Note: This page contains sample records for the topic single-pass radar interferometer from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: August 15, 2014.
1

Echo source discrimination in single-pass airborne radar sounding data from the Dry Valleys, Antarctica: Implications for orbital sounding of Mars  

NASA Astrophysics Data System (ADS)

The interpretation of radar sounding data from Mars where significant topographic relief occurs will require echo source discrimination to avoid the misinterpretation of surface echoes as arising from the subsurface. This can be accomplished through the identification of all radar returns from the surface in order to positively identify subsurface echoes. We have developed general techniques for this using airborne radar data from the Dry Valleys of Antarctica. These data were collected in a single pass, including Taylor Glacier, ice-covered Lake Bonney, and an ice-free area of Taylor Valley. The pulsed radar (52.5-67.5 MHz) was coherently recorded. Our echo discrimination techniques included a radar simulator using a digital elevation model (DEM) to predict the location and shape of surface echoes in the radar data. Real and simulated echo strengths were used to calculate a signal-to-clutter ratio. This was complemented by the cross-track migration of radar echoes onto the surface. These migrated echoes were superimposed on the DEM and imagery in order to correlate with surface features. Using these techniques enabled us to identify a number of echoes in the radar data as arising from the surface and to identify subsurface echoes, including a continuous reflector under the main trunk of Taylor Glacier and multiple reflectors beneath the terminus of Taylor Glacier. Surface-based radar confirms the thickness of the glacier at three crossing points. The results illustrate the importance of using complementary techniques, the usefulness of a DEM, and the limitations of single-pass radar sounding data.

Holt, John W.; Peters, Matthew E.; Kempf, Scott D.; Morse, David L.; Blankenship, Donald D.

2006-06-01

2

Passive coherent scatter radar interferometer implementation, observations, and analysis  

Microsoft Academic Search

We have recently extended the passive radar technique to permit interferometric observation of ionospheric irregularities. We discuss the implementation of a passive radar interferometer at VHF frequencies and show observations of field-aligned irregularities in the high-latitude E region ionosphere. The interferometer achieves very fine azimuthal resolution (as fine as 0.1°, or 2 km at a range of 1000 km); thus

Melissa G. Meyer; John D. Sahr

2004-01-01

3

Radar interferometer calibration of the EISCAT Svalbard Radar and a additional receiver station  

NASA Astrophysics Data System (ADS)

The EISCAT Svalbard Radar has two parabolic dishes. In order to attempt to implement radar aperture synthesis imaging methods three smaller, passive receive array antennas were built. Several science goals for this new receiver system exist, the primary of which is to study so called naturally enhanced ion acoustic lines. In order to compare radar aperture synthesis imaging results with measurements from optical imagers, calibration of the radar interferometer system is necessary. In this work we present the phase calibration of the EISCAT Svalbard interferometer including one array antenna. The calibration was done using the coherent scatter from satellites passing through the radar beam. Optical signatures of the satellite transits provide accurate position for the satellites. Using transits of a number of satellites sufficient for mapping the radar beam, the interferometric cross-phase was fitted within the radar beam. The calibration technique presented in this work will be applied to all antenna pairs of the antenna configuration for future interferometry studies.

Schlatter, N. M.; Grydeland, T.; Ivchenko, N.; Belyey, V.; Sullivan, J.; La Hoz, C.; Blixt, M.

2013-12-01

4

Radar Interferometer for Topographic Mapping of Glaciers and Ice Sheets  

NASA Technical Reports Server (NTRS)

A report discusses Ka-band (35-GHz) radar for mapping the surface topography of glaciers and ice sheets at high spatial resolution and high vertical accuracy, independent of cloud cover, with a swath-width of 70 km. The system is a single- pass, single-platform interferometric synthetic aperture radar (InSAR) with an 8-mm wavelength, which minimizes snow penetration while remaining relatively impervious to atmospheric attenuation. As exhibited by the lower frequency SRTM (Shuttle Radar Topography Mission) AirSAR and GeoSAR systems, an InSAR measures topography using two antennas separated by a baseline in the cross-track direction, to view the same region on the ground. The interferometric combination of data received allows the system to resolve the pathlength difference from the illuminated area to the antennas to a fraction of a wavelength. From the interferometric phase, the height of the target area can be estimated. This means an InSAR system is capable of providing not only the position of each image point in along-track and slant range as with a traditional SAR but also the height of that point through interferometry. Although the evolution of InSAR to a millimeter-wave center frequency maximizes the interferometric accuracy from a given baseline length, the high frequency also creates a fundamental problem of swath coverage versus signal-to-noise ratio. While the length of SAR antennas is typically fixed by mass and stowage or deployment constraints, the width is constrained by the desired illuminated swath width. As the across-track beam width which sets the swath size is proportional to the wavelength, a fixed swath size equates to a smaller antenna as the frequency is increased. This loss of antenna size reduces the two-way antenna gain to the second power, drastically reducing the signal-to-noise ratio of the SAR system. This fundamental constraint of high-frequency SAR systems is addressed by applying digital beam-forming (DBF) techniques to synthesize multiple simultaneous receive beams in elevation while maintaining a broad transmit illumination. Through this technique, a high antenna gain on receive is preserved, thereby reducing the required transmit power and thus enabling high-frequency SARs and high-precision InSAR from a single spacecraft.

Moller, Delwyn K.; Sadowy, Gregory A.; Rignot, Eric J.; Madsen, Soren N.

2007-01-01

5

Single Pass Streaming BLAST on FPGAs*†  

PubMed Central

Approximate string matching is fundamental to bioinformatics and has been the subject of numerous FPGA acceleration studies. We address issues with respect to FPGA implementations of both BLAST- and dynamic-programming- (DP) based methods. Our primary contribution is a new algorithm for emulating the seeding and extension phases of BLAST. This operates in a single pass through a database at streaming rate, and with no preprocessing other than loading the query string. Moreover, it emulates parameters turned to maximum possible sensitivity with no slowdown. While current DP-based methods also operate at streaming rate, generating results can be cumbersome. We address this with a new structure for data extraction. We present results from several implementations showing order of magnitude acceleration over serial reference code. A simple extension assures compatibility with NCBI BLAST.

Herbordt, Martin C.; Model, Josh; Sukhwani, Bharat; Gu, Yongfeng; VanCourt, Tom

2008-01-01

6

Mutual coupling of antennas in a meteor radar interferometer  

NASA Astrophysics Data System (ADS)

