method and exhibit stacking-fault-free zinc blende crystal structure. The nanowire exhibits a typical n-type semiconductor property and shows a low room temperature dark current of several hundred pA at moderate biases. A photoresponsivity of 6.8 A/W is obtained at a laser power density of 0.2 mW/cm2. This work demonstrates that single crystalline InP nanowires are good candidates for future optoelectronic device applications.

  14. Preparation and Characterization of SiO 2/TiO 2 composite microspheres with microporous SiO 2 core/mesoporous TiO 2 shell

    NASA Astrophysics Data System (ADS)

    Zhao, Li; Yu, Jiaguo; Cheng, Bei

    2005-06-01

    SiO 2/TiO 2 composite microspheres with microporous SiO 2 core/mesoporous TiO 2 shell structures were prepared by hydrolysis of titanium tetrabutylorthotitanate (TTBT) in the presence of microporous silica microspheres using hydroxypropyl cellulose (HPC) as a surface esterification agent and porous template, and then dried and calcined at different temperatures. The as-prepared products were characterized with differential thermal analysis and thermogravimetric (DTA/TG), scanning electron microscopy (SEM), X-ray diffraction (XRD), nitrogen adsorption. The results showed that composite particles were about 1.8 μm in diameter, and had a spherical morphology and a narrow size distribution. Uniform mesoporous titania coatings on the surfaces of microporous silica microspheres could be obtained by adjusting the HPC concentration to an optimal concentration of about 3.2 mmol L -1. The anatase and rutile phase in the SiO 2/TiO 2 composite microspheres began to form at 700 and 900 °C, respectively. At 700 °C, the specific surface area and pore volume of the SiO 2/TiO 2 composite microspheres were 552 and 0.652 mL g -1, respectively. However, at 900 °C, the specific surface area and pore volume significantly decreased due to the phase transformation from anatase to rutile.

  15. The effect of deposition parameters on the phase of TiO2 films grown by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Lim, Ji Chon; Song, Kyu Jeong; Park, Chan

    2014-12-01

    TiO2 thin films were deposited on Si substrates by using conventional radio-frequency (RF) magnetron sputtering with either metallic Ti or TiO2 targets, and the effect of the deposition parameters (substrate temperature ( T s ), RF sputtering power, gas flow ratio of O2/(Ar+O2) and deposition time) on the phase of the film was investigated. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to obtain information on the phase of the films and on the surface image/thickness of films, respectively. TiO2 films deposited at a T s higher than 300 °C by using a metallic Ti target showed the dominant presence of the rutile phase. For films grown at a constant T s of 300 °C with different gas flow ratios of O2/(Ar+O2), the amount of the rutile phase gradually decreased as the oxygen gas flow was decreased. The anatase phase, however, was formed when the O2/(Ar+O2) was 0.2. On the other hand, for TiO2 films deposited at T s 's between 50 °C and 200 °C with an O2/(Ar+O2) of 0.1 by using a TiO2 target, both the anatase and the rutile phases gradually decreased as the T s was increased. For TiO2 films deposited with various gas flow ratios of O2/(Ar+O2) between 0 and 0.4 at a constant T s of 200 °C by using a TiO2 target, the anatase phase gradually decreased, but the rutile phase gradually increased, as the gas flow ratio was increased.

  16. Single-crystalline monolayer and multilayer graphene nano switches

    SciTech Connect

    Li, Peng; Cui, Tianhong; Jing, Gaoshan; Zhang, Bo; Sando, Shota

    2014-03-17

    Growth of monolayer, bi-layer, and tri-layer single-crystalline graphene (SCG) using chemical vapor deposition method is reported. SCG's mechanical properties and single-crystalline nature were characterized and verified by atomic force microscope and Raman spectroscopy. Electro-mechanical switches based on mono- and bi-layer SCG were fabricated, and the superb properties of SCG enable the switches to operate at pull-in voltage as low as 1 V, and high switching speed about 100 ns. These devices exhibit lifetime without a breakdown of over 5000 cycles, far more durable than any other graphene nanoelectromechanical system switches reported.

  17. Nonvolatile resistive switching in single crystalline ZnO nanowires.

    PubMed

    Yang, Yuchao; Zhang, Xiaoxian; Gao, Min; Zeng, Fei; Zhou, Weiya; Xie, Sishen; Pan, Feng

    2011-04-01

    We demonstrate nonvolatile resistive switching in single crystalline ZnO nanowires with high ON/OFF ratios and low threshold voltages. Unlike the mechanism of continuous metal filament formation along grain boundaries in polycrystalline films, the resistive switching in single crystalline ZnO nanowires is speculated to be induced by the formation of a metal island chain on the nanowire surface. Resistive memories based on bottom-up semiconductor nanowires hold potential for next generation ultra-dense nonvolatile memories. PMID:21394361

  18. Effect of TiO2 Nanoparticles on Tensile Strength of Dental Acrylic Resins.

    PubMed

    Shirkavand, Saeed; Moslehifard, Elnaz

    2014-01-01

    Background and aims. Adding further fillers to dental resins may enhance their physical characteristics. The aim of this study was to evaluate the tensile strength of heat-curing acrylic resin reinforced by TiO2nanoparticles added into the resin matrix. Materials and methods. Commercially available TiO2 nanoparticles were obtained and characterized using X-ray diffrac-tion (XRD) and scanning electron microscopy (SEM) to determine their crystalline structure, particle size and morphology. TiO2-acrylic resin nanocomposite was prepared by mixing 0.5, 1 and 2 (wt%) of surface modified TiO2 nanoparticles in an amalgamator providing three groups of samples. Before curing, the obtained paste was packed into steel molds. After cur-ing, the specimens were removed from the molds. The tensile strength test samples were prepared according to ISO 1567. Results. Two crystalline phases were found in TiO2 nanoparticles including: (i) anatase as the major one, and (ii) rutile. The average particle size calculated according to the Scherrer equation was 20.4 nm, showing a normal size distribution. According to SEM images, the nanocomposite with 1wt% TiO2 nanoparticles had a better distribution compared to other groups. In addition, the group by 1wt% TiO2 exhibited higher tensile strength with a significant difference compared to other groups. ANOVA showed significant differences between the contents of TiO2 particles in acrylic resin (F = 22.19; P < 0.001). Conclusion. A considerable increase in tensile strength was observed with titania NPs reinforcement agents in 1wt% by weight. Further increase of TiO2 nanoparticles decreased the tensile strength. PMID:25587380

  19. Beneficial surface passivation of hydrothermally grown TiO2 nanowires for solar water oxidation

    NASA Astrophysics Data System (ADS)

    Yun, Gun; Song, Gwang Yeom; Ahn, Bo-Eun; Lee, Sang-Kwon; Heo, Jaeyeong; Ahn, Kwang-Soon; Kang, Soon Hyung

    2016-03-01

    Rutile TiO2 nanowires (TONWs) with a length of 2.0 μm were synthesized using a facile hydrothermal method in a strong acid solution. To investigate the effect of surface passivation of TONW arrays, a TiO2 layer with a thickness varying from 5 to 20 nm on TONW arrays was applied by atomic layer deposition (ALD). No distinct morphological modification was observed in all prepared TONW arrays in the environment where the diameter of the TONW arrays was systematically increased from 10 to 40 nm. In this study, Mott-Schottky analysis revealed that 10 nm TiO2-coated TONW (denoted as TiO2(10 nm)/TONW) arrays showed the highest electronic conductivity, followed by the 5 nm, 20 nm, and 0 nm TiO2/TONW arrays. The photoelectrochemical (PEC) performance was assessed in 0.1 M KOH, which revealed that TiO2(10 nm)/TONW arrays displayed a photocurrent density (3.92 mA/cm2 at 0.5 VNHE) higher than that (2.72 mA/cm2) of TONW arrays. This may be ascribed to the surface passivation of trap or defect sites by the thin TiO2 surface coating, leading to the increased electron densities and improving the PEC performance. For a more definitive examination, photovoltage decay measurement was performed to calculate the decay lifetime, which is closely correlated to the electron-hole recombination reaction. In this study, TiO2(10 nm)/TONW arrays exhibited a decay lifetime (0.7 s) shorter than that (1.1 s) of TONW arrays, proving the suppressed charge recombination in the thin TiO2/TONW arrays.

  20. Effect of TiO2 Nanoparticles on Tensile Strength of Dental Acrylic Resins

    PubMed Central

    Shirkavand, Saeed; Moslehifard, Elnaz

    2014-01-01

    Background and aims. Adding further fillers to dental resins may enhance their physical characteristics. The aim of this study was to evaluate the tensile strength of heat-curing acrylic resin reinforced by TiO2nanoparticles added into the resin matrix. Materials and methods. Commercially available TiO2 nanoparticles were obtained and characterized using X-ray diffrac-tion (XRD) and scanning electron microscopy (SEM) to determine their crystalline structure, particle size and morphology. TiO2-acrylic resin nanocomposite was prepared by mixing 0.5, 1 and 2 (wt%) of surface modified TiO2 nanoparticles in an amalgamator providing three groups of samples. Before curing, the obtained paste was packed into steel molds. After cur-ing, the specimens were removed from the molds. The tensile strength test samples were prepared according to ISO 1567. Results. Two crystalline phases were found in TiO2 nanoparticles including: (i) anatase as the major one, and (ii) rutile. The average particle size calculated according to the Scherrer equation was 20.4 nm, showing a normal size distribution. According to SEM images, the nanocomposite with 1wt% TiO2 nanoparticles had a better distribution compared to other groups. In addition, the group by 1wt% TiO2 exhibited higher tensile strength with a significant difference compared to other groups. ANOVA showed significant differences between the contents of TiO2 particles in acrylic resin (F = 22.19; P < 0.001). Conclusion. A considerable increase in tensile strength was observed with titania NPs reinforcement agents in 1wt% by weight. Further increase of TiO2 nanoparticles decreased the tensile strength. PMID:25587380

  1. Efficient Electrochemical Reduction of Nitrobenzene by Defect-Engineered TiO2-x Single Crystals.

    PubMed

    Liu, Chang; Zhang, Ai-Yong; Pei, Dan-Ni; Yu, Han-Qing

    2016-05-17

    TiO2 is a typical semiconductor and has been extensively used as an effective photocatalyst for environmental pollution control. But it could not be used as an electrochemical reductive catalyst because of its low electric conductivity and electrocatalytic activity. In this work, however, we demonstrate that TiO2 can act as an excellent cathodic electrocatalyst when its crystal shape, exposed facet and oxygen-stoichiometry are finely tailored by the local geometric and electronic structures. The defect-engineered TiO2-x single crystals dominantly exposed by high-energy {001} facets exhibits a high cathodic activity and great stability for electrochemical reduction of nitrobenzene, a typical refractory pollutant with high toxicity in environment. The single crystalline structure, the high-energy {001} facet and the defective oxygen vacancy of the defect-engineered TiO2-x single crystals are found to be mainly responsible for their cathodic superiority. With the findings in this work, a more practical non-Pd cathodic electrocatalyst could be prepared and applied for electrocatalytic reduction of refractory pollutants in water and wastewater, and extend the promising applications of TiO2 in the fields of environmental science. PMID:27128346

  2. Photoelectrochemical characterization of a robust TiO2/BDD heterojunction electrode for sensing application in aqueous solutions.

    PubMed

    Han, Yanhe; Zhang, Shanqing; Zhao, Huijun; Wen, William; Zhang, Haimin; Wang, Hongjuan; Peng, Feng

    2010-04-20

    Titanium dioxide (TiO(2)) and boron-doped diamond (BDD) are two of the most popular functional materials in recent years. In this work, TiO(2) nanoparticles were immobilized onto the BDD electrodes by a dip-coating technique. Continuous and uniform mixed-phase (anatase and rutile) and pure-anatase TiO(2)/BDD electrodes were obtained after calcination processes at 700 and 450 degrees C, respectively. The particle sizes of both types of TiO(2) film range from 20 to 30 nm. In comparison with a TiO(2)/indium tin oxide (ITO) electrode, the TiO(2)/BDD electrode demonstrates a higher photoelectrocatalytic activity toward the oxidation of organic compounds, such as glucose and potassium hydrogen phthalate. Among all the tested TiO(2) electrodes, the mixed-phase TiO(2)/BDD electrode demonstrated the highest photoelectrocatalytic activity, which can be attributed to the formation of the p-n heterojunction between TiO(2) and BDD. The electrode was subsequently used to detect a wide spectrum of organic compounds in aqueous solution using a steady-state current method. An excellent linear relationship between the steady-state photocurrents and equivalent organic concentrations was attained. The steady-state oxidation photocurrents of the mixed-phase TiO(2)/BDD electrode were insensitive to pH in the range of pH 2-10. Furthermore, the electrodes exhibited excellent robustness under strong acidic conditions that the TiO(2)/ITO electrodes cannot stand. These characteristics bestow the mixed-phase TiO(2)/BDD electrode to be a versatile material for the sensing of organic compounds. PMID:20030335

  3. Ultra-fine structural characterization and bioactivity evaluation of TiO2 nanotube layers.

    PubMed

    Jang, JaeMyung; Kwon, TaeYub; Kim, KyoHan

    2008-10-01

    For an application as biomedical materials of high performance with a good biocompatibility, the TiO2 nanotube-type oxide film on Ti substrate has been fabricated by electrochemical method, and the effects of surface characteristics of TiO2 naotube layer have been investigated. The surface morphology of TiO2 nanotube layer depends on factors such as anodizing time, current density, and electrolyte temperature. Moreover, the cell and pore size gradually were increased with the passage of anodizing time. X-ray diffraction (XRD) results indicated that the TiO2 nanotube layer formed in acidic electrolytes was mainly composed of anatase structure containing rutile. From the analysis of chemical states of TiO2 nanotube layer using X-ray photoelectron spectroscopy (XPS), Ti2p, P2p and O1s were observed in the nanotubes layer, which were penetrated from the electrolyte into the oxide layer during anodic process. The incorporated phosphate species were found mostly in the forms of HPO4-, PO4-, and PO3-. From the result of biological evaluation in simulated body fluid (SBF) the TiO2 nanotube layer was effective for bioactive property. PMID:19198362

  4. Exposure to TiO2 nanoparticles increases Staphylococcusaureusinfection of HeLa cells

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Wei, Ming-Tzo; Walker, Stephen. G.; Wang, Hong Zhan; Gondon, Chris; Brink, Peter; Guterman, Shoshana; Zawacki, Emma; Applebaum, Eliana; Rafailovich, Miriam; Ou-Yang, H. Daniel; Mironava, Tatsiana

    TiO2 is one of the most common nanoparticles in industry from food additives to energy generation. Even though TiO2 is also used as an anti-bacterial agent in combination with UV, we found that, in the absence of UV, exposure of HeLa cells to TiO2 nanoparticles largely increased their risk of bacterial invasion. HeLa cells cultured with low dosage rutile and anatase TiO2 nanoparticles (0.1 mg/ml) for 24 hrs prior to exposure to bacteria had 350% and 250% respectively more bacteria infected per cell. The increase was attributed to increased LDH leakage, and changes in the mechanical response of the cell membrane. On the other hand, macrophages exposed to TiO2 particles ingested 40% fewer bacteria, further increasing the risk of infection. In combination, these two factors raise serious concerns regarding the impact of exposure to TiO2 nanoparticles on the ability of organisms to resist bacterial infection.

  5. ZnFe2O4-TiO2 Nanoparticles within Mesoporous MCM-41

    PubMed Central

    Tang, Aidong; Deng, Yuehua; Jin, Jiao; Yang, Huaming

    2012-01-01

    A novel nanocomposite ZnFe2O4-TiO2/MCM-41 (ZTM) was synthesized by a sol-gel method and characterized through X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), N2 adsorption-desorption, Raman spectroscopy, and ultraviolet visible (UV-vis) spectrophotometry. The results confirmed the incorporation of ZnFe2O4-TiO2 nanoparticles inside the pores of the mesoporous MCM-41 host without destroying its integrity. ZnFe2O4 nanoparticles can inhibit the transformation of anatase into rutile phase of TiO2. Incorporation of ZnFe2O4-TiO2 within MCM-41 avoided the agglomeration of nanoparticles and reduced the band gap energy of TiO2 to enhance its visible light photocatalytic activity. UV-vis absorption edges of ZTM nanocomposites redshifted with the increase of Zn/Ti molar ratio. The nanocomposite approach could be a potential choice for enhancing the photoactivity of TiO2, indicating an interesting application in the photodegradation and photoelectric fields. PMID:22919325

  6. Low-temperature preparation of high-n TiO2 thin film on glass by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Ishii, Akihiro; Nakamura, Yoko; Oikawa, Itaru; Kamegawa, Atsunori; Takamura, Hitoshi

    2015-08-01

    Single-phase rutile-type TiO2 thin films with a high refractive index (n) and a low extinction coefficient (k) prepared on glass are expected to improve the performance of anti-reflection coatings. In this study, TiO2 thin films were prepared by the pulsed laser deposition (PLD) method at temperatures ranging from room temperature to 600 °C under an oxygen partial pressure of 1-9 Pa or a 10-5 Pa vacuum, and their crystal structure, microstructure and optical properties were investigated. A single-phase rutile-type TiO2 thin film was successfully prepared on a glass substrate by depositing at room temperature in a vacuum followed by post-annealing at 450 °C in air. A nanocrystalline oxygen-deficient phase in the as-deposited films plays an important role in the formation of the single rutile phase during post-annealing. The single-phase rutile-type TiO2 thin films showed excellent optical properties, with n = 3.14 and k < 0.05 at λ = 400 nm.

  7. Synthesis and visible light photoactivity of anatase Ag, and garlic loaded TiO2 nanocrystalline catalyst

    EPA Science Inventory

    An excellent visible light activated Ag and S doped TiO2 nanocatalyst was prepared by using AgNO3 and garlic (Allium sativum) as Ag+ and sulfur sources, respectively. The catalyst resisted the change from anatase to rutile phase even at calcination at 700 oC. The photocatalytic e...

  8. The effect of pretreatment conditions on structural, morphological and catalytic properties of TiO2

    NASA Astrophysics Data System (ADS)

    Kocemba, Ireneusz; Nadajczyk, Justyna; Rynkowski, Jacek; Maniukiewicz, Waldemar

    2014-01-01

    The effect of pretreatment conditions in reductive and oxidative atmosphere on physicochemical properties and catalytic activity of TiO2 was studied. TiO2 was characterized using: XRD, SEM, TPR-H2, O2 and CO chemisorption methods, and tested in the reaction of CO oxidation in air. Experimental results indicated that the kind of pretreatment conditions has a significant influence on structural properties and activity of the studied oxide. It was claimed that pretreatment in hydrogen favors anatase → rutile transformation. Moreover, rutile was more easily reducible than the anatase phase despite its high thermodynamic stability. Catalytic tests showed that pretreatment in hydrogen enhances conversion of CO more than annealing in oxygen atmosphere.

  9. Growth of TiO2 with thermal and plasma enhanced atomic layer deposition.

    PubMed

    Tallarida, Massimo; Friedrich, Daniel; Städter, Matthias; Michling, Marcel; Schmeisser, Dieter

    2011-09-01

    We show a comparative study of the TiO2 ALD with TTIP and either O2 or O2-plasma on Si/SiO2 substrates. In particular we compare the surface morphology and crystalline phase by means of Atomic Force Microscopy (AFM), X-ray Photoelectron Spectroscopy (XPS) and X-ray Absorption Spectroscopy (XAS) for different O2-plasma procedures upon changing the time between cycles and the N2-purging pressure. The AFM images show that already these parameters may induce structural changes in the TiO2 films grown by ALD, with the formation of crystallites with average lateral width varying between 15 and 80 nm. By means of XAS we also found that the crystallites have mixed anatase and rutile crystalline phases and that smaller crystallites have a greater rutile component than the larger ones. PMID:22097528

  10. Photocatalysis of TiO2 Sheets Prepared by Templating Filter Paper

    NASA Astrophysics Data System (ADS)

    Zhang, Qing-shuang; Li, Qiao-ling; Li, Jian-qiang; Bai, Rui

    2011-02-01

    Titanium dioxide sheet photocatalysts composed of interwoven microstrips were successfully synthesized using filter paper as templates. The synthesized samples were characterized by means of Fourier transform infrared spectroscopy, surface area analyzer, thermogravimetric analysis, powder X-ray diffraction, and scanning electron microscopy. The photocatalytic activities of the samples were evaluated by the degradation of methyl orange in an aqueous solution under UV-illumination. The results demonstrated that the paper-like TiO2 sheets with the optimum proportion of anatase/rutile (10/1) had the highest photoactivity. And the presence of the filter paper fiber can improve the crystallinity, raise the anatase-rutile transformation temperature and contribute to the formation of being paper-like. A detailed formation mechanism for TiO2 sheets is proposed.

  11. Toxicity of TiO2 nanoparticles to Escherichia coli: effects of particle size, crystal phase and water chemistry.

    PubMed

    Lin, Xiuchun; Li, Jingyi; Ma, Si; Liu, Gesheng; Yang, Kun; Tong, Meiping; Lin, Daohui

    2014-01-01

    Controversial and inconsistent results on the eco-toxicity of TiO2 nanoparticles (NPs) are commonly found in recorded studies and more experimental works are therefore warranted to elucidate the nanotoxicity and its underlying precise mechanisms. Toxicities of five types of TiO2 NPs with different particle sizes (10∼50 nm) and crystal phases were investigated using Escherichia coli as a test organism. The effect of water chemistry on the nanotoxicity was also examined. The antibacterial effects of TiO2 NPs as revealed by dose-effect experiments decreased with increasing particle size and rutile content of the TiO2 NPs. More bacteria could survive at higher solution pH (5.0-10.0) and ionic strength (50-200 mg L(-1) NaCl) as affected by the anatase TiO2 NPs. The TiO2 NPs with anatase crystal structure and smaller particle size produced higher content of intracellular reactive oxygen species and malondialdehyde, in line with their greater antibacterial effect. Transmission electron microscopic observations showed the concentration buildup of the anatase TiO2 NPs especially those with smaller particle sizes on the cell surfaces, leading to membrane damage and internalization. These research results will shed new light on the understanding of ecological effects of TiO2 NPs. PMID:25310452

  12. Toxicity of TiO2 Nanoparticles to Escherichia coli: Effects of Particle Size, Crystal Phase and Water Chemistry

    PubMed Central

    Lin, Xiuchun; Li, Jingyi; Ma, Si; Liu, Gesheng; Yang, Kun; Tong, Meiping; Lin, Daohui

    2014-01-01

    Controversial and inconsistent results on the eco-toxicity of TiO2 nanoparticles (NPs) are commonly found in recorded studies and more experimental works are therefore warranted to elucidate the nanotoxicity and its underlying precise mechanisms. Toxicities of five types of TiO2 NPs with different particle sizes (10∼50 nm) and crystal phases were investigated using Escherichia coli as a test organism. The effect of water chemistry on the nanotoxicity was also examined. The antibacterial effects of TiO2 NPs as revealed by dose-effect experiments decreased with increasing particle size and rutile content of the TiO2 NPs. More bacteria could survive at higher solution pH (5.0–10.0) and ionic strength (50–200 mg L−1 NaCl) as affected by the anatase TiO2 NPs. The TiO2 NPs with anatase crystal structure and smaller particle size produced higher content of intracellular reactive oxygen species and malondialdehyde, in line with their greater antibacterial effect. Transmission electron microscopic observations showed the concentration buildup of the anatase TiO2 NPs especially those with smaller particle sizes on the cell surfaces, leading to membrane damage and internalization. These research results will shed new light on the understanding of ecological effects of TiO2 NPs. PMID:25310452

  13. Osteoconductivity and Hydrophilicity of TiO2 Coatings on Ti Substrates Prepared by Different Oxidizing Processes

    PubMed Central

    Yamamoto, Dai; Kawai, Ikki; Kuroda, Kensuke; Ichino, Ryoichi; Okido, Masazumi; Seki, Azusa

    2012-01-01

    Various techniques for forming TiO2 coatings on Ti have been investigated for the improvement of the osteoconductivity of Ti implants. However, it is not clear how the oxidizing process affects this osteoconductivity. In this study, TiO2 coatings were prepared using the following three processes: anodizing in 0.1 M H3PO4 or 0.1 M NaOH aqueous solution; thermal oxidation at 673 K for 2 h in air; and a two-step process of anodizing followed by thermal oxidation. The oxide coatings were evaluated using SEM, XRD, and XPS. The water contact angle on the TiO2 coatings was measured as a surface property. The osteoconductivity of these samples was evaluated by measuring the contact ratio of formed hard tissue on the implanted samples (defined as the RB-I value) after 14 d implantation in rats' tibias. Anatase was formed by anodizing and rutile by thermal oxidation, but the difference in the TiO2 crystal structure did not influence the osteoconductivity. Anodized TiO2 coatings were hydrophilic, but thermally oxidized TiO2 coatings were less hydrophilic than anodized TiO2 coatings because they lacked in surface OH groups. The TiO2 coating process using anodizing without thermal oxidation gave effective improvement of the osteoconductivity of Ti samples. PMID:23316128

  14. Interface actions between TiO2 and porous diatomite on the structure and photocatalytic activity of TiO2-diatomite

    NASA Astrophysics Data System (ADS)

    Xia, Yue; Li, Fangfei; Jiang, Yinshan; Xia, Maosheng; Xue, Bing; Li, Yanjuan

    2014-06-01

    TiO2-diatomite photocatalysts were prepared by sol-gel process with various pre-modified diatomite. In order to obtain diatomite with different surface characteristics, two modification approaches including calcination and phosphoric acid treatment on the micro-structure of diatomite are introduced. The photocatalysts were characterized by XRD, XPS, nitrogen adsorption-desorption isotherms and micromorphology analysis. The results indicate that, compared with pure TiO2, the anatase-to-rutile phase transition temperature of TiO2 loaded on diatomite carrier is significantly increased to nearly 900 °C, depending on the different pretreatment method of diatomite. The photocatalytic activities of different samples were evaluated by their degradation rate of methyl orange (MO) dye under UV and visible-light irradiation. The samples prepared by phosphoric acid pretreatment method exhibit the highest photocatalytic activity. After 90 min of UV irradiation, about 90% of MO is decomposed by the best effective photocatalyst. And after 8 h visible-light irradiation, nearly 60% of MO is decomposed by the same sample. Further mechanism investigation reveals that the H3PO4 pretreatment process can obviously change the surface features of diatomite carrier, cause the formation of Si-O-Ti bond, increase the binding strength between TiO2 and diatomite, restrain crystal growth of loaded TiO2, and thus form thermal-stable mesoporous structure at the granular spaces. It helps to build micro-, meso- and macro-porous hierarchical porous structure in TiO2-diatomite, and improves the charge and mass transfer efficiency during catalyzing process, resulting in the significantly increased photocatalytic activity of TiO2-diatomite pretreated by phosphoric acid.

  15. The nanocrystalline structure of TiO2 film deposited by DC magnetron sputtering at room temperature

    NASA Astrophysics Data System (ADS)

    Liu, Jindong; Ding, Wanyu; Wang, Hualin; Liu, Shimin; Jiang, Weiwei; Liu, Chaoqian; Wang, Nan; Chai, Weiping

    2014-10-01

    At room temperature, titanium dioxide (TiO2) films were deposited by the direct current pulse magnetron sputtering technique. Varying O2/Ar flow ratio, TiO2 films with different nanocrystalline structures were obtained. The high resolution transmission electron microscopy results show that with O2/Ar = 6/14, the nanocrystalline in rutile phase appears in as-deposited film. Then X-ray diffraction patterns of annealed films revealed that with O2/Ar = 6/14, the higher weight fractions of rutile TiO2 appear in films. The optical emission spectroscopy results show that with O2/Ar < 6/14, O element was mainly existed as O-/O+ ions, instead of excited state of O atoms.

  16. Morphological and phase evolution of TiO 2 nanocrystals prepared from peroxotitanate complex aqueous solution: Influence of acetic acid

    NASA Astrophysics Data System (ADS)

    Chang, Jeong Ah; Vithal, Muga; Baek, In Chan; Seok, Sang Il

    2009-04-01

    Nanosized anatase and rutile TiO 2 having different shape, phase and size have been prepared from aqueous solutions of peroxo titanium complex starting from titanium(IV) isopropoxide (TTIP), acetic acid and hydrogen peroxide (H 2O 2) in water/isopropanol media by a facile sol-gel process. The TiO 2 nanocrystals are characterized by powder X-ray diffraction (XRD), Raman spectroscopy, FT-IR spectroscopy, TEM, high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) techniques. The influence of pH and the sequence of addition of reaction contents on the phase and morphology of TiO 2 are studied. The reasons for the observation of only anatase and/or mixture of anatase and rutile are given.

  17. Structure and optical properties of TiO2 thin films prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Białous, Anna; Gazda, Maria; Śliwiński, Gerard

    2013-03-01

    Thin TiO2 films prepared by pulsed laser deposition (PLD) in the O2 gas ambient using the bulk metal Ti or pressed TiO2 powder targets were characterized using spectroscopic methods. Films were deposited on SiO2 (001) and SiO2 glass substrates heated up to 300 °C. The deposition process was investigated at laser fluencies from the range of 1 - 3 J/cm2 and at oxygen pressure of 0.1 - 3.2 Pa. The μ-Raman and X-ray diffraction (XRD) spectra of the TiO2 films revealed consistently both the anatase and rutile crystalline phases and a strong dependence of the phase content ratio on target material and deposition conditions. The range of crystallite size determined from XRD bandwidths was between (2-30) nm and (6-14) nm for anatase and rutile, respectively. The film thickness values between 0.74 and 1.65 μm depending on the deposition time were obtained from the transmittance and ellipsometric measurements. Values of the band gap of 3.5-4.1 eV derived from absorption spectra were higher than that of 3.2 eV corresponding to anatase and this difference was ascribed to the relatively small size of the anatase crystallites and presence of rutile, too. The SEM images of films produced under similar conditions from Ti and TiO2 targets revealed porous structures. The highest anatase content was observed for films deposited by ablation of the TiO2 target at moderate laser fluencies below 2 J/cm2 and at oxygen pressure around 1.9 Pa.

