Note: This page contains sample records for the topic single-pass radar interferometer from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: November 12, 2013.
1

Passive coherent scatter radar interferometer implementation, observations, and analysis  

Microsoft Academic Search

We have recently extended the passive radar technique to permit interferometric observation of ionospheric irregularities. We discuss the implementation of a passive radar interferometer at VHF frequencies and show observations of field-aligned irregularities in the high-latitude E region ionosphere. The interferometer achieves very fine azimuthal resolution (as fine as 0.1°, or 2 km at a range of 1000 km); thus

Melissa G. Meyer; John D. Sahr

2004-01-01

2

Validation of imaging Doppler interferometer winds using meteor radar  

NASA Astrophysics Data System (ADS)

There has been some debate over the years concerning the accuracy of mesospheric wind observations made using the imaging Doppler interferometer (IDI) technique. The high potential and increasing use of IDI wind data in joint studies with spaced-antenna MF and meteor radar systems make it important to quantify the IDI results. This paper presents a novel comparison of wind measurements between a dynasonde implementation of IDI and winds derived from an all-sky meteor radar system, a widely-accepted standard for such measurements. Both radars were located at the USU Bear Lake Observatory and operated almost continuously for a four-month period. The winds and tides derived from IDI were found to closely match those measured by meteor radar, not only during the day but also at night, and at all overlapping heights from 80-95 km.

Jones, G. O. L.; Berkey, F. T.; Fish, C. S.; Hocking, W. K.; Taylor, M. J.

2003-07-01

3

Synthetic interferometer radar for topographic mapping  

Microsoft Academic Search

The production of topographic maps requires two kinds of information. First, the detail to be placed on the map sheet must be identified. Second, the positions of the various objects and features must be measured in three dimensions. Current airborne radar technology provides the means to satisfy both of these requirements in adverse weather and at any time, day or

L. C. Graham

1974-01-01

4

TanDEM-X: A radar interferometer with two formation-flying satellites  

NASA Astrophysics Data System (ADS)

TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurements) is an innovative formation-flying radar mission that opens a new era in spaceborne radar remote sensing. The primary objective is the acquisition of a global digital elevation model (DEM) with unprecedented accuracy (12 m horizontal resolution and 2 m relative height accuracy). This goal is achieved by extending the TerraSAR-X synthetic aperture radar (SAR) mission by a second, TerraSAR-X like satellite (TDX) flying in close formation with TerraSAR-X (TSX). Both satellites form together a large single-pass SAR interferometer with the opportunity for flexible baseline selection. This enables the acquisition of highly accurate cross-track interferograms without the inherent accuracy limitations imposed by repeat-pass interferometry due to temporal decorrelation and atmospheric disturbances. Besides the primary goal of the mission, several secondary mission objectives based on along-track interferometry as well as new bistatic and multistatic SAR techniques have been defined, representing an important and innovative asset of the TanDEM-X mission. TanDEM-X is implemented in the framework of a public–private partnership between the German Aerospace Center (DLR) and EADS Astrium GmbH. The TanDEM-X satellite was successfully launched in June 2010 and the mission started its operational data acquisition in December 2010. This paper provides an overview of the TanDEM-X mission and summarizes its actual status and performance. Furthermore, results from several scientific radar experiments are presented that show the great potential of future formation-flying interferometric SAR missions to serve novel remote sensing applications.

Krieger, Gerhard; Zink, Manfred; Bachmann, Markus; Bräutigam, Benjamin; Schulze, Daniel; Martone, Michele; Rizzoli, Paola; Steinbrecher, Ulrich; Walter Antony, John; De Zan, Francesco; Hajnsek, Irena; Papathanassiou, Kostas; Kugler, Florian; Rodriguez Cassola, Marc; Younis, Marwan; Baumgartner, Stefan; López-Dekker, Paco; Prats, Pau; Moreira, Alberto

2013-08-01

5

Comparison of New Mexico Tech VHF Interferometer and Arecibo radar data of lightning  

Microsoft Academic Search

The New Mexico Tech InterferometerSferic (NMT INTF) system records both broadband electric field data and narrowband VHF phase and amplitude information at 274 MHz. Previous studies have shown that the NMT INTF system can identify and map most forms of slow and fast negative breakdown processes, but generally has difficulty detecting slow positive breakdown processes. The Arecibo Observatory UHF radar

M. A. Stanley; V. P. Pasko; J. D. Mathews

2001-01-01

6

Shuttle Radar Topography Mission: DLR's Interferometric SAR Processor for the Generation of a Global Digital Elevation Model  

Microsoft Academic Search

The Shuttle Radar Topography Mission (SRTM) will be launched in January 2000. Its intention is the global topographic mapping of the Earth' surface. The data will be acquired by the first space-born single-pass synthetic aperture radar (SAR) interferometer. Within eleven days this mission will map all continents between 60 latitude. The resulting data set is unique in two respects. Firstly,

Nico Adam; Michael Eineder; Helko Breit; Steffen Suchandt

2000-01-01

7

Development of an external interferometer for meteor wind observation attached to the MU radar  

NASA Astrophysics Data System (ADS)

An external meteor detection system for the middle and upper atmosphere (MU) radar, Shigaraki, Japan, has been developed in order to monitor the wind velocities at 80-100 km. The characteristics of the MU radar system and the observations are closely inspected, and we design a three-channel interferometer system using three independent single antennas. The data-taking system was carefully designed, considering fast data rate, short interpulse period, wide data bits (19 bit), and fast sampling rate (1 million samples/s), and all the logics are assembled by programmable logic devices. This external interferometer was operated since March 1995 during the Doppler beam swinging observation by the MU radar, and the first results are presented. Meteor echo rate was around 2000/day, 1000 of which were usable for postprocessing, i.e., wind measurement. This echo rate is greater than that of the meteor radar system in Jakarta. Wind velocities were determined with time-height resolutions of 1 hour × 2 km, which showed reasonable agreement with the wind velocities determined from the turbulent echoes in the mesosphere. We present the capability of an external interferometry system attached to the mesosphere-stratosphere-troposphere/stratosphere-troposphere radar as a meteor wind observation system.

Nakamura, Takuji; Tsuda, Toshitaka; Tsutsumi, Masaki

1997-05-01

8

Comparison of New Mexico Tech VHF Interferometer and Arecibo radar data of lightning  

NASA Astrophysics Data System (ADS)

The New Mexico Tech InterferometerSferic (NMT INTF) system records both broadband electric field data and narrowband VHF phase and amplitude information at 274 MHz. Previous studies have shown that the NMT INTF system can identify and map most forms of slow and fast negative breakdown processes, but generally has difficulty detecting slow positive breakdown processes. The Arecibo Observatory UHF radar (430~MHz) was used between August 25 and September 10, 2001, to detect the backscatter from lightning leaders. When lightning was over or near the observatory, the radar was operated in a special ``leader mode'' with an inter-pulse period (IPP) of 1 ms and a pulse width of 2 {? }s. The radar beam had a width of about 300~m and could detect a conducting object with a cross section of as little as 10-10 m-2 at a distance of 100 km. The NMT INTF system was situated about 8 km north of Arecibo Observatory, an ideal location for mapping lightning both in the main beam of the radar as well as (more typically) in the sidelobes. Data obtained by the interferometer will be compared with that of the radar and some preliminary results of this comparison will be presented.

Stanley, M. A.; Pasko, V. P.; Mathews, J. D.

2001-12-01

9

Mutual coupling of antennas in a meteor radar interferometer  

NASA Astrophysics Data System (ADS)