Abstract Meteor <span class="hlt">radars</span> have become common and important tools in the study of the climate and dynamics of the mesosphere/lower thermosphere (MLT) region. These systems depend on accurate angle-of-arrival measurements to locate the positions of meteor trails in the atmosphere. Mutual coupling between antennas, although small, produces a measurable error in the antenna pair phase differences used to deduce the angle of arrival of incident radiation. Measurements of the scattering parameter matrix for antennas in an interferometric meteor <span class="hlt">radar</span> array have been made and applied to the existing angle-of-arrival calculation algorithm. The results indicate that mutual coupling of antennas in the array produces errors in the zenith angle estimate of less than ± 0.5°. This error is primarily in the form of a gradient across the field of view of the <span class="hlt">radar</span>, which can be removed using existing phase calibration methods. The remaining error is small but will produce small systematic variations in the height estimates for detected meteors.</p> <div class="credits"> <p class="dwt_author">Younger, J. P.; Reid, I. M.; Vincent, R. A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">7</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1466511"> <span id="translatedtitle">Interferometric alignment of the X-SAR antenna system on the space shuttle <span class="hlt">radar</span> topography mission</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The on-orbit alignment of the antenna beams of both the X-band and C-band <span class="hlt">radar</span> systems during operations of the shuttle <span class="hlt">radar</span> topography mission\\/X-band synthetic aperture <span class="hlt">radar</span> (SRTM\\/X-SAR) was a key requirement for achieving best interferometric performance. In this paper, we consider the X-SAR antenna beam alignment in azimuth. For a <span class="hlt">single-pass</span> cross-track SAR <span class="hlt">interferometer</span>, we establish the relation between yaw</p> <div class="credits"> <p class="dwt_author">Dirk Geudtner; Manfred Zink; Christoph Gierull; Scott Shaffer</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">8</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=inversion&pg=7&id=EJ673413"> <span id="translatedtitle">Efficient <span class="hlt">Single-Pass</span> Index Construction for Text Databases.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">Discusses index construction for text collections, reviews principal approaches to inverted indexes, analyzes their theoretical cost, and presents experimental results of the use of a <span class="hlt">single-pass</span> inversion method on Web document collections. Shows that the <span class="hlt">single-pass</span> approach is faster and does not require the complete vocabulary of the indexed…</p> <div class="credits"> <p class="dwt_author">Heinz, Steffen; Zobel, Justin</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">9</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20120001227&hterms=radar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dradar"> <span id="translatedtitle">Onboard Interferometric SAR Processor for the Ka-Band <span class="hlt">Radar</span> <span class="hlt">Interferometer</span> (KaRIn)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">An interferometric synthetic aperture <span class="hlt">radar</span> (SAR) onboard processor concept and algorithm has been developed for the Ka-band <span class="hlt">radar</span> <span class="hlt">interferometer</span> (KaRIn) instrument on the Surface and Ocean Topography (SWOT) mission. This is a mission- critical subsystem that will perform interferometric SAR processing and multi-look averaging over the oceans to decrease the data rate by three orders of magnitude, and therefore enable the downlink of the <span class="hlt">radar</span> data to the ground. The onboard processor performs demodulation, range compression, coregistration, and re-sampling, and forms nine azimuth squinted beams. For each of them, an interferogram is generated, including common-band spectral filtering to improve correlation, followed by averaging to the final 1 1-km ground resolution pixel. The onboard processor has been prototyped on a custom FPGA-based cPCI board, which will be part of the <span class="hlt">radar</span> s digital subsystem. The level of complexity of this technology, dictated by the implementation of interferometric SAR processing at high resolution, the extremely tight level of accuracy required, and its implementation on FPGAs are unprecedented at the time of this reporting for an onboard processor for flight applications.</p> <div class="credits"> <p class="dwt_author">Esteban-Fernandez, Daniel; Rodriquez, Ernesto; Peral, Eva; Clark, Duane I.; Wu, Xiaoqing</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">10</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19810009365&hterms=Oil+seep&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DOil%2Bseep"> <span id="translatedtitle"><span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">An <span class="hlt">interferometer</span> of relatively simple design which is tilt compensated, and which facilitates adjustment of the path lengths of split light beams is described. The <span class="hlt">interferometer</span> includes a pair of plate-like elements with a dielectric coating and an oil film between them, that forms a beamsplitter interface, and with a pair of reflector surfaces at the ends of the plates. A pair of retroreflectors are positioned so that each split beam component is directed by a retroreflector onto one of the reflector surfaces and is then returned to the beamsplitter interface, so that the reflector surfaces tilt in a direction and amount that compensates for tilting of the beamsplitter interface.</p> <div class="credits"> <p class="dwt_author">Breckinridge, J. B. (inventor)</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">11</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013AGUFM.G33A0968W"> <span id="translatedtitle">Terrestrial <span class="hlt">Radar</span> <span class="hlt">Interferometer</span> Observations of a Rapid Landslide Over Vegetated Terrain</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In the Spring of 2013 a landslide in the Hintergraben region of canton Obwalden in Switzerland showed a rapid increase in velocity. Hintergraben, at an elevation of about 900 meters is characterized by meadow and some trees. A region approximately 200 meters wide and 500 meters long was affected. Starting in February, the velocity increased to 30 cm/day by 1-May and continued to accelerate by deceleration to 8 cm/day by 27-May. We report on observations of this landslide using the Gamma Portable <span class="hlt">Radar</span> <span class="hlt">Interferometer</span> (GPRI). The GPRI is an FM-CW <span class="hlt">radar</span> operating at 17.2 GHz (Ku-Band) with an operational range up to 10 km. Range resolution is 90 cm along the LOS. The instrument operates in real-aperture mode with 0.4 degree wide fan-beam giving an azimuth resolution better than 7 meters at 1 kilometer range. During data acquisition, the <span class="hlt">radar</span> performed an azimuth scan of the scene at a rate of 5 degrees/sec. The <span class="hlt">radar</span> is phase coherent and capable of acquiring data suitable for differential interferometry with a precision for measuring changes in the LOS distance > 0.1 mm. Limiting factors in the accuracy of LOS motion are interferometric phase coherence and variations in delay due to water vapor. The GPRI was deployed to map ground motion for 2 campaigns on 6 May and 26-27 May 2013. The <span class="hlt">radar</span> position over 3.5 km from the landslide on the opposite side of Lake Sarnen. Due to rapid temporal decorrelation at Ku-Band data, acquisitions were made at 1 minute intervals. The GPRI deformation maps cover almost the entire region of the active landslide during both observation periods of 6 hours on 6 May and 9 hours on 26-27 May. Measured peak velocities were 35 and 8 cm/day respectively. Point-wise verification of the <span class="hlt">radar</span> observations was carried out using a Leica TCR803 total station with an estimated accuracy of 1/2 mm at 3.5 km distance. A set of optical corner cubes and <span class="hlt">radar</span> reflectors were set up in the region of the landslide on 26-May. The <span class="hlt">radar</span> deformation measurements are within 1/2 mm of the values derived using the total station. Operating the GPRI with 1 minute intervals between successive scans permitted making accurate maps of deformation with millimeter level accuracy over meadow and permitted reconstruction of complete deformation time series. Hitergraben deformation map measured with the GPRI for 6-May 2013. Contours are in cm/day along the LOS.</p> <div class="credits"> <p class="dwt_author">Werner, C. L.; Caduff, R.; Strozzi, T.; Wegmüller, U.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">12</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/6736271"> <span id="translatedtitle">Multifrequency, <span class="hlt">single-pass</span> free-electron laser. [Patent application</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">A method for simultaneous amplification of laser beams with a sequence of freqeuncies in a <span class="hlt">single</span> <span class="hlt">pass</span>, using a relativistic beam of electrons grouped in a sequence of energies corresponding to the sequence of laser beam frequencies is described. The method allows electrons to pass from one potential well or bucket to another adjacent bucket, thus increasing efficiency of trapping and energy conversion.</p> <div class="credits"> <p class="dwt_author">Szoke, A.; Prosnitz, D.</p> <p class="dwt_publisher"></p> <p class="publishDate">1982-01-26</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">13</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013AIPC.1571...90I"> <span id="translatedtitle">Thermal efficiency of <span class="hlt">single-pass</span> solar air collector</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Efficiency of a finned <span class="hlt">single-pass</span> solar air collector was studied. This paper presents the experimental study to investigate the effect of solar radiation and mass flow rate on efficiency. The fins attached at the back of absorbing plate to improve the thermal efficiency of the system. The results show that the efficiency is increased proportional to solar radiation and mass flow rate. Efficiency of the collector archived steady state when reach to certain value or can be said the maximum performance.</p> <div class="credits"> <p class="dwt_author">Ibrahim, Zamry; Ibarahim, Zahari; Yatim, Baharudin; Ruslan, Mohd Hafidz</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">14</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/40658676"> <span id="translatedtitle">Some developments for <span class="hlt">single-pass</span> pendulum scratching</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">By using a <span class="hlt">single-pass</span> pendulum impact scratch tester to study wear behavior of several commercial materials, some developments have been made for this testing technique. From the results, four criteria, i.e. specific energy e(=EV), tangential dynamic hardness HT(=FTAT), normal dynamic hardness HN(=FNAN) and the scratching friction coefficient ?(=FTFN), where obtained, where the specific energy and the tangential dynamic hardness presented</p> <div class="credits"> <p class="dwt_author">Y. N. Liang; S. Z. Li; D. F. Li</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">15</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009IJTFM.129..845N"> <span id="translatedtitle">High-resolution Precipitation and Lightning Monitoring by the Ku-band Broadband <span class="hlt">Radar</span> and the VHF Broadband Digital <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We propose a high-resolution precipitation and lightning monitoring for meteorological application. This monitoring is mainly utilized the Ku-band broadband <span class="hlt">radar</span> (BBR) and the VHF broadband digital <span class="hlt">interferometer</span> (DITF). The BBR can accurately measure the <span class="hlt">radar</span> reflectivity factor and the mean Doppler velocity with 5 m resolution over a range from 40 m to several kilometers for 10 W power using a pulse compression technique. The two or more DITFs make us visualize lightning channel propagations in three dimensions. Moreover, we add new functions that integrate these observation data and disclose integration analyses results with the quasi real-time information disclosure system. Initial observations for severe storms with lightning during summer and winter thunderstorm season by these monitoring instruments indicate that we obtain detailed precipitation distribution and detect active convective cells with lightning discharges.</p> <div class="credits"> <p class="dwt_author">Nakamura, Yoshitaka; Yoshikawa, Eiichi; Akita, Manabu; Morimoto, Takeshi; Ushio, Tomoo; Kawasaki, Zen-Ichiro; Saito, Toshiya; Nishida, Takashi; Sakazume, Norio</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">16</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20010012851&hterms=Duren&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DDuren%252C%2BP.%2BE."> <span id="translatedtitle">The Shuttle <span class="hlt">Radar</span> Topography Mission</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">On February 22, 2000 Space Shuttle Endeavour landed at Kennedy Space Center, completing the highly successful 11-day flight of the Shuttle <span class="hlt">Radar</span> Topography Mission (SRTM). Onboard were over 300 high-density tapes containing data for the highest resolution, most complete digital topographic map of Earth ever made. SRTM is a cooperative project between NASA and the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense. The mission was designed to use a <span class="hlt">single-pass</span> <span class="hlt">radar</span> <span class="hlt">interferometer</span> to produce a digital elevation model (DEM) of the Earth's land surface between about 60 deg north and 56 deg south latitude. When completed, the DEM will have 30 m pixel spacing and about 15 m vertical accuracy. Two orthorectified image mosaics (one from the ascending passes with illumination from the southeast and one from descending passes with illumination from the southwest) will also be produced.</p> <div class="credits"> <p class="dwt_author">Farr, Tom G.; Kobrick, Mike</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">17</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20070030942&hterms=Chen&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DJ.%2BChen"> <span id="translatedtitle">Error Analysis for High Resolution Topography with Bi-Static <span class="hlt">Single-Pass</span> SAR Interferometry</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">We present a flow down error analysis from the <span class="hlt">radar</span> system to topographic height errors for bi-static <span class="hlt">single</span> <span class="hlt">pass</span> SAR interferometry for a satellite tandem pair. Because of orbital dynamics the baseline length and baseline orientation evolve spatially and temporally, the height accuracy of the system is modeled as a function of the spacecraft position and ground location. Vector sensitivity equations of height and the planar error components due to metrology, media effects, and <span class="hlt">radar</span> system errors are derived and evaluated globally for a baseline mission. Included in the model are terrain effects that contribute to layover and shadow and slope effects on height errors. The analysis also accounts for nonoverlapping spectra and the non-overlapping bandwidth due to differences between the two platforms' viewing geometries. The model is applied to a 514 km altitude 97.4 degree inclination tandem satellite mission with a 300 m baseline separation and X-band SAR. Results from our model indicate that global DTED level 3 can be achieved.</p> <div class="credits"> <p class="dwt_author">Muellerschoen, Ronald J.; Chen, Curtis W.; Hensley, Scott; Rodriguez, Ernesto</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">18</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1995NIMPA.358...52B"> <span id="translatedtitle">Milestone experiments for <span class="hlt">single</span> <span class="hlt">pass</span> UV/X-ray FELs</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In the past decade, significant advances have been made in the theory and technology of high brightness electron beams and <span class="hlt">single</span> <span class="hlt">pass</span> FELs. These developments facilitate the construction of practical UV and X-ray FELs and has prompted proposals to the DOE for the construction of such facilities. There are several important experiments to be performed before committing to the construction of dedicated user facilities. Two experiments are under construction in the IR, the UCLA self-amplified spontaneous emission experiment and the BNL laser seeded harmonic generation experiment. A multi-institution collaboration is being organized about a 210 MeV electron linac available at BNL and the 10 m long NISUS wiggler. This experiment will be done in the UV and will test various experimental aspects of electron beam dynamics, FEL exponential regime with gain guiding, start-up from noise, seeding and harmonic generation. These experiments will advance the state of FEL research and lead towards future dedicated users' facilities.</p> <div class="credits"> <p class="dwt_author">Ben-Zvi, Ilan</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-02-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">19</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19870001041&hterms=media+bias&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dmedia%2Bbias"> <span id="translatedtitle">Comparison of medium frequency pulsed <span class="hlt">radar</span> <span class="hlt">interferometer</span> and correlation analysis winds, part 1</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">In principle, the <span class="hlt">interferometer</span> analysis determines the radial velocity and direction of single scatterers provided that each has a sufficiently different Doppler frequency to permit separation by spectral analysis. In fact, scatterers will not have constant radial velocity, and their Doppler frequencies as well as their directions will be modulated by their horizontal motion. Thus, there is a tradeoff between the poorer resolution but less smeared scatterers on shorter records and the higher resolution (longer) records. Three or more non-collinear scatterers are sufficient to determine the wind. It appears that the velocity found from the combined <span class="hlt">interferometer</span> peaks agrees well with the apparent velocity from correlation methods, but the true velocity is a factor of 2 smaller. This difference might be resolved by searching for scatters showing regular movement between adjacent records.