  18. Metal oxide nanocluster-modified TiO2 as solar activated photocatalyst materials.

    PubMed

    Fronzi, Marco; Iwaszuk, Anna; Lucid, Aoife; Nolan, Michael

    2016-02-24

    In this review we describe our work on new TiO2 based photocatalysts. The key concept in our work is to form new composite structures by the modification of rutile and anatase TiO2 with nanoclusters of metal oxides and our density functional theory (DFT) level simulations are validated by experimental work synthesizing and characterizing surface-modified TiO2. We use DFT to show that nanoclusters of different metal oxides, TiO2, SnO/SnO2, PbO/PbO2, NiO and CuO can be adsorbed at rutile and anatase surfaces and can induce red shifts in the absorption edge to enable visible light absorption which is the first key requirement for a practical photocatalyst. We furthermore determine the origin of the red shift and discuss the factors influencing this shift and the fate of excited electrons and holes. For p-block metal oxides we show how the oxidation state of Sn and Pb can be used to tune both the magnitude of the red shift and also its mechanism. Finally, aiming to make our models more realistic, we present some new results on the stability of water at rutile and anatase surfaces and the effect of water on oxygen vacancy formation and on nanocluster modification. These nanocluster-modified TiO2 structures form the basis of a new class of photocatalysts which will be useful in oxidation reactions and with the suitable choice of nanocluster modifier can be applied to CO2 reduction. PMID:26808905

  19. Metal oxide nanocluster-modified TiO2 as solar activated photocatalyst materials

    NASA Astrophysics Data System (ADS)

    Fronzi, Marco; Iwaszuk, Anna; Lucid, Aoife; Nolan, Michael

    2016-02-01

    In this review we describe our work on new TiO2 based photocatalysts. The key concept in our work is to form new composite structures by the modification of rutile and anatase TiO2 with nanoclusters of metal oxides and our density functional theory (DFT) level simulations are validated by experimental work synthesizing and characterizing surface-modified TiO2. We use DFT to show that nanoclusters of different metal oxides, TiO2, SnO/SnO2, PbO/PbO2, NiO and CuO can be adsorbed at rutile and anatase surfaces and can induce red shifts in the absorption edge to enable visible light absorption which is the first key requirement for a practical photocatalyst. We furthermore determine the origin of the red shift and discuss the factors influencing this shift and the fate of excited electrons and holes. For p-block metal oxides we show how the oxidation state of Sn and Pb can be used to tune both the magnitude of the red shift and also its mechanism. Finally, aiming to make our models more realistic, we present some new results on the stability of water at rutile and anatase surfaces and the effect of water on oxygen vacancy formation and on nanocluster modification. These nanocluster-modified TiO2 structures form the basis of a new class of photocatalysts which will be useful in oxidation reactions and with the suitable choice of nanocluster modifier can be applied to CO2 reduction.

  20. Non-Band-Gap Photoexcitation of Hydroxylated TiO2

    PubMed Central

    2015-01-01

    The photochemistry of TiO2 has been studied intensively since it was discovered that TiO2 can act as a photocatalyst. Nevertheless, it has proven difficult to establish the detailed charge-transfer processes involved, partly because the excited states involved are difficult to study. Here we present evidence of the existence of hydroxyl-induced excited states in the conduction band region. Using two-photon photoemission, we show that stepwise photoexcitation from filled band gap states lying 0.8 eV below the Fermi level of rutile TiO2(110) excites hydroxyl-induced states 2.73 eV above the Fermi level that has an onset energy of ∼3.1 eV. The onset is shifted to lower energy by the coadsorption of molecular water, which suggests a means of tuning the energy of the excited state. PMID:26267712

  1. On the spray-drying deposition of TiO 2 photocatalytic films

    NASA Astrophysics Data System (ADS)

    Uzunova-Bujnova, M.; Todorovska, R.; Milanova, M.; Kralchevska, R.; Todorovsky, D.

    2009-11-01

    The photocatalytic activity of TiO 2 films deposited on different substrates by the spray-drying method using suspensions of commercially available TiO 2 (Degussa P25 or Tronox) as starting material was studied. The influence of the type of the initial TiO 2, preparation conditions (temperature of the substrate during the film deposition, temperature of the post-deposition annealing), substrate material (glass, fused silica, stainless steel and graphite), the presence of additives in the spraying suspension (polyethylene glycol, ethylene glycol and acetylacetone) and its sonication before spraying on the morphology, size of crystallites and phase composition (rutile/anatase ratio) was studied. Optimal conditions for spray deposition of the films are suggested.

  2. Photocatalytic Activity of W-Doped TiO2 Nanofibers for Methylene Blue Dye Degradation.

    PubMed

    Song, Yo-Seung; Cho, Nam-Ihn; Lee, Myung-Hyun; Kim, Bae-Yeon; Lee, Deuk Yong

    2016-02-01

    Photocatalytic degradation of methylene blue (MB) in water was examined using W-doped TiO2 nanofibers prepared by a sol-gel derived electrospinning and subsequent calcination for 4 h at 550 degrees C. Different concentrations of W dopant in the range of 0 to 8 mol% were synthesized to evaluate the effect of W concentration on the photocatalytic activity of TiO2. XRD results indicated that the undoped TiO2 is composed of anatase and rutile phases. The rutile phase was transformed to anatase phase completely with the W doping. Among W-TiO2 catalysts, the 2 mol% W-TiO2 catalyst showed the highest MB degradation rate. The degradation kinetic constant increased from 1.04 x 10(-3) min(-1) to 3.54 x 10(-3) min(-1) with the increase of W doping from 0 to 2 mol%, but decreased down to 1.77 x 10(-3) min(-1) when the W content was 8 mol%. It can be concluded that the degradation of MB under UV radiation was more efficient with W-TiO2 catalysts than with pure TiO2- PMID:27433681

  3. Influences of TiO2 phase structures on the structures and photocatalytic hydrogen production of CuOx/TiO2 photocatalysts

    NASA Astrophysics Data System (ADS)

    Liu, Yuanxu; Wang, Zhonglei; Huang, Weixin

    2016-12-01

    CuOx/TiO2 photocatalysts employing TiO2 with different phase structures as well as P25 as supports were prepared, and their structures and activity for photocatalytic H2 production in methanol/water solution under simulated solar light were comparatively studied. Structural characterization results demonstrated that the TiO2 phase structure strongly affects the CuOx-TiO2 interaction and copper species in various CuOx/TiO2 photocatalysts. The Cu2O-rutile TiO2 interaction is much stronger than the Cu2O-anatase TiO2 interaction, facilitates the interfacial charge transfer process within the Cu2O-rutile TiO2 heterojunction but disables supported Cu2O to catalyze the hole-participated methanol oxidation. The Cu2O-anatase TiO2 heterojunction with the appropriate Cu2O-anatase TiO2 interaction and thus the balancing efficiencies between the interfacial charge transfer process and hole-participated methanol oxidation is most photocatalytic active, and CuOx/P25 with the largest population of Cu2O-anatase TiO2 heterojunction exhibits the highest photocatalytic H2 production. These results provide novel insights in the applied surface science of CuOx/TiO2 photocatalysts.

  4. Thin films of TiO2:N for photo-electrochemical applications.

    PubMed

    Trenczek-Zajac, A; Pamula, E; Radecka, M; Kowalski, K; Reszka, A; Brudnik, A; Kusior, E; Zakrzewska, K

    2012-06-01

    Dc-pulsed magnetron sputtering from Ti target in reactive Ar+O2+N2 atmosphere was used to grow stoichiometric TiO2:N and non-stoichiometric TiO2-x:N thin films. X-ray diffraction at glancing incidence, atomic force microscopy AFM, scanning electron microscopy SEM, X-ray photoelectron spectroscopy XPS, and optical spectrophotometry were applied for sample characterization. Measurements of photocurrent versus voltage and wavelength over the ultraviolet uv and visible vis ranges of the light spectrum were performed in order to assess the performance of nitrogen-doped titanium dioxide thin films as photoanodes for hydrogen generation in photoelectrochemical cells, PEC. Undoped TiO2 and TiO2-x films were found to be composed of anatase and rutile mixture with larger anatase crystallites (25-35 nm) while the growth of smaller rutile crystallites (6-10 nm) predominated at higher nitrogen flow rates etaN2 as measured in standard cubic centimeters, sccm. Nitrogen-to-titanium ratio increased from N/Ti = 0.05 at etaN2 = 0.8 sccm for stoichiometric TiO2:N to N/Ti = 0.11 at etaN2 = 0.8 sccm for nonstoichiometric TiO2-x:N thin films. A red-shift in the optical absorbance was observed with an increase in etaN2. Doping with nitrogen improved photoelectrochemical properties over the visible range of the light spectrum in the case of nonstoichiometric samples. PMID:22905519

  5. A recipe for the use of rutile in sedimentary provenance analysis

    NASA Astrophysics Data System (ADS)

    Triebold, Silke; von Eynatten, Hilmar; Zack, Thomas

    2012-12-01

    Rutile has received considerable attention in the last decade as a valuable petrogenetic indicator mineral. Based on both new and previously published data, we carve out advantages and pitfalls regarding TiO2-minerals in sedimentary provenance analysis. This results in a recipe for the use of rutile in provenance studies. The main points are: Rutile geochemistry from different grain size fractions does not differ systematically, and hence rutiles should be extracted from the fraction containing the most rutile grains (usually 63-200 μm). Similarly, different magnetic susceptibility of rutile does not systematically imply different trace element composition. Before interpretation of TiO2-mineral data, it is important to determine the polymorph type. Rutile, anatase and brookite appear to differ systematically in trace element composition. As an alternative to Raman spectroscopy, chemical classification according to Nb, Cr, Sn, Fe, V, and Zr concentrations can be applied. For rutile, a new host lithology discrimination scheme based on Cr-Nb systematics is introduced (x = 5 ∗ (Nb [ppm] - 500) - Cr [ppm]), which leads to better classification results than previously published discrimination methods. According to this equation, metamafic rutiles have negative values of x, while metapelitic rutiles have positive values. Evaluation of the growth temperature calculations of metamorphic rutile after different authors shows that the equations given by Tomkins et al. (2007) should be applied to both metamafic and metapelitic rutiles. Although there is a pressure effect on the Zr incorporation in rutile, the pressure range for most rutiles of 5-15 kbar introduces an uncertainty in calculated temperature of no more than ± 35 °C. The distribution of calculated temperatures from detrital rutiles is crucial; only well-defined temperature populations should be used for thermometry interpretation.

  6. Synthesis of TiO(2) nanoframe and the prototype of a nanoframe solar cell.

    PubMed

    Chen, Ying; Kim, Ho-Cheol; McVittie, Jim; Ting, Chiu; Nishi, Yoshio

    2010-05-01

    Nanoframes containing 20 nm diameter TiO(2) nanowire arrays were synthesized with polymer templates via cathodic sol-gel deposition followed by 450 degrees C sintering. Raman spectra indicated that they are composed of pure anatase TiO(2). The nanowire array inside the nanoframe was confirmed to be single crystalline by high resolution TEM. Dye-sensitized solar cells based on this nanoframe were fabricated and the effects of the top cover in the nanoframe, which is the only difference between nanoframe cells and nanowire cells, were investigated. The results show that the top cover does not prevent the I( - ) and I(3)( - ) ions underneath from diffusing freely in the electrolyte and causes no deterioration of the cell performance. The nanoframe cell is a promising device in which nanowire arrays are strengthened and the effective internal surface area has the potentiality to be increased without sacrificing the advantages of nanowire cells compared to nanoparticle cells. PMID:20378944

  7. Single-crystalline nanoporous Nb2O5 nanotubes

    PubMed Central

    2011-01-01

    Single-crystalline nanoporous Nb2O5 nanotubes were fabricated by a two-step solution route, the growth of uniform single-crystalline Nb2O5 nanorods and the following ion-assisted selective dissolution along the [001] direction. Nb2O5 tubular structure was created by preferentially etching (001) crystallographic planes, which has a nearly homogeneous diameter and length. Dense nanopores with the diameters of several nanometers were created on the shell of Nb2O5 tubular structures, which can also retain the crystallographic orientation of Nb2O5 precursor nanorods. The present chemical etching strategy is versatile and can be extended to different-sized nanorod precursors. Furthermore, these as-obtained nanorod precursors and nanotube products can also be used as template for the fabrication of 1 D nanostructured niobates, such as LiNbO3, NaNbO3, and KNbO3. PMID:21711650

  8. Single-crystalline nanoporous Nb2O5 nanotubes.

    PubMed

    Liu, Jun; Xue, Dongfeng; Li, Keyan

    2011-01-01

    Single-crystalline nanoporous Nb2O5 nanotubes were fabricated by a two-step solution route, the growth of uniform single-crystalline Nb2O5 nanorods and the following ion-assisted selective dissolution along the [001] direction. Nb2O5 tubular structure was created by preferentially etching (001) crystallographic planes, which has a nearly homogeneous diameter and length. Dense nanopores with the diameters of several nanometers were created on the shell of Nb2O5 tubular structures, which can also retain the crystallographic orientation of Nb2O5 precursor nanorods. The present chemical etching strategy is versatile and can be extended to different-sized nanorod precursors. Furthermore, these as-obtained nanorod precursors and nanotube products can also be used as template for the fabrication of 1 D nanostructured niobates, such as LiNbO3, NaNbO3, and KNbO3. PMID:21711650

  9. Subsurface damage of single crystalline silicon carbide in nanoindentation tests.

    PubMed

    Yan, Jiwang; Gai, Xiaohui; Harada, Hirofumi

    2010-11-01

    The response of single crystalline silicon carbide (SiC) to a Berkovich nanoindenter was investigated by examining the indents using a transmission electron microscope and the selected area electron diffraction technique. It was found that the depth of indentation-induced subsurface damage was far larger than the indentation depth, and the damaging mechanism of SiC was distinctly different from that of single crystalline silicon. For silicon, a broad amorphous region is formed underneath the indenter after unloading; for SiC, however, no amorphous phase was detected. Instead, a polycrystalline structure with a grain size of ten nanometer level was identified directly under the indenter tip. Micro cracks, basal plane dislocations and possible cross slips were also found around the indent. These finding provide useful information for ultraprecision manufacturing of SiC wafers. PMID:21138038

  10. A pseudo-single-crystalline germanium film for flexible electronics

    SciTech Connect

    Higashi, H.; Yamada, S.; Kanashima, T.; Hamaya, K.; Kasahara, K.; Park, J.-H.; Miyao, M.; Kudo, K.; Okamoto, H.; Moto, K.; Tsunoda, I.

    2015-01-26

    We demonstrate large-area (∼600 μm), (111)-oriented, and high-crystallinity, i.e., pseudo-single-crystalline, germanium (Ge) films at 275 °C, where the temperature is lower than the softening temperature of a flexible substrate. A modulated gold-induced layer exchange crystallization method with an atomic-layer deposited Al{sub 2}O{sub 3} barrier and amorphous-Ge/Au multilayers is established. From the Raman measurements, we can judge that the crystallinity of the obtained Ge films is higher than those grown by aluminum-induced-crystallization methods. Even on a flexible substrate, the pseudo-single-crystalline Ge films for the circuit with thin-film transistor arrays can be achieved, leading to high-performance flexible electronics based on an inorganic-semiconductor channel.

  11. TiS2 transformation into S-doped and N-doped TiO2 with visible-light catalytic activity

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chen; Chien, Tzu-En; Lai, Po-Chih; Chiang, Yu-Hsien; Li, Kun-Lin; Lin, Jong-Liang

    2015-12-01

    S-doped rutile has been prepared for the first time by hydrothermal reaction of TiS2 in hydrochloric acid at a low temperature (180 °C), with the S atoms in three states of Tisbnd Ssbnd Ti, Tisbnd Ssbnd O and SO4. TiS2 in nitric acid can also be transformed into TiO2, but with mixed phases of anatase and rutile, containing nitrogen atoms at interstitial sites in the form of Tisbnd Osbnd N or Tisbnd Nsbnd O. The Ssbnd TiO2 catalyst shows a better visible-light reactivity toward adsorbed methylene blue (MB) photodegradation and hydroxylation of terephthalic acid with respect to the Nsbnd TiO2. The possible reasons leading to the high photoactivity of the Ssbnd TiO2 are discussed in terms of the incorporated sulfur states.

  12. Influence of the oxygen concentration on the formation of crystalline phases of TiO2 during the low-pressure arc-discharge plasma synthesis

    NASA Astrophysics Data System (ADS)

    Ushakov, A. V.; Karpov, I. V.; Lepeshev, A. A.

    2016-02-01

    The synthesis of titanium dioxide (TiO2) nanoparticles with different percentage of anatase and rutile phases is investigated. The synthesis is performed by controlling the oxygen percentage in the gas mixture in the plasmachemical evaporation-condensation process employing a low-pressure arc discharge. In all our experiments, the pressure in the plasmachemical reactor and the average size of particles remain constant and are 60 Pa and 6 nm, respectively. The crystal structure of synthesized TiO2 is studied using X-ray diffraction; the morphology of the particles is analyzed employing transmission electron microscopy. Using X-ray phase analysis, it is established that the concentration of the TiO2 anatase phase decreases upon a decrease in the oxygen concentration in the gas mixture. It is shown that the TiO2 anatase phase is more efficient for photocatalytic decomposition of methylene blue than the rutile phase.

  13. Freestanding single-crystalline magnetic structures fabricated by ion bombardment

    NASA Astrophysics Data System (ADS)

    Schoenherr, P.; Bischof, A.; Boehm, B.; Eib, P.; Grimm, S.; Alvarado, S. F.; Gross, L.; Allenspach, R.

    2015-01-01

    Starting from an ultrathin Fe film grown epitaxially on top of a GaAs(001) substrate, we show that freestanding structures can be created by ion-beam treatment. These structures are single-crystalline blisters and only a few nanometers thick. Anisotropic stress in the rim of a blister induces magnetic domain states magnetized in the direction normal to the blister edge. Experimental evidence is provided that the lateral size can be confined by starting from a nanostructured template.

  14. Growth of one-dimensional single-crystalline hydroxyapatite nanorods

    NASA Astrophysics Data System (ADS)

    Ren, Fuzeng; Ding, Yonghui; Ge, Xiang; Lu, Xiong; Wang, Kefeng; Leng, Yang

    2012-06-01

    A facile, effective and template/surfactant-free hydrothermal route in the presence of sodium bicarbonate was developed to synthesize highly uniform single-crystalline hydroxyapatite (HA) nanorods with the lengths of several hundred nanometers and aspect ratio up to ˜20. One dimensional (1-D) growth and aspect ratio could be controlled by hydrothermal reaction time and temperature. The longitudinal axis, also the growth direction of the nanorods, is parallel to the [001] direction of HA hexagonal crystal structure.

  15. Synthesis and characterization of single crystalline selenium nanowire arrays

    SciTech Connect

    Zhang, X.Y. . E-mail: apzhxy@polyu.edu.hk; Xu, L.H.; Dai, J.Y.; Cai, Y.; Wang, N.

    2006-09-14

    Ordered selenium nanowire arrays with diameters about 40 nm have been fabricated by electrodeposition using anodic porous alumina templates. As determined by X-ray diffraction, Raman spectra, electron diffraction and high-resolution transmission electron microscopy, selenium nanowires have uniform diameters, which are fully controllable. Single crystalline trigonal selenium nanowires have been obtained after postannealing at 180 deg. C. These nanowires are perfect with a c-axis growth orientation. The optical absorption spectra reveal two types of electron transition activity.

  16. Freestanding single-crystalline magnetic structures fabricated by ion bombardment

    SciTech Connect

    Schoenherr, P.; Bischof, A.; Boehm, B.; Eib, P.; Grimm, S.; Gross, L.; Allenspach, R.; Alvarado, S. F.

    2015-01-19

    Starting from an ultrathin Fe film grown epitaxially on top of a GaAs(001) substrate, we show that freestanding structures can be created by ion-beam treatment. These structures are single-crystalline blisters and only a few nanometers thick. Anisotropic stress in the rim of a blister induces magnetic domain states magnetized in the direction normal to the blister edge. Experimental evidence is provided that the lateral size can be confined by starting from a nanostructured template.

  17. Si NW network by Ag nanoparticle assisted etching and TiO2/Si NWs as photodetector

    NASA Astrophysics Data System (ADS)

    Bhowmik, Kishan; Mondal, Aniruddha

    2015-03-01

    Glancing angle deposited silver (Ag) nanoparticles (NPs) were employed to fabricate the silicon (Si) nanowire (NW) network on p-type Si substrate. The Si NWs were characterized by X-ray diffraction, which shows the (311) oriented single crystalline nature. The FEG-SEM images show that the nanowire diameters are in the order of 60-180 nm. The photoluminescence emission at 525 nm was recognized from the Si NWs. The Ag-TiO2 contacts exhibit Schottky behavior and higher photoconduction was observed for TiO2-Si NW detector than that of TiO2 Thin film under illumination up to 2.5 V applied potential. A threefold enhanced photodetection for the Silicon nanowire device was observed compared to the TiO2 thin film device, under applied voltages of 0.4-1.5 V. [Figure not available: see fulltext.

  18. Fabrication and characterization of brookite-rich, visible light-active TiO2 films for water splitting

    SciTech Connect

    Pan, Hui; Qiu, Xiaofeng; Ivanov, Ilia N; Meyer III, Harry M; Wang, Wei; Zhu, Wenguang; Paranthaman, Mariappan Parans; Zhang, Zhenyu; Eres, Gyula; Gu, Baohua

    2009-01-01

    We report that mild oxidation of Ti foils in air results in brookite-rich titanium oxide (TiO2) films with similar spectral response to that of dye-sensitized TiO2. X-ray powder diffraction and Raman spectroscopy show that the onset of brookite formation occurs at 500 8C, and the material is characterized by a strong absorption band in the visible spectral range. The first-principle calculations show that enhanced visible light absorption correlates with the presence of Ti interstitials. Photocurrent density measurements of water splitting reveal that the brookite-rich TiO2 exhibits the highest photocatalytic performance among the different forms of TiO2 produced by oxidation of Ti foils. With increasing oxidation temperature transformation to the rutile phase accompanied by declining visible range photoactivity is observed.

  19. TiO2 film properties as a function of processing temperature, volume 3

    NASA Technical Reports Server (NTRS)

    Fitzgibbons, E. T.; Sladek, K. J.; Hartwig, W. H.

    1972-01-01

    Thin film TiO2 was produced at 150 C by chemical vapor deposition using hydrolysis of tetraisopropyl titanate. Films were amorphous as grown, but annealing in air caused crystallization, with anatase formed beginning at 350 C and rutile at 700 C. Density and index of refraction increased substantially with increasing anneal temperature, while etch susceptibility in HF and H2SO4 decreased. Comparison with literature data showed two groups of processes. One group yields films having properties that gradually approach those of rutile with increasing process temperature. The other group gives rutile directly at moderate temperatures. Deposition of amorphous film followed by etching and annealing is suggested as a means for pattern definition.

  20. Theoretical limits of thermoelectric figure of merit in n -type TiO2 polymorphs

    NASA Astrophysics Data System (ADS)

    Bayerl, Dylan; Kioupakis, Emmanouil

    2015-04-01

    We calculate the conduction-band structures and n -type thermoelectric transport properties for the TiO2 polymorphs rutile, anatase, and brookite from first principles within the constant-relaxation-time approximation. Although the Seebeck coefficient is nearly isotropic in all polymorphs, the power factor is anisotropic and takes its largest values along [100] in rutile and anatase and along [010] in brookite. We also identify the free-carrier concentrations and temperatures that maximize the power factor. Our results for the theoretical upper bounds of the figure of merit at high temperature show that optimized rutile exhibits thermoelectric conversion efficiency that is superior to anatase and brookite and can reach values desirable for waste-heat recovery applications.

  1. Selective defunctionalization by TiO2 of monomeric phenolics from lignin pyrolysis into simple phenols.

    PubMed

    Mante, Ofei D; Rodriguez, Jose A; Babu, Suresh P

    2013-11-01

    This study is focused on defunctionalizing monomeric phenolics from lignin into simple phenols for applications such as phenol/formaldehyde resins, epoxidized novolacs, adhesives and binders. Towards this goal, Titanium dioxide (TiO2) was used to selectively remove hydroxyl, methoxy, carbonyl and carboxyl functionalities from the monomeric phenolic compounds from lignin to produce mainly phenol, cresols and xylenols. The results showed that anatase TiO2 was more selective and active compared to rutile TiO2. Catechols were found to be the most reactive phenolics and 4-ethylguaiacol the least reactive with anatase TiO2. An overall conversion of about 87% of the phenolics was achieved at 550°C with a catalyst-to-feed ratio of 5 w/w. Over 97% conversion of phenolics is achievable at moderate temperatures (550°C or ≤ 600°C) and a moderate catalyst-to-feed ratio of 6.5:1. The reactivity of catechols on TiO2 suggests that titania is a promising catalyst in the removal of hydroxyl moiety. PMID:24080289

  2. Annealing effect on structural and optical properties of hydrothermally synthesized TiO2 nanowires.

    PubMed

    Hadia, N M A

    2014-07-01

    TiO2 nanowires (TiO2 NWs) were successfully synthesized in large amounts through the one step hydrothermal process in 10 M NaOH aqueous solution at 150 degrees C for 15 h followed by annealing at 300-800 degrees C for 2 h. The products were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scan electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM) and high resolution TEM (HRTEM). The optical properties of TiO2 nanowires were characterized using UV-VIS-NIR Spectrophotometers. It was found that the TiO2 nanowires persist in the anatase phase even after annealing at 500 degrees C and that the morphology of the nanowires was maintained. At 800 degrees C, the nanowires transformed into a rod-like shapes with a rutile structure. The optical band gap of TiO2 nanowires was found to decrease when the annealing temperature increases. PMID:24758068

  3. Interface feature characterization and Schottky interfacial layer confirmation of TiO2 nanotube array film

    NASA Astrophysics Data System (ADS)

    Li, Hongchao; Tang, Ningxin; Yang, Hongzhi; Leng, Xian; Zou, Jianpeng

    2015-11-01

    We report here characterization of the interfacial microstructure and properties of titanium dioxide (TiO2) nanotube array films fabricated by anodization. Field effect scanning electron microscopy (FESEM), X-ray diffraction (XRD), nanoindentation, atomic force microscopy (AFM), selected area electron diffraction (SAED), and high-resolution transmission electron microscopy (HRTEM) were used to characterize the interface of the film. With increasing annealing temperature from 200 °C to 800 °C, the interfacial fusion between the film and the Ti substrate increased. The phase transformation of the TiO2 nanotube film from amorphous to anatase to rutile took place gradually; as the phase transformation progressed, the force needed to break the film increased. The growth of TiO2 nanotube arrays occurs in four stages: barrier layer formation, penetrating micropore formation, regular nanotube formation, and nanofiber formation. The TiO2 nanotubes grow from the Schottky interface layer rather than from the Ti substrate. The Schottky interface layer's thickness of 35-45 nm was identified as half the diameter of the corresponding nanotube, which shows good agreement to the Schottky interface layer growth model. The TiO2 nanotube film was amorphous and the Ti substrate was highly crystallized with many dislocation walls.

  4. Synthesis and Characterization of Photocatalytic TiO 2 -ZnFe 2 O 4 Nanoparticles

    DOE PAGESBeta

    Srinivasan, Sesha S.; Wade, Jeremy; Stefanakos, Elias K.

    2006-01-01

    A new coprecipimore » tation/hydrolysis synthesis route is used to create a TiO 2 -ZnFe 2 O 4 nanocomposite that is directed towards extending the photoresponse of TiO 2 from UV to visible wavelengths ( > 400   nm ). The effect of TiO 2 's accelerated anatase-rutile phase transformation due to the presence of the coupled ZnFe 2 O 4 narrow-bandgap semiconductor is evaluated. The transformation's dependence on pH, calcinations temperature, particle size, and ZnFe 2 O 4 concentration has been analyzed using XRD, SEM, and UV-visible spectrometry. The requirements for retaining the highly photoactive anatase phase present in a ZnFe 2 O 4 nanocomposite are outlined. The visible-light-activated photocatalytic activity of the TiO 2 -ZnFe 2 O 4 nanocomposites has been compared to an Aldrich TiO 2 reference catalyst, using a solar-simulated photoreactor for the degradation of phenol.« less

  5. Influence of Ti nanocrystallization on microstructure, interface bonding, surface energy and blood compatibility of surface TiO 2 films

    NASA Astrophysics Data System (ADS)

    Shao, Honghong; Yu, Chunhang; Xu, Xiaojing; Wang, Ji; Zhai, Rui; Wang, Xiaojing

    2010-12-01

    Recent progress in ultrafine-grained/nano-grained (UFG/NG) titanium permits a consideration for TiO 2 films deposited on nano-grained titanium for antithrombogenic application such as artificial valves and stents. For this paper, the microstructure, interface bonding, surface energy, and blood compatibility features of TiO 2 films deposited by direct current magnetron reactive sputtering technology on NG titanium and coarse-grained (CG) titanium were investigated. The results show that the nanocrystallization of titanium substrate has a significant influence on TiO 2 films. At the same deposition parameters, the content of rutile phase of TiO 2 film was increased from 47% (on the CG titanium substrate) to 72% (on the NG titanium substrate); the adhesion of TiO 2 film was improved from 5.8 N to 17 N; the surface energy was reduced from 6.37 dyn/cm to 3.01 dyn/cm; the clotting time was improved from 18 min to 28 min; the platelets accumulation and pseudopodium of adherent platelets on TiO 2 film on NG titanium were considerably reduced compared to that on CG titanium. The present results demonstrate the possibility of improving the blood compatibility of TiO 2 film through the approach of substrate nanocrystallization. Also it may provide an attractive idea to prepare stents with biological coatings of more outstanding blood compatibility and interface bonding.