Abstract Meteor <span class="hlt">radars</span> have become common and important tools in the study of the climate and dynamics of the mesosphere/lower thermosphere (MLT) region. These systems depend on accurate angle-of-arrival measurements to locate the positions of meteor trails in the atmosphere. Mutual coupling between antennas, although small, produces a measurable error in the antenna pair phase differences used to deduce the angle of arrival of incident radiation. Measurements of the scattering parameter matrix for antennas in an interferometric meteor <span class="hlt">radar</span> array have been made and applied to the existing angle-of-arrival calculation algorithm. The results indicate that mutual coupling of antennas in the array produces errors in the zenith angle estimate of less than ± 0.5°. This error is primarily in the form of a gradient across the field of view of the <span class="hlt">radar</span>, which can be removed using existing phase calibration methods. The remaining error is small but will produce small systematic variations in the height estimates for detected meteors.</p> <div class="credits"> <p class="dwt_author">Younger, J. P.; Reid, I. M.; Vincent, R. A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">10</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/61372672"> <span id="translatedtitle"><span class="hlt">Single</span> <span class="hlt">pass</span> laser cutting of polymers</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A parametric study of laser cutting of polymers using a 30 watt average power, 308 nm wavelength, XeCl pulsed laser was carried out. The effect of incident laser fluence and laser frequency were studied to determine maximum <span class="hlt">single</span> <span class="hlt">pass</span> cutting speed for a given thickness of polymer. Three different types of polymers were studied. Polymer films of difference thickness were</p> <div class="credits"> <p class="dwt_author">R. Patel; G. Baisch</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">11</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/40076000"> <span id="translatedtitle">Dilution in <span class="hlt">single</span> <span class="hlt">pass</span> arc welds</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A study was conducted on dilution of <span class="hlt">single</span> <span class="hlt">pass</span> arc welds of type 308 stainless steel filler metal deposited onto A36 carbon\\u000a steel by the plasma arc welding (PAW), gas tungsten arc welding (GTAW), gas metal arc welding (GMAW), and submerged are welding\\u000a (SAW) processes. Knowledge of the arc and melting efficiency was used in a simple energy balance to</p> <div class="credits"> <p class="dwt_author">J. N. DuPont; A. R. Marder</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">12</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1993step.proc..289R"> <span id="translatedtitle">Spatial <span class="hlt">interferometer</span> applications to study PMSE and transient velocity features with the EISCAT VHF <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The EISCAT <span class="hlt">radars</span> have been used intensively over the recent years to study the polar mesosphere summer echoes (PMSE). A summary of these observations was published by Roettger. Dynamical features in the PMSE can show quasi-sinusoidal gravity wave modulations as well as steepening, which is displayed in the Doppler spectra measured with vertically pointing antenna beam. This transient steepening was assumed to be related to the wind corners observed with chaff released from rockets. This steepening feature was so far only observed with VHF <span class="hlt">radar</span> in the vertical velocity and further proof would be necessary to detect wind corner features also in the horizontal wind. The experiments described here provide this information by applying the spatial <span class="hlt">interferometer</span> technique introduced to VHF <span class="hlt">radars</span> by Roettger and Ierkic. We show that this transient steepening is consistent with spontaneous changes of vertical velocity and the horizontal velocity amplitude and direction, which is assumed as a sign of solitary waves. We, thus, have a proper means to study these non-linear processes also with MST <span class="hlt">radar</span> in the mesopause region.</p> <div class="credits"> <p class="dwt_author">Roettger, J.; Alcala, C.</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-08-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">13</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2598392"> <span id="translatedtitle"><span class="hlt">Single</span> <span class="hlt">Pass</span> Streaming BLAST on FPGAs*†</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Approximate string matching is fundamental to bioinformatics and has been the subject of numerous FPGA acceleration studies. We address issues with respect to FPGA implementations of both BLAST- and dynamic-programming- (DP) based methods. Our primary contribution is a new algorithm for emulating the seeding and extension phases of BLAST. This operates in a <span class="hlt">single</span> <span class="hlt">pass</span> through a database at streaming rate, and with no preprocessing other than loading the query string. Moreover, it emulates parameters turned to maximum possible sensitivity with no slowdown. While current DP-based methods also operate at streaming rate, generating results can be cumbersome. We address this with a new structure for data extraction. We present results from several implementations showing order of magnitude acceleration over serial reference code. A simple extension assures compatibility with NCBI BLAST.</p> <div class="credits"> <p class="dwt_author">Herbordt, Martin C.; Model, Josh; Sukhwani, Bharat; Gu, Yongfeng; VanCourt, Tom</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">14</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012RaSc...47.0L03R"> <span id="translatedtitle">Imaging equatorial spread F irregularities with the São Luís coherent backscatter <span class="hlt">radar</span> <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We present new results of a study of the interferometric coherent backscatter <span class="hlt">radar</span> imaging technique applied to São Luís observations made on the night of 1 December 2005. The range-time-intensity (RTI) map of the observations shows echoes occurring near theF region peak and topside heights followed by echoing layers confined to bottomside F region heights. Analyses of the measurements made on this night allowed us to investigate the ability of the São Luís <span class="hlt">radar</span> <span class="hlt">interferometer</span> to provide information about the morphology of the scattering structures responsible for different types of equatorial spread Fechoing layers. Results show that topside echoes were produced by a vertically elongated, horizontally narrow scattering channel of irregularities associated with a large-scale plasma depletion ("bubble") as evidenced by colocated GPS scintillation measurements. Bottomside echoes were caused by structured, eastward drifting scattering regions with limited vertical development. Bottom-type echoes, on the other hand, were detected at heights below the minimum altitude of the bottomside echoes and were caused by an undifferentiated scattering region. Our imaging results are discussed in light of current equatorial spreadFtheories and previous higher-resolution imaging observations made at the Jicamarca Radio Observatory.</p> <div class="credits"> <p class="dwt_author">Rodrigues, F. S.; Moraes, A. O.; de Paula, E. R.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-04-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">15</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2001AGUFMSA12A0673I"> <span id="translatedtitle">Dragged Neutral --Campaign Observations with Fabry-Perot <span class="hlt">Interferometers</span> and HF-<span class="hlt">radars</span> in Alaska--</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In this presentation, we will introduce campaign observations with HF-<span class="hlt">radars</span> and Fabry-Perot <span class="hlt">Interferometers</span> in Alaska held on 2000/2001 in cooperated with CRL and GI/UAF. The main purposes of this project are (1) quantitative estimates of response of ion and neutral for the change of IMF Bz, (2)estimation of the role of vertical wind in large scale neutral circulation in the thermosphere, (3) Validity check of vector wind velocity deduced from the method of Conde and Smith [1998]. Locations of instruments are shown in the figure below. Two FPI (Scanning: CRL; All-sky: GI/UAF) are installed at Poker Flat. An all-sky FPI and a scanning FPI are installed at Eagle and Inuvik, respectively. We have got an initial result obtained on Nov. 24, 2000. On the beginning of the observation, 06:14:00UT, the directions of neutral and plasma flow were different from each other. Hereafter the plasma flow kept its direction northwestward from 06:56 to 08:52UT, and the neutral wind was gradually accelerated for the same direction. The plasma flow showed a vortical structure and changed it_fs direction rapidly after 08:52UT, while the neutral wind did not respond to the short-term variation. This result is consistent with many previous works.</p> <div class="credits"> <p class="dwt_author">Ishii, M.; Bristow, W.; Conde, M.; Smith, R. W.; Krynicki, M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">16</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2000AdSpR..26..979K"> <span id="translatedtitle">A Comparison of Thermospheric Winds and Temperatures from Fabry-Perot <span class="hlt">Interferometer</span> and EISCAT <span class="hlt">Radar</span> Measurements with Models</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">During the nights of 8-9 and 9-10 February 1997, Fabry-Perot <span class="hlt">interferometers</span> were operated from the EISCAT <span class="hlt">radar</span> site at Ramfjord (69.59° N, 19.23° E) and Skibotn (69.35° N, 20.36° E). From Ramfjord, horizontal neutral winds were measured in the lower and upper thermosphere using the auroral/airglow emissions at 557.7 and 630 nm, respectively. From Skibotn, thermospheric neutral temperatures were measured using the same wavelengths. The EISCAT <span class="hlt">radar</span> measured ion temperatures up the local magnetic field line in the height range 90 - 580 km during the first night. Neutral winds are compared to the HWM-90 and CTIP-200 models with poor agreement. Neutral temperatures are compared to the MSISE-90 and CTIP-200 models as well as EISCAT ion temperatures with good agreement</p> <div class="credits"> <p class="dwt_author">Kosch, M. J.; Ishii, M.; Nozawa, S.; Rees, D.; Cierpka, K.; Kohsiek, A.; Schlegel, K.; Fujii, R.; Hagfors, T.; Fuller-Rowell, T. J.; Lathuillere, C.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">17</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50066281"> <span id="translatedtitle">Absolute phase retrieval in a three-element synthetic aperture <span class="hlt">radar</span> <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We introduce a three-antenna SAR <span class="hlt">interferometer</span> for topographic mapping and a statistically optimal technique for absolute phase (and hence terrain height) retrieval. This method involves taking advantage of the baseline diversity to obtain a non-aliased (i.e. not modulo 2?) phase estimate. The accuracy of the new technique is compared to the basic interferometry. Simulated results show that the unambiguous phase</p> <div class="credits"> <p class="dwt_author">F. Lombardini</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">18</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/5753940"> <span id="translatedtitle">On <span class="hlt">single-pass</span> indexing with MapReduce</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Indexing is an important Information Retrieval (IR) op- eration, which must be parallelised to support large-scale document corpora. We propose a novel adaptation of the state-of-the-art <span class="hlt">single-pass</span> indexing algorithm in terms of the MapReduce programming model. We then experiment with this adaptation, in the context of the Hadoop MapRe- duce implementation. In particular, we explore the scale of improvements that</p> <div class="credits"> <p class="dwt_author">Richard M. C. Mccreadie; Craig Macdonald; Iadh Ounis</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">19</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1993JATP...55..203B"> <span id="translatedtitle">The MAPSTAR imaging Doppler <span class="hlt">interferometer</span> (IDI) <span class="hlt">radar</span> - Description and first results</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The MAPSTAR IDI <span class="hlt">radar</span> is described, and results from 34.5 h of data taken during the AIDA campaign in Puerto Rico during April 1989 are presented. The IDI method uses several independent antennas and receivers, pulsed sounding, range-gating, Doppler sorting, and spatial interferometry to determine a 3D Doppler image of the rf scatterers within the volume being illuminated. The analysis characterizes any perturbation in the index of refraction that returns rf energy in terms of 3D locations, Doppler velocities, and scattering amplitudes and phases of a number of apparent points in space (scattering points). The time-domain data, in which the E region and several distinct mesospheric regions can be seen, are shown. The IDI algorithm, which involves Fourier transforming the several independent data streams and examining the phases of 10 complex Fourier voltages, is described. Skymaps of the scattering points showing the varying spread, and sometimes asymmetry, in their distribution are provided.</p> <div class="credits"> <p class="dwt_author">Brosnahan, J. W.; Adams, G. W.</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">20</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010SPIE.7702E..15S"> <span id="translatedtitle">Quantum <span class="hlt">interferometer</span> and <span class="hlt">radar</span> theory based on N00N, M and M or linear combinations of entangled states</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">With the goal in mind of designing <span class="hlt">radars</span>, <span class="hlt">interferometers</span> and other sensors based on quantum entanglement the virtues of N00N states, plain M and M states (PMMSs) and linear combinations of M and M states (LCMMS) are considered. A derivation of the closed form expression for the detection operator that is optimal subject to constraints is provided. The raising and lowering properties of the detection operator and its square are developed. The expectations of the optimal detection operator and its square are derived. The expression for the visibility, the maximum expectation of the optimal detection operator, is developed. From the expectation of the square of the detection operator and the visibility, the phase error and the minimum phase error for the detection operator are derived. The optimal resolution for the maximum visibility and minimum phase error are found. For the visibility, comparisons between PMMSs, LCMMS and N00N states are provided. For the minimum phase error comparisons between LCMMS, PMMSs, N00N states, separate photon states (SPSs), the shot noise limit (SNL), and the Heisenberg limit (HL) are provided. A representative collection of computational results illustrating the superiority of LCMMS when compared to PMMSs and N00N states is given. It is found for a resolution 12 times the classical result LCMMS has visibility 11 times that of N00N states and four times that of PMMSs. For the same case, the minimum phase error for LCMMS is 10.7 times smaller than that of PMMS and 29.7 times smaller than that of N00N states.</p> <div class="credits"> <p class="dwt_author">Smith, James F., III</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-04-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_1");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a style="font-weight: bold;">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_2");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_1 div --> <div id="page_2" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_1");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a style="font-weight: bold;">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_3");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">21</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007ACPD....7.6573H"> <span id="translatedtitle">A long-term comparison of wind and tide measurements in the upper mesosphere recorded with an imaging Doppler <span class="hlt">interferometer</span> and SuperDARN <span class="hlt">radar</span> at Halley, Antarctica</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Data from a co-located imaging Doppler <span class="hlt">interferometer</span> and SuperDARN <span class="hlt">radar</span> recorded since 1996 have been analysed in a consistent manner to determine daily mean winds and tides in the upper mesosphere. By comparing only days when both techniques were recording good quality data it is shown that the SuperDARN <span class="hlt">radar</span> winds and tides correlate best with the IDI height bin 90-95 km. On timescales of one hour the winds derived from each technique correlate poorly, whereas the daily mean winds are in much better agreement suggesting that the two <span class="hlt">radars</span> are sensitive to different parts of the gravity wave spectrum. Regression analysis reveals that the observed SuperDARN daily mean meridional wind strength is approximately 65% that recorded by the IDI while the zonal winds are of similar magnitude, in good quantitative agreement with previous studies which have shown contamination to SuperDARN-derived winds due to the significant back lobe of the <span class="hlt">radar</span> radiation pattern. Climatologically the two techniques observe similar monthly mean winds with the SuperDARN meridional winds suppressed compared to the IDI which tends to record winds more poleward and eastward than those derived by the SuperDARN <span class="hlt">radar</span> during the summer months, and to be slightly more equatorward during the winter. The 12-h tidal amplitude and phase in both the zonal and meridional components derived from both techniques are in excellent agreement, whereas the 24-h tides are seen much more strongly in the SuperDARN <span class="hlt">radar</span>, especially in wintertime, with poor phase agreement. Long term comparison of the two techniques reveals a tendency for the IDI meridional winds to be more poleward during solar maximum especially during summer time; an effect which is not reproduced in the meridional winds derived from the SuperDARN <span class="hlt">radar</span>. These results are discussed in the context of previous studies to independently determine the veracity of each technique.</p> <div class="credits"> <p class="dwt_author">Hibbins, R. E.; Jarvis, M. J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">22</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5256511"> <span id="translatedtitle">Combined incoherent scatter <span class="hlt">radar</span> and Fabry-Perot <span class="hlt">interferometer</span> measurements of frictional heating effects over Millstone Hill during March 7-10, 1989</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The authors introduce a methodology to calculate the effects of frictional heating associated with geomagnetic activity using simultaneous incoherent scatter <span class="hlt">radar</span> and Fabry-Perot <span class="hlt">interferometer</span> measurements. Vector measurements of ion drift from <span class="hlt">radar</span> backscatter and neutral wind from optical shifts in the atomic oxygen red line over Millstone Hill, Massachusetts (43{degree}N) for the nights of March 7-10, 1989 are presented and are characterized by the magnetic storm activity which prevailed. They combine these measurements to calculate differences in the ion and neutral velocity fields which approach 350 m/s during the most geomagnetically active period that they monitored near 01 UT on March 9. This velocity difference results in a 110{degree}K heating of the ion gas at that time.</p> <div class="credits"> <p class="dwt_author">Hagan, M.E.; Sipler, D.P. (Massachusetts Inst. of Tech., Westford (USA))</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">23</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008ACP.....8.1367H"> <span id="translatedtitle">A long-term comparison of wind and tide measurements in the upper mesosphere recorded with an imaging Doppler <span class="hlt">interferometer</span> and SuperDARN <span class="hlt">radar</span> at Halley, Antarctica</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Data from a near co-located imaging Doppler <span class="hlt">interferometer</span> (IDI) and SuperDARN <span class="hlt">radar</span> recorded since 1996 have been analysed in a consistent manner to compare the derived mean winds and tides in the upper mesosphere. By comparing only days when both techniques were recording good quality meridional wind data it is shown that the SuperDARN <span class="hlt">radar</span> winds and tides correlate best with the IDI height bin 90-95 km. On timescales of one hour the winds derived from the IDI have a much greater associated variance and correlate poorly with the SuperDARN winds. Regression analysis reveals that the observed SuperDARN daily mean meridional wind strength is approximately 65% that recorded by the IDI, in good quantitative agreement with previous studies which have shown contamination to SuperDARN derived winds due to the significant back lobe of the <span class="hlt">radar</span> radiation pattern. Climatologically the two techniques observe similar monthly mean winds with the SuperDARN meridional winds suppressed compared to the IDI which tends to record winds more poleward than those derived by the SuperDARN <span class="hlt">radar</span> during the summer months, and to be slightly more equatorward during the winter. The 12-h tidal amplitude and phase derived from both techniques are in good agreement, whereas the 24-h tides are seen much more strongly in the SuperDARN <span class="hlt">radar</span>, especially in wintertime, with poor phase agreement. Long term comparison of the two techniques reveals a tendency for the IDI meridional winds to be more poleward during solar maximum especially during summer time; an effect which is not reproduced in the meridional winds derived from the SuperDARN <span class="hlt">radar</span>. These results are discussed in the context of previous studies to independently determine the veracity of each technique, and to highlight the circumstances where data derived from these two techniques can be used to draw reliable conclusions from comparative studies based on geographically distributed pairs of instruments.</p> <div class="credits"> <p class="dwt_author">Hibbins, R. E.; Jarvis, M. J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">24</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA035773"> <span id="translatedtitle">Evaluation of <span class="hlt">Single</span> <span class="hlt">Pass</span> Seawater Reverse Osmosis Modules and Pretreatment Techniques. Phase II.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">An experimental 200-gallon-per-day, <span class="hlt">single</span> <span class="hlt">pass</span>, reverse osmosis desalination system was operated on natural, unacidified seawater to evaluate the performance of ultrafiltration and diatomaceous earth filtration as particulate removal techniques for seawa...</p> <div class="credits"> <p class="dwt_author">J. F. Pizzino</p> <p class="dwt_publisher"></p> <p class="publishDate">1977-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">25</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=PB80124852"> <span id="translatedtitle">Development of a Composite Reverse Osmosis Membrane for <span class="hlt">Single</span> <span class="hlt">Pass</span> Seawater Desalination.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The objective was to develop an improved reverse-osmosis composite non-cellulosic membrane for the <span class="hlt">single</span> <span class="hlt">pass</span> desalination of seawater, and to demonstrate its performance in the form of four inch diameter spiral elements. Three membranes were investigate...</p> <div class="credits"> <p class="dwt_author">A. F. Graefe</p> <p class="dwt_publisher"></p> <p class="publishDate">1979-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">26</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010OptCo.283.3184Z"> <span id="translatedtitle">Simultaneously phase-matched parametric processes in a <span class="hlt">single-pass</span> interaction for efficient visible generation</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We demonstrate simultaneously phase-matched cascaded optical parametric amplification (OPA) and sum-frequency generation (SFG) processes in a <span class="hlt">single-pass</span> interaction in a BBO crystal, where the seed pulse is produced through the self-induced superfluorescence generation. Tunable femtosecond pulses in the blue-green spectral range are produced through the <span class="hlt">single-pass</span> SFG interaction with a maximum conversion efficiency of about 12%.</p> <div class="credits"> <p class="dwt_author">Zhang, Xinping; Men, Yanbin; Wang, Li</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-08-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">27</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/56887400"> <span id="translatedtitle"><span class="hlt">Single-pass</span> high-gain free electron laser electron beam diagnostics</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Consensus reached in the last few years that fourth generation light source will most likely be a X-ray or a UV coherent source based on <span class="hlt">single-pass</span> high-gain free electron laser (FEL), such as Self Amplified Spontaneous Emission (SASE), or seeded high-gain harmonic-generation (HGHG) free electron lasers. High-gain (>107) required for <span class="hlt">single-pass</span> FEL puts great constrain on the quality of electron</p> <div class="credits"> <p class="dwt_author">X. J. Wang</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">28</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007AGUSMSA53B..06D"> <span id="translatedtitle">Semidiurnal tides from the Extended Canadian Middle Atmosphere Model (CMAM) and comparisons with TIMED Doppler <span class="hlt">Interferometer</span> (TIDI) and meteor <span class="hlt">radar</span> observations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The Extended Canadian Middle Atmosphere Model (extended CMAM) is a general circulation model which extends from the surface to about 210 km. This high upper boundary allows dynamical processes to be studied from the ground to the lower thermosphere without the influence of sponge layers, which are often inserted in the mesosphere. The extended CMAM includes realistic tidal forcing due to radiative heating, convective adjustment and latent heat release and uses the gravity wave breaking parameterization of Hines. In this paper, spatial complex spectral analysis is applied to horizontal winds simulated by the extended CMAM to obtain semidiurnal tidal amplitudes and phases (from e5 to w5) in the mesosphere and lower thermosphere (MLT) region. The dominant w2 migrating component and the presence of nonmigrating tides (w3, e1, e2) in the mid-latitudes are identified. The migrating semidiurnal tide (w2) has amplitudes reaching 20 m/s for both zonal and meridional winds in mid-latitude region. The amplitudes of non-migrating semidiurnal tides are also non- negligible compared to the migrating semidiurnal tides, the amplitudes for w3 exceeds 12 m/s and e2 reaches 8 m/s. Comparisons are made with the TIMED Doppler <span class="hlt">Interferometer</span> (TIDI) wind measurements, which are analyzed to obtain 6 nonmigrating tidal components (w4, w3, w1, s0, e1, e2) between 85 km and 105 km altitude and between 45oS and 45oN latitude. Overall, the modeled semidiurnal components agree very well with TIDI observations. The 11 semidiurnal components from the model are then superimposed to get the total semidiurnal winds which are compared to two equatorial MWR <span class="hlt">radar</span> stations (Jakarta and Kototabang). The comparisons between CMAM and two <span class="hlt">radar</span> stations show that the amplitudes and phases have generally good agreement for semidiurnal tide, with Jakarta station agreeing much better than Kototabang station.</p> <div class="credits"> <p class="dwt_author">Du, J.; Ward, W. E.; Oberheide, J.; Nakamura, T.</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">29</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010cosp...38.1144A"> <span id="translatedtitle">Determining the 630nm emission altitude using modelling and observations from a tristatic configuration of Fabry-Perot <span class="hlt">Interferometers</span> and EISCAT <span class="hlt">radars</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Anasuya Aruliah, a.aruliah@ucl.ac.uk University College London, London, United Kingdom Michael Kosch, m.kosch@lancaster.ac.uk Lancaster University, Lancaster, United Kingdom Tristatic team Anasuya Aruliah,Ho-Ching Iris Yiu,Ian McWhirter, Michael Kosch,Kazuo Shiokawa,Shin-ichiro Oyama,Satonori Nozawa,Vikki Howells,Ian McCrea During early February 2010 a tristatic FPI-EISCAT experiment was run in order to investigate the peak emission altitude of the 630nm airglow and auroral emission in the region of the auroral oval. Two UCL Fabry-Perot <span class="hlt">Interferometers</span> and a new STEL FPI have been located close to the three EISCAT <span class="hlt">radars</span> at Tromsø, Kiruna and Sodankylü. The <span class="hlt">radars</span> were pointed a at a common volume seen by all three FPIs, on assuming a peak emission height of 235km. This altitude is generally assumed to be fairly steady for FPI studies probing the behaviour of the upper atmosphere, though the height is a little different at other latitudes. The smoothing effect of the large viscosity of the upper thermosphere is invoked as a reason why the actual altitude is not too important, and there has been little investigation of the appropriateness of this assumption. However, mesoscale variability in the ionosphere has now been identified as producing a similar quantity of heating as does steady state convection; and FPIs and the CHAMP satellite have shown mesoscale structure in the high-latitude thermosphere. This indicates a need to revisit old assumptions that were based on the premise of thermospheric variability being large-scale. The STEL FPI at Ramfjord has a fully variable pointing direction mechanism and was programmed to point rapidly at successive volumes that would overlap the UCL KEOPS/Kiruna FPI look direction if the emission volume was 195km, 215km, 235km and 255km. Cross-correlation of the temperatures and intensity measurements would then identify the peak emission height. The EISCAT <span class="hlt">radar</span> provided ionospheric parameters to model the 630nm emission profile for comparison with the FPI observations.</p> <div class="credits"> <p class="dwt_author">Aruliah, Anasuya; Kosch, Michael</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">30</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007JASTP..69.2159D"> <span id="translatedtitle">Semidiurnal tides from the extended Canadian Middle Atmosphere Model (CMAM) and comparisons with TIMED Doppler <span class="hlt">interferometer</span> (TIDI) and meteor <span class="hlt">radar</span> observations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The extended Canadian Middle Atmosphere Model (extended CMAM) is a general circulation model, which extends from the surface to about 210 km. Spatial complex spectral analysis is applied to horizontal winds simulated by the extended CMAM to obtain semidiurnal tidal amplitudes and phases (from e5 to w5) in the mesosphere and lower thermosphere (MLT) region. The dominant w2 migrating component and the presence of eight nonmigrating tides (w3, w4, w5, e1, e2, e3, e4 and e5) in the mid-latitudes are identified. Components w1 and s0, which tend to maximize at high latitudes, will be discussed separately in a later paper. The migrating semidiurnal tide (w2) has amplitudes reaching over 20 m s-1 for both zonal and meridional winds in the mid-latitude region. Its form compares well to the published results. The amplitudes of nonmigrating semidiurnal tides are non-negligible compared with the migrating semidiurnal tides. The amplitudes for w3 and e2 exceed 12 and 8 m s-1, respectively. Comparisons are made with four nonmigrating semidiurnal components (w3, w4, e1 and e2) derived from the TIMED Doppler <span class="hlt">interferometer</span> (TIDI) wind measurements between 85 and 105 km altitude and between 45°S and 45°N latitude. Overall, the basic CMAM and TIDI latitudinal structures of the amplitudes agree well and the agreement between the annual mean amplitudes varies with component. Relative to the TIDI results, the CMAM seasonal variations of w4 are in good agreement, of e2 are in reasonable agreement, of w3 are in partial agreement and of e1 are in poor agreement. The 11 semidiurnal components from the model are superimposed to generate the total semidiurnal winds at Jakarta (6°S, 106°E) and Kototabang (0°, 100°E) and are compared with measurements from two equatorial meteor <span class="hlt">radar</span> stations at these sites. The relative contributions of components to the reconstructed amplitude vary from month to month. The CMAM reconstructions are generally larger than the <span class="hlt">radar</span> results by a factor varying between one and two. The phases in the <span class="hlt">radar</span> data are typically stationary with respect to height, whereas they generally decrease with height in the CMAM reconstruction.</p> <div class="credits"> <p class="dwt_author">Du, J.; Ward, W. E.; Oberheide, J.; Nakamura, T.; Tsuda, T.</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">31</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50222634"> <span id="translatedtitle">New developments in <span class="hlt">single</span> <span class="hlt">pass</span> reflow encapsulant for flip chip application</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper introduces a series of <span class="hlt">single</span> <span class="hlt">pass</span> reflow encapsulants that require no post curing after solder bump reflow. Acting as a flux and an encapsulant, this product performs two functions. First, the material activates the solder bump and metallic bond pad during solder reflow to establish the interconnection between the die and substrate. Second, while this material is being</p> <div class="credits"> <p class="dwt_author">Jean Liu; R. Kraszewski; Xin Lin; L. Wong; S. H. Goh; J. Allen</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">32</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50224732"> <span id="translatedtitle">New developments in <span class="hlt">single</span> <span class="hlt">pass</span> reflow encapsulant for flip chip application</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper introduces a series of <span class="hlt">single</span> <span class="hlt">pass</span> reflow encapsulants that requires no post curing after solder bump reflow. Acting as a flux and an encapsulant, this product performs two functions. First, the material activates the solder bump and metallic bond pad during solder reflow to establish the interconnection between the die and substrate. Second, while this material is being</p> <div class="credits"> <p class="dwt_author">Jean Liu; Rich Kraszewski; Xin Lin; Linda Wong; S. H. Goh; Jennifer Allen</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">33</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/10176662"> <span id="translatedtitle">Fuel-element failures in Hanford <span class="hlt">single-pass</span> reactors 1944--1971</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The primary objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation dose that individuals could have received as a result of emissions since 1944 from the US Department of Energy`s (DOE) Hanford Site near Richland, Washington. To estimate the doses, the staff of the Source Terms Task use operating information from historical documents to approximate the radioactive emissions. One source of radioactive emissions to the Columbia River came from leaks in the aluminum cladding of the uranium metal fuel elements in <span class="hlt">single-pass</span> reactors. The purpose of this letter report is to provide photocopies of the documents that recorded these failures. The data from these documents will be used by the Source Terms Task to determine the contribution of <span class="hlt">single-pass</span> reactor fuel-element failures to the radioactivity of the reactor effluent from 1944 through 1971. Each referenced fuel-element failure occurring in the Hanford <span class="hlt">single-pass</span> reactors is addressed. The first recorded failure was in 1948, the last in 1970. No records of fuel-element failures were found in documents prior to 1948. Data on the approximately 2000 failures which occurred during the 28 years (1944--1971) of Hanford <span class="hlt">single-pass</span> reactor operations are provided in this report.</p> <div class="credits"> <p class="dwt_author">Gydesen, S.P.</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">34</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ars.usda.gov/research/publications/Publications.htm?seq_no_115=186606"> <span id="translatedtitle"><span class="hlt">SINGLE-PASS</span>, SPLIT-STREAM HARVEST OF CORN GRAIN AND STOVER</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ars.usda.gov/services/TekTran.htm">Technology Transfer Automated Retrieval System (TEKTRAN)</a></p> <p class="result-summary">A grain combine was modified to produce <span class="hlt">single-pass</span>, whole-plant corn harvesting with two crop streams: grain and stover. Capture of potential stover DM varied from 48 to 89% for leaves, 49 to 92% for stalks, and greater than 90% for husks and cobs, depending upon corn head height. Stover aggregate ...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">35</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ars.usda.gov/research/publications/Publications.htm?seq_no_115=184284"> <span id="translatedtitle">CHARACTERISTIC PERFORMANCE AND YIELDS USING A <span class="hlt">SINGLE-PASS</span>, SPLIT-STREAM MAIZE AND STOVER HARVESTER</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ars.usda.gov/services/TekTran.htm">Technology Transfer Automated Retrieval System (TEKTRAN)</a></p> <p class="result-summary">A grain combine was modified to produce <span class="hlt">single-pass</span>, whole-plant corn harvesting with two crop streams, grain and stover. Capture of potential stover DM varied from 48 to 89% for leaves, 49 to 92% for stalks, and greater than 90% for husks and cobs, depending on corn head height. Stover aggregate ...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">36</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://pubs.er.usgs.gov/publication/70031496"> <span id="translatedtitle">Evaluating <span class="hlt">single-pass</span> catch as a tool for identifying spatial pattern in fish distribution</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p class="result-summary">We evaluate the efficacy of <span class="hlt">single-pass</span> electrofishing without blocknets as a tool for collecting spatially continuous fish distribution data in headwater streams. We compare spatial patterns in abundance, sampling effort, and length-frequency distributions from <span class="hlt">single-pass</span> sampling of coastal cutthroat trout (Oncorhynchus clarki clarki) to data obtained from a more precise multiple-pass removal electrofishing method in two mid-sized (500-1000 ha) forested watersheds in western Oregon. Abundance estimates from single- and multiple-pass removal electrofishing were positively correlated in both watersheds, r = 0.99 and 0.86. There were no significant trends in capture probabilities at the watershed scale (P > 0.05). Moreover, among-sample variation in fish abundance was higher than within-sample error in both streams indicating that increased precision of unit-scale abundance estimates would provide less information on patterns of abundance than increasing the fraction of habitat units sampled. In the two watersheds, respectively, <span class="hlt">single-pass</span> electrofishing captured 78 and 74% of the estimated population of cutthroat trout with 7 and 10% of the effort. At the scale of intermediate-sized watersheds, <span class="hlt">single-pass</span> electrofishing exhibited a sufficient level of precision to be effective in detecting spatial patterns of cutthroat trout abundance and may be a useful tool for providing the context for investigating fish-habitat relationships at multiple scales.</p> <div class="credits"> <p class="dwt_author">Bateman, D. S.; Gresswell, R. E.; Torgersen, C. E.</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">37</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/40660354"> <span id="translatedtitle">Evaluation of abrasive wear of ductile cast iron in a <span class="hlt">single</span> <span class="hlt">pass</span> pendulum device</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The abrasive wear resistance of ductile cast iron with different matrix microstructures (ferrite, pearlite, bainite and martensite) was studied under instrumented <span class="hlt">single-pass</span> pendulum sclerometry testing. This technique uses only one abrasive particle with known geometry and the abrasive wear event can be isolated, providing fundamental information on the interaction between the particle and the material. The testing conditions selected were</p> <div class="credits"> <p class="dwt_author">Juan Manuel Vélez; D. K. Tanaka; A. Sinatora; A. P. Tschiptschin</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">38</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008cosp...37..756D"> <span id="translatedtitle">Atmospheric tides from the Extended Canadian Middle Atmosphere Model (CMAM) and comparisons with TIMED Doppler <span class="hlt">Interferometer</span> (TIDI) and meteor <span class="hlt">radar</span> observations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The extended Canadian Middle Atmosphere Model (CMAM) is one of the first General Circulation Models (GCMs) in the world to extend from the Earth's surface to about 210 km. This high upper boundary allows dynamical processes in the Mesosphere and Lower Thermosphere (MLT) to be studied without the artificial influence of sponge layers. Outputs (e.g. temperature, horizontal winds, etc.) from the model are analyzed to delineate diurnal, semidiurnal and terdiurnal tides with zonal wavenumber from -5 to 5. In this paper, altitudinal-latitudinal distributions and seasonal variations of migrating and some important nonmigrating components of the diurnal, semidiurnal and terdiurnal tides are presented. Each component has its own particular structure and seasonal variation. Nonmigrating components have amplitudes as large as or even larger than the migrating components at some latitudes and time periods. In addition, comprehensive comparisons of the modeled diurnal and semidiurnal tidal winds with observations are conducted to validate the model. 7 nonmigrating diurnal components and 4 nonmigrating semidiurnal components from the model are compared to the corresponding TIMED Doppler <span class="hlt">Interferometer</span> (TIDI) satellite wind observations. The 11 diurnal and semidiurnal components from the model are then superimposed to generate the total diurnal and semidiurnal winds at Jakarta (6oS, 106oE) and Kototabang (0o, 100oE) and are then compared to the measurements from these two meteor <span class="hlt">radar</span> stations. Overall, the extended CMAM captures the salient features of the latitudinal, altitudinal and seasonal variability of the diurnal and semidiurnal tides although wind amplitudes of the eastward-propagating components and the total winds tend to be bigger than those observed.</p> <div class="credits"> <p class="dwt_author">Du, Jian; Ward, William E.; Oberheide, Jens; Nakamura, Takuji; Tsuda, Toshitaka</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">39</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50223304"> <span id="translatedtitle">Bistatic <span class="hlt">radar</span> denial\\/embedded communications via waveform diversity</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Use of an <span class="hlt">interferometer</span> along with a host <span class="hlt">radar</span> is proposed for simultaneously achieving coherent reference denial and embedded communications. To prevent self-jamming, spatial orthogonality is achieved between the <span class="hlt">interferometer</span> antenna pattern and main beam of the host <span class="hlt">radar</span>. Costas and orthogonal frequency division multiplexing (OFDM) signals are suggested for the host <span class="hlt">radar</span> and <span class="hlt">interferometer</span>, respectively. The effectiveness of the</p> <div class="credits"> <p class="dwt_author">P. Antonik; R. Bonneau; R. Brown; S. Ertan; V. Vannicola; D. Weiner; M. Wicks</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">40</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1997APS..PAC..9P94K"> <span id="translatedtitle">Performance of the <span class="hlt">Single-pass</span> Position Monitor at SOR-RING</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A third-generation VUV and soft x-ray ring, the VSX Light Source, is being designed at the University of Tokyo. For such a ring, <span class="hlt">single-pass</span> position monitors are expected to play an important role in the efficient commissioning and easy tuning. We carried out the R&D of <span class="hlt">single-pass</span> monitor at the 500 MeV electron storage ring, SOR-RING, and at the beam transport line between the ring and the injector. The bunch signals from four button electrodes are directly fed into a 4-channel digital oscilloscope through semi-rigid cables. The digitized data are sent to a workstation and beam position is calculated there. The relative accuracy of less than 0.1 mm has been obtained. In this paper, a comparison between a few methods of data processing will be also reported.</p> <div class="credits"> <p class="dwt_author">Kudo, Hirofumi; Shinoe, Kenji; Takaki, Hiroyuki; Koseki, Tadashi; Nakamura, Norio; Kamiya, Yukihide; Honda, Tohru</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-05-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_1");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a style="font-weight: bold;">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_3");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_2 div --> <div id="page_3" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_2");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a style="font-weight: bold;">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_4");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">41</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/41034355"> <span id="translatedtitle">Texture evolution rate in continuous cast AA5052 aluminum alloy during <span class="hlt">single</span> <span class="hlt">pass</span> hot rolling</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Continuous cast AA5052 Al alloy slab was hot rolled by a <span class="hlt">single</span> <span class="hlt">pass</span> with entrance and exit temperatures of 482°C and 400°C, respectively. The thickness of the slab was reduced from 21.5mm to 8.6mm. The evolution of texture and microstructure during the rolling was investigated by X-ray diffraction, SEM and optical microscopy. It was found that the grain structure changed</p> <div class="credits"> <p class="dwt_author">Q. Zeng; X. Wen; T. Zhai</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">42</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/51339487"> <span id="translatedtitle">Spontaneous Brillouin scattering measurement in optical fiber utilizing all-fiber Mach-Zehnder <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The principle of all fiber Mach-Zehnder <span class="hlt">interferometer</span> as an optical filter was investigated in this paper. All fiber Mach-Zehnder <span class="hlt">interferometers</span> with <span class="hlt">single-pass</span> and double- pass configuration were manufactured and used in the measurement of spontaneous Brillouin scattering. The separation of backscattered spontaneous Brillouin from Rayleigh with low losses was achieved effectively. With the Mach-Zehnder <span class="hlt">interferometer</span>, a direct optical detection method</p> <div class="credits"> <p class="dwt_author">Yujun He; Yongqian Li; Zhi Yang; Chengqun Yin; Toshihiko T. Yoshino</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">43</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010PhRvS..13e2801D"> <span id="translatedtitle">Geometric efficiency of a two-stage fully absorbing collimation system in <span class="hlt">single-pass</span> linacs</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Collimators are commonly used in particle accelerators to prevent particles traveling at large amplitudes from hitting the vacuum chamber. We derive here, for a <span class="hlt">single-pass</span> linac, a one-dimensional analytical expression for the efficiency of a two-stage fully absorbing collimation system (CS), based on the CS geometrical and optical properties only. We show that, in the presence of physical space or optics constraints, the best betatron phase advance in between the first and the second collimation stage may differ from the usually prescribed ?/2. The analytically computed collimation efficiency is then compared to particle tracking results.</p> <div class="credits"> <p class="dwt_author">di Mitri, S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">44</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://dx.doi.org/10.1577/1548-8659(2003)132<0039:ATEOSP>2.0.CO;2"> <span id="translatedtitle">Assessing the efficacy of <span class="hlt">single-pass</span> backpack electrofishing to characterize fish community structure</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p class="result-summary">Two-pass backpack electrofishing data collected as part of the U.S. Geological Survey's National Water-Quality Assessment Program were analyzed to assess the efficacy of <span class="hlt">single-pass</span> backpack electrofishing. A two-capture removal model was used to estimate, within 10 river basins across the United States, proportional fish species richness from one-pass electrofishing and probabilities of detection for individual fish species. Mean estimated species richness from first-pass sampling (p??s1) ranged from 80.7% to 100% of estimated total species richness for each river basin, based on at least seven samples per basin. However, p??s1 values for individual sites ranged from 40% to 100% of estimated total species richness. Additional species unique to the second pass were collected in 50.3% of the samples. Of these, cyprinids and centrarchids were collected most frequently. Proportional fish species richness estimated for the first pass increased significantly with decreasing stream width for 1 of the 10 river basins. When used to calculate probabilities of detection of individual fish species, the removal model failed 48% of the time because the number of individuals of a species was greater in the second pass than in the first pass. <span class="hlt">Single-pass</span> backpack electrofishing data alone may make it difficult to determine whether characterized fish community structure data are real or spurious. The two-pass removal model can be used to assess the effectiveness of sampling species richness with a single electrofishing pass. However, the two-pass removal model may have limited utility to determine probabilities of detection of individual species and, thus, limit the ability to assess the effectiveness of <span class="hlt">single-pass</span> sampling to characterize species relative abundances. Multiple-pass (at least three passes) backpack electrofishing at a large number of sites may not be cost-effective as part of a standardized sampling protocol for large-geographic-scale studies. However, multiple-pass electrofishing at some sites may be necessary to better evaluate the adequacy of <span class="hlt">single-pass</span> electrofishing and to help make meaningful interpretations of fish community structure.</p> <div class="credits"> <p class="dwt_author">Meador, M. R.; McIntyre, J. P.; Pollock, K. H.</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">45</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/19536808"> <span id="translatedtitle">Coherent anti-Stokes Raman scattering microscopy using a <span class="hlt">single-pass</span> picoseconds supercontinuum-seeded optical parametric amplifier</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We investigated a coherent anti-Stokes Raman scattering microscopy with a <span class="hlt">single-pass</span> picoseconds supercontinuum-seeded optical parametric amplifier (SCOPA). Our SCOPA system is substantially simpler because the pump and Stokes lasers are automatically overlapped.</p> <div class="credits"> <p class="dwt_author">Chao-Yu Chung; Yen-Yin Lin; Shi-Wei Chu; Kuo-Yu Wu; Wan-Yu Tai; Yao-Chang Lee; Yeukuang Hwu; Yin-Yu Lee</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">46</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/923279"> <span id="translatedtitle">Development of a 2D Vlasov Solver for <span class="hlt">Single-Pass</span> Systems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Direct numerical methods for solving the Vlasov equationoffer some advantages over macroparticle simulations, as they do notsuffer from the numerical noise inherent in using a number ofmacroparticles smaller than the bunch population. Unfortunately thesemethods are more time-consuming and generally considered impractical in afull 6D phase space. However, in a lower-dimension phase space they maybecome attractive if the beam dynamics is sensitive to the presence ofsmall charge-density fluctuations and a high resolution is needed. Inthis paper we present a 2D Vlasov solver for studying the longitudinalbeam dynamics in <span class="hlt">single-pass</span> systems of interest for X-FEL's, wherecharacterization of the microbunching instability is of particularrelevance. The solver includes a model to account for the smearing effectof a finite horizontal emittance on microbuncing. We explore the effectof space charge and coherent synchrotron radiation (CSR). The numericalsolutions are compared with results from linear theory and good agreementis found in the regime where linear theory applies.</p> <div class="credits"> <p class="dwt_author">Venturini, Marco; Warnock, Robert; Zholents, Alexander</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-07-31</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">47</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013SPIE.8599E..0DM"> <span id="translatedtitle">Gain-switched <span class="hlt">single-pass</span> Cr:ZnSe amplifier</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In this paper, we report on building and testing a Cr:ZnSe gain-switched amplifier pumped by a Q-switched Ho:YAG laser and seeded by a continuous wave (CW) tunable Cr:ZnSe laser. A 0.5%-doped, Brewster-cut Ho:YAG rod in an actively Q-switched, folded cavity produced 250 ?J pump pulses at 2.09 ?m with pulse widths on the order of 400 ns. The seeded <span class="hlt">single-pass</span> Cr:ZnSe amplifier exhibited output pulse energy as high as 3.8 ?J at 2.45 ?m while pumped at a 10 kHz repetition rate. The gain-switched process showed a peak gain of 380 and an extraction efficiency of 1.5%. The system was tunable from 2160 nm to 2560 nm and had gain of 200 over a 400 nm range.</p> <div class="credits"> <p class="dwt_author">McDaniel, Sean A.; Berry, Patrick A.; Schepler, Kenneth L.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">48</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/861065"> <span id="translatedtitle">AN EXPERIMENTAL TEST OF SUPERRADIANCE IN A <span class="hlt">SINGLE</span> <span class="hlt">PASS</span> SEEDED FEL.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Superradiance and nonlinear evolution of a FEL pulse in a <span class="hlt">single-pass</span> FEL were experimentally demonstrated at the National Synchrotron Light Source (NSLS) Source Development Laboratory (SDL). The experiment was performed using a 1.5 ps high-brightness electron beam and a 100fs Ti:Sapphire seed laser. The seed laser and electron beam interact in the 10 meter long NISUS undulator with a period of 3.89 cm. The FEL spectrum, energy and pulse length along the undulator were measured. FEL saturation was observed, and gain of more the 200 (relative to seed laser) was measured. Both FEL spectrum widening and pulse length shortening were observed; FEL pulses as short as 65 fs FWHM were measured. The superradiance and nonlinear evolution were also simulated using the numerical code GENESIS1.3 yielding good agreement with the experimental results.</p> <div class="credits"> <p class="dwt_author">WATANABE, T.; LIU, D.; MURPHY, J.B.; ROSE, J.; SHAFTAN, T.; TSANG, T.; WANG, X.J.; YU, L.H.</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-08-21</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">49</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/907711"> <span id="translatedtitle">Beam-Beam Simulations for a <span class="hlt">Single</span> <span class="hlt">Pass</span> SuperB-Factory</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A study of beam-beam collisions for an asymmetric <span class="hlt">single</span> <span class="hlt">pass</span> SuperB-Factory is presented [1]. In this scheme an e{sup -} and an e{sup +} beam are first stored and damped in two Damping Rings (DR), then extracted, compressed and focused to the IP. After collision the two beams are re-injected in the DR to be damped and extracted for collision again. The explored beam parameters are similar to those used in the design of the International Linear Collider, except for the beam energies. Flat beams and round beams were compared in the simulations in order to optimize both luminosity performances and beam blowup after collision. With such approach a luminosity of the order of 10{sup 36} cm{sup -2} s{sup -1} can be achieved.</p> <div class="credits"> <p class="dwt_author">Biagini, M.E.; /Frascati; Raimondi, P.; Seeman, J.; /SLAC; Schulte, D.; /CERN</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-05-18</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">50</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/11341077"> <span id="translatedtitle">Implantation of a dual chamber pacing and sensing <span class="hlt">single</span> <span class="hlt">pass</span> defibrillation lead.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Dual-chamber ICDs are increasingly used to avoid inappropriate shocks due to supraventricular tachycardias. Additionally, many ICD patients will probably benefit from dual chamber pacing. The purpose of this pilot study was to evaluate the intraoperative performance and short-term follow-up of an innovative <span class="hlt">single</span> <span class="hlt">pass</span> right ventricular defibrillation lead capable of bipolar sensing and pacing in the right atrium and ventricle. Implantation of this <span class="hlt">single</span> <span class="hlt">pass</span> right ventricular defibrillation lead was successful in all 13 patients (age 63 +/- 8 years; LVEF 0.44 +/- 0.16; New York Heart Association [NYHA] 2.4 +/- 0.4, previous open heart surgery in all patients). The operation time was 79 +/- 29 minutes, the fluoroscopy time 4.7 +/- 3.1 minutes. No perioperative complications occurred. The intraoperative atrial sensing was 1.7 +/- 0.5 mV, the atrial pacing threshold product was 0.20 +/- 0.14 V/ms (range 0.03-0.50 V/ms). The defibrillation threshold was 8.8 +/- 2.7 J. At prehospital discharge and at 1-month and 3-month follow-up, atrial sensing was 1.9 +/- 0.9, 2.1 +/- 0.5, and 2.7 +/- 0.6 mV, respectively, (P = NS, P < 0.05, P < 0.05 to implant, respectively), the mean atrial threshold product 0.79, 1.65, and 1.29 V/ms, respectively. In two patients, an intermittent exit block occurred in different body postures. All spontaneous and induced ventricular arrhythmias were detected and terminated appropriately. Thus, in a highly selected patient group, atrial and ventricular sensing and pacing with a single lead is possible under consideration of an atrial pacing dysfunction in 17% of patients. PMID:11341077</p> <div class="credits"> <p class="dwt_author">Gradaus, R; Block, M; Dorszewski, A; Schriever, C; Hammel, D; Scheld, H H; Borggrefe, M; Breithardt, G; Böcker, D</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-04-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">51</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010SPIE.7826E..30R"> <span id="translatedtitle">The Surface Water and Ocean Topography Mission (SWOT): the Ka-band <span class="hlt">Radar</span> <span class="hlt">Interferometer</span> (KaRIn) for water level measurements at all scales</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The Surface Water and Ocean Topography (SWOT) mission will study ocean mesoscale and submesoscale phenomena and provide an inventory of storage change and discharge for fresh water bodies and rivers. In this paper, we examine the combination of measurements that will be used by SWOT to achieve a globally consistent data set. We introduce a new channel in the SWOT measurement that combines data transmitted by the <span class="hlt">interferometer</span> antennas and received by the radiometer antenna allows the closing of the SWOT nadir coverage gap. This new mode also allows for improved calibration between the nadir altimeter and the <span class="hlt">interferometer</span>, resulting in consistent range measurements. Consistency in the phase measurements is achieved using a mixture of cross-over calibration combined with optimal estimation of system error drift.</p> <div class="credits"> <p class="dwt_author">Rodriguez, Ernesto; Esteban-Fernandez, Daniel</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-10-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">52</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1995JOSAA..12..137A"> <span id="translatedtitle"><span class="hlt">Single-pass</span> and double-pass propagation through complex paraxial optical systems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A generalized form of spectral representation theory is developed and used with the ABCD formulation of the Huygens-Fresnel integral for studying optical wave propagation through a random medium in the presence of any complex paraxial optical system that can be characterized by an ABCD ray matrix. Formal expressions are developed for the basic optical field moments and various related second-order statistical quantities in terms of three fundamental moments of the first- and second-order complex phase perturbations. Special propagation environments include line-of-sight propagation, <span class="hlt">single-pass</span> propagation through arbitrary ABCD optical systems, and double-pass propagation through the same random medium in the presence of an ABCD optical system. For illustrative purposes the method is used in the development of expressions for the mean and the normalized variance of the irradiance associated with the Fourier-transform-plane geometry of a lens and the enhanced backscatter effect (EBS) associated with irradiance and phase fluctuations of a reflected Gaussian-beam wave from a Gaussian mirror. The EBS analysis accounts for both finite size and finite focal length of the mirror.</p> <div class="credits"> <p class="dwt_author">Andrews, L. C.; Miller, W. B.</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">53</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/10185463"> <span id="translatedtitle">Packaging design criteria for the N Reactor/<span class="hlt">single</span> <span class="hlt">pass</span> reactor fuel characterization shipments</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The majority of the spent fuel from the N Reactor and the <span class="hlt">single</span> <span class="hlt">pass</span> reactors (SPR) is presently being stored at the basins in the 100 K Area. Characterization of these fuels is essential to formulate a safe and efficient processing/disposal method for the spent fuel. Consequently, it is necessary to transport a cross section of spent fuel from the K Basins to the hot cells at the 327 Building in the 300 Area for analysis. The CNS 1-13G cask, a US Nuclear Regulatory Commission (NRC) certified cask manufactured by the ChemNuclear company, will be utilized for the transportation for irradiated fuel elements from the K Basins to the 327 Laboratories for characterization. The cask will utilize an inner container to compensate for the possibility of failed fuel cladding and to reduce the chances of contaminating the cask or the off loading facility. The Packaging Design Criteria (PDC) for these shipments establishes the acceptance criteria for the cask and for the design of an inner container that will be used in the Safety Evaluation for Packaging (SEP).</p> <div class="credits"> <p class="dwt_author">Stevens, P.F.</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-08-31</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">54</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013SPIE.8654E..08K"> <span id="translatedtitle"><span class="hlt">Single-pass</span> GPU-raycasting for structured adaptive mesh refinement data</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Structured Adaptive Mesh Refinement (SAMR) is a popular numerical technique to study processes with high spatial and temporal dynamic range. It reduces computational requirements by adapting the lattice on which the underlying differential equations are solved to most efficiently represent the solution. Particularly in astrophysics and cosmology such simulations now can capture spatial scales ten orders of magnitude apart and more. The irregular locations and extensions of the refined regions in the SAMR scheme and the fact that different resolution levels partially overlap, poses a challenge for GPU-based direct volume rendering methods. kD-trees have proven to be advantageous to subdivide the data domain into non-overlapping blocks of equally sized cells, optimal for the texture units of current graphics hardware, but previous GPU-supported raycasting approaches for SAMR data using this data structure required a separate rendering pass for each node, preventing the application of many advanced lighting schemes that require simultaneous access to more than one block of cells. In this paper we present the first <span class="hlt">single-pass</span> GPU-raycasting algorithm for SAMR data that is based on a kD-tree. The tree is efficiently encoded by a set of 3D-textures, which allows to adaptively sample complete rays entirely on the GPU without any CPU interaction. We discuss two different data storage strategies to access the grid data on the GPU and apply them to several datasets to prove the benefits of the proposed method.</p> <div class="credits"> <p class="dwt_author">Kaehler, Ralf; Abel, Tom</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">55</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013JMEP...22.2477L"> <span id="translatedtitle">Double-Sided <span class="hlt">Single-Pass</span> Submerged Arc Welding for 2205 Duplex Stainless Steel</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The duplex stainless steel (DSS), which combines the characteristics of ferritic steel and austenitic steel, is used widely. The submerged arc welding (SAW) method is usually applied to join thick plates of DSS. However, an effective welding procedure is needed in order to obtain ideal DSS welds with an appropriate proportion of ferrite (?) and austenite (?) in the weld zone, particularly in the melted zone and heat-affected zone. This study evaluated the effectiveness of a high efficiency double-sided <span class="hlt">single-pass</span> (DSSP) SAW joining method for thick DSS plates. The effectiveness of the converse welding procedure, characterizations of weld zone, and mechanical properties of welded joint are analyzed. The results show an increasing appearance and continuous distribution feature of the ? phase in the fusion zone of the leading welded seam. The converse welding procedure promotes the ? phase to precipitate in the fusion zone of leading welded side. The microhardness appears to significantly increase in the center of leading welded side. Ductile fracture mode is observed in the weld zone. A mixture fracture feature appears with a shear lip and tears in the fusion zone near the fusion line. The ductility, plasticity, and microhardness of the joints have a significant relationship with ? phase and heat treatment effect influenced by the converse welding step. An available heat input controlling technology of the DSSP formation method is discussed for SAW of thick DSS plates.</p> <div class="credits"> <p class="dwt_author">Luo, Jian; Yuan, Yi; Wang, Xiaoming; Yao, Zongxiang</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">56</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/451204"> <span id="translatedtitle">Study on a test of optical stochastic cooling scheme in a <span class="hlt">single</span> <span class="hlt">pass</span> beam line</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A feasibility study of an experiment to test the principle of optical stochastic cooling is presented. We propose to build a new beamline in the extraction area of the ALS Booster synchrotron, where we will include a bypass lattice similar to the lattice that could be used in the cooling insertion in a storage ring. Of course, in the <span class="hlt">single</span> <span class="hlt">pass</span> beamline we cannot achieve cooling, but we can test all the functions of the bypass lattice that are required to achieve cooling in a storage ring. As it is stated in, there are stringent requirements on the time-of-flight properties of the bypass lattice employed in a cooling scheme. The pathlengths of particle trajectories in the bypass must be fairly insensitive to the standard set of errors that usually affect the performance of storage rings. Namely, it is necessary to preserve all fluctuations in the longitudinal particle density within the beam from the beginning to the end of the bypass lattice with the accuracy of {lambda}/2{pi}, where A is the carrying (optical) wavelength. According to, cooling will completely vanish if a combined effect of all kinds of errors will produce a spread of the pathlengths of particle trajectories larger than {lambda}/2 and the cooling time will almost double if the spread of the pathlengths is {lambda}/2{pi}. At a first glance, {lambda}/2{pi} {approx_equal} 0.1/{mu}m is such a small value that satisfying this accuracy looks nearly impossible. However, simulations show that a carefully designed bypass can meet all the requirements even with rather conservative tolerance to errors.</p> <div class="credits"> <p class="dwt_author">Chattopadhyay, S.; Kim, C.; Massoletti, D.; Zholents, A. [and others</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">57</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/49052062"> <span id="translatedtitle">Photocatalytic degradation of reactive orange 84(RO 84) in dye-house effluent using <span class="hlt">single</span> <span class="hlt">pass</span> reactor</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Photocatalytic degradation of Reactive Orange 84 (RO 84) in UV radiation, released by a dye manufacturing unit has been examined using TiO2 catalyst as slurry in aqueous dye solution. Experiments were conducted both in batch and <span class="hlt">single</span> <span class="hlt">pass</span> reactors. Complete color bleaching and significant reduction (? 90%) in chemical oxygen demand (COD) could be attained in 4–6 h of UV</p> <div class="credits"> <p class="dwt_author">N. N. Rao; S. Dube</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">58</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/15003935"> <span id="translatedtitle">Dissolution Kinetics of Titanate-Based Ceramic Waste Forms: Results from <span class="hlt">Single-Pass</span> Flow Tests on Radiation Damaged Specimens</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This report is a summary report in which the data from the <span class="hlt">single-pass</span> flow-through test on resintered 238Pu-bearing ceramics are reported. These results show that radiation damage has litte effect on the dissolution kinetics of candidate titanate ceramics for plutonium immobilization.</p> <div class="credits"> <p class="dwt_author">Icenhower, Jonathan P.; Strachan, Denis M.; Lindberg, Michael J.; Rodriguez, Elsa A.; Steele, Jackie L.</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">59</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/881522"> <span id="translatedtitle"><span class="hlt">Single-Pass</span> Flow Through (SPFT) Testing of Fluidized-Bed Steam Reforming (FBSR) Waste Forms</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Two samples of fluidized-bed steam reforming (FBSR) mineral waste form product were subjected to <span class="hlt">single-pass</span> flow-through (SPFT) testing. Sample LAW 1123 resulted from pilot-scale FBSR processing with a Hanford Envelope A low-activity waste (LAW) simulant. Sample SBW 1173 resulted from pilot-scale FBSR processing with an Idaho National Laboratory (INL) simulant commonly referred to as sodium-bearing waste (SBW). The pilot-scale waste forms were made at the Science and Technology Applications Research (STAR) facility in Idaho Falls, Idaho. The durability of the two FBSR waste forms was assessed via the SPFT test in this study. Both samples were multiphase mineral waste forms, so the SPFT test results provide an overall release rate from the multiple mineral species in each sample and are dependent on the amount of each phase present and the mineralogy of the phases present. SPFT testing was performed at temperatures of 25, 40, 70, and 90 C on LAW 1123, while SBW 1173 was only tested at 70 and 90 C. The 70 and 90 C data were compared to each other and the LAW-1123 results were compared to previous testing performed by the Pacific Northwest National Laboratory (PNNL) on a LAW Envelope C (high organic content) waste simulant. The objectives of this study were to obtain forward dissolution rate data for both STAR FBSR bed products (using SPFT tests). Also, a qualitative comparison of the FBSR bed products to a glass waste form (specifically the low-activity reference material (LRM) glass) was performed. For these comparisons, the relative surface areas of the FBSR and glass products had to be measured. Due to the more porous and irregular surface of FBSR bed products, the surface area of the bed products was determined using the Brunauer, Emmett, and Teller (BET) measurement method. The surface area of a glass is much smoother and the calculated geometric surface area is typically used for determining dissolution behavior. Presently there are no specifications or standard release rates that the FBSR tested materials have to meet, e.g. the data from the FBSR testing is normally used during subsequent Performance Assessment (PA) calculations. Since a PA calculation is not part of this study, the LAW and SBW steam reforming samples were compared to each other, to previous LAW FBSR SPFT results, and to the results from the LRM reference glass. The experimental durability data generated from this study suggests that an FBSR mineral waste form product would be an adequate alternative form to borosilicate glass. The tested FBSR mineral waste forms showed normalized release rates for matrix elements such as Si to be more than 200X slower than the LRM glass. However, further durability testing and mineral phase information is recommended to further substantiate these findings.</p> <div class="credits"> <p class="dwt_author">Lorier, T. H.; Pareizs, J. M.; Jantzen, C. M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-08-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">60</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/4418310"> <span id="translatedtitle">A <span class="hlt">single-pass</span> GPU ray casting framework for interactive out-of-core rendering of massive volumetric datasets</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We present an adaptive out-of-core technique for rendering massive scalar volumes employing <span class="hlt">single-pass</span> GPU ray casting. The\\u000a method is based on the decomposition of a volumetric dataset into small cubical bricks, which are then organized into an octree\\u000a structure maintained out-of-core. The octree contains the original data at the leaves, and a filtered representation of children\\u000a at inner nodes. At</p> <div class="credits"> <p class="dwt_author">Enrico Gobbetti; Fabio Marton; José Antonio Iglesias Guitián</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_2");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a style="font-weight: bold;">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_4");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_3 div --> <div id="page_4" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_3");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a style="font-weight: bold;">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_5");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">61</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://water.usgs.gov/nawqa/ecology/pubs/Meador2005_OnePassTwoPass.pdf"> <span id="translatedtitle"><span class="hlt">Single-Pass</span> versus Two-Pass Boat Electrofishing for Characterizing River Fish Assemblages: Species Richness Estimates and Sampling Distance</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Determining adequate sampling effort for characterizing fish assemblage structure in nonwadeable rivers remains a critical issue in river biomonitoring. Two-pass boat electrofishing data collected from 500–1,000-m-long river reaches as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program were analyzed to assess the efficacy of <span class="hlt">single-pass</span> boat electrofishing. True fish species richness was estimated by use of a</p> <div class="credits"> <p class="dwt_author">Michael R. Meador</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">62</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/49294779"> <span id="translatedtitle">A high pressure <span class="hlt">single-pass</span> high-conversion electrochemical cell for intensification of organic electrosynthesis processes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The anode oxidation of 4-methoxytoluene (4-MT) to 4-methoxybenzyl dimethylacetal (4-MBDMA) in methanol is used as a test reaction for the study of a microchannel electrochemical reactor operated continuously in a <span class="hlt">single-pass</span> high-conversion mode. The cell consists of two stainless steel cathodes, grooved with 100?m deep channels surrounding a flat glassy carbon anode. Pressures up to 20 bars are applied in</p> <div class="credits"> <p class="dwt_author">Anis Attour; Patricia Dirrenberger; Sabine Rode; Athanassios Ziogas; Michael Matlosz; François Lapicque</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">63</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007APS..DMP.C2008S"> <span id="translatedtitle">Theoretical analysis of cold atom <span class="hlt">interferometers</span> with optical control of dynamics</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Atom <span class="hlt">interferometers</span> using Bose-Einstein condensate that is confined in a waveguide and manipulated by optical pulses have been limited by their short coherence times. We present a theoretical model that offers a physically simple explanation for the loss of contrast for both a <span class="hlt">single-pass</span> and double-pass <span class="hlt">interferometers</span>. For the case of a <span class="hlt">singles-pass</span> device, we propose the method for increasing the fringe contrast by recombining the atoms at a different time. A simple, quantitatively accurate, analytical expression for the optimized recombination time is presented and used to place limits on the physical parameters for which the contrast may be recovered. For the case of a double-pass <span class="hlt">interferometer</span>, we place an upper limit on the device's coherence time.</p> <div class="credits"> <p class="dwt_author">Stickney, James; Anderson, Dana Z.; Zozulya, Alex</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-06-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">64</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2006PhDT........61D"> <span id="translatedtitle">Experimental validation of <span class="hlt">single</span> <span class="hlt">pass</span> ion cyclotron resonance absorption in a high speed flowing plasma applied to the variable specific impulse magnetoplasma rocket (VASIMR)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The topic of this thesis is the experimental characterization and analysis of <span class="hlt">single</span> <span class="hlt">pass</span> ion cyclotron resonance heating as applied to acceleration of ions for electric propulsion. The experimental work was done on the VX-10 experiment of the VASIMR (Variable Specific Impulse Magnetoplasma Rocket) concept. In ion cyclotron resonance heating (ICRH) a RF wave is launched into a magnetized plasma where it then accelerates the ions by increasing their rotational speed around the magnetic field lines. The electric field vector of the right hand component of the wave will rotate around the field lines with a frequency oRF in the same direction as the ion's cyclotron motion about the field lines. Consequently, when oRF ? oci (where oci is the ion's cyclotron frequency) the force from the electric field of the wave on the ions will result in a continuous rotational energy gain. The perpendicular velocity of the ions generated by ICRH is then converted into axial velocity by the decreasing gradient of the axial magnetic field at the exhaust of the propulsion system from conservation of the magnet moment. This increase in axial velocity is predicted to cause a decrease in density due to conservation of current in the plasma. In order to characterize this density drop during ion cyclotron heating, a single channel <span class="hlt">interferometer</span> system was developed and implemented on the VX-10. <span class="hlt">Interferometer</span> density measurements were taken at three different locations on the VX-10 experiment upstream and downstream of the ion acceleration zone. Measurements were made of the density drop in both Helium and Deuterium plasma discharges during ICRH under a variety of operating conditions including magnetic field profile, gas flow rate and ICRH power pulse timing, and ICRH power. A clear measurement of a density drop was observed downstream of the ion resonance zone characteristic of ion acceleration and measurement of little change in density upstream of the resonance zone where no acceleration was expected. Good agreement between the measured and predicted power scaling of ion acceleration due to ICRH was found. And experimental evidence that the shape of the magnetic field profile will influence ICRH acceleration as predicted is also presented and analyzed.</p> <div class="credits"> <p class="dwt_author">Davis, Christopher Nelson</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">65</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/7991548"> <span id="translatedtitle">Isolation of unknown genes from human bone marrow by differential screening and <span class="hlt">single-pass</span> cDNA sequence determination.