</p> <div class="credits"> <p class="dwt_author">Meek, C. E.; Reid, I. M.; Manson, A. H.</p> <p class="dwt_publisher"></p> <p class="publishDate">1986-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">20</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5042445"> <span id="translatedtitle">A comparison of middle atmospheric dynamics at Saskatoon (52 degree N, 107 degree W) as measured by a medium-frequency <span class="hlt">radar</span> and a Fabry-Perot <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The Saskatoon medium-frequency <span class="hlt">radar</span> and a recently installed Fabry-Perot <span class="hlt">interferometer</span> were operated together on a continuous basis during the autumn and early winter of 1987. Observations of the atomic oxygen OI 557.7-nm emission provide Doppler winds from the airglow layer near 97 km. <span class="hlt">Radar</span> winds are available from 60 to 110 km during daylight hours and from 80 to 110 km at night. A comparison of the two instruments is hampered, as <span class="hlt">radar</span> data are few in number when auroral contamination of the airglow is minimal. Hence two types of comparisons are made: first, individual <span class="hlt">radar</span> days and <span class="hlt">radar</span> 4-day means are compared with optical winds, and second, extrapolation of the <span class="hlt">radar</span>'s diurnal and semidiurnal tides, which dominate the wind flow of this region, are used to predict the observed nighttime wind field. Generally, the winds are very similar between systems, but differences emerge, stressing the need to avoid auroral contamination of airglow data at relatively high latitudes.</p> <div class="credits"> <p class="dwt_author">Lloyd, N.; Manson, A.H.; McEwen, D.J.; Meek, C.E. (Univ. of Saskatchewan, Saskatoon (Canada))</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-05-20</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_1");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a style="font-weight: bold;">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_2");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_1 div --> <div id="page_2" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_1");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a style="font-weight: bold;">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_3");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">21</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA411224"> <span id="translatedtitle">Behavior of an Automatic Pacemaker Sensing Algorithm for <span class="hlt">Single-Pass</span> VDD Atrial Electrograms.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary"><span class="hlt">Single-pass</span> VDD pacemakers have been used as a result of simple implantation procedures and generally reliable atrial tracking. However, there is a controversy over their reliabilities of atrial tracking. As a new sensing method for reliable atrial tracki...</p> <div class="credits"> <p class="dwt_author">J. Kim S. H. Lee S. Y. Yang B. S. Cho W. Huh</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">22</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012PhDT.......293K"> <span id="translatedtitle">The E-Region Wind <span class="hlt">Interferometer</span> (ERWIN): Description of the Least Mean Squares Data Analysis Routine, Wind Results, and Comparisons with the Meteor <span class="hlt">Radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The E-Region Wind <span class="hlt">Interferometer</span> (ERWIN) is a Michelson <span class="hlt">interferometer</span> which observes mesospheric winds using Doppler shifts in three airglow emissions (atomic oxygen, molecular oxygen, and hydroxyl). Innovations include a quad mirror and a CCD detector which allow simultaneous observation of winds in four directions and the vertical. A measurement cadence of ~ 3 minutes for all the airglow emissions and directions with an accuracy of ~2m/sis achieved. This is the highest temporal resolution for accurate mesospheric winds in the world, providing the possibility for the first vertical wind measurements in airglow to be achieved. Data analysis algorithms and procedures are developed for this instrument including a Levenberg-Marquardt technique, and a bin-by-bin analysis routine. Interesting geophysical phenomena including a large semidiurnal tide, and significant airglow intensity variations were observed during a sudden stratospheric warming. Comparisons with a meteor <span class="hlt">radar</span> validate both instruments, and allow the determination of airglow layer heights.</p> <div class="credits"> <p class="dwt_author">Kristoffersen, Samuel Kaare</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">23</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20060043796&hterms=jovian&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Djovian"> <span id="translatedtitle">Fine resolution topographic mapping of the Jovian moons: a Ka-band high resolution topographic mapping interferometric synthetic aperture <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The topographic data set obtained by MOLA has provided an unprecedented level of information about Mars' geologic features. The proposed flight of JIMO provides an opportunity to accomplish a similar mapping of and comparable scientific discovery for the Jovian moons through us of an interferometric imaging <span class="hlt">radar</span> analogous to the Shuttle <span class="hlt">radar</span> that recently generated a new topographic map of Earth. A Ka-band <span class="hlt">single</span> <span class="hlt">pass</span> across-track synthetic aperture <span class="hlt">radar</span> (SAR) <span class="hlt">interferometer</span> can provide very high resolution surface elevation maps. The concept would use two antennas mounted at the ends of a deployable boom (similar to the Shuttle <span class="hlt">Radar</span> Topographic Mapper) extended orthogonal to the direction of flight. Assuming an orbit altitude of approximately 100 km and a ground velocity of approximately 1.5 km/sec, horizontal resolutions at the 10 meter level and vertical resolutions at the sub-meter level are possible.</p> <div class="credits"> <p class="dwt_author">Madsen, Soren N.; Carsey, Frank D.; Turtle, Elizabeth P.</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">24</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20030066037&hterms=jovian&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Djovian"> <span id="translatedtitle">Fine Resolution Topographic Mapping of the Jovian Moons: A Ka-Band High Resolution Topographic Mapping Interferometric Synthetic Aperture <span class="hlt">Radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The topographic data set obtained by MOLA has provided an unprecedented level of information about Mars' geologic features. The proposed flight of JIMO provides an opportunity to accomplish a similar mapping of and comparable scientific discovery for the Jovian moons through use of an interferometric imaging <span class="hlt">radar</span> analogous to the Shuttle <span class="hlt">radar</span> that recently generated a new topographic map of Earth. A Ka-band <span class="hlt">single</span> <span class="hlt">pass</span> across-track synthetic aperture <span class="hlt">radar</span> (SAR) <span class="hlt">interferometer</span> can provide very high resolution surface elevation maps. The concept would use two antennas mounted at the ends of a deployable boom (similar to the Shuttle <span class="hlt">Radar</span> Topographic Mapper) extended orthogonal to the direction of flight. Assuming an orbit altitude of approximately 100km and a ground velocity of approximately 1.5 km/sec, horizontal resolutions at the 10 meter level and vertical resolutions at the sub-meter level are possible.</p> <div class="credits"> <p class="dwt_author">Madsen, S. N.; Carsey, F. D.; Turtle, E. P.</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">25</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012RScI...83k3701L"> <span id="translatedtitle">Practical aspects of <span class="hlt">single-pass</span> scan Kelvin probe force microscopy</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The <span class="hlt">single-pass</span> scan Kelvin probe force microscopy (KPFM) in ambient condition has a few advantages over the dual-pass lift-up scan KPFM. For example, its spatial resolution is expected to be higher; and its topographical errors caused by electrostatic forces are minimized because electrostatic forces are actively suppressed during the simultaneous topographical and KPFM measurement. Because <span class="hlt">single-pass</span> scan KPFM in ambient condition is relatively new, it received little attention in the literature so far. In this article, we discuss several major practical aspects of <span class="hlt">single-pass</span> scan KPFM especially in ambient condition. First, we define the resolution using a point spread function. With this definition, we analyze the relation between the resolution and the scanning parameters such as tip apex radius and tip-surface distance. We further study the accuracy of KPFM based on the point spread function. Then, we analyze the sensitivity of KPFM under different operation modes. Finally, we investigate the crosstalk between the topographical image and the surface potential image and demonstrate the practical ways to minimize the crosstalk. These discussions not only help us to understand the <span class="hlt">single-pass</span> scan KPFM but also provide practical guidance in using <span class="hlt">single-pass</span> scan KPFM.</p> <div class="credits"> <p class="dwt_author">Li, Guangyong; Mao, Bin; Lan, Fei; Liu, Liming</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">26</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.fig.net/commission6/lisbon_2008/papers/ps02/ps02_04_werner_mc016.pdf"> <span id="translatedtitle">GAMMA'S PORTABLE <span class="hlt">RADAR</span> <span class="hlt">INTERFEROMETER</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Satellite interferometry has been used extensively for ground-motion monitoring with good success. In the case of landslides, for e xample, space-borne SAR interferometry has a good potential to get an overview on the slop e stability. The role of a space-borne INSAR as an element in a landslide or rock fall war ning system is constrained by the specific space-borne</p> <div class="credits"> <p class="dwt_author">Charles WERNER; Tazio STROZZI; Andreas WIESMANN; Urs WEGMÜLLER</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">27</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADB021075"> <span id="translatedtitle">Evaluation of Sea-Water Reverse Osmosis Modules for <span class="hlt">Single-Pass</span> Shipboard Desalination Systems.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Experimental evaluations were made on two <span class="hlt">single-pass</span> sea-water reverse osmosis modules. One was evaluated on synthetic sea water for 1100 hours and the other evaluated on natural sea water for 1500 hours. Both modules initially performed well, producing ...</p> <div class="credits"> <p class="dwt_author">J. F. Pizzino W. L. Adamson</p> <p class="dwt_publisher"></p> <p class="publishDate">1964-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">28</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60025413"> <span id="translatedtitle"><span class="hlt">Single</span> <span class="hlt">pass</span> notching and drilling tool and method of drilling a blast role therewith</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Disclosed is a <span class="hlt">single-pass</span> notching and drilling tool. The tool comprises an adaptor having a first threaded end for coupling with a power source, an opposed second threaded end, an enlarged diameter portion adjacent to the first threaded end and having a first abutment face and a mediate portion adjacent to the first axial abutment face and adjacent to the</p> <div class="credits"> <p class="dwt_author">D.-B. Liang; R. S. Guilbon</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">29</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=DE2007907711"> <span id="translatedtitle">Beam-Beam Simulations for a <span class="hlt">Single</span> <span class="hlt">Pass</span> Superb-Factory.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">A study of beam-beam collisions for an asymmetric <span class="hlt">single</span> <span class="hlt">pass</span> SuperB-Factory is presented (1). In this scheme an e- and an e+ beam are first stored and damped in two Damping Rings (DR), then extracted, compressed and focused to the IP. After collision the...</p> <div class="credits"> <p class="dwt_author">E. Paoloni J. Seeman M. E. Biagini P. Raimondi</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">30</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=DE2005861065"> <span id="translatedtitle">Experimental Test of SuperRadiance in a <span class="hlt">Single</span> <span class="hlt">Pass</span> Seeded FEL.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Superradiance and nonlinear evolution of a FEL pulse in a <span class="hlt">single-pass</span> FEL were experimentally demonstrated at the National Synchrotron Light Source (NSLS) Source Development Laboratory (SDL). The experiment was performed using a 1.5 ps high-brightness ele...</p> <div class="credits"> <p class="dwt_author">T. Watanabe D. Liu J. B. Murphy J. Rose T. Shaftan</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">31</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://earth.esa.int/workshops/polinsar2007/papers/106_margarit.pdf"> <span id="translatedtitle">SHIP CLASSIFICATION PERFORMANCE IN <span class="hlt">SINGLE-PASS</span> POLARIMETRIC SAR INTERFEROMETRY: EVALUATION OF THE SEA INTERACTION</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper performs a preliminary study about the influence of the sea in vessel classification. For such purpose, a novel method based on <span class="hlt">single-pass</span> polarimetric SAR inter- ferometry has been adopted. This method analyzes the input data with the Pauli theorem and, then, retrieves the height related to the local maxima present in each Pauli channel. In this way, an</p> <div class="credits"> <p class="dwt_author">G. Margarit; J. J. Mallorqui; X. Fabregas</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">32</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=DE96002560"> <span id="translatedtitle">'Optical Guiding' limits on extraction efficiencies of <span class="hlt">single-pass</span>, tapered wiggler amplifiers.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary"><span class="hlt">Single-pass</span>, tapered wiggler amplifiers have an attractive feature of being able, in theory at least, of extracting a large portion of the electron beam energy into light. In circumstances where an optical FEL wiggler length is significantly longer than t...</p> <div class="credits"> <p class="dwt_author">W. M. Fawley</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">33</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/10176662"> <span id="translatedtitle">Fuel-element failures in Hanford <span class="hlt">single-pass</span> reactors 1944--1971</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The primary objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation dose that individuals could have received as a result of emissions since 1944 from the US Department of Energy`s (DOE) Hanford Site near Richland, Washington. To estimate the doses, the staff of the Source Terms Task use operating information from historical documents to approximate the radioactive emissions. One source of radioactive emissions to the Columbia River came from leaks in the aluminum cladding of the uranium metal fuel elements in <span class="hlt">single-pass</span> reactors. The purpose of this letter report is to provide photocopies of the documents that recorded these failures. The data from these documents will be used by the Source Terms Task to determine the contribution of <span class="hlt">single-pass</span> reactor fuel-element failures to the radioactivity of the reactor effluent from 1944 through 1971. Each referenced fuel-element failure occurring in the Hanford <span class="hlt">single-pass</span> reactors is addressed. The first recorded failure was in 1948, the last in 1970. No records of fuel-element failures were found in documents prior to 1948. Data on the approximately 2000 failures which occurred during the 28 years (1944--1971) of Hanford <span class="hlt">single-pass</span> reactor operations are provided in this report.</p> <div class="credits"> <p class="dwt_author">Gydesen, S.P.</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">34</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19900017828&hterms=military+radar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmilitary%2Bradar"> <span id="translatedtitle"><span class="hlt">Radars</span> in space</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The capabilities of active microwave devices operating from space (typically, <span class="hlt">radar</span>, scatterometers, <span class="hlt">interferometers</span>, and altimeters) are discussed. General <span class="hlt">radar</span> parameters and basic <span class="hlt">radar</span> principles are explained. Applications of these parameters and principles are also explained. Trends in space <span class="hlt">radar</span> technology, and where space <span class="hlt">radars</span> and active microwave sensors in orbit are going are discussed.</p> <div class="credits"> <p class="dwt_author">Delnore, Victor E.</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">35</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/939971"> <span id="translatedtitle">Emittance Reduction between EBIS LINAC and Booster by Electron Beam Cooling; Is <span class="hlt">Single</span> <span class="hlt">Pass</span> Cooling Possible?</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Electron beam cooling is examined as an option to reduce momentum of gold ions exiting the EBIS LINAC before injection into the booster. Electron beam parameters are based on experimental data (obtained at BNL) of electron beams extracted from a plasma cathode. Preliminary calculations indicate that <span class="hlt">single</span> <span class="hlt">pass</span> cooling is feasible; momentum spread can be reduced by more than an order of magnitude in less than one meter.