  6. TiO2-assisted degradation of a perfluorinated surfactant in aqueous solutions treated by gliding arc discharge.

    PubMed

    Marouf-Khelifa, Kheira; Abdelmalek, Fatiha; Khelifa, Amine; Addou, Ahmed

    2008-02-01

    The plasma-chemical degradation of Forafac 1110, a perfluorinated non-ionic surfactant, in aqueous solutions was investigated using TiO2 catalysts. The considered plasma was the gliding arc in humid air, which results from an electric discharge at atmospheric pressure and quasi-ambient temperature. Two titanium dioxide powders were used and their synergistic effects on the Forafac degradation were compared. The results were discussed through the evolution of the pH, the conductivity, the fluoride ions concentration released in solutions, the surfactant concentration remaining after treatment and the chemical oxygen demand (COD) measurement. The combination of the plasma-chemical treatment with heterogeneous catalysis through the use of TiO2 accelerated the Forafac degradation, since only 60 min was sufficient to remove 96% instead of 360 min needed in the absence of TiO2. The use of anatase and rutile under the trade-name of Rhodia TiO2 and Merck TiO2, respectively, led to different results, because Rhodia TiO2 has proven to be more efficient. It would seem that the crystalline phase as well as the crystallite size, explain the efficiency of anatase. The advantage of the plasma-catalysis is due to the fact that there is a significant production of the OH* radicals not only generated by the gliding arc discharge but also by TiO2. PMID:17980903

  7. Narrow-linewidth red-emission Eu3+-doped TiO2 spheres for light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhu, Peifen; Zhu, Hongyang; Qin, Weiping; Dantas, Breno H.; Sun, Wei; Tan, Chee-Keong; Tansu, Nelson

    2016-03-01

    In this work, the amorphous Eu3+-doped TiO2 spheres were synthesized by low cost mixed-solvent method, while the anatase and rutile spheres can be obtained by annealing the as-synthesized amorphous TiO2 spheres at elevated temperatures. The optical properties of Eu3+-doped TiO2 spheres were also investigated, and strong red emission (centered at 610 nm) with narrow line-width of 30 nm was observed under 465 nm or 394 nm excitations for the Eu3+-doped anatase TiO2 spheres. Our findings indicate the potential of using Eu3+-doped TiO2 spheres to achieve red emission with InGaN blue light emitting diodes (LEDs). Owing to the high light extraction efficiency in the GaN-based LEDs using anatase TiO2 spheres as demonstrated in our previous works, this work shows the strong potential of Eu3+-doped TiO2 spheres as the red phosphor material for high efficiency GaN-based white light-emitting diode.

  8. Influence of Nd dopant amount on microstructure and photoluminescence of TiO2:Nd thin films

    NASA Astrophysics Data System (ADS)

    Wojcieszak, Damian; Mazur, Michal; Kaczmarek, Danuta; Morgiel, Jerzy; Zatryb, Grzegorz; Domaradzki, Jaroslaw; Misiewicz, Jan

    2015-10-01

    TiO2 and TiO2:Nd thin films were deposited using reactive magnetron sputtering process from mosaic Ti-Nd targets with various Nd concentration. The thin films were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM) and spectroscopic techniques. Photoluminescence (PL) in the near infrared obtained upon 514.5 nm excitation was also examined. The relationship between the Nd concentration, structural, optical and photoluminescence properties of prepared thin films was investigated and discussed. XRD and TEM measurements showed that an increase in the Nd concentration in the thin films hinders the crystal growth in the deposited coatings. Depending on the Nd amount in the thin films, TiO2 with the rutile, mixed rutile-amorphous or amorphous phase was obtained. Transmittance measurements revealed that addition of Nd dopant to titania matrix did not deteriorate optical transparency of the coatings, however it influenced on the position of the fundamental absorption edge and therefore on the width of optical band gap energy. All TiO2:Nd thin films exhibited PL emission that occurred at ca. 0.91, 1.09 and 1.38 μm. Finally, results obtained for deposited coatings showed that titania with the rutile structure and 1.0 at.% of Nd was the most efficient in VIS to NIR photon conversion.

  9. Visible light Cr(VI) reduction and organic chemical oxidation by TiO2 photocatalysis.

    PubMed

    Sun, Bo; Reddy, Ettireddy P; Smirniotis, Panagiotis G

    2005-08-15

    Here we report the simultaneous Cr(VI) reduction and 4-chlorophenol (4-CP) oxidation in water under visible light (wavelength > 400 nm) using commercial Degussa P25 TiO2. This remarkable observation was attributed to a synergistic effect among TiO2, Cr(VI), and 4-CP. It is well known that TiO2 alone cannot remove either 4-CP or Cr(VI) efficiently under visible light. Moreover, the interaction between Cr(VI) and 4-CP is minimal if not negligible. However, we found that the combination of TiO2, Cr(VI), and 4-CP together can enable efficient Cr(VI) reduction and 4-CP oxidation under visible light. The specific roles of the three ingredients in the synergistic system were studied parametrically. It was found that optimal concentrations of Cr(VI) and TiO2 exist for the Cr(VI) reduction and 4-CP oxidation. Cr(VI) was compared experimentally with other metals such as Cu(ll), Fe(lll), Mn(IV), Ce(IV), and V(V). Among all these metal ions, only Cr(VI) promotes the photocatalytic oxidation of 4-CP. The amount of 4-CP removed was directly related to the initial concentration of Cr(VI). The system was also tested with four other chemicals (aniline, salicylic acid, formic acid, and diethyl phosphoramidate). We found that the same phenomenon occurred for organics containing acid and/or phenolic groups. Cr(VI) was reduced at the same time as the organic chemicals being oxidized during photoreaction under visible light. The synergistic effect was also found with pure anatase TiO2 and rutile TiO2. This study demonstrates a possible economical way for environmental cleanup under visible light. PMID:16173589

  10. Thermal Behavior and Phase Transformation of TiO2 Nanocrystallites Prepared by a Coprecipitation Route

    NASA Astrophysics Data System (ADS)

    Yeh, Shang-Wei; Chen, Yen-Ling; Hsi, Chi-Shiung; Ko, Horng-Huey; Wang, Moo-Chin

    2014-01-01

    TiO2 freeze-dried precursor powders were synthesized using a coprecipitation route that includes titanium tetrachloride (TiCl4) as initial material prepared at 348 K (75 °C) and pH 7. Differential scanning calorimetry/thermogravimetry (DSC/TG), X-ray diffraction (XRD), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) and high resolution TEM were utilized to characterize the thermal behavior and phase transformation of the TiO2 freeze-dried precursor powders after calcination. The main compound of the TiO2 freeze-dried precursor powders was TiO2·H2O based on a TG analysis conducted at a heating rate of 20 K (20 °C)/min. The anatase TiO2 (a-TiO2) first appeared at 473 K (200 °C), then from a-TiO2 transformed to rutile TiO2 (r-TiO2) at 773 K (500 °C). The activation energy of a-TiO2 formation from TiO2 freeze-dried precursor powders was 242.4 ± 33.9 kJ/mol, whereas, the activation energy of phase transformation from a-TiO2 to r-TiO2 was 267.5 ± 19.1 kJ/mol. The crystallite size of a-TiO2 grew from 3.5 to 23.2 nm when raising the calcination temperature from 473 K to 873 K (200 °C to 600 °C). In addition, the crystallite size of r-TiO2 increased from 17.4 to 48.1 nm when calcination temperature increased from 773 K to 1073 K (500 °C to 800 °C).

  11. CNTs threaded (001) exposed TiO2 with high activity in photocatalytic NO oxidation

    NASA Astrophysics Data System (ADS)

    Xiao, Shuning; Zhu, Wei; Liu, Peijue; Liu, Fanfan; Dai, Wenrui; Zhang, Dieqing; Chen, Wei; Li, Hexing

    2016-01-01

    A microwave-ionothermal strategy was developed for in situ synthesis of CNTs threaded TiO2 single crystal with a tunable percentage of surface exposed (001) active facets. The CNTs were used as microwave antennas to create local ``super hot'' dots to induce Ti3+ adsorption and hydrolysis, thereby leading to a good assembly of (001) facets exposed single crystalline TiO2 threaded by the CNTs in the presence of Hmim[BF4] ionic liquid. Due to the high percentage of the active (001) facets of single crystal TiO2 and the direct electron transfer property of the CNTs, the as-prepared CNTs-TiO2 composite showed a photocatalytic NO removal ratio of up to 76.8% under UV irradiation. In addition, with self-doped Ti3+, the CNTs-TiO2 composite also exhibited an enhanced activity under irradiation with either solar lights or visible lights, showing good potential in practical applications for environmental remediation.A microwave-ionothermal strategy was developed for in situ synthesis of CNTs threaded TiO2 single crystal with a tunable percentage of surface exposed (001) active facets. The CNTs were used as microwave antennas to create local ``super hot'' dots to induce Ti3+ adsorption and hydrolysis, thereby leading to a good assembly of (001) facets exposed single crystalline TiO2 threaded by the CNTs in the presence of Hmim[BF4] ionic liquid. Due to the high percentage of the active (001) facets of single crystal TiO2 and the direct electron transfer property of the CNTs, the as-prepared CNTs-TiO2 composite showed a photocatalytic NO removal ratio of up to 76.8% under UV irradiation. In addition, with self-doped Ti3+, the CNTs-TiO2 composite also exhibited an enhanced activity under irradiation with either solar lights or visible lights, showing good potential in practical applications for environmental remediation. Electronic supplementary information (ESI) available: TG, FTIR, Raman, EPR and additional photocatalytic performance data. See DOI: 10.1039/c5nr07589k

  12. A new form of chemisorbed photo- and electro-active atomic H species on the TiO2(110) surface

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Yates, John T.

    2016-10-01

    Hydrogen adsorption on TiO2 is of importance in chemical and photochemical reduction processes. Using several surface science methods, we clearly distinguish two kinds of H species on the surface of rutile TiO2(110)-1 × 1. In contrast with the well-studied bridge-bonded OH species (α-H) originating from H2O dissociation on the surface oxygen vacancy site on TiO2(110), atomic H adsorption on the TiO2(110) (denoted as β-H) exhibits special high sensitivity to the electronic excitation of the TiO2(110) by either electrons or UV photons. The formation of molecular H2 gas by photoexcitation of β-H/TiO2(110) surfaces has been observed, which may shed light on the basic understanding of the processes of photocatalytic H2 production by splitting water.

  13. Modification mechanism of praseodymium doping for the photocatalytic performance of TiO2: a combined experimental and theoretical study.

    PubMed

    Duan, Zhi-Gang; Zhao, Zong-Yan; Shi, Qing-Nan

    2015-07-15

    Impurity doping is a simple and efficient modification method to improve the photocatalytic performance of wide band gap photocatalysts. However, some basic and important issues about the mechanism of impurity doping modification still need to be further confirmed and explained. In the present work, Pr-doped TiO2 with a mono-phase crystal structure was prepared by a sol-gel method. Then, the crystal structure, binding information, optical absorption, and photocatalytic activity were systematically investigated. The experimental results show that Pr doping could significantly enhance the photocatalytic activity of TiO2, and the effects of modification on rutile TiO2 are more obvious than for anatase TiO2. In order to understand the underlying mechanism, density functional theory was utilized to calculate the crystal structure and electronic structure of pure and Pr-doped TiO2. The differences in electronic structure between anatase and rutile phases lead to the above photocatalytic performance. The experimental measurements and theoretical calculations mutually support each other in the present work. Two points are confirmed: the position of the band edge determines the redox activity of the photocatalyst, and the shallow energy bands induced by impurity doping could improve the photocatalytic performance. PMID:26130404

  14. Direct Imaging of Site-Specific Photocatalytic Reactions of O2 on TiO2(110)

    SciTech Connect

    Wang, Zhitao; Deskins, N. Aaron; Lyubinetsky, Igor

    2012-01-01

    Photo-stimulated reactions on TiO2 have attracted much attention due to the variety of potential applications ranging from a hydrogen production by water splitting to environmental remediation through organic pollutant oxidation.[1,2] In the majority of these processes the oxygen plays a crucial role, serving as a simplest oxidizing reagent and/or as an electron scavenger.[3,4] Hence, the physicochemical properties of O2 adsorbed on rutile TiO2(110) (model oxide surface) has been extensively investigated,[7-13] and, in particular, the chemisorbed O2 molecules have been recently imaged by scanning tunneling microscopy (STM).[14-16] While the O2 desorption from rutile TiO2(110) is the most comprehensively studied photoreaction on TiO2 (by traditional ensemble-averaging techniques), details of its mechanism are still far from being understood. On a basis of extensive research of photostimulated desorption (PSD) of O2 from TiO2(110) by ultraviolet (UV) light, Yates and co-workers have developed a hole-mediated desorption model.

  15. TiO2 synthesis inspired by biomineralization: control of morphology, crystal phase, and light-use efficiency in a single process.

    PubMed

    Nonoyama, Takayuki; Kinoshita, Takatoshi; Higuchi, Masahiro; Nagata, Kenji; Tanaka, Masayoshi; Sato, Kimiyasu; Kato, Katsuya

    2012-05-30

    Hydroxyapatite is mineralized along the long axis of collagen fiber during osteogenesis. Mimicking such biomineralization has great potential to control inorganic structures and is fast becoming an important next-generation inorganic synthesis method. Inorganic matter synthesized by biomineralization can have beautiful and functional structures that cannot be created artificially. In this study, we applied biomineralization to the synthesis of the only photocatalyst in practical use today, titanium dioxide (TiO(2)). The photocatalytic activity of TiO(2) mainly relates to three properties: morphology, crystal phase, and light-use efficiency. To optimize TiO(2) morphology, we used a simple sequential peptide as an organic template. TiO(2) mineralized by a β-sheet peptide nanofiber template forms fiber-like shapes that are not observed for mineralization by peptides in the shape of random coils. To optimize TiO(2) crystal phase, we mineralized TiO(2) with the template at 400 °C to transform it into the rutile phase and at 700 °C to transform it into a mixed phase of anatase and rutile. To optimize light-use efficiency, we introduced nitrogen atoms of the peptide into the TiO(2) structure as doped elemental material during sintering. Thus, this biomineralization method enables control of inorganic morphology, crystal phase, and light-use efficiency in a single process. PMID:22578231

  16. Formation of titanium monoxide (001) single-crystalline thin film induced by ion bombardment of titanium dioxide (110)

    NASA Astrophysics Data System (ADS)

    Pabón, B. M.; Beltrán, J. I.; Sánchez-Santolino, G.; Palacio, I.; López-Sánchez, J.; Rubio-Zuazo, J.; Rojo, J. M.; Ferrer, P.; Mascaraque, A.; Muñoz, M. C.; Varela, M.; Castro, G. R.; de La Fuente, O. Rodríguez

    2015-02-01

    A plethora of technological applications justify why titanium dioxide is probably the most studied oxide, and an optimal exploitation of its properties quite frequently requires a controlled modification of the surface. Low-energy ion bombardment is one of the most extended techniques for this purpose and has been recently used in titanium oxides, among other applications, to favour resistive switching mechanisms or to form transparent conductive layers. Surfaces modified in this way are frequently described as reduced and defective, with a high density of oxygen vacancies. Here we show, at variance with this view, that high ion doses on rutile titanium dioxide (110) induce its transformation into a nanometric and single-crystalline titanium monoxide (001) thin film with rocksalt structure. The discovery of this ability may pave the way to new technical applications of ion bombardment not previously reported, which can be used to fabricate heterostructures and interfaces.

  17. An effective method for the preparation of high temperature stable anatase TiO2 photocatalysts

    NASA Astrophysics Data System (ADS)

    Fagan, Rachel; Synnott, Damian W.; McCormack, Declan E.; Pillai, Suresh C.

    2016-05-01

    An efficient, rapid and straightforward method for the preparation of nitrogen and fluorine (N, F) codoped high temperature stable anatase using a microwave pre-treatment is reported. Using a single source, ammonium fluoride (NH4F) for both nitrogen and fluorine, effective doping of the precursor titanium isopropoxide (TTIP) was possible. These samples were characterised for their structural and optical properties using X-ray diffraction (XRD), Fourier Transform IR (FTIR), Raman spectroscopy and UV-vis spectroscopy. In terms of the anatase to rutile transition enhancement using a novel microwave assisted technique, the sample prepared in a composition of 1:8 TiO2: NH4F at 1200 °C was seen to be most effective, having stable anatase present at 57.1% compared to undoped TiO2 being 100% rutile from 900 °C. This method involves the production of ammonium oxofluorotitanates (NH4TiOF3) at low temperatures. The inclusion of these intermediates greatly reduces the particle size growth and delays the anatase to rutile transition. The photocatalytic activity of these materials was studied by analysing the degradation of an organic dye, rhodamine 6G as a model system and the rate constant was calculated by pseudo-first-order kinetics. These results showed that the doped sample (0.0225 min-1) was three times more active than the undoped sample (0.0076 min-1) and over seven times faster than the commercial TiO2 photocatalyst standard Degussa P-25 calcined at 1200 °C (0.0030 min-1). The formation of intermediate compounds, oxofluorotitanates, was identified as the major reason for a delay in the anatase to rutile transition.

  18. Characterization and environmental implications of nano- and larger TiO(2) particles in sewage sludge, and soils amended with sewage sludge.

    PubMed

    Kim, Bojeong; Murayama, Mitsuhiro; Colman, Benjamin P; Hochella, Michael F

    2012-04-01

    Titanium dioxide (TiO(2)) is the most extensively used engineered nanoparticle to date, yet its fate in the soil environment has been investigated only rarely and is poorly understood. In the present study, we conducted two field-scale investigations to better describe TiO(2) nano- and larger particles in their most likely route of entry into the environment, i.e., the application of biosolids to soils. We particularly concentrated on the particles in the nano-size regime due to their novel and commercially useful properties. First, we analyzed three sewage sludge products from the US EPA TNSSS sampling inventory for the occurrence, qualitative abundance, and nature of TiO(2) nano- and larger particles by using analytical scanning electron microscopy and analytical (scanning) transmission electron microscopy. Nano- and larger particles of TiO(2) were repeatedly identified across the sewage sludge types tested, providing strong evidence of their likely concentration in sewage sludge products. The TiO(2) particles identified were as small as 40 nm, and as large as 300 nm, having faceted shapes with the rutile crystal structure, and they typically formed small, loosely packed aggregates. Second, we examined surface soils in mesocosms that had been amended with Ag nanoparticle-spiked biosolids for the occurrence of TiO(2) particles. An aggregate of TiO(2) nanoparticles with the rutile structure was again identified, but this time TiO(2) nanoparticles were found to contain Ag on their surfaces. This suggests that TiO(2) nanoparticles from biosolids can interact with toxic trace metals that would then enter the environment as a soil amendment. Therefore, the long-term behavior of TiO(2) nano- and larger particles in sewage sludge materials as well as their impacts in the soil environment need to be carefully considered. PMID:22349742

  19. Epitaxial growth of homogeneous single-crystalline AlN films on single-crystalline Cu (1 1 1) substrates

    NASA Astrophysics Data System (ADS)

    Wang, Wenliang; Yang, Weijia; Liu, Zuolian; Lin, Yunhao; Zhou, Shizhong; Qian, Huirong; Gao, Fangliang; Yang, Hui; Li, Guoqiang

    2014-03-01

    The homogeneous and crack free single-crystalline AlN thin films have been epitaxially grown on single-crystalline Cu (1 1 1) substrates with an in-plane alignment of AlN [11-20]//Cu [1-10] by pulsed laser deposition (PLD) technology with an integrated laser rastering program. The as-grown AlN films are studied by spectroscopic ellipsometry, field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), polarized light microscopy, high-resolution X-ray diffraction, and high-resolution transmission electron microscopy (HRTEM). The spectroscopic ellipsometry reveals the excellent thickness uniformity of as-grown AlN films on the Cu (1 1 1) substrates with a root-mean-square (RMS) thickness inhomogeneity less than 2.6%. AFM and FESEM measurements indicate that very smooth and flat surface AlN films are obtained with a surface RMS roughness of 2.3 nm. The X-ray reflectivity image illustrates that there is a maximum of 1.2 nm thick interfacial layer existing between the as-grown AlN and Cu (1 1 1) substrates and is confirmed by HRTEM measurement, and reciprocal space mapping shows that almost fully relaxed AlN films are achieved only with a compressive strain of 0.48% within ˜321 nm thick films. This work demonstrates a possibility to obtain homogeneous and crack free single-crystalline AlN films on metallic substrates by PLD with optimized laser rastering program, and brings up a broad prospect for the application of acoustic filters that require abrupt hetero-interfaces between the AlN films and the metallic electrodes.

  20. Effect of Ti pretreatment on photoelectric properties of TiO2 layers prepared by plasma-anodic oxidation

    NASA Astrophysics Data System (ADS)

    Mikula, Milan; Blecha, Jozef; Čeppan, Michal; Panák, Ján

    1995-12-01

    Photoactive TiO2 layers were formed by anodic oxidation of Ti in O2 RF plasma under various conditions and Ti surface pretreatment. The photocurrent spectrum in 1M NaOH was used to calculate the quantum efficiency of the photocurrent production and the band-gap energy for indirect transitions. Photoelectrochemical properties of TiO2 layers were studied on the decomposition of p-cresol water solution. The method of Ti surface pretreatment (mechanical polishing or chemical etching) has a decisive influence on the photoelectrochemical properties and the structure of the polycrystalline oxide, rutile, anatase or amorphous phase content.

  1. Epitaxial single crystalline ferrite films for high frequency applications

    SciTech Connect

    Suzuki, Y.; Dover, R.B. van; Korenivski, V.; Werder, D.; Chen, C.H.; Felder, R.J.; Phillips, J.M.

    1996-11-01

    The successful growth of single crystal ferrites in thin film form is an important step towards their future incorporation into integrated circuits operating at microwave frequencies. The authors have successfully grown high quality single crystalline spinel ferrite thin films of (Mn,Zn)Fe{sub 2}O{sub 4} and CoFe{sub 2}O{sub 4} on (100) and (110) SrTiO{sub 3} and MgAl{sub 2}O{sub 4} at low temperature. These ferrite films are buffered with spinel structure layers that are paramagnetic at room temperature. In contrast to ferrite films grown directly on the substrates, ferrite films grown on buffered substrates exhibit excellent crystallinity and bulk saturation magnetization values, thus indicating the importance of lattice match and structural similarity between the film and the immediately underlying layer. X-ray, RBS, AFM and TEM analysis provide a consistent picture of the structural properties of these ferrite films. The authors then use this technique to grow exchange-coupled bilayers of single crystalline CoFe{sub 2}O{sub 4} and (Mn,Zn)Fe{sub 2}O{sub 4}. In these bilayers, they observe strong exchange coupling across the interface that is similar in strength to the exchange coupling in the individual layers.

  2. Delicate refinement of surface nanotopography by adjusting TiO2 coating chemical composition for enhanced interfacial biocompatibility.

    PubMed

    Zhao, Xiaobing; Wang, Guocheng; Zheng, Hai; Lu, Zufu; Zhong, Xia; Cheng, Xingbao; Zreiqat, Hala

    2013-08-28

    Surface topography and chemistry have significant influences on the biological performance of biomedical implants. Our aim is to produce an implant surface with favorable biological properties by dual modification of surface chemistry and topography in one single simple process. In this study, because of its chemical stability, excellent corrosion resistance, and biocompatibility, titanium oxide (TiO2) was chosen to coat the biomedical Ti alloy implants. Biocompatible elements (niobium (Nb) and silicon (Si)) were introduced into TiO2 matrix to change the surface chemical composition and tailor the thermophysical properties, which in turn leads to the generation of topographical features under specific thermal history of plasma spraying. Results demonstrated that introduction of Nb2O5 resulted in the formation of Ti0.95Nb0.95O4 solid solution and led to the generation of nanoplate network structures on the composite coating surface. By contrast, the addition of SiO2 resulted in a hairy nanostructure and coexistence of rutile and quartz phases in the coating. Additionally, the introduction of Nb2O5 enhanced the corrosion resistance of TiO2 coating, whereas SiO2 did not exert much effect on the corrosion behaviors. Compared to the TiO2 coating, TiO2 coating doped with Nb2O5 enhanced primary human osteoblast adhesion and promoted cell proliferation, whereas TiO2 coatings with SiO2 were inferior in their bioactivity, compared to TiO2 coatings. Our results suggest that the incorporation of Nb2O5 can enhance the biological performance of TiO2 coatings by changing the surface chemical composition and nanotopgraphy, suggesting its potential use in modification of biomedical TiO2 coatings in orthopedic applications. PMID:23957368

  3. Desulphurization performance of TiO2-modified activated carbon by a one-step carbonization-activation method.

    PubMed

    Zhang, Chuanjun; Yang, Danni; Jiang, Xia; Jiang, Wenju

    2016-08-01

    In this study, TiO2 powder was used as the additive to directly blend with raw bituminous coal and coking coal for preparing modified activated carbon (Ti/AC) by one-step carbonization-activation method. The Ti/AC samples were prepared through blending with different ratios of TiO2 (0-12 wt%) and their desulphurization performance was evaluated. The results show that the desulphurization activity of all Ti/AC samples was higher than that of the blank one, and the highest breakthrough sulphur capacity was obtained at 200.55 mg/g C when the blending ratio of TiO2 was 6 wt%. The Brunauer-Emmett-Temer results show that the micropores were dominant in the Ti/AC samples, and their textual properties did not change evidently compared with the blank one. The X-ray photoelectron spectroscopy results show that the loaded TiO2 could influence the relative content of surface functional groups, with slightly higher content of π-π* transitions groups on the Ti/AC samples, and the relative contents of C=O and π-π* transitions groups decreased evidently after the desulphurization process. The X-ray diffraction results show that the anatase TiO2 and rutile TiO2 co-existed on the surface of the Ti/AC samples. After the desulphurization process, TiO2 phases did not change and Ti(SO4)2 was not observed on the Ti/AC samples, while sulphate was the main desulphurization product. It can be assumed that SO2 could be catalytically oxidized into SO3 by TiO2 indirectly, rather than TiO2 directly reacted with SO2 to Ti(SO4)2. PMID:26695433

  4. Influence of laser modification of TiO2 films for its photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Sawczak, Mirosław; Górski, Michał; Rachubiński, Hubert; Cenian, Adam

    2013-01-01

    The photocatalytic activity of TiO2 layer modified by laser radiation is discussed in the paper. Commercially available nanopowder P25(Degussa) was used, which consists of a mixture of anatase and rutile - two crystallographic forms of TiO2 . The spin-coating technique was applied to produce thin layers on glass. After drying and calcination the layer was thermally modified using a pulsed (6 ns) Nd:YAG laser (FHG 266 nm). This caused a clearly visible surface darkening effect. The XRD spectra show that phase change transition (from anatase to rutile) took place partially. This was also confirmed by Raman spectra. The main peak of Raman-spectra shifts from 142,84 to 145,22 cm-1, probably due to decreasing size of TiO2 nanoparticles or more probably due to a defects generation in nanocrystallite structure. Defects have been reported in the literature as surface oxygen depletion and generation valance states Ti3+ and Ti4+. Eventually, kinetics of methylene-blue decay and CO2 to methane conversion were examined. In both cases an increase of catalytic activity was observed.

  5. Active hydrogen species on TiO2 for photocatalytic H2 production.

    PubMed

    Wu, Zongfang; Zhang, Wenhua; Xiong, Feng; Yuan, Qing; Jin, Yuekang; Yang, Jinlong; Huang, Weixin

    2014-04-21

    Photocatalytic H2 production over TiO2 has attracted tremendous attention and achieved great progress, but the active hydrogen species is still unknown. Employing a rutile TiO2(110) surface as a model catalyst we report here for the first time the direct observation of photocatalytic H2 production under ultrahigh vacuum conditions during UV-light irradiation at 115 K and the identification of negatively-charged hydride-type H-Ti species as the corresponding photoactive surface species by means of thermal desorption spectroscopy, photon-stimulated desorption spectroscopy, X-ray photoelectron spectroscopy and DFT calculations. The formation and stability of H-Ti species are closely related to available surplus electrons on the rutile TiO2(110) surface that can be created by the formation of surface BBO vacancies or by the formation of surface hydroxyls via the adsorption of atomic H or molecular H2 on O sites. The photocatalytic H2 production from H-Ti species is hole-mediated and co-existing water exerts a negative effect on this process. PMID:24614827

  6. A shock-induced polymorph of anatase and rutile from the Chesapeake Bay impact structure, Virginia, U.S.A

    USGS Publications Warehouse

    Jackson, J.C.; Horton, J.W., Jr.; Chou, I.-Ming; Belkin, H.E.