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">A cDNA sequencing project was initiated to characterize gene expression in human bone marrow and develop strategies to isolate novel genes. Forty-eight random DNAs from total human bone marrow were subjected to <span class="hlt">single-pass</span> DNA sequence analysis to determine a limited complexity of mRNAs expressed in the bone marrow. Overall, 8 cDNAs (17%) showed no similarity to known sequences. Information from DNA sequence analysis was used to develop a differential prescreen to subtract unwanted cDNAs and to enrich for unknown cDNAs. Forty-eight cDNAs that were negative with a complex probe were subject to <span class="hlt">single-pass</span> DNA sequence determination. Of these prescreened cDNAs, the number of unknown sequences increased to 23 (48%). Unknown cDNAs were also characterized by RNA expression analysis using 25 different human leukemic cell lines. Of 13 unknown cDNAs tested, 10 were expressed in all cell types tested and 3 revealed a hematopoietic lineage-restricted expression pattern. Interestingly, while a total of only 96 bone marrow cDNAs were sequenced, 31 of these cDNAs represent sequences from unknown genes and 12 showed significant similarities to sequences in the data bases. One cDNA revealed a significant similarity to a serine/threonine-protein kinase at the amino acid level (56% identity for 123 amino acids) and may represent a previously unknown kinase. Differential screening techniques coupled with <span class="hlt">single-pass</span> cDNA sequence analysis may prove to be a powerful and simple technique to examine developmental gene expression. PMID:7991548</p> <div class="credits"> <p class="dwt_author">Orr, S L; Hughes, T P; Sawyers, C L; Kato, R M; Quan, S G; Williams, S P; Witte, O N; Hood, L</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">66</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/5094082"> <span id="translatedtitle">Generation of coherent soft x-rays using a <span class="hlt">single-pass</span> free-electron laser amplifier</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We consider a <span class="hlt">single-pass</span> free-electron laser (FEL) amplifier, driven by an rf-linac followed by a damping ring for reduced emittance, for use in generating coherent light in the soft x-ray region. The dependence of the optical gain on electron-beam quality, studied with the three-dimensional FEL simulation code FELEX, is given and related to the expected power of self-amplified spontaneous emission. We discuss issues for the damping ring designed to achieve the required electron beam quality. The idea of a multipass regenerative amplifier is also presented.</p> <div class="credits"> <p class="dwt_author">Wang, T.F.; Goldstein, J.C.; Newnam, B.E.; McVey, B.D.</p> <p class="dwt_publisher"></p> <p class="publishDate">1988-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">67</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/34412"> <span id="translatedtitle">UV x-ray free electron lasers through high-gain <span class="hlt">single</span> <span class="hlt">pass</span> amplifier: Basic principles and issues</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The author reviews the basic principles of high gain free electron laser amplifier in <span class="hlt">single</span> <span class="hlt">pass</span> configuration for generation of intense, tunable radiation for wavelength shorter than 1,000 {angstrom}. Two schemes are discussed: for wavelength region between 1,000--100 {angstrom}, the high gain harmonic generation of a coherent input radiation can be used. For x-ray wavelength as short as a few {angstrom}, the self-amplified spontaneous emission is currently the only known free electron laser scheme. The author also presents a brief introduction of various key issues in realizing these schemes, which will be discussed in detail in other papers in these proceedings.</p> <div class="credits"> <p class="dwt_author">Kim, K.J.</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">68</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/3bxggflev0jd2e7p.pdf"> <span id="translatedtitle">Permethrin absorption not detected in <span class="hlt">single-pass</span> perfused rabbit ear, and absorption with oxidation of 3-phenoxybenzyl alcohol</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Isolated rabbit ears were <span class="hlt">single-pass</span> perfused with a protein-free medium. Permethrin (0.05–23.5%, w\\/w) was applied in four\\u000a distinct ointments. Permethrin, 3-phenoxybenzyl alcohol, 3-phenoxybenzaldehyde, and 3-phenoxybenzoic acid were analysed by\\u000a HPLC. Permethrin was not detected in the effluent. The permeation coefficient, calculated from the detection limit was ?12 (cm\\/sec). The appearance rate of the 3-phenoxybenzyl moieties in the effluent agreed with</p> <div class="credits"> <p class="dwt_author">G. E. Bast; D. Taeschner; H. G. Kampffmeyer</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">69</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/17358688"> <span id="translatedtitle">Experimental characterization of superradiance in a <span class="hlt">single-pass</span> high-gain laser-seeded free-electron laser amplifier.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">In this Letter we report the first experimental characterization of superradiance in a <span class="hlt">single-pass</span> high-gain free-electron laser (FEL) seeded by a 150 femtosecond (FWHM) Ti:sapphire laser. The nonlinear energy gain after an exponential gain regime was observed. We also measured the evolution of the longitudinal phase space in both the exponential and superradiant regimes. The output FEL pulse duration was measured to be as short as 81 fs, a roughly 50% reduction compared to the input seed laser. The temporal distribution of the FEL radiation as predicted by a numerical simulation was experimentally verified for the first time. PMID:17358688</p> <div class="credits"> <p class="dwt_author">Watanabe, T; Wang, X J; Murphy, J B; Rose, J; Shen, Y; Tsang, T; Giannessi, L; Musumeci, P; Reiche, S</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-19</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">70</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/20539122"> <span id="translatedtitle">A bounding estimate of neutron dose based on measured photon dose around <span class="hlt">single</span> <span class="hlt">pass</span> reactors at the Hanford site.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Neutron and photon radiation survey records have been used to evaluate and develop a neutron to photon (NP) ratio to reconstruct neutron doses to workers around Hanford's <span class="hlt">single</span> <span class="hlt">pass</span> reactors that operated from 1945 to 1972. A total of 5,773 paired neutron and photon measurements extracted from 57 boxes of survey records were used in the development of the NP ratio. The development of the NP ratio enables the use of the recorded dose from an individual's photon dosimeter badge to be used to estimate the unmonitored neutron dose. The Pearson rank correlation between the neutron and photon measurements was 0.71. The NP ratio best fit a lognormal distribution with a geometric mean (GM) of 0.8, a geometric standard deviation (GSD) of 2.95, and the upper 95 th % of this distribution was 4.75. An estimate of the neutron dose based on this NP ratio is considered bounding due to evidence that up to 70% of the total photon exposure received by workers around the <span class="hlt">single</span> <span class="hlt">pass</span> reactors occurs during shutdown maintenance and refueling activities when there is no significant neutron exposure. Thus when this NP ratio is applied to the total measured photon dose from an individual film badge dosimeter, the resulting neutron dose is considered bounded. PMID:20539122</p> <div class="credits"> <p class="dwt_author">Taulbee, Timothy D; Glover, Samuel E; Macievic, Gregory V; Hunacek, Mickey; Smith, Cheryl; DeBord, Gary W; Morris, Donald; Fix, Jack</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">71</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.agu.org/journals/rs/v025/i004/RS025i004p00671/RS025i004p00671.pdf"> <span id="translatedtitle">Polar mesosphere summer echoes observed with the EISCAT 933MHz <span class="hlt">radar</span> and the CUPRI 46.9MHz <span class="hlt">radar</span>, their similarity to 224MHz <span class="hlt">radar</span> echoes, and their relation to turbulence and electron density profiles</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">During a campaign to study polar mesosphere summer echoes (PMSE) the European Incoherent Scatter (EISCAT) UHF and VHF <span class="hlt">radars</span> and the Cornell University portable <span class="hlt">radar</span> <span class="hlt">interferometer</span> (CUPRI) VHF <span class="hlt">radar</span> were operated in Troms6 in the summer of 1988. Also, for the first time the EISCAT UHF <span class="hlt">radar</span> detected coherent echoes from the mesosphere. Their relation to the echoes recorded simultaneously</p> <div class="credits"> <p class="dwt_author">J. Röttger; M. T. Rietveld; C. La Hoz; T. Hall; M. C. Kelley; W. E. Swartz</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">72</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/1087282"> <span id="translatedtitle"><span class="hlt">Single</span> <span class="hlt">Pass</span> Flow-Through (SPFT) Test Results of Fluidized Bed Steam Reforming (FBSR) Waste Forms used for LAW Immobilization</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) are being evaluated. One such immobilization technology being considered is the Fluidized Bed Steam Reforming (FBSR) granular product. The FBSR granular product is composed of insoluble sodium aluminosilicate (NAS) feldspathoid minerals. Production of the FBSR mineral product has been demonstrated both at the industrial and laboratory scale. <span class="hlt">Single-Pass</span> Flow-Through (SPFT) tests at various flow rates have been conducted with the granular products fabricated using these two methods. Results show that the materials exhibit a relatively low forward dissolution rate on the order of 10-3 g/(m2d) with the material made in the laboratory giving slightly higher values.</p> <div class="credits"> <p class="dwt_author">Neeway, James J.; Qafoku, Nikolla; Williams, Benjamin D.; Valenta, Michelle M.; Cordova, Elsa A.; Strandquist, Sara C.; Dage, DeNomy C.; Brown, Christopher F.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-03-20</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">73</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/878377"> <span id="translatedtitle">Lucretia: A Matlab-Based Toolbox for the Modellingand Simulation of <span class="hlt">Single-Pass</span> Electron Beam Transport Systems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We report on Lucretia, a new simulation tool for the study of <span class="hlt">single-pass</span> electron beam transport systems. Lucretia supports a combination of analytic and tracking techniques to model the tuning and operation of bunch compressors, linear accelerators, and beam delivery systems of linear colliders and linac-driven Free Electron Laser (FEL) facilities. Extensive use of Matlab scripting, graphics, and numerical capabilities maximize the flexibility of the system, and emphasis has been placed on representing and preserving the fixed relationships between elements (common girders, power supplies, etc.) which must be respected in the design of tuning algorithms. An overview of the code organization, some simple examples, and plans for future development are discussed.</p> <div class="credits"> <p class="dwt_author">Tenenbaum, P.; /SLAC</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-09-30</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">74</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2723161"> <span id="translatedtitle">Velocity-resolved 3D retinal microvessel imaging using <span class="hlt">single-pass</span> flow imaging spectral domain optical coherence tomography?</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">We demonstrate in vivo velocity-resolved, volumetric bidirectional blood flow imaging in human retina using <span class="hlt">single-pass</span> flow imaging spectral domain optical coherence tomography (SPFI-SDOCT). This technique uses previously described methods for separating moving and non-moving scatterers within a depth by using a modified Hilbert transform. Additionally, a moving spatial frequency window is applied, creating a stack of depth-resolved images of moving scatterers, each representing a finite velocity range. The resulting velocity reconstruction is validated with and strongly correlated to velocities measured with conventional Doppler OCT in flow phantoms. In vivo velocity-resolved flow mapping is acquired in healthy human retina and demonstrate the measurement of vessel size, peak velocity, and total foveal blood flow with OCT.</p> <div class="credits"> <p class="dwt_author">Tao, Yuankai K.; Kennedy, Kristen M.; Izatt, Joseph A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">75</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/1631143u13kv1582.pdf"> <span id="translatedtitle">A precise and wide-dynamic-range displacement-measuring homodyne quadrature laser <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We present a fast, displacement-measuring, <span class="hlt">single-pass</span>, two-detector homodyne quadrature laser <span class="hlt">interferometer</span> and compare\\u000a its performance with an arm-compensated, proportional, integral-derivative-controlled Michelson <span class="hlt">interferometer</span>. Special attention\\u000a is given to the extension of the dynamic range. The wide dynamic range is achieved by an accurate fringe subdivision based\\u000a on an enhanced ellipse-specific fitting of the scattered Lissajous curve and by increasing the total</p> <div class="credits"> <p class="dwt_author">T. Pozar; P. Gregorcic; J. Mozina</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">76</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/54431896"> <span id="translatedtitle">Millimeter <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The paper discusses some of the advantages offered by millimeter waves over microwaves, reviews possible and past millimeter <span class="hlt">radar</span> applications, and looks at some future millimeter <span class="hlt">radar</span> systems. The coming millimeter <span class="hlt">radars</span> include radiometric seekers, radiometers, and high resolution <span class="hlt">radar</span> for satellite identification. Important problems to be resolved before millimeter <span class="hlt">radars</span> can be put into production include component capability; <span class="hlt">radar</span></p> <div class="credits"> <p class="dwt_author">S. L. Johnston</p> <p class="dwt_publisher"></p> <p class="publishDate">1977-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">77</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/896420"> <span id="translatedtitle">Development of a 2D Vlasov Solver for Longitudinal BeamDynamics in <span class="hlt">Single-Pass</span> Systems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Direct numerical methods for solving the Vlasov equation offer some advantages over macroparticle simulations, as they do not suffer from the numerical noise inherent in using a number of macroparticles smaller than the bunch population. Unfortunately these methods are more time-consuming and generally considered impractical in a full 6D phase space. However, in a lower-dimension phase space they may become attractive if the beam dynamics is sensitive to the presence of small charge-density fluctuations and a high resolution is needed. In this paper we present a 2D Vlasov solver for studying the longitudinal beam dynamics in <span class="hlt">single-pass</span> systems of interest for X-FEL's, where characterization of the microbunching instability is of particular relevance. The solver includes a model to account for the smearing effect of a finite horizontal emittance on microbunching. We explore the effect of space charge and coherent synchrotron radiation (CSR). The numerical solutions are compared with results from linear theory and good agreement is found in the regime where linear theory applies.</p> <div class="credits"> <p class="dwt_author">Venturini, M.; Warnock, R.; Zholents, A.; /SLAC</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-12-12</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">78</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/106527"> <span id="translatedtitle">Evaluation of the <span class="hlt">single-pass</span> flow-through test to support a low-activity waste specification</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A series of <span class="hlt">single-pass</span> flow-through (SPFT) tests was performed on five reference low-activity waste glasses and a reference glass from the National Institute of Standards and Technology to support a product specification for low-activity waste (LAW) forms. The results showed that the SPFT test provides a means to quantitatively distinguish among LAW glass forms in terms of their forward reaction rate at a given temperature and solution pH. Two of the test glasses were also subjected to SPFT testing at Argonne National Laboratory (ANL). Forward reaction rate constants calculated from the ANL test data were 100 to over 1,000 times larger than the values obtained from the SPFT tests conducted at PNL. An analysis of the ANL results showed that they were inconsistent with independent measurements done on glasses of similar composition, the known pH-dependence of the forward rate, and with the results from low surface-area-to-volume, short duration product consistency tests. Because the data set obtained from the SPFT tests done at PNL was consistent with each of these same factors, a detailed examination of the test procedures used at both laboratories was performed to determine the cause(s) of the discrepancy. The omission of background subtraction in the data analysis procedure and the short-duration (on the order of hours) of the ANL tests are factors that may have significantly affected the calculated rates.</p> <div class="credits"> <p class="dwt_author">McGrail, B.P. [Pacific Northwest Lab., Richland, WA (United States); Peeler, D.K. [Westinghouse Savannah River Co., Aiken, SC (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">79</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2928426"> <span id="translatedtitle">Immiscible Phase Nucleic Acid Purification Eliminates PCR Inhibitors with a <span class="hlt">Single</span> <span class="hlt">Pass</span> of Paramagnetic Particles through a Hydrophobic Liquid</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Extraction and purification of nucleic acids from complex biological samples for PCR are critical steps because inhibitors must be removed that can affect reaction efficiency and the accuracy of results. This preanalytical processing generally involves capturing nucleic acids on microparticles that are then washed with a series of buffers to desorb and dilute out interfering substances. We have developed a novel purification method that replaces multiple wash steps with a <span class="hlt">single</span> <span class="hlt">pass</span> of paramagnetic particles (PMPs) though an immiscible hydrophobic liquid. Only two aqueous solutions are required: a lysis buffer, in which nucleic acids are captured on PMPs, and an elution buffer, in which they are released for amplification. The PMPs containing the nucleic acids are magnetically transported through a channel containing liquid wax that connects the lysis chamber to the elution chamber in a specially designed cartridge. Transporting PMPs through the immiscible phase yielded DNA and RNA as pure as that obtained after extensive wash steps required by comparable purification methods. Our immiscible-phase process has been applied to targets in whole blood, plasma, and urine and will enable the development of faster and simpler purification systems.</p> <div class="credits"> <p class="dwt_author">Sur, Kunal; McFall, Sally M.; Yeh, Emilie T.; Jangam, Sujit R.; Hayden, Mark A.; Stroupe, Stephen D.; Kelso, David M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">80</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21091350"> <span id="translatedtitle"><span class="hlt">Single-Pass</span> Percutaneous Liver Biopsy for Diffuse Liver Disease Using an Automated Device: Experience in 154 Procedures</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Purpose: To describe our experience with ultrasound (US)-guided percutaneous liver biopsies using the INRAD 18G Express core needle biopsy system.Methods: One hundred and fifty-four consecutive percutaneous core liver biopsy procedures were performed in 153 men in a single institution over 37 months. The medical charts, pathology reports, and radiology files were retrospectively reviewed. The number of needle passes, type of guidance, change in hematocrit level, and adequacy of specimens for histologic analysis were evaluated.Results: All biopsies were performed for histologic staging of chronic liver diseases. The majority of patients had hepatitis C (134/153, 90.2%). All patients were discharged to home after 4 hr of postprocedural observation. In 145 of 154 (94%) biopsies, a single needle pass was sufficient for diagnosis. US guidance was utilized in all but one of the procedures (153/154, 99.4%). The mean hematocrit decrease was 1.2% (44.1-42.9%). Pain requiring narcotic analgesia, the most frequent complication, occurred in 28 of 154 procedures (18.2%). No major complications occurred. The specimens were diagnostic in 152 of 154 procedures (98.7%).Conclusions: <span class="hlt">Single-pass</span> percutaneous US-guided liver biopsy with the INRAD 18G Express core needle biopsy system is safe and provides definitive pathologic diagnosis of chronic liver disease. It can be performed on an outpatient basis. Routine post-biopsy monitoring of hematocrit level in stable, asymptomatic patients is probably not warranted.</p> <div class="credits"> <p class="dwt_author">Rivera-Sanfeliz, Gerant, E-mail: gerantrivera@ucsd.edu; Kinney, Thomas B.; Rose, Steven C.; Agha, Ayad K.M.; Valji, Karim; Miller, Franklin J.; Roberts, Anne C. [UCSD Medical Center, Department of Radiology (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-06-15</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_3");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a style="font-weight: bold;">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_5");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_4 div --> <div id="page_5" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_4");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a style="font-weight: bold;">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_6");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">81</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/6628013"> <span id="translatedtitle"><span class="hlt">Single-pass</span> continuous-flow leach test of PNL 76-68 glass: some selected Bead Leach I results</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A <span class="hlt">single-pass</span> continuous-flow leach test of PNL 76-68 glass beads (7 mm dia) was concluded after 420 days of uninterrupted operation. Variables included in the experimental matrix were flow-rate, leachant composition, and temperature. Analysis was conducted on all leachate samples for /sup 237/Np and /sup 239/Pu as well as a number of nonradioactive elements. Results indicated that flow-rate and leachant systematically affected the leach rate, but only slightly. Temperature effects were significant. Plutonium leach rate was lower at higher temperature suggesting that Pu sorption onto the beads was enhanced at the higher temperature. The range of leach rates for all analyzed elements (except Pu), at both temperature, at all three flow rates, and with all three leachant compositions varied only three orders of magnitude. The range of variables used in this experiment covered those expected in many proposed repository environments. The preliminary interpretation of the results also indicated that matrix dissolution may be the dominant leaching mechanism, at least for Np in bicarbonate leachant. Regardless of the leaching mechanism the importance of this study is that it bounds the effects of repository environments when the ground water is oxidizing and when it doesn't reach the waste form until the waste has cooled to ambient rock temperature.</p> <div class="credits"> <p class="dwt_author">Coles, D.G.</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-01-22</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">82</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013ApPhL.103n1107B"> <span id="translatedtitle">Single-frequency blue light generation by <span class="hlt">single-pass</span> sum-frequency generation in a coupled ring cavity tapered laser</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A generic approach for generation of tunable single frequency light is presented. 340 mW of near diffraction limited, single-frequency, and tunable blue light around 459 nm is generated by sum-frequency generation (SFG) between two tunable tapered diode lasers. One diode laser is operated in a ring cavity and another tapered diode laser is <span class="hlt">single-passed</span> through a nonlinear crystal which is contained in the coupled ring cavity. Using this method, the <span class="hlt">single-pass</span> conversion efficiency is more than 25%. In contrast to SFG in an external cavity, the system is entirely self-stabilized with no electronic locking.</p> <div class="credits"> <p class="dwt_author">Bjarlin Jensen, Ole; Michael Petersen, Paul</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">83</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/15122770"> <span id="translatedtitle">In vitro comparison of the molecular adsorbent recirculation system (MARS) and <span class="hlt">single-pass</span> albumin dialysis (SPAD).</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The detoxification capacities of <span class="hlt">single-pass</span> albumin dialysis (SPAD), the molecular adsorbents recirculation system, (MARS) and continuous veno-venous hemodiafiltration (CVVHDF) were compared in vitro. In each experiment 4,100 mL of toxin-loaded human plasma was processed for 6.5 hours. MARS treatment (n = 6) was undertaken in combination with CVVHDF. For SPAD (n = 6) and CVVHDF (n = 6) a high-flux hollow fiber hemodiafilter (identical to the MARS filter) was used. Levels of ammonia, urea, creatinine, bilirubin, and bile acids were determined. Concentrations before and after application of detoxification procedures were expressed as differences and were compared using the Kruskal-Wallis test. Post hoc comparisons for pairs of groups were adjusted according to Bonferroni-Holm. Time, group, and interaction effects were tested using the nonparametric ANOVA model for repeated measurements. SPAD and CVVHDF induced a significantly greater reduction of ammonia levels than MARS. No significant differences were found among SPAD, MARS, and CVVHDF with respect to other water-soluble substances. SPAD induced a significantly greater reduction in bilirubin levels than MARS. Reductions in bile acid levels were similar for SPAD and MARS. When operating MARS in continuous veno-venous hemodialysis mode, as recommended by the manufacturer, no significant differences in the removal of bilirubin, bile acids, urea, and creatinine were found. However, MARS in continuous veno-venous hemodialysis mode was significantly less efficient in removing ammonia than MARS in CVVHDF mode. In conclusion, the detoxification capacity of SPAD is similar to or even greater than that of MARS. PMID:15122770</p> <div class="credits"> <p class="dwt_author">Sauer, Igor M; Goetz, Max; Steffen, Ingo; Walter, Gesa; Kehr, Daniel C; Schwartlander, Ruth; Hwang, Yoon J; Pascher, Andreas; Gerlach, Joerg C; Neuhaus, Peter</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">84</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/39294360"> <span id="translatedtitle">A High Speed Microwave <span class="hlt">Interferometer</span> used for Monitoring Stromboli Volcano</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This work reports on the results obtained with a high speed ground based <span class="hlt">radar</span> <span class="hlt">interferometer</span> applied to the monitoring of the explosive activity of Stromboli volcano, Italy. The sensor illuminated a few craters below the summit distinguishing among them according to their distances from the sensor. The sampling rate allowed tracking the craters' movements even while they were erupting providing</p> <div class="credits"> <p class="dwt_author">Linhsia Noferini; Daniele Mecatti; Giovanni Macaluso; Massimiliano Pieraccini; Carlo Atzeni; Maurizio Ripepe</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">85</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55660619"> <span id="translatedtitle"><span class="hlt">Interferometer</span> studies of equatorial F region irregularities and drifts</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A <span class="hlt">radar</span> <span class="hlt">interferometer</span> technique developed at Jicamarca, Peru and first used to study electrojet irregularities has now been used successfully to study plasma turbulence in the equatorial F region. First results have shown that the most turbulent echoes appear to come from a region that extends for tens of kilometers in altitude but for only a kilometer or less in</p> <div class="credits"> <p class="dwt_author">E. Kudeki; B. G. Fejer; D. T. Farley; H. M. Ierkic</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">86</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007AGUFMIN23B..03M"> <span id="translatedtitle">The Glacier and Ice Sheet Topography <span class="hlt">Interferometer</span>: An Update on a Unique Sensor for High Accuracy Swath Mapping of Land Ice</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We discuss the innovative concept and technology development of a Ka-band (35 GHz) <span class="hlt">radar</span> for mapping the surface topography of glaciers and ice sheets. The "Glacier and Land Ice Surface Topography <span class="hlt">Interferometer</span>" (GLISTIN) is a <span class="hlt">single-pass</span>, single platform interferometric synthetic aperture <span class="hlt">radar</span> (InSAR) with an 8mm wavelength, which minimizes snow penetration yet remains relatively impervious to atmospheric attenuation. Such a system has the potential for delivering topographic maps at high spatial resolution, high vertical accuracy, independent of cloud cover, with a subseasonal update and would greatly enhance current observational and modeling capabilities of ice mass-balance and glacial retreat. To enable such measurements, a digitally beamformed antenna array is utilized to provide a wide measurement swath at a technologically feasible transmit power. To prove this concept and advance the technology readiness of this design we are currently funded by the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP) to build and test a 1m x 1m digitally-beamformed (DBF) Ka-band slotted waveguide antenna with integrated digital receivers. This antenna provides 16 simultaneous receive beams, effectively broadening the swath without reducing receive antenna gain. The implementation of such a large aperture at Ka-band presents many design, manufacturing and calibration challenges which are addressed as part of this IIP. The integrated DBF array will be fielded at the Jet Propulsion Laboratory's antenna range to demonstrate the overall calibration, beamforming and interferometric performance through creation of topographic imagery of the local Arroyo Seco. Currently entering the third year of the program, we will overview the system concept, array implementation and status of the technology. While the IIP addresses the development of the major technology challenges, an additional effort will demonstrate the phenomenology of the measurement by adapting the NASA ESTO-funded Uninhabited Aerial Vehicle - Synthetic Aperture <span class="hlt">Radar</span> (UAVSAR) system for Ka-band <span class="hlt">single-pass</span> interferometry. The conversion to Ka-Band will utilize the modular UAVSAR system originally designed for L-Band operation, retaining the <span class="hlt">radar</span> control, data acquisition and processing infrastructure and requiring only minor pod and RF modifications. We will fly the Ka-Band <span class="hlt">interferometer</span> aboard the UAVSAR platform over regions of Greenland, flying a grid over Jakobshavn glacier, then a transect from the coast to Swiss Camp ending at Greenland's Summit. Over a period of 4-5 weeks at the beginning of the melt season, these flight missions will be repeated in different snow/ice conditions. The flight data will be compared with airborne laser altimetry (Airborne Topographic Mapper lidar instrument, NASA GSFC/Wallops), field observations (GPS data at Swiss Camp, Summit), and climate data from the Automatic Weather Station (Colorado University) network (snowfall, corrected for densification) to estimate penetration and produce topographic surface maps. Topography is an essential piece of information for glaciology and a high-quality topographic map (tens of cm height accuracy over 10m pixels) will be produced. The experiment will pave the way to making more topographic products available to glaciologists and aid in the design a spaceborne mission capable of delivering similar products at the continental scale.</p> <div class="credits"> <p class="dwt_author">Moller, D.; Heavey, B.; Hensley, S.; Hodges, R.; Rengarajan, S.; Rignot, E.; Sadowy, G.; Simard, M.; Zawadzki, M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">87</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/336766"> <span id="translatedtitle">The Palomar Testbed <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The Palomar Testbed <span class="hlt">Interferometer</span> (PTI) is a long-baseline infrared <span class="hlt">interferometer</span> located at Palomar Observatory, California. It was built as a testbed for interferometric techniques applicable to the Keck <span class="hlt">Interferometer</span>. First fringes were obtained in 1995 July. PTI implements a dual-star architecture, tracking two stars simultaneously for phase referencing and narrow-angle astrometry. The three fixed 40 cm apertures can be combined</p> <div class="credits"> <p class="dwt_author">J. Kent Wallace; Andrew F. Boden; M. Mark Colavita; Philip J. Dumont; Yekta Gursel; Braden E. Hines; C. Koresko; S. R. Kulkarni; Fabien Malbet; Dean Palmer; Xiaopei Pan; Michael Shao; Gautam Vasisht; Gerard T. van Belle; Jeffrey W. Yu</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">88</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/52665950"> <span id="translatedtitle">Keck <span class="hlt">Interferometer</span> nuller update</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The Keck <span class="hlt">Interferometer</span> combines the two 10 m Keck telescopes as a long baseline <span class="hlt">interferometer</span>, funded by NASA, as a joint development among the Jet Propulsion Laboratory, the W. M. Keck Observatory, and the Michelson Science Center. Since 2004, it has offered an H- and K-band fringe visibility mode through the Keck TAC process. Recently this mode has been upgraded</p> <div class="credits"> <p class="dwt_author">M. M. Colavita; E. Serabyn; A. J. Booth; S. L. Crawford; J. I. Garcia-Gathright; E. R. Ligon; B. L. Mennesson; C. G. Paine; P. L. Wizinowich; S. Ragland; E. C. Appleby; B. C. Berkey; A. Cooper; W. Dahl; J. T. Gathright; M. A. Hrynevych; D. W. Medeiros; D. Morrison; T. Panteleeva; B. Smith; K. R. Summers; K. Tsubota; C. Tyau; E. Wetherell; J. M. Woillez; R. L. Akeson; R. Millan-Gabet; C. Felizardo; C. D. Koresko; J. S. Herstein</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">89</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011ApPhB.105..575P"> <span id="translatedtitle">A precise and wide-dynamic-range displacement-measuring homodyne quadrature laser <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We present a fast, displacement-measuring, <span class="hlt">single-pass</span>, two-detector homodyne quadrature laser <span class="hlt">interferometer</span> and compare its performance with an arm-compensated, proportional, integral-derivative-controlled Michelson <span class="hlt">interferometer</span>. Special attention is given to the extension of the dynamic range. The wide dynamic range is achieved by an accurate fringe subdivision based on an enhanced ellipse-specific fitting of the scattered Lissajous curve and by increasing the total displacement using the quadrature-detection technique. The common periodic deviations, i.e., the unequal AC amplitudes, the DC offsets, and the lack of quadrature are determined and reduced by data processing based on an ellipse-specific, least-squares fitting to obtain nanometric accuracy. The performance of the described <span class="hlt">interferometer</span> is demonstrated through the measurement of high-amplitude and high-frequency laser-induced ultrasound.</p> <div class="credits"> <p class="dwt_author">Požar, T.; Gregor?i?, P.; Možina, J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">90</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/6612423"> <span id="translatedtitle">A <span class="hlt">single-pass</span> free-electron laser for soft x-rays with wavelengths less than or equal to 10 nm</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We consider a <span class="hlt">single-pass</span> FEL amplifier, driven by an rf-linac followed by a damping ring for reduced emittance, for use in generating intense coherent light at wavelengths <10 nm. The dependence of the optical gain on electron beam quality, studied with the 3-D FEL simulation code FELEX, is given and related to the expected power of self-amplified spontaneous emission. Design issues for the damping ring to achieve the required electron beam quality are discussed.</p> <div class="credits"> <p class="dwt_author">Goldstein, J.C.; Wang, T.F.; Newnam, B.E.; McVey, B.D.</p> <p class="dwt_publisher"></p> <p class="publishDate">1987-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">91</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/51749410"> <span id="translatedtitle">The meridional thermospheric neutral wind measured by <span class="hlt">radar</span> and optical techniques in the auroral region</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The theory and results of <span class="hlt">radar</span> and Fabry-Perot <span class="hlt">interferometer</span> scans of meridional winds are presented. The <span class="hlt">radar</span> data were taken from Chatinika, AK, and the interferometry from the Michigan Airglow Observatory. An analytical model accounted for the effects of atomic and molecular ions on the <span class="hlt">radar</span> signals, which were directed at the magnetic zenith. The interferometric data were gathered at</p> <div class="credits"> <p class="dwt_author">V. B. Wickwar; J. W. Meriwether Jr.; P. B. Hays; A. F. Nagy</p> <p class="dwt_publisher"></p> <p class="publishDate">1984-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">92</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA007651"> <span id="translatedtitle">Passive <span class="hlt">Radar</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The basic ideas and concepts of one of the newest branches of <span class="hlt">radar</span>, that of passive <span class="hlt">radar</span>, are discussed. A great deal of attention is devoted to questions of the use of passive <span class="hlt">radar</span> by the armed forces. The physical fundamentals of passive <span class="hlt">radar</span>, and t...</p> <div class="credits"> <p class="dwt_author">A. G. Nikolaev S. V. Pertsov</p> <p class="dwt_publisher"></p> <p class="publishDate">1975-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">93</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/details.jsp?query_id=0&page=0&ostiID=372585"> <span id="translatedtitle">Phase shifting diffraction <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">An <span class="hlt">interferometer</span> which has the capability of measuring optical elements and systems with an accuracy of {lambda}/1000 where {lambda} is the wavelength of visible light. Whereas current <span class="hlt">interferometers</span> employ a reference surface, which inherently limits the accuracy of the measurement to about {lambda}/50, this <span class="hlt">interferometer</span> uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This <span class="hlt">interferometer</span> is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms. 8 figs.</p> <div class="credits"> <p class="dwt_author">Sommargren, G.E.</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-08-29</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">94</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/details.jsp?query_id=0&page=0&ostiID=864236"> <span id="translatedtitle">Dual surface <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">A double-pass <span class="hlt">interferometer</span> is provided which allows direct measurement of relative displacement between opposed surfaces. A conventional plane mirror <span class="hlt">interferometer</span> may be modified by replacing the beam-measuring path cube-corner reflector with an additional quarter-wave plate. The beam path is altered to extend to an opposed plane mirrored surface and the reflected beam is placed in interference with a retained reference beam split from dual-beam source and retroreflected by a reference cube-corner reflector mounted stationary with the <span class="hlt">interferometer</span> housing. This permits direct measurement of opposed mirror surfaces by laser interferometry while doubling the resolution as with a conventional double-pass plane mirror laser <span class="hlt">interferometer</span> system.</p> <div class="credits"> <p class="dwt_author">Pardue, Robert M. (Knoxville, TN); Williams, Richard R. (Oak Ridge, TN)</p> <p class="dwt_publisher"></p> <p class="publishDate">1982-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">95</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/details.jsp?query_id=0&page=0&ostiID=6086986"> <span id="translatedtitle">Dual surface <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">A double-pass <span class="hlt">interferometer</span> is provided which allows direct measurement of relative displacement between opposed surfaces. A conventional plane mirror <span class="hlt">interferometer</span> may be modified by replacing the beam-measuring path cube-corner reflector with an additional quarterwave plate. The beam path is altered to extend to an opposed plane mirrored surface and the reflected beam is placed in interference with a retained reference beam split from dual-beam source and retroreflected by a reference cube-corner reflector mounted stationary with the <span class="hlt">interferometer</span> housing. This permits direct measurement of opposed mirror surfaces by laser interferometry while doubling the resolution as with a conventional double-pass plane mirror laser <span class="hlt">interferometer</span> system.</p> <div class="credits"> <p class="dwt_author">Pardue, R.M.; Williams, R.R.</p> <p class="dwt_publisher"></p> <p class="publishDate">1980-09-12</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">96</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010AGUFM.C41A0513M"> <span id="translatedtitle">High-precision Ice Surface Topography Mapping Using <span class="hlt">Radar</span> Interferometry</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In May 2009 a new <span class="hlt">radar</span> technique for mapping ice surface topography was demonstrated in a Greenland campaign as part of the NASA International Polar Year activities. This was achieved with the airborne Glacier and Ice Surface Topography <span class="hlt">Interferometer</span> (GLISTIN-A): a 35.6 GHz <span class="hlt">single-pass</span> <span class="hlt">interferometer</span>. Although the technique of using <span class="hlt">radar</span> interferometry for mapping terrain has been demonstrated before, this is the first such application at millimeter-wave frequencies. Instrument performance indicates swath widths over the ice between 5-7km, with height precisions ranging from 30cm-3m at a posting of 3m x 3m. However, for this application the electromagnetic wave will penetrate an unknown amount into the snow cover thus producing an effective bias that must be calibrated. To evaluate this, GLISTIN-A flew a coordinated collection with the NASA Wallops Airborne Topographic Mapper (ATM) on a transect from Greenland’s Summit to its West coast. Two field calibration sites were established at Colorado Institute for Research in Environmental Science’s Swiss Camp and the National Science Foundation’s Summit station. Additional collections entailed flying a mosaic over Jakobshavn glacier which was repeated after 6 days to reveal surface dynamics. Through detailed calibration and inter-sensor comparisons we were able to observe penetration biases and compare them with theoretical expectations. We also demonstrated GLISTIN-A’s capability to measure the topography of large glacier systems in a seamless fashion and accurately measuring volume changes with a high level of spatial detail. In particular, repeating the airborne campaigns to observe elevation changes over time will allow very accurate volume change measurements. Not only is this very important for mass balance studies to have a precise mass-loss estimate, but the spatial pattern can reveal ice dynamics effects and surface mass balance effects. In this manner a high resolution, high-precision topographic mapping capability is an ideal complement to the ICESat, ICESat II and Cryosat altimeters. Interpolating between the high-accuracy elevation profiles from altimeters such as the ATM or ICESat II with the high-resolution GLISTIN-A swath will enable detailed ice-surface topography maps and extended spatial coverage. The result is the potential for higher fidelity mass-balance estimates and improved observational coverage. Upgrades are currently underway to improve the performance and portability of GLISTIN-A such that, onboard a long-range aircraft this <span class="hlt">radar</span> can map Greenland’s significant glaciers in a few days. The upgraded GLISTIN-A will be compatible with GlobalHawk installation making, Antarctica basin and coastal mapping feasible. GLISTIN will make more topographic products available to glaciologists, initially through dedicated airborne campaigns or ultimately, perhaps, as a satellite mission.</p> <div class="credits"> <p class="dwt_author">Moller, D.; Hensley, S.; Michel, T.; Rignot, E. J.; Simard, M.; Krabill, W. B.; Sonntag, J. G.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">97</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA007438"> <span id="translatedtitle">Passive <span class="hlt">Radar</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">This book sets forth in brief the physical principles of passive <span class="hlt">radar</span>, describes the functional diagrams and circuit peculiarities of the apparatus, and offers recommendations for modifying <span class="hlt">radar</span> receivers to adapt them for receiving natural radio-freque...</p> <div class="credits"> <p class="dwt_author">A. G. Nikolaev S. V. Pertsov</p> <p class="dwt_publisher"></p> <p class="publishDate">1975-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">98</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/12578212"> <span id="translatedtitle">A comparative study of anaerobic digestion of food waste in a <span class="hlt">single</span> <span class="hlt">pass</span>, a leachate recycle and coupled solid/liquid reactors.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">A <span class="hlt">single</span> <span class="hlt">pass</span> reactor (R1), a leachate recycle reactor (R2) and a coupled solid/liquid bioreactor (R3-Rm) for anaerobic digestion of food waste were comparatively investigated in terms of digestion process and treatment efficiency. The coupled solid/liquid bioreactor is an enhanced two-phase system and distinctive from a traditional two-phase process with an upflow anaerobic sludge blanket (UASB) reactor as the methanogenic phase and a circulation of treated leachate between the acidification and methanogenic phases. In comparison with R1 and R2, R3-Rm enhanced the digestion process and increased the methane content of biogas. 100% of the R3-Rm methane yield was from the methanogenic phase with average methane content of 71%. The significant enhancement was also confirmed by the removal of 79% of total organic carbon (TOC), 60% of volatile solids (VS) and 80% of total COD in 12 days running of R3-Rm. However, no active methane fermentation was detected in R1 and R2 during 60 days operation. The results in this laboratory-scale study show that the rapid accumulation of volatile fatty acids (VFAs) due to the rapid acidification of food waste inhibits the development of effective methane fermentation in <span class="hlt">single</span> <span class="hlt">pass</span> and leachate recycle reactors. The coupled solid/liquid bioreactor is more efficient in converting food waste into methane and carbon dioxide. PMID:12578212</p> <div class="credits"> <p class="dwt_author">Xu, H L; Wang, J Y; Zhang, H; Tay, J H</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">99</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/4546552"> <span id="translatedtitle">An airborne pod-mounted dual beam <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Dual beam <span class="hlt">interferometer</span> (DBI) has been developed by the University of Massachusetts (UMass) to study ocean surface waves and currents in coastal regions. This airborne <span class="hlt">radar</span> operates at C-band (5.3 GHz) with a bandwidth of 25 MHz and VV polarization. DBI consists of two pairs of microstrip patch array antennas, one squinted 20deg forward of broadside and the other 20deg</p> <div class="credits"> <p class="dwt_author">Dragana Perkovic; Stephen J. Frasier; Russell Tessier; Mark A. Sletten; Jakov V. Toporkov</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">100</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/6836889"> <span id="translatedtitle">PDX multichannel <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A 10 channel, 140 GHz homodyne <span class="hlt">interferometer</span> is described for use on PDX. One feature of this <span class="hlt">interferometer</span> is the separation of the signal source and electronics from the power splitters, delay line, and receiving systems. The latter is situated near the upper and lower vacuum ports between the toroidal field magnets. A second feature is the signal stabilization of the EIO source by means of an AFC system. The complete <span class="hlt">interferometer</span> is described including block diagrams, circuit diagrams, test data, and magnetic field test conducted on the preamplifiers, microwave diodes, isolators, etc., to determine the extent of magnetic shielding required. The description of the tracking filters and digital phase display circuit is referenced to accompanying reports.</p> <div class="credits"> <p class="dwt_author">Bitzer, R.; Ernst, W.; Cutsogeorge, G.</p> <p class="dwt_publisher"></p> <p class="publishDate">1980-10-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_4");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a style="font-weight: bold;">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_6");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_5 div --> <div id="page_6" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_5");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a style="font-weight: bold;">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_7");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">101</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2003SPIE.4838.1246V"> <span id="translatedtitle">Keck <span class="hlt">interferometer</span> autoaligner</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A key thrust of NASA's Origins program is the development of astronomical <span class="hlt">interferometers</span>. Pursuing this goal in a cost-effective and expedient manner from the ground has led NASA to develop the Keck <span class="hlt">Interferometer</span>, which saw first fringes between the twin 10m Keck telescopes in March of 2001. In order to enhance the imaging potential of this facility, and to add astrometric capabilities for the detection of giant planets about nearby stars, four 1.8 m 'outrigger' telescopes may be added to the <span class="hlt">interferometer</span>. Robust performance of the multi-aperture instrument will require precise alignment of the large number of optical elements found in the six optical beamtrains spread about the observatory site. The requirement for timely and reliable alignments dictated the development of an automatic alignment system for the Keck <span class="hlt">Interferometer</span>. The autoaligner consists of swing-arm actuators that insert light-emitting diodes on the optical axis at the location of each optical element, which are viewed by a simple fixed-focus CCD camera at the end of the beamtrain. Sub-pixel centroiding is performed upon the slightly out-of-focus target spots using images provided by a frame grabber, providing steering information to the two-axis actuated optical elements. Resulting mirror-to-mirror alignments are good to within 2 arcseconds, and trimming the alignment of a full beamtrain is designed to take place between observations, within a telescope repointing time. The interactions of the autoaligner with the <span class="hlt">interferometer</span> delay lines and coude trains are discussed in detail. The overall design of the <span class="hlt">interferometer</span>'s autoaligner system is presented, examining the design philosophy, system sequencing, optical element actuation, and subsystem co-alignment, within the context of satisfying performance requirements and cost constraints.</p> <div class="credits"> <p class="dwt_author">van Belle, Gerard T.; Colavita, M. Mark; Ligon, Edgar R., III; Moore, James D.; Palmer, Dean L.; Reder, Leonard J.; Smythe, Robert F.</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-02-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">102</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1985ESASP.226...95A"> <span id="translatedtitle">TRIO <span class="hlt">interferometer</span> positioning</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The high accuracy positioning of each of the three satellites of the TRIO <span class="hlt">interferometer</span>, with respect to the others and to the reference stars, is discussed. Based on ground <span class="hlt">interferometer</span> experience, strategy guidelines are presented with related recommendations for spacecraft design. After star pointing, the two telescopes are aligned with respect to the central station so that the star images are within the central station field of view while optical path difference is smaller than the coherence length. Fine guidance is obtained from image superimposition on the central station focal plane, and from fringe contrast measurement.</p> <div class="credits"> <p class="dwt_author">Authier, B.</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-04-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">103</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/49451289"> <span id="translatedtitle">Intestinal absorption and intestinal lymphatic transport of sirolimus from self-microemulsifying drug delivery systems assessed using the <span class="hlt">single-pass</span> intestinal perfusion (SPIP) technique and a chylomicron flow blocking approach: Linear correlation with oral bioavailabilities in rats</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This work aims to investigate the impact of different amount of oil or surfactant included in self-microemulsifying drug delivery systems on the intestinal lymphatic transport of sirolimus using the <span class="hlt">single-pass</span> intestinal perfusion (SPIP) technique and a chylomicron flow blocking approach. Male Sprague-Dawley rats were pretreated intraperitoneally with 3.0mg\\/kg cycloheximide or saline. One hour later, <span class="hlt">single-pass</span> intestinal perfusion experiments in jejunum</p> <div class="credits"> <p class="dwt_author">Minghui Sun; Xuezhen Zhai; Kewen Xue; Lei Hu; Xiangliang Yang; Gao Li; Luqin Si</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">104</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1990AdSpR..10..193A"> <span id="translatedtitle">The meteor <span class="hlt">radar</span> as a tool for upper atmosphere research</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Meteor <span class="hlt">radars</span> provide measurements of the upper mesosphere-lower thermosphere neutral wind field by using the reflection of electromagnetic waves from meteor trails. These <span class="hlt">radars</span> are relatively inexpensive and provide an excellent means of monitoring the mean winds and tides in the 80-100 km region. Recently new techniques have been developed to detect meteor echoes from other ground-based <span class="hlt">radar</span> systems operating in the HF/VHF frequency range. The meteor echo information augments the data that is routinely collected by these <span class="hlt">radars</span>. In this paper I will review the meteor <span class="hlt">radar</span> technique and emphasize new methods of detection of meteor echoes on Mesosphere-Stratosphere-Troposphere (ST/MST) <span class="hlt">radars</span> and on the Imaging Doppler <span class="hlt">Interferometer</span> (IDI) <span class="hlt">radar</span>.</p> <div class="credits"> <p class="dwt_author">Avery, S. K.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">105</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=%22transducer%22&id=EJ891979"> <span id="translatedtitle">Ultrasonic <span class="hlt">Interferometers</span> Revisited</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">I have been tinkering with ultrasonic transducers once more. In earlier notes I reported on optics-like experiments performed with ultrasonics, described a number of ultrasonic <span class="hlt">interferometers</span>, and showed how ultrasonic transducers can be used for Fourier analysis. This time I became interested in trying the technique of using two detectors in…</p> <div class="credits"> <p class="dwt_author">Greenslade, Thomas B., Jr.</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">106</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=ultrasonic&id=EJ891979"> <span id="translatedtitle">Ultrasonic <span class="hlt">Interferometers</span> Revisited</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">|I have been tinkering with ultrasonic transducers once more. In earlier notes I reported on optics-like experiments performed with ultrasonics, described a number of ultrasonic <span class="hlt">interferometers</span>, and showed how ultrasonic transducers can be used for Fourier analysis. This time I became interested in trying the technique of using two detectors in…</p> <div class="credits"> <p class="dwt_author">Greenslade, Thomas B., Jr.</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">107</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.agu.org/journals/ja/v085/iA13/JA085iA13p08282/JA085iA13p08282.pdf"> <span id="translatedtitle">Images of Venus by Three-Station <span class="hlt">Radar</span> Interferometry—1977 Results</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">During the 1977 inferior conjunction of Venus, <span class="hlt">radar</span> observations were made using three receiving stations as a multiple <span class="hlt">interferometer</span>. Maps of surface reflectivity and altimetry were prepared from these observations. The new altimetry maps show considerable improvement in relation to many of the earlier maps made using the two-station <span class="hlt">interferometer</span>. In particular, there are consistent and explainable correlations between the</p> <div class="credits"> <p class="dwt_author">R. F. Jurgens; R. M. Goldstein; H. R. Rumsey; R. R. Green</p> <p class="dwt_publisher"></p> <p class="publishDate">1980-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">108</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23041884"> <span id="translatedtitle">Generation of 43 W of quasi-continuous 780 nm laser light via high-efficiency, <span class="hlt">single-pass</span> frequency doubling in periodically poled lithium niobate crystals.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">We demonstrate high-efficiency frequency doubling of the combined output of two 1560 nm 30 W fiber amplifiers via <span class="hlt">single</span> <span class="hlt">pass</span> through periodically poled lithium niobate (PPLN) crystals. The temporal profile of the 780 nm output is controlled by adjusting the relative phase between the seeds of the amplifiers. We obtain a peak power of 34 W of 780 nm light by passing the combined output through one PPLN crystal, and a peak power of 43 W by passing through two cascading PPLN crystals. This source provides high optical power, excellent beam quality and spectral purity, and agile frequency and amplitude control in a simple and compact setup, which is ideal for applications such as atom optics using Rb atoms. PMID:23041884</p> <div class="credits"> <p class="dwt_author">Chiow, Sheng-wey; Kovachy, Tim; Hogan, Jason M; Kasevich, Mark A</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-09-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">109</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010SPIE.7790E..15M"> <span id="translatedtitle">Self-calibrating lateral scanning white-light <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The concept of lateral scanning white-light <span class="hlt">interferometer</span> (LSWLI) has been introduced nearly a decade ago [1] as an alternative to the conventional white-light (WL) <span class="hlt">interferometers</span> [2-14], capable of improved speed and image stitching. The general principle of this type of measurement is shown in Figure 1. A conventional white light <span class="hlt">interferometer</span> is equipped with an XYZ stage which can perform an accurate lateral (XY) translation. The <span class="hlt">interferometer</span> objective is tilted with respect to this stage such that the zero optical path difference (OPD) makes an angle ? with respect to the direction of the translation. By convention, the tilt angle will be measured from the direction of the translation. For the case when this angle is different than zero, an object placed on the stage will present a specific fringe pattern whose density is dictated by the magnitude of the angle. In Figure 2, a linear fringe pattern obtained from a flat surface is shown. As the profiled object is translated at a constant speed, the CCD will record interference frames at a constant rate. Figure 3 shows how different pixels of the object (marked by up or down pointing arrows) will be recorded in consecutive frames during the object translation. In the case when the CCD frame rate and the stage speed are properly correlated, a given point of the object will be translated by exactly one pixel from one CCD frame to the other. The correlogram of each object point can thus be recovered by taking a "diagonal section" through the stack of recorded frames (Figure 4). Because during the scan the optical path difference of each point of the sample changes continuously, the LSWLI correlogram looks similar with its counterpart obtained by using WL <span class="hlt">interferometers</span>. As mentioned before, the LSWLI measurements allow for a continuous data acquisition process, eliminating thus the need for a cumbersome stitching procedure that must be done for large samples when measured by using a standard WL <span class="hlt">interferometer</span>. It also allows for a faster data acquisition and, in principle, it is possible for very large samples to be measured during a <span class="hlt">single</span> <span class="hlt">pass</span>.</p> <div class="credits"> <p class="dwt_author">Munteanu, Florin</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-08-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">110</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6969296"> <span id="translatedtitle">Evaluation of a potential generator-produced PET tracer for cerebral perfusion imaging: <span class="hlt">Single-pass</span> cerebral extraction measurements and imaging with radiolabeled Cu-PTSM</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Copper(II) pyruvaldehyde bis(N4-methylthiosemicarbazone) (Cu-PTSM), copper(II) pyruvaldehyde bis(N4-dimethylthiosemicarbazone) (Cu-PTSM2), and copper(II) ethylglyoxal bis(N4-methylthiosemicarbazone) (Cu-ETSM), have been proposed as PET tracers for cerebral blood flow (CBF) when labeled with generator-produced 62Cu (t1/2 = 9.7 min). To evaluate the potential of Cu-PTSM for CBF PET studies, baboon <span class="hlt">single-pass</span> cerebral extraction measurements and PET imaging were carried out with the use of 67Cu (t1/2 = 2.6 days) and 64Cu (t1/2 = 12.7 hr), respectively. All three chelates were extracted into the brain with high efficiency. There was some clearance of all chelates in the 10-50-sec time frame and Cu-PTSM2 continued to clear. Cu-PTSM and Cu-ETSM have high residual brain activity. PET imaging of baboon brain was carried out with the use of (64Cu)-Cu-PTSM. For comparison with the 64Cu brain image, a CBF (15O-labeled water) image (40 sec) was first obtained. Qualitatively, the H2(15)O and (64Cu)-Cu-PTSM images were very similar; for example, a comparison of gray to white matter uptake resulted in ratios of 2.42 for H2(15)O and 2.67 for Cu-PTSM. No redistribution of 64Cu was observed in 2 hr of imaging, as was predicted from the <span class="hlt">single-pass</span> study results. Quantitative determination of blood flow using Cu-PTSM showed good agreement with blood flow determined with H2(15)O. This data suggests that (62Cu)-Cu-PTSM may be a useful generator-produced radiopharmaceutical for blood flow studies with PET.</p> <div class="credits"> <p class="dwt_author">Mathias, C.J.; Welch, M.J.; Raichle, M.E.; Mintun, M.A.; Lich, L.L.; McGuire, A.H.; Zinn, K.R.; John, E.K.; Green, M.A. (Washington Univ. School of Medicine, St. Louis, MO (USA))</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">111</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1992STIA...9239830K"> <span id="translatedtitle"><span class="hlt">Radar</span> observables</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A comprehensive account is given of missile design considerations relevant to the prediction, control, and measurement of airframe <span class="hlt">radar</span> cross sections (RCSs), with a view to the minimization of missile observability. RCS reduction may proceed through airframe shaping to deflect incident <span class="hlt">radar</span> emissions, as well as through the use of <span class="hlt">radar</span>-absorbing surface materials and the devision of active <span class="hlt">radar</span> signal-cancellation methods; some combination of these is often required, due to the deficiencies of any one method. The interaction of all RCS-reduction methods with airframe aerodynamic-design criteria are stressed.</p> <div class="credits"> <p class="dwt_author">Knott, Eugene F.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">112</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009SPIE.7283E.123W"> <span id="translatedtitle">Dispersed Rayleigh <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In order to further improve the performance of Rayleigh <span class="hlt">Interferometer</span> (RI) used for measurement of gas/liquid index, a Dispersed Rayleigh <span class="hlt">Interferometer</span> (DRI), which uses a broadband source and disperses monochromatic interference pattern perpendicular to the direction of baseline, is proposed to expand measurement range and to acquire optical path difference dynamically by only one frame of interference pattern. At the same time, an algorithm used to analyse the interference pattern automatically is proposed. A DRI which uses a pair of transmissive phase plates used for generating optical path difference has been built up. The measurement range reaches 200?m, measurement error is less than 20nm and repeatability is better than 2nm in whole range. Good performance of DRI makes itself to be a suitable approach not only used in the conventional measurement of gas/quid index, but also in other aspects, for example, co-phasing of segmented mirrors for large telescopes.</p> <div class="credits"> <p class="dwt_author">Wang, Shanshan; Zhu, Qiudong; Cao, Genrui</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">113</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/details.jsp?query_id=0&page=0&ostiID=867880"> <span id="translatedtitle">Multipulsed dynamic moire <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">An improved dynamic moire <span class="hlt">interferometer</span> comprised of a lasing medium providing a plurality of beams of coherent light, a multiple q-switch producing multiple trains of 100,000 or more pulses per second, a combining means collimating multiple trains of pulses into substantially a single train and directing beams to specimen gratings affixed to a test material, and a controller, triggering and sequencing the emission of the pulses with the occurrence and recording of a dynamic loading event.</p> <div class="credits"> <p class="dwt_author">Deason, Vance A. (Idaho Falls, ID)</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">114</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1995SPIE.2329..379B"> <span id="translatedtitle">Holographic microscope <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A simple and easy to use holographic microscope <span class="hlt">interferometer</span> (HMI) for biological and material science applications is described. The unit is based on an ordinary microscope accomplished by He-Ne laser, several optical elements, a photothermoplastic (PTP) recorder, and a CCD-camera. Blood and plant cells, as well as internal solid bodies defect images, are demonstrated. Characteristics and application of the unit are discussed.</p> <div class="credits"> <p class="dwt_author">Babenko, Veronika A.; Konst, Elena V.; Konstantinov, Vladimir B.</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-02-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">115</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2002OptL...27.1153D"> <span id="translatedtitle">Coaxial Mirau <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We describe a new interferometric configuration for optical coherence tomography that is based on the Mirau <span class="hlt">interferometer</span>. It uses the photodetector included in a superluminescent diode package, which makes possible a highly miniaturized device. Other advantages of the configuration include its totally coaxial structure, confocal microscope operation, availability of the full working distance of the imaging objective, and no central obscuration. Fundamental characteristics such as resolution and dynamic range are discussed, and the result of measurement on a rough metallic surface is presented.</p> <div class="credits"> <p class="dwt_author">Dobroiu, Adrian; Sakai, Hiroshi; Ootaki, Hitoshi; Sato, Manabu; Tanno, Naohiro</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">116</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013pss1.book..241T"> <span id="translatedtitle">Optical and Infrared <span class="hlt">Interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Stellar <span class="hlt">interferometers</span> achieve limiting angular resolution inaccessible to evennext-generation single-aperture telescopes. Arrays of small or modest apertureshave achieved baselines exceeding 300 m producing submilliarcsecond resolutionsat visible and near-infrared wavelengths. The technical cost and challenge inbuilding interferometric arrays is substantial due to the very high toleranceimposed by optical physics on the precision of beam combination and optical pathlength matching for two or more telescopes. This chapter presents the basic theoryand overall design considerations for an <span class="hlt">interferometer</span> with an emphasis on thepractical aspects of constructing a working instrument that overcomes obstaclesimposed by the atmosphere, submicron path length matching requirements,limitations on number of telescopes and their layout, light losses throughmultiple reflections and transmissions necessary to superimpose telescopebeams in the beam-combining laboratory, and other realities of the art ofinterferometry. The basic design considerations for an <span class="hlt">interferometer</span> arelaid out starting with site selection and telescope placement and thenfollowed through to beam combination and measurement of interferometricvisibility and closure phase after the encountering of numerous subsystems byincoming wavefronts. These subsystems include active wavefront sensing fortip/tilt correction or even full-up adaptive optics, telescope design fordirecting collimated beams over large distances, diffraction losses, polarizationmatching, optical path length insertion and active compensation, correctionfor atmospheric refraction and differential dispersion in glass and air,separation of light into visible and near-infrared channels, alignment over longoptical paths, high-precision definition of the three-dimensional layout of aninterferometric array, and, finally, a variety of beam-combining schemes fromsimple two-way combiners to multitelescope imaging combiners in thepupil and image planes. Much has been learned from a modest but robustcollection of successful <span class="hlt">interferometers</span> over the last 25 years or so, andinterferometry is poised to become a mainstream technique for astrophysicalresearch.</p> <div class="credits"> <p class="dwt_author">ten Brummelaar, Theo A.; McAlister, Harold A.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">117</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008SPIE.7013E...9C"> <span id="translatedtitle">Keck <span class="hlt">Interferometer</span> nuller update</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The Keck <span class="hlt">Interferometer</span> combines the two 10 m Keck telescopes as a long baseline <span class="hlt">interferometer</span>, funded by NASA, as a joint development among the Jet Propulsion Laboratory, the W. M. Keck Observatory, and the Michelson Science Center. Since 2004, it has offered an H- and K-band fringe visibility mode through the Keck TAC process. Recently this mode has been upgraded with the addition of a grism for higher spectral resolution. The 10 um nulling mode, for which first nulling data were collected in 2005, completed the bulk of its engineering development in 2007. At the end of 2007, three teams were chosen in response to a nuller key science call to perform a survey of nearby stars for exozodiacal dust. This key science observation program began in Feb. 2008. Under NSF funding, Keck Observatory is leading development of ASTRA, a project to add dual-star capability for high sensitivity observations and dual-star astrometry. We review recent activity at the Keck <span class="hlt">Interferometer</span>, with an emphasis on the nuller development.</p> <div class="credits"> <p class="dwt_author">Colavita, M. M.; Serabyn, E.; Booth, A. J.; Crawford, S. L.; Garcia-Gathright, J. I.; Ligon, E. R.; Mennesson, B. L.; Paine, C. G.; Wizinowich, P. L.; Ragland, S.; Appleby, E. C.; Berkey, B. C.; Cooper, A.; Dahl, W.; Gathright, J. T.; Hrynevych, M. A.; Medeiros, D. W.; Morrison, D.; Panteleeva, T.; Smith, B.; Summers, K. R.; Tsubota, K.; Tyau, C.; Wetherell, E.; Woillez, J. M.; Akeson, R. L.; Millan-Gabet, R.; Felizardo, C.; Koresko, C. D.; Herstein, J. S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">118</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013PASP..125.1226C"> <span id="translatedtitle">The Keck <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The Keck <span class="hlt">Interferometer</span> (KI) combined the two 10 m W. M. Keck Observatory telescopes on Mauna Kea, Hawaii, as a long-baseline near- and mid-infrared <span class="hlt">interferometer</span>. Funded by NASA, it operated from 2001 until 2012. KI used adaptive optics on the two Keck telescopes to correct the individual wavefronts, as well as active fringe tracking in all modes for path-length control, including the implementation of cophasing to provide long coherent integration times. KI implemented high sensitivity fringe-visibility measurements at H (1.6 ?m), K (2.2 ?m), and L (3.8 ?m) bands, and nulling measurements at N band (10 ?m), which were used to address a broad range of science topics. Supporting these capabilities was an extensive <span class="hlt">interferometer</span> infrastructure and unique instrumentation, including some additional functionality added as part of the NSF-funded ASTRA program. This paper provides an overview of the instrument architecture and some of the key design and implementation decisions, as well as a description of all of the key elements and their configuration at the end of the project. The objective is to provide a view of KI as an integrated system, and to provide adequate technical detail to assess the implementation. Included is a discussion of the operational aspects of the system, as well as of the achieved system performance. Finally, details on V2 calibration in the presence of detector nonlinearities as applied in the data pipeline are provided.</p> <div class="credits"> <p class="dwt_author">Colavita, M. M.; Wizinowich, P. L.; Akeson, R. L.; Ragland, S.; Woillez, J. M.; Millan-Gabet, R.; Serabyn, E.; Abajian, M.; Acton, D. S.; Appleby, E.; Beletic, J. W.; Beichman, C. A.; Bell, J.; Berkey, B. C.; Berlin, J.; Boden, A. F.; Booth, A. J.; Boutell, R.; Chaffee, F. H.; Chan, D.; Chin, J.; Chock, J.; Cohen, R.; Cooper, A.; Crawford, S. L.; Creech-Eakman, M. J.; Dahl, W.; Eychaner, G.; Fanson, J. L.; Felizardo, C.; Garcia-Gathright, J. I.; Gathright, J. T.; Hardy, G.; Henderson, H.; Herstein, J. S.; Hess, M.; Hovland, E. E.; Hrynevych, M. A.; Johansson, E.; Johnson, R. L.; Kelley, J.; Kendrick, R.; Koresko, C. D.; Kurpis, P.; Le Mignant, D.; Lewis, H. A.; Ligon, E. R.; Lupton, W.; McBride, D.; Medeiros, D. W.; Mennesson, B. P.; Moore, J. D.; Morrison, D.; Nance, C.; Neyman, C.; Niessner, A.; Paine, C. G.; Palmer, D. L.; Panteleeva, T.; Papin, M.; Parvin, B.; Reder, L.; Rudeen, A.; Saloga, T.; Sargent, A.; Shao, M.; Smith, B.; Smythe, R. F.; Stomski, P.; Summers, K. R.; Swain, M. R.; Swanson, P.; Thompson, R.; Tsubota, K.; Tumminello, A.; Tyau, C.; van Belle, G. T.; Vasisht, G.; Vause, J.; Vescelus, F.; Walker, J.; Wallace, J. K.; Wehmeier, U.; Wetherell, E.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">119</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007AIPC..899..689Y"> <span id="translatedtitle">Vibration Free <span class="hlt">Interferometer</span> Mirror</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Optic tables may be an obstacle for the interferometric studies when they are exposed to mechanical vibrations in the particular frequency range. To reduce the mechanical noise, a moveable mirror of the FTIR spectrometer was used as an <span class="hlt">interferometer</span> mirror. The vibration response of this mirror was investigated with a fiber optic Fabry-Perot <span class="hlt">interferometer</span> that was built in our laboratory. The moveable mirror is mounted on a coil that is located between the permanent magnets. When the proper current is applied to the coil, the mirror becomes magnetically suspended and resistant to the mechanical vibrations. This work presents a non-contact vibration-monitoring technique with the extrinsic Fabry-Perot interferometric displacement sensor implemented using 4/125 ?m single-mode fiber with 3 dB fiber optic coupler. This device is based on a low finesse Fabry-Perot cavity which is formed by the end of a sensing optical fiber (fiber probe) and the magnetically-suspended mirror. The incoming light is emitted by a 660 nm laser diode. During the vibration test an ADC (NI 6070E) and a Labview software program were used. This technique helps to reduce the mechanical noise and to improve the stability of the <span class="hlt">interferometer</span>.</p> <div class="credits"> <p class="dwt_author">Yaltkaya, S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">120</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2004AAS...20518103L"> <span id="translatedtitle">The Antarctic Plateau <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The Antarctic Plateau <span class="hlt">Interferometer</span> (API) is an instrument concept capable of extensive unique discovery space science in a variety of areas including exoplanets, accretion, YSO's, and AGNs. To study exoplanets in the habitable zone, API would use three 2 meter class telescopes, high-dynamic range spectroscopy, and differential closure phase to achieve 10-5 contrast ratio measurements. API would achieve this performance using proven technology at the best accessible site on Earth for infrared interferometry. At Dome C Antarctica, the combination of low levels of atmospheric turbulence (resulting in the best seeing ever measured) and low thermal background enable an <span class="hlt">interferometer</span> with 2 m class telescopes to exceed substantially the performance of existing instruments. API will be packaged in shipping containers so that the instrument can be demonstrated on the sky in the northern hemisphere and then shipped, with a minimum of disassemble, to Dome C. The combination of using existing <span class="hlt">interferometer</span> technology (adapted to the Antarctic environment) and containerized packaging makes it possible to begin operation at Dome C in 5 years. In addition to delivering a high-impact science program, API could test instrument technology for space interferometry missions such as Darwin and TPFI.</p> <div class="credits"> <p class="dwt_author">Lloyd, J. P.; Swain, M.; van Belle, G. T.; Coudé du Foresto, V.; Walker, C. K.; Traub, W. A.; Storey, J. W. V.</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-12-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_5");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a style="font-weight: bold;">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_7");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_6 div --> <div id="page_7" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_6");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a style="font-weight: bold;">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_8");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">121</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60132783"> <span id="translatedtitle">The <span class="hlt">Single</span> <span class="hlt">Pass</span> Multicomponent Harvester</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The authors are solely responsible for the content of this technical presentation. The technical presentation does not necessarily reflect the official position of the American Society of Agricultural Engineers (ASAE), and its printing and distribution does not constitute an endorsement of views which may be expressed. Technical presentations are not subject to the formal peer review process by ASAE editorial</p> <div class="credits"> <p class="dwt_author">Reed Hoskinson; John R. Hess</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">122</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012EGUGA..14.4330S"> <span id="translatedtitle">Aperture Synthesis Imaging at the EISCAT Svalbard <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The EISCAT incoherent <span class="hlt">radar</span> on Svalbard has two dishes. In addition to this two dishes three smaller passive array antennas were built to attempt to implement <span class="hlt">radar</span> aperture synthesis imaging. Limited to measurements of coherent backscatter the primary science goal of this new receiver system is to study so called naturally enhanced ion acoustic lines. In order to compare <span class="hlt">radar</span> aperture synthesis images with optical data phase calibration of the <span class="hlt">interferometer</span> system is needed. We present the phase calibration of the Svalbard <span class="hlt">interferometer</span> system including the passive array antennas. The calibration was done using optical signatures of satellite transits and the coherent backscatter of the satellites. The optical signature provide accurate position of the satellites. Furthermore we will present sudo-3D aperture synthesis <span class="hlt">radar</span> images from first observations of satellites conducted with this system.