</p> <div class="credits"> <p class="dwt_author">Hershcovitch,A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">36</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011PhRvS..14f0712G"> <span id="translatedtitle">Self-amplified spontaneous emission for a <span class="hlt">single</span> <span class="hlt">pass</span> free-electron laser</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">SPARC (acronym of “Sorgente Pulsata ed Amplificata di Radiazione Coerente”, i.e. Pulsed and Amplified Source of Coherent Radiation) is a <span class="hlt">single</span> <span class="hlt">pass</span> free-electron laser designed to obtain high gain amplification at a radiation wavelength of 500 nm. Self-amplified spontaneous emission has been observed driving the amplifier with the high-brightness beam of the SPARC linac. We report measurements of energy, spectra, and exponential gain. Experimental results are compared with simulations from several numerical codes.</p> <div class="credits"> <p class="dwt_author">Giannessi, L.; Alesini, D.; Antici, P.; Bacci, A.; Bellaveglia, M.; Boni, R.; Boscolo, M.; Briquez, F.; Castellano, M.; Catani, L.; Chiadroni, E.; Cianchi, A.; Ciocci, F.; Clozza, A.; Couprie, M. E.; Cultrera, L.; Dattoli, G.; Del Franco, M.; Dipace, A.; di Pirro, G.; Doria, A.; Drago, A.; Fawley, W. M.; Ferrario, M.; Ficcadenti, L.; Filippetto, D.; Frassetto, F.; Freund, H. P.; Fusco, V.; Gallerano, G.; Gallo, A.; Gatti, G.; Ghigo, A.; Giovenale, E.; Marinelli, A.; Labat, M.; Marchetti, B.; Marcus, G.; Marrelli, C.; Mattioli, M.; Migliorati, M.; Moreno, M.; Mostacci, A.; Orlandi, G.; Pace, E.; Palumbo, L.; Petralia, A.; Petrarca, M.; Petrillo, V.; Poletto, L.; Quattromini, M.; Rau, J. V.; Reiche, S.; Ronsivalle, C.; Rosenzweig, J.; Rossi, A. R.; Rossi Albertini, V.; Sabia, E.; Serafini, L.; Serluca, M.; Spassovsky, I.; Spataro, B.; Surrenti, V.; Vaccarezza, C.; Vescovi, M.; Vicario, C.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-06-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">37</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/40703357"> <span id="translatedtitle">Modelling pH and carbon dioxide in <span class="hlt">single-pass</span> sea-water aquaculture systems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">An analytical model for predicting pH and CO2 concentrations in <span class="hlt">single-pass</span> sea-water fish farming systems was developed. pH and CO2 in the outlet water could be predicted knowing the carbonate alkalinity and pH in the inlet water, and the carbonate added from fish respiration. The pH model was successfully tested with empirical data from land-based, post-smolt, Atlantic salmon, on growing</p> <div class="credits"> <p class="dwt_author">Steinar Sanni; Odd Inge Forsberg</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">38</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/24052750"> <span id="translatedtitle">Combined <span class="hlt">Single-pass</span> Conversion of Methane Via Oxidative Coupling and Dehydro-aromatization</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A <span class="hlt">single-pass</span> process with the combination of oxidative coupling (OCM) and dehydro-aromatization (MDA) for the direct conversion of methane is carried out. With the assistance of the OCM reaction over the SrO–La2O3\\/CaO catalyst loaded on top of the catalyst bed, the duration of the dehydro-aromatization reaction catalyzed by a 6Mo\\/HMCM-49 catalyst shows a significant improvement, and. the initial deactivation rate</p> <div class="credits"> <p class="dwt_author">Yonggang Li; Tonghao Wu; Wenjie Shen; Xinhe Bao; Yide Xu</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">39</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60783234"> <span id="translatedtitle">AN EXPERIMENTAL TEST OF SUPERRADIANCE IN A <span class="hlt">SINGLE</span> <span class="hlt">PASS</span> SEEDED FEL</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Superradiance and nonlinear evolution of a FEL pulse in a <span class="hlt">single-pass</span> FEL were experimentally demonstrated at the National Synchrotron Light Source (NSLS) Source Development Laboratory (SDL). The experiment was performed using a 1.5 ps high-brightness electron beam and a 100fs Ti:Sapphire seed laser. The seed laser and electron beam interact in the 10 meter long NISUS undulator with a period</p> <div class="credits"> <p class="dwt_author">T. WATANABE; D. LIU; J. B. MURPHY; J. ROSE; T. SHAFTAN; T. TSANG; X. J. WANG; L. H. YU</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">40</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/56283941"> <span id="translatedtitle"><span class="hlt">Radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Over 1,000,000 km2 of the equatorial surface of Mars west of the Arsia Mons volcano displays no 3.5-cm <span class="hlt">radar</span> echo to the very low level of the <span class="hlt">radar</span> system noise for the Very Large Array; the area displaying this unique property has been terms \\</p> <div class="credits"> <p class="dwt_author">James R. Zimbelman; Kenneth S. Edgett</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_1");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a style="font-weight: bold;">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_3");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_2 div --> <div id="page_3" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_2");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a style="font-weight: bold;">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_4");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">41</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012AGUFM.C43D0654C"> <span id="translatedtitle">Observations of a rapidly flowing and significantly retreated Jakobshavn Isbrae and the proglacial ice mélange from a ground based <span class="hlt">radar</span> <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Jakobshavn Isbrae has experienced several changes in seasonal behavior over the last decade. During the period of floating ice tongue loss and late summer grounded calving from 2000-2010, the calving front experienced a seasonally modulated ~5km advance and retreat as calving ceased during the winter and re-initiated in the spring. During that time the glacier doubled its speed and the terminus retreated ~14 km. The glacier entered a new seasonal pattern in 2010 when it continued to calve throughout the winter and subsequently failed to significantly re-advance. The glacier continues to evolve into 2012; it is now moving at a new maximum speed and the terminus has already reached a new minimum position in mid-summer, far earlier than in previous years. The calving style has changed from full glacier thick icebergs that calve as episodic events at one week to few week intervals to smaller sub-kilometer icebergs that calve more frequently. A two-week field campaign was conducted observing the terminus and proglacial ice mélange during in August 2012. A group of ground based <span class="hlt">radar</span> <span class="hlt">interferometers</span> were deployed to monitor changes in speed and surface deformation in response to calving events and tidal cycles, helping to illustrate the new style of calving, which leads to significantly smaller icebergs in the fjord. Observations are compared against GPS instruments deployed along the terminus as well as time-lapse photography and satellite data. The <span class="hlt">radars</span> not only capture the motion of glacier ice, but are also well suited to document the response of the ice melange to calving events. The effects of atmospheric variability on ground based <span class="hlt">radar</span> interferometry can be important.</p> <div class="credits"> <p class="dwt_author">Cassotto, R. K.; Fahnestock, M. A.; Amundson, J. M.; Truffer, M.; de la Pena, S.; Joughin, I. R.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">42</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA257969"> <span id="translatedtitle"><span class="hlt">Radar</span> <span class="hlt">Interferometer</span> Investigations of the Horizontal Winds, Vertical Velocities, Vorticity, and Divergence Around Frontal Zones and in Mesoscale Waves.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The goal of the research has been to use the state-of-the-art, phased-array MU <span class="hlt">radar</span> facility in Kyoto, Japan, to study the perturbation winds and turbulence associated with frontal zones and mesoscale waves. There are four critical parameters in the dyna...</p> <div class="credits"> <p class="dwt_author">M. F. Larsen</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">43</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008SPIE.7131E...8Z"> <span id="translatedtitle">Supersonic COIL driven by centrifugal bubbling SOG with efficient depletion of chemicals in <span class="hlt">single</span> <span class="hlt">pass</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">An efficient and compact centrifugal bubbling SOG was employed as energy source in supersonic COIL. A centrifugal bubbling SOG generated gas at 100 torr of total pressure providing 90% of chlorine utilization and 60% of O2(1?) yield with efficient depletion of BHP chemicals in <span class="hlt">single</span> <span class="hlt">pass</span> through SOG. A 1 kW class ejector COIL powered by this SOG demonstrated a specific power of 12.5 W per 1cm3/s of BHP volumetric rate at chemical efficiency 22.7%.</p> <div class="credits"> <p class="dwt_author">Zagidullin, Marsel V.; Nikolaev, Valery D.; Khvatov, Nikolay A.; Svistun, Michael I.</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-10-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">44</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/114866"> <span id="translatedtitle">Relationship between in vitro transendothelial permeability and in vivo <span class="hlt">single-pass</span> brain extraction</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">In vitro transendothelial permeability was compared to in vivo rat <span class="hlt">single-pass</span> cerebral extractions to evaluate which method would best estimate the blood-brain barrier (BBB) permeability of several SPECT imaging agents. Six {sup 99m}Tc complexes and seven non-Tc complexes were tested in vitro using monolayers of primary bovine brain microvessel endothelial cells and in vivo using the rat <span class="hlt">single-pass</span> cerebral extraction model. In vitro transendothelial permeability indices (PI) were determined by measuring the average percent of radioactivity traversing the monolayers as a function of time. In vivo <span class="hlt">single-pass</span> cerebral extractions were determined using an indicator fractionation method. A positive correlation between extraction and PI was found for the non-TC complexes (r{sup 2} = 0.96). The CBF imaging agents {sup 99m}Tc-ECD and {sup 99m}Tc-PnAO have high values for E and PI, demonstrating that these agents penetrate the BBB and have a high membrane permeability, while the heart imaging agent {sup 99m}Tc-sestamibi had low values for both E and PI. The low PI and E values for {sup 99m}Tc-sestamibi are consistent with a low brain uptake for this agent, except in cases of disruption of the BBB. In contrast to {sup 99m}Tc-ECD, {sup 99m}Tc-PnAO and {sup 99m}Tc-sestamibi, which had concordant values for E and PI, two highly lipophilic boronic acid adducts of technetium dioxime (BATOs), {sup 99m}Tc-teboroxime and {sup 99m}Tc-ECD, {sup 99m}Tc-Cl(DMG){sub 3}2MP, had low negative values for PI, but high values for E. In addition, after 3 hr of incubation, the monolayer-to-medium concentration ratio of the BATOs was 642:1 and 744:1, respectively. This compares with values of 89:1 ({sup 99m}Tc-PnAO), 25:1 ({sup 99m}Tc-ECD) and 34:1 ({sup 99m}Tc-sestamibi). These data suggest that the high in vivo <span class="hlt">single-pass</span> extraction of the BATOs may be explained by a hydrophobic interaction with the luminal surface of the capillary endothelial cell plasma membrane.</p> <div class="credits"> <p class="dwt_author">Pirro, J.P.; Di Rocco, R.J.; Narra, R.K. [Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, NJ (United States)] [and others</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">45</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011PhRvL.106a3603E"> <span id="translatedtitle">Highly Efficient <span class="hlt">Single-Pass</span> Source of Pulsed Single-Mode Twin Beams of Light</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We report the realization of a bright ultrafast type II parametric down-conversion source of twin beams free of any spatiotemporal correlations in a periodically poled KTiOPO4 (PP-KTP) waveguide. From a robust, <span class="hlt">single-pass</span> setup it emits pulsed two-mode squeezed vacuum states: photon-number entangled pairs of single-mode pulses or, in terms of continuous variables quantum optics, pulsed Einstein-Podolsky-Rosen states in the telecom wavelength regime. We verify the single-mode character of our source by measuring Glauber correlation functions g(2) and demonstrate with a pump energy as low as 75 pJ per pump pulse a mean photon number of 2.5.</p> <div class="credits"> <p class="dwt_author">Eckstein, Andreas; Christ, Andreas; Mosley, Peter J.; Silberhorn, Christine</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">46</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013SPIE.8599E..0DM"> <span id="translatedtitle">Gain-switched <span class="hlt">single-pass</span> Cr:ZnSe amplifier</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In this paper, we report on building and testing a Cr:ZnSe gain-switched amplifier pumped by a Q-switched Ho:YAG laser and seeded by a continuous wave (CW) tunable Cr:ZnSe laser. A 0.5%-doped, Brewster-cut Ho:YAG rod in an actively Q-switched, folded cavity produced 250 ?J pump pulses at 2.09 ?m with pulse widths on the order of 400 ns. The seeded <span class="hlt">single-pass</span> Cr:ZnSe amplifier exhibited output pulse energy as high as 3.8 ?J at 2.45 ?m while pumped at a 10 kHz repetition rate. The gain-switched process showed a peak gain of 380 and an extraction efficiency of 1.5%. The system was tunable from 2160 nm to 2560 nm and had gain of 200 over a 400 nm range.</p> <div class="credits"> <p class="dwt_author">McDaniel, Sean A.; Berry, Patrick A.; Schepler, Kenneth L.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">47</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/923279"> <span id="translatedtitle">Development of a 2D Vlasov Solver for <span class="hlt">Single-Pass</span> Systems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Direct numerical methods for solving the Vlasov equationoffer some advantages over macroparticle simulations, as they do notsuffer from the numerical noise inherent in using a number ofmacroparticles smaller than the bunch population. Unfortunately thesemethods are more time-consuming and generally considered impractical in afull 6D phase space. However, in a lower-dimension phase space they maybecome attractive if the beam dynamics is sensitive to the presence ofsmall charge-density fluctuations and a high resolution is needed. Inthis paper we present a 2D Vlasov solver for studying the longitudinalbeam dynamics in <span class="hlt">single-pass</span> systems of interest for X-FEL's, wherecharacterization of the microbunching instability is of particularrelevance. The solver includes a model to account for the smearing effectof a finite horizontal emittance on microbuncing. We explore the effectof space charge and coherent synchrotron radiation (CSR). The numericalsolutions are compared with results from linear theory and good agreementis found in the regime where linear theory applies.</p> <div class="credits"> <p class="dwt_author">Venturini, Marco; Warnock, Robert; Zholents, Alexander</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-07-31</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">48</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/1007884"> <span id="translatedtitle"><span class="hlt">Single</span> <span class="hlt">pass</span> electron beam cooling of gold ions between EBIS LINAC and booster is theoretically possible!</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Electron beam cooling is examined as an option to reduce momentum of gold ions exiting the EBIS LINAC before injection into the booster. Electron beam parameters are based on experimental data (obtained at BNL) of electron beams extracted from a plasma cathode. Many issues, regarding a low energy high current electron beam that is needed for electron beam cooling to reduce momentum of gold ions exiting the EBIS LINAC before injection into the booster, were examined. Computations and some experimental data indicate that none of these issues is a show stopper. Preliminary calculations indicate that <span class="hlt">single</span> <span class="hlt">pass</span> cooling is feasible; momentum spread can be reduced by more than an order of magnitude in about one meter. Hence, this option cooling deserves further more serious considerations.</p> <div class="credits"> <p class="dwt_author">Hershcovitch, A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">49</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20010069498&hterms=interferometers&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3D%2522interferometers%2522"> <span id="translatedtitle"><span class="hlt">Interferometers</span> Characterization</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Procedure and characterization result for two vibration insensitive phase shifting <span class="hlt">interferometers</span> will be presented. Typical applications of the vibration insensitive <span class="hlt">interferometers</span> include the testing of large astronomical primary mirrors with long radii of curvature in a severe vibration environment. The procedure list the steps for characterizing the two <span class="hlt">interferometers</span>. The characterization compares the two <span class="hlt">interferometers</span> and compares to its own specification.