    2006-01-01

    A shock-induced polymorph (TiO2II) of anatase and rutile has been identified in breccias from the late Eocene Chesapeake Bay impact structure. The breccia samples are from a recent, partially cored test hole in the central uplift at Cape Charles, Virginia. The drill cores from 744 to 823 m depth consist of suevitic crystalline-clast breccia and brecciated cataclastic gneiss in which the TiO2 phases anatase and rutile are common accessory minerals. Electron-microprobe imaging and laser Raman spectroscopy of TiO2 crystals, and powder X-ray diffraction (XRD) of mineral concentrates, confirm that a high-pressure, ??-PbO2 structured polymorph of TiO2 (TiO2II) coexists with anatase and rutile in matrix-hosted crystals and in inclusions within chlorite. Raman spectra of this polymorph include strong bands at wavenumbers (cm-1) 175, 281, 315, 342, 356, 425, 531, 571, and 604; they appear with anatase bands at 397, 515, and 634 cm-1, and rutile bands at 441 and 608 cm-1. XRD patterns reveal 12 lines from the polymorph that do not significantly interfere with those of anatase or rutile, and are consistent with the TiO2II that was first reported to occur naturally as a shock-induced phase in rutile from the Ries crater in Germany. The recognition here of a second natural shock-induced occurrence of TiO2II suggests that its presence in rocks that have not been subjected to ultrahigh-pressure regional metamorphism can be a diagnostic indicator for confirmation of suspected impact structures.

  7. Effect of hydrolysis conditions on hydrous TiO2 polymorphs precipitated from a titanyl sulfate and sulfuric acid solution

    NASA Astrophysics Data System (ADS)

    Song, Hao; Liang, Bin; Lü, Li; Wu, Pan; Li, Chun

    2012-07-01

    The relationship between hydrolysis conditions and hydrous titania polymorphs obtained in a titanyl sulfate and sulfuric acid solution was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM). The results revealed that the feeding rate of the titanyl sulfate stock solution, the concentration of sulfuric acid, and the seed dosage of rutile crystal could significantly affect the hydrolysis rate, thus influencing the titania crystal phase. Hydrous TiO2 in the form of rutile, anatase, or the mixture of both could be obtained in solutions of low titanium concentrations and 2.5wt% to 15wt% sulfuric acid at 100°C. When the hydrolysis rate of titanium expressed by TiO2 was more than or equal to 0.04 g/(L·min), the hydrolysate was almost phase-pure anatase, while the main phase state was rutile when the hydrolysis rate was less than or equal to 0.01 g/(L·min). With the hydrolysis rate between 0.02 and 0.03 g/(L·min), the hydrolysate contained almost equal magnitude of rutile and anatase. It seems that although rutile phase is thermodynamically stable in very acidic solutions, anatase is a kinetically stable phase.

  8. Adsorption of organic molecules on the TiO2(011) surface: STM study.

    PubMed

    Godlewski, Szymon; Tekiel, Antoni; Prauzner-Bechcicki, Jakub S; Budzioch, Janusz; Gourdon, Andre; Szymonski, Marek

    2011-06-14

    High resolution scanning tunneling microscopy has been applied to investigate adsorption and self-assembly of large organic molecules on the TiO(2)(011) surface. The (011) face of the rutile titania has been rarely examined in this context. With respect to possible industrial applications of rutile, quite often in a powder form, knowledge on behavior of organic molecules on that face is required. In the presented study we fill in the gap and report on experiments focused on the self-assembly of organic nanostructures on the TiO(2)(011) surface. We use three different kinds of organic molecules of potential interest in various applications, namely, PTCDA and CuPc representing flat, planar stacking species, and Violet Landers specially designed for new applications in molecular electronics. In order to reach a complete picture of molecular behavior, extended studies with different surface coverage ranging from single molecule up to 2 monolayer (ML) thick films are performed. Our results show that the adsorption behavior is significantly different from previously observed for widely used metallic templates. Creation of highly ordered molecular lines, quasi-ordered wetting layers, controlled geometrical reorientation upon thermal treatment, existence of specific adsorption geometries, and prospects for tip-induced molecule ordering and manipulation provide better understanding and add new phenomena to the knowledge on the (011) face of rutile titania. PMID:21682527

  9. Preparation and photoelectric property of TiO2 nanoparticles with controllable phase junctions

    NASA Astrophysics Data System (ADS)

    Wang, Hongmei; Tan, Xin; Yu, Tao

    2014-12-01

    To explore the effect of phase composition on the photoelectric property of anatase-rutile mixed crystal nanoparticles, a series of TiO2 nanoparticles with phase junctions controlling were synthetized by hydrolysis of TiCl4 in hydrochloric acid, an ionic liquid-assisted method was used during this process. Crystalline size and the ratio of anatase to rutile of as-prepared samples were calculated by the XRD. The surface area was measured by nitrogen sorption measurements using the BET method. The micro-structure of phase junctions was characterized by TEM. Optical transmittance properties of TiO2 with controllable phase junctions were examined via ultraviolet-visible diffuse reflection spectroscopy (UV-vis DRS). The particles were manufactured into films using the doctor-blade technique on FTO glasses. To test photocurrent density, and spatial separation capacity of electron-holes pairs, photo-electro method was employed. The photocatalytic activities of the resulting samples were examined in the degradation of methyl orange (MO) under artificial solar light irradiation. Mechanisms of separation and transfer of photogenerated charge and the effect of phase composition on photoelectric property of anatase-rutile nanoparticles were discussed.

  10. Fatigue crack propagation behavior of a single crystalline superalloy

    NASA Technical Reports Server (NTRS)

    Lerch, B. A.; Antolovich, Stephen D.

    1990-01-01

    Crack propagation mechanisms occurring at various temperatures in a single crystalline Ni-base alloy, Rene N4, were investigated. The rates of crack growth at 21, 704, 927, 1038, and 1093 C were measured in specimens with 001-line and 110-line directions parallel to the load axis and the machined notch, respectively, using a pulsed dc potential drop apparatus, and the fracture surfaces at each temperature were examined using SEM. Crack growth rates (CGRs) for specimens tested at or below 927 C were similar, while at two higher temperatures, the CGRs were about an order of magnitude higher than at the lower temperatures. Results of SEM observations showed that surface morphologies depended on temperature.

  11. Periodic magnetic domains in single-crystalline cobalt filament arrays

    NASA Astrophysics Data System (ADS)

    Chen, Fei; Wang, Fan; Jia, Fei; Li, Jingning; Liu, Kai; Huang, Sunxiang; Luan, Zhongzhi; Wu, Di; Chen, Yanbin; Zhu, Jianmin; Peng, Ru-Wen; Wang, Mu

    2016-02-01

    Magnetic structures with controlled domain wall pattern may be applied as potential building blocks for three-dimensional magnetic memory and logic devices. Using a unique electrochemical self-assembly method, we achieve regular single-crystalline cobalt filament arrays with specific geometric profile and crystallographic orientation, and the magnetic domain configuration can be conveniently tailored. We report the transition of periodic antiparallel magnetic domains to compressed vortex magnetic domains depending on the ratio of height to width of the wires. A "phase diagram" is obtained to describe the dependence of the type of magnetic domain and the geometrical profiles of the wires. Magnetoresistance of the filaments demonstrates that the contribution of a series of 180∘ domain walls is over 0.15 % of the zero-field resistance ρ (H =0 ) . These self-assembled magnetic nanofilaments, with controlled periodic domain patterns, offer an interesting platform to explore domain-wall-based memory and logic devices.

  12. Optical and electrical properties of single-crystalline zirconium carbide

    SciTech Connect

    Modine, F.A.; Haywood, T.W.; Allison, C.Y.

    1985-12-15

    Optical and electrical properties are reported for single-crystalline ZrC/sub 0.89/. The specular reflectance was measured between 0.025 and 6.5 eV, and ellipsometry measurements were made between 1.2 and 4.5 eV. The combination of ellipsometry with reflectance allows optical functions to be computed reliably between 0 and 6.5 eV and also provides a check on the consistency of the measurements. The van der Pauw technique was used to measure the electrical resistivity of the samples at temperatures between 4.2 and 300 K and the Hall coefficient at room temperature. Drude parameters obtained from the electrical measurements are in good agreement with those obtained from the optical data. Both the optical and electrical results are compared to other experimental results and to theory.

  13. Dynamic crack propagation in single-crystalline silicon

    SciTech Connect

    Cramer, T.; Gumbsch, P.; Wanner, A.

    1999-08-01

    Tensile tests on notched plates of single-crystalline silicon were carried out at high overloads. Cracks were forced to propagate on {l_brace}110{r_brace} planes in a {l_angle}1{bar 1}0{r_angle} direction. The dynamics of the fracture process was measured using the potential drop technique and correlated with the fracture surface morphology. Crack propagation velocity did not exceed a terminal velocity of v{sub c} = 3,800 m/s, which corresponds to 83% of the Rayleigh wave velocity v{sub R}. Specimens fractured at low stresses exhibited crystallographic cleavage whereas a transition from mirror-like smooth regions to rougher hackle zones was observed in case of the specimens fractured at high stresses. Inspection of the mirror zone at high magnification revealed a deviation of the {l_brace}110{r_brace} plane onto {l_brace}111{r_brace}crystallographic facets.

  14. Physical properties of single crystalline BaSn{sub 5}

    SciTech Connect

    Lin, Xiao; Budko, Sergey; Canfield, Paul

    2012-01-30

    We present a comprehensive study of the binary intermetallic superconductor, BaSn{sub 5}. High-quality single crystalline BaSn{sub 5} was grown out of a Sn flux. Detailed thermodynamic and transport measurements were performed to study BaSn{sub 5}'s normal and superconducting state properties. This material appears to be a strongly coupled, multiband superconductor. H{sub c2}(T) is almost isotropic. De Haas–van Alphen oscillations were observed and two effective masses were estimated from the FFT spectra. Hydrostatic pressure causes a decrease in the superconducting transition temperature at the rate of ≈−0.053 ± 0.001 K/kbar.

  15. Reactive wetting properties of TiO2 nanoparticles predicted by ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Brandt, Erik G.; Agosta, Lorenzo; Lyubartsev, Alexander P.

    2016-07-01

    coordination numbers); radial distribution functions for all O-Ti pairs over the entire data domain; comparison of coordination number distributions for dry and wet nanoparticles; dynamics of water reactivity; high-resolution electron density for the rutile NP. A movie of the simulation trajectory for the rutile (TiO2)24.30H2O system. See DOI: 10.1039/C6NR02791A

  16. Effect of model dissolved organic matter coating on sorption of phenanthrene by TiO2 nanoparticles.

    PubMed

    Wang, Xilong; Ma, Enxing; Shen, Xiaofang; Guo, Xiaoying; Zhang, Meng; Zhang, Haiyun; Liu, Ye; Cai, Fei; Tao, Shu; Xing, Baoshan

    2014-11-01

    Dissolved organic matter (DOM) may alter the sorption of hydrophobic organic contaminants (HOC) to metal oxide nanoparticles (NPs), but the role of DOM and NP types is poorly understood. Here, phenanthrene sorption was quantified on four types of nano-TiO2 (three rutile, one anatase), and a bulk, raw TiO2 powder. Prior to the sorption experiments, these nanoparticles were coated using four different organic materials: Lignin (LIG), tannic acid (TAN), Congo red (CON), and capsorubin (CAP). Lignin, tannic acid, congo red and capsorubin coating substantially enhanced phenanthrene sorption to various TiO2 particles. After coating with a specific DOM, Kd values by the DOM-coated TiO2 particles on percent organic carbon content and surface area (SA) basis (Koc/SA) generally followed the order: TiO2 NPs with hydrophobic surfaces > bulk TiO2 particles > other TiO2 NPs. Different Koc/SA values of various DOM-TiO2 complexes resulted from distinct conformation of the coated DOM and aggregation. PMID:25089890

  17. A mini-review on rare earth metal-doped TiO2 for photocatalytic remediation of wastewater.

    PubMed

    Saqib, Najm Us; Adnan, Rohana; Shah, Irfan

    2016-08-01

    Titanium dioxide (TiO2) has been considered a useful material for the treatment of wastewater due to its non-toxic character, chemical stability and excellent electrical and optical properties which contribute in its wide range of applications, particularly in environmental remediation technology. However, the wide band gap of TiO2 photocatalyst (anatase phase, 3.20 eV) limits its photocatalytic activity to the ultraviolet region of light. Besides that, the electron-hole pair recombination has been found to reduce the efficiency of the photocatalyst. To overcome these problems, tailoring of TiO2 surface with rare earth metals to improve its surface, optical and photocatalytic properties has been investigated by many researchers. The surface modifications with rare earth metals proved to enhance the efficiency of TiO2 photocatalyts by way of reducing the band gap by shifting the working wavelength to the visible region and inhibiting the anatase-to-rutile phase transformations. This review paper summarises the attempts on modification of TiO2 using rare earth metals describing their effect on the photocatalytic activities of the modified TiO2 photocatalyst. PMID:27335012

  18. In situ growing directional spindle TiO2 nanocrystals on cellulose fibers for enhanced Pb(2+) adsorption from water.

    PubMed

    Li, Yanxiang; Cao, Lixia; Li, Lei; Yang, Chuanfang

    2015-05-30

    TiO2/cellulose nanocomposite was synthesized by in situ generation of titanium dioxide (TiO2) nanocrystals on cellulose fibers (CF) via facile hydrolysis of TiOSO4. Cellulose was intended as a scaffold to immobilize TiO2 nanoparticles (NPs), but turned out surprisingly to be also a chemical template that directed the crystal growth. As a result, spindle rutile TiO2 crystals were nicely formed on the surface of cellulose. These crystals were further controlled to disperse uniformly without agglomeration for better use of their surface area to adsorb heavy metals. The TiO2/CF composite showed enhanced adsorption capacity, good regenerability and selectivity for lead (Pb(2+)) removal. In addition, the composite fibers were readily fabricated into a nonwoven filter bed through which dynamic filtration experiment was conducted. A 12-fold increase in filtered bed volume was achieved for TiO2/CF bed compared with pure CF bed before breakthrough took place. This work provides a green pathway for fabricating low cost, high efficiency and engineering application possible nanosorbents for water decontamination. PMID:25723888

  19. Nanoporous SiO2/TiO2 coating with enhanced interfacial compatibility for orthopedic applications

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaobing; Cao, Hengchun; You, Jing; Cheng, Xingbao; Xie, Youtao; Cao, Huiliang; Liu, Xuanyong

    2015-11-01

    Topographic modification in nanoscale is one of the most often used strategies to enhance the interfacial biocompatibility of implant materials. The aim of this work is to produce SiO2/TiO2 coatings with nanoporous structures and favorable biological properties by atmospheric plasma spraying technology and subsequently hydrothermal etching method in hydrogen fluoride solution. The effects of hydrothermal time and temperature on the microstructures and osteoblast behavior of the SiO2/TiO2 coatings were investigated. Results demonstrated that the as-sprayed SiO2/TiO2 coating was mainly composed of rutile and quartz phases. After etching, nanoporous topographies were formed on the surface of the coatings and the hydrothermal parameters had important influences on the size and shape of the pores. The interconnected network pores on the coating surface could only produce at the appropriate hydrothermal conditions (the hydrothermal time and temperature were 60 min and 100 °C, respectively). Compared to TiO2 and SiO2/TiO2 coatings, nanoporous SiO2/TiO2 coatings could enhance osteoblast adhesion and promote cell proliferation. The results suggested the potential application of the porous coatings for enhancing the biological performance of the currently used dental and orthopedic implant materials.

  20. Core-shell TiO2@ZnO nanorods for efficient ultraviolet photodetection.

    PubMed

    Panigrahi, Shrabani; Basak, Durga

    2011-05-01

    Core-shell TiO(2)@ZnO nanorods (NRs) have been fabricated by a simple two step method: growth of ZnO NRs' array by an aqueous chemical technique and then coating of the NRs with a solution of titanium isopropoxide [Ti(OC(3)H(7))(4)] followed by a heating step to form the shell. The core-shell nanocomposites are composed of single-crystalline ZnO NRs, coated with a thin TiO(2) shell layer obtained by varying the number of coatings (one, three and five times). The ultraviolet (UV) emission intensity of the nanocomposite is largely quenched due to an efficient electron-hole separation reducing the band-to-band recombinations. The UV photoconductivity of the core-shell structure with three times TiO(2) coating has been largely enhanced due to photoelectron transfer between the core and the shell. The UV photosensitivity of the nanocomposite becomes four times larger while the photocurrent decay during steady UV illumination has been decreased almost by 7 times compared to the as-grown ZnO NRs indicating high efficiency of these core-shell structures as UV sensors. PMID:21483939

  1. Core-shell TiO2@ZnO nanorods for efficient ultraviolet photodetection

    NASA Astrophysics Data System (ADS)

    Panigrahi, Shrabani; Basak, Durga

    2011-05-01

    Core-shell TiO2@ZnO nanorods (NRs) have been fabricated by a simple two step method: growth of ZnO NRs' array by an aqueous chemical technique and then coating of the NRs with a solution of titanium isopropoxide [Ti(OC3H7)4] followed by a heating step to form the shell. The core-shell nanocomposites are composed of single-crystalline ZnO NRs, coated with a thin TiO2 shell layer obtained by varying the number of coatings (one, three and five times). The ultraviolet (UV) emission intensity of the nanocomposite is largely quenched due to an efficient electron-hole separation reducing the band-to-band recombinations. The UV photoconductivity of the core-shell structure with three times TiO2 coating has been largely enhanced due to photoelectron transfer between the core and the shell. The UV photosensitivity of the nanocomposite becomes four times larger while the photocurrent decay during steady UV illumination has been decreased almost by 7 times compared to the as-grown ZnO NRs indicating high efficiency of these core-shell structures as UV sensors.

  2. CNTs threaded (001) exposed TiO2 with high activity in photocatalytic NO oxidation.

    PubMed

    Xiao, Shuning; Zhu, Wei; Liu, Peijue; Liu, Fanfan; Dai, Wenrui; Zhang, Dieqing; Chen, Wei; Li, Hexing

    2016-02-01

    A microwave-ionothermal strategy was developed for in situ synthesis of CNTs threaded TiO2 single crystal with a tunable percentage of surface exposed (001) active facets. The CNTs were used as microwave antennas to create local "super hot" dots to induce Ti(3+) adsorption and hydrolysis, thereby leading to a good assembly of (001) facets exposed single crystalline TiO2 threaded by the CNTs in the presence of Hmim[BF4] ionic liquid. Due to the high percentage of the active (001) facets of single crystal TiO2 and the direct electron transfer property of the CNTs, the as-prepared CNTs-TiO2 composite showed a photocatalytic NO removal ratio of up to 76.8% under UV irradiation. In addition, with self-doped Ti(3+), the CNTs-TiO2 composite also exhibited an enhanced activity under irradiation with either solar lights or visible lights, showing good potential in practical applications for environmental remediation. PMID:26780690

  3. The effects of atmosphere and calcined temperature on photocatalytic activity of TiO2 nanofibers prepared by electrospinning.

    PubMed

    Hu, Meiling; Fang, Minghao; Tang, Chao; Yang, Tao; Huang, Zhaohui; Liu, Yangai; Wu, Xiaowen; Min, Xin

    2013-01-01

    TiO2-based nanofibers were synthesized using a sol-gel method and electrospinning technique. The as-spun composite fibers were heat-treated at different temperatures (500°C, 550°C, 600°C, and 650°C) and atmospheres (ammonia and nitrogen) for 4 h. The fibers had diameters of 50 to 200 nm and mainly featured anatase and rutile phases. The anatase phase decreased and the rutile phase increased with increasing temperature. Different nitrogen conditions exerted minimal effects on the TiO2 crystalline phase. Different nitriding atmospheres during preservation heating yielded various effects on fibers. The effect of nitrogen in ammonia atmosphere is better than that in nitrogen atmosphere. The fibers heat-treated at 600°C and subjected to preservation heating in NH3 showed high photocatalytic activity. PMID:24373382

  4. The effects of atmosphere and calcined temperature on photocatalytic activity of TiO2 nanofibers prepared by electrospinning

    PubMed Central

    2013-01-01

    TiO2-based nanofibers were synthesized using a sol–gel method and electrospinning technique. The as-spun composite fibers were heat-treated at different temperatures (500°C, 550°C, 600°C, and 650°C) and atmospheres (ammonia and nitrogen) for 4 h. The fibers had diameters of 50 to 200 nm and mainly featured anatase and rutile phases. The anatase phase decreased and the rutile phase increased with increasing temperature. Different nitrogen conditions exerted minimal effects on the TiO2 crystalline phase. Different nitriding atmospheres during preservation heating yielded various effects on fibers. The effect of nitrogen in ammonia atmosphere is better than that in nitrogen atmosphere. The fibers heat-treated at 600°C and subjected to preservation heating in NH3 showed high photocatalytic activity. PMID:24373382

  5. Enhanced photovoltaic performance of novel TiO2 photoelectrode on TCO substrates for dye-sensitized solar cells.

    PubMed

    Nam, Jung Eun; Kwon, Soon Jin; Jo, Hyo Jeong; Yi, Kwang Bok; Kim, Dae-Hwan; Kang, Jin-Kyu

    2014-12-01

    In this study, we report synthesis and growth of rutile-anatase TiO2 thin film on fluorine-doped tin oxide (FTO) glass by a two-step hydrothermal method. The effects of additional treatments (i.e., TiCl4 post-treatment and seed layer formation were also studied. Photocurrent-voltage (I-V) measurement of rutile-anatase TiO2 thin film was performed under 1.5 G light illumination. Photovoltaic performance was investigated by incident photon-to-electron conversion efficiency (IPCE), electrochemical impedance spectroscopy (EIS), intensity-modulated photocurrent/photovoltage spectroscopy (IMVS/IMPS) and open-circuit photovoltage decay (OCVD). PMID:25971044

  6. Characterization of sprayed TiO2 on ITO substrates for solar cell applications.

    PubMed

    Arunachalam, A; Dhanapandian, S; Manoharan, C; Sridhar, R

    2015-10-01

    Titanium dioxide (TiO2) thin films had been deposited with various substrate temperatures by spray pyrolysis technique onto ITO substrates. All films exhibited polycrystalline nature with the preferred orientation along (101) plane. At the substrate temperature 450 °C, the film favored the formation of anatase phase. The higher substrate temperature (475 °C) favored the appearance of rutile structure. The SEM image of the film at substrate temperature (Ts=450 °C) showed high structural quality with the porous nature. The typical AFM image of TiO2 film deposited at the substrate temperature, 450 °C depicted the regular arrangement of fine closely packed tetragonal structured grains. The transmittance of the spectra exhibited above 85% with energy band gap of 3.6 eV. From the study of photoluminescence, the emission at 417 nm, 437 nm and with weak emission at 551 nm was observed, which confirmed the lesser defects in the samples. The electrical resistivity was found to be 6.856×10(1) Ω cm for the substrate temperature 450 °C. The efficiency of anatase TiO2 photoelectrode deposited at the substrate temperature 450 °C based cell was much higher than the efficiency of TiO2 photoelectrode deposited at the substrate temperature 475 °C based cell. PMID:26004100

  7. Preparation and photocatalytic activity of nanoglued Sn-doped TiO2.

    PubMed

    Li, Xiang; Xiong, Rongchun; Wei, Gang

    2009-05-30

    In this paper, Sn-doped TiO(2) photocatalyst was prepared and immobilized on a glass substrate using an about-to-gel SiO(2) sol as a nanoglue. The characterization of the Sn-doped TiO(2) by XRD showed that 5% Sn content is formed by anatase and rutile crystallites. Characterization of the nanoglued photocatalyst by the BET measurement, TEM, and SEM showed that the photocatalyst was a nanoporous material with a high-surface area. The Sn-doped TiO(2) was uniformly dispersed within the three-dimensional network of the silica in the form of nanoparticles. The nanoglued photocatalyst showed high photocatalytic activity during the degradation of penicillin under UV light. The effect of different Sn content on the amount of hydroxyl radical was discussed by using salicylic acid as probe molecules. The results show that an appropriate amount of Sn dopant can greatly increase the amount of hydroxyl radicals generated by TiO(2) nanoparticles, which are responsible for the obvious increase of photocatalytic activity. PMID:18834665

  8. Electronic structures and optical properties of TiO2: Improved density-functional-theory investigation

    NASA Astrophysics Data System (ADS)

    Gong, Sai; Liu, Bang-Gui

    2012-05-01

    TiO2 has been recently used to realize high-temperature ferromagnetic semiconductors. In fact, it has been widely used for a long time as white pigment and sunscreen because of its whiteness, high refractive index, and excellent optical properties. However, its electronic structures and the related properties have not been satisfactorily understood. Here, we use Tran and Blaha's modified Becke-Johnson (TB-mBJ) exchange potential (plus a local density approximation correlation potential) within the density functional theory to investigate electronic structures and optical properties of rutile and anatase TiO2. Our comparative calculations show that the energy gaps obtained from mBJ method agree better with the experimental results than that obtained from local density approximation (LDA) and generalized gradient approximation (GGA), in contrast with substantially overestimated values from many-body perturbation (GW) calculations. As for optical dielectric functions (both real and imaginary parts), refractive index, and extinction coefficients as functions of photon energy, our mBJ calculated results are in excellent agreement with the experimental curves. Our further analysis reveals that these excellent improvements are achieved because mBJ potential describes accurately the energy levels of Ti 3d states. These results should be helpful to understand the high temperature ferromagnetism in doped TiO2. This approach can be used as a standard to understand electronic structures and the related properties of such materials as TiO2.

  9. Synthesis and optical properties of TiO2-based magnetic nanocomposites

    NASA Astrophysics Data System (ADS)

    Scarisoreanu, M.; Morjan, I.; Fleaca, C.-T.; Morjan, I. P.; Niculescu, A.-M.; Dutu, E.; Badoi, A.; Birjega, R.; Luculescu, C.; Vasile, E.; Danciu, V.; Filoti, G.

    2015-05-01

    Magnetic titania nanoparticles covered/embedded in SiO2 shell/matrix were simultaneously manufactured by the single-step laser pyrolysis. The present study is a continuation of our previous investigations on the TiO2/Fe and TiO2/HMDSO (hexamethyldisiloxane) derived-systems. The aim of this work is to study the synthesis by IR (Infrared) laser pyrolysis of magnetic TiO2 based nanocomposites which implies many concurrent processes induced in the gas phase by the laser radiation. The dependence between characteristic properties and the synthesis parameters was determined by many analytical and complementary methods: XRD (X-ray diffraction) structural analysis, UV-vis (ultraviolet-visible) and EDAX (energy-dispersive X-ray) spectroscopy, TEM and HRTEM (transmission electron microscopy at low and high resolution) analysis and magnetic measurements. The results of analysis indicate the presence of disordered silica, Fe, α-Fe2O3 and mixtures of anatase and rutile phases with mean crystallite dimensions (in the 14-34 nm range) with typical character of diluted magnetic oxide systems and a lower bandgap energy (Eg = 1.85 eV) as compared with TiO2 P25 Degussa sample.

  10. Genotoxic potential of TiO2 on bottlenose dolphin leukocytes.

    PubMed

    Bernardeschi, Margherita; Guidi, Patrizia; Scarcelli, Vittoria; Frenzilli, Giada; Nigro, Marco

    2010-01-01

    Titanium dioxide is extensively used in a variety of products, including industrial materials and cosmetics. Studies mainly performed on human cell lines and in vivo exposure on experimental animals have raised concern about the toxic effects of ultrafine titanium dioxide; however, scarce information is available about its impact on aquatic life. The aim of this article was to assess the genotoxic potential of TiO(2) (anatase and rutile) on bottlenose dolphin leukocytes. Blood samples were obtained from four male and one female specimens reared at the Adriatic SeaWorld "Oltremare" (Riccione, Italy). Leukocytes were isolated by the lyses procedure and in vitro exposed to TiO(2) in RPMI. Experimental solutions were sonicated immediately before dosing the cells. Three exposure times (4, 24 and 48 h) and three doses (20, 50 and 100 microg/ml) were tested. Genotoxicity was detected by the single-cell gel electrophoresis (or comet assay) at pH > or = 13, assessing single/double-strand breaks and alkali-labile sites. Cytotoxicity was also detected by the Trypan blue exclusion method. Results showed that both the crystalline forms of TiO(2) were genotoxic for bottlenose dolphin leukocytes, with a statistically significant increase of DNA fragmentation after exposure to 50 and 100 microg/ml for 24 and 48 h. Although preliminary, these are the first data regarding the genetic susceptibility of toothed cetaceans toward an "emerging" pollutant, such as TiO(2) particles. PMID:19915826

  11. Generation of Organic Radicals During Photocatalytic Reactions on TiO2

    SciTech Connect

    Henderson, Michael A.; Deskins, N. Aaron; Zehr, Robert T.; Dupuis, Michel

    2011-04-01

    Using a variety of organic carbonyl molecules (R1C(O)R2) and the rutile TiO2(110) surface as a model photocatalyst, we demonstrate both experimentally and theoretically that ejection of organic radicals from TiO2 surfaces is likely a prevalent reaction process occurring during heterogeneous photooxidationof organic molecules. Organic carbonyls react with coadsorbed oxygen species to form organic diolates which are more strongly bound to TiO2 than are the parent carbonyls. The parent carbonyls, when bound to TiO2(110) in an η1 configuration, are photo-inactive. However, the diolates are shown to photodecompose by ejection one of the two R substituents from the surface into the gas phase, leaving behind the carboxylate of the other R group. Theoretical calculations using DFT show that in most cases the choice of which R group is ejected can be predicted based on the C-R bond energies and, to a lesser extent, the stability of the ejected R group.