</p> <div class="credits"> <p class="dwt_author">Schlatter, N. M.; Goodbody, B. C.; Grydeland, T.; Ivchenko, N.; Gustavsson, B.; Belyey, V.; Lanchester, B. S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-04-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">123</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/47015315"> <span id="translatedtitle">Doppler <span class="hlt">Radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper contains a discussion of the principle of operation of cw doppler search <span class="hlt">radar</span> systems and an analysis of their performance capabilities, with particular emphasis on the elimination of fixed targets. A comparison of these systems and MTI pulse <span class="hlt">radar</span> systems is made.</p> <div class="credits"> <p class="dwt_author">E. J. Barlow</p> <p class="dwt_publisher"></p> <p class="publishDate">1949-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">124</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=N9415894"> <span id="translatedtitle">TRMM <span class="hlt">Radar</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The results of a conceptual design study and the performance of key components of the Bread Board Model (BBM) of the Tropical Rainfall Measuring Mission (TRMM) <span class="hlt">radar</span> are presented. The <span class="hlt">radar</span>, which operates at 13.8 GHz and is designed to meet TRMM mission...</p> <div class="credits"> <p class="dwt_author">K. Okamoto</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">125</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/52878531"> <span id="translatedtitle">Determination of the thermospheric neutral wind from incoherent scatter <span class="hlt">radar</span> measurements</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Measurements made by the EISCAT UHF incoherent scatter <span class="hlt">radar</span> were used to derive thermospheric winds, which were compared to Fabry-Perot <span class="hlt">interferometer</span> measurements of the neutral wind made simultaneously. Lack of knowledge of the vertical component of the neutral wind (assumed to be zero) and the neutral gas temperature (MSIS model values assumed) produces large uncertainties in the <span class="hlt">radar</span> neutral wind.</p> <div class="credits"> <p class="dwt_author">I. Haeggstroem; J. Murdin; D. Rees</p> <p class="dwt_publisher"></p> <p class="publishDate">1984-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">126</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/56097102"> <span id="translatedtitle">Determination of the thermospheric neutral wind from incoherent scatter <span class="hlt">radar</span> measurements</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Measurements made by the European Incoherent Scatter facility (EISCAT) utrahigh frequency (UHF) incoherent scatter <span class="hlt">radar</span> are used to derive thermospheric winds. The formalism for the calculation of the F region neutral wind is given using the momentum and energy equations. The derived wind is compared to Fabry-Perot <span class="hlt">interferometer</span> measurements of the neutral wind made simultaneously. The uncertainties in the <span class="hlt">radar</span></p> <div class="credits"> <p class="dwt_author">Ingemar Haeggstroem; J. Murdin; D. Rees</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">127</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1997AnGeo..15.1099M"> <span id="translatedtitle">Comparisons between Canadian prairie MF <span class="hlt">radars</span>, FPI (green and OH lines) and UARS HRDI systems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Detailed comparisons have been completed between the MF <span class="hlt">radars</span> (MFR) in the Canadian prairies and three other systems: two ground-based Fabry-Perot <span class="hlt">interferometers</span> (FPI) and the UARS high resolution Doppler imager (HRDI) system. The <span class="hlt">radars</span> were at Sylvan Lake (52°N, 114</p> <div class="credits"> <p class="dwt_author">Meek, C. E.; Manson, A. H.; Burrage, M. D.; Garbe, G.; Cogger, L. L.</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">128</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.agu.org/journals/ja/v086/iA03/JA086iA03p01467/JA086iA03p01467.pdf"> <span id="translatedtitle"><span class="hlt">Radar</span> interferometry: A new technique for studying plasma turbulence in the ionosphere</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A new <span class="hlt">radar</span> <span class="hlt">interferometer</span> technique has been developed and used successfully at the Jicamarca Radio Observatory in Peru to study the strong nighttime plasma turbulence in the equatorial electrojet. The technique represents a major step forward in <span class="hlt">radar</span> probing of turbulent irregularities such as (but not limited to) those in the electrojet. In many situations it provides far more information</p> <div class="credits"> <p class="dwt_author">D.T. Farley; H.M. Ierkic; B.G. Fejer</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">129</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3267654"> <span id="translatedtitle">Association between a <span class="hlt">single-pass</span> whole-body computed tomography policy and survival after blunt major trauma: a retrospective cohort study</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Introduction <span class="hlt">Single-pass</span>, whole-body computed tomography (pan-scan) remains a controversial intervention in the early assessment of patients with major trauma. We hypothesized that a liberal pan-scan policy is mainly an indicator of enhanced process quality of emergency care that may lead to improved survival regardless of the actual use of the method. Methods This retrospective cohort study included consecutive patients with blunt trauma referred to a trauma center prior to (2000 to 2002) and after (2002 to 2007) the introduction of a liberal <span class="hlt">single-pass</span> pan-scan policy. The overall mortality between the two periods was compared and stratified according to the availability and actual use of the pan-scan. Logistic regression analysis was employed to adjust mortality estimates for demographic and injury-related independent variables. Results The study comprised 313 patients during the pre-pan-scan period, 223 patients after the introduction of the pan-scan policy but not undergoing a pan-scan and 608 patients undergoing a pan-scan. The overall mortality was 23.3, 14.8 and 7.9% (P < 0.001), respectively. By univariable logistic regression analysis, both the availability (odds ratio (OR) 0.57, 95% confidence interval (CI): 0.36 to 0.90) and the actual use of the pan-scan (OR 0.28, 95% CI: 0.19 to 0.42) were associated with a lower mortality. The final model contained the Injury Severity Score, the Glasgow Coma Scale, age, emergency department time and the use of the pan-scan. 2.7% of the explained variance in mortality was attributable to the use of the pan-scan. This contribution increased to 7.1% in the highest injury severity quartile. Conclusions In this study, a liberal pan-scan policy was associated with lower trauma mortality. The causal role of the pan-scan itself must be interpreted in the context of improved structural and process quality, is apparently moderate and needs further investigation with regard to the diagnostic yield and changes in management decisions. (The Pan-Scan for Trauma Resuscitation [PATRES] Study Group, ISRCTN35424832 and ISRCTN41462125)</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">130</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013ApPhL.102i2602M"> <span id="translatedtitle">Fully balanced heat <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A tunable and balanced heat <span class="hlt">interferometer</span> is proposed and analyzed. The device consists of two superconductors linked together to form a double-loop interrupted by three parallel-coupled Josephson junctions. Both superconductors are held at different temperatures, allowing the heat currents flowing through the structure to interfere. We demonstrate that thermal transport is coherently modulated through the application of a magnetic flux. Furthermore, such modulation can be tailored at will or even suppressed through the application of an extra control flux. Such a device allows for a versatile operation appearing as an attractive key to the onset of low-temperature coherent caloritronic circuits.</p> <div class="credits"> <p class="dwt_author">Martínez-Pérez, M. J.; Giazotto, F.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">131</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1465676"> <span id="translatedtitle">Digital elevation models of the Moon from Earth-based <span class="hlt">radar</span> interferometry</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Three-dimensional (3D) maps of the nearside and polar regions of the Moon can be obtained with an Earth-based <span class="hlt">radar</span> <span class="hlt">interferometer</span>. This paper describes the theoretical background, experimental setup, and processing techniques for a sequence of observations performed with the Goldstone Solar System <span class="hlt">Radar</span> in 1997. These data provide <span class="hlt">radar</span> imagery and digital elevation models of the polar areas and other</p> <div class="credits"> <p class="dwt_author">Jean-Luc Margot; Donald B. Campbell; Raymond F. Jurgens; Martin A. Slade</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">132</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/54462258"> <span id="translatedtitle">Keck <span class="hlt">Interferometer</span> nuller instrument performance</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The Keck <span class="hlt">Interferometer</span> combines the two 10 m Keck telescopes as a long baseline <span class="hlt">interferometer</span>. It is funded by NASA as a joint development among the Jet Propulsion Laboratory, the W. M. Keck Observatory, and the NASA Exoplanet Science Institute. In February 2008, the 10 um nulling mode began a 32 night observing program with three key science teams to</p> <div class="credits"> <p class="dwt_author">M. M. Colavita; E. Serabyn; S. Ragland; R. Millan-Gabet; R. L. Akeson</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">133</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=AD765363"> <span id="translatedtitle">Principals of <span class="hlt">Radar</span> and Meteorological <span class="hlt">Radar</span> Devices.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Three meteorological <span class="hlt">radar</span> units are described: the Malachite radiotheodolite with rangefinder attachment, the Meteorite <span class="hlt">radar</span> station, and the MRL <span class="hlt">radar</span> station. The principles of operation of these systems are given along with circuit descriptions and e...</p> <div class="credits"> <p class="dwt_author">O. G. Korol R. D. Chernyak</p> <p class="dwt_publisher"></p> <p class="publishDate">1973-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">134</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/7845784"> <span id="translatedtitle">Comparative evaluation of bipolar atrial electrogram amplitude during everyday activities: atrial active fixation versus two types of <span class="hlt">single</span> <span class="hlt">pass</span> VDD/R leads.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Endocardial P wave amplitude (PWA) is an important determinant of the atrial sensing capabilities of an atrial-based pacing system. Although changes in PWA during physical activities are known to occur in DDD/R pacing, there is little information on the P wave stability in <span class="hlt">single</span> <span class="hlt">pass</span> lead VDD/R pacemakers using floating P wave sensing. We investigated the variation of PWA during daily life activities using telemetry recorded atrial electrograms in 21 patients with DDDR pacemakers (Relay or Elite) and 29 patients with single lead VDD/R pacemakers (Unity or Thera). Physical activities resulted in marked individual variability of PWA but, as a group, there was no significant difference between PWA during sitting, standing, lying down, and coughing in both DDDR and VDD/R pacing. In the Elite II pacemaker, walking at 2 miles per hour resulted in significant reduction of PWA (11.6% compared with sitting, P < 0.05). The most consistent reduction in PWA occurred in the relaxation phase of the Valsalva maneuver (VM), with all pacemakers showing a reduction in PWA (mean reduction in PWA compared with sitting in DDDR and VDD/R were 16.6% and 12.8%, respectively). Two patients with DDDR pacemakers (Relay) and three patients with VDD/R pacemakers (1 Unity and 2 Thera) had atrial sensing failure during VM or walking. In conclusion, large variation in PWA occurs during daily life activities. The extent of variation is dependent on the patients, types of atrial lead, and the maneuvers performed. A twice sensing threshold may be insufficient to ensure adequate atrial sensing during these activities.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7845784</p> <div class="credits"> <p class="dwt_author">Chan, C C; Lau, C P; Leung, S K; Tai, Y T; Leung, W H; Lee, I; Tang, M O</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-11-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">135</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/6218870"> <span id="translatedtitle">The single antenna <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Air and space borne platforms using synthetic aperture <span class="hlt">radars</span> (SAR) have made interferometric measurements by using either two physical antennas mounted on one air-frame or two passes of one antenna over a scene. In this paper, a new interferometric technique using one pass of a single-antenna SAR system is proposed and demonstrated on data collected by the NASA-JPL AirSAR. Remotely sensed L-band microwave data are used to show the sensitivity of this technique to ocean surface features as well as a baseline for comparison with work by others using two-antenna systems. 7 refs., 3 figs.</p> <div class="credits"> <p class="dwt_author">Fitch, J.P.</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">136</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/22016137"> <span id="translatedtitle">THE KECK <span class="hlt">INTERFEROMETER</span> NULLER</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The Keck <span class="hlt">Interferometer</span> Nuller (KIN), the first operational separated-aperture infrared nulling <span class="hlt">interferometer</span>, was designed to null the mid-infrared emission from nearby stars so as to ease the measurement of faint circumstellar emission. This paper describes the basis of the KIN's four-beam, two-stage measurement approach and compares it to the simpler case of a two-beam nuller. In the four-beam KIN system, the starlight is first nulled in a pair of nullers operating on parallel 85 m Keck-Keck baselines, after which 'cross-combination' on 4 m baselines across the Keck apertures is used to modulate and detect residual coherent off-axis emission. Comparison to the constructive stellar fringe provides calibration. The response to an extended source is similar in the two cases, except that the four-beam response includes a term due to the visibility of the source on the cross-combiner baseline-a small effect for relatively compact sources. The characteristics of the dominant null depth errors are also compared for the two cases. In the two-beam nuller, instrumental imperfections and asymmetries lead to a series of quadratic, positive-definite null leakage terms. For the four-beam nuller, the leakage is instead a series of correlation cross-terms combining corresponding errors in each of the two nullers, which contribute offsets only to the extent that these errors are correlated on the timescale of the measurement. This four-beam architecture has allowed a significant ({approx}order of magnitude) improvement in mid-infrared long-baseline fringe-visibility accuracies.</p> <div class="credits"> <p class="dwt_author">Serabyn, E.; Mennesson, B.; Colavita, M. M. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Koresko, C. [Argon ST, Inc., 1386 Connellsville Road, Lemont Furnace, PA 15456 (United States); Kuchner, M. J., E-mail: Gene.Serabyn@jpl.nasa.gov [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-03-20</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">137</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007GGG.....810011L"> <span id="translatedtitle">Numerical simulations of <span class="hlt">single-pass</span> hydrothermal convection at mid-ocean ridges: Effects of the extrusive layer and temperature-dependent permeability</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We develop numerical models of hydrothermal convection at oceanic spreading centers to understand the interplay between deeply circulating high-temperature hydrothermal fluid and cooler seawater circulating in basalts of the upper crust. We assume the deep circulation follows an idealized <span class="hlt">single-pass</span> geometry and consider the effects of the thickness h and permeability of the extrusive layer kext both on the shallow circulation and on the temperature and heat output of the high-temperature discharge. We also attempt to model the effect of mineral precipitation on mixing in the shallow crust by emplacing a low-permeability vertical barrier in the extrusives to separate the high-temperature discharge from the circulation in the extrusives. Finally, we investigate the effects of temperature-dependent permeability on the mixing scenarios. The results show that maximum discharge temperature Tv is impacted more by the ratio kext/kd, where kd is the permeability of the deep discharge channel, than by h. Generally, high-temperature discharge (Tv > 250°C) occurs provided kd > kext. In this case, the presence of a low-permeability barrier further enhances Tv. Low-temperature discharge (Tv < 150°C) can occur provided kext > 10kd. For systems such as the Galapagos Spreading Center, where vent temperatures are ˜20°C, kext/kd > 104, and the extrusive layer is likely to be thick. The results also suggest that sites of diffuse flow will occur either between high-temperature vents along the ridge axis or off axis. The chemical composition of the fluid at these distal sites would be seawater, perhaps modified by low-temperature water-rock reactions. In contrast, the diffuse flow fluids near high-temperature vents are mixture of seawater with high-temperature hydrothermal fluid. Finally, the results show that the 150°C isotherm, which lies nearly horizontally at some distance from the discharge channel, may be within the extrusive layer, near the extrusive-dike interface, or within the low-permeability dike layer. This result supports the idea that the seismically defined layer 2A-2B boundary within the oceanic crust may represent a mineral precipitation front rather than a lithologic boundary.</p> <div class="credits"> <p class="dwt_author">Lowell, Robert P.; Gosnell, Sawyer; Yang, Yang</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-10-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">138</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/15185"> <span id="translatedtitle">The Stress-Relief Cracking Susceptibility of a New Ferritic Steel - Part I: <span class="hlt">Single-Pass</span> Heat-Affected Zone Simulations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The stress-relief cracking susceptibility of <span class="hlt">single-pass</span> welds in a new ferritic steel, HCM2S, has been evaluated and compared to 2.25Cr-1Mo steel using Gleeble techniques. Simulated coarse-grained heat-affected zones (CGHAZ) were produced under a range of energy inputs and tested at various post-weld heat treatment (PWHT) temperatures. Both alloys were tested at a stress of 325 MPa. The 2.25 Cr-1Mo steel was also tested at 270 MPa to normalize for the difference in yield strength between the two materials. Light optical and scanning electron microscopy were used to characterize the CGHAZ microstructure. The ''as-welded'' CGHAZ of each alloy consisted of lath martensite or bainite and had approximately equal prior austenite grain sizes. The as-welded hardness of the 2.25Cr-1Mo steel CGHAZ was significantly higher than that of the HCM2S alloy. Over the range studied energy input had no effect on the as-welded microstructure or hardness of either alloy. The energy input also had no effect on the stress-relief cracking susceptibility of either material. Both alloys failed intergranularly along prior austenite grain boundaries under all test conditions. The 2.25Cr-1Mo steel samples experienced significant macroductility and some microductility when tested at 325 MPa. The ductility decreased significantly when tested at 270 MPa but was still higher that than of HCM2S at each test condition. The time to failure decreased with increasing PWHT Temperature for each material. There was no significant difference in the times to failure between the two materials. Varying energy input and stress had no effect on the time-to failure. The ductility, as measured by reduction in are% increased with increasing PWHT temperature for 2.25 Cr-1Mo steel tested at both stresses. However, PWHT temperature had no effect on the ductility of HCM2S. The hardness of the CGHAZ for 2.25Cr-1Mo steel decreased significantly after PWHT, but remained constant for HCM2S. The differences in stress-relief cracking response are discussed in terms of the differences in composition and expected carbide precipitation sequence for each alloy during PWHT.</p> <div class="credits"> <p class="dwt_author">NAWROCKI,J.G.; DUPONT,J.N.; ROBINO,CHARLES V.; MARDER,A.R.</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-12-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">139</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA268463"> <span id="translatedtitle">Image Reconstruction from <span class="hlt">Interferometer</span> Data.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">In blind tests, we successfully reconstructed images from data simulated to have some of the defects that data coming from the multi-aperture amplitude <span class="hlt">interferometer</span> (MAAI) at the University of Maryland would have. We also successfully reconstructed good...</p> <div class="credits"> <p class="dwt_author">J. R. Fienup J. H. Seldin</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">140</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/5293744"> <span id="translatedtitle">Short wavelength <span class="hlt">interferometer</span> for ITER</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">There is a need for a real time, reliable density measurement compatible with the restricted access and radiation environment on ITER. Due to the large plasma path length, high density and field, refraction and Faraday rotation effects makes the use of contemporary long wavelength (>50{mu}m) <span class="hlt">interferometers</span> impractical. In this paper we consider the design of a short wavelength vibration compensated <span class="hlt">interferometer</span> which allows operation without a prohibitively large vibration isolated structure and permits the optics to be conveniently mounted directly in or on the tokamak. A density <span class="hlt">interferometer</span> design for ITER incorporating a 10.6 {mu}m CO{sub 2} <span class="hlt">interferometer</span> with vibration compensation provided by a 3. 39 {mu}m HeNe laser is discussed. The proposed <span class="hlt">interferometer</span> design requires only a small intrusion into the ITER tokamak without a large support structure, refraction and Faraday rotation problems are avoided, and it provides a density resolution of at least 0.5%. Results are presented from an <span class="hlt">interferometer</span> installed on the DIII-D tokamak incorporating essential elements of the proposed ITER design including 10.6 and 3.39 {mu}m lasers, a retro-reflector mounted on the vacuum wall of the DIII-D tokamak and real-time density feedback control. In this paper we consider a short wavelength <span class="hlt">interferometer</span> design that incorporates vibration compensation for use on ITER. Our primary concern is to develop a <span class="hlt">interferometer</span> design that will produce a reliable real time density monitor. We use the ITER conceptual design activity report as the basis of the design.</p> <div class="credits"> <p class="dwt_author">Snider, R.T.; Carlstrom, T.N.</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-04-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_6");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a style="font-weight: bold;">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_8");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_7 div --> <div id="page_8" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_7");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a style="font-weight: bold;">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_9");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">141</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013PhRvB..88j4513G"> <span id="translatedtitle">Current-biased Andreev <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We theoretically investigate the behavior of Andreev <span class="hlt">interferometers</span> with three superconducting electrodes in the current-biased regime. Our analysis allows us to predict a number of interesting features of such devices, such as both hysteretic and nonhysteretic behavior, negative magnetoresistance, and two different sets of singularities of the differential resistance at subgap voltages. In the nonhysteretic regime we find a pronounced voltage modulation with the magnetic flux which can be used for improving the sensitivity of Andreev <span class="hlt">interferometers</span>.</p> <div class="credits"> <p class="dwt_author">Galaktionov, Artem V.; Zaikin, Andrei D.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">142</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=AD678805"> <span id="translatedtitle">Shipboard <span class="hlt">Radar</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The navigational <span class="hlt">radar</span> 'Stvor' is designed for installation on ships of the shipping fleet and also on marine and river boats of low and medium tonnage. A 'Stvor' station enables ships to navigate in zero visibility -- in fog, at night, etc. Because of it...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">1968-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">143</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADD006301"> <span id="translatedtitle"><span class="hlt">Radar</span> Antenna.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">An antenna is described for range-gated, pulse doppler, <span class="hlt">radar</span> systems. The antenna includes first and second, shortened, half-wave dipoles and first and second reflecting screens. One dipole is fed through a fixed 22 1/2 degree phase-shift network while t...</p> <div class="credits"> <p class="dwt_author">O. E. Rittenback</p> <p class="dwt_publisher"></p> <p class="publishDate">1978-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">144</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/10162419"> <span id="translatedtitle">A 250 GHz microwave <span class="hlt">interferometer</span> for divertor experiments on DIII-D</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A new 250 GHz, two-frequency microwave <span class="hlt">interferometer</span> system has been developed to diagnose divertor plasmas on DIII-D. This diagnostic will measure the line-averaged density across both the inner and outer, lower divertor legs. With a cut-off density of over 7 {times} 10{sup 14} cm{sup {minus}3}, temporal measurements of ELMs, MARFs and plasma detachment are expected. The outer leg system will use a double pass method while the inner leg system will be <span class="hlt">single</span> <span class="hlt">pass</span>. Two special 3D carbon composite tiles are used, one to protect the microwave antennas mounted directly under the strike point and the other as the outer leg reflecting surface. Performance, design constraints, and the thermalmechanical design of the 3D carbon composite tiles are discussed.</p> <div class="credits"> <p class="dwt_author">James, R.A.; Nilson, D.G.; Stever, R.D.; Hill, D.N.; Casper, T.A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-01-31</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">145</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/10594"> <span id="translatedtitle">Evaluation of the Long-Term Performance of Titanate Ceramics for Immobilization of Excess Weapons Plutonium: Results from Pressurized Unsaturated Flow and <span class="hlt">Single</span> <span class="hlt">Pass</span> Flow-Through Testing</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This report summarizes our findings from pressurized unsaturated flow (PUF) and <span class="hlt">single-pass</span> flow-through (SPFT) experiments to date. Results from the PUF test of a Pu-bearing ceramic with enclosing surrogate high-level waste glass show that the glass reacts rapidly to alteration products. Glass reaction causes variations in the solution pH in contact with the ceramic materials. We also document variable concentrations of Pu in solution, primarily in colloidal form, which appear to be related to secular variations in solution composition. The apparent dissolution rate of the ceramic waste form, based on Ba concentrations in the effluent, is estimated at {le} 10{sup {minus}5} g/(m{sup 2} {center_dot} d). Pu-bearing colloids were recovered in the size range of 0.2 to 2 {micro}m, but it is not clear that such entities would be transported in a system that is not advective-flow dominated. Results from SPFT experiments give information on the corrosion resistance of two surrogate Pu-ceramics (Ce-pyrochlore and Ce-zirconolite) at 90 C over a pH range of 2 to 12. The two ceramics were doped with minor quantities ({approximately}0.1 mass%) of MoO{sub 3}, so that concentrations of Mo in the effluent solution could be used to monitor the reaction behavior of the materials. The data obtained thus far from experiments with durations up to 150 d do not conclusively prove that the solid-aqueous solution systems have reached steady-state conditions. Therefore, the dissolution mechanism cannot be determined. Apparent dissolution rates of the two ceramic materials based on Ce, Gd, and Mo concentrations in the effluent solutions from the SPFT are nearly identical and vary between 1.1 to 8.5 x 10{sup {minus}4} g/(m{sup 2} {center_dot} d). In addition, the data reveal a slightly amphoteric dissolution behavior, with a minimum apparent rate at pH = 7 to 8, over the pH range examined. Results from two related ceramic samples suggest that radiation damage can have a measurable effect on the dissolution of titanium-based ceramics. The rare earth pyrochlores, Gd{sub 2}Ti{sub 2}O{sub 7} and Lu{sub 2}Ti{sub 2}O{sub 7}, are being studied as part of the DOE Environmental Management Science Program, and the results are germane to this study. The corrosion resistances of both heavy-ion bombarded and pristine (non-bombarded) specimens are being examined with the SPFT test. Initial data indicate that the dissolution rate may increase by a factor of 3 times or more when these materials become amorphous from radiation damage.</p> <div class="credits"> <p class="dwt_author">BP McGrail; HT Schaef; JP Icenhower; PF Martin; RD Orr; VL Legore</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-09-13</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">146</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=AD673149"> <span id="translatedtitle">Theoretical Fundamentals of <span class="hlt">Radar</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The book examines the principles of <span class="hlt">radar</span>, methods of coordinate measurement and scanning and circuits for <span class="hlt">radar</span> stations of three types: with an operator, a continuous computer installation and a digital computer. It presents the characteristics of <span class="hlt">radar</span>...</p> <div class="credits"> <p class="dwt_author">A. A. Korostelev A. V. Petrov N. I. Burenin V. E. Dulevich Y. A. Melnik</p> <p class="dwt_publisher"></p> <p class="publishDate">1967-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">147</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/54280556"> <span id="translatedtitle">Fabry-Perot <span class="hlt">interferometer</span> measurements of thermospheric neutral wind gradients and reversals at Arecibo</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Direct measurements of the meridional neutral winds in the thermosphere with the Arecibo Observatory Fabry-Perot <span class="hlt">Interferometer</span> show the post-midnight meridional wind reversal that was inffered from previous incoherent scatter <span class="hlt">radar</span> ion-drift data and airglow intensity maps, and observed in-situ with the Atmosphere Explorer-E satellite NATE experiment. Data are shown for three nights between October 29 and December 9, 1981. For</p> <div class="credits"> <p class="dwt_author">J. F. Friedman; F. A. Herrero</p> <p class="dwt_publisher"></p> <p class="publishDate">1982-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">148</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/54375463"> <span id="translatedtitle">Fabry-Perot <span class="hlt">interferometer</span> measurements of thermospheric neutral wind gradients and reversals at Arecibo</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Direct measurements of the meridional neutral winds in the thermosphere made with the Fabry-Perot <span class="hlt">interferometer</span> at the Arecibo Observatory show the postmidnight meridional wind reversal that was inferred from previous incoherent scatter <span class="hlt">radar</span> ion-drift data and airglow intensity maps and observed in-situ with the Atmosphere Explorer-E satellite. Data for three nights between October 29 and December 9, 1981, are presented.</p> <div class="credits"> <p class="dwt_author">J. F. Friedman; F. A. Herrero</p> <p class="dwt_publisher"></p> <p class="publishDate">1982-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">149</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/51421386"> <span id="translatedtitle">Using connected-element <span class="hlt">interferometer</span> phase-delay data for Magellan navigation in Venus orbit</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The pointing accuracy needed to support Magellan's Synthetic Aperture <span class="hlt">Radar</span> mapping of Venus places stringent requirements on navigation accuracy. This need is met with a combination of two-way Doppler and narrowband delta Very Long Baseline <span class="hlt">Interferometer</span> (delta VLBI) data, which are capable of determining the spacecraft's orbit to the required level, typically about one-kilometer position uncertainty. Differenced Doppler (two-way Doppler</p> <div class="credits"> <p class="dwt_author">S. W. Thurman; G. Badilla</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">150</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1466851"> <span id="translatedtitle">Temporal analysis of a landslide by means of a ground-based SAR <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A ground-based synthetic aperture <span class="hlt">radar</span> (GB-SAR) <span class="hlt">interferometer</span> is used to retrieve the velocity field of a landslide. High-resolution images are obtained by means of a time domain SAR processor. An in-depth analysis of the sequence of SAR interferograms enables the recognition of a slowly deforming upper scarp in the scene, and a debris flow that feeds the accumulation zone of</p> <div class="credits"> <p class="dwt_author">Davide Leva; Giovanni Nico; Dario Tarchi; Joaquim Fortuny-Guasch; Alois J. Sieber</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">151</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/54357447"> <span id="translatedtitle">Desktop <span class="hlt">interferometer</span> for optical synthesis imaging</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A simple desktop optical <span class="hlt">interferometer</span> is described and demonstrated as a teaching tool for concepts of long-baseline stellar interferometry. The <span class="hlt">interferometer</span> is compact, portable, and easily aligned. It sits on a base 8\\</p> <div class="credits"> <p class="dwt_author">Peter R. Lawson; Donald M. A. Wilson; John E. Baldwin</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">152</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5391804"> <span id="translatedtitle">Observation and theory of the <span class="hlt">radar</span> aurora</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Plasma density irregularities occurring near the Aurora Borealis cause scattering of HF, VHF, and UHF radio waves. Analysis of the resulting <span class="hlt">radar</span> signal provides great detail about the spatial and temporal characteristics of these auroral E region irregularities. Observations are presented of the <span class="hlt">radar</span> aurora from recent campaigns in northern Sweden. After reviewing the basic theory and observations of auroral electrojet irregularities, a simple nonlinear fluid theory of electrojet ion-acoustic waves is introduced, and reduced to a form of the three-wave interaction equations. This theory provides a simple mechanism for excitation of linearly stable waves at large aspect and flow angles, as well as a prediction of the power spectra that a coherent scatter <span class="hlt">radar</span> should observe. In addition, this theory may be able to account for type 3 waves without resorting to ion gyro modes, such as the electrostatic ion-cyclotron wave. During the course of the research a simple new <span class="hlt">radar</span> transmitting mode and signal processing algorithm was generated which very simply solves a frequency aliasing problem that often occurs in CUPRI auroral <span class="hlt">radar</span> studies. Several new <span class="hlt">radar</span> data analysis routines were developed, including the principally cross-beam image and scatter plots of the second versus first moments of the power spectrum of the irregularities. Analysis of vertical <span class="hlt">interferometer</span> data shows that type 3 waves originate at ordinary electrojet altitudes, not in the upper E region, from which it is concluded that the electrostatic ion-cyclotron mode does not generate type 3 waves. The measured height of type 3 waves and other spectral analyses provide support for the pure ion-acoustic theory of type 3 waves. Suggestions are offered for hardware improvements to the CUPRI <span class="hlt">radar</span>, new experiments to test new and existing theories.</p> <div class="credits"> <p class="dwt_author">Sahr, J.D.</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">153</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5223841"> <span id="translatedtitle">A general statistical instrument theory of atmospheric and ionospheric <span class="hlt">radars</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Some basic functional relationships between the statistics of the signals received in a <span class="hlt">radar</span> and the statistics of the density fluctuations of a scattering medium are derived. They vary in their degree of generality, but they are all very general in scope. They include monostatic and bistatic <span class="hlt">radars</span> scattering from either atmospheric, ionospheric, or meteorological media. They are valid for refractive and slightly dispersive media, so they can also be used for HF ionospheric <span class="hlt">radars</span>. They include the effects of filtering, including receiver filtering, pulse compression coding and decoding schemes, and coherent integration, or any alternative linear digital filtering scheme. Functional relationships to include cross-correlation schemes, such as Faraday rotation experiments and <span class="hlt">interferometers</span>, are included. Some simplified expressions are derived for frequently encountered situations, where different approximations can be made. These simplified expressions cover a large number of <span class="hlt">radar</span> techniques currently in use for atmospheric and ionospheric applications.</p> <div class="credits"> <p class="dwt_author">Woodman, R.F. (Instituto Geofisico del Peru, Lima (Peru))</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">154</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.optics.arizona.edu/jcwyant/pdf/published_papers/phase_shifting/white%20light%20extended%20source%20interf.pdf"> <span id="translatedtitle">White Light Extended Source Shearing <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A grating lateral shear <span class="hlt">interferometer</span> is described that can be used with a white light source. The use of the <span class="hlt">interferometer</span> with certain types of extended sources is also demonstrated. In a recent paper a simple double frequency grat- ing shearing <span class="hlt">interferometer</span>, similar to a Ronchi in- terferometer, was described for use with a quasi- monochromatic point light source. l</p> <div class="credits"> <p class="dwt_author">J. C. Wyant</p> <p class="dwt_publisher"></p> <p class="publishDate">1974-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">155</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008PhDT.......102K"> <span id="translatedtitle">Meteor <span class="hlt">radar</span> signal processing and error analysis</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Meteor wind <span class="hlt">radar</span> systems are a powerful tool for study of the horizontal wind field in the mesosphere and lower thermosphere (MLT). While such systems have been operated for many years, virtually no literature has focused on <span class="hlt">radar</span> system error analysis. The instrumental error may prevent scientists from getting correct conclusions on geophysical variability. The <span class="hlt">radar</span> system instrumental error comes from different sources, including hardware, software, algorithms and etc. <span class="hlt">Radar</span> signal processing plays an important role in <span class="hlt">radar</span> system and advanced signal processing algorithms may dramatically reduce the <span class="hlt">radar</span> system errors. In this dissertation, <span class="hlt">radar</span> system error propagation is analyzed and several advanced signal processing algorithms are proposed to optimize the performance of <span class="hlt">radar</span> system without increasing the instrument costs. The first part of this dissertation is the development of a time-frequency waveform detector, which is invariant to noise level and stable to a wide range of decay rates. This detector is proposed to discriminate the underdense meteor echoes from the background white Gaussian noise. The performance of this detector is examined using Monte Carlo simulations. The resulting probability of detection is shown to outperform the often used power and energy detectors for the same probability of false alarm. Secondly, estimators to determine the Doppler shift, the decay rate and direction of arrival (DOA) of meteors are proposed and evaluated. The performance of these estimators is compared with the analytically derived Cramer-Rao bound (CRB). The results show that the fast maximum likelihood (FML) estimator for determination of the Doppler shift and decay rate and the spatial spectral method for determination of the DOAs perform best among the estimators commonly used on other <span class="hlt">radar</span> systems. For most cases, the mean square error (MSE) of the estimator meets the CRB above a 10dB SNR. Thus meteor echoes with an estimated SNR below 10dB are discarded due to the potential of producing a biased estimate. The precision of the estimated parameters can then be computed using their CRB values as a proxy for the estimated variance. These errors propagate to form the instrumental errors on the height and horizontal wind measurements. Thirdly, the <span class="hlt">interferometer</span> configuration of interferometric meteor <span class="hlt">radar</span> system is studied. The <span class="hlt">interferometer</span> uses the phase differences measured at different sensor pairs to determine the DOA of the meteor trail. Typically Jones cross is used in most of current meteor <span class="hlt">radar</span> systems, such as MEDAC and SKYiMet. We have evaluated this configuration with other array geometries,such as 'T', 'L' and circular array to examine their performance on the precision of the DOA estimates. The results show that 'T' array has an overall better CRB than other geometries, while with the yagi antenna pattern as a course determination of the DOA range, the circular array performs the best with the lowest sidelobes on the spatial spectral. A Matlab based planar array design package designed for determination and visualization of the DOA estimation performance for a user designed antenna array was developed. Fourthly, based on the special configuration of the South Pole COBRA system, a low cost computational phase calibration method is proposed. Accurate knowledge of the receiver phase ofsets is another factor that can affect system performance. Lastly, the postprocessing results of the meteor echoes collected during 2005 from the South Pole COBRA system are presented. This <span class="hlt">radar</span> system is shown to have a precision of 2m/s in the horizontal winds, an azimuth precision of 1o, and an elevation precision of 3o. Preliminary scientific results are presented to verify the effectiveness of our processing scheme, and include the seasonal variation of meteor rates as a function of height, and the vertical structure of large semidiurnal tide observed over the South Pole austral summer. The processing schemes and error analysis methods presented in this dissertation can be easily extended to other meteor <span class="hlt">radar</span></p> <div class="credits"> <p class="dwt_author">Kang, Chunmei</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">156</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/5229317"> <span id="translatedtitle">Keck <span class="hlt">Interferometer</span> status and plans</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">ABSTRACT Keck <span class="hlt">Interferometer</span> is a NASA-funded project to combine ,the two 10 m Keck telescopes for high sensitivity near- infrared fringe visibility measurem ents, nulling interferometry at 10 µm to measure the quantity of exozodiacal emission around nearby stars, and differential-phase measurements to detect \\</p> <div class="credits"> <p class="dwt_author">M. Mark Colavita; Peter L. Wizinowich; Rachel L. Akeson</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">157</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/52947245"> <span id="translatedtitle">Keck <span class="hlt">Interferometer</span> status and plans</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Keck <span class="hlt">Interferometer</span> is a NASA-funded project to combine the two 10 m Keck telescopes for high sensitivity near-infrared fringe visibility measurements, nulling interferometry at 10 mum to measure the quantity of exozodiacal emission around nearby stars, and differential-phase measurements to detect \\</p> <div class="credits"> <p class="dwt_author">M. M. Colavita; Peter L. Wizinowich; Rachel L. Akeson</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">158</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1998SPIE.3350..644H"> <span id="translatedtitle">Common <span class="hlt">interferometer</span> control systems architecture</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Astronomical interferometry at the JPL has grown rapidly in the last two years. JPL is now engaged in a number of interferometry projects and is also developing a number of internal testbeds to support those projects. While each of these projects and testbeds has its own unique properties, they do share a lot of common features, and JPL is striving, through its <span class="hlt">interferometer</span> technology program (ITP), to develop common components, software, and hardware that can be reused by multiple projects. The discipline where this commonality is probably most apparent is in the area of realtime control systems, specifically the software and electronics that drive the instrument control loops and sequence the subsystems. To this end, within the ITP, JPL has developed the realtime <span class="hlt">interferometer</span> control systems testbed (RICST) as a facility where a common software and electronics core, essentially a control system for a generic <span class="hlt">interferometer</span>, can be developed. The realtime control (RTC) team in the ITP program consists of about 20 full-time equivalent engineers, technicians, quality assurance personnel, architects, and managers. The remainder of this paper will describe the interferometry landscape at JPL, the RTC effort, an overview of the RICST testbed, and the generic <span class="hlt">interferometer</span> control system architecture that has been developed.</p> <div class="credits"> <p class="dwt_author">Hines, Braden E.; Johnson, Richard L.; Starr, Kenneth M.</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">159</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/52190220"> <span id="translatedtitle">The Navy Prototype Optical <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper announces the first closure phase measurements made with the Navy Prototype Optical <span class="hlt">Interferometer</span> (NPOI) on stars. These are the first closure phase measurements made at optical wavelengths which exceed, by a factor of two to three, the resolution of the largest existing single optical telescope. The first observations were made on 1996 March 18 using three of the</p> <div class="credits"> <p class="dwt_author">J. A. Benson; D. J. Hutter; N. M. Elias II; P. Bowers; D. Mozurkewich; J. T. Armstrong; N. White; C. Hummel</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">160</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=N20000072493"> <span id="translatedtitle">Overview of the Keck <span class="hlt">Interferometer</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">This is a presentation about the Keck <span class="hlt">Interferometer</span> which is being constructed on top of Mauna Kea, Hawaii. This includes using the world's largest telescopes for optical and near-infrared astronomy, the twin 10 meter Keck telescopes. The two Keck telesc...</p> <div class="credits"> <p class="dwt_author">G. vanBelle</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_7");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a style="font-weight: bold;">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_9");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_8 div --> <div id="page_9" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_8");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a style="font-weight: bold;">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_10");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">161</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/22015361"> <span id="translatedtitle">Standing waves in fiber-optic <span class="hlt">interferometers</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">A study is presented giving the response of three types of fiber-optic <span class="hlt">interferometers</span> by which a standing wave through an object is investigated. The three types are a Sagnac, Mach-Zehnder and Michelson-Morley <span class="hlt">interferometer</span>. The response of the Mach-Zehnder <span class="hlt">interferometer</span> is similar to the Sagnac <span class="hlt">interferometer</span>. However, the Sagnac <span class="hlt">interferometer</span> is much harder to study because of the fact that one input port and output port coincide. Further, the Mach-Zehnder <span class="hlt">interferometer</span> has the advantage that the output ports are symmetric, reducing the systematic effects. Examples of standing wave light absorption in several simple objects are given. Attention is drawn to the influence of standing waves in fiber-optic <span class="hlt">interferometers</span> with weak-absorbing layers incorporated. A method is described for how these can be theoretically analyzed and experimentally measured. Further experiments are needed for a thorough comparison between theory and experiment. PMID:22015361</p> <div class="credits"> <p class="dwt_author">de Haan, V; Santbergen, R; Tijssen, M; Zeman, M</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-10-10</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">162</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/20588462"> <span id="translatedtitle"><span class="hlt">Single-pass</span> sum-frequency-generation of 589-nm yellow light based on dual-wavelength Nd:YAG laser with periodically-poled LiTaO(3) crystal.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">We demonstrate a compact all-solid-state yellow laser source based on Q-switched dual-wavelength Nd:YAG laser and periodically-poled LiTaO(3) crystal. 589-nm yellow light was generated by <span class="hlt">single-pass</span> sum-frequency generation of the fundamental IR waves at 1064 and 1319 nm. The maximum output power of yellow light was 506 mW and the corresponding conversion efficiency was approximately 5.5% [W(-1)cm(-1)]. PMID:20588462</p> <div class="credits"> <p class="dwt_author">Zhao, L N; Su, J; Hu, X P; Lv, X J; Xie, Z D; Zhao, G; Xu, P; Zhu, S N</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-06-21</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">163</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55550332"> <span id="translatedtitle"><span class="hlt">Radar</span> Ionospheric Impact Mitigation</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">New ionospheric modeling technology is being developed to improve correction of ionospheric impacts on the performance of ground-based space-surveillance <span class="hlt">radars</span> (SSRs) in near-real-time. These <span class="hlt">radars</span>, which detect and track space objects, can experience significant target location errors due to ionospheric delay and refraction of the <span class="hlt">radar</span> signals. Since these <span class="hlt">radars</span> must detect and track targets essentially to the <span class="hlt">radar</span> horizon,</p> <div class="credits"> <p class="dwt_author">G. Bishop; D. Decker; C. Baker</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">164</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://esto.gsfc.nasa.gov/conferences/estc2008/papers/heavey_b6p1.pdf"> <span id="translatedtitle">Technology Development of a Compact <span class="hlt">Radar</span> Digital Receiver</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">As part of a NASA ESTO funded Instrument Incubator Program (IIP), a Ka-band <span class="hlt">radar</span> <span class="hlt">interferometer</span> is currently under development to demonstrate the potential for an ice-surface topography, swath-mapping sensor at transmit powers that are technologically feasible and practical. The proposed system utilizes digital beam forming (DBF) with an antenna array in elevation. Each array element utilizes a dedicated receiver (16</p> <div class="credits"> <p class="dwt_author">Brandon Heavey; Delwyn Moller; Gregory Sadowy; Jordan Tanabe</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">165</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008SPIE.7013E..67H"> <span id="translatedtitle">Status of the LBT <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The Large Binocular Telescope <span class="hlt">Interferometer</span>, a thermal infrared imager and nulling <span class="hlt">interferometer</span> for the LBT, is currently being integrated and tested at Steward Observatory. The system consists of a general purpose or universal beamcombiner (UBC) and three camera ports, one of which is populated currently by the Nulling and Imaging Camera (NIC). Wavefront sensing is carried out using pyramid-based "W" units developed at Arcetri Observatory. The system is designed for high spatial resolution, high dynamic range imaging in the thermal infrared. A key project for the program is to survey nearby stars for debris disks down to levels which may obscure detection of Earth-like planets. During 2007-2008 the UBC portion of the LBTI was assembled and tested at Steward Observatory. Initial integration of the system with the LBT is currently in progress as the W units and NIC are being completed in parallel.</p> <div class="credits"> <p class="dwt_author">Hinz, Philip M.; Bippert-Plymate, Teresa; Breuninger, Andy; Connors, Tom; Duffy, Brian; Esposito, Simone; Hoffmann, William; Kim, Jihun; Kraus, Joe; McMahon, Thomas; Montoya, Manny; Nash, Richard; Durney, Olivier; Solheid, Elliott; Tozzi, Andrea; Vaitheeswaran, Vidhya</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">166</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010SPIE.7734E..23C"> <span id="translatedtitle">Keck <span class="hlt">Interferometer</span> nuller instrument performance</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The Keck <span class="hlt">Interferometer</span> combines the two 10 m Keck telescopes as a long baseline <span class="hlt">interferometer</span>. It is funded by NASA as a joint development among the Jet Propulsion Laboratory, the W. M. Keck Observatory, and the NASA Exoplanet Science Institute. In February 2008, the 10 um nulling mode began a 32 night observing program with three key science teams to perform a survey of nearby stars for exozodiacal dust. This program has recently concluded, and has been followed by nuller observing on a variety of science topics through the standard proposal process. We provide a review and update of the nuller implementation, and describe the data reduction process, including the calibration approach. We then review the technical performance of the instrument based on the full key science data set, including sensitivity and systematic errors. We also provide some summary data on atmospheric effects applicable to the cophasing approach.</p> <div class="credits"> <p class="dwt_author">Colavita, M. M.; Serabyn, E.; Ragland, S.; Millan-Gabet, R.; Akeson, R. L.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">167</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1989STIN...9020276T"> <span id="translatedtitle">Meteor observations using the 50 MHz MENTOR imaging Doppler <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The MENTOR Imaging Doppler <span class="hlt">Interferometer</span> <span class="hlt">radar</span> operated at a frequency of approximately 50 MHz with a 50 kilowatt peak power output. It was used to collect data from a field site. An algorithm was developed to detect meteor echoes in the Time Domain Averaged (TDA) data, separate these echoes from the rest of the data, and then determine which of these echoes were good enough to be included in wind calculations. The meteor detection rate for useable meteors in the approximately 9 minutes of data available was 120 per hour. The meteors, after being located in 3-D space, were subjected to another algorithm which calculated the u, v, and w wind components for a range of altitudes, usually less than 4 kilometers, using the Doppler shift of the meteor echoes. Reasonable values for the wind components were obtained but could not be verified since there were no collateral data to back up the results.</p> <div class="credits"> <p class="dwt_author">Thomas, Dennis Randall</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">168</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50036105"> <span id="translatedtitle">Low-power coherent laser <span class="hlt">radar</span> velocimeter: applications to law enforcement</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Coherent Laser <span class="hlt">Radar</span> Velocimetry (CLRV) can provide many advantages to Traffic Monitoring, as compared to traditional microwave systems. Narrower beamwidth, lower transmitted power and higher Doppler frequency shift are some of them. A low-power laboratory, based on the Michelson <span class="hlt">interferometer</span>, prototype is presented. Experimental results on working range, SNR and resolution are presented.</p> <div class="credits"> <p class="dwt_author">Alejandro Rodriguez; Adolfo Comeron; Antoni Elias; Enrique Gonzalez; Jose Luis Montesino-Espartero; Gabino Rodriguez</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">169</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50027920"> <span id="translatedtitle">Features of ultrawideband <span class="hlt">radar</span> projecting</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The article presents a new approach to ultrawideband (UWB) <span class="hlt">radar</span> projecting. Some advantages of such <span class="hlt">radars</span> are shown in comparison with common narrowband <span class="hlt">radars</span> and some features of UWB <span class="hlt">radars</span> are considered, which do not allow the use of traditional methods. New methods of UWB <span class="hlt">radar</span> characteristics calculation and <span class="hlt">radar</span> systems projecting are suggested. It discusses the range equation, passive</p> <div class="credits"> <p class="dwt_author">Igor Immoreev; B. Vovshin</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">170</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/18856075"> <span id="translatedtitle">The AEI 10 m prototype <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A 10 m prototype <span class="hlt">interferometer</span> facility is currently being set up at the AEI in Hannover, Germany. The prototype <span class="hlt">interferometer</span> will be housed inside a 100 m3 ultra-high vacuum envelope. Seismically isolated optical tables inside the vacuum system will be interferometrically interconnected via a suspension platform <span class="hlt">interferometer</span>. Advanced isolation techniques will be used, such as inverted pendulums and geometrical anti-spring</p> <div class="credits"> <p class="dwt_author">S. Goßler; A. Bertolini; M. Born; Y. Chen; K. Dahl; D. Gering; C. Gräf; G. Heinzel; S. Hild; F. Kawazoe; O. Kranz; G. Kühn; H. Lück; K. Mossavi; R. Schnabel; K. Somiya; K. A. Strain; J. R. Taylor; A. Wanner; T. Westphal; B. Willke; K. Danzmann</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">171</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1998SPIE.3332..482M"> <span id="translatedtitle">Scanning force microscope using point diffraction <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A new optical <span class="hlt">interferometer</span> suitable for the scanning force microscope is presented in this paper. The cantilever itself is used as a micro <span class="hlt">interferometer</span> element. The deflection of the cantilever is detected by the interference between the geometrical reflected wave and the backward diffracted wave. This <span class="hlt">interferometer</span> has a very simple structure, fewer optical components, lower cost, and complete common light path. 0.01 nm vertical resolution is gotten by this instrument.</p> <div class="credits"> <p class="dwt_author">Mou, Xu-Dong; You, Yifeng; Zhuo, Yong-Mo; Yang, Yong-Ying; Xu, Ming</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-06-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">172</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1997SPIE.2934..178M"> <span id="translatedtitle">Perimitrax: the next generation in guided <span class="hlt">radar</span> perimeter security technology</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The first application of 'leaky' or 'ported' coaxial cables to <span class="hlt">radar</span> system for covert detection of human intruders for outdoor perimeter security was in the early 1970's. Early systems were relatively rudimentary using large central processors and difficult to manufacture sensing cables. However, since that time these systems have evolved in both design and performance and been proven to have both high detection performance and low false and nuisance response in such diverse, all-weather perimeter applications as military bases, corrections, and industrial sites. This paper introduces the latest generation of guided <span class="hlt">radar</span> security technology now being fielded. This generation features more flexible and modular 'plug and play' electronics, matched to both large and small installations from the sensor zone end, up to the control and display. Advanced signal processing is now included which is tuned to discriminate the unique features of the intruder from those of the environment. Such processing capitalize on the ability to look at and classify features of larger perimeters. New 'TR' technology sensor cables have ben developed which are manufactured in a <span class="hlt">single</span> <span class="hlt">pass</span> approach to provide more uniformity of sensor performance. These sensor include both a siamese design for single slot burial, and also a small diameter dual cable for wider zone requirements. This paper will outline the major elements of guided <span class="hlt">radar</span> sensors and overview the new components and architecture of this latest generation. It will discuss the results of early operational performance testing, and the new benefits for diverse applications from government, to corrections and airports.</p> <div class="credits"> <p class="dwt_author">Maki, Melvin C.; Hill, Charles R.</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">173</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1999SPIE.3782..390G"> <span id="translatedtitle">Visible light <span class="hlt">interferometer</span> for EUVL system alignment</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A visible wavelength <span class="hlt">interferometer</span> has been developed for the alignment of an extreme ultraviolet lithography (EUVL) camera. Although the EUVL camera will operate at 13.4 nm, the alignment is far more conveniently done at visible wavelengths, at ambient pressure. Traditional visible <span class="hlt">interferometers</span> are not capable of reaching the better than 1 nm accuracy required for EUVL camera alignment; so a phase shifting diffraction-limited <span class="hlt">interferometer</span> was constructed and used to align and quantify the EUVL wavefront to an accuracy better than (lambda) visible/2000. The <span class="hlt">interferometer</span> and alignment process are described, and camera wavefront measurements presented.</p> <div class="credits"> <p class="dwt_author">Gaughan, Richard J.</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">174</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=N8916660"> <span id="translatedtitle">Goldstone Solar System <span class="hlt">Radar</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Planning, direction, experimental design, and coordination of data-acquisition and engineering activities in support of all Goldstone planetary <span class="hlt">radar</span> astronomy were performed. This work demands familiarity with the various components of a planetary <span class="hlt">radar</span> ...</p> <div class="credits"> <p class="dwt_author">R. F. Jurgens</p> <p class="dwt_publisher"></p> <p class="publishDate">1988-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">175</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA418302"> <span id="translatedtitle"><span class="hlt">Radar</span> Absorbing Material Design.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Low observable platforms have extremely low <span class="hlt">radar</span> cross section specifications that cannot be achieved by shaping alone. The application of <span class="hlt">radar</span> absorbing material is necessary, in which case the appropriate constitutive parameters and thickness must be ...</p> <div class="credits"> <p class="dwt_author">C. K. Yuzcelik</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">176</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA145407"> <span id="translatedtitle"><span class="hlt">Radar</span>, Target and Ranging.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">This Test Operations Procedure (TOP) provides conventional test methods employing conventional test instrumentation for testing conventional <span class="hlt">radars</span>. Single tests and subtests designed to test <span class="hlt">radar</span> components, transmitters, receivers, antennas, etc., and ...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">1984-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">177</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA024679"> <span id="translatedtitle">Spaceborne <span class="hlt">Radar</span> Study.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Three air-defense <span class="hlt">radar</span> surveillance systems are described, each consisting of active <span class="hlt">radar</span> satellites capable of operating at earth-synchronous orbit altitude with associated ground control stations. Systems 1 (three satellites) provides a detection fenc...</p> <div class="credits"> <p class="dwt_author">J. Greene R. Kaplan G. J. McNiff P. Nosal J. L. Schultz</p> <p class="dwt_publisher"></p> <p class="publishDate">1974-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">178</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA433622"> <span id="translatedtitle">Statistical MIMO <span class="hlt">Radar</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Inspired by recent advances in multiple-input multiple-output (MIMO) communications, we introduce the statistical MIMO <span class="hlt">radar</span> concept. Unlike beamforming, array <span class="hlt">radar</span>, or STAP, which presuppose a high correlation between signals either transmitted or recei...</p> <div class="credits"> <p class="dwt_author">A. Haimovich E. Fishler R. Blum D. Chizhik R. Valenzuela</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">179</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011AGUFM.B51C0410L"> <span id="translatedtitle">Estimating forest biomass using repeat-pass polarimetric <span class="hlt">radar</span> interferometry</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Biomass is identified by the United Nations Framework Convention on Climate Change (UNFCCC) as an essential climate variable needed to reduce uncertainties in our knowledge of the climate system [1]. <span class="hlt">Radar</span> remote sensing is the most suitable tool to measure and map Earth's forest biomass, but current methods are limited by saturation issues (backscatter-based methods) or by large uncertainties (interferometric volumetric correlation-based methods) [2]. Here, we developed a new method for estimating forest biomass, which overcomes these limitations. The method utilizes a repeat-pass polarimetric <span class="hlt">radar</span> <span class="hlt">interferometer</span> that measures the temporal-volumetric correlation between consecutive <span class="hlt">radar</span> acquisitions. Using our physical model [3], we are able to relate a set of temporal-volumetric correlation samples (obtained for several combinations of wave polarizations) to important biophysical parameters of forests. We designed a model-based algorithm for parameters estimation that gives maps of forest tree height, using all available information returned by the polarimetric <span class="hlt">interferometer</span>, including <span class="hlt">radar</span> backscatter. Forest height estimated from simulated and actual <span class="hlt">radar</span> UAVSAR data is found in agreement with forest height derived from lidar LVIS data. Height-biomass allometric equations, previously validated with ground observations, are used to estimate the aboveground biomass [4]. Our method allows quantifying the worldwide biomass distribution and monitoring biomass dynamic changes (e.g., deforestation). Future <span class="hlt">radar</span> missions, such as the NASA/DESDynI, JAXA/ALOS-2 and ESA/BIOMASS can exploit this method [5]. Moreover, our theoretical modeling has unveiled new insights into the temporal decorrelation, such as the dependence on wave polarization and target structure [3], bringing benefits to all techniques exploiting <span class="hlt">radar</span> time series, beyond the remote sensing of vegetated lands. [1] Second report on the Adequacy of the Global Observing System for Climate in Support of the UNFCCC. GCOS-82 (WMO/TD No. 1143): World Meteorological Organization, 2003. [2] Le Toan, T., et al., The BIOMASS mission: "Mapping global forest biomass to better understand the terrestrial carbon cycle", Remote Sensing of Environment, 2011. [3] Lavalle, M., Simard, M., Hensley, S., "A Temporal Decorrelation Model for Polarimetric <span class="hlt">Radar</span> <span class="hlt">Interferometers</span>", accepted for publication in IEEE Trans. on Geoscience and Remote Sensing, 2011. [4] Mette, T., Papathanassiou, K.P., Hajnsek, I., "Biomass estimation from Pol-InSAR over heterogeneous Terrain", IEEE Geoscience and Remote Sensing Symposium, 2004. [5] Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, National Research Council, 2007.</p> <div class="credits"> <p class="dwt_author">Lavalle, M.; Simard, M.; Hensley, S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">180</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012GeoRL..3914104W"> <span id="translatedtitle">First daytime thermospheric wind observation from a balloon-borne Fabry-Perot <span class="hlt">interferometer</span> over Kiruna (68N)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">HIWIND (High altitude <span class="hlt">Interferometer</span> WIND Observation) is the first balloon Fabry-Perot <span class="hlt">interferometer</span> (FPI) to achieve successful thermospheric wind measurement for both day and night. By flying at ˜40 km altitude, HIWIND avoids the high solar scattering background and enables daytime remote sensing of Doppler shift in airglow for thermospheric wind observation. During its first flight in June 2011 from Kiruna, (68N, 65 MLAT), HIWIND observed persistent equatorward winds, while the NCAR TIEGCM model predicted poleward winds on the dayside. Combined with simultaneous EISCAT incoherent scatter <span class="hlt">radar</span> observation, HIWIND yielded a daytime Burnside factor value of 0.85. HIWIND data appear to suggest that upward vertical winds near the auroral oval may be the cause for large differences between the FPI measured and <span class="hlt">radar</span> derived winds near midnight.</p> <div class="credits"> <p class="dwt_author">Wu, Qian; Wang, W.; Roble, R. G.; Häggström, Ingemar; Strømme, Anja</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-07-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_8");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a style="font-weight: bold;">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_10");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_9 div --> <div id="page_10" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_9");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a style="font-weight: bold;">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_11");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">181</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2005AGUFM.P31C0213H"> <span id="translatedtitle">Challenges to Airborne and Orbital <span class="hlt">Radar</span> Sounding in the Presence of Surface Clutter: Lessons Learned (so far) from the Dry Valleys of Antarctica</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The search for life and in-situ resources for exploration on Mars targets both liquid and solid water, whether distributed or in reservoirs. Massive surface ice may cover potential habitats or other features of great interest. Ice-rich layering in the high latitudes holds clues to the climatic history of the planet. Multiple geophysical methods will clearly be necessary to fully characterize these various states of water (and other forms of ice), but <span class="hlt">radar</span> sounding will be a critical component of the effort. Orbital <span class="hlt">radar</span> sounders are already being employed and plans for surface-based and suborbital, above-surface <span class="hlt">radar</span> sounders are being discussed. The difficulties in interpreting data from each type of platform are quite different. Given the lack of existing orbital <span class="hlt">radar</span> sounding data from any planetary body, the analysis of airborne <span class="hlt">radar</span> sounding data is quite useful for assessing the advantages and disadvantages of above-surface <span class="hlt">radar</span> sounding on Mars. In addition to over 300,000 line-km of data collected over the Antarctic ice sheet by airborne <span class="hlt">radar</span> sounding, we have recently analyzed data from the Dry Valleys of Antarctica where conditions and features emulate Mars in several respects. These airborne <span class="hlt">radar</span> sounding data were collected over an ice-free area of Taylor Valley, ice-covered lakes, Taylor Glacier, and Beacon Valley. The pulsed <span class="hlt">radar</span> (52.5 - 67.5 MHz chirp) was coherently recorded. Pulse compression and unfocused SAR processing were applied. One of the most challenging aspects of above-surface <span class="hlt">radar</span> sounding is the determination of echo sources. This can, of course, be problematic for surface-based <span class="hlt">radar</span> sounders given possible subsurface scattering geometries, but it is most severe for above-surface sounders because echoes from cross-track surface topography (surface clutter) can have similar time delays to those from the subsurface. We have developed two techniques to accomplish the identification of this surface clutter in <span class="hlt">single-pass</span> airborne <span class="hlt">radar</span> sounding data. The first technique simulates <span class="hlt">radar</span> data using a digital elevation model (DEM) of surface topography to predict the location and shape of surface echoes in the <span class="hlt">radar</span> data. This is complemented by the cross-track migration of <span class="hlt">radar</span> echoes onto the surface. These migrated echoes are superimposed on imagery in order to correlate them with potential surface sources. Using these techniques enabled us to identify a number of echoes in a 24-km segment of the Dry Valleys flight path as arising from the surface and to identify subsurface echoes under the main trunk of Taylor Glacier and possibly multiple reflectors beneath the toe of Taylor Glacier. Surface-based <span class="hlt">radar</span> confirms the thickness of the glacier at three crossing points. In the ice-free section of the test segment no real subsurface reflectors were found, indicating that the electromagnetic properties of the ground there do not allow significant <span class="hlt">radar</span> penetration at 60 MHz and/or no <span class="hlt">radar</span>-significant subsurface interfaces exist. These results illustrate the importance of using complementary techniques, the usefulness of a DEM, and the limitations of <span class="hlt">single-pass</span> <span class="hlt">radar</span> sounding data. Advanced processing techniques utilizing <span class="hlt">radar</span> phase information show promise for achieving better clutter removal for <span class="hlt">single-pass</span> data. Multi-pass data that we recently collected in the Dry Valleys should allow for the development of techniques to reduce or eliminate the need for a surface elevation model.</p> <div class="credits"> <p class="dwt_author">Holt, J. W.; Peters, M. E.; Kempf, S. D.; Morse, D. L.; Blankenship, D. D.</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">182</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1990JGR....9521059P"> <span id="translatedtitle"><span class="hlt">Radar</span> observations of ion cyclotron waves associated with two barium shaped-charge releases</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Plasma waves associated with two shaped-charge barium releases from Wallops Island (Virginia) on May 13, 1986 were investigated using a 50 MHz Doppler <span class="hlt">radar</span> <span class="hlt">interferometer</span> and a 138-MHz Doppler <span class="hlt">radar</span> operated from Kennedy Space Center. During the first barium release, measurements showed the existence of short-lived coherent 3-m and 1-m waves centered near 30 Hz. The coherent 30-Hz <span class="hlt">radar</span> echoes were very similar to some naturally occurring auroral <span class="hlt">radar</span> echoes that are believed to be generated by resistive current-driven electrostatic ion cyclotron (EIC) waves. The 30-Hz waves seen by the two <span class="hlt">radars</span> far above the release are interpreted as strong EIC waves generated by intense field-aligned currents associated with the barium stream acting like an MHD generator coupled to the ionosphere.</p> <div class="credits"> <p class="dwt_author">Providakes, Jason; Swartz, Wesley E.; Kelley, Michael C.; Djuth, Frank T.; Noble, Steve</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">183</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21408903"> <span id="translatedtitle">Quantum noise in optical <span class="hlt">interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We study the photon counting noise in optical <span class="hlt">interferometers</span> used for gravitational wave detection. In order to reduce quantum noise, a squeezed vacuum is injected into the usually unused input port. It is investigated under which conditions the gravitational wave signal may be amplified without increasing counting noise concurrently. Such a possibility was suggested as a consequence of the entanglement of the two output ports of a beam splitter. We find that amplification without concurrent increase of noise is not possible for reasonable squeezing parameters. Photon distributions for various beam splitter angles and squeezing parameters are calculated.</p> <div class="credits"> <p class="dwt_author">Voronov, Volodymyr G.; Weyrauch, Michael [Faculty of Physics, Taras Shevchenko National University of Kyiv, 03022 Kyiv (Ukraine); Physikalisch-Technische Bundesanstalt, D-38116 Braunschweig (Germany)</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-05-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">184</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/details.jsp?query_id=0&page=0&ostiID=5878633"> <span id="translatedtitle">A multipulsed dynamic moire <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">An improved dynamic moire <span class="hlt">interferometer</span> is described that is comprised of a lasing medium providing a plurality of beams of coherent light, a multiple q-switch producing multiple trains of 100,000 or more pulses per second, a combining means collimating multiple trains of pulses into substantially a single train and directing beams to specimen gratings affixed to a test material, and a controller, triggering and sequencing the emission of the pulses with the occurrence and recording of a dynamic loading event. 5 figs.</p> <div class="credits"> <p class="dwt_author">Deason, V.A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-06-10</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">185</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6996245"> <span id="translatedtitle">Controlling <span class="hlt">radar</span> signature</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Low observable technologies for military and tactical aircraft are reviewed including signature-reduction techniques and signal detection/jamming. Among the applications considered are low-signature sensors and the reduction of <span class="hlt">radar</span> cross section in conjunction with <span class="hlt">radar</span>-absorbing structures and materials. Technologies for reducing <span class="hlt">radar</span> cross section are shown to present significant technological challenges, although they afford enhanced aircraft survivability.