</p> <div class="credits"> <p class="dwt_author">Eng, Ron; Bardine, Robert (Technical Monitor)</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">50</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013AIPC.1567.1069C"> <span id="translatedtitle">Parametric analysis of plastic strain and force distribution in <span class="hlt">single</span> <span class="hlt">pass</span> metal spinning</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Metal spinning also known as spin forming is one of the sheet metal working processes by which an axis-symmetric part can be formed from a flat sheet metal blank. Parts are produced by pressing a blunt edged tool or roller on to the blank which in turn is mounted on a rotating mandrel. This paper discusses about the setting up a 3-D finite element simulation of <span class="hlt">single</span> <span class="hlt">pass</span> metal spinning in LS-Dyna. Four parameters were considered namely blank thickness, roller nose radius, feed ratio and mandrel speed and the variation in forces and plastic strain were analysed using the full-factorial design of experiments (DOE) method of simulation experiments. For some of these DOE runs, physical experiments on extra deep drawing (EDD) sheet metal were carried out using En31 tool on a lathe machine. Simulation results are able to predict the zone of unsafe thinning in the sheet and high forming forces that are hint to the necessity for less-expensive and semi-automated machine tools to help the household and small scale spinning workers widely prevalent in India.</p> <div class="credits"> <p class="dwt_author">Choudhary, Shashank; Tejesh, Chiruvolu Mohan; Regalla, Srinivasa Prakash; Suresh, Kurra</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">51</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013JMEP...22.2477L"> <span id="translatedtitle">Double-Sided <span class="hlt">Single-Pass</span> Submerged Arc Welding for 2205 Duplex Stainless Steel</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The duplex stainless steel (DSS), which combines the characteristics of ferritic steel and austenitic steel, is used widely. The submerged arc welding (SAW) method is usually applied to join thick plates of DSS. However, an effective welding procedure is needed in order to obtain ideal DSS welds with an appropriate proportion of ferrite (?) and austenite (?) in the weld zone, particularly in the melted zone and heat-affected zone. This study evaluated the effectiveness of a high efficiency double-sided <span class="hlt">single-pass</span> (DSSP) SAW joining method for thick DSS plates. The effectiveness of the converse welding procedure, characterizations of weld zone, and mechanical properties of welded joint are analyzed. The results show an increasing appearance and continuous distribution feature of the ? phase in the fusion zone of the leading welded seam. The converse welding procedure promotes the ? phase to precipitate in the fusion zone of leading welded side. The microhardness appears to significantly increase in the center of leading welded side. Ductile fracture mode is observed in the weld zone. A mixture fracture feature appears with a shear lip and tears in the fusion zone near the fusion line. The ductility, plasticity, and microhardness of the joints have a significant relationship with ? phase and heat treatment effect influenced by the converse welding step. An available heat input controlling technology of the DSSP formation method is discussed for SAW of thick DSS plates.</p> <div class="credits"> <p class="dwt_author">Luo, Jian; Yuan, Yi; Wang, Xiaoming; Yao, Zongxiang</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">52</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2694484"> <span id="translatedtitle"><span class="hlt">Single-pass</span> classification of all noncoding sequences in a bacterial genome using phylogenetic profiles</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Identification and characterization of functional elements in the noncoding regions of genomes is an elusive and time-consuming activity whose output does not keep up with the pace of genome sequencing. Hundreds of bacterial genomes lay unexploited in terms of noncoding sequence analysis, although they may conceal a wide diversity of novel RNA genes, riboswitches, or other regulatory elements. We describe a strategy that exploits the entirety of available bacterial genomes to classify all noncoding elements of a selected reference species in a <span class="hlt">single</span> <span class="hlt">pass</span>. This method clusters noncoding elements based on their profile of presence among species. Most noncoding RNAs (ncRNAs) display specific signatures that enable their grouping in distinct clusters, away from sequence conservation noise and other elements such as promoters. We submitted 24 ncRNA candidates from Staphylococcus aureus to experimental validation and confirmed the presence of seven novel small RNAs or riboswitches. Besides offering a powerful method for de novo ncRNA identification, the analysis of phylogenetic profiles opens a new path toward the identification of functional relationships between co-evolving coding and noncoding elements.</p> <div class="credits"> <p class="dwt_author">Marchais, Antonin; Naville, Magali; Bohn, Chantal; Bouloc, Philippe; Gautheret, Daniel</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">53</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/22094920"> <span id="translatedtitle"><span class="hlt">Single</span> <span class="hlt">pass</span> tangential flow filtration to debottleneck downstream processing for therapeutic antibody production.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">As the therapeutic monoclonal antibody (mAb) market continues to grow, optimizing production processes is becoming more critical in improving efficiencies and reducing cost-of-goods in large-scale production. With the recent trends of increasing cell culture titers from upstream process improvements, downstream capacity has become the bottleneck in many existing manufacturing facilities. <span class="hlt">Single</span> <span class="hlt">Pass</span> Tangential Flow Filtration (SPTFF) is an emerging technology, which is potentially useful in debottlenecking downstream capacity, especially when the pool tank size is a limiting factor. It can be integrated as part of an existing purification process, after a column chromatography step or a filtration step, without introducing a new unit operation. In this study, SPTFF technology was systematically evaluated for reducing process intermediate volumes from 2× to 10× with multiple mAbs and the impact of SPTFF on product quality, and process yield was analyzed. Finally, the potential fit into the typical 3-column industry platform antibody purification process and its implementation in a commercial scale manufacturing facility were also evaluated. Our data indicate that using SPTFF to concentrate protein pools is a simple, flexible, and robust operation, which can be implemented at various scales to improve antibody purification process capacity. PMID:22094920</p> <div class="credits"> <p class="dwt_author">Dizon-Maspat, Jemelle; Bourret, Justin; D'Agostini, Anna; Li, Feng</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">54</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013SPIE.8654E..08K"> <span id="translatedtitle"><span class="hlt">Single-pass</span> GPU-raycasting for structured adaptive mesh refinement data</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Structured Adaptive Mesh Refinement (SAMR) is a popular numerical technique to study processes with high spatial and temporal dynamic range. It reduces computational requirements by adapting the lattice on which the underlying differential equations are solved to most efficiently represent the solution. Particularly in astrophysics and cosmology such simulations now can capture spatial scales ten orders of magnitude apart and more. The irregular locations and extensions of the refined regions in the SAMR scheme and the fact that different resolution levels partially overlap, poses a challenge for GPU-based direct volume rendering methods. kD-trees have proven to be advantageous to subdivide the data domain into non-overlapping blocks of equally sized cells, optimal for the texture units of current graphics hardware, but previous GPU-supported raycasting approaches for SAMR data using this data structure required a separate rendering pass for each node, preventing the application of many advanced lighting schemes that require simultaneous access to more than one block of cells. In this paper we present the first <span class="hlt">single-pass</span> GPU-raycasting algorithm for SAMR data that is based on a kD-tree. The tree is efficiently encoded by a set of 3D-textures, which allows to adaptively sample complete rays entirely on the GPU without any CPU interaction. We discuss two different data storage strategies to access the grid data on the GPU and apply them to several datasets to prove the benefits of the proposed method.</p> <div class="credits"> <p class="dwt_author">Kaehler, Ralf; Abel, Tom</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">55</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1992SPIE.1670..500A"> <span id="translatedtitle">New image handling technique for a <span class="hlt">single-pass</span> highlight color copier</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The FUJI XEROX Able 1301(alpha) is the first <span class="hlt">single-pass</span> highlight color copier, that produces two-color copes through a single Xerographic process. The Able 1301(alpha) provides superior copy quality at a low cost through a number of new unique technologies. The color flag method reduces image data size. Instead of using a 16-bit wide data path, the internal image data consists of a 1-bit flag, that represents color (black or color) and 8-bit luminance data. Pulse width modulation (PWM) technology in delay line method uses a high frequency video clock in place of the conventional digital shift clock type PWM. Furthermore, the circuits for the delay line PWM cost less and provide less drift than those for the analog circuit PWM. The line screen forming method enables selective printing with 200 or 400 line screens per inch for photo and text modes using a simple circuit. Finally, the statistical process for background suppression enables background detection and background area calculation to effectively produce copy without high background with various types of originals.</p> <div class="credits"> <p class="dwt_author">Aikawa, Koji; Hara, Tomoshi; Ito, Akihiro</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">56</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012LaPhy..22.1401J"> <span id="translatedtitle">Walk off compensation, multicrystal, cascaded, <span class="hlt">single</span> <span class="hlt">pass</span>, second harmonic generation in LBO</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Walk off compensation and multi crystal (MC) cascaded <span class="hlt">single</span> <span class="hlt">pass</span> second harmonic generation (SP-SHG) in LBO was combined to improve the SHG conversion efficiency. We report a simple and compact implementation for (SP-SHG) of radiation, based on a cascaded multicrystal (MC) scheme that can provide high conversion efficiency without other focusing device, the enhancement factor of 2.9 was realized. At an incident pump power of 20 W, the average power of 6.1 W and pulse width of 12 ns green laser was obtained at a repetition rate of 42.4 kHz, corresponding to a peak power of 12 kW and single pulse energy of 144 ?J. The optical to optical conversion efficiency from diode to green and from IR to green laser are about 30.5 and 67.8%, the whole length of this system is about 150 mm, the output fluctuation of this system is less than 5% in 2 h.</p> <div class="credits"> <p class="dwt_author">Ji, B.; Zheng, X. S.; Cai, Z. P.; Xu, H. Y.; Jia, F. Q.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">57</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50111928"> <span id="translatedtitle">Atom <span class="hlt">interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Atom <span class="hlt">interferometers</span> have opened up new areas of fundamental and applied research. As well known from photon optics, multiple-beam <span class="hlt">interferometers</span> offer an increased sensitivity on the relative phases between interfering waves. Very recently, first atomic multiple-beam <span class="hlt">interferometers</span> were realized. These concepts are based on an atomic beam that is spatially split into coherent partial de Broglie waves, where the number</p> <div class="credits"> <p class="dwt_author">J. Lone; K. Sengstock; W. Ertmer</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">58</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010PhRvA..82c3815O"> <span id="translatedtitle">Modeling and optimization of <span class="hlt">single-pass</span> laser amplifiers for high-repetition-rate laser pulses</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We propose a model for a continuously pumped <span class="hlt">single-pass</span> amplifier for continuous and pulsed laser beams. The model takes into account Gaussian shape and focusing geometry of pump and seed beam. As the full-wave simulation is complex we have developed a largely simplified numerical method that can be applied to rotationally symmetric geometries. With the tapered-shell model we treat (focused) propagation and amplification of an initially Gaussian beam in a gain crystal. The implementation can be done with a few lines of code that are given in this paper. With this code, a numerical parameter optimization is straightforward and example results are shown. We compare the results of our simple model with those of a full-wave simulation and show that they agree well. A comparison of model and experimental data also shows good agreement. We investigate in detail different regimes of amplification, namely the unsaturated, the fully saturated, and the intermediate regime. Because the amplification process is affected by spatially varying saturation and exhibits a nonlinear response against pump and seed power, no analytical expression for the expected output is available. For modeling of the amplification we employ a four-level system and show that if the fluorescence lifetime of the gain medium is larger than the inverse repetition rate of the seed beam, continuous-wave amplification can be employed to describe the amplification process of ultrashort pulse trains. We limit ourselves to this regime, which implies that if titanium:sapphire is chosen as gain medium the laser repetition rate has to be larger than a few megahertz. We show detailed simulation results for titanium:sapphire for a large parameter set.</p> <div class="credits"> <p class="dwt_author">Ozawa, Akira; Udem, Thomas; Zeitner, Uwe D.; Hänsch, Theodor W.; Hommelhoff, Peter</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">59</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/451204"> <span id="translatedtitle">Study on a test of optical stochastic cooling scheme in a <span class="hlt">single</span> <span class="hlt">pass</span> beam line</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A feasibility study of an experiment to test the principle of optical stochastic cooling is presented. We propose to build a new beamline in the extraction area of the ALS Booster synchrotron, where we will include a bypass lattice similar to the lattice that could be used in the cooling insertion in a storage ring. Of course, in the <span class="hlt">single</span> <span class="hlt">pass</span> beamline we cannot achieve cooling, but we can test all the functions of the bypass lattice that are required to achieve cooling in a storage ring. As it is stated in, there are stringent requirements on the time-of-flight properties of the bypass lattice employed in a cooling scheme. The pathlengths of particle trajectories in the bypass must be fairly insensitive to the standard set of errors that usually affect the performance of storage rings. Namely, it is necessary to preserve all fluctuations in the longitudinal particle density within the beam from the beginning to the end of the bypass lattice with the accuracy of {lambda}/2{pi}, where A is the carrying (optical) wavelength. According to, cooling will completely vanish if a combined effect of all kinds of errors will produce a spread of the pathlengths of particle trajectories larger than {lambda}/2 and the cooling time will almost double if the spread of the pathlengths is {lambda}/2{pi}. At a first glance, {lambda}/2{pi} {approx_equal} 0.1/{mu}m is such a small value that satisfying this accuracy looks nearly impossible. However, simulations show that a carefully designed bypass can meet all the requirements even with rather conservative tolerance to errors.</p> <div class="credits"> <p class="dwt_author">Chattopadhyay, S.; Kim, C.; Massoletti, D.; Zholents, A. [and others</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">60</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=DE200315003935"> <span id="translatedtitle">Dissolution Kinetics of Titanate-Based Ceramic Waste Forms: Results from <span class="hlt">Single-Pass</span> Flow Tests on Radiation Damaged Specimens.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">In this report, we summarize the results of our <span class="hlt">single-pass</span> flow-through (SPFT) tests on titanate ceramics at Pacific Northwest National Laboratory. These titanate ceramics are candidate disposal forms for excess weapons plutonium that is obligated by tre...