  12. In situ synthesis of TiO2/polyethylene terephthalate hybrid nanocomposites at low temperature

    NASA Astrophysics Data System (ADS)

    Peng, Xinyan; Ding, Enyong; Xue, Feng

    2012-06-01

    TiO2 nanoflowers were in situ grown on polyethylene terephthalate (PET) non-woven fabric by hydrolysis of TiCl4 in aqueous solution in the presence of nanocrystal cellulose grafted PET fabric (NCC-g-PET) at a low temperature of 70 °C. Nanocrystal cellulose (NCC) pre-grafted on PET fabric acted as hydrophilic substrate and morphology inducing agent to promote the nucleation and crystal growth of TiO2. Detailed information on the synthetic process was presented. The resulting samples were characterized using FE-SEM, EDS, ATR-IR, Raman microscopy, XRD and TG analysis. The photocatalytic activity of the samples was evaluated by the degradation of orange methyl under solar light. Characteristic results indicate that rutile TiO2 nanoflowers have grown abundantly on PET non-woven fabric, and the established hydrogen bonding strengthens the interfacial interaction between the inorganic particles and the polymeric substrates. The methyl orange decoloration test under natural solar light demonstrates that this TiO2/PET hybrid nanocomposites exhibit excellent self-cleaning performance which is expected to have a good potential for commercialization.

  13. [Preparation and spectral characterisation of TiO2/polyaniline nanocomposites with 2D lamellar morphology].

    PubMed

    Shi, Li; Luo, Zhi-Yuan; Wu, Xiao-Dong; Yang, Xu-Jie; Lu, Lu-De; Wang, Xin

    2011-02-01

    Nanostructured polyanilines (PANIs) are selected quite often as the matrix for the synthesis of inorganic/conductive polymer composites due to their excellent optical, electrical and magnetic properties. Herein both 2D lamellar PANI and the cor responding composite loading TiO2 species were successfully prepared from a microemulsion system, as composed by dodecyl benzenesulfonic acid (DBSA) and water. The composite was achieved through a simultaneous polymerization of aniline in the presence of ammonium persulfate and hydrolysis of tetrabutyl titanate. Scanning electron microscopy (SEM) images indicate clearly that 2D PANI lamella are formed through organization of small PANI sheets. The inter-lamellar distance of PANI and that of TiO2/polyaniline composite, as derived from X-ray diffraction (XRD), is about 3.4 nm (nearly twice the length of one DBS molecule), suggesting that PANI and double-layered DBSA species are arranged in an alternated way. FTIR spectrum displays that PANI chains exhibit quinonoid and benzenoid strutures while both Raman and X-ray photoelectron spectroscopy (XPS) indicate that rutile TiO2 is produced upon hydrolyzation of tetrabutyl titanate in the microemulsion system. Moreover, UV-Vis spectrum suggests that the electronic absorption behaviour of PANI species is influenced upon loading TiO2. PMID:21510404

  14. The result of synthesis analysis of the powder TiO2/ZnO as a layer of electrodes for dye sensitized solar cell applications

    NASA Astrophysics Data System (ADS)

    Retnaningsih, Lilis; Muliani, Lia

    2016-04-01

    This study has been conducted synthesis of TiO2 nanoparticle powders and ZnO nanoparticle powder into a paste to be in this research, dye-sensitive solar cells (DSSC) was produced by TiO2 nanopowder and ZnO nanopowder synthesis to make paste that is applied as electrode. This electrode works based on photon absorbed by dye and transferred to different composition of TiO2/ ZnO particle. Properties of DSSC are affected by fabrication method, parameter and dimension of TiO2 / ZnO nanoparticles, technique and composition of TiO2 / ZnO paste preparation is important to get the higher performance of DSSC. Doctor blade is a method for electrode coating on glass substrate. The electrode was immersed into dye solution of Z907 and ethanol. From the experiment, the effect of TiO2 and ZnO nanopowder mixture for electrode was investigated. XRD characterization show anatase and rutile phase, which sintered TiO2/ZnO has intensity more than 11,000. SEM characterization shows the composition of 20% TiO2 / 80% ZnO has better porosity. Higher efficiency that is investigated by I-V measurement using Sun Simulator.

  15. Synthesis of TiO2 visible light catalysts with controllable crystalline phase and morphology from Ti-bearing electric arc furnace molten slag.

    PubMed

    Li, Yang; Liu, Lulu; Guo, Min; Zhang, Mei

    2016-09-01

    TiO2 visible light catalysts with different crystalline phases and morphologies were synthesized from titanium-bearing electric arc furnace molten slag (Ti-bearing EAF slag) by using a simple acidolysis process. The effects of the pH of the HCl solution, liquid to solid ratio (RL/S, HCl solution to the residue ratio, mL/g) and acidolysis time on the micro-morphology and crystalline phase of as-prepared TiO2 photocatalysts were systematically investigated. The results indicated that with decreasing pH in the HCl solution and increasing RL/S, the crystalline phase and micro-morphology of the obtained TiO2 nanostructures tended to transform from anatase type TiO2 with spherical nanoparticle structures to rutile type TiO2 with needle-like nanorod structures. The acidolysis time had little influence on the crystalline phase but great impact on the size of the obtained TiO2. The growth mechanism of TiO2 from Ti-bearing EAF slag during the acidolysis process was also discussed. In addition, the influence of RL/S on the photocatalytic properties of the synthesized nanostructured TiO2 was studied. The results showed that the photodegradation efficiency for Rhodamine B solution could reach 91.00% in 120min when the RL/S was controlled at 50:1. PMID:27593268

  16. Hydrothermal Synthesis of TiO2@SnO2 Hybrid Nanoparticles in a Continuous-Flow Dual-Stage Reactor.

    PubMed

    Hellstern, Henrik L; Bremholm, Martin; Mamakhel, Aref; Becker, Jacob; Iversen, Bo B

    2016-03-01

    TiO2@SnO2 hybrid nanocomposites were successfully prepared in gram scale using a dual-stage hydrothermal continuous-flow reactor. Temperature and pH in the secondary reactor were found to selectively direct nucleation and growth of the secondary material into either heterogeneous nanocomposites or separate intermixed nanoparticles. At low pH, 2 nm rutile SnO2 nanoparticles were deposited on 9 nm anatase TiO2 particles; the presence of TiO2 was found to suppress formation of larger SnO2 particles. At high pH SnO2 formed separate particles and no deposition on TiO2 was observed. Ball-milling of TiO2 and SnO2 produced no TiO2@SnO2 composites. This verifies that the composite particles must be formed by nucleation and growth of the secondary precursor on the TiO2 . High concentration of secondary precursor led to formation of TiO2 particles embedded in aggregates of SnO2 nanoparticles. The results demonstrate how nanocomposites may be produced in high yield by green chemistry. PMID:26822385

  17. Structure and photoluminescence of the TiO2 films grown by atomic layer deposition using tetrakis-dimethylamino titanium and ozone.

    PubMed

    Jin, Chunyan; Liu, Ben; Lei, Zhongxiang; Sun, Jiaming

    2015-01-01

    TiO2 films were grown on silicon substrates by atomic layer deposition (ALD) using tetrakis-dimethylamino titanium and ozone. Amorphous TiO2 film was deposited at a low substrate temperature of 165°C, and anatase TiO2 film was grown at 250°C. The amorphous TiO2 film crystallizes to anatase TiO2 phase with annealing temperature ranged from 300°C to 1,100°C in N2 atmosphere, while the anatase TiO2 film transforms into rutile phase at a temperature of 1,000°C. Photoluminescence from anatase TiO2 films contains a red band at 600 nm and a green band at around 515 nm. The red band exhibits a strong correlation with defects of the under-coordinated Ti(3+) ions, and the green band shows a close relationship with the oxygen vacancies on (101) oriented anatase crystal surface. A blue shift of the photoluminescence spectra reveals that the defects of under-coordinated Ti(3+) ions transform to surface oxygen vacancies in the anatase TiO2 film annealing at temperature from 800°C to 900°C in N2 atmosphere. PMID:25852391

  18. Charge storage in oxygen deficient phases of TiO2: defect Physics without defects.

    PubMed

    Padilha, A C M; Raebiger, H; Rocha, A R; Dalpian, G M

    2016-01-01

    Defects in semiconductors can exhibit multiple charge states, which can be used for charge storage applications. Here we consider such charge storage in a series of oxygen deficient phases of TiO2, known as Magnéli phases. These Magnéli phases (TinO2n-1) present well-defined crystalline structures, i.e., their deviation from stoichiometry is accommodated by changes in space group as opposed to point defects. We show that these phases exhibit intermediate bands with an electronic quadruple donor transitions akin to interstitial Ti defect levels in rutile TiO2. Thus, the Magnéli phases behave as if they contained a very large pseudo-defect density: ½ per formula unit TinO2n-1. Depending on the Fermi Energy the whole material will become charged. These crystals are natural charge storage materials with a storage capacity that rivals the best known supercapacitors. PMID:27364139

  19. Charge storage in oxygen deficient phases of TiO2: defect Physics without defects

    NASA Astrophysics Data System (ADS)

    Padilha, A. C. M.; Raebiger, H.; Rocha, A. R.; Dalpian, G. M.

    2016-07-01

    Defects in semiconductors can exhibit multiple charge states, which can be used for charge storage applications. Here we consider such charge storage in a series of oxygen deficient phases of TiO2, known as Magnéli phases. These Magnéli phases (TinO2n‑1) present well-defined crystalline structures, i.e., their deviation from stoichiometry is accommodated by changes in space group as opposed to point defects. We show that these phases exhibit intermediate bands with an electronic quadruple donor transitions akin to interstitial Ti defect levels in rutile TiO2. Thus, the Magnéli phases behave as if they contained a very large pseudo-defect density: ½ per formula unit TinO2n‑1. Depending on the Fermi Energy the whole material will become charged. These crystals are natural charge storage materials with a storage capacity that rivals the best known supercapacitors.

  20. Photocatalytic activity and reusability study of nanocrystalline TiO2 films prepared by sputtering technique

    NASA Astrophysics Data System (ADS)

    Barrocas, B.; Monteiro, O. C.; Jorge, M. E. Melo; Sério, S.

    2013-01-01

    The photocatalytic activity of nanocrystalline titanium dioxide (TiO2) films deposited on unheated glass substrates by DC reactive magnetron sputtering at different oxygen partial pressures was tested on the decolorization of Rhodamine 6G (Rh6G) aqueous solutions. The dye photodecolorization process was studied considering the influence of the crystallinity and preferred orientation of growth of the prepared films. It was found that the higher photocatalytic activity was achieved by the film with preferred orientation of growth along the (1 0 1) crystal direction and showing a vestigial rutile phase in a mainly anatase phase. The recycling catalytic ability of the TiO2 films was also evaluated and a promising photocatalytic performance has been revealed with a very low variation of the decay rate after five consecutive usages. Structural and morphological characterization revealed high photochemical stability of the films after successive photodegradations assays.

  1. Study of adsorption and degradation of dimethylphthalate on TiO2-based photocatalysts

    NASA Astrophysics Data System (ADS)

    Pulido Melián, E.; Henríquez-Cárdenes, E.; González Díaz, O.; Doña Rodríguez, J. M.

    2016-08-01

    This work studied the degradation and adsorption of dimethylphthalate (DMP) using various TiO2-based photocatalysts: TiO2 Aeroxide P25, Kronos vlp7000, Hombikat UV-100, Kemira 650 and a synthesized photocatalyst named SG750. As the photocatalysts with mixed anatase and rutile phases, P25 and SG750, showed greater activity than those of pure phase, an in-depth study was undertaken of these two catalysts in the adsorption and degradation of DMP. The degradation results were fitted with a high degree of correlation to the Langmuir-Hinshelwood model and those for adsorption to the Freundlich model. The Freundlich constants showed good correlation with FTIR observations of the DMP-P25 and DMP-SG750 interactions. These two photocatalysts were additionally modified by photodeposition with Pt and Au (0.5-1.5 wt%) to study the effect of these metals on degradation and mineralization kinetics.

  2. Charge storage in oxygen deficient phases of TiO2: defect Physics without defects

    PubMed Central

    Padilha, A. C. M.; Raebiger, H.; Rocha, A. R.; Dalpian, G. M.

    2016-01-01

    Defects in semiconductors can exhibit multiple charge states, which can be used for charge storage applications. Here we consider such charge storage in a series of oxygen deficient phases of TiO2, known as Magnéli phases. These Magnéli phases (TinO2n−1) present well-defined crystalline structures, i.e., their deviation from stoichiometry is accommodated by changes in space group as opposed to point defects. We show that these phases exhibit intermediate bands with an electronic quadruple donor transitions akin to interstitial Ti defect levels in rutile TiO2. Thus, the Magnéli phases behave as if they contained a very large pseudo-defect density: ½ per formula unit TinO2n−1. Depending on the Fermi Energy the whole material will become charged. These crystals are natural charge storage materials with a storage capacity that rivals the best known supercapacitors. PMID:27364139

  3. Sol-gel synthesis and characterization of nanostructured TiO2/gamma-Al2O3 composite membranes.

    PubMed

    Kwon, Hyuk Taek; Kim, Jinsoo

    2011-08-01

    Nanostructured TiO2/gamma-Al2O3 composite membranes with various compositions were prepared by sol-gel method. The structural and textural properties of the composite membranes could be modified by the mixing ratio of boehmite sol and titania sol, and calcination temperature. The existence of alumina in the composite membranes retarded anatase-to-rutile phase transformation, resulting in stabilization of textural properties. Defect-free composite membranes were confirmed by gas permeation test. PMID:22103175

  4. Identification of the Active Species in Photochemical Hole Scavenging Reactions of Methanol on TiO2

    SciTech Connect

    Shen, Mingmin; Henderson, Michael A.

    2011-11-03

    Molecular and dissociative methanol adsorption species were prepared on rutile TiO2(110) surfaces to study photocatalytic oxidation of methanol in ultrahigh vacuum (UHV) using temperature-programmed desorption (TPD). Adsorbed methoxy groups (CH3O-) were found to be the photoactive form of adsorbed methanol converted to adsorbed formaldehyde and a surface OH group by hole-mediated C-H bond cleavage. These results suggest that adsorbed methoxy is the effective hole scavenger in photochemical reactions involving methanol.

  5. 3D periodic multiscale TiO2 architecture: a platform decorated with graphene quantum dots for enhanced photoelectrochemical water splitting

    NASA Astrophysics Data System (ADS)

    Xu, Zhen; Yin, Min; Sun, Jing; Ding, Guqiao; Lu, Linfeng; Chang, Paichun; Chen, Xiaoyuan; Li, Dongdong

    2016-03-01

    Micropatterned TiO2 nanorods (TiO2NRs) via three-dimensional (3D) geometry engineering in both microscale and nanoscale decorated with graphene quantum dots (GQDs) have been demonstrated successfully. First, micropillar (MP) and microcave (MC) arrays of anatase TiO2 films are obtained through the sol-gel based thermal nanoimprinting method. Then they are employed as seed layers in hydrothermal growth to fabricate the 3D micropillar/microcave arrays of rutile TiO2NRs (NR), which show much-improved photoelectrochemical water-splitting performance than the TiO2NRs grown on flat seed layer. The zero-dimensional GQDs are sequentially deposited onto the surfaces of the microscale patterned nanorods. Owing to the fast charge separation that resulted from the favorable band alignment of the GQDs and rutile TiO2, the MP-NR-GQDs electrode achieves a photocurrent density up to 2.92 mA cm-2 under simulated one-sun illumination. The incident-photon-to-current-conversion efficiency (IPCE) value up to 72% at 370 nm was achieved on the MP-NR-GQDs electrode, which outperforms the flat-NR counterpart by 69%. The IPCE results also imply that the improved photocurrent mainly benefits from the distinctly enhanced ultraviolet response. The work provides a cost-effective and flexible pathway to develop periodic 3D micropatterned photoelectrodes and is promising for the future deployment of high performance optoelectronic devices.

  6. Hydrothermal synthesis of Mo-doped VO2/TiO2 composite nanocrystals with enhanced thermochromic performance.

    PubMed

    Li, Dengbing; Li, Ming; Pan, Jing; Luo, Yuanyuan; Wu, Hao; Zhang, Yunxia; Li, Guanghai

    2014-05-14

    This paper reports a one-step TiO2 seed-assistant hydrothermal synthesis of Mo-doped VO2(M)/TiO2 composite nanocrystals. It was found that excess Mo doping can promote formation of the VO2(M) phase, and rutile TiO2 seed is beneficial to morphology control, size reduction, and infrared modulation of Mo-doped VO2(M) nanocrystals. The Mo-doped VO2 nanocrystals epitaxially grow on TiO2 seeds and have a quasi-spherical shape with size down to 20 nm and a nearly 35% infrared modulation near room temperature. The findings of this work demonstrate important progress in the near-room-temperature thermochromic performance of VO2(M) nanomaterials, which will find potential application in constructing VO2(M) nanocrystal-based smart window coatings. PMID:24734771

  7. Photochromism-based detection of volatile organic compounds by W-doped TiO2 nanofibers.

    PubMed

    Jin, Ming; Zhang, Xintong; Pu, Hongting; Nishimoto, Shunsuke; Murakami, Taketoshi; Fujishima, Akira

    2011-10-01

    W-doped TiO(2) nanofibers with various compositions (W/Ti: 2-8%) were fabricated by the electrospinning method from respective precursor solutions containing tungsten(V) pentaethoxide, titanium tetraisopropoxide (TTIP), and polyvinylpyrrolidone (PVP), followed with calcination at 550 °C. Morphological and structural characteristics of these nanofibers were studied with SEM, XRD and XPS. W-doping inhibited the crystal growth and anatase-to-rutile transformation of TiO(2) nanofibers. W-doped TiO(2) nanofiber mats showed good photocatalytic oxidation abilities for acetone. Obvious color change from white to blue of mats during the photocatalysis process can be detected by naked eyes, which provides a good way in detection of pollutants in indoor air, especially for the volatile organic compounds (VOCs). PMID:21741658

  8. Sea grass like arranged TiO2 nanorods sensitized by natural dyes for solar cell applications

    NASA Astrophysics Data System (ADS)

    Akila, Y.; Muthukumarasamy, N.; Agilan, S.; Senthilarasu, S.; Velauthapillai, Dhayalan

    2016-08-01

    Rutile-phase seagrass-like-arranged TiO2 nanorods have been synthesized by low-temperature template-free hydrothermal method. These TiO2 nanorods have been sensitized by flowers of Sesbania grandiflora, leaves of Camellia sinensis and roots of Rubia tinctorum. The sensitized TiO2 nanorods-based films have been used as photoanode in natural dye-sensitized solar cells. The films were photoelectrochemically active, and the fabricated solar cells had short-circuit photocurrent density (JSC) lying in the range of 3.7-4.7mAcm-2. The efficiency of the fabricated natural dye-sensitized solar cells was found to lie in the range of 0.6-1.036 %, respectively

  9. Low temperature fabrication & photocatalytical activity of carbon fiber-supported TiO2 with different phase compositions.

    PubMed

    Wang, Zhifeng; Yoshinaga, Kohji; Bu, Xiu R; Zhang, Ming

    2015-06-15

    Crystalline TiO2 nanoparticles with different phase compositions were fabricated on carbon fibers. The fabrication is achieved at low temperature. The process includes the treatment of Ti(OH)4 with hydrogen peroxide in the presence of carbon fibers. Neither additional acids nor bases, or additives are used during the process. Carbon fibers prior to and after TiO2 loading are characterized by FE-SEM, XRD, and UV-vis absorption spectroscopy. The photocatalytic activity was assessed via photocatalytic degradation of methyl orange solution, and found to be phase composition-dependent & pH dependent. Carbon fibers loaded with mixed-phase TiO2 led to the best photocatalytic performance. HRTEM reveals the anatase/rutile heterojunction which helps explain the high efficiency of photocatalysis. They have been demonstrated to be re-usable in the continuous photocatalytic degradation process. PMID:25791498

  10. TF-XRD examination of surface-reactive TiO2 coatings produced by heat treatment and CO2 laser treatment.

    PubMed

    Moritz, Niko; Areva, Sami; Wolke, Joop; Peltola, Timo

    2005-07-01

    When surface-reactive (bioactive) coatings are applied to medical implants by means of CO2 laser processing, the bioactivity of the surface of the implant can be locally modified to match the properties of the surrounding tissues to provide a firm fixation of the implant. The aim of this study was to compare the heat treated TiO2 coatings with the laser-treated TiO2 coatings in terms of amorphous-crystalline-phase development. The coatings were characterized with thin-film X-ray diffraction (TF-XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). The TiO2 coatings heat treated at 500 degrees C known to be bioactive in SBF (simulated body fluid) consisted mainly of anatase with some rutile-phase, suggesting a predominant effect of anatase on reactivity of coatings. However, the coatings preheat-treated at 500 degrees C with further laser treatment exhibited enhanced bioactivity while consisting mainly of rutile. These findings indicated a key role of both rutile and anatase for the reactivity of the coatings. Without preheat treatment, by laser treatment alone, the amorphous titania coatings developed into mixed anatase/rutile containing coatings. This structural organization and the increase in crystal size are thus considered to be the reasons for their bioactivity. The SBF results indicate the possibility to control bioactivity by altering laser power used through the anatase/rutile crystallinity enhancement. PMID:15701375

  11. Influence of TiO2 nanoparticles on cellular antioxidant defense and its involvement in genotoxicity in HepG2 cells

    NASA Astrophysics Data System (ADS)

    Petković, Jana; Žegura, Bojana; Filipič, Metka

    2011-07-01

    We investigated the effects of two types of TiO2 nanoparticles (<25 nm anatase, TiO2-An; <100 nm rutile, TiO2-Ru) on cellular antioxidant defense in HepG2 cells. We previously showed that in HepG2 cells, TiO2 nanoparticles are not toxic, although they induce oxidative DNA damage, production of intracellular reactive oxygen species, and up-regulation of mRNA expression of DNA-damage-responsive genes (p53, p21, gadd45α and mdm2). In the present study, we measured changes in mRNA expression of several antioxidant enzymes: catalase, superoxide dismutase, glutathione peroxidase, nitric oxide synthase, glutathione reductase and glutamate-cysteine ligase. As reduced glutathione has a central role in cellular antioxidant defense, we determined the effects of TiO2 nanoparticles on changes in the intracellular glutathione content. To confirm a role for glutathione in protection against TiO2-nanoparticle-induced DNA damage, we compared the extent of TiO2-nanoparticle-induced DNA damage in HepG2 cells that were glutathione depleted with buthionine-(S,R)-sulfoximine pretreatment and in nonglutathione-depleted cells. Our data show that both types of TiO2 nanoparticles up-regulate mRNA expression of oxidative-stress-related genes, with TiO2-Ru being a stronger inducer than TiO2-An. Both types of TiO2 nanoparticles also induce dose-dependent increases in intracellular glutathione levels, and in glutathione-depleted cells, TiO2-nanoparticle-induced DNA damage was significantly greater than in nonglutathione-depleted cells. Interestingly, the glutathione content and the extent of DNA damage were significantly higher in TiO2-An- than TiO2-Ru-exposed cells. Thus, we show that TiO2 nanoparticles cause activation of cellular antioxidant processes, and that intracellular glutathione has a critical role in defense against this TiO2-nanoparticle-induced DNA damage.

  12. Preparation and characterization of Cu-doped TiO2 materials for electrochemical, photoelectrochemical, and photocatalytic applications

    NASA Astrophysics Data System (ADS)

    Ganesh, Ibram; Kumar, Polkampally P.; Annapoorna, Ibram; Sumliner, Jordan M.; Ramakrishna, Mantripragada; Hebalkar, Neha Y.; Padmanabham, Gade; Sundararajan, Govindan

    2014-02-01

    The Cu-doped TiO2 (Cu = 0-50 wt.%) powders and thin films were prepared by following a homogeneous co-precipitation method and sol-gel dip-coating technique, respectively, and were treated through 400-800 °C, and then thoroughly investigated by following various characterization techniques. The characterization results suggest that the pure TiO2 powder formed at 550 °C is in rutile phase, whereas the 0.1-10 wt.% Cu-doped TiO2 powders formed at 550 °C are mainly in anatase phase. These latter powders possess low band-gap energies (3.247-3.265 eV) and flat-band potentials amenable to water oxidation reaction. The 0.5-wt.% Cu-doped TiO2 thin film formed at 550 °C exhibited n-type semiconducting behavior and considerable photocurrent among various investigated powders. The CO2 reduction with a Faradaic efficiency of 82% and ˜ 96% CO selectivity in a two-compartment electrochemical cell was noted at -2500 mV (vs. Ag/Ag+) on pre-reduced (at -2000 mV vs. Ag/AgCl) 50 wt.% Cu-doped TiO2 thin film electrode in conjunction with an ionic liquid. The UV-light-induced TiO2 was found to be responsible for photocatalytic methylene blue (MB) degradation, and TiO2 is not sensitized by MB. The in situ formed compounds of TiO2 and CuO/Cu2O were found to absorb visible light, but showed little visible-light-induced photocatalytic activity.

  13. Dielectric relaxation and conduction mechanisms in sprayed TiO2 thin films as a function of the annealing temperature

    NASA Astrophysics Data System (ADS)

    Juma, Albert; Acik, Ilona Oja; Mere, Arvo; Krunks, Malle

    2016-04-01

    The electrical properties of TiO2 thin films deposited by chemical spray pyrolysis onto Si substrates were investigated in the metal-oxide-semiconductor (MOS) configuration using current-voltage characteristics and impedance spectroscopy. The electrical properties were analyzed in relation to the changes in microstructure induced during annealing in air up to a temperature of 950 °C. Anatase to rutile transformation started after annealing at 800 °C, and at 950 °C, only the rutile phase was present. The dielectric relaxation strongly depended upon the microstructure of TiO2 with the dielectric constant for the anatase phase between 45 and 50 and that for the rutile phase 123. Leakage current was reduced by three orders of magnitude after annealing at 700 °C due to the densification of the TiO2 film. A double-logarithmic plot of the current-voltage characteristics showed a linear relationship below 0.12 V consistent with Ohmic conduction, while space-charge-limited conduction mechanism as described by Child's law dominated for bias voltages above 0.12 V.

  14. ESR investigation of ROS generated by H2O2 bleaching with TiO2 coated HAp.

    PubMed

    Saita, Makiko; Kobayashi, Kyo; Kobatashi, Kyou; Yoshino, Fumihiko; Hase, Hiriko; Nonami, Toru; Kimoto, Katsuhiko; Lee, Masaichi-Chang-il

    2012-01-01

    It is well known that clinical bleaching can be achieved with a solution of 30% hydrogen peroxide (H2O2) or H2O2/titanium dioxide (TiO2) combination. This study examined the hypothesis that TiO2 coated with hydroxyapatite (HAp-TiO2) can generate reactive oxygen species (ROS). ROS are generated via photocatalysis using electron spin resonance (ESR). The bleaching properties of HAp-TiO2 in the presence of H2O2 can be measured using hematoporphyrin litmus paper and extracted teeth. We demonstrate that superoxides (O2(•-)) and hydroxyl radicals (HO(•)) can be generated through excitation of anatase TiO2, rutile TiO2, anatase HAp-TiO2, and rutile HAp-TiO2 in the presence of H2O2. The combination of R HAp-TiO2 with H2O2 produced the highest level of HO(•) generation and the most marked bleaching effects of all the samples. The superior bleaching effects exhibited by R HAp-TiO2 with H2O2 suggest that this combination may lead to novel methods for the clinical application of bleaching treatments. PMID:22673461

  15. Formation of TiO2 Thin Films using NH3 as Catalyst by Metalorganic Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Jung, Sung-Hoon; Kang, Sang-Won

    2001-05-01

    We have studied metalorganic chemical vapor deposition of TiO2 thin films using titanium tetra-isopropoxide [TTIP, Ti(O--C3H7)4] and NH3 as a catalyst at deposition temperatures ranging from 250 to 365°C. At deposition temperatures above 330°C, pyrolytic self-decomposition of TTIP is dominant regardless of the use of NH3, and the activation energy for TiO2 film formation is 152 kJ/mol. At deposition temperatures below 330°C, the films can be formed with the help of the catalytic activity of NH3, and the activation energy is reduced to 55 kJ/mol. TiO2 films deposited through the pyrolytic self-decomposition of TTIP have an anatase structure before and after performing post-deposition annealing in oxygen ambient for 30 min at 750°C. On the other hand, the as-deposited films formed through the catalytic reaction of TTIP with NH3 incorporate nitrogen impurities and have microcrystallites of the rutile structure within the amorphous matrix. However, the post-deposition annealing, the nitrogen impurities are completely removed from the films, and the films are converted into polycrystalline TiO2 films with the rutile structure, which have a high dielectric constant of 82 and a low leakage current.