</p> <div class="credits"> <p class="dwt_author">Foulke, K.W. (U.S. Navy, Naval Air Warfare Center, China Lake, CA (United States))</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-08-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">186</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/14359340"> <span id="translatedtitle">CHIRP Doppler <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The present investigation is concerned with the concept of a combination of the clinical procedure of reconstruction tomography with the <span class="hlt">radar</span> processing for linear FM pulse compression. An approach based on such a combination is to be employed to map <span class="hlt">radar</span> backscatter energy. <span class="hlt">Radar</span> systems employing pulse compression of linear frequency modulated (CHIRP) pulses are considered along with the inversion</p> <div class="credits"> <p class="dwt_author">M. Bernfeld</p> <p class="dwt_publisher"></p> <p class="publishDate">1984-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">187</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50027925"> <span id="translatedtitle">Aviation weather <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The Federal Aviation Administration has established three ground-based weather <span class="hlt">radar</span> programs. The terminal Doppler weather <span class="hlt">radar</span> (TDWR) and weather system processor (WSP) provide wind shear detection capability for air traffic controllers in the terminal area. These systems also reduce weather related delays. The next generation weather <span class="hlt">radar</span> (NEXRAD) is used by the FAA to improve safety and reduce weather related</p> <div class="credits"> <p class="dwt_author">D. H. Turnbull</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">188</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=N8210298"> <span id="translatedtitle">Harmonic <span class="hlt">Radar</span> Literature Harmonisk <span class="hlt">Radar</span> - en Litteraturstudie.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">A harmonic <span class="hlt">radar</span> sends on a given frequency f sub o and receives on another frequency usually 3 f sub o. The overtone is generated on joints between the metal parts of the <span class="hlt">radar</span> target. The generated high harmonic frequency is very weak, which is why this...</p> <div class="credits"> <p class="dwt_author">B. Jansson</p> <p class="dwt_publisher"></p> <p class="publishDate">1980-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">189</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/686444"> <span id="translatedtitle">Continuous-wave quasi-phase-matched generation of 60thinspthinspmW at 465thinspthinspnm by <span class="hlt">single-pass</span> frequency doubling of a laser diode in backswitch-poled lithium niobate</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We report continuous-wave <span class="hlt">single-pass</span> second-harmonic generation (SHG) in 4-{mu}m -period 0.5-mm-thick backswitch-poled lithium niobate. Pump sources at 920{endash}930thinspthinspnm include both Ti:sapphire and diode-oscillator{endash}amplifier lasers. SHG of a Ti:sapphire laser at 6.1{percent}/W efficiency, producing 61thinspthinspmW of power at 460thinspthinspnm, is demonstrated in 50-mm-long periodically poled lithium niobate samples with a nonlinear coefficient d{sub eff}{approx}9 pm/V , and 60thinspthinspmW at 465thinspthinspnm and 2.8{percent}/W efficiency is obtained by SHG of a laser-diode source. {copyright} {ital 1999} {ital Optical Society of America}</p> <div class="credits"> <p class="dwt_author">Batchko, R.G.; Fejer, M.M.; Byer, R.L. [Ginzton Laboratory, Stanford University, Stanford, California 94305-4085 (United States); Woll, D.; Wallenstein, R. [Fachbereich Physik, Universitaet Kaiserslautern, Erwin-Schroedinger-Strasse 46, D-67663 Kaiserslautern (Germany); Shur, V.Y. [Institute of Physics and Applied Mathematics, Ural State University, Ekaterinburg 620083 (Russia); Erman, L. [Coherent Laser Group, 5100 Patrick Henry Drive, Santa Clara, California 95054 (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">190</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1999PhDT.........2M"> <span id="translatedtitle">Lunar topography from earth-based <span class="hlt">radar</span> interferometric mapping</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">An incomplete knowledge of the topography of the Moon has hindered the solution to several problems in lunar science and comparative planetology. The lack of elevation data over the polar regions and the generally sparse coverage in non-equatorial areas have restricted investigations related to the global shape of the Moon, impact cratering processes, and the possible presence of water ice at the lunar poles. Three-dimensional maps of the nearside and polar regions of the Moon can be obtained with an Earth-based <span class="hlt">radar</span> <span class="hlt">interferometer</span>. This technique allows surface heights to be accurately measured from the relative phase between <span class="hlt">radar</span> echoes recorded at two separate receiving stations. The 70 m antenna and several 34 m stations of the Deep Space Network in California were configured as a <span class="hlt">radar</span> <span class="hlt">interferometer</span> for a sequence of observations in 1997. This experiment provided the first detailed topographic maps of the lunar polar regions, with a coverage of 300 x 1200 km at each pole. Elevation maps and <span class="hlt">radar</span> imagery were also obtained for a 200 x 200 km region centered on Tycho Crater, the freshest large crater on the Moon. With a surface resolution of 150 m and a height resolution of 50 m or better, the <span class="hlt">radar</span> maps represent significant improvements compared to existing lunar topographic data sets. The digital elevation model of Tycho Crater was used to determine the fundamental parameters of the crater's shape. The data revealed an asymmetry in floor elevations, rim heights, and wall slump zones, which may be related to an oblique nature for the impact. The topographic maps of the polar areas were used to verify previous estimates of global shape parameters for the Moon, and to locate regions which are in permanent shadow from solar illumination. The actual locations of the cold traps, potential reservoirs of ice deposits, are delineated on <span class="hlt">radar</span> images of the lunar polar areas.</p> <div class="credits"> <p class="dwt_author">Margot, Jean-Luc C.</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">191</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/56309623"> <span id="translatedtitle">An overview of the Keck <span class="hlt">Interferometer</span> Nuller</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The first high dynamic range interferometry mode planned to come on line at the Keck Observatory is mid-infrared nulling interferometry. In this paper, an overview is given of the goals and experimental configuration of the Keck <span class="hlt">Interferometer</span> Nuller (KIN). After an introduction to the science enabled by mid-infrared nulling interferometry on the Keck <span class="hlt">Interferometer</span>'s baseline, a system level overview of</p> <div class="credits"> <p class="dwt_author">Eugen Serabyn</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">192</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/53565379"> <span id="translatedtitle">The measuring element of a superconducting <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The main component of a superconducting quantum <span class="hlt">interferometer</span> (SQUID) is the superconducting ring with weak links. The size of the contact forming the weak link is so small (not exceeding 1000 A) that sufficient mechanical rigidity is required when constructing an <span class="hlt">interferometer</span> in which a point contact is used between bulk superconductors. The design of a SQUID element is described</p> <div class="credits"> <p class="dwt_author">M. S. Legkostupov</p> <p class="dwt_publisher"></p> <p class="publishDate">1976-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">193</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/67754"> <span id="translatedtitle">CIST....CORRTEX <span class="hlt">interferometer</span> simulation test</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Testing was performed in order to validate and cross calibrate an RF <span class="hlt">interferometer</span> and the crush threshold of cable. Nitromethane was exploded (inside of PVC pipe). The explosion was used to crush the <span class="hlt">interferometer</span> sensor cables which had been placed inside and outside the pipe. Results are described.</p> <div class="credits"> <p class="dwt_author">Heinle, R.A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">194</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6742419"> <span id="translatedtitle">Feedback sharpening of Josephson <span class="hlt">interferometer</span> switching characteristics</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Transfer characteristics of Josephson <span class="hlt">interferometers</span> made with nonhysteretic junctions can be improved using positive feedback. Numerical calculations show that an <span class="hlt">interferometer</span>'s continuous current transfer characteristic can be sharpened to a step function by sending some of the output current back through a control current path. Logic circuits using feedback should have fairly wide operating margins. In some configurations parallel fanout is possible.</p> <div class="credits"> <p class="dwt_author">Howard, R.E.; Jackel, L.D.; Epworth, R.W.</p> <p class="dwt_publisher"></p> <p class="publishDate">1980-11-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">195</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21175912"> <span id="translatedtitle">Dual-prism <span class="hlt">interferometer</span> for collimation testing</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">An air-wedge lateral-shear <span class="hlt">interferometer</span> using two prisms is presented. With a variable shear, the <span class="hlt">interferometer</span> is suitable for testing collimation of a wide range of beam sizes down to a few millimeters in diameter. No antireflection coatings are necessary. Collimation for a light source with short coherent length is also demonstrated.</p> <div class="credits"> <p class="dwt_author">Hii, King Ung; Kwek, Kuan Hiang</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-10</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">196</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.physics.gatech.edu/ultracool/Papers/rotation_ifm_prl97.pdf"> <span id="translatedtitle">Rotation Sensing with an Atom <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We have measured the phase shift induced by rotation of an atom <span class="hlt">interferometer</span> at rates of -2 to +2 earth rates and obtained 1% agreement with the predicted Sagnac phase shift for atomic matter waves. The rotational rms noise of our <span class="hlt">interferometer</span> was 42 milliearth rates for 1 sec of integration time, within 9% of shot noise. The high sensitivity</p> <div class="credits"> <p class="dwt_author">Alan Lenef; Troy D. Hammond; Edward T. Smith; Michael S. Chapman; Richard A. Rubenstein; David E. Pritchard</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">197</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://w8lrk.org/article/RadarTutorial.pdf"> <span id="translatedtitle"><span class="hlt">Radar</span> Meteorology Tutorial</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">Brian McNoldy at Multi-community Environmental Storm Observatory (MESO) educates the public about the use of <span class="hlt">radar</span> in meteorology in this pdf document. After reading about the history of <span class="hlt">radar</span>, visitors can find out how <span class="hlt">radar</span> can detect storms by transmitting a high-power beam of radiation. Students can learn how scatter, absorption, frequencies, scan angles, and moments impact the <span class="hlt">radar</span> display. With the help of many example images, the author also discusses how to interpret the images collected. At the end of the online document, visitors can learn about the characteristics and capabilities of NEXRAD WSR-88D, the <span class="hlt">radar</span> used throughout the United States.</p> <div class="credits"> <p class="dwt_author">Mcnoldy, Brian</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-08-16</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">198</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012atph.book..347H"> <span id="translatedtitle">Cloud and Precipitation <span class="hlt">Radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Precipitation or weather <span class="hlt">radar</span> is an essential tool for research, diagnosis, and nowcasting of precipitation events like fronts or thunderstorms. Only with weather <span class="hlt">radar</span> is it possible to gain insights into the three-dimensional structure of thunderstorms and to investigate processes like hail formation or tornado genesis. A number of different <span class="hlt">radar</span> products are available to analyze the structure, dynamics and microphysics of precipitation systems. Cloud <span class="hlt">radars</span> use short wavelengths to enable detection of small ice particles or cloud droplets. Their applications differ from weather <span class="hlt">radar</span> as they are mostly orientated vertically, where different retrieval techniques can be applied.</p> <div class="credits"> <p class="dwt_author">Hagen, Martin; Höller, Hartmut; Schmidt, Kersten</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">199</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21408293"> <span id="translatedtitle">Orientational atom <span class="hlt">interferometers</span> sensitive to gravitational waves</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We present an atom <span class="hlt">interferometer</span> that differs from common atom <span class="hlt">interferometers</span> as it is not based on the spatial splitting of electronic wave functions, but on orienting atoms in space. As an example we present how an orientational atom <span class="hlt">interferometer</span> based on highly charged hydrogen-like atoms is affected by gravitational waves. We show that a monochromatic gravitational wave will cause a frequency shift that scales with the binding energy of the system rather than with its physical dimension. For a gravitational wave amplitude of h=10{sup -23} the frequency shift is of the order of 110 {mu}Hz for an atom <span class="hlt">interferometer</span> based on a 91-fold charged uranium ion. A frequency difference of this size can be resolved by current atom <span class="hlt">interferometers</span> in 1 s.</p> <div class="credits"> <p class="dwt_author">Lorek, Dennis; Laemmerzahl, Claus; Wicht, Andreas [Center of Applied Space Technology and Microgravity, University of Bremen, Am Fallturm, D-28359 Bremen (Germany); Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Strasse 4, D-12489 Berlin (Germany); Humboldt-Universitaet zu Berlin, Institut fuer Physik, Hausvogteiplatz 5-7, D-10117 Berlin (Germany)</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-02-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">200</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.loc.gov/pictures/collection/hh/item/mi0425.photos.340240p/"> <span id="translatedtitle">2. VIEW SOUTHWEST, prime search <span class="hlt">radar</span> tower, height finder <span class="hlt">radar</span> ...</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p class="result-summary">2. VIEW SOUTHWEST, prime search <span class="hlt">radar</span> tower, height finder <span class="hlt">radar</span> towards, height finder <span class="hlt">radar</span> towers, and <span class="hlt">radar</span> tower (unknown function) - Fort Custer Military Reservation, P-67 <span class="hlt">Radar</span> Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_9");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a style="font-weight: bold;">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_11");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_10 div --> <div id="page_11" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_10");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a style="font-weight: bold;">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_12");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">201</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/details.jsp?query_id=0&page=0&ostiID=868875"> <span id="translatedtitle">Beam shuttering <span class="hlt">interferometer</span> and method</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">A method and apparatus resulting in the simplification of phase shifting interferometry by eliminating the requirement to know the phase shift between interferograms or to keep the phase shift between interferograms constant. The present invention provides a simple, inexpensive means to shutter each independent beam of the <span class="hlt">interferometer</span> in order to facilitate the data acquisition requirements for optical interferometry and phase shifting interferometry. By eliminating the requirement to know the phase shift between interferograms or to keep the phase shift constant, a simple, economical means and apparatus for performing the technique of phase shifting interferometry is provide which, by thermally expanding a fiber optical cable changes the optical path distance of one incident beam relative to another.</p> <div class="credits"> <p class="dwt_author">Deason, Vance A. (Idaho Falls, ID); Lassahn, Gordon D. (Idaho Falls, ID)</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">202</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/details.jsp?query_id=0&page=0&ostiID=6252280"> <span id="translatedtitle">Beam shuttering <span class="hlt">interferometer</span> and method</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">A method and apparatus resulting in the simplification of phase shifting interferometry by eliminating the requirement to know the phase shift between interferograms or to keep the phase shift between interferograms constant. The present invention provides a simple, inexpensive means to shutter each independent beam of the <span class="hlt">interferometer</span> in order to facilitate the data acquisition requirements for optical interferometry and phase shifting interferometry. By eliminating the requirement to know the phase shift between interferograms or to keep the phase shift constant, a simple, economical means and apparatus for performing the technique of phase shifting interferometry is provide which, by thermally expanding a fiber optical cable changes the optical path distance of one incident beam relative to another.</p> <div class="credits"> <p class="dwt_author">Deason, V.A.; Lassahn, G.D.</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-07-27</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">203</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1996AAS...188.5410B"> <span id="translatedtitle">The Navy Prototype Optical <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This paper announces the first closure phase measurements made with the Navy Prototype Optical <span class="hlt">Interferometer</span> (NPOI) on stars. These are the first closure phase measurements made at optical wavelengths which exceed, by a factor of two to three, the resolution of the largest existing single optical telescope. The first observations were made on 1996 March 18 using three of the NPOI's four astrometric stations with baselines of 18.9, 22.2, and 37.5 meters. These data, the NPOI, and its current status will be discussed. The NPOI is a long baseline optical <span class="hlt">interferometer</span> built by NRL, USNO, and Lowell Observatory on Anderson Mesa, near Flagstaff, AZ, USA. It is designed for astrometry and for imaging stellar surfaces. First fringe measurements with a single baseline were made in October 1994. The intervening time was spent adding a third telescope and making numerous upgrades to the equipment and software. The astrometric portion of the array consists of four stations in a Y-shaped configuration. The baselines between these stations are monitored by an extensive laser metrology system. The goal of this system is to catalog stellar positions with milliarcsecond accuracy. Baseline lengths range from 18.9 to 37.5 meters. The imaging portion of the array will contain 6 elements that can be deployed on any of 30 stations. These stations are also arranged in a Y configuration with a maximum baseline length of 435 meters. The wavelength coverage for both systems is 450 to 850 nm, divided into 32 spectral channels. The system incorporates active group delay fringe tracking and rapid tip-tilt angle tracking. There are plans for adding two micron capability. The maximum aperture is currently 12.5 cm. Beam compressors are planned to increase the apertures to 35 cm. So far, the faintest star on which we have tracked fringes is m_V = 4.0.</p> <div class="credits"> <p class="dwt_author">Benson, J. A.; Hutter, D. J.; Elias, N. M., II; Bowers, P.; Mozurkewich, D.; Armstrong, J. T.; White, N.; Hummel, C.</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">204</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.loc.gov/pictures/collection/hh/item/mi0425.photos.340241p/"> <span id="translatedtitle">3. VIEW NORTHWEST, height finder <span class="hlt">radar</span> towers, and <span class="hlt">radar</span> tower ...</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p class="result-summary">3. VIEW NORTHWEST, height finder <span class="hlt">radar</span> towers, and <span class="hlt">radar</span> tower (unknown function) - Fort Custer Military Reservation, P-67 <span class="hlt">Radar</span> Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">205</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.loc.gov/pictures/collection/hh/item/nd0078.photos.199422p/"> <span id="translatedtitle">30. Perimeter acquisition <span class="hlt">radar</span> building room #318, showing <span class="hlt">radar</span> control. ...</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p class="result-summary">30. Perimeter acquisition <span class="hlt">radar</span> building room #318, showing <span class="hlt">radar</span> control. Console and line printers - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition <span class="hlt">Radar</span> Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">206</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50568540"> <span id="translatedtitle">Millimeter Wave Polarimetric Monopulse <span class="hlt">Radar</span> Debugging System</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">For testing millimeter wave polarimetric monopulse <span class="hlt">radar</span> and testing algorithms for polarimetric <span class="hlt">radar</span>, millimeter wave polarimetric monopulse <span class="hlt">radar</span> debugging system is proposed in this paper. Polarimetric <span class="hlt">radar</span>, as a kind of <span class="hlt">radar</span> with strong counter-countermeasure capability, is more and more popular used nowadays. The cost of polarimetric <span class="hlt">radar</span> is more expensive than traditional single-polarimetric <span class="hlt">radar</span>. Millimeter wave polarimetric monopulse <span class="hlt">radar</span></p> <div class="credits"> <p class="dwt_author">Jin Tao; Qi Xiaohui; Zhang Min; Qiao Xiaolin; Yuan Shuqing; Zhang Qunxing</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">207</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21259966"> <span id="translatedtitle">Classes and configurations of atom <span class="hlt">interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We establish the fundamental properties of two classes of <span class="hlt">interferometers</span>: those forming a pattern in momentum space, based on the superposition of two different momentum states and described by their relative propagation, and those forming a pattern in real space, based on two or more <span class="hlt">interferometer</span> arms and described by the propagation between their local ends. These two classes are characterized by different sensitivity functions and different noise sources; we will compare the sensitivity functions of two possible configurations of atom <span class="hlt">interferometer</span> and identify the most promising realization, with a view to applications to tests of general relativity and investigations of alterations of the spacetime curvature.</p> <div class="credits"> <p class="dwt_author">D'Ambrosio, Erika [Istituto Nazionale di Fisica Nucleare, Sez. di Firenze, Via Bruno Rossi 1/3-50019 Sesto Fiorentino (Italy)</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-02-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">208</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2004AIPC..705..724S"> <span id="translatedtitle">X-ray <span class="hlt">Interferometer</span> Using Prism Optics</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Two-beam X-ray <span class="hlt">interferometer</span> using refractive optics has been developed. A prism made of acrylic resin is used as the beam deflector for hard X-ray wavefront dividing <span class="hlt">interferometer</span>. This configuration is the same as that of the Fresnel's bi-prism <span class="hlt">interferometer</span> or the Leith-Upatnieks type two-beam holography in visible light region. Therefore, quantitative analysis of the degree of transversal coherence can be performed by measuring the visibility of interference fringes. It is also possible to realize two-beam holographic imaging in hard X-ray regions.</p> <div class="credits"> <p class="dwt_author">Suzuki, Yoshio</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">209</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/20653052"> <span id="translatedtitle">X-ray <span class="hlt">Interferometer</span> Using Prism Optics</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Two-beam X-ray <span class="hlt">interferometer</span> using refractive optics has been developed. A prism made of acrylic resin is used as the beam deflector for hard X-ray wavefront dividing <span class="hlt">interferometer</span>. This configuration is the same as that of the Fresnel's bi-prism <span class="hlt">interferometer</span> or the Leith-Upatnieks type two-beam holography in visible light region. Therefore, quantitative analysis of the degree of transversal coherence can be performed by measuring the visibility of interference fringes. It is also possible to realize two-beam holographic imaging in hard X-ray regions.</p> <div class="credits"> <p class="dwt_author">Suzuki, Yoshio [JASRI/SPring-8 Mikazuki, Hyogo 6791-5198 (Japan)</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-05-12</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">210</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/215465"> <span id="translatedtitle">Laser <span class="hlt">radar</span> in robotics</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">In this paper the authors describe the basic operating principles of laser <span class="hlt">radar</span> sensors and the typical algorithms used to process laser <span class="hlt">radar</span> imagery for robotic applications. The authors review 12 laser <span class="hlt">radar</span> sensors to illustrate the variety of systems that have been applied to robotic applications wherein information extracted from the laser <span class="hlt">radar</span> data is used to automatically control a mechanism or process. Next, they describe selected robotic applications in seven areas: autonomous vehicle navigation, walking machine foot placement, automated service vehicles, manufacturing and inspection, automotive, military, and agriculture. They conclude with a discussion of the status of laser <span class="hlt">radar</span> technology and suggest trends seen in the application of laser <span class="hlt">radar</span> sensors to robotics. Many new applications are expected as the maturity level progresses and system costs are reduced.</p> <div class="credits"> <p class="dwt_author">Carmer, D.C.; Peterson, L.M. [Environmental Research Inst. of Michigan, Ann Arbor, MI (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-02-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">211</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1984MiJo...27...24B"> <span id="translatedtitle"><span class="hlt">Radar</span> in transition</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">It is pointed out that <span class="hlt">radar</span> engineers, at the end of 1984, find their field in transition between the conventional designs of the post War II era and the digitally controlled, solid-state systems which will be in place for the year 2000. The U.S. Navy has two major phased array <span class="hlt">radar</span> systems in operation, including the rotating three-dimensional (3D) AN/SPS-48, and the phased-scanned AN/SPY-1 (Aegis) <span class="hlt">radars</span>. The Aegis represents a major step beyond the conventional 3D and mechanical fire-control <span class="hlt">radars</span>. However, it requires a special ship, dedicated to its use. Attention is given to questions regarding an extension of the application of Aegis technology to other U.S. Navy applications and to other navies, an ambitious solid-state <span class="hlt">radar</span> program in the UK, and Army <span class="hlt">radars</span>.</p> <div class="credits"> <p class="dwt_author">Barton, D. K.</p> <p class="dwt_publisher"></p> <p class="publishDate">1984-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">212</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA436262"> <span id="translatedtitle">Review of <span class="hlt">Radar</span> Absorbing Materials.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary"><span class="hlt">Radar</span> is a sensitive detection tool and since its development, methods for reducing microwave reflections have been explored. <span class="hlt">Radar</span> absorbers can be classified as impedance matching or resonant absorbers. <span class="hlt">Radar</span> absorbing materials are made from resistive ...</p> <div class="credits"> <p class="dwt_author">P. Saville</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">213</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.esto.nasa.gov/conferences/estc2005/papers/b5p2.pdf"> <span id="translatedtitle">Spaceborne Atmospheric <span class="hlt">Radar</span> Technology</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">NASA is developing advanced instrument concepts and technologies for future spaceborne atmospheric <span class="hlt">radars</span>, with the over-arching objectives of making such instruments more capable in supporting future science needs, and more cost effective. Two such examples are the Second-Generation Precipitation <span class="hlt">Radar</span> (PR-2) and the Nexrad-In-Space (NIS). PR- 2 is a 14\\/35-GHz dual-frequency rain <span class="hlt">radar</span> with a deployable 5- meter, wide-swath scanned</p> <div class="credits"> <p class="dwt_author">Eastwood Im; Stephen L. Durden</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">214</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008AGUFMAE31A0264N"> <span id="translatedtitle">Spider-like lightning observation using VHF broadband digital <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Lightning Research Group of Osaka University (LRG-OU) has been developing the VHF broadband digital <span class="hlt">interferometer</span> since 1995. This is a two- (2D) and three-dimensional (3D) VHF source mapping system for electromagnetic (EM) waves emitted by lightning discharge progression based on a unique technique of the broadband digital interferometry. LRG-OU carried out field observation campaigns with the VHF broadband digital <span class="hlt">interferometers</span> during monsoon seasons in Darwin, Australia. Through these campaigns a lot of lightning channels were visualized. The bi-directional leader progression, possible charge distribution related to the leader initiation, and the speed of the leader propagation are studied by the 3D imaging. At 0943:13 UT on 13 December, 2006, a spider-like cloud-to-cloud (CC) flash is recorded. In this flash, 4 groups of leaders are clearly visualized simultaneously. All leaders initiate from similar location, but develop to 4 different directions. One of these goes up to over 9km height, while the others progress horizontally between 2 and 5 km high. According to the weather <span class="hlt">radar</span> observations by BOM, the bright band is noticeable at about 5 km high. It means the lower leaders progress under "melting snow" layer and positive charges exist in this region. It is considered that the lower leaders develop as long as 8 km horizontally neutralizing freckled positive charge. The leaders resembling dart leaders that propagate through the exact same channel as previous leader are also seen in this flash. The precedent leader proceeds with a speed of about 104 m/s, and then subsequent leaders proceed at a speed of about 106 m/s. In the presentation, we would like to discuss about the details of this spider-like CC flash.</p> <div class="credits"> <p class="dwt_author">Nakamura, Y.; Murata, K.; Morimoto, T.; Ushio, T.; Kawasaki, Z.</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">215</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2001ESASP.473...59A"> <span id="translatedtitle">DORIS <span class="hlt">radar</span> calibration method</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Following the interest expressed by ESA and FGAN, it was decided to realise some evaluation of the DORIS calibration method with the TIRA <span class="hlt">radar</span>. This paper, organised in four parts, describes: - the importance of <span class="hlt">radar</span> calibration in the space debris domain - the principle of the DORIS calibration method - the results obtained with the TIRA FGAN <span class="hlt">radar</span> using the DORIS reference - the advantages of the DORIS calibration and the future uses of this method in an European exercise involving for the ESA benefit both French and German <span class="hlt">radars</span>.</p> <div class="credits"> <p class="dwt_author">Ameline, P.</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-10-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">216</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=N20000057370"> <span id="translatedtitle">Differential Phase Mode with the Keck <span class="hlt">Interferometer</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">We describe the differential phase mode of the Keck <span class="hlt">Interferometer</span>. The scientific goal of this mode is the direct detection and spectroscopic characterization of hot, Jupiter mass planets. We describe the differential phase effect, the basic observationa...</p> <div class="credits"> <p class="dwt_author">R. Akeson M. Swain</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">217</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/18909376"> <span id="translatedtitle">Quantum-mechanical noise in an <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The <span class="hlt">interferometers</span> now being developed to detect gravitational waves work by measuring the relative positions of widely separated masses. Two fundamental sources of quantum-mechanical noise determine the sensitivity of such an <span class="hlt">interferometer</span>: (i) fluctuations in number of output photons (photon-counting error) and (ii) fluctuations in radiation pressure on the masses (radiation-pressure error). Because of the low power of available continuous-wave</p> <div class="credits"> <p class="dwt_author">Carlton Caves</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">218</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21442883"> <span id="translatedtitle">Continuous phase amplification with a Sagnac <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We describe a phase-amplification technique using a Sagnac <span class="hlt">interferometer</span>. We monitor the relative phase between two paths of a precisely misaligned <span class="hlt">interferometer</span> by measuring the average position of a split-Gaussian mode in the dark port. Although we monitor only the dark port, we show that the signal varies linearly with phase and that we can obtain similar sensitivity to balanced homodyne detection. We derive the source of the amplification using classical wave optics.</p> <div class="credits"> <p class="dwt_author">Starling, David J.; Dixon, P. Ben; Williams, Nathan S.; Jordan, Andrew N.; Howell, John C. [Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-07-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">219</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/details.jsp?query_id=0&page=0&ostiID=873223"> <span id="translatedtitle">Single and double superimposing <span class="hlt">interferometer</span> systems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary"><span class="hlt">Interferometers</span> which can imprint a coherent delay on a broadband uncollimated beam are described. The delay value can be independent of incident ray angle, allowing interferometry using uncollimated beams from common extended sources such as lamps and fiber bundles, and facilitating Fourier Transform spectroscopy of wide angle sources. Pairs of such <span class="hlt">interferometers</span> matched in delay and dispersion can measure velocity and communicate using ordinary lamps, wide diameter optical fibers and arbitrary non-imaging paths, and not requiring a laser.</p> <div class="credits"> <p class="dwt_author">Erskine, David J. (Oakland, CA)</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">220</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/details.jsp?query_id=0&page=0&ostiID=5031415"> <span id="translatedtitle">Achromatic self-referencing <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">A self-referencing Mach-Zehnder <span class="hlt">interferometer</span> is described for accurately measuring laser wavefronts over a broad wavelength range (for example, 600 nm to 900 nm). The apparatus directs a reference portion of an input beam to a reference arm and a measurement portion of the input beam to a measurement arm, recombines the output beams from the reference and measurement arms, and registers the resulting interference pattern ([open quotes]first[close quotes] interferogram) at a first detector. Optionally, subportions of the measurement portion are diverted to second and third detectors, which respectively register intensity and interferogram signals which can be processed to reduce the first interferogram's sensitivity to input noise. The reference arm includes a spatial filter producing a high quality spherical beam from the reference portion, a tilted wedge plate compensating for off-axis aberrations in the spatial filter output, and mirror collimating the radiation transmitted through the tilted wedge plate. The apparatus includes a thermally and mechanically stable baseplate which supports all reference arm optics, or at least the spatial filter, tilted wedge plate, and the collimator. The tilted wedge plate is mounted adjustably with respect to the spatial filter and collimator, so that it can be maintained in an orientation in which it does not introduce significant wave front errors into the beam propagating through the reference arm. The apparatus is polarization insensitive and has an equal path length configuration enabling measurement of radiation from broadband as well as closely spaced laser line sources. 3 figures.</p> <div class="credits"> <p class="dwt_author">Feldman, M.</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-04-19</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_10");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a style="font-weight: bold;">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_12");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_11 div --> <div id="page_12" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_11");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a style="font-weight: bold;">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_13");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">221</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/details.jsp?query_id=0&page=0&ostiID=869244"> <span id="translatedtitle">Achromatic self-referencing <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">A self-referencing Mach-Zehnder <span class="hlt">interferometer</span> for accurately measuring laser wavefronts over a broad wavelength range (for example, 600 nm to 900 nm). The apparatus directs a reference portion of an input beam to a reference arm and a measurement portion of the input beam to a measurement arm, recombines the output beams from the reference and measurement arms, and registers the resulting interference pattern ("first" interferogram) at a first detector. Optionally, subportions of the measurement portion are diverted to second and third detectors, which respectively register intensity and interferogram signals which can be processed to reduce the first interferogram's sensitivity to input noise. The reference arm includes a spatial filter producing a high quality spherical beam from the reference portion, a tilted wedge plate compensating for off-axis aberrations in the spatial filter output, and mirror collimating the radiation transmitted through the tilted wedge plate. The apparatus includes a thermally and mechanically stable baseplate which supports all reference arm optics, or at least the spatial filter, tilted wedge plate, and the collimator. The tilted wedge plate is mounted adjustably with respect to the spatial filter and collimator, so that it can be maintained in an orientation in which it does not introduce significant wave front errors into the beam propagating through the reference arm. The apparatus is polarization insensitive and has an equal path length configuration enabling measurement of radiation from broadband as well as closely spaced laser line sources.</p> <div class="credits"> <p class="dwt_author">Feldman, Mark (Pleasanton, CA)</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">222</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/54330991"> <span id="translatedtitle">EISCAT Svalbard <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The main fields of interest of the Finnish scientists in EISCAT research are listed. Finnish interests in the Polar Cap <span class="hlt">Radar</span> (PMR) and areas where the Finnish contribution could be important are addressed: <span class="hlt">radar</span> techniques; sporadic E layers in the polar cap; atmospheric models; auroral studies in the polar cap; nonthermal plasmas in the F region; coordinated measurements with the</p> <div class="credits"> <p class="dwt_author">Markku Lehtinen; Jorma Kangas</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">223</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=N9318744"> <span id="translatedtitle">EISCAT Svalbard <span class="hlt">Radar</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The main fields of interest of the Finnish scientists in EISCAT research are listed. Finnish interests in the Polar Cap <span class="hlt">Radar</span> (PMR) and areas where the Finnish contribution could be important are addressed: <span class="hlt">radar</span> techniques; sporadic E layers in the polar...</p> <div class="credits"> <p class="dwt_author">M. Lehtinen J. Kangas</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">224</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011PhRvE..83b6601J"> <span id="translatedtitle"><span class="hlt">Radar</span> illusion via metamaterials</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">An optical illusion is an image of a real target perceived by the eye that is deceptive or misleading due to a physiological illusion or a specific visual trick. The recently developed metamaterials provide efficient approaches to generate a perfect optical illusion. However, all existing research on metamaterial illusions has been limited to theory and numerical simulations. Here, we propose the concept of a <span class="hlt">radar</span> illusion, which can make the electromagnetic (EM) image of a target gathered by <span class="hlt">radar</span> look like a different target, and we realize a <span class="hlt">radar</span> illusion device experimentally to change the <span class="hlt">radar</span> image of a metallic target into a dielectric target with predesigned size and material parameters. It is well known that the <span class="hlt">radar</span> signatures of metallic and dielectric objects are significantly different. However, when a metallic target is enclosed by the proposed illusion device, its EM scattering characteristics will be identical to that of a predesigned dielectric object under the illumination of <span class="hlt">radar</span> waves. Such an illusion device will confuse the <span class="hlt">radar</span>, and hence the real EM properties of the metallic target cannot be perceived. We designed and fabricated the <span class="hlt">radar</span> illusion device using artificial metamaterials in the microwave frequency, and good illusion performances are observed in the experimental results.</p> <div class="credits"> <p class="dwt_author">Jiang, Wei Xiang; Cui, Tie Jun</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-02-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">225</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/13638848"> <span id="translatedtitle">Doppler weather <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The Doppler weather <span class="hlt">radar</span> and its signals are examined from elementary considerations to show the origin and development of useful weather echo properties such as signal-to-noise ratio (SNR), range correlation, signal statistics, etc. We present a form of the weather <span class="hlt">radar</span> equation which explicitly shows the echo power loss due to finite receiver bandwidth and how it is related to</p> <div class="credits"> <p class="dwt_author">RICHARD J. DOVIAK; DUSAN S. ZRNIC; DALE S. SIRMANS</p> <p class="dwt_publisher"></p> <p class="publishDate">1979-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">226</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2005IJTFM.125...15S"> <span id="translatedtitle">Advances in <span class="hlt">Radar</span> Techniques</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Most of the clutter received by L, S, C, X, and Ku band <span class="hlt">radars</span> obeys a Weibull ditribution. To suppress such Weibull-distributed sea and weather clutter, Weibull CFAR techniques are applied to data taken by an X-band <span class="hlt">radar</span> using computer in real time. The results show the usefulness of Weibull CFAR.</p> <div class="credits"> <p class="dwt_author">Sekine, Matsuo</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">227</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1543454"> <span id="translatedtitle">UWB <span class="hlt">radars</span> in medicine</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Applied research on biomedical applications of UWB <span class="hlt">radar</span> is targeted to the identification of the possible new devices made possible by the technology, to the design and development of those devices, and to the clinical testing of the systems obtained. Applications can be divided into two main sectors according to the frequency range used. For the conventional UWB <span class="hlt">radar</span> microwave</p> <div class="credits"> <p class="dwt_author">Enrico M. Staderini</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">228</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=AD903321"> <span id="translatedtitle">Stereo <span class="hlt">Radar</span> Analysis.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The topographic accuracy of the AN/APQ-102(XA-2) side-looking <span class="hlt">radar</span> and its specific applicability to 1:50,000 and 1:250,000 scale topographic mapping were tested using stereo <span class="hlt">radar</span> techniques with real data. The two basic stereo configurations, opposite-...</p> <div class="credits"> <p class="dwt_author">G. Gracie R. K. Brewer J. W. Bricker R. A. Johnson</p> <p class="dwt_publisher"></p> <p class="publishDate">1970-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">229</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/14357961"> <span id="translatedtitle">Panchromatic and polypanchromatic <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Application of broad-band (panchromatic) illumination in <span class="hlt">radar</span> systems should permit improvement in image quality and reduction of tracking and detection problems due to fading. The effect of frequency averaging on <span class="hlt">radar</span> return from a simple target array is demonstrated by numerical computation and on image quality by ultrasonic simulation. The required bandwidth for a slightly rough random surface is determined</p> <div class="credits"> <p class="dwt_author">RICHARD K. MOORE; WILLIAM P. WAITE</p> <p class="dwt_publisher"></p> <p class="publishDate">1969-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">230</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/58983152"> <span id="translatedtitle"><span class="hlt">Radar</span> clutter classification</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The problem of classifying <span class="hlt">radar</span> clutter as found on air traffic control <span class="hlt">radar</span> systems is studied, and an algorithm is developed to carry out this classification automatically. The basis for the algorithm is Bayes decision theory and the parametric maximum a posteriori probability (MAP) classifier. This classifier employs a quadratic discriminant function and is optimum for feature vectors that are</p> <div class="credits"> <p class="dwt_author">Wolfgang Stehwien</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">231</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/51466410"> <span id="translatedtitle"><span class="hlt">Radar</span> clutter classification</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The problem of classifying <span class="hlt">radar</span> clutter as found on air traffic control <span class="hlt">radar</span> systems is studied. An algorithm based on Bayes decision theory and the parametric maximum a posteriori probability classifier is developed to perform this classification automatically. This classifier employs a quadratic discriminant function and is optimum for feature vectors that are distributed according to the multivariate normal density.</p> <div class="credits"> <p class="dwt_author">Wolfgang Stehwien</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">232</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.loc.gov/pictures/collection/hh/item/mi0425.photos.340242p/"> <span id="translatedtitle">4. VIEW NORTHEAST, <span class="hlt">radar</span> tower (unknown function), prime search <span class="hlt">radar</span> ...</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p class="result-summary">4. VIEW NORTHEAST, <span class="hlt">radar</span> tower (unknown function), prime search <span class="hlt">radar</span> tower, emergency power building, and height finder <span class="hlt">radar</span> tower - Fort Custer Military Reservation, P-67 <span class="hlt">Radar</span> Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">233</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.loc.gov/pictures/collection/hh/item/mi0425.photos.340243p/"> <span id="translatedtitle">5. VIEW EAST, height finder <span class="hlt">radar</span> towers, <span class="hlt">radar</span> tower (unknown ...</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p class="result-summary">5. VIEW EAST, height finder <span class="hlt">radar</span> towers, <span class="hlt">radar</span> tower (unknown function), prime search <span class="hlt">radar</span> tower, operations building, and central heating plant - Fort Custer Military Reservation, P-67 <span class="hlt">Radar</span> Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">234</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://dspace.lib.niigata-u.ac.jp:8080/dspace/bitstream/10191/5021/1/%28Yamaguchi+on+radar%2900322323.pdf"> <span id="translatedtitle">On <span class="hlt">radar</span> polarimetry in FM-CW <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper attempts to apply the principle of <span class="hlt">radar</span> polarimetry to wideband synthetic aperture FM-CW <span class="hlt">radar</span> and presents a basic polarimetric detection result of a linear target in a laboratory measurement. Although the principle of <span class="hlt">radar</span> polarimetry has well been established for the completely polarized wave and for the monostatic case, it still needs to be extended to wideband <span class="hlt">radar</span></p> <div class="credits"> <p class="dwt_author">Y. Yamaguchi; T. Nishikawa; W.-M. Boerner; M. Sengoku; Hyo Joon Eom</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">235</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/17932519"> <span id="translatedtitle">Fabry-Perot <span class="hlt">interferometer</span> based Mie Doppler lidar for low tropospheric wind observation.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Similar in principle to recent implementations of a lidar system at 355 nm [Opt. Lett. 25, 1231 (2000), Appl. Opt. 44, 6023 (2005)], an incoherent-detection Mie Doppler wind lidar at 1064 nm was developed and deployed in 2005 [Opt. Rev. 12, 409 (2005)] for wind measurements in the low troposphere, taking advantage of aerosol scattering for signal enhancement. We present a number of improvements made to the original 1064 nm system to increase its robustness for long-period operation. These include a multimode fiber for receiving the reference signal, a mode scrambler to allow uniform illumination over the Fabry-Perot <span class="hlt">interferometer</span>, and a fast scannable Fabry-Perot <span class="hlt">interferometer</span> for calibration and for the determination of outgoing laser frequency during the wind observation. With these improvements in stability, the standard deviation of peak transmission and FWHM of the Fabry-Perot <span class="hlt">interferometer</span> was determined to be 0.49% and 0.36%, respectively. The lidar wind measurements were validated within a dynamic range of +/-40 m/s. Comparison experiments with both wind profiler <span class="hlt">radar</span> and Vaisala wiresonde show good agreement with expected observation error. An example of 24 h continuous observations of wind field and aerosol backscatter coefficients in the boundary layer with 1 min and 30 m temporal and spatial resolution and 3 m/s tolerated wind velocity error is presented and fully demonstrates the stability and robustness of this lidar. PMID:17932519</p> <div class="credits"> <p class="dwt_author">Xia, Haiyun; Sun, Dongsong; Yang, Yuanhong; Shen, Fahua; Dong, Jingjing; Kobayashi, Takao</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-10-10</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">236</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50655415"> <span id="translatedtitle">Air traffic control <span class="hlt">radar</span> tester</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Our aim is to develop a <span class="hlt">radar</span> tester equipment for commercial and military services. The task is to create one (or more) target or clutter on the <span class="hlt">radar</span> screen with given distance, velocity and fluctuation. This equipment is placed within few hundred meters from the <span class="hlt">radar</span>, so it is able to analyze the whole <span class="hlt">radar</span> system from the antenna, via</p> <div class="credits"> <p class="dwt_author">Péter KOVÁCS; Levente DUDÁS; Rudolf SELLER; József ORBÁN</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">237</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50768289"> <span id="translatedtitle">Air traffic control <span class="hlt">radar</span> tester</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Our aim had been to develop a <span class="hlt">radar</span> tester equipment for commercial and military services. The task is to create one (or more) target or clutter on the <span class="hlt">radar</span> screen with given distance, velocity and fluctuation. This equipment is placed within few hundred meters from the <span class="hlt">radar</span>, so it is able to analyze the whole <span class="hlt">radar</span> system from the antenna,</p> <div class="credits"> <p class="dwt_author">Levente DUDÁS; Rudolf SELLER; Péter RENNER; József ORBÁN</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">238</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/929633"> <span id="translatedtitle">Interlaboratory study of the reproducibility of the <span class="hlt">single-pass</span> flow-through test method : measuring the dissolution rate of LRM glass at 70 {sup {degree}}C and pH 10.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">An international interlaboratory study (ILS) was conducted to evaluate the precision with which <span class="hlt">single-pass</span> flow-through (SPFT) tests can be conducted by following a method to be standardized by the American Society for Testing and Materials - International. Tests for the ILS were conducted with the low-activity reference material (LRM) glass developed previously for use as a glass test standard. Tests were conducted at 70 {+-} 2 C using a LiCl/LiOH solution as the leachant to impose an initial pH of about 10 (at 70 C). Participants were provided with LRM glass that had been crushed and sieved to isolate the -100 +200 mesh size fraction, and then washed to remove fines. Participants were asked to conduct a series of tests using different solution flow rate-to-sample mass ratios to generate a range of steady-state Si concentrations. The glass dissolution rate under each test condition was calculated using the steady-state Si concentration and solution flow rate that were measured in the test. The glass surface area was estimated from the mass of glass used in the test and the Si content of LRM glass was known. A linear relationship between the rate and the steady-state Si concentration (at Si concentrations less than 10 mg/L) was used to estimate the forward dissolution rate, which is the rate in the absence of dissolved Si. Participants were asked to sample the effluent solution at least five times after reaction times of between 3 and 14 days to measure the Si concentration and flow rate, and to verify that steady-state was achieved. Results were provided by seven participants and the data sets provided by five participants were sufficient to determine the forward rates independently.</p> <div class="credits"> <p class="dwt_author">Ebert, W. L.; Chemical Engineering</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-02-28</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">239</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2957162"> <span id="translatedtitle">Significance and Regional Dependency of Peptide Transporter (PEPT) 1 in the Intestinal Permeability of Glycylsarcosine: In Situ <span class="hlt">Single-Pass</span> Perfusion Studies in Wild-Type and Pept1 Knockout Mice</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">The purpose of this study was to evaluate the role, relevance, and regional dependence of peptide transporter (PEPT) 1 expression and function in mouse intestines using the model dipeptide glycylsarcosine (GlySar). After isolating specific intestinal segments, in situ <span class="hlt">single-pass</span> perfusions were performed in wild-type and Pept1 knockout mice. The permeability of [3H]GlySar was measured as a function of perfusate pH, dipeptide concentration, potential inhibitors, and intestinal segment, along with PEPT1 mRNA and protein. We found the permeability of GlySar to be saturable (Km = 5.7 mM), pH-dependent (maximal value at pH 5.5), and specific for PEPT1; other peptide transporters, such as PHT1 and PHT2, were not involved, as judged by the lack of GlySar inhibition by excess concentrations of histidine. GlySar permeabilities were comparable in the duodenum and jejunum of wild-type mice but were much larger than that in ileum (approximately 2-fold). A PEPT1-mediated permeability was not observed for GlySar in the colon of wild-type mice (<10% residual uptake compared to proximal small intestine). Moreover, GlySar permeabilities were very low and not different in the duodenum, jejunum, ileum, and colon of Pept1 knockout mice. Functional activity of intestinal PEPT1 was confirmed by real-time polymerase chain reaction and immunoblot analyses. Our findings suggest that a loss of PEPT1 activity (e.g., due to polymorphisms, disease, or drug interactions) should have a major effect in reducing the intestinal absorption of di-/tripeptides, peptidomimetics, and peptide-like drugs.</p> <div class="credits"> <p class="dwt_author">Jappar, Dilara; Wu, Shu-Pei; Hu, Yongjun</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">240</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/details.jsp?query_id=0&page=0&ostiID=5284265"> <span id="translatedtitle">Process control system using polarizing <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">A system for nondestructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing <span class="hlt">interferometer</span> is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the <span class="hlt">interferometer</span> by only one photon multiplier. In addition the <span class="hlt">interferometer</span> includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The <span class="hlt">interferometer</span> also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the <span class="hlt">interferometer</span> per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading. 38 figures.</p> <div class="credits"> <p class="dwt_author">Schultz, T.J.; Kotidis, P.A.; Woodroffe, J.A.; Rostler, P.S.</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-02-15</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_11");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a style="font-weight: bold;">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_13");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_12 div --> <div id="page_13" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_12");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a style="font-weight: bold;">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_14");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">241</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/details.jsp?query_id=0&page=0&ostiID=35076"> <span id="translatedtitle">Furnace control apparatus using polarizing <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">A system for nondestructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing <span class="hlt">interferometer</span> is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the <span class="hlt">interferometer</span> by only one photon multiplier. In addition the <span class="hlt">interferometer</span> includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The <span class="hlt">interferometer</span> also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the <span class="hlt">interferometer</span> per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading. 38 figures.</p> <div class="credits"> <p class="dwt_author">Schultz, T.J.; Kotidis, P.A.; Woodroffe, J.A.; Rostler, P.S.</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-03-28</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">242</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010CQGra..27h4023G"> <span id="translatedtitle">The AEI 10 m prototype <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A 10 m prototype <span class="hlt">interferometer</span> facility is currently being set up at the AEI in Hannover, Germany. The prototype <span class="hlt">interferometer</span> will be housed inside a 100 m3 ultra-high vacuum envelope. Seismically isolated optical tables inside the vacuum system will be interferometrically interconnected via a suspension platform <span class="hlt">interferometer</span>. Advanced isolation techniques will be used, such as inverted pendulums and geometrical anti-spring filters in combination with multiple-cascaded pendulum suspensions, containing an all-silica monolithic last stage. The light source is a 35 W Nd:YAG laser, geometrically filtered by passing it through a photonic crystal fibre and a rigid pre-modecleaner cavity. Laser frequency stabilisation will be achieved with the aid of a high finesse suspended reference cavity in conjunction with a molecular iodine reference. Coating thermal noise will be reduced by the use of Khalili cavities as compound end mirrors. Data acquisition and control of the experiments is based on the AdvLIGO digital control and data system. The aim of the project is to test advanced techniques for GEO 600 as well as to conduct experiments in macroscopic quantum mechanics. Reaching standard quantum-limit sensitivity for an <span class="hlt">interferometer</span> with 100 g mirrors and subsequently breaching this limit, features most prominently among these experiments. In this paper we present the layout and current status of the AEI 10 m Prototype <span class="hlt">Interferometer</span> project.</p> <div class="credits"> <p class="dwt_author">Goßler, S.; Bertolini, A.; Born, M.; Chen, Y.; Dahl, K.; Gering, D.; Gräf, C.; Heinzel, G.; Hild, S.; Kawazoe, F.; Kranz, O.; Kühn, G.; Lück, H.; Mossavi, K.; Schnabel, R.; Somiya, K.; Strain, K. A.; Taylor, J. R.; Wanner, A.; Westphal, T.; Willke, B.; Danzmann, K.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-04-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">243</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013PASP..125..951G"> <span id="translatedtitle">Optimal Beam Combiner Design for Nulling <span class="hlt">Interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A scheme to optimally design a beam combiner is discussed for any predetermined fixed geometry nulling <span class="hlt">interferometer</span> aimed at detection and characterization of exoplanets with multiple telescopes or a single telescope (aperture masking). We show that considerably higher order nulls can be achieved with 1D (one-dimensional) <span class="hlt">interferometer</span> geometries than possible with 2D (two-dimensional) geometries with the same number of apertures. Any 1D <span class="hlt">interferometer</span> with N apertures can achieve a 2(N - 1)-order null, while the order of the deepest null for a random 2D aperture geometry <span class="hlt">interferometer</span> is the order of the Nth term in the Taylor expansion of ei(x2+y2) around x=0, y=0 (2nd order null for N=2,3; 4th order null for N=4,5,6). We also show that an optimal beam combiner for nulling interferometry relies on only 0 or ? phase shifts. Examples of nulling <span class="hlt">interferometer</span> designs are shown to illustrate these findings.</p> <div class="credits"> <p class="dwt_author">Guyon, Olivier; Mennesson, Bertrand; Serabyn, Eugene; Martin, Stefan</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-08-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">244</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1996SPIE.2747....2G"> <span id="translatedtitle"><span class="hlt">Radar</span> applications overview</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">During the fifty years since its initial development as a means of providing early warning of airborne attacks against allied countries during World War II, <span class="hlt">radar</span> systems have developed to the point of being highly mobile and versatile systems capable of supporting a wide variety of remote sensing applications. Instead of being tied to stationary land-based sites, <span class="hlt">radar</span> systems have found their way into highly mobile land vehicles as well as into aircraft, missiles, and ships of all sizes. Of all these applications, however, the most exciting revolution has occurred in the airborne platform arena where advanced technology <span class="hlt">radars</span> can be found in all shapes and sizes...ranging from the large AWACS and Joint STARS long range surveillance and targeting systems to small millimeter wave multi-spectral sensors on smart weapons that can detect and identify their targets through the use of highly sophisticated digital signal processing hardware and software. This paper presents an overview of these <span class="hlt">radar</span> applications with the emphasis on modern airborne sensors that span the RF spectrum. It will identify and describe the factors that influence the parameters of low frequency and ultra wide band <span class="hlt">radars</span> designed to penetrate ground and dense foliage environments and locate within them buried mines, enemy armor, and other concealed or camouflaged weapons of war. It will similarly examine the factors that lead to the development of airborne <span class="hlt">radar</span> systems that support long range extended endurance airborne surveillance platforms designed to detect and precision-located both small high speed airborne threats as well as highly mobile time critical moving and stationary surface vehicles. The mission needs and associated <span class="hlt">radar</span> design impacts will be contrasted with those of <span class="hlt">radar</span> systems designed for high maneuverability rapid acquisition tactical strike warfare platforms, and shorter range cued air-to-surface weapons with integral smart <span class="hlt">radar</span> sensors.</p> <div class="credits"> <p class="dwt_author">Greenspan, Marshall</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-06-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">245</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1988AdSpR...8..119O"> <span id="translatedtitle">Incoherent scatter <span class="hlt">radar</span> contributions</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The contributions of the incoherent scatter <span class="hlt">radar</span> technique to knowledge of the neutral upper atmosphere of the earth in general and the development of the CIRA 1986 model in particular are discussed. Incoherent <span class="hlt">radar</span> scattering involves the transmission of a radio wave into the atmosphere and the reception of the energy scattered by the free electrons illuminated by the wave. Attention is given to the chronology of <span class="hlt">radar</span> contributions to the development of upper atmosphere models, the ion energy balance and continuity equations, exospheric temperatures, and studies of the lower thermosphere.</p> <div class="credits"> <p class="dwt_author">Oliver, W. L.; Alcayde, D.; Bauer, P.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">246</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1988STIN...8923777J"> <span id="translatedtitle">Active <span class="hlt">radar</span> jamming</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Active <span class="hlt">radar</span> jammers are described. In confusion jammers the perturbing action is produced by thermal noise which is intensified, or by a carrier wave modulated by a noise signal, or by a carrier wave which is frequency modulated with a lot of sine waves of different frequencies. There are jammers to be used once, which are fired to the spot or hang from a parachute. Deception jammers (misleading jammers) emit false <span class="hlt">radar</span> echoes, one or several produced by a repetition system, requiring a certain form of memory. It is shown how to emit varying false distance or velocities, and how to disturb angles in a <span class="hlt">radar</span> used to guide artillery fire.</p> <div class="credits"> <p class="dwt_author">Jernemalm, Veine</p> <p class="dwt_publisher"></p> <p class="publishDate">1988-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">247</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/22053983"> <span id="translatedtitle">A heterodyne <span class="hlt">interferometer</span> for angle metrology</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We have developed a compact, high-resolution, angle measurement instrument based on a heterodyne <span class="hlt">interferometer</span>. Common-path heterodyne <span class="hlt">interferometer</span> metrology is used to measure displacements of a reflective target surface. In the <span class="hlt">interferometer</span> set up, an optical mask is used to sample the laser beam reflecting back from four areas on a target surface. From the relative displacement measurements of the target surface areas, we can simultaneously determine angular rotations around two orthogonal axes in a plane perpendicular to the measurement beam propagation direction. The device is used in a testbed for a tracking telescope system where pitch and yaw angle measurements of a flat mirror are performed. Angle noise measurement of the device shows 0.1 nrad/{radical}(Hz) at 1 Hz, at a working distance of 1 m. The operation range and nonlinearity of the device when used with a flat mirror is approximately {+-}0.15 mrad, and 3 {mu}rad rms, respectively.</p> <div class="credits"> <p class="dwt_author">Hahn, Inseob; Weilert, M.; Wang, X.; Goullioud, R. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-04-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">248</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1982SPIE..332..402M"> <span id="translatedtitle">Telescope alignment with the absolute distance <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Achieving optimal performance from a multiple element telescope is critically dependent on an element position sensing and control system. We first discuss the design of a novel absolute distance measuring <span class="hlt">interferometer</span> with performance suitable for such a sensing system, and secondly describe how it can be simply integrated into the telescope. Features of the <span class="hlt">interferometer</span> include an extended ambiguity range, high temporal bandwidth, and very high accuracy. The concept for the overall optical alignment system is expected to compensate in part for local atmospheric distortions as well as mechanical vibrations while not interfering with the optical performance of the telescope.</p> <div class="credits"> <p class="dwt_author">Massie, N. A.; Dunn, M. R.</p> <p class="dwt_publisher"></p> <p class="publishDate">1982-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">249</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21020563"> <span id="translatedtitle">Bayesian estimation of differential <span class="hlt">interferometer</span> phase</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We apply Bayesian logic to optimally estimate the differential phase in a discrete-time, dual-<span class="hlt">interferometer</span> measurement. This method is particularly relevant to the case of a gravity gradiometer, where the gravity gradient between cold-atom fountain <span class="hlt">interferometers</span> can be estimated from the differential phase, despite the presence of large common phase (acceleration) fluctuations. Given an accurate model, the bias-free algorithm we present is optimal and leverages experimental knowledge of the system noise, classical or quantum, to outperform other typical estimators, including ellipse-fitting techniques.</p> <div class="credits"> <p class="dwt_author">Stockton, John K.; Wu Xinan; Kasevich, Mark A. [Department of Physics, Stanford University, Stanford, California 94305-4060 (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-09-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">250</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21344494"> <span id="translatedtitle">Nulling Measurements with the Keck <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The Keck <span class="hlt">Interferometer</span> provides a mid-infrared nulling capability that is designed to detect faint mid-infrared emission from the immediate vicinity of bright stars. The Keck <span class="hlt">Interferometer</span> Nuller (KIN) has now been used to carry out initial shared-risk science observations, followed by three nulling key-science projects performed in the 2008 observing semesters. This paper describes the novel measurement technique employed by the KIN, and lists some of the initial observations obtained with it. These data sets are now in the process of being analyzed, and results should begin emerging in the near future.</p> <div class="credits"> <p class="dwt_author">Serabyn, Eugene [Jet Propulsion Laboratory, MS 171-113, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91125 (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-08-05</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">251</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21370645"> <span id="translatedtitle">Lattice <span class="hlt">Interferometer</span> for Laser-Cooled Atoms</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We demonstrate an atom <span class="hlt">interferometer</span> in which atoms are laser cooled into a 1D optical lattice, suddenly released, and later subjected to a pulsed optical lattice. For short pulses, a simple analytical theory predicts the signal. We investigate both short and longer pulses where the analytical theory fails. Longer pulses yield higher precision and larger signals, and we observe a coherent signal at times that can differ significantly from the expected echo time. The <span class="hlt">interferometer</span> has potential for precision measurements of (Planck constant/2pi)/m{sub A}, and can probe the dynamics of atoms in an optical lattice.</p> <div class="credits"> <p class="dwt_author">Andersen, Mikkel F.; Sleator, Tycho [Atomic Physics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8424 (United States) and Jack Dodd Center for Quantum Technology, Department of Physics, University of Otago (New Zealand); Department of Physics, New York University, 4 Washington Place, New York, New York 10003 (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-08-14</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">252</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/20782917"> <span id="translatedtitle">Gravitational wave detectors based on matter wave <span class="hlt">interferometers</span> (MIGO) are no better than laser <span class="hlt">interferometers</span> (LIGO)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We show that a recent claim that matter wave <span class="hlt">interferometers</span> have a much higher sensitivity than laser <span class="hlt">interferometers</span> for a comparable physical setup is unfounded. We point out where the mistake in the earlier analysis is made. We also disprove the claim that only a description based on the geodesic deviation equation can produce the correct physical result. The equations for the quantum dynamics of nonrelativistic massive particles in a linearly perturbed spacetime derived here are useful for treating a wider class of related physical problems. A general discussion on the use of atom <span class="hlt">interferometers</span> for the detection of gravitational waves is also provided.</p> <div class="credits"> <p class="dwt_author">Roura, Albert; Brill, Dieter R.; Hu, B.L.; Misner, Charles W. [Department of Physics, University of Maryland, College Park, Maryland 20742-4111 (United States); Phillips, William D. [Department of Physics, University of Maryland, College Park, Maryland 20742-4111 (United States); National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8424 (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-04-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">253</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=AD693548"> <span id="translatedtitle">Generalized <span class="hlt">Radar</span> Output Simulation.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Using the outputs from the simulation of overall body motion related to observations at a complex of earth stations, this report develops a model for generating the scattering matrix and <span class="hlt">radar</span> output voltages. The general multistatic case is treated using...</p> <div class="credits"> <p class="dwt_author">J. F. A. Ormsby S. H. Bickel</p> <p class="dwt_publisher"></p> <p class="publishDate">1969-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">254</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=N8918916"> <span id="translatedtitle">Multimode <span class="hlt">Radar</span> Altimeter (MRA).</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Multimode <span class="hlt">radar</span> altimeter functions in the Comet Nucleus Sample Return mission are described. Range measurement gives distance information for navigation; angle tracking can be performed by optical systems. Velocity (three axes) can be obtained by Doppler...</p> <div class="credits"> <p class="dwt_author">G. Picardi C. Dai R. Seu A. Coradini</p> <p class="dwt_publisher"></p> <p class="publishDate">1988-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">255</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA003678"> <span id="translatedtitle"><span class="hlt">Radar</span> Techniques Program.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">This is the fifth Quarterly Technical Summary covering the development of an airborne Multiple-Antenna Moving-Target Surveillance <span class="hlt">Radar</span> (MASR) which employs special antenna and signal-processing techniques to provide continuous, wide-area surveillance of ...</p> <div class="credits"> <p class="dwt_author">C. E. Muehe</p> <p class="dwt_publisher"></p> <p class="publishDate">1974-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">256</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/53262973"> <span id="translatedtitle">Incoherent <span class="hlt">radar</span> spectra</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">General expressions for the incoherent scatter spectra are presented. These are relevant for the UHF <span class="hlt">radar</span> in the monostatic backscatter case (thus excluding only the effect of the magnetic field), based on the Nyquist approach.</p> <div class="credits"> <p class="dwt_author">Matti K. Vallinkoski</p> <p class="dwt_publisher"></p> <p class="publishDate">1987-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">257</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50388480"> <span id="translatedtitle">Ultra-wideband <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Here, we present a description of a block scheme, characteristics, specific features of design and results of testing for a prototype of the ultrawideband (UWB) <span class="hlt">radar</span>, which has been developed by Russian UWB group researchers at Moscow Aviation Institute at \\</p> <div class="credits"> <p class="dwt_author">I. Immoreev; E. Ziganshin</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">258</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1983cuni.rept.....O"> <span id="translatedtitle"><span class="hlt">Radar</span> investigation of asteroids</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">For 80 Sappho, 356 Liguria, 694 Ekard, and 2340 Hathor, data were taken simultaneously in the same sense of circular polarization as transmitted (SC) as well as in the opposite (OC) sense. Graphs show the average OC and SC <span class="hlt">radar</span> echo power spectra soothed to a resolution of EFB Hz and plotted against Doppler frequency. <span class="hlt">Radar</span> observations of the peculiar object 2201 Oljato reveal an unusual set of echo power spectra. The albedo and polarization ratio remain fairly constant but the bandwidths range from approximately 0.8 Hz to 1.4 Hz and the spectral shapes vary dramatically. Echo characteristics within any one date's approximately 2.5-hr observation period do not fluctuate very much. Laboratory measurements of the <span class="hlt">radar</span> frequency electrical properties of particulate metal-plus-silicate mixtures can be combined with <span class="hlt">radar</span> albedo estimates to constrain the bulk density and metal weight, fraction in a hypothetical asteroid regolith having the same particle size distribution as lab samples.</p> <div class="credits"> <p class="dwt_author">Ostro, S. J.