</p> <div class="credits"> <p class="dwt_author">J. P. Icenhower D. M. Strachan M. M. Lindberg E. A. Rodriguez J. L. Steele</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_2");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a style="font-weight: bold;">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_4");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_3 div --> <div id="page_4" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_3");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a style="font-weight: bold;">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_5");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">61</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.uotiq.org/tec_magaz/volume252007/no.4,2007/researches/9.pdf"> <span id="translatedtitle">A Numerical Model For Thermal-Hydraulic Design of a Shell And <span class="hlt">Single</span> <span class="hlt">Pass</span> Low Finned Tube Bundle Heat Exchanger</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This investigation represents a computerized model for the thermal-hydraulic design of a single shell - <span class="hlt">single</span> <span class="hlt">pass</span> of enhance tube bundle heat exchanger using the step by step technique (SST). The design procedure suggested in this study is also suitable for multi-tube passes using the most familiar methods of design of shell and tube heat exchanger such as Kern and</p> <div class="credits"> <p class="dwt_author">Ali Hussain Tarrad</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">62</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2001MMTA...32.1507H"> <span id="translatedtitle">Nucleation sites for ultrafine ferrite produced by deformation of austenite during <span class="hlt">single-pass</span> strip rolling</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">An austenitic Ni-30 wt pct Fe alloy, with a stacking-fault energy and deformation characteristics similar to those of austenitic low-carbon steel at elevated temperatures, has been used to examine the defect substructure within austenite deformed by <span class="hlt">single-pass</span> strip rolling and to identify those features most likely to provide sites for intragranular nucleation of ultrafine ferrite in steels. Samples of this alloy and a 0.095 wt pct C-1.58Mn-0.22Si-0.27Mo steel have been hot rolled and cooled under similar conditions, and the resulting microstructures were compared using transmission electron microscopy (TEM), electron diffraction, and X-ray diffraction. Following a single rolling pass of ˜40 pct reduction of a 2mm strip at 800 °C, three microstructural zones were identified throughout its thickness. The surface zone (of 0.1 to 0.4 mm in depth) within the steel comprised a uniform microstructure of ultrafine ferrite, while the equivalent zone of a Ni-30Fe alloy contained a network of dislocation cells, with an average diameter of 0.5 to 1.0 µm. The scale and distribution and, thus, nucleation density of the ferrite grains formed in the steel were consistent with the formation of individual ferrite nuclei on cell boundaries within the austenite. In the transition zone, 0.3 to 0.5 mm below the surface of the steel strip, discrete polygonal ferrite grains were observed to form in parallel, and closely spaced “rafts” traversing individual grains of austenite. Based on observations of the equivalent zone of the rolled Ni-30Fe alloy, the ferrite distribution could be correlated with planar defects in the form of intragranular microshear bands formed within the deformed austenite during rolling. Within the central zone of the steel strip, a bainitic microstructure, typical of that observed after conventional hot rolling of this steel, was observed following air cooling. In this region of the rolled Ni-30Fe alloy, a network of microbands was observed, typical of material deformed under plane-strain conditions.</p> <div class="credits"> <p class="dwt_author">Hurley, P. J.; Muddle, B. C.; Hodgson, P. D.</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-06-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">63</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/33229181"> <span id="translatedtitle">A Case-Control Study of <span class="hlt">Single-Pass</span> Albumin Dialysis for Acetaminophen-Induced Acute Liver Failure</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Background: Extracorporeal support with <span class="hlt">single-pass</span> albumin dialysis (SPAD) may remove protein-bound toxins in acute liver failure. We evaluated the clinical, physiological and laboratory parameters of SPAD in acetaminophen-induced acute liver failure (AALF). Methods: Retrospective case-control studies of AALF patients were used. Results: We identified 13 AALF patients (6 SPAD-treated, 7 controls). The average age was 38 years, 92% were female,</p> <div class="credits"> <p class="dwt_author">Constantine J. Karvellas; Sean M. Bagshaw; Robert C. McDermid; Daniel E. Stollery; Vincent G. Bain; R. T. Noel Gibney</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">64</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1501588"> <span id="translatedtitle">Multimode parameter extraction for multiconductor transmission lines via <span class="hlt">single-pass</span> FDTD and signal-processing techniques</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We present two approaches to extract the broadband multimode parameters of guided wave structures from a <span class="hlt">single-pass</span> finite-difference time-domain (FDTD) simulation. They include a two-dimensional (2-D) Fourier transform (FT) algorithm and a super-resolution estimation of signal parameters via rotational invariance technique (ESPRIT) algorithm. Comparison is made to show the superiority of the super-resolution approach. As a typical application, a three-line</p> <div class="credits"> <p class="dwt_author">Yuanxun Wang; Hao Ling</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">65</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2006PhDT........61D"> <span id="translatedtitle">Experimental validation of <span class="hlt">single</span> <span class="hlt">pass</span> ion cyclotron resonance absorption in a high speed flowing plasma applied to the variable specific impulse magnetoplasma rocket (VASIMR)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The topic of this thesis is the experimental characterization and analysis of <span class="hlt">single</span> <span class="hlt">pass</span> ion cyclotron resonance heating as applied to acceleration of ions for electric propulsion. The experimental work was done on the VX-10 experiment of the VASIMR (Variable Specific Impulse Magnetoplasma Rocket) concept. In ion cyclotron resonance heating (ICRH) a RF wave is launched into a magnetized plasma where it then accelerates the ions by increasing their rotational speed around the magnetic field lines. The electric field vector of the right hand component of the wave will rotate around the field lines with a frequency oRF in the same direction as the ion's cyclotron motion about the field lines. Consequently, when oRF ? oci (where oci is the ion's cyclotron frequency) the force from the electric field of the wave on the ions will result in a continuous rotational energy gain. The perpendicular velocity of the ions generated by ICRH is then converted into axial velocity by the decreasing gradient of the axial magnetic field at the exhaust of the propulsion system from conservation of the magnet moment. This increase in axial velocity is predicted to cause a decrease in density due to conservation of current in the plasma. In order to characterize this density drop during ion cyclotron heating, a single channel <span class="hlt">interferometer</span> system was developed and implemented on the VX-10. <span class="hlt">Interferometer</span> density measurements were taken at three different locations on the VX-10 experiment upstream and downstream of the ion acceleration zone. Measurements were made of the density drop in both Helium and Deuterium plasma discharges during ICRH under a variety of operating conditions including magnetic field profile, gas flow rate and ICRH power pulse timing, and ICRH power. A clear measurement of a density drop was observed downstream of the ion resonance zone characteristic of ion acceleration and measurement of little change in density upstream of the resonance zone where no acceleration was expected. Good agreement between the measured and predicted power scaling of ion acceleration due to ICRH was found. And experimental evidence that the shape of the magnetic field profile will influence ICRH acceleration as predicted is also presented and analyzed.</p> <div class="credits"> <p class="dwt_author">Davis, Christopher Nelson</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">66</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=45337"> <span id="translatedtitle">Isolation of unknown genes from human bone marrow by differential screening and <span class="hlt">single-pass</span> cDNA sequence determination.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">A cDNA sequencing project was initiated to characterize gene expression in human bone marrow and develop strategies to isolate novel genes. Forty-eight random DNAs from total human bone marrow were subjected to <span class="hlt">single-pass</span> DNA sequence analysis to determine a limited complexity of mRNAs expressed in the bone marrow. Overall, 8 cDNAs (17%) showed no similarity to known sequences. Information from DNA sequence analysis was used to develop a differential prescreen to subtract unwanted cDNAs and to enrich for unknown cDNAs. Forty-eight cDNAs that were negative with a complex probe were subject to <span class="hlt">single-pass</span> DNA sequence determination. Of these prescreened cDNAs, the number of unknown sequences increased to 23 (48%). Unknown cDNAs were also characterized by RNA expression analysis using 25 different human leukemic cell lines. Of 13 unknown cDNAs tested, 10 were expressed in all cell types tested and 3 revealed a hematopoietic lineage-restricted expression pattern. Interestingly, while a total of only 96 bone marrow cDNAs were sequenced, 31 of these cDNAs represent sequences from unknown genes and 12 showed significant similarities to sequences in the data bases. One cDNA revealed a significant similarity to a serine/threonine-protein kinase at the amino acid level (56% identity for 123 amino acids) and may represent a previously unknown kinase. Differential screening techniques coupled with <span class="hlt">single-pass</span> cDNA sequence analysis may prove to be a powerful and simple technique to examine developmental gene expression. Images</p> <div class="credits"> <p class="dwt_author">Orr, S L; Hughes, T P; Sawyers, C L; Kato, R M; Quan, S G; Williams, S P; Witte, O N; Hood, L</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">67</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/5094082"> <span id="translatedtitle">Generation of coherent soft x-rays using a <span class="hlt">single-pass</span> free-electron laser amplifier</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We consider a <span class="hlt">single-pass</span> free-electron laser (FEL) amplifier, driven by an rf-linac followed by a damping ring for reduced emittance, for use in generating coherent light in the soft x-ray region. The dependence of the optical gain on electron-beam quality, studied with the three-dimensional FEL simulation code FELEX, is given and related to the expected power of self-amplified spontaneous emission. We discuss issues for the damping ring designed to achieve the required electron beam quality. The idea of a multipass regenerative amplifier is also presented.</p> <div class="credits"> <p class="dwt_author">Wang, T.F.; Goldstein, J.C.; Newnam, B.E.; McVey, B.D.</p> <p class="dwt_publisher"></p> <p class="publishDate">1988-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">68</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19850009157&hterms=eiscat&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Deiscat"> <span id="translatedtitle">The MST <span class="hlt">radar</span> technique</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The coherent <span class="hlt">radar</span> technique is reviewed with special emphasis to mesosphere-stratosphere-troposphere (MST) <span class="hlt">radars</span> operating in the VHF band. Some basic introduction to Doppler <span class="hlt">radar</span> measurements and the <span class="hlt">radar</span> equation is followed by an outline of the characteristics of atmospheric turbulence, viewed from the scattering and reflection processes of <span class="hlt">radar</span> signals. <span class="hlt">Radar</span> signal acquisition and preprocessing, namely coherent detection, digital sampling, pre-integration and coding, is briefly discussed. The data analysis is represented in terms of the correlation and spectrum analysis, yielding the essential parameters: power, signal-to-noise ratio, average and fluctuating velocity and persistency. The techniques to measure wind velocities, viz. the different modes of the Doppler method as well as the space antenna method are surveyed and the feasibilities of the MST <span class="hlt">radar</span> <span class="hlt">interferometer</span> technique are elucidated. A general view on the criteria to design phased array antennas is given. An outline of the hardware of a typical MST <span class="hlt">radar</span> system is presented.</p> <div class="credits"> <p class="dwt_author">Roettger, J.</p> <p class="dwt_publisher"></p> <p class="publishDate">1984-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">69</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010SPIE.7826E..30R"> <span id="translatedtitle">The Surface Water and Ocean Topography Mission (SWOT): the Ka-band <span class="hlt">Radar</span> <span class="hlt">Interferometer</span> (KaRIn) for water level measurements at all scales</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The Surface Water and Ocean Topography (SWOT) mission will study ocean mesoscale and submesoscale phenomena and provide an inventory of storage change and discharge for fresh water bodies and rivers. In this paper, we examine the combination of measurements that will be used by SWOT to achieve a globally consistent data set. We introduce a new channel in the SWOT measurement that combines data transmitted by the <span class="hlt">interferometer</span> antennas and received by the radiometer antenna allows the closing of the SWOT nadir coverage gap. This new mode also allows for improved calibration between the nadir altimeter and the <span class="hlt">interferometer</span>, resulting in consistent range measurements. Consistency in the phase measurements is achieved using a mixture of cross-over calibration combined with optimal estimation of system error drift.</p> <div class="credits"> <p class="dwt_author">Rodriguez, Ernesto; Esteban-Fernandez, Daniel</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-10-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">70</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/24281523"> <span id="translatedtitle">Stable, continuous-wave, ytterbium-fiber-based <span class="hlt">single-pass</span> ultraviolet source using BiB3O6.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">We report stable continuous-wave (CW) ultraviolet (UV) generation at 354.7 nm using <span class="hlt">single-pass</span> sum-frequency-generation (SFG) of a CW Yb-fiber laser at 1064 nm in the nonlinear crystal, BiB3O6. The 532 nm radiation is obtained by <span class="hlt">single-pass</span> second-harmonic generation of the Yb-fiber laser in a 30-mm-long MgO:sPPLT crystal. Using a 10-mm-long BiB3O6 crystal for SFG, with a measured angular acceptance bandwidth of 0.57 mrad, we generate as much as 68 mW of CW single-frequency UV radiation with a passive power stability better than 3.2% rms over 2 h and frequency stability better than 436 MHz over 2.5 h. The UV output beam has a TEM00 spatial profile with M(x)(2)<1.6 and M(y)(2)<1.8. PMID:24281523</p> <div class="credits"> <p class="dwt_author">Kumar, S Chaitanya; Devi, Kavita; Ebrahim-Zadeh, M</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">71</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014ASSL..404...57V"> <span id="translatedtitle"><span class="hlt">Interferometer</span> Configurations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Gravitational waves induce a differential strain between free-falling test masses. The most sensitive instruments to measure this kind of effect are laser <span class="hlt">interferometers</span>. This chapter introduces the working principles of the different optical configuration that were and will be used in gravitational wave detectors: Michelson <span class="hlt">interferometer</span>, Fabry-Perot resonant cavity, power and signal recycling techniques. Advanced detectors will feature high power levels, therefore the important issue of radiation pressure effects is addressed. Finally, a brief introduction to the topic of diffraction limited beams and high order transverse electromagnetic modes is included.</p> <div class="credits"> <p class="dwt_author">Vajente, Gabriele</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">72</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/878377"> <span id="translatedtitle">Lucretia: A Matlab-Based Toolbox for the Modellingand Simulation of <span class="hlt">Single-Pass</span> Electron Beam Transport Systems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We report on Lucretia, a new simulation tool for the study of <span class="hlt">single-pass</span> electron beam transport systems. Lucretia supports a combination of analytic and tracking techniques to model the tuning and operation of bunch compressors, linear accelerators, and beam delivery systems of linear colliders and linac-driven Free Electron Laser (FEL) facilities. Extensive use of Matlab scripting, graphics, and numerical capabilities maximize the flexibility of the system, and emphasis has been placed on representing and preserving the fixed relationships between elements (common girders, power supplies, etc.) which must be respected in the design of tuning algorithms. An overview of the code organization, some simple examples, and plans for future development are discussed.</p> <div class="credits"> <p class="dwt_author">Tenenbaum, P.; /SLAC</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-09-30</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">73</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007APS..DMP.C2008S"> <span id="translatedtitle">Theoretical analysis of cold atom <span class="hlt">interferometers</span> with optical control of dynamics</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Atom <span class="hlt">interferometers</span> using Bose-Einstein condensate that is confined in a waveguide and manipulated by optical pulses have been limited by their short coherence times. We present a theoretical model that offers a physically simple explanation for the loss of contrast for both a <span class="hlt">single-pass</span> and double-pass <span class="hlt">interferometers</span>. For the case of a <span class="hlt">singles-pass</span> device, we propose the method for increasing the fringe contrast by recombining the atoms at a different time. A simple, quantitatively accurate, analytical expression for the optimized recombination time is presented and used to place limits on the physical parameters for which the contrast may be recovered. For the case of a double-pass <span class="hlt">interferometer</span>, we place an upper limit on the device's coherence time.