  16. Femtosecond laser deposition of TiO2 nanoparticle-assembled films with embedded CdS nanoparticles

    NASA Astrophysics Data System (ADS)

    Ni, Xiao-chang; Sang, Li-xia; Zhang, Hong-jie; Kiliyanamkandy, Anoop; Amoruso, Salvatore; Wang, Xuan; Fittipaldi, Rosalba; Li, Tong; Hu, Ming-lie; Xu, Li-juan

    2014-01-01

    Based on the normal pulsed laser ablation method, femtosecond pulsed laser deposition (fs-PLD) is adopted in vacuum for the production of TiO2 nanoparticle-assembled films. We study the morphology and electronic characteristics of TiO2 nanoparticle-assembled films deposited at different oxygen background gas pressures from high vacuum (˜10-4 Pa) to 100 Pa and different deposition time. Our results show that TiO2 nanoparticle-assembled films obtained in high vacuum present both a mixture with rutile phase and anatase phase and a pure rutile phase. At the same time, there are more mesoporous structures in the film after annealing, which is beneficial for the enhancement of photocatalytic activity. In water splitting experiment, part of the TiO2 nanoparticle-assembled films embedded with a small mass fraction of CdS nanoparticles (˜5%) present an interesting photocurrent enhancement with a maximum value of ˜0.2 mA/cm2 under a solar simulator.

  17. Deformation mechanisms in nanoscale single crystalline electroplated copper pillars

    NASA Astrophysics Data System (ADS)

    Jennings, Andrew T.

    Scientific research in nanotechnology has enabled advances in a diverse range of applications, such as: electronics, chemical sensing, and cancer treatment. In order to transition these nanotechnology-driven innovations out of the laboratory and into real-world applications, the resilience and mechanical reliability of nanoscale structures must be well understood in order to preserve functionality under real-world operating environments. Understanding the mechanical properties of nanoscale materials is especially important because several authors have shown that single crystalline metal pillars produced through focused-ion-beam milling have unique properties when the pillar diameter, D, approaches nanotechnology-relevant dimensions. The strength, sigma, of these pillars is size-dependent and is well described through a power-law relation showing that smaller is stronger: sigma∝D-n , where n is the exponent and is found to be 0.5≤n≤1.0 in face-centered-cubic metals. In this work, the fundamental deformation mechanisms governing the size-dependent mechanical properties are investigated through uniaxial compression and tension tests of electroplated single crystalline copper pillars with diameters between 75 nm and 1000 nm. At larger pillar diameters, D >125 nm, these copper pillars are shown to obey a similar size-dependent regime, demonstrating that the "smaller is stronger" phenomenon is a function of the pillar microstructure, as opposed to the fabrication route. Furthermore, the dominant dislocation mechanism in this size-dependent regime is shown to be the result of single-arm, or spiral, sources. At smaller pillar diameters, D≤125 nm, a strain-rate-dependent mechanism transition is observed through both the size-strength relation and also quantitative, experimental measures of the activation volume. This new deformation regime is characterized by a size-independent strength and is governed by surface dislocation nucleation, a thermally activated

  18. Hydrothermal synthesis of anatase nanoleaves and size dependence of anatase-rutile transformation upon heating

    NASA Astrophysics Data System (ADS)

    Lisnycha, T. V.; Kirillov, S. A.; Potapenko, A. V.; Terikovska, T. E.; Kosilov, V. V.; Vyshnevskiy, O. A.

    2016-01-01

    Amorphous TiO2 obtained by adding TiCl4 to an alkaline medium crystallizes slowly and upon 3 years ageing transforms to nanosized anatase containing an admixture of brookite. The hydrothermal treatment of this sample in solutions of lithium hydroxide leads to anatase nanoleaves, and the more concentrated LiOH solution, the greater the nanoleaves and the smaller their specific surface area. The thermal treatment of nanoleaves leads to the bulk rutile, and the greater the specific surface area of anatase nanoleaves, the lower the anatase-rutile transition temperature. This is in line with conclusions based on the thermodynamic stability of nanosized anatase over the bulk rutile.

  19. Effects of acute systemic administration of TiO2, ZnO, SiO2, and Ag nanoparticles on hemodynamics, hemostasis and leukocyte recruitment.

    PubMed

    Haberl, Nadine; Hirn, Stephanie; Holzer, Martin; Zuchtriegel, Gabriele; Rehberg, Markus; Krombach, Fritz

    2015-01-01

    It has been suggested that engineered nanomaterials (ENM), once arrived in the circulation, may affect the cardiovascular system. The aim of this in vivo study was to screen major cardiovascular effects of acute systemic administration of a panel of five nanomaterials, TiO2 anatase (NM-101), TiO2 rutile (NM-104), ZnO (NM-110), SiO2 (NM-200) and Ag (NM-300). Mice were anesthetized and the ENM were injected at a dose of 1 mg/kg via a catheter placed in the left femoral artery. Hemodynamic parameters were determined by invasive measurement of blood pressure and non-invasive measurement of heart rate. Ten minutes after injection of the ENM, the formation of light/dye-induced thrombi was assessed in the cremasteric microcirculation by intravital microscopy. In addition, the numbers of rolling, firmly adherent and transmigrated leukocytes were recorded in postcapillary cremasteric venules over a time period of 120 min after injection of ENM by intravital microscopy. The systemic administration of a single dose of the ENM tested did not dramatically alter hemodynamic parameters or affect early steps of leukocyte recruitment. However, the presence of circulating TiO2 anatase, but not of TiO2 rutile, SiO2, ZnO or Ag nanoparticles, significantly accelerated thrombus formation in the murine microcirculation. Moreover, TiO2 anatase but not TiO2 rutile nanoparticles increased murine platelet aggregation in vitro. Taken together, only one of the five systemically administered ENM, TiO2 anatase, affected hemostasis, whereas none of the ENM tested in this screening study dramatically modulated hemodynamic parameters or early steps of leukocyte recruitment. PMID:25670207

  20. Large-Scale Synthesis of Transition-Metal-Doped TiO2 Nanowires with Controllable Overpotential

    SciTech Connect

    Liu, Bin; Chen, HaoMing; Liu, Chong; Andrews, Sean; Han, Chris; Yang, Peidong

    2013-03-13

    Practical implementation of one-dimensional semiconductors into devices capable of exploiting their novel properties is often hindered by low product yields, poor material quality, high production cost, or overall lack of synthetic control. Here, we show that a molten-salt flux scheme can be used to synthesize large quantities of high-quality, single-crystalline TiO2 nanowires with controllable dimensions. Furthermore, in situ dopant incorporation of various transition metals allows for the tuning of optical, electrical, and catalytic properties. With this combination of control, robustness, and scalability, the molten-salt flux scheme can provide high-quality TiO2 nanowires to satisfy a broad range of application needs from photovoltaics to photocatalysis.

  1. Increased visible-light photocatalytic activity of TiO2 via band gap manipulation

    NASA Astrophysics Data System (ADS)

    Pennington, Ashley Marie

    Hydrogen gas is a clean burning fuel that has potential applications in stationary and mobile power generation and energy storage, but is commercially produced from non-renewable fossil natural gas. Using renewable biomass as the hydrocarbon feed instead could provide sustainable and carbon-neutral hydrogen. We focus on photocatalytic oxidation and reforming of methanol over modified titanium dioxide (TiO2) nanoparticles to produce hydrogen gas. Methanol is used as a model for biomass sugars. By using a photocatalyst, we aim to circumvent the high energy cost of carrying out endothermic reactions at commercial scale. TiO2 is a semiconductor metal oxide of particular interest in photocatalysis due to its photoactivity under ultraviolet illumination and its stability under catalytic reaction conditions. However, TiO2 primarily absorbs ultraviolet light, with little absorption of visible light. While an effective band gap for absorbance of photons from visible light is 1.7 eV, TiO2 polymorphs rutile and anatase, have band gaps of 3.03 eV and 3.20 eV respectively, which indicate ultraviolet light. As most of incident solar radiation is visible light, we hypothesize that decreasing the band gap of TiO2 will increase the efficiency of TiO2 as a visible-light active photocatalyst. We propose to modify the band gap of TiO2 by manipulating the catalyst structure and composition via metal nanoparticle deposition and heteroatom doping in order to more efficiently utilize solar radiation. Of the metal-modified Degussa P25 TiO2 samples (P25), the copper and nickel modified samples, 1%Cu/P25 and 1%Ni/P25 yielded the lowest band gap of 3.05 eV each. A difference of 0.22 eV from the unmodified P25. Under visible light illumination 1%Ni/P25 and 1%Pt/P25 had the highest conversion of methanol of 9.9% and 9.6%, respectively.

  2. Ultra-long Pt nanolawns supported on TiO2-coated carbon fibers as 3D hybrid catalyst for methanol oxidation

    PubMed Central

    2012-01-01

    In this study, TiO2 thin film photocatalyst on carbon fibers was used to synthesize ultra-long single crystalline Pt nanowires via a simple photoreduction route (thermally activated photoreduction). It also acted as a co-catalytic material with Pt. Taking advantage of the high-aspect ratio of the Pt nanostructure as well as the excellent catalytic activity of TiO2, this hybrid structure has the great potential as the active anode in direct methanol fuel cells. The electrochemical results indicate that TiO2 is capable of transforming CO-like poisoning species on the Pt surface during methanol oxidation and contributes to a high CO tolerance of this Pt nanowire/TiO2 hybrid structure. PMID:22546416

  3. Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry.

    PubMed

    Huang, Jer-Shing; Callegari, Victor; Geisler, Peter; Brüning, Christoph; Kern, Johannes; Prangsma, Jord C; Wu, Xiaofei; Feichtner, Thorsten; Ziegler, Johannes; Weinmann, Pia; Kamp, Martin; Forchel, Alfred; Biagioni, Paolo; Sennhauser, Urs; Hecht, Bert

    2010-01-01

    Deep subwavelength integration of high-definition plasmonic nanostructures is of key importance in the development of future optical nanocircuitry for high-speed communication, quantum computation and lab-on-a-chip applications. To date, the experimental realization of proposed extended plasmonic networks consisting of multiple functional elements remains challenging, mainly because of the multi-crystallinity of commonly used thermally evaporated gold layers. This can produce structural imperfections in individual circuit elements that drastically reduce the yield of functional integrated nanocircuits. In this paper we demonstrate the use of large (>100 μm(2)) but thin (<80 nm) chemically grown single-crystalline gold flakes that, after immobilization, serve as an ideal basis for focused ion beam milling and other top-down nanofabrication techniques on any desired substrate. Using this methodology we obtain high-definition ultrasmooth gold nanostructures with superior optical properties and reproducible nano-sized features over micrometre-length scales. Our approach provides a possible solution to overcome the current fabrication bottleneck and realize high-definition plasmonic nanocircuitry. PMID:21267000

  4. Single-crystalline aluminum film for ultraviolet plasmonic nanolasers.

    PubMed

    Chou, Bo-Tsun; Chou, Yu-Hsun; Wu, Yen-Mo; Chung, Yi-Cheng; Hsueh, Wei-Jen; Lin, Shih-Wei; Lu, Tien-Chang; Lin, Tzy-Rong; Lin, Sheng-Di

    2016-01-01

    Significant advances have been made in the development of plasmonic devices in the past decade. Plasmonic nanolasers, which display interesting properties, have come to play an important role in biomedicine, chemical sensors, information technology, and optical integrated circuits. However, nanoscale plasmonic devices, particularly those operating in the ultraviolet regime, are extremely sensitive to the metal and interface quality. Thus, these factors have a significant bearing on the development of ultraviolet plasmonic devices. Here, by addressing these material-related issues, we demonstrate a low-threshold, high-characteristic-temperature metal-oxide-semiconductor ZnO nanolaser that operates at room temperature. The template for the ZnO nanowires consists of a flat single-crystalline Al film grown by molecular beam epitaxy and an ultrasmooth Al2O3 spacer layer synthesized by atomic layer deposition. By effectively reducing the surface plasmon scattering and metal intrinsic absorption losses, the high-quality metal film and the sharp interfaces formed between the layers boost the device performance. This work should pave the way for the use of ultraviolet plasmonic nanolasers and related devices in a wider range of applications. PMID:26814581

  5. Single-crystalline aluminum film for ultraviolet plasmonic nanolasers

    NASA Astrophysics Data System (ADS)

    Chou, Bo-Tsun; Chou, Yu-Hsun; Wu, Yen-Mo; Chung, Yi-Cheng; Hsueh, Wei-Jen; Lin, Shih-Wei; Lu, Tien-Chang; Lin, Tzy-Rong; Lin, Sheng-Di

    2016-01-01

    Significant advances have been made in the development of plasmonic devices in the past decade. Plasmonic nanolasers, which display interesting properties, have come to play an important role in biomedicine, chemical sensors, information technology, and optical integrated circuits. However, nanoscale plasmonic devices, particularly those operating in the ultraviolet regime, are extremely sensitive to the metal and interface quality. Thus, these factors have a significant bearing on the development of ultraviolet plasmonic devices. Here, by addressing these material-related issues, we demonstrate a low-threshold, high-characteristic-temperature metal-oxide-semiconductor ZnO nanolaser that operates at room temperature. The template for the ZnO nanowires consists of a flat single-crystalline Al film grown by molecular beam epitaxy and an ultrasmooth Al2O3 spacer layer synthesized by atomic layer deposition. By effectively reducing the surface plasmon scattering and metal intrinsic absorption losses, the high-quality metal film and the sharp interfaces formed between the layers boost the device performance. This work should pave the way for the use of ultraviolet plasmonic nanolasers and related devices in a wider range of applications.

  6. Single-crystalline aluminum film for ultraviolet plasmonic nanolasers

    PubMed Central

    Chou, Bo-Tsun; Chou, Yu-Hsun; Wu, Yen-Mo; Chung, Yi-Cheng; Hsueh, Wei-Jen; Lin, Shih-Wei; Lu, Tien-Chang; Lin, Tzy-Rong; Lin, Sheng-Di

    2016-01-01

    Significant advances have been made in the development of plasmonic devices in the past decade. Plasmonic nanolasers, which display interesting properties, have come to play an important role in biomedicine, chemical sensors, information technology, and optical integrated circuits. However, nanoscale plasmonic devices, particularly those operating in the ultraviolet regime, are extremely sensitive to the metal and interface quality. Thus, these factors have a significant bearing on the development of ultraviolet plasmonic devices. Here, by addressing these material-related issues, we demonstrate a low-threshold, high-characteristic-temperature metal-oxide-semiconductor ZnO nanolaser that operates at room temperature. The template for the ZnO nanowires consists of a flat single-crystalline Al film grown by molecular beam epitaxy and an ultrasmooth Al2O3 spacer layer synthesized by atomic layer deposition. By effectively reducing the surface plasmon scattering and metal intrinsic absorption losses, the high-quality metal film and the sharp interfaces formed between the layers boost the device performance. This work should pave the way for the use of ultraviolet plasmonic nanolasers and related devices in a wider range of applications. PMID:26814581

  7. Molecular-Level Insights into Photocatalysis from Scanning Probe Microscopy Studies on TiO2(110)

    SciTech Connect

    Henderson, Michael A.; Lyubinetsky, Igor

    2013-06-12

    The field of heterogeneous photocatalysis has grown considerably in the decades since Fujishima and Honda's ground-breaking publications of photoelectrochemistry on TiO2. Numerous review articles continue to point to both progress made in the use of heterogeneous materials (such as TiO2) to perform photoconversion processes, and the many opportunities and challenges in heterogeneous photocatalysis research such as solar energy conversion and environmental remediation. The past decade has also seen an increase in the use of molecular-level approaches applied to model single crystal surfaces in an effort to obtain new insights into photocatalytic phenomena. In particular, scanning probe techniques (SPM) have enabled researchers to take a ‘nanoscale’ approach to photocatalysis that includes interrogation of the reactivities of specific sites and adsorbates on a model photocatalyst surface. The rutile TiO2(110) surface has become the prototypical oxide single crystal surface for fundamental studies of many interfacial phenomena. In particular, TiO2(110) has become an excellent model surface for probing photochemical and photocatalytic reactions at the molecular level. A variety of experimental approaches have emerged as being ideally suited for studying photochemical reactions on TiO2(110), including desorption-oriented approaches and electronic spectroscopies, but perhaps the most promising techniques for evaluating site-specific properties are those of SPM. In this review, we highlight the growing use of SPM techniques in providing molecular-level insights into surface photochemistry on the model photocatalyst surface of rutile TiO2(110). Our objective is to both illustrate the unique knowledge that scanning probe techniques have already provided the field of photocatalysis, and also to motivate a new generation of effort into the use of such approaches to obtain new insights into the molecular level details of photochemical events occurring at interfaces

  8. Compositional Variability of Rutile in Hydrothermal Ore Deposits

    NASA Astrophysics Data System (ADS)

    Clark, J. R.; Williams-Jones, A. E.

    2009-05-01

    Rutile is a relatively common accessory phase in many geological environments, and although it is almost always composed dominantly of TiO2, it is also associated with a wide range of minor and trace element substitutions. The most prominent minor elements that occur in rutile are Fe, Cr, V, Nb and Ta. Like Ti, the latter two elements are essentially immobile in most non-magmatic metallic ore deposits, and their concentrations in rutile are largely influenced by precursor mineral compositions. Iron, Cr and V concentrations vary considerably in rutile hosted by ore deposits, and reflect combinations of precursor mineral composition and the bulk chemistry of the local mineralized or altered rock environment. However, in hydrothermal alteration zones, rutile compositions are clearly anomalous compared to those in unaltered host rocks, and have distinctive elemental associations and substitutions in different types of ore deposits. We have evaluated the mineral chemistry of rutile in >40 ore deposits worldwide. In general, rutile in volcanogenic massive sulfide deposits contains Sn (and locally W, Sb and/or Cu). Rutile from mesothermal and related gold deposits invariably contains W, and in some of the larger and more important deposits, also contains Sb and/or V. Tungsten-bearing detrital rutile grains from the Witwatersrand suggest that paleoplacer mineralization may have had a mesothermal/orogenic gold source. In some magmatic-hydrothermal Pd-Ni-Cu deposits, rutile contains Ni and Cu. Rutile associated with granite-related Sn deposits has strongly elevated concentrations of Sn and W, and granite-pegmatite W-Sn deposits contain rutile with these elements plus Nb and Ta. The Olympic Dam deposit hosts rutile that is enriched in W, Sn and Cu. Rutile associated with porphyry and skarn Cu and Cu-Au deposits tends to contain elevated W, Cu (and sometimes V). Although many ore deposits have well-defined and diagnostic rutile compositions, there are some compositional

  9. Nb-doped rutile TiO₂: a potential anode material for Na-ion battery.

    PubMed

    Usui, Hiroyuki; Yoshioka, Sho; Wasada, Kuniaki; Shimizu, Masahiro; Sakaguchi, Hiroki

    2015-04-01

    The electrochemical properties of the rutile-type TiO2 and Nb-doped TiO2 were investigated for the first time as Na-ion battery anodes. Ti(1-x)Nb(x)O2 thick-film electrodes without a binder and a conductive additive were prepared using a sol-gel method followed by a gas-deposition method. The TiO2 electrode showed reversible reactions of Na insertion/extraction accompanied by expansion/contraction of the TiO2 lattice. Among the Ti(1-x)Nb(x)O2 electrodes with x = 0-0.18, the Ti(0.94)Nb(0.06)O2 electrode exhibited the best cycling performance, with a reversible capacity of 160 mA h g(-1) at the 50th cycle. As the Li-ion battery anode, this electrode also attained an excellent rate capability, with a capacity of 120 mA h g(-1) even at the high current density of 16.75 A g(-1) (50C). The improvements in the performances are attributed to a 3 orders of magnitude higher electronic conductivity of Ti(0.94)Nb(0.06)O2 compared to that of TiO2. This offers the possibility of Nb-doped rutile TiO2 as a Na-ion battery anode as well as a Li-ion battery anode. PMID:25757057

  10. Effect of vanadium admixing on the surface structure of TiO2(110) under non-oxidizing conditions

    NASA Astrophysics Data System (ADS)

    Song, Xin; Primorac, Elena; Kuhlenbeck, Helmut; Freund, Hans-Joachim

    2016-11-01

    Single crystalline Ti + V mixed oxide layers have been prepared by doping vanadium into TiO2(110) thin films on TiO2(110) single crystal substrates with a Ti + Ta mixed oxide interlayer between the film and the substrate. The interlayer prevents the diffusion of vanadium into the substrate and also the diffusion of Ti3 + between substrate and overlayer. Mixing vanadium into the TiO2 lattice increases the reducibility of the host oxide as concluded from an appreciable degree of reduction produced by comparatively mild annealing. A high density of bridging oxygen vacancies was identified at the surface of films with a low vanadium content (2%) while a (1 × 2) reconstruction as also known for massively reduced TiO2(110) was observed for layers with 8% of vanadium. Studies of methanol adsorption indicate that the vanadium atoms are mostly located below the surface since there is no indication of a vanadium-methanol interaction. We provide evidence that the reducibility of the vanadium ions in the thin film is higher than that of the titanium ions and we suggest that this is the origin of the increased reducibility of the mixed oxide.

  11. Structural, photoluminescent and photocatalytic properties of TiO2:Eu3+ coatings formed by plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Stojadinović, Stevan; Radić, Nenad; Grbić, Boško; Maletić, Slavica; Stefanov, Plamen; Pačevski, Aleksandar; Vasilić, Rastko

    2016-05-01

    In this paper, we used plasma electrolytic oxidation (PEO) of titanium in water solution containing 10 g/L Na3PO4·12H2O + 2 g/L Eu2O3 powder for preparation of TiO2:Eu3+ coatings. The surfaces of obtained coatings exhibit a typical PEO porous structure. The energy dispersive X-ray spectroscopy analysis showed that the coatings are mainly composed of Ti, O, P, and Eu; it is observed that Eu content in the coatings increases with PEO time. The X-ray diffraction analysis indicated that the coatings are crystallized and composed of anatase and rutile TiO2 phases, with anatase being the dominant one. X-ray photoelectron spectroscopy revealed that Ti 2p spin-orbit components of TiO2:Eu3+ coatings are shifted towards higher binding energy, with respect to pure TiO2 coatings, suggesting that Eu3+ ions are incorporated into TiO2 lattice. Diffuse reflectance spectroscopy showed that TiO2:Eu3+ coatings exhibit evident red shift with respect to the pure TiO2 coatings. Photoluminescence (PL) emission spectra of TiO2:Eu3+ coatings are characterized by sharp emission bands in orange-red region ascribed to f-f transitions of Eu3+ ions from excited level 5D0 to lower levels 7FJ (J = 0, 1, 2, 3, and 4). The excitation PL spectra of TiO2:Eu3+ coatings can be divided into two regions: the broad band region from 250 nm to 350 nm associated with charge transfer state of Eu3+ and the series of sharp peaks in the range from 350 nm to 550 nm corresponding to direct excitation of the Eu3+ ions. It is observed that the intensity of peaks in excitation and emission PL spectra increases with the concentration of Eu3+, but the peak positions remain practically unchanged. The ratio of PL emission for electric and magnetic dipole transitions indicates highly asymmetric environment around Eu3+ ions. The photocatalytic activity (PA) of TiO2:Eu3+ coatings is evaluated by measuring the photodegradation of methyl orange under simulated sunlight conditions. It is shown that PEO time, i.e., the amount

  12. Electrical and optical properties of TiO2 anatase thin films

    NASA Astrophysics Data System (ADS)

    Tang, H.; Prasad, K.; Sanjinès, R.; Schmid, P. E.; Lévy, F.

    1994-02-01

    Electrical and optical spectroscopic studies of TiO2 anatase thin films deposited by sputtering show that the metastable phase anatase differs in electronic properties from the well-known, stable phase rutile. Resistivity and Hall-effect measurements reveal an insulator-metal transition in a donor band in anatase thin films with high donor concentrations. Such a transition is not observed in rutile thin films with similar donor concentrations. This indicates a larger effective Bohr radius of donor electrons in anatase than in rutile, which in turn suggests a smaller electron effective mass in anatase. The smaller effective mass in anatase is consistent with the high mobility, bandlike conduction observed in anatase crystals. It is also responsible for the very shallow donor energies in anatase. Luminescence of self-trapped excitons is observed in anatase thin films, which implies a strong lattice relaxation and a small exciton bandwidth in anatase. Optical absorption and photoconductivity spectra show that anatase thin films have a wider optical absorption gap than rutile thin films.

  13. Porous TiO2 Assembled from Monodispersed Nanoparticles.

    PubMed

    Liu, Xu; Duan, Weijie; Chen, Yan; Jiao, Shihui; Zhao, Yue; Kang, Yutang; Li, Lu; Fang, Zhenxing; Xu, Wei; Pang, Guangsheng

    2016-12-01

    Porous TiO2 were assembled by evaporating or refluxing TiO2 colloid, which was obtained by dispersing the TiO2 nanoparticles with a crystallite size (d XRD) of 3.2 nm into water or ethanol without any additives. Porous transparent bulk TiO2 was obtained by evaporating the TiO2-C2H5OH colloid at room temperature for 2 weeks, while porous TiO2 nanospheres were assembled by refluxing the TiO2-H2O colloid at 80 °C for 36 h. Both of the porous TiO2 architectures were pore-size-adjustable depending on the further treating temperature. Porous TiO2 nanospheres exhibited enhanced photocatalysis activity compared to the nanoparticles. PMID:27000026

  14. Relationship of O2 Photodesorption in Photooxidation of Acetone on TiO2

    SciTech Connect

    Henderson, Michael A.

    2008-07-31

    Organic photooxidation on TiO2 invariably involves the coexistence of organic species with oxygen on the surface at the same time. In the case of acetone and oxygen, both species exhibit their own interesting photochemistry on TiO2, but interdependences between the two are not understood. In this study, a rutile TiO2(110) surface possessing 7% surface oxygen vacancy sites is used as a model surface to probe the relationship between O2 photodesorption and acetone photodecomposition. Temperature programmed desorption (TPD) and photon stimulated desorption (PSD) measurements indicate that coadsorbed oxygen is essential to acetone photodecomposition on this surface, however the form of oxygen (molecular and dissociative) is not known. The first steps in acetone photodecomposition on TiO2(110) involve thermal activation with oxygen to form an acetone diolate ((CH3)2COO) species followed by photochemical decomposition to adsorbed acetate (CH3COO) and an ejected CH3 radical that is detected in PSD. Depending on the surface conditions, O2 PSD is also observed during the latter process. However, the time scales for the two PSD events (CH3 and O2) are quite different, withthe former occurring at ~10 times faster than the latter. By varying the preheating conditions or performing pre-irradiation on an O2 exposed surface, it becomes clear that the two PSD events are uncorrelated. That is, the O2 species responsible for O2 PSD is not a significant participant in the photochemistry of acetone on TiO2(110) and likely originates from a minority form of O2 on the surface. The CH3 and O2 PSD events do not appear to be in competition with each other suggesting either that ample charge carriers exist under the experimental conditions employed or that different charge carriers or excitation mechanisms are involved.

  15. Optical and electrical properties of nanocrystalline TiO2:Pd semiconducting oxides

    NASA Astrophysics Data System (ADS)

    Sieradzka, Karolina; Kaczmarek, Danuta; Domaradzki, Jarosław; Prociów, Eugeniusz; Mazur, Michał; Górnicka, Barbara

    2011-04-01

    Electrical and optical properties of TiO2:Pd thin films deposited from Ti-Pd mosaic targets sputtered in reactive oxygen plasma have been studied. The properties were investigated for thin films with the Pd amount of 5.5 at. %, 8.4 at. % and 23 at. %. Based on resistivity measurements a drop from 103 down to almost 10-3Ωcm has been recorded when the Pd amount was varied from 5.5 at. % to 23 at. %, respectively. Moreover, it was shown that doping with different amounts of Pd results in the possibility of obtaining both types of electrical conduction: n-type for the TiO2 with 5.5 at. % and 8.4 at. % of Pd and p-type for the TiO2 with 23 at. % of Pd thin films. From optical measurements it has been found that as the Pd amount was increased the transmission through the thin films was reduced and position of the fundamental absorption edge was shifted toward a longer wavelength range of up to 600 nm. The optical band gap was calculated for direct and indirect transitions from optical absorption spectra. Structural properties were characterized by X-ray diffraction (XRD) and atomic force microscopy (AFM). The XRD patterns displayed occurrence of the crystalline, TiO2-rutile for lower Pd amounts (5.5 at. %, 8.4 at. %), while the TiO2:Pd (23 at. %) thin films displayed XRD-amorphous behaviour. Images obtained from AFM displayed dense, nanocrystalline structure with homogenous distribution of crystallites. Additionally performed secondary ion mass spectroscopy investigation confirmed homogenous distribution of Pd in the whole thickness of the prepared thin films.

  16. "Liquid Knife" to Fabricate Patterning Single-Crystalline Perovskite Microplates toward High-Performance Laser Arrays.

    PubMed

    Feng, Jiangang; Yan, Xiaoxu; Zhang, Yifan; Wang, Xuedong; Wu, Yuchen; Su, Bin; Fu, Hongbin; Jiang, Lei

    2016-05-01

    A facile and effective "liquid knife" is created by controlling the dewetting process of the liquid precursor, yielding patterning single-crystalline perovskite microplates with uniform size, precise positioning, high quality, and low lasing thresholds. The sizes and location of single-crystalline perovskite are controllable, leading to mode-tunable lasing emission and patterned lasers. PMID:27000628

  17. Combined single-crystalline and polycrystalline CVD diamond substrates for diamond electronics

    SciTech Connect

    Vikharev, A. L. Gorbachev, A. M.; Dukhnovsky, M. P.; Muchnikov, A. B.; Ratnikova, A. K.; Fedorov, Yu. Yu.