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">259</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.cfht.hawaii.edu/%7Elai/OHANA/4838-74.pdf"> <span id="translatedtitle">Long-baseline optical fiber <span class="hlt">interferometer</span> instruments and science</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Developments of fiber linked optical <span class="hlt">interferometer</span> are reported. This <span class="hlt">interferometer</span> is a part of MIRA-I.2 <span class="hlt">interferometer</span> (Mitaka InfraRed and optical Array). MIRA-I.2 is an optical <span class="hlt">interferometer</span> with a 30 meters long baseline. It consists of two 30cm siderostats, tip-tilt mirrors, vacuum pipes delay lines and detectors. We plan to use two 60 meters long polarization-maintaining fibers for arms of the</p> <div class="credits"> <p class="dwt_author">Takayuki Kotani; Jun Nishikawa; Koichi Sato; Masanori Yoshizawa; Naoko Ohishi; Toshio Fukushima; Yasuo Torii; Ko Matsuda; Koichi Kubo; Hikaru Iwashita; Shunsaku Suzuki</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">260</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/27066948"> <span id="translatedtitle">Theory of Adaptive <span class="hlt">Radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper reviews the principles of adaptive <span class="hlt">radar</span> in which both the spatial (antenna pattern) and temporal (Doppler filter) responses of the system are controlled adaptively. An adaptive system senses the angular-Doppler distribution of the external noise field and adjusts a set of <span class="hlt">radar</span> parameters for maximum signal-to-interference ratio and optimum detection performance. A gradient technique for control of the</p> <div class="credits"> <p class="dwt_author">L. E. Brennan; L. S. Reed</p> <p class="dwt_publisher"></p> <p class="publishDate">1973-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_12");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a style="font-weight: bold;">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_14");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_13 div --> <div id="page_14" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_13");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a style="font-weight: bold;">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_15");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">261</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55294749"> <span id="translatedtitle"><span class="hlt">Radar</span> in transition</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">It is pointed out that <span class="hlt">radar</span> engineers, at the end of 1984, find their field in transition between the conventional designs of the post War II era and the digitally controlled, solid-state systems which will be in place for the year 2000. The U.S. Navy has two major phased array <span class="hlt">radar</span> systems in operation, including the rotating three-dimensional (3D) AN\\/SPS-48,</p> <div class="credits"> <p class="dwt_author">D. K. Barton</p> <p class="dwt_publisher"></p> <p class="publishDate">1984-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">262</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/51526991"> <span id="translatedtitle">Terminal Doppler weather <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The terminal Doppler weather <span class="hlt">radar</span> (TDWR) system, now under development, will provide automatic detection of microbursts and low-level wind shear. This paper discusses the TDWR performance parameters and describes its structural elements, including the antenna subsystem, the transmitter, the receiver\\/exciter, the digital signal processor, and the <span class="hlt">radar</span> product generator\\/remote monitoring subsystem. Attention is also given to the processes of the</p> <div class="credits"> <p class="dwt_author">M. Michelson; W. W. Shrader; J. G. Wieler</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">263</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/22839577"> <span id="translatedtitle">Sustained low efficiency dialysis using a <span class="hlt">single-pass</span> batch system in acute kidney injury - a randomized interventional trial: the REnal Replacement Therapy Study in Intensive Care Unit PatiEnts.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">ABSTRACT: INTRODUCTION: Acute kidney injury (AKI) is associated with a high mortality of up to 60%. The mode of renal replacement therapy (intermittent versus continuous) has no impact on patient survival. Sustained low efficiency dialysis using a <span class="hlt">single-pass</span> batch dialysis system (SLED-BD) has recently been introduced for the treatment of dialysis-dependent AKI. To date, however, only limited evidence is available in the comparison of SLED-BD versus continuous veno-venous hemofiltration (CVVH) in intensive care unit (ICU) patients with AKI. METHODS: Prospective, randomized, interventional, clinical study at a surgical intensive care unit of a university hospital. Between 1 April 2006 and 31 January 2009, 232 AKI patients who underwent renal replacement therapy (RRT) were randomized in the study. Follow-up was assessed until 30 August 2009. Patients were either assigned to 12-h SLED-BD or to 24-h predilutional CVVH. Both therapies were performed at a blood flow of 100 to 120 ml/min. RESULTS: 115 patients were treated with SLED-BD (total number of treatments n = 817) and 117 patients with CVVH (total number of treatments n = 877).The primary outcome measure, 90-day mortality, was similar between groups (SLED: 49.6% vs. CVVH: 55.6%, P = 0.43). Hemodynamic stability did not differ between SLED-BD and CVVH, whereas patients in the SLED-BD group had significantly fewer days of mechanical ventilation (17.7 ± 19.4 vs. 20.9 ± 19.8, P = 0.047) and fewer days in the ICU (19.6 ± 20.1 vs. 23.7 ± 21.9, P = 0.04). Patients treated with SLED needed fewer blood transfusions (1,375 ± 2,573 ml vs. 1,976 ± 3,316 ml, P = 0.02) and had a substantial reduction in nursing time spent for renal replacement therapy (P < 0.001) resulting in lower costs. CONCLUSIONS: SLED-BD was associated with reduced nursing time and lower costs compared to CVVH at similar outcomes. In the light of limited health care resources, SLED-BD offers an attractive alternative for the treatment of AKI in ICU patients. TRIAL REGISTRATION: ClinicalTrials.gov NCT00322530. PMID:22839577</p> <div class="credits"> <p class="dwt_author">Schwenger, Vedat; Weigand, Markus A; Hoffmann, Oskar; Dikow, Ralf; Kihm, Lars P; Seckinger, Jörg; Miftari, Nexhat; Schaier, Matthias; Hofer, Stefan; Haar, Caroline; Nawroth, Peter P; Zeier, Martin; Martin, Eike; Morath, Christian</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-07-27</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">264</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21175990"> <span id="translatedtitle">X-ray shearing <span class="hlt">interferometer</span> and generalized grating imaging</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">X-ray shearing <span class="hlt">interferometers</span> with three gratings are analyzed on the basis of generalized grating imaging theory. The result of this analysis is applied to an already proposed <span class="hlt">interferometer</span>. The contrast of the imaging fringes in the <span class="hlt">interferometer</span> is calculated quantitatively. It is also applied to explain the spatial resolution of the image.</p> <div class="credits"> <p class="dwt_author">Iwata, Koichi</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-02-10</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">265</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50262273"> <span id="translatedtitle">Pulse regime of nonlinear spin wave <span class="hlt">interferometer</span> operation</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Summary form only given. Spin wave devices may find various application for microwave signal processing. Recently an interest to investigate ferrite-film spin wave <span class="hlt">interferometers</span> was shown. In particular, a linear spin wave <span class="hlt">interferometer</span> has been used for obtaining a bistable microwave device. We have reported the results on continuous wave measurements of the nonlinear spin wave <span class="hlt">interferometer</span> (NSWI) (Ustinov et</p> <div class="credits"> <p class="dwt_author">A. B. Ustinov</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">266</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/18855581"> <span id="translatedtitle">dc readout experiment at the Caltech 40m prototype <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The Laser <span class="hlt">Interferometer</span> Gravitational Wave Observatory (LIGO) operates a 40m prototype <span class="hlt">interferometer</span> on the Caltech campus. The primary mission of the prototype is to serve as an experimental testbed for upgrades to the LIGO <span class="hlt">interferometers</span> and for gaining experience with advanced interferometric techniques, including detuned resonant sideband extraction (i.e. signal recycling) and dc readout (optical homodyne detection). The former technique</p> <div class="credits"> <p class="dwt_author">R. L. Ward; R. Adhikari; B. Abbott; R. Abbott; D. Barron; R. Bork; T. Fricke; V. Frolov; J. Heefner; A. Ivanov; O. Miyakawa; K. McKenzie; B. Slagmolen; M. Smith; R. Taylor; S. Vass; S. Waldman; A. Weinstein</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">267</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2006amos.confE..53T"> <span id="translatedtitle">Use of a Radial Shear <span class="hlt">Interferometer</span> as a Self Reference <span class="hlt">Interferometer</span> in Adaptive Optics</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A radial shear <span class="hlt">interferometer</span> (rsi) is produced by the interference of two different sized images of the test wavefront. When the center of curvature of the wavefronts are at the same location, they produce a shear in the radial direction. The rsi has a unique attribute which distinguishes it from other wavefront shear <span class="hlt">interferometers</span>. For sufficiently large shears S, where S = R1/R2, R being the radius of inner or outer beam, the interferometric fringe pattern is almost identical to a Michelson amplitude splitting <span class="hlt">interferometer</span>. The usual conversion of measured phase tilt to wavefront phase, as required in other shear <span class="hlt">interferometers</span>, is avoided. The resultant wavefront reconstruction is eliminated, and the radial shear interferogram can be treated as a direct phase measurement. Developed for optical testing in prelaser days, the radial shear <span class="hlt">interferometer</span> was a prime candidate for our use with the black fringe wavefront sensor (bfwfs) described in a companion presentation at this conference.1 We also considered a point diffraction <span class="hlt">interferometer</span> (pdi) as a self reference <span class="hlt">interferometer</span>, which led to a testing program to analyze the attributes of each of these optical designs for their later incorporation into an adaptive optics control system with the bfwfs. The rsi has several advantages over the pdi, including more efficient use of the input light from the test wavefront and insensitivity to vibration and environmental disturbances, due to the common path nature of the coincident wavefronts. However, the radial shear <span class="hlt">interferometer</span> is hampered by at least two issues in its implementation: the measured wavefront is only an approximation to the true input wavefront (based on the shear ratio), and it cannot be used with a centrally obscured telescope because of the radial shear. The remainder of the presentation will summarize an experimental investigation in which various wavefront aberrations are introduced at the input of a radial shear <span class="hlt">interferometer</span> and the resultant wavefront error map obtained. This phase map will be compared with that obtained when similar aberrations are input to a point diffraction <span class="hlt">interferometer</span>. There is a common theme to the recent successful applications of curvature sensing, image sharpness algorithms, and stochastic optimization techniques in adaptive optics. All aberrations do not need to be corrected to obtain either better images or corrected outgoing wavefronts, and averaging techniques can be a viable alternative for adaptive optics correction in severely degraded atmospherically generated or high flow conditions. The use of a radial shear <span class="hlt">interferometer</span>, combined with a black fringe wavefront sensor is finally described as an alternative method to correct for many of these aberrations, and, to the best of our knowledge, represents the first use of an rsi for atmospheric correction.</p> <div class="credits"> <p class="dwt_author">Tansey, R.; Phenis, A.; Shu, K.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">268</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=AD759801"> <span id="translatedtitle">Fast Sweeping <span class="hlt">Interferometer</span> with Digital Data Integration.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Accurate frequency and time resolution for solar dekameter observation is obtained with an <span class="hlt">interferometer</span> which steps within 50 msec through the band from 24 to 48 MHz using 160 kHz frequency increments. Alternatively adding and subtracting the two antenn...</p> <div class="credits"> <p class="dwt_author">B. W. Reinisch K. Bibl R. K. Temple</p> <p class="dwt_publisher"></p> <p class="publishDate">1970-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">269</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50225674"> <span id="translatedtitle">Automated planning for <span class="hlt">interferometer</span> configuration and control</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In this paper, we discuss Artificial Intelligence (AI) planning and scheduling technology and its application to <span class="hlt">interferometer</span> configuration and control. Scientific demand and technical requirements necessitate streamlining and optimizing the operation of these instruments. However, it is difficult, often impossible, to achieve this streamlining manually. Moreover, harsh operating environments make manual operation impractical, further motivating the use of automation. We</p> <div class="credits"> <p class="dwt_author">Gregg Rabideau; Leonard Reder; Steve Chien; Andrew Booth</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">270</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010AIPC.1211.2092C"> <span id="translatedtitle">Microwave <span class="hlt">Interferometer</span> for Non-Destructive Testing</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A K-band microwave <span class="hlt">interferometer</span> for non-destructive sensing of high frequency low amplitude (nm) vibration is demonstrated. This sensor uses direct-conversion receiver architecture with a phase shifter to adjust its sensitivity while varying the target distance. Detection of nanoscale vibration and laser-generated ultrasound waves through thin aluminum plate are measured and then compared with the theoretical results.</p> <div class="credits"> <p class="dwt_author">Choi, J.; Breugnot, S.; Itoh, T.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-02-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">271</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3583753"> <span id="translatedtitle">Electronic transmittance phase extracted from mesoscopic <span class="hlt">interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">The usual experimental set-up for measuring the wave function phase shift of electrons tunneling through a quantum dot (QD) embedded in a ring (i.e., the transmittance phase) is the so-called ‘open’ <span class="hlt">interferometer</span> as first proposed by Schuster et al. in 1997, in which the electrons back-scattered at source and the drain contacts are absorbed by additional leads in order to exclude multiple interference. While in this case one can conveniently use a simple two-path interference formula to extract the QD transmittance phase, the open <span class="hlt">interferometer</span> has also a number of draw-backs, such as a reduced signal and some uncertainty regarding the effects of the extra leads. Here we present a meaningful theoretical study of the QD transmittance phase in ‘closed’ <span class="hlt">interferometers</span> (i.e., connected only to source and drain leads). By putting together data from existing literature and giving some new proofs, we show both analytically and by numerical simulations that the existence of phase lapses between consecutive resonances of the ‘bare’ QD is related to the signs of the corresponding Fano parameters - of the QD + ring system. More precisely, if the Fano parameters have the same sign, the transmittance phase of the QD exhibits a ? lapse. Therefore, closed mesoscopic <span class="hlt">interferometers</span> can be used to address the ‘universal phase lapse’ problem. Moreover, the data from already existing Fano interference experiments from Kobayashi et al. in 2003 can be used to infer the phase lapses.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">272</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/51722963"> <span id="translatedtitle">The Virgo <span class="hlt">Interferometer</span> for Gravitational Wave Detection</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The Virgo <span class="hlt">interferometer</span> for gravitational wave detection is described. During the commissioning phase that followed the first scientific data taking run an unprecedented sensitivity was obtained in the range 10-60 Hz. Since then an upgrade program has begun, with the aim of increasing the sensitivity, mainly through the introduction of fused silica wires to suspend mirrors and by increasing the</p> <div class="credits"> <p class="dwt_author">T. Accadia; F. Acernese; F. Antonucci; P. Astone; G. Ballardin; F. Barone; M. Barsuglia; Th. S. Bauer; M. G. Beker; A. Belletoile; S. Birindelli; M. Bitossi; M. A. Bizouard; M. Blom; C. Boccara; F. Bondu; L. Bonelli; R. Bonnand; V. Boschi; L. Bosi; B. Bouhou; S. Braccini; C. Bradaschia; A. Brillet; V. Brisson; R. Budzynski; T. Bulik; H. J. Bulten; D. Buskulic; C. Buy; G. Cagnoli; E. Calloni; E. Campagna; B. Canuel; F. Carbognani; F. Cavalier; R. Cavalieri; G. Cella; E. Cesarini; E. Chassande-Mottin; A. Chincarini; F. Cleva; E. Coccia; C. N. Colacino; J. Colas; A. Colla; M. Colombini; A. Corsi; J.-P. Coulon; E. Cuoco; S. D'Antonio; V. Dattilo; M. Davier; R. Day; R. De Rosa; G. Debreczeni; M. Del Prete; L. di Fiore; A. di Lieto; M. di Paolo Emilio; A. di Virgilio; A. Dietz; M. Drago; V. Fafone; I. Ferrante; F. Fidecaro; I. Fiori; R. Flaminio; J.-D. Fournier; J. Franc; S. Frasca; F. Frasconi; A. Freise; M. Galimberti; L. Gammaitoni; F. Garufi; M. E. Gáspár; G. Gemme; E. Genin; A. Gennai; A. Giazotto; R. Gouaty; M. Granata; C. Greverie; G. M. Guidi; J.-F. Hayau; H. Heitmann; P. Hello; S. Hild; D. Huet; P. Jaranowski; I. Kowalska; A. Królak; N. Leroy; N. Letendre; T. G. F. Li; M. Lorenzini; V. Loriette; G. Losurdo; E. Majorana; I. Maksimovic; N. Man; M. Mantovani; F. Marchesoni; F. Marion; J. Marque; F. Martelli; A. Masserot; C. Michel; L. Milano; Y. Minenkov; M. Mohan; J. Moreau; N. Morgado; A. Morgia; S. Mosca; V. Moscatelli; B. Mours; I. Neri; F. Nocera; G. Pagliaroli; L. Palladino; C. Palomba; F. Paoletti; S. Pardi; M. Parisi; A. Pasqualetti; R. Passaquieti; D. Passuello; G. Persichetti; M. Pichot; F. Piergiovanni; M. Pietka; L. Pinard; R. Poggiani; M. Prato; G. A. Prodi; M. Punturo; P. Puppo; D. S. Rabeling; I. Rácz; P. Rapagnani; V. Re; T. Regimbau; F. Ricci; F. Robinet; A. Rocchi; L. Rolland; R. Romano; D. Rosinska; P. Ruggi; B. Sassolas; D. Sentenac; L. Sperandio; R. Sturani; B. Swinkels; A. Toncelli; M. Tonelli; O. Torre; E. Tournefier; F. Travasso; G. Vajente; S. van der Putten; M. Vasuth; M. Vavoulidis; G. Vedovato; D. Verkindt; F. Vetrano; A. Viceré; J.-Y. Vinet; H. Vocca; M. Yvert</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">273</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/51339639"> <span id="translatedtitle">Reconfigurable electronics at the IOTA <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We describe the new control system for the PICNIC near-infrared camera and the visible star tracker, implemented at the IOTA <span class="hlt">interferometer</span>, based on the ALTERA Complex Programmable Logic Device (CPLD) technology. These digital components provide an adaptive interface between the control system and the cameras used at IOTA, allowing flexibility when connecting very different devices. In particular the clocking and</p> <div class="credits"> <p class="dwt_author">Ettore Pedretti; Rafael Millan-Gabet; John D. Monnier; S. Morel; Wesley A. Traub; Nathaniel P. Carleton; Jean-Philippe Berger; P. Schloerb; Michael K. Brewer; Sam Ragland; Marc G. Lacasse</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">274</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2000STIN...0057371A"> <span id="translatedtitle">Differential Phase Mode with the Keck <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We describe the differential phase mode of the Keck <span class="hlt">Interferometer</span>. The scientific goal of this mode is the direct detection and spectroscopic characterization of hot, Jupiter mass planets. We describe the differential phase effect, the basic observational mode, and the expected differential phase signatures for the extrasolar planets discovered through radial velocity searches.</p> <div class="credits"> <p class="dwt_author">Akeson, Rachel; Swain, Mark</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">275</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=microwaves&pg=5&id=EJ474949"> <span id="translatedtitle">A Microwave <span class="hlt">Interferometer</span> on an Air Track.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">Uses an air track and microwave transmitters and receivers to make a Michelson <span class="hlt">interferometer</span>. Includes three experiments: (1) measuring the wavelength of microwaves, (2) measuring the wavelength of microwaves by using the Doppler Effect, and (3) measuring the Doppler shift. (MVL)</p> <div class="credits"> <p class="dwt_author">Polley, J. Patrick</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">276</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.phy.duke.edu/undergraduate/thesis/neil/eneil_thesis.pdf"> <span id="translatedtitle">Monte Carlo Simulation of an Atomic <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A direct measurement of the gravitational acceleration of antimat- ter has never before been performed. Recently, such an experiment has been proposed, using antihydrogen with an atom <span class="hlt">interferometer</span>. This paper describes a computer model of the proposed experiment, which is used to test basic assumptions and optimize certain param- eters. A Monte Carlo routine for generation of trial data sets</p> <div class="credits"> <p class="dwt_author">Ethan Neil</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">277</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013PhRvA..88d3621M"> <span id="translatedtitle">Ramsey-Bordé <span class="hlt">interferometer</span> for electrons</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A scheme to realize an electron <span class="hlt">interferometer</span> using low-intensity, bichromatic laser pulses as beam splitter is proposed. The splitting process is based on a modification of the Kapitza-Dirac effect, which produces a momentum kick for electrons with a specific initial momentum. A full interferometric setup in Ramsey-Bordé configuration is theoretically analyzed.</p> <div class="credits"> <p class="dwt_author">Marzlin, Karl-Peter</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-10-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">278</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/18491673"> <span id="translatedtitle">Novel micro <span class="hlt">interferometer</span> for length measurements</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A novel micro <span class="hlt">interferometer</span> for length and displacement measurements based on sampling an optical standing wave was developed. The interference of two laser beams propagating in opposite direction results in a sinusoidal light intensity profile, which can be detected by thin transparent photodiodes. Two detectors positioned on the optical axis of a standing wave allow bi-directional fringe counting. The operation</p> <div class="credits"> <p class="dwt_author">H. Stiebig; V. Mandryka; E. Bunte; H.-J. Büchner; K. H. Jun</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">279</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=dopplers+AND+effect&pg=3&id=EJ474949"> <span id="translatedtitle">A Microwave <span class="hlt">Interferometer</span> on an Air Track.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">|Uses an air track and microwave transmitters and receivers to make a Michelson <span class="hlt">interferometer</span>. Includes three experiments: (1) measuring the wavelength of microwaves, (2) measuring the wavelength of microwaves by using the Doppler Effect, and (3) measuring the Doppler shift. (MVL)|</p> <div class="credits"> <p class="dwt_author">Polley, J. Patrick</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">280</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA205985"> <span id="translatedtitle">Quantum Theory of the Nonlinear <span class="hlt">Interferometer</span>,</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">A full quantum theory of the Mach-Zehnder <span class="hlt">interferometer</span> with nonlinear Kerr media in both arms is presented. The nonlinear operator equations can be integrated, and the result can be normal-ordered. This permits the evaluation of the factorial moments of...</p> <div class="credits"> <p class="dwt_author">M. Shirasaki H. A. Haus D. L. Wong</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_13");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a style="font-weight: bold;">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_15");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_14 div --> <div id="page_15" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_14");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a style="font-weight: bold;">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_16");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">281</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/20820313"> <span id="translatedtitle">Orbiting stellar <span class="hlt">interferometer</span> for astrometry and imaging.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary"><p>The orbiting stellar <span class="hlt">interferometer</span> (OSI) is a concept for a first-generation space <span class="hlt">interferometer</span> with astrometric and imaging goals and is responsive to the recommendations of the Astronomy and Astrophysics Survey Committee for an astrometric <span class="hlt">interferometer</span> mission. The OSI, as developed at the Jet Propulsion Laboratory over the past several years, is a triple Michelson <span class="hlt">interferometer</span> with articulating siderostats and optical delay lines. Two point designs for the instrument are described.</p><p>The 18-m design uses an 18-m maximum baseline and aperture diameters of 40 cm; the targeted astrometric performance is a wide-field accuracy of 10 microarsec for 16-mag objects in 100 s of integration time and for 20-mag objects in 1 h. The instrument would also be capable of synthesis imaging with a resolution of 5 marcsec, which corresponds to the diffraction limit of the 18-m base line. The design uses a deployed structure, which would fold to fit into an Atlas HAS shroud, for insertion into a 900-km sun-synchronous orbit In addition to the 18-m point design a 7-m point design that uses a shorter base line in order to simplify deployment is also discussed. OSI's high performance is made possible by utilizing laser metrology and controlled-optics technology.</p> PMID:20820313</p> <div class="credits"> <p class="dwt_author">Colavita, M M; Shao, M; Rayman, M D</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">282</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2006PhDT........41K"> <span id="translatedtitle">Path matched vibration insensitive Fizeau <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">An on-axis, vibration insensitive, polarization Fizeau <span class="hlt">interferometer</span> is realized through the use of a novel pixelated mask spatial carrier phase shifting technique in conjunction with a low coherence source and a polarization path matching mechanism. In this arrangement, coherence is used to effectively separate out the orthogonally polarized test and reference beam components for interference. With both the test and the reference beams on-axis, the common path cancellation advantages of the Fizeau <span class="hlt">interferometer</span> are maintained. Microwave modulation of a high powered red laser diode is used to create a 15 mW laser source having a coherence length of 250 um with minimal sidelobe ringing. With a 15 mW source, the maximum camera shutter speed, used when measuring a 4% reflector, was 150 usec, resulting in very robust vibration insensitivity. Additionally, stray light interference is substantially reduced due to the source's short coherence, allowing the measurement of thin transparent optics. Experimental results show the performance of this new <span class="hlt">interferometer</span> to be within the specifications of commercial phase shifting <span class="hlt">interferometers</span>. This work starts with a basic review of interferometry, phase shifting, and polarization as a lead in to a description of the theory and operation of the pixelated mask spatial carrier phase shifting technique. An analysis of the standard Fizeau <span class="hlt">Interferometer</span> is then given. This is followed by detailed theoretical discussion of the path matched vibration insensitive (PMVI) Fizeau, which includes a theoretical model of the effects of multiple beam return from the test surface when measuring high value reflectors. The coherence properties of laser diodes are then discussed, a theoretical model for the effects of high frequency drive current is derived, and experimental results are given. Finally, the performance of the PMVI Fizeau is experimentally analyzed, potential error sources discussed, and suggestions for improvements provided.</p> <div class="credits"> <p class="dwt_author">Kimbrough, Bradley Trent</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">283</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/20555887"> <span id="translatedtitle">Integrated optical <span class="hlt">interferometer</span> with a stacked waveguide structure.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">An integrated optical <span class="hlt">interferometer</span> consisting of Al(2)O(3) waveguides placed upon an oxidized Si substrate is presented. The two waveguides forming the branches of the <span class="hlt">interferometer</span> are stacked on top of each other with a SiO(2) buffer layer in between. The <span class="hlt">interferometer</span> further contains two directional couplers which are realized by bending the upper waveguide toward the lower one. A masked evaporation technique is introduced to fabricate the directional couplers. The operation of the <span class="hlt">interferometer</span> is confirmed in temperature-sensing experiments while the application of the <span class="hlt">interferometer</span> to humidity measurement is discussed. PMID:20555887</p> <div class="credits"> <p class="dwt_author">Wu, S; Frankena, H J</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-10-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">284</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/49864642"> <span id="translatedtitle">Bistatic <span class="hlt">Radar</span> In Space A New Dimension In Imaging <span class="hlt">Radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Based on a set of examples, this paper shows that bistatic space <span class="hlt">radar</span> systems can have important capabilities for special imaging <span class="hlt">radar</span> applications. It explains' the different categories of bistatic space <span class="hlt">radars</span> as there are single orbit systems, crossing orbit systems, tethered systems and systems with geostationary\\/ge osynchronous transmitters (GEO-BISAR). It discusses the ideas of mixed systems, where aircrafts are</p> <div class="credits"> <p class="dwt_author">Hans Martin Braun; Philipp Hartl</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">285</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA449291"> <span id="translatedtitle">Studies on <span class="hlt">Radar</span> and Non-<span class="hlt">radar</span> Sensor Networks.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">During the period of 12/1/2005--5/30/2006, we expanded our research from generic wireless sensor networks to <span class="hlt">radar</span> sensor networks. For <span class="hlt">radar</span> sensor networks, we performed the following preliminary studies: (1) Waveform design and diversity in <span class="hlt">radar</span> senso...</p> <div class="credits"> <p class="dwt_author">Q. Liang</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">286</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.loc.gov/pictures/collection/hh/item/nd0078.photos.199425p/"> <span id="translatedtitle">33. Perimeter acquisition <span class="hlt">radar</span> building room #320, perimeter acquisition <span class="hlt">radar</span> ...</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p class="result-summary">33. Perimeter acquisition <span class="hlt">radar</span> building room #320, perimeter acquisition <span class="hlt">radar</span> operations center (PAROC), contains the tactical command and control group equipment required to control the par site. Showing spacetrack monitor console - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition <span class="hlt">Radar</span> Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">287</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1467001"> <span id="translatedtitle">Microphysical cross validation of spaceborne <span class="hlt">radar</span> and ground polarimetric <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Ground-based polarimetric <span class="hlt">radar</span> observations along the beam path of the Tropical Rainfall Measuring Mission (TRMM) Precipitation <span class="hlt">Radar</span> (PR), matched in resolution volume and aligned to PR measurements, are used to estimate the parameters of a gamma raindrop size distribution (RSD) model along the <span class="hlt">radar</span> beam in the presence of rain. The PR operates at 13.8 GHz, and its signal returns</p> <div class="credits"> <p class="dwt_author">V. Chandrasekar; Steven M. Bolen; Eugenio Gorgucci</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">288</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50274453"> <span id="translatedtitle">Passive coherent location <span class="hlt">radar</span> demonstration</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper describes a passive coherent location (PCL) <span class="hlt">radar</span> system developed by Dynetics, Inc. This system uses commercial FM broadcast signals for the <span class="hlt">radar</span> waveform. This paper presents a technical description of the system and performance data.</p> <div class="credits"> <p class="dwt_author">C. L. Zoeller; M. J. Moody</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">289</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50962329"> <span id="translatedtitle">Terahertz <span class="hlt">radar</span> cross section measurements</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We present the result of terahertz <span class="hlt">radar</span> cross section measurements on various objects including models of aircraft fighters. Application of a time domain system provides both values of <span class="hlt">radar</span> cross section and ranging information.</p> <div class="credits"> <p class="dwt_author">Krzysztof Iwaszczuk; Henning Heiselberg; Peter Uhd Jepsen</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">290</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50668141"> <span id="translatedtitle">CFAR detection for multistatic <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A multistatic <span class="hlt">radar</span> system with n transmitters and one receiver is modelled. Several CFAR algorithms for detection are introduced. The proposed CFAR detectors are simulated and the performances are compared with the performance of a monostatic <span class="hlt">radar</span> of higher power.</p> <div class="credits"> <p class="dwt_author">Vahideh Amanipour; Ali Olfat</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">291</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/3867364"> <span id="translatedtitle">The Clementine Bistatic <span class="hlt">Radar</span> Experiment</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">During the Clementine 1 mission, a bistatic <span class="hlt">radar</span> experiment measured the magnitude and polarization of the <span class="hlt">radar</span> echo versus bistatic angle, beta, for selected lunar areas. Observations of the lunar south pole yield a same-sense polarization enhancement around beta = 0. Analysis shows that the observed enhancement is localized to the permanently shadowed regions of the lunar south pole. <span class="hlt">Radar</span></p> <div class="credits"> <p class="dwt_author">S. Nozette; C. L. Lichtenberg; P. Spudis; R. Bonner; W. Ort; E. Malaret; M. Robinson; E. M. Shoemaker</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">292</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=DE20121043296"> <span id="translatedtitle">Scanning ARM Cloud <span class="hlt">Radar</span> Handbook.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The scanning ARM cloud <span class="hlt">radar</span> (SACR) is a polarimetric Doppler <span class="hlt">radar</span> consisting of three different <span class="hlt">radar</span> designs based on operating frequency. These are designated as follows: (1) X-band SACR (X-SACR); (2) Ka-band SACR (Ka-SACR); and (3) W-band SACR (W-SAC...</p> <div class="credits"> <p class="dwt_author">K. Johnson K. Widener N. Bharadwaj</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">293</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/52673611"> <span id="translatedtitle">The Venus <span class="hlt">Radar</span> Mapper mission</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The Venus <span class="hlt">Radar</span> Mapper (VRM) mission is sponsored by NASA to put a single spacecraft in orbit around Venus to map the surface using a synthetic aperture mapping <span class="hlt">radar</span>. This paper describes the VRM mission at its present state of design. The science objectives and project constraints are described. Key features of the spacecraft system and <span class="hlt">radar</span> system are discussed.</p> <div class="credits"> <p class="dwt_author">E. Cutting; J. H. Kwok; S. N. Mohan</p> <p class="dwt_publisher"></p> <p class="publishDate">1984-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">294</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/53029210"> <span id="translatedtitle">Interception of LPI <span class="hlt">radar</span> signals</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Most current <span class="hlt">radars</span> are designed to transmit short duration pulses with relatively high peak power. These <span class="hlt">radars</span> can be detected easily by the use of relatively modest EW intercept receivers. Three <span class="hlt">radar</span> functions (search, anti-ship missile (ASM) seeker, and navigation) are examined to evaluate the effectiveness of potential low probability of intercept (LPI) techniques, such as waveform coding, antenna profile</p> <div class="credits"> <p class="dwt_author">Jim P. Lee</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">295</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/56385017"> <span id="translatedtitle">A <span class="hlt">radar</span> tour of Venus</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The surface of Venus is briefly characterized in a summary of results obtained by the Soviet Venera 15 and 16 8-cm synthetic-aperture <span class="hlt">radars</span>, IR radiometers, and <span class="hlt">radar</span> altimeters. A series of <span class="hlt">radar</span> images, mainly from Kotelnikov et al. (1984), are presented and discussed, and the descent vehicles to be released by the two Vega spacecraft as they pass Venus in</p> <div class="credits"> <p class="dwt_author">J. K. Beatty</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">296</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1982nps..reptQ....M"> <span id="translatedtitle"><span class="hlt">Radar</span> model with terrain effects</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This thesis presents a novel naval <span class="hlt">radar</span> model which computes <span class="hlt">radar</span> detection in the presence of land masses. The model is an interactive computer program which accepts scenarios and <span class="hlt">radar</span> parameters from the user and displays a map of the area indicating where targets can and cannot be detected. The resulting map can be displayed at the user's computer terminal or printed offline.</p> <div class="credits"> <p class="dwt_author">Meritt, J. W.</p> <p class="dwt_publisher"></p> <p class="publishDate">1982-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">297</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/12420887"> <span id="translatedtitle">The Shuttle <span class="hlt">Radar</span> Topography Mission</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The Shuttle <span class="hlt">Radar</span> Topography Mission produced the most complete, highest-resolution digital elevation model of the Earth. The project was a joint endeavor of NASA, the National Geospatial-Intelligence Agency, and the German and Italian Space Agencies and flew in February 2000. It used dual <span class="hlt">radar</span> antennas to acquire interferometric <span class="hlt">radar</span> data, processed to digital topographic data at 1 arc sec resolution.</p> <div class="credits"> <p class="dwt_author">Tom G. Farr; Paul A. Rosen; Edward Caro; Robert Crippen; Riley Duren; Scott Hensley; Michael Kobrick; Mimi Paller; Ernesto Rodriguez; Ladislav Roth; David Seal; Scott Shaffer; Joanne Shimada; Jeffrey Umland; Marian Werner; Michael Oskin; Douglas Burbank; Douglas Alsdorf</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">298</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA470811"> <span id="translatedtitle">Studies on <span class="hlt">Radar</span> Sensor Networks.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">During the period of 12/8/2006-6/30/2007, we performed the following studies in <span class="hlt">radar</span> sensor network: (1) Sense-through-foliage target detection using UWB <span class="hlt">radar</span> sensor network based on real-world data; (2) Foliage clutter modeling using UWB <span class="hlt">radars</span>; (3) Ou...</p> <div class="credits"> <p class="dwt_author">Q. Liang</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">299</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://uwbgroup.ru/pdf/06_uwbusis_id02.pdf"> <span id="translatedtitle">Pulse-Doppler UWB <span class="hlt">Radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The paper contains measurement results of moving targets by pulse-Doppler UWB <span class="hlt">radar</span>. The description of a <span class="hlt">radar</span>, principle of operation and technical specification are presented. Conditions and results of measurements are described. Feature of the presented measurements: Doppler signals of linear moving targets whose linear sizes exceed resolution of <span class="hlt">radar</span></p> <div class="credits"> <p class="dwt_author">A. Chernenko; E. Ziganshin</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">300</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA075516"> <span id="translatedtitle">Millimeter <span class="hlt">Radar</span> Sea Return Study.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">A site selection process was performed for a planned field exercise to measure <span class="hlt">radar</span> sea clutter reflectivity at low grazing angles using several <span class="hlt">radar</span> frequencies between 9.5 and 95 GHz. A detailed test plan was developed to collect calibrated <span class="hlt">radar</span> cros...</p> <div class="credits"> <p class="dwt_author">R. N. Trebits</p> <p class="dwt_publisher"></p> <p class="publishDate">1979-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_14");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a style="font-weight: bold;">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_16");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_15 div --> <div id="page_16" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_15");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a style="font-weight: bold;">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_17");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">301</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50581094"> <span id="translatedtitle">Polarimetric Monopulse <span class="hlt">Radar</span> Intelligent Emulator</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">For debugging polarimetric monopulse <span class="hlt">radar</span> and testing polarization algorithms, a new polarimetric monopulse <span class="hlt">radar</span> intelligent emulator is proposed and designed in this paper. The polarization information, as a basic character of the target echo, plays an important role in modern <span class="hlt">radar</span> detection nowadays. The polarization algorithms are developed with rapid speed. It is not realistic to test all algorithms on</p> <div class="credits"> <p class="dwt_author">Jin Tao; Qi Xiaohui; Yuan Shuqing; Qiao Xiaolin; Zhang Min; Zhang Qunxing</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">302</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA021181"> <span id="translatedtitle">Synthetic Aperture <span class="hlt">Radar</span> Signals: Formulations and Approaches for Data Analysis.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">This report discusses principles of synthetic aperture <span class="hlt">radar</span>, properties of <span class="hlt">radar</span> targets, characteristics of <span class="hlt">radar</span> imagery, statistical analysis of <span class="hlt">radar</span> imagery, and the application of modern data analysis.</p> <div class="credits"> <p class="dwt_author">A. B. Lucero P. Swerling L. Breiman</p> <p class="dwt_publisher"></p> <p class="publishDate">1975-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">303</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=N9126616"> <span id="translatedtitle">Instrumental Principles of MST <span class="hlt">Radars</span> and Incoherent Scatter <span class="hlt">Radars</span> and the Configuration of <span class="hlt">Radar</span> System Hardware.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The principle of pulse modulation used in the case of coherent scatter <span class="hlt">radars</span> (MST <span class="hlt">radars</span>) is discussed. Coherent detection and the corresponding system configuration is delineated. Antenna requirements and design are outlined and the phase-coherent trans...</p> <div class="credits"> <p class="dwt_author">J. Roettger</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">304</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1994navy.reptV....H"> <span id="translatedtitle"><span class="hlt">Radar</span> sector blanker</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A <span class="hlt">radar</span> sector blanker comprises in analog-to-digital converter and a sector controller unit. The analog-to-digital converter receives the analog synchro voltages describing the positioning of a <span class="hlt">radar</span> antenna and changes these voltages into binary-coded decimal (BCD) information. The sector controller unit comprises a portable housing, a controller system, and a power supply. The controller system includes an OFF comparator circuit, an ON comparator circuit, an S-R latch, and a solid-state switch. Each comparator circuit comprises three cascaded transistor-transistor logic (TTL) integrated chips. The power supply gives a direct-current voltage to the solid-state switch and the TTL chips. The sector blanker blocks transmission for a predetermined rotational region or sector of a <span class="hlt">radar</span> system.</p> <div class="credits"> <p class="dwt_author">Hall, Roger B.</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">305</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1983olrs.book..327G"> <span id="translatedtitle">Coherent IR <span class="hlt">radar</span> technology</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Recent progress in the development of coherent IR <span class="hlt">radar</span> equipment is reviewed, focusing on the Firepond laser <span class="hlt">radar</span> installation and the more compact systems derived for it. The design and capabilities of Firepond as a long-range satellite-tracking device are outlined. The technological improvements necessary to make laser <span class="hlt">radar</span> mobile are discussed: a lightweight, stable 5-10-W transmitter laser for both CW and pulsed operation, a 12-element HgCdTe detector array, an eccentric-pupil Ritchey-Chretien telescope, and a combination of near-field phase modification and anamorphic expansion to produce a fan beam of relatively uniform intensity. Sample images obtained with a prototype system are shown, and the applicability of the mobile system to range-resolved coherent DIAL measurement is found to be similar to that of a baseline DIAL system.</p> <div class="credits"> <p class="dwt_author">Gschwendtner, A. B.; Harney, R. C.; Hull, R. J.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">306</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1992tabessymp.....R"> <span id="translatedtitle">Ground based <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The current state of turmoil in the world of ballistic missile technology dictates that the U.S. be prepared to deal with a growing ballistic missile threat. To meet this challenge the U.S. Army is developing a new family of ground based <span class="hlt">radar</span> to support both the Theater Missile Defense and the Strategic Defense Initiatives. This class of <span class="hlt">radar</span> provides affordable, reliable tracking and discrimination based on mature technology and commonality of design. The commonality of design concept uses technology and components that can be scaled in number, size, and capability. This approach allows ground based <span class="hlt">radar</span> to support the near term requirements of both tactical and strategic defense and also provide flexibility for more sophisticated future threats.</p> <div class="credits"> <p class="dwt_author">Ryan, William W.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">307</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1989STIN...9015307B"> <span id="translatedtitle">Flashlight <span class="hlt">radar</span>: A three-dimensional imaging <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In support of several programs at Lincoln Laboratory, a small focused-beam polarimetric, millimeter-wave <span class="hlt">radar</span> scatterometer (an instrument for measuring <span class="hlt">radar</span> cross section) has been developed. An overview of the design of this Flashlight <span class="hlt">Radar</span> is presented. Theoretical and empirical studies of antenna performance are discussed. The backscatter theory relating to the characteristics of the Flashlight <span class="hlt">Radar</span> as a scatterometer is presented, and experimental RCS measurements are compared with theoretical predictions. The data processing steps (polarimetric calibration and compensation, signal processing, and image formation) are described. We show the results of two representative experiments using the Flashlight <span class="hlt">Radar</span>. The first is a measurement of dihedral and trihedral reflectors with and without <span class="hlt">radar</span> camouflage. The second is a faster scan of a truck tire, highlighting the <span class="hlt">radar</span>'s fine resolution and its ability to collect three-dimensional data.</p> <div class="credits"> <p class="dwt_author">Blejer, Dennis J.; Ferranti, Richard L.; Barnes, Richard M.; Irving, William W.; Verbout, Shawn M.</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-08-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">308</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/17847261"> <span id="translatedtitle"><span class="hlt">Radar</span> detection of phobos.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary"><span class="hlt">Radar</span> echoes from the martian satellite Phobos provide information about that object's surface properties at scales near the 3.5-cm observing wavelength. Phobos appears less rough than the moon at centimeter-to-decimeter scales. The uppermost few decimeters of the satellite's regolith have a mean bulk density within 20% of 2.0 g cm(-3). The <span class="hlt">radar</span> signature of Phobos (albedo, polarization ratio, and echo spectral shape) differs from signatures measured for small, Earth-approaching objects, but resembles those of large (>/=100-km), C-class, mainbelt asteroids. PMID:17847261</p> <div class="credits"> <p class="dwt_author">Ostro, S J; Jurgens, R F; Yeomans, D K; Standish, E M; Greiner, W</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-03-24</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">309</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1986naec.conf..997M"> <span id="translatedtitle">Threat <span class="hlt">radar</span> system simulations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The capabilities, requirements, and goals of <span class="hlt">radar</span> emitter simulators are discussed. Simulators are used to evaluate competing receiver designs, to quantify the performance envelope of a <span class="hlt">radar</span> system, and to model the characteristics of a transmitted signal waveform. A database of candidate threat systems is developed and, in concert with intelligence data on a given weapons system, permits upgrading simulators to new projected threat capabilities. Four currently available simulation techniques are summarized, noting the usefulness of developing modular software for fast controlled-cost upgrades of simulation capabilities.</p> <div class="credits"> <p class="dwt_author">Miller, L.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">310</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1990MiJo...33..139M"> <span id="translatedtitle">Terminal Doppler weather <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The terminal Doppler weather <span class="hlt">radar</span> (TDWR) system, now under development, will provide automatic detection of microbursts and low-level wind shear. This paper discusses the TDWR performance parameters and describes its structural elements, including the antenna subsystem, the transmitter, the receiver/exciter, the digital signal processor, and the <span class="hlt">radar</span> product generator/remote monitoring subsystem. Attention is also given to the processes of the base data formation, point target removal, signal-to-noise thresholding, and velocity de-aliasing and to the TDWR algorithms and displays. A schematic diagram of the TDWR system is presented.</p> <div class="credits"> <p class="dwt_author">Michelson, M.; Shrader, W. W.; Wieler, J. G.</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-02-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">311</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009SPIE.7343E..27S"> <span id="translatedtitle">Wavelets and impulse <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The signal generated by avalanche discharge circuitry that drives optical flash for cameras is ultra wideband and suitable as the excitation waveform for an Impulse <span class="hlt">Radar</span> when transmitted through an appropriate antenna. In this paper, we experimentally and theoretically show that the Impulse <span class="hlt">Radar</span>'s radiated transmitted EM waves satisfy the admissibility condition of wavelets, i.e. (i) a finite power spectral density psd=<|S(f)|2>< and (ii) zero total area under the undulated wave amplitudes. If the radiated environment is linear (the natural scene), then the received signal also satisfies the admissibility condition.</p> <div class="credits"> <p class="dwt_author">Szu, Harold; Hsu, Charles; Scheff, Kim; Hansen, Peter; Willey, Jeff</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">312</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/details.jsp?query_id=0&page=0&ostiID=675841"> <span id="translatedtitle">Phase-shifting point diffraction <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">Disclosed is a point diffraction <span class="hlt">interferometer</span> for evaluating the quality of a test optic. In operation, the point diffraction <span class="hlt">interferometer</span> includes a source of radiation, the test optic, a beam divider, a reference wave pinhole located at an image plane downstream from the test optic, and a detector for detecting an interference pattern produced between a reference wave emitted by the pinhole and a test wave emitted from the test optic. The beam divider produces separate reference and test beams which focus at different laterally separated positions on the image plane. The reference wave pinhole is placed at a region of high intensity (e.g., the focal point) for the reference beam. This allows reference wave to be produced at a relatively high intensity. Also, the beam divider may include elements for phase shifting one or both of the reference and test beams. 8 figs.</p> <div class="credits"> <p class="dwt_author">Medecki, H.</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-11-10</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">313</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/details.jsp?query_id=0&page=0&ostiID=871971"> <span id="translatedtitle">Phase-shifting point diffraction <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">Disclosed is a point diffraction <span class="hlt">interferometer</span> for evaluating the quality of a test optic. In operation, the point diffraction <span class="hlt">interferometer</span> includes a source of radiation, the test optic, a beam divider, a reference wave pinhole located at an image plane downstream from the test optic, and a detector for detecting an interference pattern produced between a reference wave emitted by the pinhole and a test wave emitted from the test optic. The beam divider produces separate reference and test beams which focus at different laterally separated positions on the image plane. The reference wave pinhole is placed at a region of high intensity (e.g., the focal point) for the reference beam. This allows reference wave to be produced at a relatively high intensity. Also, the beam divider may include elements for phase shifting one or both of the reference and test beams.</p> <div class="credits"> <p class="dwt_author">Medecki, Hector (Berkeley, CA)</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">314</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2003SPIE.4838..404L"> <span id="translatedtitle">Desktop <span class="hlt">interferometer</span> for optical synthesis imaging</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A simple desktop optical <span class="hlt">interferometer</span> is described and demonstrated as a teaching tool for concepts of long-baseline stellar interferometry. The <span class="hlt">interferometer</span> is compact, portable, and easily aligned. It sits on a base 8" x 10" and uses an aperture mask which is mounted to rotate within a precision ball-bearing. Fringes produced from an artificial star are observed through a microscope by means of a video camera and are displayed on an overhead television monitor. When the aperture mask is rotated rapidly, the rotating fringe patterns seen on the monitor are observed to synthesize sources that are unresolved by individual holes in the mask. Fringes from an artificial double star are used to illustrate the relationship between fringe visibility and source structure and to demonstrate image synthesis.</p> <div class="credits"> <p class="dwt_author">Lawson, Peter R.; Wilson, Donald M. A.; Baldwin, John E.</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-02-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">315</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23680804"> <span id="translatedtitle">A ballistic quantum ring Josephson <span class="hlt">interferometer</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">We report the realization of a ballistic Josephson <span class="hlt">interferometer</span>. The <span class="hlt">interferometer</span> is made from a quantum ring etched in a nanofabricated two-dimensional electron gas confined in an InAs-based heterostructure laterally contacted to superconducting niobium leads. The Josephson current flowing through the structure shows oscillations with h/e flux periodicity when threading the loop with a perpendicular magnetic field. This periodicity, in sharp contrast with the h/2e one observed in conventional dc superconducting quantum interference devices, confirms the ballistic nature of the device in agreement with theoretical predictions. This system paves the way for the implementation of interferometric Josephson ?-junctions, and for the investigation of Majorana fermions. PMID:23680804</p> <div class="credits"> <p class="dwt_author">Fornieri, A; Amado, M; Carillo, F; Dolcini, F; Biasiol, G; Sorba, L; Pellegrini, V; Giazotto, F</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-05-17</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">316</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1993OptEn..32.2574G"> <span id="translatedtitle">Proposed data acquisition technique for heterodyne <span class="hlt">interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The development of a data acquisition system for a high resolution motion analyzer is discussed. The displacement measurement is based on a Michelson-type heterodyne <span class="hlt">interferometer</span>. The gained detector signals of the <span class="hlt">interferometer</span> are processed by the direct phase comparison method. This method makes it possible to achieve a resolution equivalent of 1/512 of the applied optical wavelength, without the intricate signal conditioning needed by the commonly used phase-locked loop frequency multiplication or analog signal multiplication methods. The main technical data of the system are 1.25-nm resolution, 20-m measuring distance, and 60-kHz sample rate. The accuracy is better than +/- 10 nm +/- 0.1 ppm within a velocity range of +/- 1.8 m/s and an acceleration range of +/- 9900 m/s2.</p> <div class="credits"> <p class="dwt_author">Gaal, Peter; Jani, Peter; Czitrovszky, Aladar</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">317</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1982GeoRL...9..785F"> <span id="translatedtitle">Fabry-Perot <span class="hlt">interferometer</span> measurements of thermospheric neutral wind gradients and reversals at Arecibo</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Direct measurements of the meridional neutral winds in the thermosphere made with the Fabry-Perot <span class="hlt">interferometer</span> at the Arecibo Observatory show the postmidnight meridional wind reversal that was inferred from previous incoherent scatter <span class="hlt">radar</span> ion-drift data and airglow intensity maps and observed in-situ with the Atmosphere Explorer-E satellite. Data for three nights between October 29 and December 9, 1981, are presented. For this period, the meridional wind is observed to be northward after sunset and to turn south before midnight; the velocities often exceed 100 m/sec. After midnight, its direction is seen to reverse to northward for one to two hours. The reversal after midnight is recurrent and propagates from the equator, as predicted on the basis of previous meridional airglow intensity measurements.</p> <div class="credits"> <p class="dwt_author">Friedman, J. F.; Herrero, F. A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1982-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">318</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/12244689"> <span id="translatedtitle"><span class="hlt">Interferometer</span>-Type Structures for Guided Atoms</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We experimentally demonstrate <span class="hlt">interferometer</span>-type guiding structures for neutral atoms based on dipole potentials created by microfabricated optical systems. As a central element we use an array of atom waveguides being formed by focusing a red-detuned laser beam with an array of cylindrical microlenses. Combining two of these arrays, we realize X-shaped beam splitters and more complex systems like the geometries</p> <div class="credits"> <p class="dwt_author">R. Dumke; T. Müther; M. Volk; W. Ertmer; G. Birkl</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">319</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/53798110"> <span id="translatedtitle">Adaptive optics for ESO VLT <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We describe the design of the ESO Adaptive Optics (AO) systems for the very large telescope <span class="hlt">interferometer</span> (VLTI). We consider hereafter both the tip-tilt only corrections and the high order systems. The high order AO systems are designed for K-band operation on the Unit Telescopes (UT). The K-band UT beams will be combined with the 1.8m Auxiliary Telescopes (AT) operating</p> <div class="credits"> <p class="dwt_author">Domenico Bonaccini; Francois J. Rigaut; Andreas Glindemann; Gregory Dudziak; Jean-Marie Mariotti; Francesco Paresce</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">320</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013SPIE.8882E..0MA"> <span id="translatedtitle">Optical tweezers based on polarization <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In this paper, we propose optical tweezers based on a biaxial crystal. To control the movement of opaque particles, we use the shift polarization <span class="hlt">interferometer</span>. The results of experimental study of laser tweezers are shown. We demonstrates movement of a microparticle of toner using singular-optical trap, rotate a particle due to orbital momentum, conversion of two traps when changing the plane of polarizer transmission and converging of two traps.</p> <div class="credits"> <p class="dwt_author">Angelsky, Oleg V.; Maksimyak, Andrew P.; Maksimyak, Peter P.; Dominikov, Mykola M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-06-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_15");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a style="font-weight: bold;">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_17");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_16 div --> <div id="page_17" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_16");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a style="font-weight: bold;">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_18");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">321</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/53798537"> <span id="translatedtitle">A High Resolution Phase Shifting <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Configuration, operation, and performance details of a high resolution phase shifting Twyman-Green <span class="hlt">interferometer</span> are presented. The instrument was used for density relaxation experiments of very compressible liquid-vapor critical fluids.(A companion talk in the Nonequilibrium Phenomena session under Complex Fluids presents density equilibration work.) A sample assembly contained the cell, beam splitter, phase shifter, and mirrors inside a 6 cm diameter</p> <div class="credits"> <p class="dwt_author">Michael Bayda; Christoph Bartscher; Allen Wilkinson</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">322</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2002nmgm.meet.1870U"> <span id="translatedtitle">Development of a Prototype Cryogenic <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We have completed a cryostat system using two stages 4K Gifford-MacMahon cryocoolers for a prototype of cryogenic laser <span class="hlt">interferometer</span> settled in ICRR. The first cooling down and vibration measurement on a mirror chamber of the cryostat system have been done. Results shows that temperature in the mirror chamber of 9K and 10-5Pa vacuum pressure achieved after four days cooling down. No excess vibration peak under 10 Hz due to the cryocooler was found.</p> <div class="credits"> <p class="dwt_author">Uchiyama, T.; Suzuki, T.; Yamamoto, A.; Shintomi, T.; Miyoki, S.; Taylor, C. T.; Ohashi, M.; Kuroda, K.; Shimonosono, T.</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">323</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2006cosp...36.3263M"> <span id="translatedtitle">The Stratospheric Wind <span class="hlt">Interferometer</span> for Transport studies</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">SWIFT the Stratospheric Wind <span class="hlt">Interferometer</span> For Transport studies is a Canadian satellite instrument designed to make continuous global stratospheric wind measurements between 15 and 55 km and provide simultaneous co-located ozone density profiles SWIFT is the primary instrument on the Canadian Space Agency s Chinook Mission scheduled for launch in late 2010 This paper will describe the overall scientific objectives of SWIFT the observational technique and the expected impact of SWIFT s observations on atmospheric science</p> <div class="credits"> <p class="dwt_author">McDade, I.; Haley, C.; Drummond, J.; Strong, K.; Solheim, B.; Shepherd, T.; Rochon, Y.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">324</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5067675"> <span id="translatedtitle"><span class="hlt">Interferometer</span>-based phase control system</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">An <span class="hlt">interferometer</span>-based phase control system for focusing and pointing the SPS power beam is discussed. The system is ground based and closed loop. One receiving antenna is required on earth. A conventional uplink data channel transmits an 8-bit phase error correction back to the SPS for sequential calibration of each power module. Beam pointing resolution is better than 140 meters at the Rectenna. 1 ref.</p> <div class="credits"> <p class="dwt_author">Ott, J.H.; Rice, J.S.</p> <p class="dwt_publisher"></p> <p class="publishDate">1980-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">325</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50871867"> <span id="translatedtitle">Multiport <span class="hlt">interferometer</span> techniques for innovative transceiver applications</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper presents and reviews basic concepts and emerging development of our proposed multi-port <span class="hlt">interferometer</span> techniques and demonstrates their applications in the design of carrier-based, impulse ultra-wideband and cognitive transceivers at microwave and millimeter-wave frequencies. Such innovative techniques can be extended to the design of transceivers over terahertz and optical ranges. Various architectures of multiport circuits are discussed with respect</p> <div class="credits"> <p class="dwt_author">Ke Wu</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">326</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/14960061"> <span id="translatedtitle">Fizeau <span class="hlt">interferometer</span> for global astrometry in space.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">We discuss the design and the performance of a Fizeau <span class="hlt">interferometer</span> with a long focal length and a large field of view that is well suited for a global astrometry space mission. Our work focuses on the geometric optimization and minimization of aberration of such an astrometric <span class="hlt">interferometer</span>, which is able to observe astronomical targets down to the visual magnitude (mag) mv = 20 mag, with an accuracy in the measurements of 10 micro-arcseconds at mv = 15 mag. We assume a mission profile similar to that of the Global Astrometric <span class="hlt">Interferometer</span> for Astrophysics mission of the European Space Agency. In this framework, data acquisition is performed by an array of CCDs working in time-delay integration mode. Optical aberrations, particularly distortion and coma, play a crucial role in the efficiency of this technique. We present a design solution that meets the requirements for the best possible exploitation of the time-delay integration mode over a field of view of 0.7 degrees x 0.7 degrees. PMID:14960061</p> <div class="credits"> <p class="dwt_author">Loreggia, Davide; Gardiol, Daniele; Gai, Mario; Lattanzi, Mario G; Busonero, Deborah</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-02-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">327</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012PhRvD..85f4007H"> <span id="translatedtitle"><span class="hlt">Interferometers</span> as probes of Planckian quantum geometry</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A theory of position of massive bodies is proposed that results in an observable quantum behavior of geometry at the Planck scale, tP. Departures from classical world lines in flat spacetime are described by Planckian noncommuting operators for position in different directions, as defined by interactions with null waves. The resulting evolution of position wave functions in two dimensions displays a new kind of directionally coherent quantum noise of transverse position. The amplitude of the effect in physical units is predicted with no parameters, by equating the number of degrees of freedom of position wave functions on a 2D space-like surface with the entropy density of a black hole event horizon of the same area. In a region of size L, the effect resembles spatially and directionally coherent random transverse shear deformations on time scale ?L/c with typical amplitude ?ctPL. This quantum-geometrical “holographic noise” in position is not describable as fluctuations of a quantized metric, or as any kind of fluctuation, dispersion or propagation effect in quantum fields. In a Michelson <span class="hlt">interferometer</span> the effect appears as noise that resembles a random Planckian walk of the beam splitter for durations up to the light-crossing time. Signal spectra and correlation functions in <span class="hlt">interferometers</span> are derived, and predicted to be comparable with the sensitivities of current and planned experiments. It is proposed that nearly colocated Michelson <span class="hlt">interferometers</span> of laboratory scale, cross-correlated at high frequency, can test the Planckian noise prediction with current technology.</p> <div class="credits"> <p class="dwt_author">Hogan, Craig J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">328</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008SPIE.7082E..18L"> <span id="translatedtitle">Performance of a cryogenic Michelson <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A cryogenic Fourier transform infrared spectrometer (Cryo-FTS) was developed for the Low Background Infrared (LBIR) facility at the National Institute of Standards and Technology (NIST). This spectrometer was developed for the Missile Defense Agency Transfer Radiometer (MDXR) that will be used to calibrate infrared sources that cannot be transported to NIST for calibration. When used inside the MDXR, the Cryo-FTS provides relative spectral measurements with a repeatability better than 1 % over the spectral range from 3 ?m to 15 ?m and at a spectral resolution of 0.6 cm-1. This level of performance is enabled by the use of an advancec real-time resampling method. The compact <span class="hlt">interferometer</span> uses a compensated Michelson configuration and has an operating temperature range between 10 K and 340 K with very low static beam redirection (< 215 ?rad). The <span class="hlt">interferometer</span> uses flat mirrors and a KBr beamsplitter and compensator. This optics maintains low wavefront distortion for infrared beams of up to 2 cm diameter and 5 mrad divergence. It integrates a digitally servo-controlled porchswing mechanism to provide an accurate and repeatable optical path difference and is supported by a Wavefront Alignment (WA) system to correct for wavefront residual tilt in real time using a fibre optic coupled metrology system. The <span class="hlt">interferometer</span> provides modulation efficiency of better than 44% with limited power dissipation (< 2.8 W) during operation.</p> <div class="credits"> <p class="dwt_author">Lagueux, Philippe; Chamberland, Martin; Marcotte, Frédérick; Villemaire, André J.; Duval, Marc; Genest, Jérôme; Carter, Adriaan C.</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-08-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">329</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008SPIE.7018E..75L"> <span id="translatedtitle">Performance of a cryogenic Michelson <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A cryogenic Fourier transform infrared spectrometer (Cryo-FTS) was developed for the Low Background Infrared (LBIR) facility at the National Institute of Standards and Technology (NIST). This spectrometer was developed for the Missile Defense Agency Transfer Radiometer (MDXR) that will be used to calibrate infrared sources that cannot be transported to NIST for calibration. When used inside the MDXR, the Cryo-FTS provides relative spectral measurements with a repeatability better than 1 % over the spectral range from 3 ?m to 15 ?m and at a spectral resolution of 0.6 cm-1. This level of performance is enabled by the use of an advancec real-time resampling method. The compact <span class="hlt">interferometer</span> uses a compensated Michelson configuration and has an operating temperature range between 10 K and 340 K with very low static beam redirection (< 215 ?rad). The <span class="hlt">interferometer</span> uses flat mirrors and a KBr beamsplitter and compensator. This optics maintains low wavefront distortion for infrared beams of up to 2 cm diameter and 5 mrad divergence. It integrates a digitally servo-controlled porchswing mechanism to provide an accurate and repeatable optical path difference and is supported by a Wavefront Alignment (WA) system to correct for wavefront residual tilt in real time using a fibre optic coupled metrology system. The <span class="hlt">interferometer</span> provides modulation efficiency of better than 44% with limited power dissipation (< 2.8 W) during operation.</p> <div class="credits"> <p class="dwt_author">Lagueux, Philippe; Chamberland, Martin; Marcotte, Frédérick; Villemaire, André; Duval, Marc; Genest, Jérôme; Carter, Adriaan</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">330</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50292159"> <span id="translatedtitle">Bistatic synthetic aperture <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Synthetic aperture <span class="hlt">radar</span> (SAR) is becoming increasingly important in many military ground surveillance and targeting roles because of its ability to operate in all weather, day and night, and to detect, classify and geolocate objects at long stand-off ranges. Bistatic SAR, where the transmitter and receiver are on separate platforms, is seen as a potential means of countering vulnerability. This</p> <div class="credits"> <p class="dwt_author">A. M. Horne; G. Yates</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">331</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADD008341"> <span id="translatedtitle">Heat Resistant <span class="hlt">Radar</span> Absorber.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">A foamed ceramic slab is bonded to the three-layer polyimide RAM substrate to produce a <span class="hlt">radar</span> absorbed capable of at least 10db absorptivity of the range 3 to at least 10 GHZ and of withstanding very high temperatures, for example, 3000 F for 80 seconds o...</p> <div class="credits"> <p class="dwt_author">W. P. Manning W. T. Passiuk</p> <p class="dwt_publisher"></p> <p class="publishDate">1978-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">332</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55263108"> <span id="translatedtitle">Goldstone solar system <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Information is provided about physical nature planetary surfaces and their topography as well as dynamical properties such as orbits and spin states using ground based <span class="hlt">radar</span> as a remote sensing tool. Accessible targets are the terrestrial planets: the Earth's Moon, Mercury, Venus and Mars, the outer planets rings and major moons, and many transient objects such as asteroids and comets.</p> <div class="credits"> <p class="dwt_author">R. F. Jurgens; P. E. Clark; R. M. Goldstein; S. J. Ostro; M. A. Slade; T. W. Thompson; R. S. Saunders</p> <p class="dwt_publisher"></p> <p class="publishDate">1986-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">333</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50112819"> <span id="translatedtitle">Airborne firefinder <span class="hlt">radar</span> concept</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">An airborne firefinder <span class="hlt">radar</span> (AFFR) is suggested for an upgraded version of the forthcoming Global Hawk Unmanned Aerial Vehicle (UAV). The AFFR could detect an artillery shell within 1 second of firing and, within a few seconds, determine its trajectory origin location (position of the gun) to a circular error probable (CEP) of less than 50 meters. The AFFR could</p> <div class="credits"> <p class="dwt_author">R. J. Sullivan; J. F. Nicoll; J. M. Ralston</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">334</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=PATENT3158859"> <span id="translatedtitle">Doppler <span class="hlt">Radar</span> System.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The <span class="hlt">radar</span> system is utilized to guide a fused guided missile to an aircraft target. The secondary doppler effects are utilized between a moving object and a secondary reflecting surface to detect the presence of the object and indicate its point of closes...</p> <div class="credits"> <p class="dwt_author">A. E. Resnik</p> <p class="dwt_publisher"></p> <p class="publishDate">1964-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">335</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/53305853"> <span id="translatedtitle">Mars 96 subsurface <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The Mars 96 International Scientific Mission to launch an aerostat that will drift in the Martian atmosphere for ten days is described. The stabilizing element of the aerostat (guiderope) will be dragged on the Martian surface every night. A ground penetrating <span class="hlt">radar</span> will be installed within the guiderope. Its external surface will act as a transmit and receive antenna. A</p> <div class="credits"> <p class="dwt_author">Y. Barbin; W. Kofman; M. Elkine; M. Finkelstein; V. Glotov; V. Zolotarev</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">336</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=PATENT3196433"> <span id="translatedtitle">Passive <span class="hlt">Radar</span> Tracking Apparatus.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The <span class="hlt">radar</span> system tracks a target whether it generates a signal of its own or not and may be used to sense noise energy radiated by the sun, other objects, or other celestial bodies. The system includes an antenna assembly of four horns arranged in a recta...