</p> <div class="credits"> <p class="dwt_author">Stickney, James; Anderson, Dana Z.; Zozulya, Alex</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-06-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">74</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/18789338"> <span id="translatedtitle">Atomic <span class="hlt">Interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We examine the role of laser phase in multiphoton excitation of atomic transitions. Closed loops in excitation linkages create interfering channels which depend on atomic and laser phases. Such phase-dependent dynamics suggest the use of these transition linkages as atomic <span class="hlt">interferometers</span> in which states can be decoupled (and population trapped). We show how phase and amplitude measurements are possible in</p> <div class="credits"> <p class="dwt_author">S. J. Buckle; S. M. Barnett; P. L. Knight; M. A. Lauder; D. T. Pegg</p> <p class="dwt_publisher"></p> <p class="publishDate">1986-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">75</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/1294858"> <span id="translatedtitle">The <span class="hlt">single-pass</span> perfused rabbit ear as a model for studying percutaneous absorption of clonazepam. I. General characteristics.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">A <span class="hlt">single-pass</span> perfused rabbit ear was employed as the model for studying percutaneous absorption of clonazepam in an open perfusion system. Clonazepam at 1.5% concentration (w/w) was suspended in a gel containing 1% (w/w) neutralized Carbopol 934 vehicled by a 50% water solution of propylene glycol and applied to the skin, in a thermostatically controlled chamber, after 10 min pretreatment with a lauryl alcohol enhancer. At 32 degrees C, the amount of clonazepam which diffused into the effluent after a 3 h lag phase was constant for 3 h and the flux averaged 0.486 mcg/h/cm2, whereas at 25 degrees C, the flux averaged 0.424 mcg/h/cm2. The amount of drug diffusing into the effluent was a function of the contact surface area and was independent of the rate of perfusion up to values of 1 ml/min. The apparent diffusion coefficient, Ds, and the partition coefficient, KM, were 2.75/10(6)/cm/h and 5.21, respectively. PMID:1294858</p> <div class="credits"> <p class="dwt_author">Celesti, L; Murratzu, C; Valoti, M; Sgaragli, G; Corti, P</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">76</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/9049055"> <span id="translatedtitle">Permethrin absorption not detected in <span class="hlt">single-pass</span> perfused rabbit ear, and absorption with oxidation of 3-phenoxybenzyl alcohol.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Isolated rabbit ears were <span class="hlt">single-pass</span> perfused with a protein-free medium. Permethrin (0.05-23.5%, w/w) was applied in four distinct ointments. Permethrin, 3-phenoxybenzyl alcohol, 3-phenoxybenzaldehyde, and 3-phenoxybenzoic acid were analysed by HPLC. Permethrin was not detected in the effluent. The permeation coefficient, calculated from the detection limit was < 7.3 x 10(-12) (cm/sec). The appearance rate of the 3-phenoxybenzyl moieties in the effluent agreed with the absorption of the corresponding impurities in the various ointments. In supernatant of homogenised skin, the hydrolysis rate of permethrin was linear; about 4 pmol/min per cm2 at 10 microM substrate concentration. The proportion of 3-phenoxybenzoic acid, a further metabolite of 3-phenoxybenzyl alcohol increased when an oxidizing co-factor system was added. The appearance rate in the effusate of 3-phenoxybenzyl alcohol following the lipophobic ointment was five times faster than from isopropyl myristate. The formation rate of 3-phenoxybenzoic acid followed saturation kinetics. Occupational systemic poisoning by dermal absorption of permethrin seems very unlikely since humans bear more epithelial cell layers than rabbits. These experiments do not contradict, however, possible paraesthesia during systemic poisoning after inhalation or ingestion of the pyrethroid-containing aerosols used in agriculture. PMID:9049055</p> <div class="credits"> <p class="dwt_author">Bast, G E; Taeschner, D; Kampffmeyer, H G</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">77</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009SPIE.7212E...9W"> <span id="translatedtitle">Green light source by <span class="hlt">single-pass</span> second harmonic generation with laser and crystal in a tilted butt joint setup</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In this work a compact green laser light source is presented based on a <span class="hlt">single-pass</span> second harmonic generation (SHG) in non-linear material. The green light source consists of a distributed feedback (DFB) laser with a monolithically integrated power amplifier (PA) and a periodically poled lithium niobate (PPLN) crystal with a ridge waveguide. To achieve the smallest size and to reduce the number of parts to be assembled, a direct coupling approach is implemented without using any lens. The waveguide of the laser is bent and the facet of the crystal is tilted and AR-coated in order to reduce undesired reflections and to increase the stability of operation. By varying the injection current of the amplifier the infrared output power of the laser changes proportionally. The wavelength remains stable during current variation and in that way the green optical output power can also be modulated. No additional external modulator is required for the generation of distinct green light levels. At a wavelength of 530 nm, a green optical output power of more than 35 mW is achieved for injection currents of 93 mA and 400 mA through the DFB section and amplifier section respectively.</p> <div class="credits"> <p class="dwt_author">Wiedmann, J.; Scholz, F.; Tekin, T.; Marx, S.; Lang, G.; Schröder, H.; Brox, O.; Erbert, G.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-02-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">78</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23460978"> <span id="translatedtitle">[Intestinal absorption of different combinations of active compounds from Gegenqinlian decoction by rat <span class="hlt">single</span> <span class="hlt">pass</span> intestinal perfusion in situ].</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The aim is to study the intestinal absorption of different combinations of active compounds out of Gegenqinlian decoction. Rat <span class="hlt">single</span> <span class="hlt">pass</span> intestinal perfusion model with jugular vein cannulated was used. Samples were obtained continuously from the outlet perfusate and the mesenteric vein. The levels of puerarin, daidzin, liquilitin, baicalin, wogonoside, jatrorrhizine, berberine and palmatine were determined by LC-MS/MS and their permeability coefficients were calculated. The results showed that Glycyrrhiza could promote the absorption of the active ingredients in Pueraria which is the monarch herb; meanwhile, Pueraria also played a role in promoting the absorption of liquilitin. Based on the Gegenqinlian decoction and the different combinations experiments, the results concerning the absorption of baicalin and wogonoside were as follows. For baicalin, Pueraria and Glycyrrhiza could promote its absorption and the effect of Pueraria was more obvious. For wogonoside, Pueraria could also promote its absorption, while Glycyrrhiza played a opposite role. Pueraria and Glycyrrhiza both played a part in promoting the absorption of jateorhizine, berberine and palmatine, the effective compounds in Coptis. PMID:23460978</p> <div class="credits"> <p class="dwt_author">An, Rui; Zhang, Hua; Zhang, Yi-Zhu; Xu, Ran-Chi; Wang, Xin-Hong</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">79</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/95293"> <span id="translatedtitle">Merits of a sub-harmonic approach to a <span class="hlt">single-pass</span>, 1.5-{Angstrom} FEL</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">SLAC/SSRL and collaborators elsewhere are studying th physics of a <span class="hlt">single-pass</span>, FEL amplifier operating in th 1 -- 2 {Angstrom}, wavelength region based on electron beams from the SLAC linac at {approximately} 15 GeV energy. Hoping to reduce the total wiggler length needed to reach saturation when starting from shot noise, we have examined the benefits of making the first part of the wiggler resonant at a subharmonic wavelength (e.g. 4.5 {Angstrom}) at which the gain length can be significantly shorter. This leads to bunching of the electron beam at both the subharmonic and fundaments wavelengths, thus providing a strong coherent ``seed`` for exponential growth of radiation at the fundamental in the second part of the wiggler. Using both multi-harmonic and multi-frequency 2D FEL simulation codes, we have examined the predicted performance of such devices and the sensitivity to electron beam parameters such as current, emittance, and instantaneous energy spread.</p> <div class="credits"> <p class="dwt_author">Fawley, W.M. [Lawrence Berkeley Lab., CA (United States); Nuhn, H.D.; Bonifacio, R. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Scharlemann, E.T. [Lawrence Livermore National Lab., CA (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">80</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21091350"> <span id="translatedtitle"><span class="hlt">Single-Pass</span> Percutaneous Liver Biopsy for Diffuse Liver Disease Using an Automated Device: Experience in 154 Procedures</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Purpose: To describe our experience with ultrasound (US)-guided percutaneous liver biopsies using the INRAD 18G Express core needle biopsy system.Methods: One hundred and fifty-four consecutive percutaneous core liver biopsy procedures were performed in 153 men in a single institution over 37 months. The medical charts, pathology reports, and radiology files were retrospectively reviewed. The number of needle passes, type of guidance, change in hematocrit level, and adequacy of specimens for histologic analysis were evaluated.Results: All biopsies were performed for histologic staging of chronic liver diseases. The majority of patients had hepatitis C (134/153, 90.2%). All patients were discharged to home after 4 hr of postprocedural observation. In 145 of 154 (94%) biopsies, a single needle pass was sufficient for diagnosis. US guidance was utilized in all but one of the procedures (153/154, 99.4%). The mean hematocrit decrease was 1.2% (44.1-42.9%). Pain requiring narcotic analgesia, the most frequent complication, occurred in 28 of 154 procedures (18.2%). No major complications occurred. The specimens were diagnostic in 152 of 154 procedures (98.7%).Conclusions: <span class="hlt">Single-pass</span> percutaneous US-guided liver biopsy with the INRAD 18G Express core needle biopsy system is safe and provides definitive pathologic diagnosis of chronic liver disease. It can be performed on an outpatient basis. Routine post-biopsy monitoring of hematocrit level in stable, asymptomatic patients is probably not warranted.</p> <div class="credits"> <p class="dwt_author">Rivera-Sanfeliz, Gerant, E-mail: gerantrivera@ucsd.edu; Kinney, Thomas B.; Rose, Steven C.; Agha, Ayad K.M.; Valji, Karim; Miller, Franklin J.; Roberts, Anne C. [UCSD Medical Center, Department of Radiology (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-06-15</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_3");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a style="font-weight: bold;">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_5");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_4 div --> <div id="page_5" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_4");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a style="font-weight: bold;">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_6");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">81</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/896420"> <span id="translatedtitle">Development of a 2D Vlasov Solver for Longitudinal BeamDynamics in <span class="hlt">Single-Pass</span> Systems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Direct numerical methods for solving the Vlasov equation offer some advantages over macroparticle simulations, as they do not suffer from the numerical noise inherent in using a number of macroparticles smaller than the bunch population. Unfortunately these methods are more time-consuming and generally considered impractical in a full 6D phase space. However, in a lower-dimension phase space they may become attractive if the beam dynamics is sensitive to the presence of small charge-density fluctuations and a high resolution is needed. In this paper we present a 2D Vlasov solver for studying the longitudinal beam dynamics in <span class="hlt">single-pass</span> systems of interest for X-FEL's, where characterization of the microbunching instability is of particular relevance. The solver includes a model to account for the smearing effect of a finite horizontal emittance on microbunching. We explore the effect of space charge and coherent synchrotron radiation (CSR). The numerical solutions are compared with results from linear theory and good agreement is found in the regime where linear theory applies.</p> <div class="credits"> <p class="dwt_author">Venturini, M.; Warnock, R.; Zholents, A.; /SLAC</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-12-12</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">82</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/24707867"> <span id="translatedtitle">Intestinal absorptive transport of Genkwanin from Flos genkwa using a <span class="hlt">single-pass</span> intestinal perfusion rat model.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">To investigate the absorptive transport behavior of genkwanin and the beneficial effects of monoterpene enhancers with different functional groups, the <span class="hlt">single-pass</span> intestinal perfusion (SPIP) of rats was used. The results showed that genkwanin was segmentally-dependent and the best absorptive site was the duodenum. The effective permeability coefficient (P eff ) was 1.97 × 10(-4) cm/s and the absorption rate constant (Ka) was 0.62 × 10(-2) s(-1). Transepithelial transportation descended with increasing concentrations of genkwanin. This was a 1.4-fold increase in P eff by probenecid, whereas a 1.4-fold or 1.6-fold decrease was observed by verapamil and pantoprazole, respectively. Furthermore, among the absorption enhancers, the enhancement with carbonyl (camphor and menthone) was higher than that with hydroxyl (borneol and menthol). The concentration-independent permeability and enhancement by coperfusion of probenecid indicated that genkwanin was transported by both passive diffusion and multidrug resistance protein (MDR)-mediated efflux mechanisms. PMID:24707867</p> <div class="credits"> <p class="dwt_author">Jiang, Cui-Ping; He, Xin; Yang, Xiao-Lin; Zhang, Su-Li; Li, Hui; Song, Zi-Jing; Zhang, Chun-Feng; Yang, Zhong-Lin; Li, Ping</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">83</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012AGUFM.C52A..04F"> <span id="translatedtitle">Successes and limitations in imaging glacier and ice cover motion with ground-based <span class="hlt">radar</span> <span class="hlt">interferometers</span> - from Greenland outlet systems to a Cascade volcano</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Over the last year we have deployed several Gamma Remote Sensing Ground-based Portable <span class="hlt">Interferometers</span> (GPRI) to address glaciological research problems in Greenland, Alaska, and the Pacific Northwest. In this talk we outline our successes in imaging the time varying deformation fields in several systems, including Jakobshavns Isbrae and Kangiata Nunata Sermia in western Greenland, Kennecott Glacier and shore-fast sea ice in Alaska, and ice flow on Mt Rainier in the state of Washington. These instruments have performed well in producing line of sight deformation maps in all of these systems, and techniques have been developed to use amplitude image time series from the same instruments to determine ice flow vector direction and to observe propagation of waves through the ice mélange covering the proglacial fjords on two systems. Useful measurements have been made out to a radius of 12 to 16 kilometers. The primary challenge limiting effective measurement of time varying motion in all systems is the impact of atmospheric variability on interferometric measurements over these long distances; techniques for determining and mitigating atmospheric impacts will be discussed.</p> <div class="credits"> <p class="dwt_author">Fahnestock, M. A.; Cassotto, R. K.; Truffer, M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">84</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/27067522"> <span id="translatedtitle"><span class="hlt">Interferometer</span> Design for Elevation Angle Estimation</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Radars</span> that are developed for the purpose of monitoring aircraft landings in the terminal air traffic control system can be designed to exploit the relatively high signal-to-noise ratio that characterizes the power budgets calculated for such a link. An <span class="hlt">interferometer</span> using a pair of low gain antennas can be used to obtain passive coverage over a targe azimuth and elevation</p> <div class="credits"> <p class="dwt_author">Robert McAulay</p> <p class="dwt_publisher"></p> <p class="publishDate">1977-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">85</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA243482"> <span id="translatedtitle">Atom Wave <span class="hlt">Interferometer</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The biggest accomplishment during the current grant period was the demonstration of a three grating <span class="hlt">interferometer</span> for atoms--the first true atom <span class="hlt">interferometer</span> reported in the literature. Our <span class="hlt">interferometer</span> consists of three equally spaced transmission d...