    2012-02-15

    The fabrication of diamond substrates in which single-crystalline and polycrystalline CVD diamond form a single wafer, and the epitaxial growth of diamond films on such combined substrates containing polycrystalline and (100) single-crystalline CVD diamond regions are studied.

  18. Effect of the nanocrystalline structure type on the optical properties of TiO2:Nd (1 at.%) thin films

    NASA Astrophysics Data System (ADS)

    Mazur, Michal; Wojcieszak, Damian; Kaczmarek, Danuta; Domaradzki, Jaroslaw; Zatryb, Grzegorz; Misiewicz, Jan; Morgiel, Jerzy

    2015-04-01

    Titanium dioxide thin films, each doped with the same amount of neodymium (1 at.%) were deposited by Low Pressure Hot Target Reactive Sputtering and High Energy Reactive Magnetron Sputtering processes in order to obtain anatase and rutile thin film structures respectively. The microstructure and phase composition were analyzed using the transmission electron microscopy method including high resolution electron microscopy imaging. The measurements of the optical properties showed, that both prepared thin films were transparent in the visible light range and had a low extinction coefficient of ca. 3 ṡ 10-3. The thin film with the anatase structure had a lower cut-off wavelength and refractive index and a higher value of optical energy band gap as-compared to the TiO2:Nd coating with the rutile structure. Simultaneously, more efficient photoluminescence emission was observed for the rutile thin films.

  19. Photocatalitic Properties of Tio2 and ZnO Nanopowders / Tio2 un Zno Nanopulveru Fotokatalitiskās Īpašības

    NASA Astrophysics Data System (ADS)

    Grigorjeva, L.; Rikveilis, J.; Grabis, J.; Jankovica, Dz.; Monty, C.; Millers, D.; Smits, K.

    2013-08-01

    Photocatalytic activity of TiO2 and ZnO nanopowders is studied depending on the morphology, grain sizes and method of synthesizing. Photocatalysis of the prepared powders was evaluated by degradation of the methylene blue aqueous solution. Absorbance spectra (190-100 nm) were measured during exposure of the solution to UV light. The relationships between the photocatalytic activity and the particle size, crystal polymorph phases and grain morphology were analyzed. The photocatalytic activity of prepared TiO2 nanopowders has been found to depend of the anatase-to-rutile phase ratio. Comparison is given for the photocatalytic activity of ZnO nanopowders prepared by sol-gel and solar physical vapour deposition (SPVD) methods Darbā pētīta fotokatalīzes efektivitāte ar dažādām metodēm sintezētiem TiO2 and ZnO nanopulveriem, kuriem ir atšķirīga morfoloģija un grauda izmērs. Foto katalīzes process raksturots ar metilenzilā sagraušanu ūdens šķīdumā, to apstarojot ar UV gaismu. Analizēta fotokatalīzes efektivitātes atkarība no grauda izmēra, nanokristālu graudu morfoloģijas, TiO2 nanopulveru anatasa-rutīla fāžu svara attiecībām. Parādīts, ka fotokatalītiskā efektivitāte ir atšķirīga TiO2 nanopulveriem sintezētiem ar dažādām metodēm: sola-gēla un tvaicēšanu-kondensēšanu saules reaktorā. Salīdzināta fotokatalīzes efektivitāte ZnO un TiO2 nanopulveriem un secināts, ka ZnO nanopulveri ar tetrapodu morfoloģiju ir labs fotokatalizators

  20. Influence of pH on the formulation of TiO2 powder prepared by co-precipitation of TiCl3 and photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Yudoyono, Gatut; Zharvan, Vicran; Ichzan, Nur; Daniyati, Rizqa; Indarto, Bachtera; Pramono, Yono Hadi; Zainuri, Mochamad; Darminto

    2016-02-01

    Titanium dioxide (titania) nanoparticle were synthesized by coprecipitation process of titanium trichloride (TiCl3) in aqueous medium, with NH4OH as pH regulator. The pH solution was varied during the synthesis process between pH 3-8.4, and all samples were calcined temperature at 400°C for 3 hours. Characteristics and properties of the TiO2 powder were investigated using X-ray diffraction (XRD), Scanning Electron Microscopy (SEM). XRD results show that the single-phase rutile formed when the pH is less than 5, anatase single phase formed began pH 8, and the pH of the solution between 5-8 formed mixed phase rutile-anatase-brookite, rutile-brookite or anatase-brookite. Methylene Blue (MB) photodegradation test were performed in order to evaluate photocatalytic activity. Nanoparticles TiO2 rutile, anatase phase, and mixed phase rutile-brookite, anatase-brookite used to test the photocatalytic activity by measuring the absorbance spectrum photodegradation using UV-Vis spectrometer. The test results showed that the mixture phase of rutile-brookite provide the greatest photodegradation than other phases.

  1. Photocatalytic Activity and Photocurrent Properties of TiO2 Nanotube Arrays Influenced by Calcination Temperature and Tube Length

    NASA Astrophysics Data System (ADS)

    Hou, Jian; Zhang, Min; Yan, Guotian; Yang, Jianjun

    2012-06-01

    In this article, titanium oxide nanotube arrays (TiO2-NTAs) were fabricated by anodic oxidation in an ethylene glycol (EG) electrolyte solution containing 0.25 wt.% NH4F. By varying anodized time and annealed temperature, the obtained nanotube arrays behaved different photocatalytic (PC) activities and photocurrent properties. These samples were characterized by scanning electronic microscope (SEM), X-ray powder diffraction (XRD). It was indicated in SEM images that TiO2 nanotube manifests highly ordered structure which, however, has been completely destroyed when the temperature comes to 800°C. XRD manifested that TiO2 nanotubes with various kinds of length all possessed anatase crystallite when annealed at 500°C; meanwhile, with certain length, TiO2-NTAs annealed at series calcination temperature range of 300-600°C also presented anatase crystallite, which is gradually enhanced with the increment of temperature. At 700°C, mixed structure was observed which was made up of proportions of overwhelming anatase and toothful rutile. Methyl blue (MB) degradation and photocurrent measurement testified that TiO2-NTAs under 4 h oxidation and 3 h of 600°C calcination manifested the highest activity and photocurrent density.

  2. Infrared Spectroscopic Study of the Adsorption Forms of Cyanuric Acid and Cyanuric Chloride on TiO2.

    PubMed

    Chien, Tzu-En; Li, Kun-Lin; Lin, Po-Yuan; Lin, Jong-Liang

    2016-05-31

    Cyanuric acid is often found to be the end product in the hydrolysis of waste melamine and in the TiO2-mediated photocatalytic decomposition of s-triazine-containing compounds used as herbicides or dyes. The photocatalytically recalcitrant nature of cyanuric acid on TiO2 may be closely related to its adsorption properties, including the tautomeric forms present on the surfaces and their bonding structures, which remain to be determined. In this paper, we present the optimized adsorption structures of the four tautomeric isomers (triketo, diketo, monoketo, and triol) of cyanuric acid on a model rutile-TiO2(110) surface and their vibrational absorptions. Experimentally, the adsorption structures of cyanuric acid and chloride on powdered TiO2 are analyzed on the basis of the theoretically obtained, characteristic infrared information. Cyanuric acid on TiO2 at 35 °C exists in triketo and hydroxylated forms, but the diketo becomes the predominant form on the surface at 250 °C, being bonded to a titanium site via one of its carbonyl groups and with a N-H···O hydrogen bonding interaction. Hydroxylation of cyanuric chloride occurs as it is adsorbed on TiO2 at 35 °C. Upon being heated to 200 °C, the surface is mainly covered with the diketo form of cyanuric acid after the adsorption of cyanuric chloride. PMID:27176610

  3. TiO2 nanocrystals electrochemiluminescence quenching by biological enlarged nanogold particles and its application for biosensing.

    PubMed

    Ding, Shou-Nian; Gao, Bu-Hong; Shan, Dan; Sun, Yue-Ming; Cosnier, Serge

    2013-01-15

    Electrochemiluminescence (ECL) of TiO(2) nanocrystals with different crystal styles modified fluorine-doped tin oxide (FTO) electrode was investigated in H(2)O(2) solution. The amorphous TiO(2) nanospheres were facilely synthesized by the hydrothermal and condensation method. Crystal TiO(2), namely anatase and rutile, were prepared by calcination of the amorphous TiO(2) nanospheres at 450 and 800°C, respectively. The transmission electron microscope (TEM) and electron diffraction pattern were used to characterize the obtained TiO(2) nanoparticles morphology and the corresponding crystal styles. The electrochemical and ECL behaviors were investigated by cyclic voltammetry. The ECL quenching was observed by introduction of gold nanoparticles. Based on the quenching effect, a sensitive glucose ECL biosensor as a model was fabricated by in-situ growing-up gold seeds in AuCl(4)(-) solution induced by biologically generated H(2)O(2). The linear range to detect glucose is from 5.0×10(-7)M to 4.0×10(-3)M with the limit of detection of 2.5×10(-7)M. PMID:22902536

  4. Development of high efficient visible light-driven N, S-codoped TiO2 nanowires photocatalysts

    NASA Astrophysics Data System (ADS)

    Zhang, Yanlin; Liu, Peihong; Wu, Honghai

    2015-02-01

    One-dimensional (1D) nanowire material (especially nonmetal doped 1D nanowires) synthesized by a facile way is of great significance and greatly desired as it has higher charge carrier mobility and lower carrier recombination rate. N, S-codoped TiO2 nanowires were synthesized using titanium sulfate as a precursor and isopropanol as a protective capping agent by a hydrothermal route. The obtained doped nanowires were characterized by XRD, SEM, HRTEM, SAED, XPS, BET and UV-vis absorption spectrum. The incorporation of N and S into TiO2 NWs can lead to the expansion of its lattice and remarkably lower its electron-transfer resistance. Photocatalytic activity measurement showed that the N, S-codoped TiO2 nanowires with high quantum efficiency revealed the best photocatalytic performance for atrazine degradation under visible light irradiation compared to N, S-codoped TiO2 nanoparticles and S-doped TiO2 nanowires, which was attributed to (i) the synergistic effect of N and S doping in narrowing the band gap, separating electron-hole pairs and increasing the photoinduced electrons, and (ii) extending the anatase-to-rutile transformation temperature above 600 °C.

  5. Optical and structural characterization of TiO2 films doped with silver nanoparticles obtained by sol-gel method

    NASA Astrophysics Data System (ADS)

    Ivanova, T.; Harizanova, A.; Koutzarova, T.; Vertruyen, B.

    2013-12-01

    Nanostructured titanium oxide films with incorporated Ag nanoparticles were deposited by sol-gel spin coating method. The films were annealed at 300 °C, 400 °C, 500 °C and 600 °C in oxygen and nitrogen ambient. X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and UV-VIS spectroscopy had been applied for studying the influence of the thermal treatments and the gas ambient on the structural and optical properties of TiO2 and TiO2:Ag films. The XRD analysis revealed the presence of metallic Ag phase without traces of silver oxides and these results were confirmed by FTIR spectra. It has been revealed that the annealing temperatures and the ambient, where the annealing is carried out is crucial for TiO2 crystallization, when there is Ag incorporation and especially for appearance of anatase and rutile phase. The nitrogen and oxygen ambient influences quite different the crystallization of TiO2:Ag films. Transmission and absorption spectra have been analyzed. Optical band gap values were evaluated for pure titania and Ag incorporated TiO2 films.

  6. Anatase TiO2 Nanoparticles with Exposed {001} Facets for Efficient Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Chu, Liang; Qin, Zhengfei; Yang, Jianping; Li, Xing'Ao

    2015-07-01

    Anatase TiO2 nanoparticles with exposed {001} facets were synthesized from Ti powder via a sequential hydrothermal reaction process. At the first-step hydrothermal reaction, H-titanate nanowires were obtained in NaOH solution with Ti powder, and at second-step hydrothermal reaction, anatase TiO2 nanoparticles with exposed {001} facets were formed in NH4F solution. If the second-step hydrothermal reaction was carried out in pure water, the H-titanate nanowires were decomposed into random shape anatase-TiO2 nanostructures, as well as few impurity of H2Ti8O17 phase and rutile TiO2 phase. Then, the as-prepared TiO2 nanostructures synthesized in NH4F solution and pure water were applied to the photoanodes of dye-sensitized solar cells (DSSCs), which exhibited power conversion efficiency (PCE) of 7.06% (VOC of 0.756 V, JSC of 14.80 mA/cm2, FF of 0.631) and 3.47% (VOC of 0.764 V, JSC of 6.86 mA/cm2, FF of 0.662), respectively. The outstanding performance of DSSCs based on anatase TiO2 nanoparticles with exposed {001} facets was attributed to the high activity and large special surface area for excellent capacity of dye adsorption.

  7. Anatase TiO2 Nanoparticles with Exposed {001} Facets for Efficient Dye-Sensitized Solar Cells

    PubMed Central

    Chu, Liang; Qin, Zhengfei; Yang, Jianping; Li, Xing’ao

    2015-01-01

    Anatase TiO2 nanoparticles with exposed {001} facets were synthesized from Ti powder via a sequential hydrothermal reaction process. At the first-step hydrothermal reaction, H-titanate nanowires were obtained in NaOH solution with Ti powder, and at second-step hydrothermal reaction, anatase TiO2 nanoparticles with exposed {001} facets were formed in NH4F solution. If the second-step hydrothermal reaction was carried out in pure water, the H-titanate nanowires were decomposed into random shape anatase-TiO2 nanostructures, as well as few impurity of H2Ti8O17 phase and rutile TiO2 phase. Then, the as-prepared TiO2 nanostructures synthesized in NH4F solution and pure water were applied to the photoanodes of dye-sensitized solar cells (DSSCs), which exhibited power conversion efficiency (PCE) of 7.06% (VOC of 0.756 V, JSC of 14.80 mA/cm2, FF of 0.631) and 3.47% (VOC of 0.764 V, JSC of 6.86 mA/cm2, FF of 0.662), respectively. The outstanding performance of DSSCs based on anatase TiO2 nanoparticles with exposed {001} facets was attributed to the high activity and large special surface area for excellent capacity of dye adsorption. PMID:26190140

  8. Microwave-assisted synthesis and photocatalytic properties of sulphur and platinum modified TiO2 nanofibers

    NASA Astrophysics Data System (ADS)

    Drunka, R.; Grabis, J.; Jankovica, Dz; Krumina, A.; Rasmane, Dz

    2015-03-01

    In the present work formation of active TiO2 nanofibers in microwave synthesis and their modification with platinum were studied. Mixture of anatase and rutile nanopowder and 10M KOH solution were used as raw materials. Microwave assisted synthesis method permitted to obtain TiO2 nanofibres with a diameter of 10nm and a specific surface area up to 40.2 m2/g. In order to modify TiO2 nanofibers with platinum it was stirred in H2PtCl6 solution and illuminated with UV irradiation or reduced with sodium boronhydride. To modify titania with sulphur and prepare co-doped nanofibers platinum doped samples were extra treated in hydrogen sulphide atmosphere. Photocatalytic activity was determined by degradation of the methylene blue (MB) solution under UV and visible light irradiation. The obtained samples showed higher photocatalytic activity with respect to pure TiO2 nanofibers. The doped TiO2 nanofibers were appropriate for degradation of harmful organic compounds.

  9. Preparation and solar-light photocatalytic activity of TiO2 composites: TiO2/kaolin, TiO2/diatomite, and TiO2/zeolite

    NASA Astrophysics Data System (ADS)

    Li, Y.; Li, S. G.; Wang, J.; Li, Y.; Ma, C. H.; Zhang, L.

    2014-12-01

    Three TiO2 loaded composites, TiO2/kaolin, TiO2/diatomite, and TiO2/zeolite, were prepared in order to improve the solar-light photocatalytic activity of TiO2. The results showed that the photocatalytic activity could obviously be enhanced by loading appropriate amount of inorganic mineral materials. Meanwhile, TiO2 content, heat-treatment temperature and heat-treatment time on the photocatalytic activity were reviewed. Otherwise, the effect of solar light irradiation time and dye concentration on the photocatalytic degradation of Acid Red B was investigated. Furthermore, the degradation mechanism and adsorption process were also discussed.

  10. Formation mechanism of TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Yao, B. D.; Chan, Y. F.; Zhang, X. Y.; Zhang, W. F.; Yang, Z. Y.; Wang, N.

    2003-01-01

    Transmission electron microscopic observation showed that TiO2 nanotubes synthesized via a simple hydrothermal chemical process formed a crystalline structure with open-ended and multiwall morphologies. Unlike multiwalled carbon nanotubes, the TiO2 nanotube walls were not seamless. During alkali treatment, crystalline TiO2 raw material underwent delamination in the alkali solution to produce single-layer TiO2 sheets. TiO2 nanotubes were formed by rolling up the single-layer TiO2 sheets with a rolling-up vector of [001] and attracting other sheets to surround the tubes.

  11. Visible-light-induced photocatalytic reduction of Cr(VI) with coupled Bi2O3/TiO2 photocatalyst and the synergistic bisphenol A oxidation.

    PubMed

    Yang, Juan; Dai, Jun; Li, Jiantong

    2013-04-01

    Coupled Bi2O3/TiO2 photocatalysts were fabricated by sol-gel and hydrothermal methods and characterized using various spectroscopy techniques. Photocatalytic reduction of Cr(VI) in aqueous solution, together with the synergistic effect of photodegradation of bisphenol A (BPA), was investigated using these coupled Bi2O3/TiO2 under visible-light irradiation. Coupling of Bi2O3 inhibited the phase transformation from anatase to rutile and extended absorption region to visible light. Bi ions did not enter TiO2 lattice and were more likely to bond with oxygen atoms to form Bi2O3 on the surface of TiO2. Photovoltage signals in visible range revealed the effective interfacial charge transfer between Bi2O3 and TiO2. Two percent Bi2O3/TiO2 exhibited the highest photocatalytic activity of visible-light-induced reduction of Cr(VI). The addition of BPA effectively increased the photocatalytic reduction of Cr(VI). Simultaneously, the presence of Cr(VI) promoted the degradation of BPA, which was demonstrated by the investigation of TOC removal yield and generated intermediates. A possible mechanism of photocatalytic reduction of Cr(VI) and degradation of BPA in Bi2O3/TiO2 system was proposed. The synergistic effect, observed between reduction of Cr(VI) and degradation of BPA, provides beneficial method for environmental remediation and purification of the complex wastewater. PMID:22935862

  12. The effect of substrate temperature on the spray-deposited TiO2 nanostructured films for dye-sensitized solar cells.

    PubMed

    Hossain, Md Faruk; Takahashi, Takakazu

    2011-04-01

    The nanostructured TiO2 films have deposited on SnO2:F (FTO) coated glass substrate by spray pyrolysis technique at different substrate temperatures of 200-500 degrees C. The structural, surface morphological and optical properties of TiO2 films significantly vary with the substrate temperature. The surface of the TiO2 films deposited at 400 degrees C shows the nanoflakes and short nanorods (approximately 130 nm) like structures while the TiO2 films prepared at 500 degrees C shows only the nanoflakes like structures. The band gap of the TiO2 films prepared at higher temperatures (300-500 degrees C) becomes narrow due to presence the rutile phases in their crystal structure. Ruthenium (II) complex as a dye, KI/I2 as an electrolyte and carbon on FTO glass as a counter electrode has used to fabricate the dye-sensitized solar cell (DSC). The TiO2 film deposited at 400 degrees C has showed the best photovoltaic performance in DSC with the efficiency of 3.81%, the photovoltage of 773 mV, the photocurrent of 8.34 mA/cm2, and the fill factor of 56.17%. The photovoltage of the DSC increases with the increase of substrate temperature during the deposition of TiO2 films. Moreover, all the DSCs exhibit reasonably high fill factor value. PMID:21776690

  13. Effect of TiO2 nanoparticles on adipose derived stromal cell differentiation, morphology, ECM deposition and its susceptibility to bacterial infections

    NASA Astrophysics Data System (ADS)

    Mironava, Tatsiana; Xu, Yan; Rafailovich, Miriam

    The growing annual production of Titanium dioxide (TiO2) nanoparticles is proportional to an increase in the chances of occupational and consumer exposure. Considering, that these nanoparticles are currently being used in multiple personal care products many concerns have arisen about their health impact. Human skin is in constant contact with the external environment and is one of the most important routes of exposure to TiO2. In this study we have investigated the effect of two forms of TiO2, rutile and anatase, on human adipose derived stromal cells (ADSCs). Here, we focus on the effects of TiO2 exposure on intracellular lipid accumulation and expression of adipogenic markers; on whether different forms of TiO2 have similar effects on cell function; and whether nanoparticle localization inside cells correlates with loss of cell function. In addition presence of bacteria on the skin is taken into account in its complex interaction with ADSCs and TiO2 nanoparticles. Altogether, the present study indicates that nanosized TiO2 particles adversely effects the differentiation of ADSCs, have profound effects on cell function and increase the rate of bacterial infection.

  14. Influence of transition metal doping on the structural, optical, and magnetic properties of TiO2 films deposited on Si substrates by a sol–gel process

    PubMed Central

    2013-01-01

    Transition metal (TM)-doped TiO2 films (TM = Co, Ni, and Fe) were deposited on Si(100) substrates by a sol–gel method. With the same dopant content, Co dopants catalyze the anatase-to-rutile transformation (ART) more obviously than Ni and Fe doping. This is attributed to the different strain energy induced by the different dopants. The optical properties of TM-doped TiO2 films were studied with spectroscopic ellipsometry data. With increasing dopant content, the optical band gap (EOBG) shifts to lower energy. With the same dopant content, the EOBG of Co-doped TiO2 film is the smallest and that of Fe-doped TiO2 film is the largest. The results are related to electric disorder due to the ART. Ferromagnetic behaviors were clearly observed for TM-doped TiO2 films except the undoped TiO2 film which is weakly magnetic. Additionally, it is found that the magnetizations of the TM-doped TiO2 films decrease with increasing dopant content. PMID:24350904

  15. The effect of rate of hydrolysis on structural and optical properties of the TiO2 nanoparticles prepared by a sol-gel method

    NASA Astrophysics Data System (ADS)

    Dejene, F. B.; Onani, M. O.; Tarus, P. K.

    2016-01-01

    The nanocrystalline TiO2 powders with different crystallinity and phase structures were obtained by controlling hydrolysis rate and annealing temperature. Rutile phase TiO2 nanoparticles with crystallite sizes of about 80 nm, were obtained by annealing the TiO2 powders at 700 °C. The crystallite sizes of anatase phase TiO2 increases from 8 to 11 nm and band gap energy ranges from 2.49 and 3.26 eV, calculated using XRD pattern and UV-vis reflectance spectra, respectively. In agreement with change of the TiO2 band gap after different rate of hydrolysis the PL emission peak in the UV region shift slightly from 335 to 339 nm, which corresponds to the direct recombination between electrons in the conduction band and holes in the valence band. The defect related emission shifted from 376 to 385 nm with the change in the rate of hydrolysis. TiO2 nanoparticles synthesized at slow hydrolysis rate (6 ml of H2O) shows the attainment of best luminescence and maximum reflectance in the visible range. Therefore, these TiO2 nanoparticles can also be employed as coating material to develop reflectors with maximum diffuse reflectance.

  16. Fine-grained rutile in the Gulf of Maine - diagenetic origin, source rocks, and sedimentary environment of deposition

    USGS Publications Warehouse

    Valentine, P.C.; Commeau, J.A.

    1990-01-01

    The Gulf of Maine, an embayment of the New England margin, is floored by shallow, glacially scoured basins that are partly filled with late Pleistocene and Holocene silt and clay containing 0.7 to 1.0 wt percent TiO2 chiefly in the form of silt-size rutile. Much of the rutile in the Gulf of Maine mud probably formed diagenetically in poorly cemented Carboniferous and Triassic coarse-grained sedimentary rocks of Nova Scotia and New Brunswick after the dissolution of titanium-rich detrital minerals (ilmenite, ilmenomagnetite). The diagenesis of rutile in coarse sedimentary rocks (especially arkose and graywacke) followed by erosion, segregation, and deposition (and including recycling of fine-grained rutile from shales) can serve as a model for predicting and prospecting for unconsolidated deposits of fine-grained TiO2. -from Authors

  17. Rutile solubility and titanium coordination in silicate melts

    NASA Astrophysics Data System (ADS)

    Dickinson, James E., Jr.; Hess, Paul C.

    1985-11-01

    The solubility of rutile has been determined in a series of compositions in the K 2O-Al 2O 3-SiO 2 system ( K ∗ = K 2O /(K 2O + Al 2O 3) = 0.38-0.90), and the CaO-Al 2O 3-SiO 2 system ( C ∗ = CaO/(CaO + Al 2O 3) = 0.47-0.59 ). Isothermal results in the KAS system at 1325°C, 1400°C, and 1475°C show rutile solubility to be a strong function of the K ∗ ratio. For example, at 1475°C the amount of TiO 2 required for rutile saturation varies from 9.5 wt% ( K ∗ = 0.38 ) to 11.5 wt% ( K ∗ = 0.48 ) to 41.2 wt% ( K ∗ = 0.90 ). In the CAS system at 1475°C, rutile solubility is not a strong function of C ∗. The amount of TiO 2 required for saturation varies from 14 wt% ( C ∗ = 0.48 ) to 16.2 wt% ( C ∗ = 0.59 ). The solubility changes in KAS melts are interpreted to be due to the formation of strong complexes between Ti and K + in excess of that needed to charge balance Al 3+. The suggested stoichiometry of this complex is K 2Ti 2O 5 or K 2Ti 3O 7. In CAS melts, the data suggest that Ca 2+ in excess of A1 3+ is not as effective at complexing with Ti as is K +. The greater solubility of rutile in CAS melts when C ∗ is less than 0.54 compared to KAS melts of equal K ∗ ratio results primarily from competition between Ti and Al for complexing cations (Ca vs. K). TiK β x-ray emission spectra of KAS glasses ( K ∗ = 0.43-0.60 ) with 7 mole% added TiO 2, rutile, and Ba 2TiO 4, demonstrate that the average Ti-O bond length in these glasses is equal to that of rutile rather than Ba 2TiO 4, implying that Ti in these compositions is 6-fold rather than 4-fold coordinated. Re-examination of published spectroscopic data in light of these results and the solubility data, suggests that the 6-fold coordination polyhedron of Ti is highly distorted, with at least one Ti-O bond grossly undersatisfied in terms of Pauling's rules.

  18. D-sorbitol-induced phase control of TiO2 nanoparticles and its application for dye-sensitized solar cells.

    PubMed

    Shaikh, Shoyebmohamad F; Mane, Rajaram S; Min, Byoung Koun; Hwang, Yun Jeong; Joo, Oh-Shim

    2016-01-01

    Using a simple hydrothermal synthesis, the crystal structure of TiO2 nanoparticles was controlled from rutile to anatase using a sugar alcohol, D-sorbitol. Adding small amounts of D-sorbitol to an aqueous TiCl4 solution resulted in changes in the crystal phase, particle size, and surface area by affecting the hydrolysis rate of TiCl4. These changes led to improvements of the solar-to-electrical power conversion efficiency (η) of dye-sensitized solar cells (DSSC) fabricated using these nanoparticles. A postulated reaction mechanism concerning the role of D-sorbitol in the formation of rutile and anatase was proposed. Fourier-transform infrared spectroscopy, (13)C NMR spectroscopy, and dynamic light scattering analyses were used to better understand the interaction between the Ti precursor and D-sorbitol. The crystal phase and size of the synthesized TiO2 nanocrystallites as well as photovoltaic performance of the DSSC were examined using X-ray diffraction, Raman spectroscopy, field-emission scanning electron microscopy, high-resolution transmission electron microscopy, and photocurrent density-applied voltage spectroscopy measurement techniques. The DSSC fabricated using the anatase TiO2 nanoparticles synthesized in the presence of D-sorbitol, exhibited an enhanced η (6%, 1.5-fold improvement) compared with the device fabricated using the rutile TiO2 synthesized without D-sorbitol. PMID:26857963

  19. D-sorbitol-induced phase control of TiO2 nanoparticles and its application for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Shaikh, Shoyebmohamad F.; Mane, Rajaram S.; Min, Byoung Koun; Hwang, Yun Jeong; Joo, Oh-Shim

    2016-02-01

    Using a simple hydrothermal synthesis, the crystal structure of TiO2 nanoparticles was controlled from rutile to anatase using a sugar alcohol, D-sorbitol. Adding small amounts of D-sorbitol to an aqueous TiCl4 solution resulted in changes in the crystal phase, particle size, and surface area by affecting the hydrolysis rate of TiCl4. These changes led to improvements of the solar-to-electrical power conversion efficiency (η) of dye-sensitized solar cells (DSSC) fabricated using these nanoparticles. A postulated reaction mechanism concerning the role of D-sorbitol in the formation of rutile and anatase was proposed. Fourier-transform infrared spectroscopy, 13C NMR spectroscopy, and dynamic light scattering analyses were used to better understand the interaction between the Ti precursor and D-sorbitol. The crystal phase and size of the synthesized TiO2 nanocrystallites as well as photovoltaic performance of the DSSC were examined using X-ray diffraction, Raman spectroscopy, field-emission scanning electron microscopy, high-resolution transmission electron microscopy, and photocurrent density-applied voltage spectroscopy measurement techniques. The DSSC fabricated using the anatase TiO2 nanoparticles synthesized in the presence of D-sorbitol, exhibited an enhanced η (6%, 1.5-fold improvement) compared with the device fabricated using the rutile TiO2 synthesized without D-sorbitol.