</p> <div class="credits"> <p class="dwt_author">D. K. Barton W. J. Rose</p> <p class="dwt_publisher"></p> <p class="publishDate">1965-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">337</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/53540666"> <span id="translatedtitle">Comet <span class="hlt">radar</span> explorer</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The Comet <span class="hlt">Radar</span> Explorer (CORE) is designed to perform a comprehensive and detailed exploration of the interior, surface, and inner coma structures of a scientifically impor-tant Jupiter family comet. These structures will be used to investigate the origins of cometary nuclei, their physical and geological evolution, and the mechanisms driving their spectacular activity. CORE is a high heritage spacecraft, injected</p> <div class="credits"> <p class="dwt_author">Tony Farnham; Erik Asphaug; Antonella Barucci; Mike Belton; Dominique Bockelee-Morvan; Donald Brownlee; Maria Teresa Capria; Lynn Carter; Steve Chesley; Robert Gaskell; Young Gim; Essam Heggy; Alain Herique; Ken Klaasen; Wlodek Kofman; Misha Kreslavsky; Casey Lisse; Roberto Orosei; Jeff Plaut; Dan Scheeres</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">338</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50948757"> <span id="translatedtitle">Pulse Doppler <span class="hlt">radar</span> waveforms</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Modern military airborne <span class="hlt">radars</span> are highly sophisticated, multi-mode systems which are required to detect difficult targets in all aspects and over a large range\\/velocity detection space. There are particular difficulties associated with the airborne case such as the limited antenna aperture, high platform velocity and severe clutter levels which present difficult waveform design challenges. This tutorial will consider the design</p> <div class="credits"> <p class="dwt_author">C. M. Alabaster</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">339</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=AD831761"> <span id="translatedtitle">Laser <span class="hlt">Radar</span> Development.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">A range-gated imaging (RGI) laser <span class="hlt">radar</span> system was constructed and field-tested at the Chesapeake Bay Division of the Naval Research Laboratories to evaluate the capability of RGI systems to provide extremely high contrast image displays. The system emplo...</p> <div class="credits"> <p class="dwt_author">J. A. Jenney</p> <p class="dwt_publisher"></p> <p class="publishDate">1968-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">340</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA270436"> <span id="translatedtitle">Laser Imaging <span class="hlt">Radar</span> System.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The simplicity, compactness, and reasonable cost of direct detection diode-laser range finders provide incentive for their use in laser imaging <span class="hlt">radar</span> systems (LIRS). Efforts have been made to increase range performance of a diode-laser range finder by mea...</p> <div class="credits"> <p class="dwt_author">S. P. Yun R. A. Olson</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_16");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a style="font-weight: bold;">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_18");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_17 div --> <div id="page_18" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_17");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a style="font-weight: bold;">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_19");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">341</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/t23v542l04h363p0.pdf"> <span id="translatedtitle">Suppressing pulsed microwave signals in a nonlinear spin wave <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The suppression of S-band microwave pulses in a nonlinear spin wave <span class="hlt">interferometer</span> was experimentally studied for the first\\u000a time. The microwave <span class="hlt">interferometer</span> employed a nonlinear spin wave phase shifter based on an yttrium iron garnet film. A signal\\u000a representing a periodic sequence of rectangular pulses with a power of up to 2.5 mW passes through the nonlinear <span class="hlt">interferometer</span>\\u000a without distortion,</p> <div class="credits"> <p class="dwt_author">A. B. Ustinov; B. A. Kalinikos</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">342</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5443465"> <span id="translatedtitle">Regenerative processes in a radio-frequency Josephson <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Phase modulation of rf oscillations in a Josephson <span class="hlt">interferometer</span> with hysteresis is described theoretically outside the plateau in the voltage-current characteristic. A generalized phenomenological model is developed for the magnetic flux quantum jumps in <span class="hlt">interferometers</span> which treats the phase change produced by external perturbations and fluctuations. The forced oscillations become unstable when the coupling between the <span class="hlt">interferometer</span> loop and the pumping channel reaches a certain value. The application of this instability to maximizing the sensitivity of quantum rf <span class="hlt">interferometers</span> (so that the sensitivity is limited only by the constraints imposed by fluctuations in the Josephson contact) is discussed.</p> <div class="credits"> <p class="dwt_author">Gusev, A.V.; Rudenko, V.N.</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">343</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2005AIPC..760..273P"> <span id="translatedtitle">An Innovative <span class="hlt">Interferometer</span> for Industrial Laser Ultrasonic Inspection</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A novel interferometric scheme for robust and sensitive detection of ultrasound is presented. The proposed technique combines a classical Michelson <span class="hlt">interferometer</span> design and an innovative multi-speckle processing technique. Multiple Michelson <span class="hlt">interferometers</span> are integrated into a compact design, each <span class="hlt">interferometer</span> operating on only few speckles. A compact design is achieved through the use of detector arrays and parallel processing. To overcome the requirement on path stabilization, quadrature demodulation is implemented. The performance of this multi-detector <span class="hlt">interferometer</span> is described and its advantage for measurement in industrial environments is discussed.</p> <div class="credits"> <p class="dwt_author">Pouet, B.; Breugnot, S.; Clémenceau, P.</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">344</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.loc.gov/pictures/collection/hh/item/ak0486.photos.193536p/"> <span id="translatedtitle">51. View of upper <span class="hlt">radar</span> scanner switch in <span class="hlt">radar</span> scanner ...</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p class="result-summary">51. View of upper <span class="hlt">radar</span> scanner switch in <span class="hlt">radar</span> scanner building 105 from upper catwalk level showing emanating waveguides from upper switch (upper one-fourth of photograph) and emanating waveguides from lower <span class="hlt">radar</span> scanner switch in vertical runs. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">345</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60368657"> <span id="translatedtitle">VISAR (Velocity <span class="hlt">Interferometer</span> System for Any Reflector): Line-imaging <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper describes a Velocity <span class="hlt">Interferometer</span> System for Any Reflector (VISAR) technique that extends velocity measurements from single points to a line. Single-frequency argon laser light was focused through a cylindrical lens to illuminate a line on a surface. The initially stationary, flat surface was accelerated unevenly during the experiment. Motion produced a Doppler-shift of light reflected from the surface</p> <div class="credits"> <p class="dwt_author">W. F. Hemsing; A. R. Mathews; R. H. Warnes; G. R. Whittemore</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">346</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1991STIN...9228304P"> <span id="translatedtitle">An OTH <span class="hlt">radar</span> clutter simulation</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A computer simulation is described which was developed with the objective of arriving at an understanding of OTH <span class="hlt">radar</span> clutter originating in the equatorial ionosphere. This source of clutter is of particular interest in OTH <span class="hlt">radar</span>, since all <span class="hlt">radar</span> propagation paths must pass through the equatorial region, even if the desired targets are far removed from it. A central feature of the simulation is an ionospheric propagation model developed to synthesize OTH <span class="hlt">radar</span> clutter by making use of state-of-the art models for global ionospheric structure, including small-scale irregularities, and combining these with efficient ray tracing procedures and a multiple phase-screen approach to computing the diffraction of <span class="hlt">radar</span> energy by the irregular ionosphere. Simulated clutter data is compared to actual measurements using several <span class="hlt">radars</span>, with generally satisfactory results.</p> <div class="credits"> <p class="dwt_author">Providakes, J.; Elkins, T. J.; Godwin, R. B.; Kelley, M. C.</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">347</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA228583"> <span id="translatedtitle"><span class="hlt">Radar</span> Experiments Data Reduction, and Experimental Tests.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Work performed included software support for the evaluation and development of advanced <span class="hlt">radar</span> antenna systems, development and maintenance of target identification databases, and the data reduction of raw <span class="hlt">radar</span> data from field tests. Keywords: <span class="hlt">Radar</span> anten...</p> <div class="credits"> <p class="dwt_author">W. O. Loescher</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">348</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/22713687"> <span id="translatedtitle">Macroscopic coherent rectification in Andreev <span class="hlt">interferometers</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">We investigate nonlinear transport through quantum coherent metallic conductors contacted to superconducting components. We find that in certain geometries, the presence of superconductivity generates a large, finite-average rectification effect. Specializing to Andreev <span class="hlt">interferometers</span>, we show that the direction and magnitude of rectification can be controlled by a magnetic flux tuning the superconducting phase difference at two contacts. In particular, this results in the breakdown of an Onsager reciprocity relation at finite bias. The rectification current is macroscopic in that it scales with the linear conductance, and we find that it exceeds 5% of the linear current at sub-gap biases of a few tens of microelectronvolts. PMID:22713687</p> <div class="credits"> <p class="dwt_author">Meair, Jonathan; Jacquod, Philippe</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-06-20</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">349</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012AIPC.1454...15F"> <span id="translatedtitle">Accurate force measurement using optical <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The present status and the future prospects of a method for accurate force measurement, the levitation mass method (LMM), is reviewed. The LMM has been proposed and improved by the authors. In the LMM, the inertial force of a mass levitated using an aero-static linear bearing is used as the reference/known force applied to the objects under test, such as force transducers, materials or structures. The inertial force of the levitated mass is measured using an optical <span class="hlt">interferometer</span>. Since the force is one of the most major physical quantities, the application of the LMM as the most accurate dynamic force measurement method is very wide.</p> <div class="credits"> <p class="dwt_author">Fujii, Yusaku</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-06-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">350</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/20208789"> <span id="translatedtitle">Rapid spatially scanning ir heterodyne <span class="hlt">interferometer</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">An <span class="hlt">interferometer</span> has been developed which provides repetitive spatial profiles of phase objects in the ir using a single detector channel. By combining Bragg cell heterodyne interferometry with a high speed (0.5 million rpm) turbine driven rotating mirror scanner, the system effectively converts temporal fringes to spatial fringes. Designed for applications in plasma diagnostics, the system scans a 5-cm field with a 2-mm resolution in 200 nsec. Operating in a double pass mode at 3.4 microm, the phase accuracy is better than 0.1 fringe. The concept is applicable over a wide range in wavelength, scan format, and resolution. PMID:20208789</p> <div class="credits"> <p class="dwt_author">Kristal, R</p> <p class="dwt_publisher"></p> <p class="publishDate">1979-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">351</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1994A%26A...291..847G"> <span id="translatedtitle"><span class="hlt">Interferometer</span> observations of RS Canum Venaticorum binaries</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We present radio flux measurements at 5 GHz for a sample of RS CVn-type chromospherically active binary systems made from 1988 to 1992 using the Nuffield Radio Astronomy Laboratories (NRAL) broad-band <span class="hlt">interferometer</span> (BBI). The derived radio luminosities are consistent with previous observations but show that radio flaring is a common feature which will effect the results of rotation-activity studies. The mean brightness temperature for our sample, assuming a radio source size equal to twice the radius of the active stellar component, is consistent with a gyrosynchrotron emission process from mildly relativistic electrons.</p> <div class="credits"> <p class="dwt_author">Gunn, A. G.; Spencer, R. E.; Abdul Aziz, H.; Doyle, J. G.; Davis, R. J.; Pavelin, P. E.</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">352</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009Metro..46..668A"> <span id="translatedtitle">Aperture correction for a sphere <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Considerations have been made to derive a correction for the diameter measurements of a sphere by means of a special sphere <span class="hlt">interferometer</span>. This correction is caused by the finite diameter of the light source acting as the entrance 'pinhole' aperture in the light collimating system. The finite diameter has the effect that the wave which is incident on the sphere is a superposition of spherical waves which are slightly inclined with respect to each other. The resulting correction is essential for high accuracy dimensional measurements of silicon spheres to determine the Avogadro constant—a new determination of which is a contribution to a new definition of the kilogram.</p> <div class="credits"> <p class="dwt_author">Arnold Nicolaus, R.; Bönsch, Gerhard</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">353</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2000SPIE.4033..116F"> <span id="translatedtitle">Floor-plan <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Urban-warfare specialists, law-enforcement officers, counter-drug agents, and counter-terrorism experts encounter operational situations where they must assault a target building and capture or rescue its occupants. To minimize potential casualties, the assault team needs a picture of the building's interior and a copy of its floor plan. With this need in mind, we constructed a scale model of a single- story house and imaged its interior using synthetic-aperture techniques. The interior and exterior walls nearest the <span class="hlt">radar</span> set were imaged with good fidelity, but the distal ones appear poorly defined and surrounded by ghosts and artifacts. The latter defects are traceable to beam attenuation, wavefront distortion, multiple scattering, traveling waves, resonance phenomena, and other effects not accounted for in the traditional (noninteracting, isotropic point scatterer) model for <span class="hlt">radar</span> imaging.</p> <div class="credits"> <p class="dwt_author">Falconer, David G.; Ueberschaer, Ronald M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">354</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/47115749"> <span id="translatedtitle">Ultrawideband <span class="hlt">radars</span>: Features and capabilities</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Features of ultrawideband (UWB) <span class="hlt">radars</span>, which radiate signals whose spatial duration is substantially smaller than the antenna\\u000a dimensions and\\/or the longitudinal dimension of the illuminated target, are analyzed. It is shown that, during the <span class="hlt">radar</span> observation\\u000a of the target, this signal changes its shape several times and enters the <span class="hlt">radar</span> receiver as an unknown signal. In many cases,\\u000a this circumstance</p> <div class="credits"> <p class="dwt_author">I. Ya. Immoreev</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">355</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/details.jsp?query_id=0&page=0&ostiID=870851"> <span id="translatedtitle">Imaging synthetic aperture <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">A linear-FM SAR imaging <span class="hlt">radar</span> method and apparatus to produce a real-time image by first arranging the returned signals into a plurality of subaperture arrays, the columns of each subaperture array having samples of dechirped baseband pulses, and further including a processing of each subaperture array to obtain coarse-resolution in azimuth, then fine-resolution in range, and lastly, to combine the processed subapertures to obtain the final fine-resolution in azimuth. Greater efficiency is achieved because both the transmitted signal and a local oscillator signal mixed with the returned signal can be varied on a pulse-to-pulse basis as a function of <span class="hlt">radar</span> motion. Moreover, a novel circuit can adjust the sampling location and the A/D sample rate of the combined dechirped baseband signal which greatly reduces processing time and hardware. The processing steps include implementing a window function, stabilizing either a central reference point and/or all other points of a subaperture with respect to doppler frequency and/or range as a function of <span class="hlt">radar</span> motion, sorting and compressing the signals using a standard fourier transforms. The stabilization of each processing part is accomplished with vector multiplication using waveforms generated as a function of <span class="hlt">radar</span> motion wherein these waveforms may be synthesized in integrated circuits. Stabilization of range migration as a function of doppler frequency by simple vector multiplication is a particularly useful feature of the invention; as is stabilization of azimuth migration by correcting for spatially varying phase errors prior to the application of an autofocus process.</p> <div class="credits"> <p class="dwt_author">Burns, Bryan L. (Tijeras, NM); Cordaro, J. Thomas (Albuquerque, NM)</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">356</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55912316"> <span id="translatedtitle"><span class="hlt">Radar</span> techniques program</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This is the fifth Quarterly Technical Summary covering the development of an airborne Multiple-Antenna Moving-Target Surveillance <span class="hlt">Radar</span> (MASR) which employs special antenna and signal-processing techniques to provide continuous, wide-area surveillance of moving targets on or near the ground. Such a sensor, equipped with an appropriate data-reduction facility, can provide useful real-time information to a Tactical Air Control System. A DeHavilland</p> <div class="credits"> <p class="dwt_author">C. E. Muehe</p> <p class="dwt_publisher"></p> <p class="publishDate">1974-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">357</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2002DPS....34.2306B"> <span id="translatedtitle"><span class="hlt">Radar</span> detection of Iapetus</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We have obtained echoes from the bright, trailing hemisphere of Iapetus using the Arecibo Observatory's 13-cm <span class="hlt">radar</span> system on three dates in January 2002. A circularly polarized signal was transmitted and an echo in the opposite circular (OC) sense to that transmitted was clearly received along with a much weaker detection of echo power in the same circular (SC) sense. Prior to this experiment, one expectation may have been that the <span class="hlt">radar</span> scattering properties of Iapetus may behave like the similar atmosphere-less, icy surfaces of the Galilean satellites which, due to an efficient multiple scattering mechanism, are strong backscatterers with SC reflections stronger than their OC reflections. Instead we find that Iapetus' <span class="hlt">radar</span> cross section and polarization properties are very different from those of the icy Galilean satellites, and more reminiscent of less efficient and less exotic scattering mechanisms such as dominate the echoes from inner Solar System targets. Thus these observations indicate that there is a significant difference between the surface properties of Iapetus and the icy Galileans despite their overall classification as low temperature, water ice surfaces. A plausible explanation for Iapetus' inefficient scattering is that contaminants in the water ice increase the absorption of the signal and suppress any multiple scattering. Likely contaminants on Iapetus are ammonia and the dark material from Cassini Regio embedded below the surface. Proposed observations will seek to measure Iapetus' <span class="hlt">radar</span> scattering law and to detect the dark, leading side which was not targeted during this observing session. The Arecibo Observatory is part of the National Astronomy and Ionosphere Center, which is operated by Cornell University under a cooperative agreement with the National Science Foundation.</p> <div class="credits"> <p class="dwt_author">Black, G. J.; Campbell, D. B.; Carter, L. M.; Ostro, S. J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">358</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/17737591"> <span id="translatedtitle">Tropopause detected by <span class="hlt">radar</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The tropopause has been detected by ultrasensitive, narrow-beam, microwave (10.7-centimeter) and ultrahigh-frequency (71.5-cm) <span class="hlt">radars</span>. Its reflectivity is consistent with that expected theoretically for a refractively turbulent medium. Indications are that the layer is also mechanically turbulent, and that electromagnetic scatter techniques may be used to detect high-altitude clear-air turbulence. PMID:17737591</p> <div class="credits"> <p class="dwt_author">Atlas, D; Hardy, K R; Glover, K M; Katz, I; Konrad, T G</p> <p class="dwt_publisher"></p> <p class="publishDate">1966-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">359</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://pubs.er.usgs.gov/publication/70011420"> <span id="translatedtitle">Shuttle imaging <span class="hlt">radar</span> experiment</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p class="result-summary">The shuttle imaging <span class="hlt">radar</span> (SIR-A) acquired images of a variety of the earth's geologic areas covering about 10 million square kilometers. Structural and geomorphic features such as faults, folds, outcrops, and dunes are clearly visible in both tropical and arid regions. The combination of SIR-A and Seasat images provides additional information about the surface physical properties: topography and roughness. Ocean features were also observed, including large internal waves in the Andaman Sea. Copyright ?? 1982 AAAS.</p> <div class="credits"> <p class="dwt_author">Elachi, C.; Brown, W. E.; Cimino, J. B.; Dixon, T.; Evans, D. L.; Ford, J. P.; Saunders, R. S.; Breed, C.; Masursky, H.; Mccauley, J. F.; Schaber, G.; Dellwig, L.; England, A.; MacDonald, H.; Martin-Kaye, P.; Sabins, F.</p> <p class="dwt_publisher"></p> <p class="publishDate">1982-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">360</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/948372"> <span id="translatedtitle">Millimeter Wave Cloud <span class="hlt">Radar</span> (MMCR) Handbook</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The millimeter cloud <span class="hlt">radar</span> (MMCR) systems probe the extent and composition of clouds at millimeter wavelengths. The MMCR is a zenith-pointing <span class="hlt">radar</span> that operates at a frequency of 35 GHz. The main purpose of this <span class="hlt">radar</span> is to determine cloud boundaries (e.g., cloud bottoms and tops). This <span class="hlt">radar</span> will also report <span class="hlt">radar</span> reflectivity (dBZ) of the atmosphere up to 20 km. The <span class="hlt">radar</span> possesses a doppler capability that will allow the measurement of cloud constituent vertical velocities.</p> <div class="credits"> <p class="dwt_author">KB Widener; K Johnson</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-30</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_17");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a style="font-weight: bold;">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_19");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_18 div --> <div id="page_19" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_18");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a style="font-weight: bold;">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_20");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">361</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010cosp...38..660F"> <span id="translatedtitle">Comet <span class="hlt">radar</span> explorer</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The Comet <span class="hlt">Radar</span> Explorer (CORE) is designed to perform a comprehensive and detailed exploration of the interior, surface, and inner coma structures of a scientifically impor-tant Jupiter family comet. These structures will be used to investigate the origins of cometary nuclei, their physical and geological evolution, and the mechanisms driving their spectacular activity. CORE is a high heritage spacecraft, injected by solar electric propulsion into orbit around a comet. It is capable of coherent deep <span class="hlt">radar</span> imaging at decameter wavelengths, high resolution stereo color imaging, and near-IR imaging spectroscopy. Its primary objective is to obtain a high-resolution map of the interior structure of a comet nucleus at a resolution of ¿100 elements across the diameter. This structure shall be related to the surface geology and morphology, and to the structural details of the coma proximal to the nucleus. This is an ideal complement to the science from recent comet missions, providing insight into how comets work. Knowing the structure of the interior of a comet-what's inside-and how cometary activity works, is required before we can understand the requirements for a cryogenic sample return mission. But more than that, CORE is fundamental to understanding the origin of comets and their evolution in time. The mission is made feasible at low cost by the use of now-standard MARSIS-SHARAD reflec-tion <span class="hlt">radar</span> imaging hardware and data processing, together with proven flight heritage of solar electric propulsion. <span class="hlt">Radar</span> flight heritage has been demonstrated by the MARSIS <span class="hlt">radar</span> on Mars Express (Picardi et al., Science 2005; Plaut et al., Science 2007), the SHARAD <span class="hlt">radar</span> onboard the Mars Reconnaissance Orbiter (Seu et al., JGR 2007), and the LRS <span class="hlt">radar</span> onboard Kaguya (Ono et al, EPS 2007). These instruments have discovered detailed subsurface structure to depths of several kilometers in a variety of terrains on Mars and the Moon. A reflection <span class="hlt">radar</span> deployed in orbit about a comet will enjoy significant simplifying benefits compared to using the same instrument for Mars or lunar <span class="hlt">radar</span> science: (1) The proximity of operations leads to a much higher signal to noise, as much as +30 dB. (2) The lack of an ionosphere simplifies data modeling and analysis. (3) The body is globally illuminated during every data acquisition, minimizing ambiguity or 'clutter' and allowing for tomographic reconstruction. What is novel is the data processing, where instead of a planar radargram approach we coherently process the data into an image of the deep interior. CORE thus uses a MARSIS-SHARAD heritage <span class="hlt">radar</span> to make coherent reflection sounding measurements, a 'CAT SCAN' of a comet nucleus. What is unique about this mission compared to the Mars <span class="hlt">radars</span> mentioned above, is that the target is a finite mass of dirty ice in free space, rather than a sheet of dirty ice draped on a planet surface. The depth of penetration (kilometers), attainable resolution (decameters), and the target materials, are more or less the same. This means that the science story is robust, and the <span class="hlt">radar</span> implementation is robust. The target is comet 10P/Tempel 2, discovered by Wilhelm Tempel in 1873 and observed on most apparitions since. It has been extensively studied, in part because of interest as a CRAF target in the mid-1980s, and much is known about it. Tempel 2 is one of the largest known comet nuclei, 16×8×8 km (about the same size as Halley) [1] and has rotation period 8.9 hours [3,5,6,7,9]. The spin state is evolving with time, spinning up by ˜10 sec per perihelion pass [5,7]. The comet is active, but not exceedingly so, especially given its size. The water production is measured at ˜ 4 × 1028 mol/sec at its peak [2], a factor of 25 lower than comet Halley, and it is active over only ˜2% of its surface. The dust environment is well known, producing a factor of ˜100 less dust than Halley. Comet References: [1] A'Hearn et al., ApJ 347, 1155, 1989 [2] Feldman and Festou, ACM 1991, p. 171, 1992 [3] Jewitt and Luu, AJ 97, 1766, 1989 [4] Lamy et al., Comets II p 223. 2009 [5] Muel</p> <div class="credits"> <p class="dwt_author">Farnham, Tony; Asphaug, Erik; Barucci, Antonella; Belton, Mike; Bockelee-Morvan, Dominique; Brownlee, Donald; Capria, Maria Teresa; Carter, Lynn; Chesley, Steve; Farnham, Tony; Gaskell, Robert; Gim, Young; Heggy, Essam; Herique, Alain; Klaasen, Ken; Kofman, Wlodek; Kreslavsky, Misha; Lisse, Casey; Orosei, Roberto; Plaut, Jeff; Scheeres, Dan</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">362</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1989PhDT........68S"> <span id="translatedtitle"><span class="hlt">Radar</span> clutter classification</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The problem of classifying <span class="hlt">radar</span> clutter as found on air traffic control <span class="hlt">radar</span> systems is studied. An algorithm based on Bayes decision theory and the parametric maximum a posteriori probability classifier is developed to perform this classification automatically. This classifier employs a quadratic discriminant function and is optimum for feature vectors that are distributed according to the multivariate normal density. Separable clutter classes are most likely to arise from the analysis of the Doppler spectrum. Specifically, a feature set based on the complex reflection coefficients of the lattice prediction error filter is proposed. The classifier is tested using data recorded from L-band air traffic control <span class="hlt">radars</span>. The Doppler spectra of these data are examined; the properties of the feature set computed using these data are studied in terms of both the marginal and multivariate statistics. Several strategies involving different numbers of features, class assignments, and data set pretesting according to Doppler frequency and signal to noise ratio were evaluated before settling on a workable algorithm. Final results are presented in terms of experimental misclassification rates and simulated and classified plane position indicator displays.</p> <div class="credits"> <p class="dwt_author">Stehwien, Wolfgang</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-11-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">363</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013SPIE.8768E..2JX"> <span id="translatedtitle">Circular array <span class="hlt">radar</span> technical and applications</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A new type circular array <span class="hlt">radar</span> is introduced in this paper. First, the working theory of this <span class="hlt">radar</span> is introduced, as well as the signal processing method. The characteristics and advancements of this type of <span class="hlt">radar</span> are detailed analyzed, and the key technology of the circular array <span class="hlt">radar</span> is proposed. Second, two applications of circular array <span class="hlt">radar</span> are introduced; they are VHF circular array long-range surveillance <span class="hlt">radar</span> and L band mini circular array <span class="hlt">radar</span>. Finally, the potential prospect of this circular array <span class="hlt">radar</span> is proposed.</p> <div class="credits"> <p class="dwt_author">Xu, Chengfa; Wang, Chonghui; Hong, Yongbin</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">364</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/542034"> <span id="translatedtitle">Advanced lightning location <span class="hlt">interferometer</span>. Final report</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">In January, 1994, New Mexico Institute for Mining and Technology (NM Tech) was commissioned by Los Alamos National Laboratories (LANL) to develop a three-axis interferometric lightning mapping system to be used in determining the source of certain frequency-dispersed pulse pairs which had been detected by spaceborne sensors. The existing NM Tech VHF Lightning <span class="hlt">Interferometer</span> was a two axis system operating at 274 MHz with 6 MHz bandwidth. The third axis was to be added to refine estimates of the elevation angle to distant RF sources in that band. The system was to be initially deployed in support of an Air Force Technical Applications Center (AFTAC) effort planned for the Kennedy Space Center/Cape Canaveral AFS area in June-July of 1994. The project was, however, postponed until September of 1994. The <span class="hlt">interferometer</span> was set up and operated at KSC near the Lightning Detection and Ranging (LDAR) central station. The initial setup was in two-axis configuration, and the third (vertical) axis was added at about mid-project. Though the storms were reduced in frequency and severity over what one would expect in mid-summer, several good data sets were obtained and delivered to AFTAC.</p> <div class="credits"> <p class="dwt_author">NONE</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-05-25</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">365</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2003ESASP.539...91S"> <span id="translatedtitle">An overview of the Keck <span class="hlt">Interferometer</span> Nuller</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The first high dynamic range interferometry mode planned to come on line at the Keck Observatory is mid-infrared nulling interferometry. In this paper, an overview is given of the goals and experimental configuration of the Keck <span class="hlt">Interferometer</span> Nuller (KIN). After an introduction to the science enabled by mid-infrared nulling interferometry on the Keck <span class="hlt">Interferometer</span>'s baseline, a system level overview of the experiment is provided, which includes a discussion of the optical path-length matching and stabilization approaches. This is followed by brief tours of both the nulling beam-combiner breadboard and the mid-infrared camera to be used in the experiment. The paper concludes with a discussion of the performance levels attained to date with the mid-infrared nullers built at the Jet Propulsion Laboratory. These symmetric nullers, all based on the modified Mach-Zehnder beamcombiner configuration, have now experimentally verified the predicted dual-polarization nulling capability of a reversed beamsplitter pair arrangement. To date, the JPL nulling beamcombiners have nulled broadband thermal mid-infrared radiation to the 10-4 level, and monochromatic (10.6 ?m CO2 laser) radiation to the 10-6 level.</p> <div class="credits"> <p class="dwt_author">Serabyn, Eugen</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-10-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">366</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013SPIE.8910E..1YL"> <span id="translatedtitle">Fourier transform imaging spectrometry using Sagnac <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The technology of image plane interferometric imaging spectrometer has been the research hotpot because of its high throughput, which brings the system a high Signal to Noise Ratio (SNR) and higher spectral resolution compared to other kinds of imaging spectrometer. In order to obtain the spectral images of scene at different distance, a system of image plane interferometric imaging spectrometer based on re-imaging is presented, which consists of a front-end objective lens, a collimator, a Sagnac lateral shearing <span class="hlt">interferometer</span>, a back-end imaging lens and a detector. A separated front-end objective lens with zoom lens or fixed focus lens is adopted to image the scene on the first imaging plane. The light from the points in the first imaging plane is then collimated to parallel light by the collimator. Then the parallel light is sheared into two beams of coherent light by the Sagnac lateral shearing <span class="hlt">interferometer</span>. The imaging lens converge the two beams on the detector. Intensity of the converged point is detected by the detector. The imaging system and resolution of spectrum are analyzed. Besides, two push broom modes are discussed. Experimental device is set up to detect the targets of near field indoor and far field outdoor. Twenty-six reconstructed spectral images are obtained from 460nm to 620nm. The experimental results show that the proposed imaging method is effectively applied in hyperspectral imaging of targets at different distances.</p> <div class="credits"> <p class="dwt_author">Li, Jianxin; Zhou, Wei; Meng, Xin; Liu, Defang; Zhu, Rihong</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-08-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">367</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009AAS...21348003G"> <span id="translatedtitle">The Millimeter-wave Bolometric <span class="hlt">Interferometer</span> (MBI)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We report on the design and tests of a prototype of the Millimeter-wave Bolometric <span class="hlt">Interferometer</span> (MBI). MBI is designed to make sensitive measurements of the polarization of the cosmic microwave background (CMB). It combines the differencing capabilities of an <span class="hlt">interferometer</span> with the high sensitivity of bolometers at millimeter wavelengths. The prototype, which we call MBI-4, views the sky directly through four corrugated horn antennas. MBI ultimately will have 1000 antennas. These antennas have low sidelobes and nearly symmetric beam patterns, so spurious instrumental polarization from reflective optics is avoided. The MBI-4 optical band is defined by filters with a central frequency of 90 GHz. The set of baselines, determined by placement of the four antennas, results in sensitivity to CMB polarization fluctuations over the multipole range l = 150 - 270. The signals are combined with a Fizeau beam combiner and interference fringes are detected by an array of spiderweb bolometers. In order to separate the visibility signals from the total power detected by each bolometer, the phase of the signal from each antenna is modulated by a ferrite-based waveguide phase shifter. Initial tests and observations have been made at Pine Bluff Observatory (PBO) outside Madison, WI. This work was supported by NASA grants NAG5-12758, NNX07AG82G, the Rhode Island Space Grant and the Wisconsin Space Grant.</p> <div class="credits"> <p class="dwt_author">Gault, Amanda C.; Ade, P. A. R.; Bierman, E.; Bunn, E. F.; Hyland, P. O.; Keating, B. G.; Korotkov, A. L.; Malu, S. S.; O'Sullivan, C.; Piccirillo, L.; Timbie, P. T.; Tucker, G. S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">368</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008ApJS..176..276V"> <span id="translatedtitle">The Palomar Testbed <span class="hlt">Interferometer</span> Calibrator Catalog</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The Palomar Testbed <span class="hlt">Interferometer</span> (PTI) archive of observations between 1998 and 2005 is examined for objects appropriate for calibration of optical long-baseline <span class="hlt">interferometer</span> observations-stars that are predictably pointlike and single. Approximately 1400 nights of data on 1800 objects were examined for this investigation. We compare those observations to an intensively studied object that is a suitable calibrator, HD 217014, and statistically compare each candidate calibrator to that object by computing both a Mahalanobis distance and a principal component analysis. Our hypothesis is that the frequency distribution of visibility data associated with calibrator stars differs from noncalibrator stars such as binary stars. Spectroscopic binaries resolved by PTI, objects known to be unsuitable for calibrator use, are similarly tested to establish detection limits of this approach. From this investigation, we find more than 350 observed stars suitable for use as calibrators (with an additional ~140 being rejected), corresponding to >~95% sky coverage for PTI. This approach is noteworthy in that it rigorously establishes calibration sources through a traceable, empirical methodology, leveraging the predictions of spectral energy distribution modeling but also verifying it with the rich body of PTI's on-sky observations.</p> <div class="credits"> <p class="dwt_author">van Belle, G. T.; van Belle, G.; Creech-Eakman, M. J.; Coyne, J.; Boden, A. F.; Akeson, R. L.; Ciardi, D. R.; Rykoski, K. M.; Thompson, R. R.; Lane, B. F.; PTI Collaboration</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">369</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008SPIE.6995E...9M"> <span id="translatedtitle">Integrated optic Michelson <span class="hlt">interferometer</span> for sensors application</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Integrated optic interferometric systems have been developed since many years and most of them are connected with telecommunication. In case of our group research profile we are focused on integrated optic sensors technology. One of possible application is the atomic force microscope (AFM). In the paper is presented the new concept that combines the AFM with the integrated optic <span class="hlt">interferometer</span>. In the AFM system a cantilever movement control is the most important. The main goal of the project is improving sensitivity of the AFM by means integrated optic Michelson <span class="hlt">interferometer</span> (IOMI). The optical waveguide structure was fabricated by surface micromachining technique, based on sandwiched silicon oxide and silicon oxynitride layers. The standard IOMI consist of two Y-junction in which one arm is playing the role of reference arm and other the measuring arm. Such configuration requires four fiber-to-chip connections. Thus, in our configuration, the integrated optic loop mirror in reference arm is fabricated. In the signal arm of our chip standard Grin lens to form an illumination cantilever optical beam is used. In the paper some theoretical descriptions and preliminary results are presented. The possibility of applying the heterodyned detection scheme in a IOMI as a step with sensitivity improvement is described, also. As the project is in progress, the paper is focused in the fabrication of the optical sensor. Next step will be optimization of the electronic part to improve the z-axis sensitivity of the AFM.</p> <div class="credits"> <p class="dwt_author">Mar?, P.; Gorecki, C.; Nieradko, ?.</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">370</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21554468"> <span id="translatedtitle">Two-Dimensional X-Ray Grating <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We report on the design and experimental realization of a 2D x-ray grating <span class="hlt">interferometer</span>. We describe how this <span class="hlt">interferometer</span> has been practically implemented, discuss its performance, and present multidirectional scattering (dark-field) maps and quantitative phase images that have been retrieved using this device.</p> <div class="credits"> <p class="dwt_author">Zanette, Irene [European Synchrotron Radiation Facility, Grenoble (France); Weitkamp, Timm [European Synchrotron Radiation Facility, Grenoble (France); Synchrotron Soleil, Gif-sur-Yvette (France); Donath, Tilman; Rutishauser, Simon; David, Christian [Laboratory for Micro- and Nanotechnology, Paul Scherrer Institut, Villigen (Switzerland)</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-12-10</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">371</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/52689376"> <span id="translatedtitle">Two-Dimensional X-Ray Grating <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We report on the design and experimental realization of a 2D x-ray grating <span class="hlt">interferometer</span>. We describe how this <span class="hlt">interferometer</span> has been practically implemented, discuss its performance, and present multidirectional scattering (dark-field) maps and quantitative phase images that have been retrieved using this device.</p> <div class="credits"> <p class="dwt_author">Irene Zanette; Timm Weitkamp; Tilman Donath; Simon Rutishauser; Christian David</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">372</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/21231558"> <span id="translatedtitle">Two-dimensional x-ray grating <span class="hlt">interferometer</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">We report on the design and experimental realization of a 2D x-ray grating <span class="hlt">interferometer</span>. We describe how this <span class="hlt">interferometer</span> has been practically implemented, discuss its performance, and present multidirectional scattering (dark-field) maps and quantitative phase images that have been retrieved using this device. PMID:21231558</p> <div class="credits"> <p class="dwt_author">Zanette, Irene; Weitkamp, Timm; Donath, Tilman; Rutishauser, Simon; David, Christian</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-12-07</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">373</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50916906"> <span id="translatedtitle">Transmission line based microwave <span class="hlt">interferometers</span> for plasma density measurements</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Summary form only given. Here we report the development of microwave <span class="hlt">interferometers</span> based on transmission-line (TL) structures for monitoring of plasma density for applications in process monitoring or realtime feedback control of plasma based semiconductor fabrication tools, such plasma etchers or PECVDs. The principle of this technique is the same as the conventional microwave <span class="hlt">interferometers</span> except that the sensing microwave</p> <div class="credits"> <p class="dwt_author">C. H. Hsieh; J. H. Wang; C. Lin; K. C. Leou</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">374</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/52671592"> <span id="translatedtitle">CSO-JCMT <span class="hlt">Interferometer</span> and 183GHz radiometric phase correction</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The Caltech Submillimeter Observatory and the James Clerk Maxwell Telescope have been combined to form the only astronomical <span class="hlt">interferometer</span> currently operating at submillimeter wavelengths. The telescopes have been operating in this mode for one or two dedicated periods in each of the last 5 years. Results with sub-arcsecond resolution have been obtained at 230, 345 and 460 GHz. The <span class="hlt">interferometer</span></p> <div class="credits"> <p class="dwt_author">Oliver P. Lay; Martina C. Wiedner; John E. Carlstrom; Richard E. Hills</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">375</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55229109"> <span id="translatedtitle">Mach-Zehnder <span class="hlt">interferometer</span> based all optical flip-flop</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">For the first time an all optical flip-flop is demonstrated based on two coupled Mach-Zehnder <span class="hlt">interferometers</span> which contain semiconductor optical amplifiers in their arms. The flip-flop operation is discussed and it is demonstrated using commercially available fiber pigtailed devices. Being based on Mach-Zehnder <span class="hlt">interferometers</span>, the flip-flop has potential for very high speed operation.</p> <div class="credits"> <p class="dwt_author">Martin T. Hill; H. de Waardt; G. D. Khoe; H. J. S. Dorren</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">376</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55505691"> <span id="translatedtitle">Refractive index measurement with optical fiber Mach-Zehnder <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">An interferometric technique for determination of the refractive index of liquids is described. The method is based on measurements of phase variations caused by the relative movement of an optical fiber tip in a liquid sample. The apparatus consists of two independent <span class="hlt">interferometers</span>. A two-frequency Michelson <span class="hlt">interferometer</span> is used to measure the liquid sample displacement in the air, while an</p> <div class="credits"> <p class="dwt_author">Alojz Suhadolnik; Ales Babnik; Janez Mozina</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">377</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/54794353"> <span id="translatedtitle">Optical fiber Mach-Zehnder <span class="hlt">interferometer</span> for smart skin</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The present fiber-optic Mach-Zehnder <span class="hlt">interferometer</span> employs a metal-coated fiber which is able to monitor the deformation of composites, with high sensitivity for stress and vibration. Temperature sensitivity is lower, allowing force measurements in environments above 300 C. The Mach-Zehnder <span class="hlt">interferometer</span> is capable of 1-micron sensitivity in deformation measurements.</p> <div class="credits"> <p class="dwt_author">Yanbiao Liao; Qingxin Song</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">378</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADD015617"> <span id="translatedtitle">Fiber Optic <span class="hlt">Interferometer</span> Configuration with Pump-Induced Phase Carrier.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">An interferometric fiber optic sensor and method are provided for controlling the optical phase of a fiber <span class="hlt">interferometer</span> by an optically induced change in the refractive index for one arm of the fiber <span class="hlt">interferometer</span> and providing a passive all-optical ph...</p> <div class="credits"> <p class="dwt_author">A. D. Kersey C. A. Villarruel</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">379</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://hal.archives-ouvertes.fr/docs/00/28/39/32/PDF/StrapDown4.pdf"> <span id="translatedtitle">Operating an atom <span class="hlt">interferometer</span> beyond its linear range</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In this paper, we show that an atom <span class="hlt">interferometer</span> inertial sensor, when associated to the auxiliary measurement of external vibrations, can be operated beyond its linear range and still keep a high acceleration sensitivity. We propose and compare two measurement procedures (fringe fitting and nonlinear lock) that can be used to extract the mean phase of the <span class="hlt">interferometer</span> when the</p> <div class="credits"> <p class="dwt_author">S. Merlet; J. Le Gouet; Q. Bodart; A. Clairon; A. Landragin; F. Pereira Dos Santos; P. Rouchon</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">380</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011EPJWC..1607001L"> <span id="translatedtitle">New technologies for exoplanet detection with mid-IR <span class="hlt">interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This paper provides an overview of technology development for the Terrestrial Planet Finder <span class="hlt">Interferometer</span> (TPF-I). TPF-I is a mid-infrared space <span class="hlt">interferometer</span> being designed with the capability of detecting Earth-like planets in the habitable zones around nearby stars.</p> <div class="credits"> <p class="dwt_author">Lawson, P. R.; Lay, O. P.; Martin, S. R.; Peters, R. D.; Booth, A. J.; Gappinger, R. O.; Ksendzov, A.; Scharf, D. P.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-07-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_18");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a style="font-weight: bold;">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_20");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_19 div --> <div id="page_20" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_19");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a style="font-weight: bold;">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_21");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">381</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/20641170"> <span id="translatedtitle">Electron density profile measurement using an ultrashort-pulsed <span class="hlt">radar</span> reflectometer on large helical device</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We have installed a six channel ultrashort-pulsed <span class="hlt">radar</span> reflectometer system on the large helical device and performed electron density profile measurements. The delay time of the reflected pulses from each cutoff layer in the plasma is measured by a time-of-flight measurement technique in order to avoid the mixture of radiation effects and spurious reflections. The electron density profile is reconstructed using an Abel inversion method from the profile of the delay time as a function of the probing frequency. The reconstructed density profile is compared with the profile measured with the far-infrared (FIR) <span class="hlt">interferometer</span>. It is found that the arrival time of each reflected pulse differs from the estimated time measured with the FIR <span class="hlt">interferometer</span>.</p> <div class="credits"> <p class="dwt_author">Kaneba, T.; Tokuzawa, T.; Kawahata, K.; Ito, Y.; Nagayama, Y. [Department of Fusion Science, School of Mathematical and Physical Science, Graduate University for Advanced Studies, Hayama 240-0193 (Japan); National Institute for Fusion Science, Toki 509-5292 (Japan)</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-10-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">382</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2006SPIE.6268E..52B"> <span id="translatedtitle">The control system for the Keck <span class="hlt">Interferometer</span> Nuller</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The Keck <span class="hlt">Interferometer</span> links the two 10m Keck Telescopes located atop Mauna Kea in Hawaii. It was the first 10m class, fully AO equipped <span class="hlt">interferometer</span> to enter operation. Further, it is the first large <span class="hlt">interferometer</span> to implement a nuller, whereby the on axis light from a bright point source (e.g. a star) can be removed interferometrically, allowing study of light from nearby, low contrast sources (e.g. exo-zodiacal dust). This paper describes the control system we have implemented to enable operation of the Keck <span class="hlt">interferometer</span> nuller. We give a general overview of the control system, plus details of how control differs from the already implemented and operational, standard visibility science mode of the <span class="hlt">interferometer</span>. The nuller is challenging in its requirements for control because of the necessary control precision and the complexity of the number of points of control. We have implemented some novel control methods to meet these requirements and we describe those here.</p> <div class="credits"> <p class="dwt_author">Booth, Andrew J.; Colavita, M. Mark; Garcia, Jean I.; Koresko, Chris</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">383</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/12505812"> <span id="translatedtitle">Topics in Mitigating <span class="hlt">Radar</span> Bias</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In this paper, we investigate two topics related to mitigating the effect of <span class="hlt">radar</span> bias in ballistic missile tracking applications. We determine the absolute bias between two <span class="hlt">radars</span> in polar coordinates when their relative bias is given in rectangular coordinates. Using this result, we then obtain the optimized steady-state filter to handle the random bias.</p> <div class="credits"> <p class="dwt_author">Demetrios Serakos; John E. Gray; Hazim Youssef</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">384</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=N9319538"> <span id="translatedtitle">Next Generation Incoherent Scatter <span class="hlt">Radars</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The 1990's promise to be an exciting time for users and practitioners of incoherent scatter <span class="hlt">radar</span> as a new generation of <span class="hlt">radars</span> is brought into operation at locations such as Svalbard, Resolute Bay, Alaska and Indonesia. Recent technological and theoretic...</p> <div class="credits"> <p class="dwt_author">J. M. Holt</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">385</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/49927787"> <span id="translatedtitle"><span class="hlt">Radar</span> Studies In Physical Volcanology</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper discusses a number of projects currently underway at the University of Hawaii that involve airborne and orbital <span class="hlt">radar</span> investigations of the styles of eruption and the geologic history of volcanoes on the Earth and Venus. The <span class="hlt">radar</span> data have been derived from a NASA\\/JPL AIRSAR deployment to Hawaii in August 1990, the Magellan mission to Venus, and the</p> <div class="credits"> <p class="dwt_author">Peter J. Mouginis-Mark</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">386</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/160008"> <span id="translatedtitle">Decorrelation in interferometric <span class="hlt">radar</span> echoes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A <span class="hlt">radar</span> interferometric technique for topographic mapping of surfaces, implemented utilizing a single synthetic aperture <span class="hlt">radar</span> (SAR) system in a nearly repeating orbit, is discussed. The authors characterize the various sources contributing to the echo correlation statistics, and isolate the term which most closely describes surficial change. They then examine the application of this approach to topographic mapping of vegetated</p> <div class="credits"> <p class="dwt_author">Howard A. Zebker; John Villasensor</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">387</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/52967122"> <span id="translatedtitle">COBRA meteor <span class="hlt">radar</span> antenna designs</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A meteor <span class="hlt">radar</span> system is one of the effective remote sensing techniques in measuring atmospheric parameters such as wind velocities, temperature, pressure and density which are essential in understanding the atmospheric dynamics in the Mesosphere Lower Thermosphere (MLT) region. Previous studies of very high frequency (VHF) meteors <span class="hlt">radar</span> systems suggest that the minimum error for the estimation of the horizontal</p> <div class="credits"> <p class="dwt_author">Mohamad Zainuddin</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">388</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/47012309"> <span id="translatedtitle">Imaging <span class="hlt">Radars</span> for Geoscience Use</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Properties of a side-looking airborne <span class="hlt">radar</span> (SLAR) designed for geoscience rather than military use are presented. The speckled nature of usual single-frequency <span class="hlt">radar</span> images may be reduced by averaging in azimuth and by averaging in range or transmitting excess range bandwidth. With synthetic aperture systems, averaging is possible in both range and azimuth, but only range averaging (excess bandwidth) is</p> <div class="credits"> <p class="dwt_author">R. K. Moore; G. C. Thomann</p> <p class="dwt_publisher"></p> <p class="publishDate">1971-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">389</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/53835360"> <span id="translatedtitle"><span class="hlt">Radar</span> polarimetry for geoscience applications</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The present volume on <span class="hlt">radar</span> polarimetry for geoscience applications discusses wave properties and polarization, scattering matrix representation for simple targets, scattering models for point and distributed targets, polarimetric scatterometer systems and measurements, polarimetric <span class="hlt">radar</span> system design, and polarimetric SAR applications. Attention is given to plane waves in a lossless homogeneous medium-wave polarization, polarization synthesis and response, and coordinate system transformations.</p> <div class="credits"> <p class="dwt_author">Fawwaz T. Ulaby; Charles Elachi; K. McDonald; K. Sarabandi; M. Whitt; H. Zebker; J. J. van Zyl</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">390</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50550273"> <span id="translatedtitle">A Multiband Passive <span class="hlt">Radar</span> Demonstrator</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Passive <span class="hlt">radar</span> systems that exploit signals from the plethora of RF emissions that exist in the external environment offer a number of advantages over conventional active <span class="hlt">radar</span> system, including procurement and operational cost saving. Each emitter has its own characteristics, including waveforms, which dictate system performance. BAE Systems Advanced Technology Centre has designed and built a demonstrator system to act</p> <div class="credits"> <p class="dwt_author">Dale Gould; Robert Pollard; Carlos Sarno; Paul Tittensor</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">391</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55588685"> <span id="translatedtitle"><span class="hlt">Radar</span> noise jamming calculations simplified</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The ratio of <span class="hlt">radar</span> jamming noise power to <span class="hlt">radar</span> thermal noise power (J\\/N) is considered for a multiple noise jammer environment where jammer distances and energy levels vary. It is shown that the computation of J\\/N in a multiple noise jammer environment may be significantly simplified in several practical cases by reducing each case to that of a single equivalent</p> <div class="credits"> <p class="dwt_author">G. P. Kefalas</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">392</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/53771423"> <span id="translatedtitle">Environment-adaptive <span class="hlt">radar</span> techniques</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This report describes the work performed in the first year of a contract to investigate the measurement and mitigation of environmental effects in a selected modern <span class="hlt">radar</span> system. The baseline system is a mobile ground-based tactical <span class="hlt">radar</span> system which performs wide-area surveillance for aircraft targets as well as multiple target tracking for eventual handover. The dominant technical problem is found</p> <div class="credits"> <p class="dwt_author">J. E. Howard; G. W. Lank; A. W. Rihaczek</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">393</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://duepublico.uni-duisburg-essen.de/servlets/DerivateServlet/Derivate-14581/Paper/5_3.pdf"> <span id="translatedtitle">Automotive <span class="hlt">Radar</span> - Status and Trends</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The paper gives a brief overview of automo- tive <span class="hlt">radar</span>. The status of the frequency regulation for short and long range <span class="hlt">radar</span> is summarized because of its impor- tance for car manufacturers and their sensor suppliers. Front end concepts and antenna techniques of 24 GHz and 77 GHz sensors are briefly described. Their impact on the sensor's field of view</p> <div class="credits"> <p class="dwt_author">Martin Schneider</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">394</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/27065572"> <span id="translatedtitle">UWB <span class="hlt">radar</span> for patient monitoring</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">During the last few years the Moscow Aviation Institute (Russia) and the Industrial Technology Research Institute (Taiwan) have worked jointly on the development of ultrawideband (UWB) medical <span class="hlt">radars</span> for remote and contactiess monitoring of patients in hospitals. Preliminary results of these works were published in [1]. As of the present, several <span class="hlt">radars</span> have been produced and tested in real conditions</p> <div class="credits"> <p class="dwt_author">Igor Immoreev; Teh-Ho Tao</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">395</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=N7512544"> <span id="translatedtitle"><span class="hlt">Radar</span> Studies of Bird Migration.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Observations of bird migration with NASA <span class="hlt">radars</span> were made at Wallops Island, Va. Simultaneous observations were made at a number of <span class="hlt">radar</span> sites in the North Atlantic Ocean in an effort to discover what happened to those birds that were observed leaving th...</p> <div class="credits"> <p class="dwt_author">T. C. Williams J. M. Williams</p> <p class="dwt_publisher"></p> <p class="publishDate">1974-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">396</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/42748606"> <span id="translatedtitle">Microwave Emissions from Police <span class="hlt">Radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This study evaluated police officers' exposures to microwaves emitted by traffic <span class="hlt">radar</span> units. Exposure measurements were taken at approximated ocular and testicular levels of officers seated in patrol vehicles. Comparisons were made of the <span class="hlt">radar</span> manufacturers' published maximum power density specifications and actual measured power densities taken at the antenna faces of those units. Four speed-enforcement agencies and one transportation</p> <div class="credits"> <p class="dwt_author">J. M. Fink; J. P. Wagner; J. J. Congleton; J. C. Rock</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">397</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/51082066"> <span id="translatedtitle">Resolution independent <span class="hlt">radar</span> target recognition</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The value of Through the Wall <span class="hlt">Radar</span> Imaging (TWRI) data collected with one system is limited when training the automatic target recognition classifier of a second system because of variation in the Point Spread Function (PSF). The target image is a function of both the scene reflectivity and the PSF, which is in turn a function of the imaging <span class="hlt">radar</span>'s</p> <div class="credits"> <p class="dwt_author">Graeme E. Smith; Bijan G. Mobasseri</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">398</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011SPIE.8050E..46M"> <span id="translatedtitle">Millimeter <span class="hlt">radar</span> improves target identification</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Recently developed millimeter wave <span class="hlt">radar</span> has advantages for target identification over conventional microwave <span class="hlt">radar</span> which typically use lower frequencies. We describe the pertinent features involved in the construction of the new millimeter wave <span class="hlt">radar</span>, the pseudo-optical cavity source and the quasi-optical duplexer. The long wavelength relative to light allows the <span class="hlt">radar</span> beam to penetrate through most weather because the wavelength is larger than the particle size for dust, drizzle rain, fog. Further the mm wave beam passes through an atmospheric transmission window that provides a dip in attenuation. The higher frequency than conventional <span class="hlt">radar</span> provides higher Doppler frequencies, for example, than X-band <span class="hlt">radar</span>. We show by simulation that small characteristic vibrations and slow turns of an aircraft become visible so that the Doppler signature improves identification. The higher frequency also reduces beam width, which increases transmit and receive antenna gains. For the same power the transmit beam extends to farther range and the increase in receive antenna gain increases signal to noise ratio for improved detection and identification. The narrower beam can also reduce clutter and reject other noise more readily. We show by simulation that the <span class="hlt">radar</span> can be used at lower elevations over the sea than conventional <span class="hlt">radar</span>.</p> <div class="credits"> <p class="dwt_author">McAulay, Alastair D.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">399</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1982eppt.agar.....P"> <span id="translatedtitle">Propagation effects in tactical <span class="hlt">radars</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Tactical battlefield <span class="hlt">radars</span> are employed in surveillance and target acquisition roles at ranges of approximately 1 to 20 km, their main targets being enemy ground vehicles and personnel. As with all types of <span class="hlt">radar</span> the operating environment has a significant effect on the design and performance of these systems and propagation considerations are an important factor. The major propagation factors which limit the performance of tactical <span class="hlt">radars</span> are the availability of line of sight, ground clutter, and effects of the weather. The ways in which propagation factors affect the choice of such <span class="hlt">radar</span> parameters as frequency, polarisation, and RF waveform are discussed, and the ways in which propagation constraints can be minimised by the design of the signal processing system are considered. In an EW environment an important operational requirement is to minimize the probability of the location of the position of the <span class="hlt">radar</span> by the enemy. Propagation effects such as multipath and diffraction are considered in broad terms in this context.</p> <div class="credits"> <p class="dwt_author">Prew, B. A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1982-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">400</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011EJASP2011...71C"> <span id="translatedtitle"><span class="hlt">Radar</span> SLAM using visual features</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A vessel navigating in a critical environment such as an archipelago requires very accurate movement estimates. Intentional or unintentional jamming makes GPS unreliable as the only source of information and an additional independent supporting navigation system should be used. In this paper, we suggest estimating the vessel movements using a sequence of <span class="hlt">radar</span> images from the preexisting body-fixed <span class="hlt">radar</span>. Island landmarks in the <span class="hlt">radar</span> scans are tracked between multiple scans using visual features. This provides information not only about the position of the vessel but also of its course and velocity. We present here a navigation framework that requires no additional hardware than the already existing naval <span class="hlt">radar</span> sensor. Experiments show that visual <span class="hlt">radar</span> features can be used to accurately estimate the vessel trajectory over an extensive data set.</p> <div class="credits"> <p class="dwt_author">Callmer, Jonas; Törnqvist, David; Gustafsson, Fredrik; Svensson, Henrik; Carlbom, Pelle</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-12-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_19");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a style="font-weight: bold;">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_21");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_20 div --> <div id="page_21" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_20");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a style="font-weight: bold;">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_22");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">401</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2002SPIE.4718..380S"> <span id="translatedtitle">Interferometric <span class="hlt">radar</span> measurements</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The United States Army Space and Missile Defense Command (USASMDC) has interest in a technology demonstration that capitalizes on investment in fire control and smart interceptor technologies that have matured beyond basic research. The concept SWORD (Short range missile defense With Optimized <span class="hlt">Radar</span> Distribution) consists of a novel approach utilizing a missile interceptor and interferometric fire control <span class="hlt">radar</span>. A hit-to-kill, closed-loop, command guidance scheme is planned that takes advantage of extremely accurate target and interceptor state vectors derived via the fire control <span class="hlt">radar</span>. The fire control system has the capability to detect, track, and classify multiple threats in a tactical regime as well as simultaneously provide command guidance updates to multiple missile interceptors. The missile interceptor offers a cost reduction potential as well as an enhancement to the kinematics range and lethality over existing SHORAD systems. Additionally, the Radio Frequency (RF) guidance scheme offers increased battlefield weather performance. The Air Defense (AD) community, responding to current threat capabilities and trends, has identified an urgent need to have a capability to counter proliferated, low cost threats with a low cost-per-kill weapon system. The SWORD system will offer a solution that meets this need. The SWORD critical technologies will be identified including a detailed description of each. Validated test results and basic principles of operation will be presented to prove the merit of past investments. The Deputy Assistant Secretary of the Army for Research and Technology (DAS(R&T) has a three- year Science and Technology Program to evaluate the errors and proposed mitigation techniques associated with target spectral dispersion and range gate straddle. Preliminary bench-top experiment results will be presented in this paper.</p> <div class="credits"> <p class="dwt_author">Smith, Ronald A.; Shipman, Mark; Holder, E. J.; Williams, James K.</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-08-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">402</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1990mrso.proc...45R"> <span id="translatedtitle">Satellite <span class="hlt">radar</span> altimeters</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The basic operating principles of satellite <span class="hlt">radar</span> altimeters are reviwed, with a focus on factors affecting their use in remote sensing of the ocean surface. Topics discussed include range resolution requirements, the selection of the operating frequency (considering atmospheric absorption, technology, antenna size, ionospheric refraction, and conflicts with other onboard systems), beam-limited vs pulse-limited operation, transmitted-power requirements, and pulse compression. Particular attention is given to the pulse-limited footprint and the shape of the echo waveform, parameter extraction, and height corrections for spacecraft center-of-gravity location, instrument errors, propagation factors, surface bias, tides and atmospheric effects, and geoid variations. Diagrams and graphs are provided.</p> <div class="credits"> <p class="dwt_author">Rapley, Chris G.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">403</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2000SPIE.4006..847G"> <span id="translatedtitle">Microprecision <span class="hlt">interferometer</span>: scorecard on technology readiness for the Space <span class="hlt">Interferometer</span> Mission</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This paper presents the first ever `scorecard' showing how well the Space <span class="hlt">Interferometer</span> Mission is expected to meet the vibration attenuation requirements for its instrument. The spacecraft reaction wheel assembly, the primary on-board vibration source, shakes the structure in the frequency range from 2 Hz to 1000 Hz. Optical path differences and wavefront tip-tilts must be maintained to a few nanometers and tens of milli-arcseconds respectively, in this disturbance environment.</p> <div class="credits"> <p class="dwt_author">Goullioud, Renaud; Dekens, Frank G.; Neat, Gregory W.</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">404</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/49910007"> <span id="translatedtitle"><span class="hlt">Radar</span> resource management for mechanically rotated, electronically scanned phased array <span class="hlt">radars</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A key feature (in ballistic missile defence and intelligence gathering <span class="hlt">radars</span>) is the formulation of the turret control policy and its feedback relationship to <span class="hlt">radar</span> activity planning. The <span class="hlt">radar</span> resource management process is discussed. The results of the <span class="hlt">radar</span> planning algorithm, referred to as the <span class="hlt">radar</span> plan, are provided to the turret policy control algorithm to formulate the sequence of</p> <div class="credits"> <p class="dwt_author">S. T. Cummings; K. Behar</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">405</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007OExpr..15..437D"> <span id="translatedtitle">Nested ring Mach-Zehnder <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We propose a new device configuration that incorporates a nested ring with a Mach-Zehnder <span class="hlt">interferometer</span>. The nested ring is analogous to a dual-bus coupled ring resonator, with the ends of the two buses connected to form a semi-closed loop. With proper design of the length of the U-shaped loop, as well as the coupling coefficient between the ring and the waveguide, the device is capable of generating a box-shaped spectral response. This is shown to be mainly due to the double-Fano resonances that arise from constructive interference between the nested ring and the outer loop. The device is simple in that it requires only one ring, and unique in that it harnesses a pair of Fano resonances to generate a reasonably box-like filter response. The analysis is based on the transfer matrix formalism, and compared and verified with the FDTD simulations.</p> <div class="credits"> <p class="dwt_author">Darmawan, S.; Landobasa, Y. M.; Chin, M. K.</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">406</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/19421271"> <span id="translatedtitle">Exoplanet detection using a nulling <span class="hlt">interferometer</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The detection of extra solar planets is a topic of growing interest, which stretches current technology and knowledge to their limits. Indirect measurement confirms the existence of a considerable number. However, direct imaging is the only way to obtain information about the nature of these planets and to detect Earth-like planets, which could support life. The main problem for direct imaging is that planets are associated with a much brighter source of light. Here, we propose the use of the nulling <span class="hlt">interferometer</span> along with a photon counting technique called Dark Speckle. Using a simple model the behavior of the technique is predicted. The signal-to-noise ratio estimated confirms that it is a promising way to detect faint objects. PMID:19421271</p> <div class="credits"> <p class="dwt_author">Cagigal, M; Canales, V</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">407</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1998SPIE.3353..224B"> <span id="translatedtitle">Adaptive optics for ESO VLT <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We describe the design of the ESO Adaptive Optics (AO) systems for the very large telescope <span class="hlt">interferometer</span> (VLTI). We consider hereafter both the tip-tilt only corrections and the high order systems. The high order AO systems are designed for K-band operation on the Unit Telescopes (UT). The K-band UT beams will be combined with the 1.8m Auxiliary Telescopes (AT) operating with tip-tilt correction only, via ESO's Strap system. The UT-AO system will be hosted in the Coude' laboratory, with the deformable mirror inserted at the M8 location of the optical train. The wavefront sensor retains the option to be either in the Coude' lab, before the delay lines, or at the end of the beam combining path in the Interferometry laboratory, depending on the instrument attached and its use.</p> <div class="credits"> <p class="dwt_author">Bonaccini, Domenico; Rigaut, Francois J.; Glindemann, Andreas; Dudziak, Gregory; Mariotti, Jean-Marie; Paresce, Francesco</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">408</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1992ExM....32...38H"> <span id="translatedtitle">Immersion <span class="hlt">interferometer</span> for microscopic moire interferometry</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The basic sensitivity of moire interferometry has been increased beyond the previously conceived theoretical limit. This is accomplished by creating the virtual reference grating inside a refractive medium instead of air, thus shortening the wavelength of light. Various optical configurations of moire interferometry for operation in a refractive medium are introduced and one of them has been put into current practice. A very compact four-beam immersion <span class="hlt">interferometer</span> has been developed for microscopic viewing, which produces a basic sensitivity of 4.8 fringes per micron displacement (contour interval of 0.208 micron per fringe order), corresponding to moire with 4800 lines per mm. Its configuration makes it inherently stable and relatively insensitive to environmental disturbances. An optical microscope is employed to obtain high spatial resolution. The method is demonstrated for deformation of a thick graphite/epoxy composite at the 0/90-deg ply interface.</p> <div class="credits"> <p class="dwt_author">Han, B.; Post, D.</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">409</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1991SPIE.1572..359Z"> <span id="translatedtitle">Optical fibre <span class="hlt">interferometer</span> for monitoring tool wear</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A novel intrinsic optical fiber sensor for detection of acoustic emission (AE) has been designed, built, and tested. This sensor is intended for use in monitoring machine tool wear. An optical fiber is held between the transducer backing and the surface being probed. The coupling of AE waves through the fiber into the backing causes a phase change in the light transmitted by the fiber. This phase change is detected using a Mach-Zehnder <span class="hlt">interferometer</span>, locked in quadrature with a phase servo. Acoustic emission during cutting is conveyed to the sensing fiber on the machine bed via either the tool or workpiece. Sensing of AE may then yield information on the wear state of the tool.</p> <div class="credits"> <p class="dwt_author">Zheng, S. X.; McBride, Roy; Hale, Ken F.; Jones, Barry E.; Barton, James S.; Jones, Julian D.</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-08-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">410</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/6706797"> <span id="translatedtitle">VISAR (Velocity <span class="hlt">Interferometer</span> System for Any Reflector): Line-imaging <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This paper describes a Velocity <span class="hlt">Interferometer</span> System for Any Reflector (VISAR) technique that extends velocity measurements from single points to a line. Single-frequency argon laser light was focused through a cylindrical lens to illuminate a line on a surface. The initially stationary, flat surface was accelerated unevenly during the experiment. Motion produced a Doppler-shift of light reflected from the surface that was proportional to the velocity at each point. The Doppler-shifted image of the illuminated line was focused from the surface through a push-pull VISAR <span class="hlt">interferometer</span> where the light was split into four quadrature-coded images. When the surface accelerated, the Doppler-shift caused the interference for each point on each line image to oscillate sinusoidally. Coherent fiber optic bundles transmitted images from the <span class="hlt">interferometer</span> to an electronic streak camera for sweeping in time and recording on film. Data reduction combined the images to yield a continuous velocity and displacement history for all points on the surface that reflected sufficient light. The technique was demonstrated in an experiment where most of the surface was rapidly driven to a saddle shape by an exploding foil. Computer graphics were used to display the measured velocity history and to aid visualization of the surface motion. 6 refs., 8 figs.</p> <div class="credits"> <p class="dwt_author">Hemsing, W.F.; Mathews, A.R.; Warnes, R.H.; Whittemore, G.R.</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">411</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/6317395"> <span id="translatedtitle">FIR <span class="hlt">interferometer</span> and scattering measurements of ATF</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A 15-channel far-infrared (FIR) <span class="hlt">interferometer</span> system has been constructed to measure the electron densities on the ATF plasmas. The system consists of a pair of cw 214-..mu..m difluoromethane (CH/sub 2/F/sub 2/) lasers, optically pumped by separate CO/sub 2/ lasers. The large number of channels is achieved by the use of reflective beam expansion optics to create a beam of 2 cm /times/ 45 cm. After passing through the plasma discharge, the elongated beam produced by the cylindrical mirrors is dissected by an array of 15 off-axis paraboloid reflectors, each of which illuminates a single Schottky-diode detector. The use of the beam expanding optics system reduces the number of optical elements required for the <span class="hlt">interferometer</span> to approximately 2-3 per channel. The FIR laser beams are transported from the laser room to the experimental area by 25 mm i.d. dielectric waveguides purged with dry nitrogen. The system can also be operated at a wavelength of 119-..mu..m by changing the gas in FIR laser cavities to methanol for high density experiments. Details of the system are described. A study is underway to determine the optimum design of a FIR scattering system for the ATF. This scattering system will be used to investigate density fluctuations with scale lengths from 0.1 cm to the plasma radius. The laser for this scattering system may be operated at wavelengths of 447, 307, 214, 184, and 119 ..mu..m with power levels of 100 to 500 mW. A summary of the study is presented. 6 refs., 1 fig.</p> <div class="credits"> <p class="dwt_author">Ma, C.H.; Hutchinson, D.P.; Fockedey, Y.; Vander Sluis, K.L.; Bennett, C.A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">412</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2004cosp...35.4564D"> <span id="translatedtitle">FIR Space Heterodyne <span class="hlt">Interferometer</span> Mission (ESPRIT)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We present a mission concept for a free-flying FIR imaging <span class="hlt">interferometer</span> using radio techniques. The ultimate goal is to reach a Hubble ST-equivalent spatial resolution for the FIR wavelength range. The main scientific objectives are imaging in the water and molecular ions emission lines, imaging in important atomic fine-structure lines: CII, NII, OI and imaging in high excitation lines of CO, HCN, HCO+, etc, of star forming regions and proto-stellar/proto-planetary systems with emphasis on disks. The facility will be the FIR complement of the ground-based ALMA without any atmospheric attenuation and disturbance in phase and transmission. It will be a follow-up mission of ISO-LWS, SWAS, ODIN, SIRTF, ASTRO-F; Herschel-PACS and -HIFI and of MIRI on JWST. The aimed characteristics are Telescope sizes : ˜ quad >3.5 meter ; off-axis Number of elements: N >6 ; free-flying Proj. Baselines: ˜ 7- 500 meter Frequency coverage: in the 1.5- -- 6 THz range (200 ? m -- 50 ? m) Spectral Resolution: 1 Km/s at 100 ? m. (0.1 goal) Spatial Resolution: 0.02'' at 100 ? m F.O.V.: ˜ 6'' Pointing Requirements: - accuracy: 0.2''; - knowledge: 0.1'' Image Dynamic range: 100 Spectral Dynamic range: 1000 Tsys: 1000 K (N receiver bands; HEB mixers @5 K; dual polarisation; QCL as LO's) IF: 4 GHz wide; InP pre-amps Correlator: 4 sections of 1 GHz, each 128 channels We will present the results of studies covering the scientific objectives, instrumentation, <span class="hlt">interferometer</span> configuration, delay lines and correlation techniques. From the inherent narrow band capability of heterodyne techniques, the substantial advantages for path length difference compensation and tracking will be elaborated as well as the expected detection and imaging sensitivity.</p> <div class="credits"> <p class="dwt_author">de Graauw, T.; Team</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">413</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008PhDT........13H"> <span id="translatedtitle">The Millimeter-wave Bolometric <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The Millimeter-wave Bolometeric <span class="hlt">Interferometer</span> (MBI) is a novel instrument for measuring signals from the cosmic microwave background (CMB) radiation. MBI is a proof-of-concept designed to control systematic effects with the use of bolometers and interferometry. This scheme extends radio astronomy techniques of spatial interferometry, which rely on coherent receivers, to a system using incoherent detectors. In this thesis we outline the principles upon which MBI works and provide the reader with an understanding of both the particulars involved in the design and operation of MBI as well as the analysis of the resulting data. MBI observes the sky directly with 4 corrugated horn antennas in a band centered on l = 3 mm . A quasi-optical beam combiner forms interference fringes on an array of bolometers cooled to 300 mK. Phase modulation of the signals modulates the fringe patterns on the array and allows decoding of the visibilities formed by each pair of antennas. An altitude-azimuth mounting structure allows the horns to observe any point on the sky; rotation about the boresite extends the u - v coverage of the <span class="hlt">interferometer</span> and allows for systematics checks and measurements of the Stokes parameters. MBI was deployed at the Pine Bluff Observatory near UW - Madison in winter 2008 for its first test observations of astronomical and artificial sources. Interference fringes were seen from a microwave generator located in the far- field, verifying our basic model of bolometric interferometry. Further analysis is needed to measure the scattering matrix of the instrument and to compare it against simulations.</p> <div class="credits"> <p class="dwt_author">Hyland, Peter Owen</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">414</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://inoe.inoe.ro/joam/arhiva/pdf8_1/Nicolaescu.pdf"> <span id="translatedtitle"><span class="hlt">Radar</span> absorbing materials used for target camouflage</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">As a result of the developments within signal processing, transmitters and receivers areas <span class="hlt">radar</span> technology has improved steadily over the past 50 years gaining in the sensor sensitivity, miniaturisation, power consumption, etc which allow to build smaller, more reliable and user friendly <span class="hlt">radar</span> sensors. The effectiveness of these <span class="hlt">radar</span> sensors is sufficiently threatening to merit the reduction of <span class="hlt">radar</span> signature</p> <div class="credits"> <p class="dwt_author">I. NICOLAESCU</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">415</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1543611"> <span id="translatedtitle">Shuttle rendezvous <span class="hlt">radar</span> performance: evaluation and simulation</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The authors describe the performance evaluation and simulation of the Ku-band shuttle rendezvous <span class="hlt">radar</span>. Computer simulation, using the <span class="hlt">radar</span> cross section for specific spacecraft, provided an estimate of rendezvous <span class="hlt">radar</span> range performance for that spacecraft. The <span class="hlt">radar</span> cross section model included smooth metallic surfaces, rough surfaces, and shadowing effects, as well as phase differences due to different path lengths to</p> <div class="credits"> <p class="dwt_author">J. W. Griffin; A. C. Lindberg; T. B. Ahn; P. L. Harton</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">416</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/40761930"> <span id="translatedtitle">Passive VHF <span class="hlt">radar</span> for ionospheric physics</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Recent technological advances enable a new class of passive <span class="hlt">radar</span> instruments. These <span class="hlt">radars</span> have no dedicated transmitter, observing serendipitous scatter of existing sources. Such <span class="hlt">radars</span> may have very high performance and cost far less than conventional <span class="hlt">radars</span>. The resulting equipment is essentially reduced to simple antennas, desktop computers, and Global Positioning System equipment. The safety hazards, interference problems, licensing issues,</p> <div class="credits"> <p class="dwt_author">J. D. Sahr; D. M. Gidner; Chucai Zhou; F. D. Lind</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">417</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50420288"> <span id="translatedtitle">Advanced ground-based ESCAN <span class="hlt">radars</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Electronically scanned <span class="hlt">radars</span> (ESCAN <span class="hlt">radars</span>) are key system elements of ground based military systems being developed for air and missile defense against future threats including tactical ballistic missiles, high agile and low RCS targets like drones, ARMs, UAVs. The <span class="hlt">radar</span> design is governed on the one hand by challenging requirements on ESCAN <span class="hlt">radar</span> performance and on the other hand by</p> <div class="credits"> <p class="dwt_author">U. Fuchs; W. Sieprath</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">418</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/27096091"> <span id="translatedtitle">Cognitive <span class="hlt">radar</span>: a way of the future</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This article discusses a new idea called cognitive <span class="hlt">radar</span>. Three ingredients are basic to the constitution of cognitive <span class="hlt">radar</span>: 1) intelligent signal processing, which builds on learning through interactions of the <span class="hlt">radar</span> with the surrounding environment; 2) feedback from the receiver to the transmitter, which is a facilitator of intelligence; and 3) preservation of the information content of <span class="hlt">radar</span> returns,</p> <div class="credits"> <p class="dwt_author">Simon Haykin</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">419</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50239491"> <span id="translatedtitle"><span class="hlt">Radar</span> sensor for vehicle cruise control applications</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper deals with research efforts relating to <span class="hlt">radar</span> sensors using millimeter wave technology, in particular to autonomous <span class="hlt">radars</span> which are used for forward looking and to detect the distance and relative velocity of car ahead. The fundamental requirements to on-board <span class="hlt">radar</span> equipment are formulated. Some experimental results of this <span class="hlt">radar</span> research are presented.</p> <div class="credits"> <p class="dwt_author">S. B. Maltsev; V. I. Rudik; V. P. Rukin</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">420</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60038860"> <span id="translatedtitle">Soviet oceanographic synthetic aperture <span class="hlt">radar</span> (SAR) research</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Radar</span> non-acoustic anti-submarine warfare (NAASW) became the subject of considerable scientific investigation and controversy in the West subsequent to the discovery by the Seasat satellite in 1978 that manifestations of underwater topography, thought to be hidden from the <span class="hlt">radar</span>, were visible in synthetic aperture <span class="hlt">radar</span> (SAR) images of the ocean. In addition, the Seasat <span class="hlt">radar</span> produced images of ship wakes</p> <div class="credits"> <p class="dwt_author">D. N. Held; R. F. Gasparovic; A. W. Mansfield; W. K. Melville; E. L. Mollo-Christensen; H. A. Zebker</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_20");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a style="font-weight: bold;">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_22");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_21 div --> <div id="page_22" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_21");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a style="font-weight: bold;">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_23");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">421</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013AAS...22134202K"> <span id="translatedtitle">Michelson-type Radio <span class="hlt">Interferometer</span> for University Education</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Despite the increasing importance of interferometry in astronomy, the lack of educational <span class="hlt">interferometers</span> is an obstacle to training the futue generation of astronomers. Students need hands-on experiments to fully understand the basic concepts of interferometry. Professional <span class="hlt">interferometers</span> are often too complicated for education, and it is difficult to guarantee access for classes in a university course. We have built a simple and affordable radio <span class="hlt">interferometer</span> for education and used it for an undergraduate and graduate laboratory project. This <span class="hlt">interferometer</span>'s design is based on the Michelson & Peace's stellar optical <span class="hlt">interferometer</span>, but operates at a radio wavelength using a commercial broadcast satellite dish and receiver. Two side mirrors are surfaced with kitchen aluminum foil and slide on a ladder, providing baseline coverage. This <span class="hlt">interferometer</span> can resolve and measure the diameter of the Sun, a nice daytime experiment which can be carried out even under a marginal weather (i.e., partial cloud coverage). Commercial broadcast satellites provide convenient point sources. By comparing the Sun and satellites, students can learn how an <span class="hlt">interferometer</span> works and resolves structures in the sky.</p> <div class="credits"> <p class="dwt_author">Koda, Jin; Barrett, J. W.; Hasegawa, T.; Hayashi, M.; Shafto, G.; Slechta, J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">422</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1989radc.reptQ....S"> <span id="translatedtitle">Polarization <span class="hlt">radar</span> processing technology</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A comprehensive effort is presented involving measurements and performance evaluation for the detection of scatters immersed in a background of natural and man-made clutter using polarization diverse waveforms. The effort spans evaluation from the initial stages of theoretical formulation to processor performance evaluation using real world data. The theoretical approach consists of determining polarimetric statistical properties of the backscatter waveform and the use of these properties to derive the optimum dual polarized S-Band <span class="hlt">radar</span> system with selectable polarization on both transmit and receive. Recording equipment consists of 12 bit digital in-phase and quadrature channels indexed in time and phase for both polarizations. Several processors utilizing optimum and sub-optimum algorithms were evaluated using simulated and live <span class="hlt">radar</span> data, and performance results were compared. The processor types include fully adaptive algorithms designed to operate on polarimetric spectral spread waveforms, and several combinations of single channel and polarization diverse receivers with both single and dual transmit polarization. A conventional fixed transmit and receive mode with no spectral processing is included. Comparisons are made between the various processors. The simulated and real data consist of randomly scattered dipoles, spheres, Swerling type scatters, and scatters of opportunity.</p> <div class="credits"> <p class="dwt_author">Stiefvater, Kenneth C.; Brown, Russell D.; Vannicola, Vincent C.; Wicks, Michael C.</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">423</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1995STIN...9613111G"> <span id="translatedtitle"><span class="hlt">Radar</span> resource sharing study</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The <span class="hlt">Radar</span> Resource Sharing Study was undertaken to evaluate the relative advantages or three candidate technologies for implementing a shared beamformer for a dual band (S and UHF) airborne surveillance <span class="hlt">radar</span>. The beamformer was required to interface with the two active array apertures and perform the signal combining and distribution functions necessary to produce the receive and transmit beams required for each band. The objective was to compare the three approaches in terms of size, weight, power consumption and hardware sharing, based on 1997 technology projections. The candidate beam-former technologies investigated were Conventional, Digital and Optical beamformers. In the digital and optical cases, technology limitations precluded accomplishing all of the required beamformer functions. Therefore, hybrid approaches which employed each of these technologies to the maximum practical extent were devised. The study commenced in September 1992 and was conducted primarily on the basis of beamformer requirements for monostatic operation. Later the scope was expanded to consider a bistatic receive implementation having significantly different beam requirements.</p> <div class="credits"> <p class="dwt_author">Gouse, Ronald; Clancy, John</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">424</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2002PhRvA..66e3601S"> <span id="translatedtitle">Wave-function recombination instability in cold-atom <span class="hlt">interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Cold-atom <span class="hlt">interferometers</span> use guiding potentials that split the wave function of the Bose-Einstein condensate and then recombine it. We present a theoretical analysis of the wave-function recombination instability that is due to the weak nonlinearity of the condensate. It is most pronounced when the accumulated phase difference between the arms of the <span class="hlt">interferometer</span> is close to an odd multiple of ? and consists in exponential amplification of the weak ground state mode by the strong first excited mode. The instability exists for both trapped-atom and beam <span class="hlt">interferometers</span>.</p> <div class="credits"> <p class="dwt_author">Stickney, James A.; Zozulya, Alex A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-11-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">425</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/20700348"> <span id="translatedtitle">Fiber optic <span class="hlt">interferometer</span> for testing conic section surfaces.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">A null test method for testing aspheric optical surfaces based on geometric considerations of conic sections is presented. The basic principles have been investigated experimentally by designing and building a modified Mach-Zehnder <span class="hlt">interferometer</span>. By using optical fibers the inconvenience of alignment has partly been overcome. Phase shifting has been implemented and the measurements are performed with the help of a microcomputer. The performance of the <span class="hlt">interferometer</span> has been investigated by testing an elliptical toroid mirror. Further improvement of the test procedure by Zernike polynomial decomposition is discussed and performed. Finally, an even more compact conic section <span class="hlt">interferometer</span> is proposed. PMID:20700348</p> <div class="credits"> <p class="dwt_author">Bétend-Bon, J P; Wosinski, L; Breidne, M; Robertsson, L</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">426</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010SPIE.7801E..14Q"> <span id="translatedtitle">Surface profile measurement of KB mirrors using Fizeau laser <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Fizeau <span class="hlt">interferometer</span> is the most commonly used <span class="hlt">interferometer</span> for testing optical components. The aim of this work is to apply this technique to the measurement of elliptical Kirkpatrick-Baez (KB) mirrors during their fabrication process. KB mirrors are widely used at synchrotron radiation facilities around the world for x-ray focusing. Fizeau <span class="hlt">interferometer</span> can provide accurate measurements for KB mirrors. Recently a KB mirror that can focus X-ray down to 150 nm has been fabricated in the Argonne National Laboratory.</p> <div class="credits"> <p class="dwt_author">Qian, J.; Assoufid, L.; Liu, C.; Shi, B.; Liu, W.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-08-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">427</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23454939"> <span id="translatedtitle">Two-beam <span class="hlt">interferometer</span> with optical path difference magnified.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">A two-beam <span class="hlt">interferometer</span> is proposed and experimentally demonstrated with OPD magnified. Two cascaded fiber ring resonators with almost the same fiber length are spliced into a fiber loop. An acousto-optic modulator is employed to generate optical pulses and to choose the pulses traveling around one of the resonators for x trips. The <span class="hlt">interferometer</span> is characterized in displacement in our experiment. Experimental results show the proportional relationship between the sensitivity and x. The high-sensitivity <span class="hlt">interferometer</span> scheme is useful in some measurement applications that require high sensitivity, such as solid earth tide gauge. PMID:23454939</p> <div class="credits"> <p class="dwt_author">Zhang, Liang; Lu, Ping; Liu, Deming; Zhang, Jiangshan; Wang, Shun; Wang, Dajian</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-01-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">428</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/20849858"> <span id="translatedtitle">Dispersion <span class="hlt">Interferometer</span> Based on CO{sub 2} Laser</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A dispersion <span class="hlt">interferometer</span> based on CO{sub 2} laser for measurements of plasma line density in the gas dynamic trap (GDT) experiment has been developed with sensitivity <n{sub e}l>{sub min} {approx} 1.10{sup 13} cm{sup -2}, temporal resolution {approx}50 ns. The main advantages of the <span class="hlt">interferometer</span> are compactness and low sensitivity to vibrations. The <span class="hlt">interferometer</span> does not require specific vibration isolation structure and can be mounted directly on the working chamber of the plasma device. The above mentioned advantages have been successfully demonstrated in the Gas Dynamic Trap experiments.</p> <div class="credits"> <p class="dwt_author">Bagryansky, P.A. [Budker Institute of Nuclear Physics (Russian Federation); Khilchenko, A.D. [Budker Institute of Nuclear Physics (Russian Federation); Lizunov, A.A. [Budker Institute of Nuclear Physics (Russian Federation); Maximov, V.V. [Budker Institute of Nuclear Physics (Russian Federation); Solomakhin, A.L. [Novosibirsk State University (Russian Federation); Voskoboynikov, R.V. [Budker Institute of Nuclear Physics (Russian Federation)</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">429</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/18266876"> <span id="translatedtitle">Fiber optic acoustic hydrophone with double Mach–Zehnder <span class="hlt">interferometers</span> for optical path length compensation</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We report on the development of a fiber optic acoustic hydrophone which consists of a sensing Mach–Zehnder (MZ) <span class="hlt">interferometer</span> and a compensating MZ <span class="hlt">interferometer</span> for optical path length compensation. This double-<span class="hlt">interferometer</span> configuration has the following advantages: the hydrophone is a true heterodyne device; a laser source with a short coherence length can be used; the sensing <span class="hlt">interferometer</span> is completely passive;</p> <div class="credits"> <p class="dwt_author">T. K Lim; Y Zhou; Y Lin; Y. M Yip; Y. L Lam</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">430</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50566673"> <span id="translatedtitle">Perspectives on Worldwide Spaceborne <span class="hlt">Radar</span> Programs</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Radar</span> technology and techniques were originally developed for land-based, maritime, and airborne applications. Spaceborne <span class="hlt">radar</span> systems development began in the 1960s in the USSR for military purposes, and in the 1970s in the United States for civilian scientific purposes. NASA launched the SeaSAT satellite in 1978, carrying a synthetic aperture <span class="hlt">radar</span>, a <span class="hlt">radar</span> altimeter, a <span class="hlt">radar</span> scatterometer, and a radiometer,</p> <div class="credits"> <p class="dwt_author">P. A. Rosen; G. M. Buccolo</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">431</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA273077"> <span id="translatedtitle">Next Generation Weather <span class="hlt">Radar</span> (NEXRAD)/Air Route Surveillance <span class="hlt">Radar</span> (ARSR) Operational Comparison.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The National Weather Service (NWS), Federal Aviation Administration (FAA), and Department of Defense are in the process of fielding the Next Generation Weather <span class="hlt">Radars</span> (NEXRAD). These doppler weather <span class="hlt">radars</span>, also known as Weather Surveillance <span class="hlt">Radar</span> (WSR)88...</p> <div class="credits"> <p class="dwt_author">B. Dunbar J. Mittelman</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">432</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=N9415439"> <span id="translatedtitle">Next Generation Weather <span class="hlt">Radar</span> (NEXRAD)/Air Route Surveillance <span class="hlt">Radar</span> (ARSR) Operational Comparison.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The National Weather Service (NWS), Federal Aviation Administration (FAA), and Department of Defense are in the process of fielding the Next Generation Weather <span class="hlt">Radars</span> (NEXRAD). These doppler weather <span class="hlt">radars</span>, also known as Weather Surveillance <span class="hlt">Radar</span> (WSR)-8...</p> <div class="credits"> <p class="dwt_author">B. Dunbar J. Mittelman</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">433</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/8929403"> <span id="translatedtitle">The Clementine bistatic <span class="hlt">radar</span> experiment.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">During the Clementine 1 mission, a bistatic <span class="hlt">radar</span> experiment measured the magnitude and polarization of the <span class="hlt">radar</span> echo versus bistatic angle, beta, for selected lunar areas. Observations of the lunar south pole yield a same-sense polarization enhancement around beta = 0. Analysis shows that the observed enhancement is localized to the permanently shadowed regions of the lunar south pole. <span class="hlt">Radar</span> observations of periodically solar-illuminated lunar surfaces, including the north pole, yielded no such enhancement. A probable explanation for these differences is the presence of low-loss volume scatterers, such as water ice, in the permanently shadowed region at the south pole. PMID:8929403</p> <div class="credits"> <p class="dwt_author">Nozette, S; Lichtenberg, C L; Spudis, P; Bonner, R; Ort, W; Malaret, E; Robinson, M; Shoemaker, E M</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-11-29</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">434</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6701630"> <span id="translatedtitle"><span class="hlt">Radar</span> polarimetry for geoscience applications</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A source book for remote sensing and <span class="hlt">radar</span> design engineers, this text covers wave polarization, polarization synthesis, scattering matrices, SAR polarization systems, and an array of applications It covers: an introduction to the different mathematical representations used to describe scattering properties, a review of scatterometer system design and calibration techniques for use in polarimetric measurements, a study of specific polarimetric <span class="hlt">radar</span> systems, such as the shuttle imaging <span class="hlt">radar</span> C (SIR-C), that includes calibration and compression techniques, data processing guidelines, and design approaches.</p> <div class="credits"> <p class="dwt_author">Elachi, C.; Kuga, Y.; McDonald, K.; Sarabandi, K.; Ulaby, F.T.; Whitt, M.; Zebker, H.; van Zyl, J.J.</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">435</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2001eso..pres...23."> <span id="translatedtitle">Giant Eyes for the VLT <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">First Scientific Results with Combined Light Beams from Two 8.2-m Unit Telescopes Summary It started as a preparatory technical experiment and it soon developed into a spectacular success. Those astronomers and engineers who were present in the control room that night now think of it as the scientific dawn of the Very Large Telescope <span class="hlt">Interferometer</span> (VLTI) . On October 29, 2001, ANTU and MELIPAL , two of the four VLT 8.2-m Unit Telescopes at the ESO Paranal Observatory, were linked for the first time. Light from the southern star Achernar (Alpha Eridani) was captured by the two telescopes and sent to a common focus in the observatory's Interferometric Laboratory. Following careful adjustments of the optical paths, interferometric fringes were soon recorded there, proving that the beams from the two telescopes had been successfully combined "in phase" . From an analysis of the observed pattern (the "fringe contrast"), the angular diameter of Achernar was determined to be 1.9 milli-arcsec. At the star's distance (145 light-years), this corresponds to a size of 13 million km. The observation is equivalent to measuring the size of a 4-metre long car on the surface of the Moon. This result marks the exciting starting point for operations with the Very Large Telescope <span class="hlt">Interferometer</span> (VLTI) and it was immediately followed up by other scientific observations. Among these were the first measurements of the diameters of three red dwarf stars ("Kapteyn's star" - HD 33793, HD 217987 and HD 36395), a precise determination of the variable diameters of the pulsating Cepheid stars Beta Doradus and Zeta Geminorum (of great importance for the calibration of the universal distance scale), as well as a first interferometric measurement of the core of Eta Carinae , an intriguing, massive southern object that may possibly become the next supernova in our galaxy. This milestone is another important step towards the ultimate goal of the VLT project - to combine all four 8.2-m telescopes into the most powerful optical/infrared telescope system on Earth. When ready, it will be able to reveal at least 15 times finer details in astronomical objects than what is possible with any existing, single ground-based telescope. PR Photo 30a/01 : Overview of the VLT <span class="hlt">Interferometer</span> . PR Photo 30b/01 : "Joint" stellar light-spot produced via ANTU and MELIPAL at the VLTI focus. PR Photo 30c/01 : Interferometric fringes from the star Achernar . PR Photo 30d/01 : Time sequence of fringes from Achernar. PR Photo 30e/01 : "Visibility curve" of the star Psi Phoenicis . Scientific Appendix First VLTI observations with two 8.2-m telescopes ESO PR Photo 30a/01 ESO PR Photo 30a/01 [Preview - JPEG: 357 x 400 pix - 82k] [Normal - JPEG: 713 x 800 pix - 208k] [Hi-Res - JPEG: 2673 x 3000 pix - 1.4M] ESO PR Photo 30b/01 ESO PR Photo 30b/01 [Preview - JPEG: 400 x 350 pix - 57k] [Normal - JPEG: 800 x 700 pix - 176k] Caption : PR Photo 30a/01 : Overview of the VLT <span class="hlt">Interferometer</span> as it was operated when the light beams from two of the 8.2-m telescopes were combined. The VINCI instrument that was used for the present test, is located at the common focus in the Interferometric Laboratory. PR Photo 30b/01 shows one of the first "joint" light-spots from a star as seen at this VLTI focus and resulting from the superposition of light collected with the 8.2-m VLT ANTU and MELIPAL telescopes. Despite the long optical paths (about 200 m), the quality is excellent (FWHM = 0.45 arcsec). Note that this is not (yet) an image of the stellar surface. At 1 o'clock in the morning of October 30, 2001, ESO astronomers and engineers working in the VLTI Control Room successfully combined the light from ANTU and MELIPAL , two of the four 8.2-m VLT Unit Telescopes at the Paranal Observatory. The same night, a series of high-resolution test observations with the VINCI instrument [1] at the focus of the VLT <span class="hlt">Interferometer</span> (VLTI) proved that this complex system was functioning extremely well, and within the technical specifications . Following abo</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">2001-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">436</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=neon&id=EJ128376"> <span id="translatedtitle">Coupled-Cavity <span class="hlt">Interferometer</span> for the Optics Laboratory</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">|Describes the construction of a flexible coupled-cavity <span class="hlt">interferometer</span> for student use. A helium-neon laser and phonograph turntable are the main components. Lists activities which may be performed with the apparatus. (Author/CP)|</p> <div class="credits"> <p class="dwt_author">Peterson, R. W.</p> <p class="dwt_publisher"></p> <p class="publishDate">1975-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">437</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=N9019967"> <span id="translatedtitle">Optical <span class="hlt">Interferometers</span> for Tests of Relativistic Gravity in Space.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">A space-based astrometric <span class="hlt">interferometer</span> with a large optical bandwidth is considered. POINTS (Precision Optical INTerferometry in Space) would measure the angular separation of two stars separated by about 90 deg on the sky with a nominal measurement err...</p> <div class="credits"> <p class="dwt_author">R. D. Reasenberg</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">438</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/16318186"> <span id="translatedtitle">Performance evaluation of a thermal Doppler Michelson <span class="hlt">interferometer</span> system.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The thermal Doppler Michelson <span class="hlt">interferometer</span> is the primary element of a proposed limb-viewing satellite instrument called SWIFT (Stratospheric Wind <span class="hlt">Interferometer</span> for Transport studies). SWIFT is intended to measure stratospheric wind velocities in the altitude range of 15-45 km. SWIFT also uses narrowband tandem etalon filters made of germanium to select a line out of the thermal spectrum. The instrument uses the same technique of phase-stepping interferometry employed by the Wind Imaging <span class="hlt">Interferometer</span> onboard the Upper Atmosphere Research Satellite. A thermal emission line of ozone near 9 microm is used to detect the Doppler shift due to winds. A test bed was set up for this instrument that included the Michelson <span class="hlt">interferometer</span> and the etalon filters. For the test bed work, we investigate the behavior of individual components and their combination and report the results. PMID:16318186</p> <div class="credits"> <p class="dwt_author">Mani, Reza; Dobbie, Steven; Scott, Alan; Shepherd, Gordon; Gault, William; Brown, Stephen</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-11-20</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">439</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1986PhDT........38S"> <span id="translatedtitle">The absolute measuring accuracy of technical laser <span class="hlt">interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The development of instruments and calibration methods for laser light sources for measurement of the refractive index of air and the calibration of laser <span class="hlt">interferometers</span> are described. The development and calibration procedure for He-Ne stabilized lasers are described, with emphasis on the reproduction limits of this light source and the shift in the absorption lines. The measurement of the frequency of He-Ne laser light sources, including warming-up effects, stability and reproducibility, are discussed. An interference refractometer was developed and successfully tested for the calibration of automatic refractive index change compensators, used with technical laser <span class="hlt">interferometers</span>. A procedure for the comparison of technical laser <span class="hlt">interferometers</span> is presented; it has an accuracy better than 1 part in 10 million. A test procedure for the counting system of Zeeman laser <span class="hlt">interferometers</span> is presented.</p> <div class="credits"> <p class="dwt_author">Schellekens, Petrus Henricus Johannes</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">440</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2006SPIE.6300E...4S"> <span id="translatedtitle">Preliminary lossless compression results with Michelson <span class="hlt">interferometer</span> data</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The next-generation GOES-R (Geostationary Operational Environmental Satellite) HES (Hyperspectral Environmental Suite) Sounder will be either a grating or <span class="hlt">interferometer</span> design. The HES will be able to provide hourly atmospheric soundings with spatial resolutions of 5 ~ 10 km with higher accuracy than the current geostationary sounder. A number of GOES-R products will be made from the HES data, this information will help both in forecasting and numerical model initializations. Extensive research has been done with lossless data compression with data from a grating-type ultraspectral instrument. NAST-I aircraft data is chosen for testing data from <span class="hlt">interferometers</span> until IASI (Infrared Atmospheric Sounding <span class="hlt">Interferometer</span>) and CrIS (Cross-track Infrared Sounder) are available. Preliminary work at CIMSS with lossless data compression of Michelson <span class="hlt">Interferometer</span> data achieves compression ratios (CR) above 5.</p> <div class="credits"> <p class="dwt_author">Schmit, Timothy J.; Huang, Bormin; Sriraja, Y.; Huang, Hung-Lung</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-09-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_21");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a style="font-weight: bold;">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_23");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_22 div --> <div id="page_23" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_22");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a style="font-weight: bold;">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_24");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">441</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=N20090027712"> <span id="translatedtitle">Arm Locking for the Laser <span class="hlt">Interferometer</span> Space Antenna.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The Laser <span class="hlt">Interferometer</span> Space Antenna (LISA) mission is a planned gravitational wave detector consisting of three spacecraft in heliocentric orbit. Laser interferometry is used to measure distance fluctuations between test masses aboard each spacecraft t...</p> <div class="credits"> <p class="dwt_author">J. Livas J. I. Thorpe P. G. Maghami</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">442</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=AD657185"> <span id="translatedtitle">Subharmonic Generation in an Acoustic Fabry-Perot <span class="hlt">Interferometer</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Above a certain energy density threshold in an intense ultrasonic standing wave, subharmonics of the driving frequency are sometimes present. To study this effect, an acoustic Fabry-Perot <span class="hlt">interferometer</span> was constructed, consisting of two air-backed quartz...</p> <div class="credits"> <p class="dwt_author">J. A. Bamberg</p> <p class="dwt_publisher"></p> <p class="publishDate">1967-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">443</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/27561602"> <span id="translatedtitle">Fizeau <span class="hlt">interferometer</span> without destructive interference fringes and speckles</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The possibility of decreasing the depth of interference region in the Fizeau <span class="hlt">interferometer</span> configuration with a semiconductor\\u000a laser is considered for problems concerned with inspection of plane-parallel plates.</p> <div class="credits"> <p class="dwt_author">V. P. Koronkevich; A. I. Lokhmatov; A. E. Matochkin; A. R. Gerent</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">444</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2001AAS...198.6308C"> <span id="translatedtitle">Mid-infrared Camera for the Keck <span class="hlt">Interferometer</span> Nuller</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We present a brief overview of the design and capabilities of the mid-infrared camera that sits behind the interferometric nuller at the Keck <span class="hlt">Interferometer</span>. Camera functions include aperture definition, spatial and spectral filtering, polarization and dispersion of the incoming beams. The dewar, being built by IR Labs, utilizes liquid cryogens to cool the custom Boeing HF16 array used in the camera. We acknowledge support of the instrumentation for the Keck <span class="hlt">Interferometer</span> through NASA.</p> <div class="credits"> <p class="dwt_author">Creech-Eakman, M. J.; Serabyn, E.</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">445</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/12830721"> <span id="translatedtitle">Mach-Zehnder <span class="hlt">interferometer</span> based all optical flip-flop</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">For the first time an all optical flip-flop is demonstrated based on two\\u000acoupled Mach-Zehnder <span class="hlt">interferometers</span> which contain semiconductor optical\\u000aamplifiers in their arms. The flip-flop operation is discussed and it is\\u000ademonstrated using commercially available fiber pigtailed devices. Being based\\u000aon Mach-Zehnder <span class="hlt">interferometers</span>, the flip-flop has potential for very high\\u000aspeed operation.</p> <div class="credits"> <p class="dwt_author">Martin T. Hill; H. de Waardt; G. D. Khoe; H. J. S. Dorren</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">446</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55022172"> <span id="translatedtitle">Least-squares estimation and group delay in astrometric <span class="hlt">interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The Palomar Testbed <span class="hlt">Interferometer</span> is a long-baseline <span class="hlt">interferometer</span> that uses both phase and group-delay measurements for narrow-angle astrometry. The group-delay measurements are performed using 5 spectral channels across the band from 2.0 to 2.4 micrometers . Group delay is estimated from phasors (sine and cosine of fringe phase) calculated for each spectral channel using pathlength modulation of one wavelength. Normally</p> <div class="credits"> <p class="dwt_author">Peter R. Lawson; M. Mark Colavita; Philip J. Dumont</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">447</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55367386"> <span id="translatedtitle">High birefringence fibre interrogating <span class="hlt">interferometer</span> for optical sensing applications</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We describe the use of high birefringence fibre forming a differential path <span class="hlt">interferometer</span> for heterodyne fibre optic sensing applications. We firstly recover a low frequency strain amplitude of 1mu? at 1Hz applied to a fibre Bragg grating sensor demonstrating a noise limited resolution of around 100n?\\/&surd;Hz. Secondly we interrogate a Mach-Zehnder <span class="hlt">interferometer</span> sensor using the dual wavelength technique to detect</p> <div class="credits"> <p class="dwt_author">D. C. C. Norman; Y. Lai; D. J. Webb</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">448</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ir.optics.ucf.edu/publications/renhorn_jirmmw_31_2010.pdf"> <span id="translatedtitle">Demonstration of a Corner-cube-<span class="hlt">interferometer</span> LWIR Hyperspectral Imager</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">An interferometric long-wavelength infrared (LWIR) hyperspectral imager is demonstrated, based on a Michelson corner-cube\\u000a <span class="hlt">interferometer</span>. This class of system is inherently mechanically robust, and should have advantages over Sagnac-<span class="hlt">interferometer</span>\\u000a systems in terms of relaxed beamsplitter-coating specifications, and wider unvignetted field of view. Preliminary performance\\u000a data from the laboratory prototype system are provided regarding imaging, spectral resolution, and fidelity of acquired</p> <div class="credits"> <p class="dwt_author">Ingmar G. E. Renhorn; Thomas Svensson; Staffan Cronström; Tomas Hallberg; Rolf Persson; Roland Lindell; Glenn D. Boreman</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">449</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010JIMTW..31...60R"> <span id="translatedtitle">Demonstration of a Corner-cube-<span class="hlt">interferometer</span> LWIR Hyperspectral Imager</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">An interferometric long-wavelength infrared (LWIR) hyperspectral imager is demonstrated, based on a Michelson corner-cube <span class="hlt">interferometer</span>. This class of system is inherently mechanically robust, and should have advantages over Sagnac-<span class="hlt">interferometer</span> systems in terms of relaxed beamsplitter-coating specifications, and wider unvignetted field of view. Preliminary performance data from the laboratory prototype system are provided regarding imaging, spectral resolution, and fidelity of acquired spectra.</p> <div class="credits"> <p class="dwt_author">Renhorn, Ingmar G. E.; Svensson, Thomas; Cronström, Staffan; Hallberg, Tomas; Persson, Rolf; Lindell, Roland; Boreman, Glenn D.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">450</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1985padn.reptR....F"> <span id="translatedtitle">Technique for the reduction of fading in <span class="hlt">interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This patent application discloses a passive device for reducing polarization fading in <span class="hlt">interferometers</span> without significantly degrading the signal-to-noise ratio. In one embodiment, light form an <span class="hlt">interferometer</span> output is passed through a lens to a polarization mask. The polarization mask comprises at least three independent polarizers which pass independent states of polarizers. Each independently polarized signal is detected, demodulated and passed to a means for signal extraction.</p> <div class="credits"> <p class="dwt_author">Frigo, N. J.; Dandridge, A.; Tveten, A. B.</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-04-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">451</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/53372512"> <span id="translatedtitle">Recent progress at the Very Large Telescope <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The ESO Very Large Telescope <span class="hlt">Interferometer</span> (VLTI) is the first general-user <span class="hlt">interferometer</span> that offers near- and mid-infrared long-baseline interferometric observations in service and visitor mode to the whole astronomical community. Over the last two years, the VLTI has moved into its regular science operation mode with the two science instruments, MIDI and AMBER, both on all four 8m Unit Telescopes</p> <div class="credits"> <p class="dwt_author">Markus Schöller; Javier Argomedo; Bertrand Bauvir; Leonardo Blanco-Lopez; Henri Bonnet; Stephane Brillant; Michael Cantzler; Johan Carstens; Fabio Caruso; Christian Choque-Cortez; Frederic Derie; Francoise Delplancke; Nicola Di Lieto; Martin Dimmler; Yves Durand; Mark Ferrari; Emmanuel Galliano; Philippe Gitton; Bruno Gilli; Andreas Glindemann; Serge Guniat; Stephane Guisard; Nicolas Haddad; Pierre Haguenauer; Nico Housen; Gerd Hudepohl; Christian Hummel; Andreas Kaufer; Mario Kiekebusch; Bertrand Koehler; Jean-Baptiste Le Bouquin; Samuel Leveque; Christopher Lidman; Pedro Mardones; Serge Menardi; Sebastien Morel; Manfred Mornhinweg; Jean-Luc Nicoud; Isabelle Percheron; Monika Petr-Gotzens; Than Phan Duc; Florence Puech; Andres Ramirez; Fredrik Rantakyrö; Andrea Richichi; Thomas Rivinius; Stefan Sandrock; Fabio Somboli; Jason Spyromilio; Stanislav Stefl; Vincent Suc; Roberto Tamai; Mario Tapia; Martin Vannier; Gautam Vasisht; Anders Wallander; Stefan Wehner; Markus Wittkowski; Juan Zagal</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">452</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://patft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&u=%2Fnetahtml%2FPTO%2Fsearch-adv.htm&r=1&p=1&f=G&l=50&d=PTXT&S1=%22Ultra-broadband+antennas%22&OS=%22Ultra-broadband+antennas%22&RS=%22Ultra-broadband+antennas%22"> <span id="translatedtitle"><span class="hlt">Radar</span> and method therefor</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://patft.uspto.gov/netahtml/PTO/search-adv.htm">US Patent & Trademark Office Database</a></p> <p class="result-summary">A <span class="hlt">radar</span> (300) comprises a transceiver (302) for transmitting pulses directed to a subsurface area of interest (102) and for receiving a reflected wave (210) from the subsurface area of interest. The pulses have a pulse duration and amplitude constrained by the equation, d.sup.2.vertline.E.vertline.e/m.ltoreq.1 Angstrom, where d is the pulse duration in seconds, E is the pulse amplitude in volts/meter, e equals the charge of an electron in Coulombs, and m equals the mass of an electron in Kg. A processing device (304), in communication with the transceiver, processes the reflected wave and displays an image of the subsurface area of interest and identifies the material composition of subsurface objects that have known properties that vary as a function of the pulse duration and amplitude.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">2002-04-23</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">453</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1981STIN...8128025O"> <span id="translatedtitle"><span class="hlt">Radar</span> investigation of asteroids</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary"><span class="hlt">Radar</span> investigations were conducted of selected minor planets, including: (1) observations during 1981-82 of 10 potential targets (2 Pallas, 8 Flora, 12 Victoria, 15 Eunomia, 19 Fortuna, 22 Kalliope, 132 Aethra, 219 Thusnelda, 433 Eros, and 2100 Ra-Shalom); and (2) continued analyses of observational data obtained during 1980-81 for 10 other asteroids (4 Vesta, 7 Iris, 16 Psyche, 75 Eurydike, 97 Klotho, 216 Kleopatra, 1685 Toro, 1862 Apollo, 1865 Cerberus, and 1915 Quetzalcoatl). Scientific objectives include estimation of echo strength, polarization, spectral shape, spectral bandwidth, and Doppler shift. These measurements: (1) yield estimates of target size, shape, and spin vector; (2) place constraints on topography, morphology, and composition of the planetary surface; (3) yield refined estimates of target orbital parameters; (4) reveal the presence of asteroidal satellites.</p> <div class="credits"> <p class="dwt_author">Ostro, S. J.</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">454</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/17784090"> <span id="translatedtitle"><span class="hlt">Radar</span> images of Mars.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Full disk images of Mars have been obtained with the use of the Very Large Array (VLA) to map the <span class="hlt">radar</span> reflected flux density. The transmitter system was the 70-m antenna of the Deep Space Network at Goldstone, California. The surface of Mars was illuminated with continuous wave radiation at a wavelength of 3,5 cm. The reflected energy was mapped in individual 12-minute snapshots with the VLA in its largest configuration; fringe spacings as small as 67 km were obtained. The images reveal near-surface features including a region in the Tharsis volcano area, over 2000 km in east-west extent, that displayed no echo to the very low level of the <span class="hlt">radar</span> system noise. The feature, called Stealth, is interpreted as a deposit of dust or ash with a density less than about 0.5 gram per cubic centimeter and free of rocks larger than 1 cm across. The deposit must be several meters thick and may be much deeper. The strongest reflecting geological feature was the south polar ice cap, which was reduced in size to the residual south polar ice cap at the season of observation. The cap image is interpreted as arising from nearly pure CO(2) or H(2)O ice with a small amount of martian dust (less than 2 percent by volume) and a depth greater than 2 to 5 m. Only one anomalous reflecting feature was identified outside of the Tharsis region, although the Elysium region was poorly sampled in this experiment and the north pole was not visible from Earth. PMID:17784090</p> <div class="credits"> <p class="dwt_author">Muhleman, D O; Butler, B J; Grossman, A W; Slade, M A</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-09-27</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">455</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://video.nasa.gov/core-dl/423/0/593/451570351/3091/423/1570/78560ee521575049c00451d4c6162597.mp4"> <span id="translatedtitle">NASA <span class="hlt">Radar</span> Images Asteroid Toutatis</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.nasa.gov/multimedia/videogallery/index.html">NASA Video Gallery</a></p> <p class="result-summary">This 64-frame movie of asteroid Toutatis was generated from data by Goldstone's Solar System <span class="hlt">Radar</span> on Dec. 12 and 13, 2012. In the movie clips, the rotation of the asteroid appears faster than it occurs in nature.</p> <div class="credits"> <p class="dwt_author">Anthony Greicius</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-12-13</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">456</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA125930"> <span id="translatedtitle">Mode S Baseline <span class="hlt">Radar</span> Tracking.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Tests and evaluation were conducted to determine the baseline performance characteristics of the Moving Target Detector (MTD) and <span class="hlt">Radar</span> Data Acquisition System (RDAS) as an integral part of the Mode S sensor. The MTD and RDAS were separately evaluated to ...</p> <div class="credits"> <p class="dwt_author">E. F. Mancus L. H. Baker</p> <p class="dwt_publisher"></p> <p class="publishDate">1982-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">457</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA052560"> <span id="translatedtitle">Survey of <span class="hlt">Radar</span> Signal Processing.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">During the last decade, considerable progress has been made in <span class="hlt">radar</span> signal processing, and this report states its present status. The three broad areas of coherent processing, noncoherent detection, and track-while-scan systems are discussed. Specificall...</p> <div class="credits"> <p class="dwt_author">G. V. Trunk</p> <p class="dwt_publisher"></p> <p class="publishDate">1977-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">458</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2003EAEJA.....2948R"> <span id="translatedtitle">Solar <span class="hlt">Radar</span> Astronomy with LOFAR</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A new approach to the study of the Sun's corona and its dynamical processes is possible with <span class="hlt">radar</span> investigations in the frequency range of about 10-50 MHz. The range of electron densities of the solar corona is such that radio waves at these frequencies can provide diagnostic <span class="hlt">radar</span> echoes of large scale phenomena such as coronal mass ejections (CMEs). We expect that the frequency shift imposed on the echo signal by an earthward-moving CME will provide a direct measurement of the velocity, thereby providing a good estimate of the arrival time at Earth. It is known that CMEs are responsible for the largest geomagnetic storms at Earth, which are capable of causing power grid blackouts, satellite electronic upsets, and degradation of radio communications circuits. Thus, having accurate forecasts of potential CME-initiated geomagnetic storms is of practical space weather interest. New high power transmitting arrays are becoming available, along with proposed modifications to existing research facilities, that will allow the use of radio waves to study the solar corona by the <span class="hlt">radar</span> echo technique. Of particular interest for such solar <span class="hlt">radar</span> investigations is the bistatic configuration with the Low Frequency Array (LOFAR). The LOFAR facility will have an effective receiving area of about 1 square km at solar <span class="hlt">radar</span> frequencies. Such large effective area will provide the receiving antenna gain needed for detailed investigations of solar coronal dynamics. Conservative estimates of the signal-to-noise ratio for solar <span class="hlt">radar</span> echoes as a function of the integration time required to achieve a specified detection level (e.g., ~ 5 dB) indicate that time resolutions of 10s of seconds can be achieved. Thus, we are able to resolve variations in the solar <span class="hlt">radar</span> cross section on time scales which will provide new information on the plasma dynamical processes associated with the solar corona, such as CMEs. It is the combination of high transmitted power and large effective receiving area that makes possible the significant performance indicated. We will review early and current solar <span class="hlt">radar</span> investigations and proposed approaches to future <span class="hlt">radar</span> studies of the solar corona. Solar <span class="hlt">radar</span> experiments were done almost from the beginning of the modern era of space physics research and has a very interesting history. In addition to re-opening the solar <span class="hlt">radar</span> window, LOFAR will also be able to open new studies of planetary hard surfaces (e.g., the Moon and asteroids), and solar system plasmas (solar wind, magnetosphere, dusty plasmas, comets).</p> <div class="credits"> <p class="dwt_author">Rodriguez, P.</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-04-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">459</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50382868"> <span id="translatedtitle">Synchronisation of bistatic <span class="hlt">radar</span> systems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Bistatic <span class="hlt">radar</span> is gaining more and more interest over the last years. It offers more freedom to deploy the transmitter and the receiver, e.g. in a way to enhance the signature of stealthy targets. Furthermore, the bi- or multistatic system can be realized without using expensive transmit\\/receive-modules. An additional feature of bistatic <span class="hlt">radar</span> is that continuous wave signals can be</p> <div class="credits"> <p class="dwt_author">M. Weib</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">460</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1992aiaa.confT....L"> <span id="translatedtitle">Rendezvous <span class="hlt">radar</span> for orbital vehicles</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In this paper some of the factors which relate to the system design of rendezvous <span class="hlt">radars</span> are discussed and the system design and the capabilities of the OMV Rendezvous <span class="hlt">Radar</span> System (RRS) are described. The potential for transferring manufacturing technologies and methods which have been developed for high-volume-production commercial and military hardware systems into the relatively low volume world of hi-rel electronics hardware for space is discussed.</p> <div class="credits"> <p class="dwt_author">Locke, John W.; Casey, Larry D.</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-03-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_22");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a style="font-weight: bold;">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_24");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_23 div --> <div id="page_24" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_23");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a style="font-weight: bold;">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_25");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">461</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/42523191"> <span id="translatedtitle">A <span class="hlt">radar</span> image time series</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A set of side-looking <span class="hlt">radar</span> images has been collected over an area in the Sierrita Pediment, Arizona, U.S.A. The dates of image acquisition vary from 1965-1979 and the images are taken at various look angles, frequencies, flight directions and polarizations. The objective of the study is to demonstrate the photogrammetric orthophoto technique applied to <span class="hlt">radar</span> images and at the same</p> <div class="credits"> <p class="dwt_author">F. Leberl; H. Fuchs; J. P. Ford</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">462</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1992rpi..conf..200R"> <span id="translatedtitle">LPI considerations for surveillance <span class="hlt">radars</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A low probability-of-intercept (LPI) <span class="hlt">radar</span> is designed for covert operations which uses minimum radiated power and measures target characteristics with a waveform modulation that is difficult for an intercept receiver to identify. It is established that while doubling the number of an LPI <span class="hlt">radar</span>'s receivers improves the LPI factor by 3 dB, it increases cost by a factor of 2. Reducing video bandwidth reestablishes moderate cost without a major degradation of overall performance or increase in antenna size.</p> <div class="credits"> <p class="dwt_author">Ruffe, L. I.; Stott, G. F.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">463</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/4893678"> <span id="translatedtitle"><span class="hlt">Radar</span> imaging of Saturn's rings</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We present delay–Doppler images of Saturn's rings based on <span class="hlt">radar</span> observations made at Arecibo Observatory between 1999 and 2003, at a wavelength of 12.6 cm and at ring opening angles of 20.1°?|B|?26.7°. The average <span class="hlt">radar</span> cross-section of the A ring is ?77% relative to that of the B ring, while a stringent upper limit of 3% is placed on the</p> <div class="credits"> <p class="dwt_author">Philip D. Nicholson; Richard G. French; Donald B. Campbell; Jean-Luc Margot; Michael C. Nolan; Gregory J. Black; Heikki J. Salo</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">464</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009pcms.confE.203S"> <span id="translatedtitle">Representing <span class="hlt">radar</span> QPE and QPF uncertainties using <span class="hlt">radar</span> ensembles</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In the last years, new comprehension of the physics underlying the <span class="hlt">radar</span> measurements as well as new technological advancements have allowed <span class="hlt">radar</span> community to propose better algorithms and methodologies and significant advancements have been achieved in improving Quantitative Precipitation Estimates (QPE) and Quantitative Precipitation forecasting (QPF) by <span class="hlt">radar</span>. Thus the study of the 2D uncertainties field associated to these estimates has become an important subject, specially to enhance the use of <span class="hlt">radar</span> QPE and QPF in hydrological studies, as well as in providing a reference for satellite precipitations measurements. In this context the use of <span class="hlt">radar</span>-based rainfall ensembles (i.e. equiprobable rainfall field scenarios generated to be compatible with the observations/forecasts and with the inferred structure of the uncertainties) has been seen as an extremely interesting tool to represent their associated uncertainties. The generation of such <span class="hlt">radar</span> ensembles requires first the full characterization of the 3D field of associated uncertainties (2D spatial plus temporal), since rainfall estimates show an error structure highly correlated in space and time. A full methodology to deal with this kind of <span class="hlt">radar</span>-based rainfall ensembles is presented. Given a rainfall event, the 2D uncertainty fields associated to the <span class="hlt">radar</span> estimates are defined for every time step using a benchmark, or reference field, based on the best available estimate of the rainfall field. This benchmark is built using an advanced non parametric interpolation of a dense raingauge network able to use the spatial structure provided by the <span class="hlt">radar</span> observations, and is confined to the region in which this combination could be taken as a reference measurement (Velasco-Forero et al. 2008, doi:10.1016/j.advwatres.2008.10.004). Then the spatial and temporal structures of these uncertainty fields are characterized and a methodology to generate consistent multiple realisations of them is used to generate the <span class="hlt">radar</span>-based rainfall ensembles scenarios. This methodology, based on the improvement of the "String of Beads" model (Pegram and Clothier, 2001, doi:10.1016/S0022-1694(00)00373-5), is designed to preserve their main characteristics, such as anisotropy and the temporal variations of their spatial correlation. The discussion of the results on an illustrative case study and their potential interest in hydrological applications is also discussed.</p> <div class="credits"> <p class="dwt_author">Sempere-Torres, D.; Llort, X.; Roca, J.; Pegram, G.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">465</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2006SPIE.6268E..37S"> <span id="translatedtitle">Science observations with the Keck <span class="hlt">Interferometer</span> Nuller</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The Keck <span class="hlt">Interferometer</span> Nuller (KIN) is now largely in place at the Keck Observatory, and functionalities and performance are increasing with time. The main goal of the KIN is to examine nearby stars for the presence of exozodiacal emission, but other sources of circumstellar emission, such as disks around young stars, and hot exoplanets are also potential targets. To observe with the KIN in nulling mode, knowledge of the intrinsic source spectrum is essential, because of the wide variety of wavelengths involved in the various control loops - the AO system operates at visible wavelengths, the pointing loops use the J-band, the high-speed fringe tracker operates in the K-band, and the nulling observations take place in the N-band. Thus, brightness constraints apply at all of these wavelengths. In addition, source structure plays a role at both K-band and N-band, through the visibility. In this talk, the operation of the KIN is first briefly described, and then the sensitivity and performance of the KIN is summarized, with the aim of presenting an overview of the parameter space accessible to the nuller. Finally, some of the initial observations obtained with the KIN are described.</p> <div class="credits"> <p class="dwt_author">Serabyn, E.; Booth, A.; Colavita, M. M.; Crawford, S.; Garcia, J.; Gathright, J.; Hrynevych, M.; Koresko, C.; Ligon, R.; Mennesson, B.; Panteleeva, T.; Ragland, S.; Summers, K.; Traub, W.; Tsubota, K.; Wetherell, E.; Wizinowich, P.; Woillez, J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">466</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010SPIE.7734E..29E"> <span id="translatedtitle">Science with the Keck <span class="hlt">Interferometer</span> ASTRA program</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The ASTrometric and phase-Referenced Astronomy (ASTRA) project will provide phase referencing and astrometric observations at the Keck <span class="hlt">Interferometer</span>, leading to enhanced sensitivity and the ability to monitor orbits at an accuracy level of 30-100 microarcseconds. Here we discuss recent scientific results from ASTRA, and describe new scientific programs that will begin in 2010-2011. We begin with results from the "self phase referencing" (SPR) mode of ASTRA, which uses continuum light to correct atmospheric phase variations and produce a phase-stabilized channel for spectroscopy. We have observed a number of protoplanetary disks using SPR and a grism providing a spectral dispersion of ~ 2000. In our data we spatially resolve emission from dust as well as gas. Hydrogen line emission is spectrally resolved, allowing differential phase measurements across the emission line that constrain the relative centroids of different velocity components at the 10 microarcsecond level. In the upcoming year, we will begin dual-field phase referencing (DFPR) measurements of the Galactic Center and a number of exoplanet systems. These observations will, in part, serve as precursors to astrometric monitoring of stellar orbits in the Galactic Center and stellar wobbles of exoplanet host stars. We describe the design of several scientific investigations capitalizing on the upcoming phase-referencing and astrometric capabilities of ASTRA.</p> <div class="credits"> <p class="dwt_author">Eisner, J. A.; Akeson, R.; Colavita, M.; Ghez, A.; Graham, J.; Hillenbrand, L.; Millan-Gabet, R.; Monnier, J. D.; Pott, J. U.; Ragland, S.; Wizinowich, P.; Woillez, J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">467</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2000eso..pres...14."> <span id="translatedtitle">With the VLT <span class="hlt">Interferometer</span> towards Sharper Vision</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The Nova-ESO VLTI Expertise Centre Opens in Leiden (The Netherlands) European science and technology will gain further strength when the new, front-line Nova-ESO VLTI Expertise Centre (NEVEC) opens in Leiden (The Netherlands) this week. It is a joint venture of the Netherlands Research School for Astronomy (NOVA) (itself a collaboration between the Universities of Amsterdam, Groningen, Leiden, and Utrecht) and the European Southern Observatory (ESO). It is concerned with the Very Large Telescope <span class="hlt">Interferometer</span> (VLTI). The Inauguration of the new Centre will take place on Friday, May 26, 2000, at the Gorlaeus Laboratory (Lecture Hall no. 1), Einsteinweg 55 2333 CC Leiden; the programme is available on the web. Media representatives who would like to participate in this event and who want further details should contact the Nova Information Centre (e-mail: jacques@astro.uva.nl; Tel: +31-20-5257480 or +31-6-246 525 46). The inaugural ceremony is preceded by a scientific workshop on ground and space-based optical interferometry. NEVEC: A Technology Centre of Excellence As a joint project of NOVA and ESO, NEVEC will develop in the coming years the expertise to exploit the unique interferometric possibilities of the Very Large Telescope (VLT) - now being built on Paranal mountain in Chile. Its primary goals are the * development of instrument modeling, data reduction and calibration techniques for the VLTI; * accumulation of expertise relevant for second-generation VLTI instruments; and * education in the use of the VLTI and related matters. NEVEC will develop optical equipment, simulations and software to enable interferometry with VLT [1]. The new Center provides a strong impulse to Dutch participation in the VLTI. With direct involvement in this R&D work, the scientists at NOVA will be in the front row to do observations with this unique research facility, bound to produce top-level research and many exciting new discoveries. The ESO VLTI at Paranal ESO PR Photo 14a/00 ESO PR Photo 14a/00 [Preview - JPEG: 359 x 400 pix - 120k] [Normal - JPEG: 717 x 800 pix - 416k] [High-Res - JPEG: 2689 x 3000 pix - 6.7M] Caption : A view of the Paranal platform with the four 8.2-m VLT Unit Telescopes (UTs) and the foundations for the 1.8-m VLT Auxiliary Telescopes (ATs) that together will be used as the VLT <span class="hlt">Interferometer</span> (VLTI). The three ATs will move on rails (yet to be installed) between the thirty observing stations above the holes that provide access to the underlying tunnel system. The light beams from the individual telescopes will be guided towards the centrally located, partly underground Interferometry Laboratory in which the VLTI instruments will be set up. This photo was obtained in December 1999 at which time some construction materials were still present on the platform; they were electronically removed in this reproduction. The ESO VLT facility at Paranal (Chile) consists of four Unit Telescopes with 8.2-m mirrors and several 1.8-m auxiliary telescopes that move on rails, cf. PR Photo 14a/00 . While each of the large telescopes can be used individually for astronomical observations, a prime feature of the VLT is the possibility to combine all of these telescopes into the Very Large Telescope <span class="hlt">Interferometer</span> (VLTI) . In the interferometric mode, the light beams from the VLT telescopes are brought together at a common focal point in the Interferometry Laboratory that is placed at the centre of the observing platform on top of Paranal. In principle, this can be done in such a way that the resulting (reconstructed) image appears to come from a virtual telescope with a diameter that is equal to the largest distance between two of the individual telescopes, i.e., up to about 200 metres. The theoretically achievable image sharpness of an astronomical telescope is proportional to its diameter (or, for an <span class="hlt">interferometer</span>, the largest distance between two of its component telescopes). The interferometric observing technique will thus allow the VLTI to produce images as sharp as 0.001 arcsec (at wavelength 1 µm) - this corresponds t</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">2000-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">468</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2005IAUS..201...43H"> <span id="translatedtitle">The Jodrell Bank - IAC 33 GHz <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The latest results from the Jodrell Bank -- IAC two-element 33 GHz <span class="hlt">interferometer</span> will be presented. Measurements are made of the amplitude of Cosmic Microwave Background (CMB) fluctuations on angular scales of 1o (l =208 ± 18) and 2o (l = 106 ± 19). The first results on a deep scan at 2o resolution showed a clear detection at all RAs with ? T = 43+13-12? K; the error was mainly due to sample variance. This work has been extended to 5 Declination strips thereby reducing the errors by a factor of 2-3. A deep scan at 1o resolution gives ? T = 63+7-6? K. The published results of high accuracy experiments (BOOMERanG, MAXIMA) for the amplitude of the peak, around l ˜200, are converging to around this level. Foregrounds are shown to contribute insignificantly at 33 GHz at intermediate and high galactic latitudes. The amplitude of foreground signals is less than 3-5 ? K resulting in only a 1 percent reduction in the observed CMB signal when subtracted quadratrically.</p> <div class="credits"> <p class="dwt_author">Harrison, D. L.; Watson, R. A.; Rubiño-Martin, J. A.; Macias-Perez, J. F.; Davies, R. D.; Rebolo, R.; Gutiérrez, C. M.; Davis, R. J.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">469</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009SPIE.7511E..16W"> <span id="translatedtitle">Vibration errors in phase-shifting <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Unexpected mechanical vibrations can significantly degrade the otherwise high accuracy of phase-shifting <span class="hlt">interferometer</span> (PSI). Because the data acquisition takes place over time, sensitivity to vibration is as a function of the frequency, the phase, the amplitude of vibrations, the smoothness of test surface and the slope coefficient of reference plane. A complete, nonlinear, continuing mathematical model of PSI with well defined longitudinal and transverse vibrations is presented. The approach to quantifying vibration is using the discrete sum formula instead of the continuing integral model. Computer simulations are performed over a range of vibration frequencies and amplitudes for 4,7,11 and 15 frames phase-shift algorithms. Numerical simulation results demonstrate the methods to increase the accuracy of PSI is to choose more phase steps and higher speed CCD camera and PSI with small slope coefficient of reference surface and good smooth test surface has low sensitivity to transverse vibration. Finally programs basing on the phase-shifting interference theory are given to imitate the process of obtaining interferogram with vibrations. After intensity signal is processed through PSI algorithm and phase unwrapping algorithm, the sensitivity of PSI to vibration is achieved and described by the difference of the computer phase and test phase. The results of numerical simulation are supported by several examples on dummy experimental platform.</p> <div class="credits"> <p class="dwt_author">Wei, Hao-Ming; Xing, Ting-Wen</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">470</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012SPIE.8431E..44K"> <span id="translatedtitle">Simulation of polymeric integrated Young <span class="hlt">interferometer</span> sensor</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The use of photonic integrated circuits made of polymer materials represents a solution for obtaining low-cost immunosensors for fast clinical diagnosis. In this paper are presented the simulation studies of a photonic integrated sensor on silicon substrate based on the configuration of Young <span class="hlt">interferometer</span>. The core and cladding materials of the photonic sensor are polymeric materials. This sensor works for the detection of the surrounding medium refractive index variation and also for the detection of a thin adsorbed layer on the sensor surface. Simulations are performed using the Beam Propagation Method and 2D mode solvers for obtaining the relation between the variation of the surrounding refractive index or the presence of an adsorbed layer and the displacement of the interference fringe position. From this dependence one can calculate the sensor sensitivity and also one can estimate the detection limit. In order to obtain reliable results it is necessary to have waveguides which presents single mode operation regime both on the horizontal and vertical direction. Rib waveguides which are more prone for satisfying single mode condition were considered. The suppression of the higher order modes on the vertical direction by leakage in the silicon substrate is made by adjusting the thickness of the silicon dioxide buffer layer.</p> <div class="credits"> <p class="dwt_author">Kusko, Mihai</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">471</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1999alma.confE..14D"> <span id="translatedtitle">Millimeter <span class="hlt">Interferometer</span> Mosaics of Clusters in Formation</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Stars form typically in clusters, in short time intervals (less than or equal to 1 Myr) and in small (less than or equal to 0.5 pc) regions of turbulent dense gas (e.g., see Lada, Strom, & Myers 1993). Millimeter <span class="hlt">interferometers</span> can now provide wide-field, high-resolution observations of protoclusters, where objects are typically too proximate and embedded to observe by other means. Following Testi & Sargent (1998), who mosaicked the Serpens NW+SE protocluster at OVRO, we have observed mosaics of other regions with high surface densities of protostellar objects including the NGC 1333 IRAS 4 region in Perseus (at the IRAM PdBI), the rho Oph A region of Ophiuchus (at BIMA, with P. André), the L1551 IRAS 5 region in Taurus (at BIMA), and the OMC-2 region in Orion (at OVRO). Con