  20. D-sorbitol-induced phase control of TiO2 nanoparticles and its application for dye-sensitized solar cells

    PubMed Central

    Shaikh, Shoyebmohamad F.; Mane, Rajaram S.; Min, Byoung Koun; Hwang, Yun Jeong; Joo, Oh-shim

    2016-01-01

    Using a simple hydrothermal synthesis, the crystal structure of TiO2 nanoparticles was controlled from rutile to anatase using a sugar alcohol, D-sorbitol. Adding small amounts of D-sorbitol to an aqueous TiCl4 solution resulted in changes in the crystal phase, particle size, and surface area by affecting the hydrolysis rate of TiCl4. These changes led to improvements of the solar-to-electrical power conversion efficiency (η) of dye-sensitized solar cells (DSSC) fabricated using these nanoparticles. A postulated reaction mechanism concerning the role of D-sorbitol in the formation of rutile and anatase was proposed. Fourier-transform infrared spectroscopy, 13C NMR spectroscopy, and dynamic light scattering analyses were used to better understand the interaction between the Ti precursor and D-sorbitol. The crystal phase and size of the synthesized TiO2 nanocrystallites as well as photovoltaic performance of the DSSC were examined using X-ray diffraction, Raman spectroscopy, field-emission scanning electron microscopy, high-resolution transmission electron microscopy, and photocurrent density-applied voltage spectroscopy measurement techniques. The DSSC fabricated using the anatase TiO2 nanoparticles synthesized in the presence of D-sorbitol, exhibited an enhanced η (6%, 1.5-fold improvement) compared with the device fabricated using the rutile TiO2 synthesized without D-sorbitol. PMID:26857963

  1. Photoreduction of CO2 on TiO2/SrTiO3 Heterojunction Network Film

    NASA Astrophysics Data System (ADS)

    Bi, Yongsheng; Zong, Lanlan; Li, Chen; Li, Qiuye; Yang, Jianjun

    2015-08-01

    Nanotube titanic acid (NTA) network film has a porous structure and large BET surface area, which lead them to possessing high utilization of the incident light and strong adsorption ability. We used NTA as the precursor to fabricate a TiO2/ SrTiO3 heterojunction film by the hydrothermal method. In the process of the reaction, part of NTA reacted with SrCl2 to form SrTiO3 nanocubes, and the remainder dehydrated to transform to the rutile TiO2. The ratio of TiO2 and SrTiO3 varied with the hydrothermal reaction time. SEM and TEM images indicated that SrTiO3 nanocubes dispersed uniformly on TiO2 film, and the particle size and crystallinity of SrTiO3 nanocubes increased with the reaction time prolonging. The TiO2/SrTiO3 heterojunction obtained by 1 h showed the best activity for CO2 photoreduction, where the mole ratio of TiO2 and SrTiO3 was 4:1. And the photo-conversion efficiency of CO2 to CH4 improved remarkably after the foreign electron traps of Pt and Pd nanoparticles were loaded. The highest photocatalytic production rate of CH4 reached 20.83 ppm/h cm2. In addition, the selectivity of photoreduction product of CO2 was also increased apparently when Pd acted as the cocatalyst on TiO2/SrTiO3 heterojunction film.

  2. Fano resonances in photoconductivity spectra of hydrogen donors in ZnO and rutile

    NASA Astrophysics Data System (ADS)

    Lavrov, E. V.; Herklotz, F.; Weber, J.

    2015-02-01

    The results of photoconductivity studies of hydrogen donors in ZnO and rutile TiO2 are presented. It is shown that local vibrational modes of O-H bonds comprising donors in both semiconductors can be detected in photoconductivity spectra as Fano resonances at 3611 and 3290 cm-1 in the case of ZnO and TiO2, respectively. The frequencies of these features red-shift in energy down to 2668 (ZnO) and 2445 cm-1 (TiO2) if hydrogen is substituted by deuterium. Based on the frequency of the deuterium resonance it is concluded that the ionization energy of the hydrogen donor in TiO2 is less than 300 meV, which is in variance with predictions of theory. The reasons for such a discrepancy are discussed.

  3. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting.

    PubMed

    Wang, Gongming; Wang, Hanyu; Ling, Yichuan; Tang, Yuechao; Yang, Xunyu; Fitzmorris, Robert C; Wang, Changchun; Zhang, Jin Z; Li, Yat

    2011-07-13

    We report the first demonstration of hydrogen treatment as a simple and effective strategy to fundamentally improve the performance of TiO(2) nanowires for photoelectrochemical (PEC) water splitting. Hydrogen-treated rutile TiO(2) (H:TiO(2)) nanowires were prepared by annealing the pristine TiO(2) nanowires in hydrogen atmosphere at various temperatures in a range of 200-550 °C. In comparison to pristine TiO(2) nanowires, H:TiO(2) samples show substantially enhanced photocurrent in the entire potential window. More importantly, H:TiO(2) samples have exceptionally low photocurrent saturation potentials of -0.6 V vs Ag/AgCl (0.4 V vs RHE), indicating very efficient charge separation and transportation. The optimized H:TiO(2) nanowire sample yields a photocurrent density of ∼1.97 mA/cm(2) at -0.6 V vs Ag/AgCl, in 1 M NaOH solution under the illumination of simulated solar light (100 mW/cm(2) from 150 W xenon lamp coupled with an AM 1.5G filter). This photocurrent density corresponds to a solar-to-hydrogen (STH) efficiency of ∼1.63%. After eliminating the discrepancy between the irradiance of the xenon lamp and solar light, by integrating the incident-photon-to-current-conversion efficiency (IPCE) spectrum of the H:TiO(2) nanowire sample with a standard AM 1.5G solar spectrum, the STH efficiency is calculated to be ∼1.1%, which is the best value for a TiO(2) photoanode. IPCE analyses confirm the photocurrent enhancement is mainly due to the improved photoactivity of TiO(2) in the UV region. Hydrogen treatment increases the donor density of TiO(2) nanowires by 3 orders of magnitudes, via creating a high density of oxygen vacancies that serve as electron donors. Similar enhancements in photocurrent were also observed in anatase H:TiO(2) nanotubes. The capability of making highly photoactive H:TiO(2) nanowires and nanotubes opens up new opportunities in various areas, including PEC water splitting, dye-sensitized solar cells, and photocatalysis. PMID:21710974

  4. GROWTH, SURFACE CHARACTERIZATION, AND REACTIVITY OF TIO2 ANATASE FILMS-EPSCOR

    SciTech Connect

    Diebold, Ulrike

    2004-12-15

    TiO2 is as promising photocatalyst for environmental degradation of organic compounds and solar energy conversion. Commercial titania is a mixture of rutile and anatase phases, and, for as of yet unknown reasons, anatase is the photocatalytically more active form. In contrast to rutile, atomic-scale information on well-characterized anatase surfaces and their chemical properties was virtually absent at the beginning of this project. We have performed surface science investigations of anatase with the goal to understand, and ultimately control, the surface chemistry underlying its diverse applications. We have of (1) characterized all main crystallographic surface orientations of anatase, namely the (101), (100), (001), and (103) surfaces (2) have investigated the influence of surface imperfections such as defects and steps; (3) have investigated the influence of dopants on epitaxial (001) anatase films; and (3) have investigated the chemical and adsorption and reaction processes of simple molecules (water and methanol) on anatase surfaces. The experiments were performed in collaboration with Pacific Northwest National Laboratory (PNNL) using a variety of complementary surface science techniques. They have lead to a thorough characterization of this model system and have provided a more complete understanding of TiO2, which could possibly lead to improved efficiency in of photocatalytic applications.

  5. Microwave-solvothermal synthesis of various polymorphs of nanostructured TiO2 in different alcohol media and their lithium ion storage properties.

    PubMed

    Yoon, Sukeun; Lee, Eun-Sung; Manthiram, Arumugam

    2012-03-19

    The various polymorphs (anatase, rutile, and brookite) of TiO(2) with different nanomorphologies have been synthesized by a facile microwave-assisted solvothermal process without surfactants, employing TiCl(4) or TiCl(3) as precursors in various alcohol (ethanol, propanol, butanol, and octanol) media. The samples have been characterized by X-ray diffraction (XRD), electron microscopy, and Brunauer-Emmett-Teller (BET) surface area analysis. The Ti/Cl ion concentration, reaction pH, and size of the alcohol molecule are found to control the morphology, crystal structure, and crystallite size of the TiO(2) particles. Among the various TiO(2) polymorphs synthesized, the rutile TiO(2) spheres built up of nanorods that were synthesized with TiCl(4) in octanol have an average pore size and surface area of, respectively, 5 nm and 404 m(2)/g and exhibit the best electrochemical performance with a capacity of >200 mAh/g after 100 cycles and high rate capability. The excellent electrochemical properties originate from the nanorod-building morphology and mesoporosity of TiO(2) spheres that provide good electrical contact, accommodates the strain smoothly, and facilitates facile lithium-ion diffusion. PMID:22380796

  6. Preparation of TiO2/SnO2 thin films by sol-gel method and periodic B3LYP simulations.

    PubMed

    Floriano, Emerson A; Scalvi, Luis V A; Saeki, Margarida J; Sambrano, Julio R

    2014-08-01

    Titanium dioxide (TiO2) thin films are grown by the sol-gel dip-coating technique, in conjunction with SnO2 in the form of a heterostructure. It was found that the crystalline structure of the most internal layer (TiO2) depends on the thermal annealing temperature and the substrate type. Films deposited on glass substrate submitted to thermal annealing until 550 °C present anatase structure, whereas films deposited on quartz substrate transform to rutile structure at much higher temperatures, close to 1000 °C, unlike powder samples where the phase transition takes place at about 780 °C. When structured as rutile, the oxide semiconductors TiO2/SnO2 have very close lattice parameters, making the heterostructure assembling easier. The SnO2 and TiO2 have their electronic properties evaluated by first-principles calculations by means of DFT/B3LYP. Taking into account the calculated band structure diagram of these materials, the TiO2/SnO2 heterostructure is qualitatively investigated and proposed to increase the detection efficiency as gas sensors. This efficiency can be further improved by doping the SnO2 layer with Sb atoms. This assembly may be also useful in photoelectrocatalysis processes. PMID:24824227

  7. High-performance photodetectors and enhanced photocatalysts of two-dimensional TiO2 nanosheets under UV light excitation

    NASA Astrophysics Data System (ADS)

    Yang, Jiao; Jiang, Yi-Lin; Li, Lin-Jie; Muhire, Elisée; Gao, Mei-Zhen

    2016-04-01

    Due to the large surface area-to-volume ratio and rapid electron transfer, two-dimensional (2D) TiO2 nanosheets with ultrathin thicknesses are synthesized by using a bottom-up strategy and these self-assembled nanosheet (NS)-based photocatalysts and photodetectors were explored for the first time. The influence of calcination temperature on microstructures and photocatalytic activity of TiO2 nanosheets were discovered and presented. The as-obtained TiO2 nanosheets were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) analysis, Fourier transform infrared (FTIR) spectroscopy, UV-vis spectrophotometry, and X-ray photoelectron spectroscopy (XPS). The following heat treatment process induced phase evolution from rutile to anatase. The TiO2 nanosheets calcined at 500 °C exhibited the best activity for photo-degradation of organic dyes under UV light irradiation. The obtained photodetector exhibits excellent performance with a high photocurrent to dark current ratio and fast response and recovery times. Additionally, we demonstrated that the device may have potential applications in the future low-power optoelectronics system.Due to the large surface area-to-volume ratio and rapid electron transfer, two-dimensional (2D) TiO2 nanosheets with ultrathin thicknesses are synthesized by using a bottom-up strategy and these self-assembled nanosheet (NS)-based photocatalysts and photodetectors were explored for the first time. The influence of calcination temperature on microstructures and photocatalytic activity of TiO2 nanosheets were discovered and presented. The as-obtained TiO2 nanosheets were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) analysis, Fourier transform infrared (FTIR) spectroscopy, UV-vis spectrophotometry, and X-ray photoelectron spectroscopy (XPS). The following

  8. X-ray diffraction and Raman scattering study of thermal-induced phase transformation in vertically aligned TiO 2 nanocrystals grown on sapphire(1 0 0) via metal organic vapor deposition

    NASA Astrophysics Data System (ADS)

    Chen, C. A.; Chen, K. Y.; Huang, Y. S.; Tsai, D. S.; Tiong, K. K.; Chien, F. Z.

    2008-07-01

    We report a detailed study of thermal-induced phase transformation in TiO 2 nanocrystals (NCs) via X-ray diffraction (XRD) and Raman scattering (RS) spectroscopy. Vertically aligned anatase TiO 2(1 1 0) NCs were grown on the sapphire (SA)(1 0 0) substrate at 550 °C by metal organic chemical vapor deposition, using titanium-tetraisopropoxide (TTIP, Ti[OCH(CH 3) 2] 4), as the source reagent. The effects of thermal annealing of TiO 2 NCs in oxygen atmosphere between 600 and 1000 °C were investigated. XRD and RS spectra showed the onset of the phase transformation process from the as-grown anatase TiO 2(1 1 0) NCs into rutile TiO 2(0 0 1) at the annealing temperature of 800 °C. At annealing temperature higher than 900 °C, pure rutile phase of TiO 2(0 0 1) NCs were formed and the crystalline quality of TiO 2 NCs could be further improved upon higher annealing temperature.

  9. Ab initio simulations on rutile-based titania nanowires

    NASA Astrophysics Data System (ADS)

    Zhukovskii, Yu F.; Evarestov, R. A.

    2012-08-01

    The rod symmetry groups for monoperiodic (1D) nanostructures have been applied for construction of models for bulk-like TiO2 nanowires (NWs) cut from a rutile-based 3D crystal along the chosen [001] and [110] directions of crystallographic axes. In this study, we have considered nanowires described by both the Ti-atom centered rotation axes as well as the hollow site centered axes passing through the interstitial positions between the Ti and O atoms closest to the axes. The most stable [001]-oriented TiO2 NWs with rhombic cross sections are found to display the energetically preferable {110} facets only while the nanowires with quasi-square sections across the [110] axis are formed by the alternating { 1bar 10 } and {001} facets. For simulations on rutile-based nanowires possessing different diameters for each NW type, we have performed large-scale ab initio Density Functional Theory (DFT) and hybrid DFT-Hartree Fock (DFT-HF) calculations with total geometry optimization within the Generalized Gradient Approximation (GGA) in the form of the Perdew-Becke-Ernzenhof (PBE) exchange-correlation functionals (PBE and PBE0, respectively), using the formalism of linear combination of localized atomic functions (LCAO). We have simulated both structural and electronic properties of TiO2 NWs depending both on orientation and position of symmetry axes as well as on diameter and morphology of nanowires.

  10. Hydrogen photo-production from ethanol on TiO2: a surface science and catalysis study

    NASA Astrophysics Data System (ADS)

    Nadeem, A. M.; Muir, J. M. R.; Waterhouse, G. W. N.; Idriss, H.

    2011-10-01

    In this work we present an overview of the photo-reaction of ethanol over the surface of TiO2 (110) single crystal under photo-excitation and compare it to that over Au/TiO2 nano-particle. Over rutile TiO2(110) surface ethanol is present mainly in ethoxide (CH3CH2O(a)) form at 300K as evidenced by the presence of XPS C1s peak at 286.5 eV due to the -CH2-O(a) function; (a) for adsorbed. DFT computation of the same system indicated that the surface coverage is 50% or less in line with previous experimental results [1]. Exposing a pre-dosed surface to UV light in presence of oxygen resulted in the formation of acetaldehyde (CH3CHO(g); (g) for gas phase) with the extent of reaction depending on the square root of the O2 pressure in the 10-10 - 10-6torr range. Over the Au/TiO2 powder system we have focused the attention on the production of hydrogen as the oxidation of ethanol of ethanol to acetaldehyde has been previously studied [2]. The reaction is found to be sensitive to the polymorph nature of TiO2 with anatase showing two orders of magnitudes higher activity than rutile. We have also addressed the TiO2 particle size effect on the reaction and found that the TiO2 particles, in the 150 to 10 nm range, to have the same reactivity.

  11. UV to NIR photon conversion in Nd-doped rutile and anatase titanium dioxide films for silicon solar cell application

    NASA Astrophysics Data System (ADS)

    Le Boulbar, E.; Millon, E.; Ntsoenzok, E.; Hakim, B.; Seiler, W.; Boulmer-Leborgne, C.; Perrière, J.

    2012-06-01

    Undoped and Nd-doped titanium dioxide anatase and rutile films have been grown by pulsed-laser deposition at 700 °C under 0.1 mbar O2. By selecting adequate substrates, TiO2 films doped with 1, 2 or 5 at.% Nd were grown and constituted with polycrystalline rutile, highly oriented (2 0 0) rutile film, or oriented (0 0 4) anatase. An UV to NIR photon conversion is evidenced in the films. Indeed, intense and well-resolved emission lines from Nd3+ have been observed upon excitation above the TiO2 bandgap at room temperature. The sensitised emission of Nd3+ is found to be much efficient in rutile than in anatase structure. Low temperature photoluminescence measurements lead to fine resolved peaks corresponding to the Nd3+ 4f transitions with different spectral characteristic according to the host matrix used. Photoluminescence dependence temperature evidences that the light emission from Nd3+ in anatase-based films is probably influenced by the presence of self-trapped excitons or by orbital interaction. Mechanisms of sensitisation host to Nd3+ are proposed for both matrixes. Finally, the Nd dopant concentration and the microstructure of TiO2 rutile films are found to affect the photoluminescence emission intensity. Rutile film (2 0 0) oriented is the most adapted host matrix to sensitise 1 at.% Nd3+ ions for an emission around 1064 nm making such Nd-doped layers interesting for photon conversion by down shifting process.

  12. A self-powered UV photodetector based on TiO2 nanorod arrays

    PubMed Central

    2013-01-01

    Large-area vertical rutile TiO2 nanorod arrays (TNAs) were grown on F/SnO2 conductive glass using a hydrothermal method at low temperature. A self-powered ultraviolet (UV) photodetector based on TiO2 nanorod/water solid–liquid heterojunction is designed and fabricated. These nanorods offer an enlarged TiO2/water contact area and a direct pathway for electron transport simultaneously. By connecting this UV photodetector to an ammeter, the intensity of UV light can be quantified using the output short-circuit photocurrent without a power source. A photosensitivity of 0.025 A/W and a quick response time were observed. At the same time, a high photosensitivity in a wide range of wavelength was also demonstrated. This TNA/water UV detector can be a particularly suitable candidate for practical applications for its high photosensitivity, fast response, excellent spectral selectivity, uncomplicated low-cost fabrication process, and environment-friendly feature. PMID:23618012

  13. Surface Reconstruction and Molecular Adsorption on Anatase TiO2(001)-(1 ×4)

    NASA Astrophysics Data System (ADS)

    Sun, Huijuan; Wang, Yang; Zhao, Jin; Wang, Bing; Yang, Jinlong; Hou, Jianguo; University of Science and Technology of China Team

    2013-03-01

    TiO2 is a large band gap semiconductor with a wide range of applications including in photocatalysis, decontamination, and solar-energy conversion. Comparing to the well studied rutile phase, the anatase phase appears more common in nanocrystals and shows higher activity in photocatalysis. However, only a few literatures investigated the surface structure of anatase(001), which is assumed to be the origin of anatase's high reactivity, due to its thermodynamic instability and the difficulty in obtaining high quality samples. In the present work, reconstructed anatase TiO2(001)(1 ×4)surface has been investigated by atomic resolved STM together with the first-principles calculations. Two types of defects were found on the surface, which appear as dark spots and bright spots. The adsorption behavior of H2O, O2 and CO2 molecules were studied. Surprisingly, it was found that all the molecules only adsorbed on the defect sites, which is against to the current understanding of the high activity of anatase (001) surface. Based on first-principles calculations we provide a new structure model of O saturated TiO2 (001) (1 ×4) surface, which behaves inactive in photocatalysis.

  14. TiO2 Fibers: Tunable Polymorphic Phase Transformation and Electrochemical Properties.

    PubMed

    Garcia, Edna; Li, Qiang; Sun, Xing; Lozano, Karen; Mao, Yuanbing

    2015-05-01

    A series of one-dimensional (1 D) nanoparticle-assembled TiO2 fibers with tunable polymorphs were prepared via a novel and large scale ForceSpinning process of titanium tetraisopropoxide (TTIP)/polyvinylpyrrolidone (PVP) precursor fibers followed with a thermal treatment at various calcination temperatures. The thermal and structural transformations were characterized by thermogravimetric analysis/differential scanning calorimetry, scanning electron microscopy, and X-ray diffraction. The influence of polymorphic phase of the TiO2 fibers on the electrochemical performance in neutral aqueous 1 M Na2SO4 electrolyte was investigated. The polymorphic amorphous/anatase/rutile TiO2 fibers prepared at 450 degrees C achieved a highest capacitance of 21.2 F g(-1) (6.61 mF cm(-2)) at a current density of 200 mA g(-1), for which the improved electronic conductivity and activated pseudocapacitance mechanism may be responsible. This work helps bridge the gap between nanoscience and manufacturing. It also makes polymorphism control of functional materials a potential strategy for further improving supercapacitive output of metal oxides. PMID:26505001

  15. Ethyl radical ejection during photodecomposition of butanone on TiO 2(1 1 0)

    NASA Astrophysics Data System (ADS)

    Henderson, Michael A.

    2008-10-01

    The photodecomposition of acetone and butanone were examined on the (1 1 0) surface of rutile TiO 2 using temperature programmed desorption (TPD) and photon stimulated desorption (PSD). In both cases, photodecomposition was preceded by a required thermal reaction between the adsorbed ketone and coadsorbed oxygen resulting in an adsorbed diolate species. The diolate photodecomposed by ejection of an organic radical from the surface leaving behind a carboxylate species. In the acetone case, only methyl radical PSD was detected and acetate was left on the surface. In the butanone case there was a possibility of either methyl or ethyl radical ejection, with propionate or acetate left behind, respectively. However, only ethyl radical PSD was detected and the species left on the surface (acetate) was the same as in the acetone case. The preference for ethyl radical ejection is linked to the greater stability of the C-CH 3 bond in butanone over that of the C-C 2H 5 bond. Unlike in the acetone case, where the ejected methyl radicals did not participate in thermal chemistry on the TiO 2(1 1 0) surface after photoactivation of the acetone diolate, ethyl radicals photodesorbing at 100 K from butanone diolate showed preference for dehydrogenation to ethene on the surface through the influence of coadsorbed oxygen. These results reemphasize the mechanistic importance of organic radical production during photooxidation reactions on TiO 2 surface.

  16. C-doped mesoporous anatase TiO2 comprising 10nm crystallites.

    PubMed

    Xie, Chong; Yang, Shenghui; Li, Beibei; Wang, Hongkong; Shi, Jian-Wen; Li, Guodong; Niu, Chunming

    2016-08-15

    We report a C-doped mesoporous anatase TiO2 with high surface area synthesized using multi-walled carbon nanotube (MWCNT) mat as a "rigid" template and carbon doping source. The characterization by SEM, HRTEM, X-ray diffraction and nitrogen adsorption revealed that TiO2 samples have a porous structure which are figuratively a inverse copy of MWCNT network and pore walls are formed by interconnected TiO2 nanoparticles with average diameter of ∼10nm. We found that annealing temperatures from 400 to 1000°C before MWCNT template removal had very limited effect on particle size (∼10nm), surface area (112-129m(2)/g) and total pore volume (0.74-0.85m(2)/g) of the samples through a significantly delayed phase transition from anatase to rutile started at 800°C, resulting in only ∼9.1% conversion at 1000°C. The pore size distribution is in mesopore range from 6 to 60nm peaked at ∼24nm. XPS analysis showed a relatively strong C1s peak at 288.4eV, indicating C doping at Ti sites, which is responsible for red shift of adsorption edge of UV-vis spectra and photocatalytic activity in visible-light region. PMID:27179173

  17. Mesoporous TiO2 Nanowire Film for Dye-Sensitized Solar Cell.

    PubMed

    Xiao, Li; Xu, Jia; Liu, Xiu; Zhang, Yongzhe; Zhang, Bing; Yao, Jianxi; Dai, Songyuan; Tan, Zhanao; Pan, Xu

    2016-06-01

    In this work, TiO2 nanowire arrays were grown on fluorine-doped tin oxide (FTO) glass substrate, and then were converted into mesoporous nanowires (MNWs). The TiO2 MNWs are about 5 μm in length and 30-200 nm in diameter, with mesopores size of 5-30 nm randomly distributed on the NW surface. X-ray diffraction pattern reports show that the NWs are single crystallized rutile TiO2 and oriented grown along [001]. Through further characterization of FT-IR and TG-DSC, we proposed a reasonable explanation for pore existence. After dye-sensitized solar cells (DSSCs) assembly, the photoelectric conversion efficiency (PCE) of MNWs based DSSC achieved 3.2%. It means tenfold enhancement of photoelectric property compare with the as-grown NWs. Furthermore, dye absorb capacity of MNWs can reach up to 4.11 x 10(-8) mol/cm2. However, such MNWs can not only provide quick and efficient electron transmission channel, but also owns big specific surface area to absorb abundant dyes, thus conducive to fabricate solar cell with a high PCE. PMID:27427603

  18. Unconventional ratiometric-enhanced optical sensing of oxygen by mixed-phase TiO2

    NASA Astrophysics Data System (ADS)

    Lettieri, S.; Pallotti, D. K.; Gesuele, F.; Maddalena, P.

    2016-07-01

    We show that mixed-phase titanium dioxide (TiO2) can be effectively employed as an unconventional, inorganic, dual-emitting, and ratiometric optical sensor of O2. Simultaneous availability of rutile and anatase TiO2 photoluminescence (PL) and their peculiar "anti-correlated" PL responses to O2 allow using their ratio as a measurement parameter associated with the O2 concentration, leading to an experimental responsivity being by construction larger than the one obtainable for single-phase PL detection. A proof of this concept is given, showing a two-fold enhancement of the optical responsivity provided by the ratiometric approach. Besides the peculiar ratiometric-enhanced responsivity, other characteristics of mixed phase TiO2 can be envisaged as favorable for O2 optical probing, namely (a) low production costs, (b) absence of heterogeneous components, and (c) self-supporting properties. These characteristics encourage experimenting with its use for applications requiring high indicator quantities at a competitive price, possibly also tackling the need to develop supporting matrixes that carry the luminescent probes and avoiding issues related to the use of different components for ratiometric sensing.

  19. Synthesis of self-organized TiO2 nanotube arrays: Microstructural, stereoscopic, and topographic studies

    NASA Astrophysics Data System (ADS)

    Quiroz, Heiddy P.; Dussan, A.

    2016-08-01

    In this work, titanium dioxide nanotubes were prepared by using titanium foils via electrochemical anodization in ethylene glycol solutions containing different amounts of water and fluoride in the ranges of 1%-3% and 0.15%-0.5%, respectively, to determine their effects on morphology, optical, and crystalline structure properties. Annealing processes were performed on all samples in the range between 273 and 723 K. Morphology and structure properties of the samples were studied by scanning electron microscopy, X-ray diffraction (XRD), and transmission electron microscopy. Titanium dioxide (TiO2) nanotubes, through anodization method, are strongly influenced by conditions, like fluoride concentration and applied voltages. Tube lengths between 2 and 7 μm were obtained, exhibiting different diameters and wall thicknesses. When alternating voltage was applied, the outer surface of the nanotubes exhibited evenly spaced ring-shaped regions, while smooth tubes were observed when constant voltage was applied. Reflection peaks, corresponding to Brookite, Anatase, and Rutile, of TiO2 phases, were observed from the XRD pattern. These phases were corroborated via μXRD measurements, and the Ti3O5 phase was also observed in detail. Absorption coefficient (α), optical band gap (Eg), and extinction coefficient (ɛ) of TiO2 nanotubes were calculated by transmittance spectra in the UV-Vis range. Strong absorption was noted in the UV region from reflectance and absorbance measurements. A correlation between synthesis parameters and physical properties is presented.

  20. Flame-made Nb-doped TiO2 ethanol and acetone sensors.

    PubMed

    Phanichphant, Sukon; Liewhiran, Chaikarn; Wetchakun, Khatcharin; Wisitsoraat, Anurat; Tuantranont, Adisorn

    2011-01-01

    Undoped TiO(2) and TiO(2) nanoparticles doped with 1-5 at.% Nb were successfully produced in a single step by flame spray pyrolysis (FSP). The phase and crystallite size were analyzed by XRD. The BET surface area (SSA(BET)) of the nanoparticles was measured by nitrogen adsorption. The trend of SSA(BET) on the doping samples increased and the BET equivalent particle diameter (d(BET)) (rutile) increased with the higher Nb-doping concentrations while d(BET) (anatase) remained the same. The morphology and accurate size of the primary particles were further investigated by high-resolution transmission electron microscopy (HRTEM). The crystallite sizes of undoped and Nb-doped TiO(2) spherical were in the range of 10-20 nm. The sensing films were prepared by spin coating technique. The mixing sample was spin-coated onto the Al(2)O(3) substrates interdigitated with Au electrodes. The gas sensing of acetone (25-400 ppm) was studied at operating temperatures ranging from 300-400 °C in dry air, while the gas sensing of ethanol (50-1,000 ppm) was studied at operating temperatures ranging from 250-400 °C in dry air. PMID:22346586