</p> <div class="credits"> <p class="dwt_author">D. E. Pritchard</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">86</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/15001823"> <span id="translatedtitle">Dissolution Kinetics of Titanium Pyrochlore Ceramics at 90?C by <span class="hlt">Single-Pass</span> Flow-Through Experiments</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Corrosion resistances of titanium-based ceramics are quantified using <span class="hlt">single-pass</span> flow-through (SPFT) experiments. The materials tested include simple pyrochlore group (B2Ti2O7, where B=Lu^3+ or Gd^3+) and complex multiphase materials that are either pyrochlore- (PY12) or zirconolite-dominated (BSL3). Experiments are conducted at 90?C over a range of pH-buffered conditions with typical duration of experiments in excess of 120 days. Apparent steady-state dissolution rates at pH=2 determined on the Gd2Ti2O7 and Lu2Ti2O7 samples indicate congruent dissolution, with rates of the former (1.3x10^-3 to 4.3x10^-3) slightly faster than the latter (4.4x10^-4 to 7.0x10^-4 g m^-2 d^-1). Rates for PY12 materials into pH=2 solutions are 5.9x10^-5 to 8.6x10^-5 g m^-2 d^-1. In contrast, experiments with BSL3 material do not reach steady-state conditions, and appear to undergo rapid physical and chemical corrosion into solution. At faster flow-through rates, dissolution rates display a shallow amphoteric behavior, with a minimum (4.6x10^-5 to 5.8x10^-5 g m^-2 d^-1) near pH values of 7. Dissolution rates display a measurable increase (~10X) with increasing flow-through rate indicating the strong influence that chemical affinity asserts on the system. These results step towards an evaluation of the corrosion mechanism and an evaluation of the long-term performance of Pu-bearing titanite engineered materials in the subsurface.</p> <div class="credits"> <p class="dwt_author">Icenhower, Jonathan P.; McGrail, B. Peter; Schaef, Herbert T.; Cordova, Elsa A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">87</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/51075315"> <span id="translatedtitle">High <span class="hlt">single-pass</span> small signal gain in femtosecond solid state Yb:CaF2 amplifiers pumped by a 976-nm YDFA</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We demonstrate an enhancement of the <span class="hlt">single-pass</span> small signal gain up to 3.2 in a longitudinal pumping scheme by using a 10 mm-long Yb:CaF2 crystal at room temperature. This result significantly outperforms any CW-diode pumped scheme.</p> <div class="credits"> <p class="dwt_author">Guillaume Machinet; Giedrius Andriukaitis; Jerome Lhermite; Dominique Descamps; Daniel Adam; Audrius Pugzlys; Andrius Baltuska; Eric Cormier</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">88</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/26153914"> <span id="translatedtitle">Experience in the operation of channels with <span class="hlt">single-pass</span> steam generation in the reactor at the first nuclear power station</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Conclusions The reactor tests of fuel elements with heat-exchange intensifiers, operating with full evaporation of the water, with superheated steam, and without the use of an intermediate separator, shows that it is possible in principle to design a <span class="hlt">single-pass</span> steam generator in reactors with tubular fuel elements.</p> <div class="credits"> <p class="dwt_author">V. V. Dolgov; V. Ya. Kozlov; M. E. Minashin; V. D. Petrov; V. B. Tregubov; V. N. Sharapov</p> <p class="dwt_publisher"></p> <p class="publishDate">1976-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">89</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010EGUGA..12.8097D"> <span id="translatedtitle">Using a Ground Based <span class="hlt">radar</span> <span class="hlt">interferometer</span> during emergency: the case of A3 motorway (Salerno Reggio-Calabria) treated by landslide</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">An application of Ground Based <span class="hlt">radar</span> interferometry (GB-InSAR) technique to monitor a landslide threatening infrastructures in emergency conditions is presented. During December 2008 and January 2009 intense rainfalls occurred in Italy, especially in the southern regions. These rain events occurred in the last days of January, worsened the already critical hydrogeological conditions of some areas and triggered many landslides. One of these landslides, named Santa Trada landslide, is located close to a periodical stream called Fiumara di Santa Trada, near Villa San Giovanni municipality (Reggio Calabria, Calabria Region). The volume involved is about 100 000 m3. This estimate represents the case of a collapse of the landslide which destabilize a larger part of the slope, involving other areas delimited by some fractures observed upstream. Nevertheless the landslide does not directly threaten the roadway, its complete collapse would hit the pillars of a motorway viaduct. Through GB-InSAR data it has been possible to obtain an overview of the area affected by movement and to quantify the displacements magnitude. The main benefit of the system was not only limited to the capability of fully characterizing the landslide in spatial terms, it also permitted emergency operators to follow, during the whole campaign, the evolution of the mass movement and to study its cinematic behaviour. This aspect is fundamental to evaluate the volume of the material involved and to assess the temporal evolution of the risk scenario. The GB-InSAR installed at Santa Trada points up toward the landslide from a distance of 250 m. The apparatus produces a synthesized <span class="hlt">radar</span> image of the observed area every 6 minutes, night and day, with a pixel resolution of about 0.75 m in range and 1.2 m on average in cross range, performing a millimeter accuracy on the final displacement maps. The interferometric analysis of sequences of consecutive images allows the operator to derive the entire line of sight (LoS) displacement field of the observed portion of the slope in the elapsed time. Despite the GB-InSAR can measure only the displacement component along the LoS direction, an accurate alignment of the system with respect to the moving direction, allowed us to assess almost completely the motion of the landslide. The landslide, never detected before, occurred on the 30th of January; at 8.00 PM of the same day the Civil Protection Department entrusted the monitoring of the unstable slope to the Earth Science Department - University of Firenze. On the 31st of January a GB-InSAR system was installed (by Ellegi-Lisalab s.r.l.) and, after the test, carried out on the 1st of February, just 48 hours after the occurrence of the landslide, the monitoring campaign started. On the 2nd of February, thanks to GB-InSAR data interpretation, the A3 motorway, previously inhibited to vehicular traffic, was already partially re-opened. The opening of the A3 motorway was particularly significant considering that the by-pass constituted by the state highway SS18 and other 28 country roads in the neighbour area were inhibited due to rainfall. The campaign lasted until the 24th of April when the alarm ceased definitely. The brief chronicle and the analysis of the data acquired during this period described in this contribution highlights the potentiality of this system during emergency.</p> <div class="credits"> <p class="dwt_author">Del Ventisette, Chiara; Intrieri, Emanuele; Luzi, Guido; Casagli, Nicola</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">90</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/6612423"> <span id="translatedtitle">A <span class="hlt">single-pass</span> free-electron laser for soft x-rays with wavelengths less than or equal to 10 nm</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We consider a <span class="hlt">single-pass</span> FEL amplifier, driven by an rf-linac followed by a damping ring for reduced emittance, for use in generating intense coherent light at wavelengths <10 nm. The dependence of the optical gain on electron beam quality, studied with the 3-D FEL simulation code FELEX, is given and related to the expected power of self-amplified spontaneous emission. Design issues for the damping ring to achieve the required electron beam quality are discussed.</p> <div class="credits"> <p class="dwt_author">Goldstein, J.C.; Wang, T.F.; Newnam, B.E.; McVey, B.D.</p> <p class="dwt_publisher"></p> <p class="publishDate">1987-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">91</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1545680"> <span id="translatedtitle">Experimental investigation of nonlinear frequency conversion in pure SiO2-core monomode optical fibers pumped at 1.319 ?m: <span class="hlt">single</span> <span class="hlt">pass</span> and oscillators</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Generation of intense visible picosecond pulses in the spectral region of 580-610 nm through efficient nonlinear frequency conversion of 1.319 ?m Nd:YAG Q-switched and mode-locked laser pulses in pure SiO 2-core single mode optical fibers was experimentally investigated. Peak powers of ten's of watts in <span class="hlt">single-pass</span> arrangement and over 100 W in synchronously pumped amplifier\\/oscillators were obtained. The LP02 mode</p> <div class="credits"> <p class="dwt_author">M. V. D. Vermelho; J. Miguel Hickmann; E. A. Gouveia; A. S. Gouveia-Neto</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">92</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.agu.org/journals/rs/v025/i004/RS025i004p00671/RS025i004p00671.pdf"> <span id="translatedtitle">Polar mesosphere summer echoes observed with the EISCAT 933MHz <span class="hlt">radar</span> and the CUPRI 46.9MHz <span class="hlt">radar</span>, their similarity to 224MHz <span class="hlt">radar</span> echoes, and their relation to turbulence and electron density profiles</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">During a campaign to study polar mesosphere summer echoes (PMSE) the European Incoherent Scatter (EISCAT) UHF and VHF <span class="hlt">radars</span> and the Cornell University portable <span class="hlt">radar</span> <span class="hlt">interferometer</span> (CUPRI) VHF <span class="hlt">radar</span> were operated in Troms6 in the summer of 1988. Also, for the first time the EISCAT UHF <span class="hlt">radar</span> detected coherent echoes from the mesosphere. Their relation to the echoes recorded simultaneously</p> <div class="credits"> <p class="dwt_author">J. Röttger; M. T. Rietveld; C. La Hoz; T. Hall; M. C. Kelley; W. E. Swartz</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">93</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=N9328168"> <span id="translatedtitle">Optical <span class="hlt">Interferometer</span> Testbed.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Viewgraphs on optical <span class="hlt">interferometer</span> testbed presented at the MIT Space Research Engineering Center 3rd Annual Symposium are included. Topics covered include: space-based optical <span class="hlt">interferometer</span>; optical metrology; sensors and actuators; real time control ...</p> <div class="credits"> <p class="dwt_author">G. H. Blackwood</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">94</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19880054697&hterms=Relativity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DRelativity"> <span id="translatedtitle">Special relativity and <span class="hlt">interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">A new generation of gravitational wave detectors is expected to be based on <span class="hlt">interferometers</span>. Yurke et al. (1986) introduced a class of <span class="hlt">interferometers</span> characterized by SU(1,1) which can in principle achieve a phase sensitivity approaching 1/N, where N is thte total number of photons entering the <span class="hlt">interferometer</span>. It is shown here that the SU(1,1) <span class="hlt">interferometer</span> can serve as an analog computer for Wigner's little group of the Poincare\\'| group.</p> <div class="credits"> <p class="dwt_author">Han, D.; Kim, Y. S.</p> <p class="dwt_publisher"></p> <p class="publishDate">1988-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">95</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008RScI...79l3107L"> <span id="translatedtitle">A time-resolved <span class="hlt">single-pass</span> technique for measuring optical absorption coefficients of window materials under 100 GPa shock pressures</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">An experimental method was developed to perform time-resolved, <span class="hlt">single-pass</span> optical absorption measurements and to determine absorption coefficients of window materials under strong shock compression up to ~200 GPa. Experimental details are described of (i) a configuration to generate an in situ dynamic, bright, optical source and (ii) a sample assembly with a lithium fluoride plate to essentially eliminate heat transfer from the hot radiator into the specimen and to maintain a constant optical source within the duration of the experiment. Examples of measurements of optical absorption coefficients of several initially transparent single crystal materials at high shock pressures are presented.</p> <div class="credits"> <p class="dwt_author">Li, Jun; Zhou, Xianming; Li, Jiabo</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">96</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007OptL...32.1965S"> <span id="translatedtitle">Sodium D2 resonance radiation in <span class="hlt">single-pass</span> sum-frequency generation with actively mode-locked Nd:YAG lasers</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We report on a sodium D2 resonance coherent light source achieved in <span class="hlt">single-pass</span> sum-frequency generation in periodically poled MgO-doped stoichiometric lithium tantalate with actively mode-locked Nd:YAG lasers. Mode-locked pulses at 1064 and 1319 nm are synchronized with a time resolution of 37 ps with the phase adjustment of the radio frequencies fed to acousto-optic mode lockers. An output power of 4.6 W at 589.1586 nm is obtained, and beam quality near the diffraction limit is also achieved in a simple design.</p> <div class="credits"> <p class="dwt_author">Saito, Norihito; Akagawa, Kazuyuki; Ito, Mayumi; Takazawa, Akira; Hayano, Yutaka; Saito, Yoshihiko; Ito, Meguru; Takami, Hideki; Iye, Masanori; Wada, Satoshi</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">97</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009NJPh...11c3021M"> <span id="translatedtitle">An electron Talbot <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We report the first demonstration of a Talbot <span class="hlt">interferometer</span> for electrons. The <span class="hlt">interferometer</span> was used to image the Talbot carpet behind a nano-fabricated material grating. The Talbot <span class="hlt">interferometer</span> design uses two identical gratings, and is particularly sensitive to distortions of the incident wavefronts. To illustrate this we used our <span class="hlt">interferometer</span> to measure the curvature of concave wavefronts in a weakly focused electron beam. We describe how this wavefront curvature demagnified the Talbot revivals, and we discuss further applications for electron Talbot <span class="hlt">interferometers</span>.</p> <div class="credits"> <p class="dwt_author">McMorran, Benjamin J.; Cronin, Alexander D.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">98</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2743940"> <span id="translatedtitle">Prevalence of Intrinsic Disorder in the Intracellular Region of Human <span class="hlt">Single-Pass</span> Type I Proteins: the Case of the Notch Ligand Delta-4</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Intrinsic disorder (ID) is a widespread phenomenon found especially in signaling and regulation-related eukaryotic proteins. The functional importance of flexible disordered regions often resides in their ability to allow proteins to bind different partners. The incidence and location of intrinsic disorder in 369 human <span class="hlt">single-pass</span> transmembrane receptors with the type I topology was assessed based on both disorder predictions and amino acid physico-chemical properties. We provide evidence that ID concentrates in the receptors’ cytoplasmic region. As a benchmark for this analysis, we present a structural study on the previously uncharacterized intracellular region of human Delta-4 (DLL4_IC), a <span class="hlt">single-pass</span> transmembrane protein and a ligand of Notch receptors. DLL4_IC is required for receptor/ligand endocytosis, undergoes regulated intra-membrane proteolysis, and mediates protein-protein interactions through its C-terminal PDZ binding motif. Using a recombinant purified protein, we demonstrate using various biophysical methods that DLL4_IC is mainly disordered in solution but can form inter-convertible local secondary structures in response to variations in the physico-chemical milieu. Most of these conformational changes occur in the highly conserved C-terminal segment that includes the PDZ-binding motif. Based on our results, we propose that global disorder, in concert with local pre-organization, may play a role in Notch signaling mediated by Delta-4.</p> <div class="credits"> <p class="dwt_author">Biasio, Alfredo De; Guarnaccia, Corrado; Popovic, Matija; Uversky, Vladimir N.; Pintar, Alessandro; Pongor, Sandor</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">99</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/56125289"> <span id="translatedtitle"><span class="hlt">Radar</span> principles</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The basic operating principles, design, and applications of <span class="hlt">radars</span> are discussed in an introductory text intended for first-year graduate students. Topics addressed include <span class="hlt">radar</span> measurements, <span class="hlt">radar</span> target cross sections, <span class="hlt">radar</span> detection, ground effects, matched filters, ambiguity functions, coded <span class="hlt">radar</span> signals, and <span class="hlt">radar</span> measurement accuracy. Consideration is given to processing coherent pulse trains, moving-target indicators, CFAR, SAR, and monopulse antenna tracking.</p> <div class="credits"> <p class="dwt_author">Nadav Levanon</p> <p class="dwt_publisher"></p> <p class="publishDate">1988-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">100</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011ApPhB.105..575P"> <span id="translatedtitle">A precise and wide-dynamic-range displacement-measuring homodyne quadrature laser <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We present a fast, displacement-measuring, <span class="hlt">single-pass</span>, two-detector homodyne quadrature laser <span class="hlt">interferometer</span> and compare its performance with an arm-compensated, proportional, integral-derivative-controlled Michelson <span class="hlt">interferometer</span>. Special attention is given to the extension of the dynamic range. The wide dynamic range is achieved by an accurate fringe subdivision based on an enhanced ellipse-specific fitting of the scattered Lissajous curve and by increasing the total displacement using the quadrature-detection technique. The common periodic deviations, i.e., the unequal AC amplitudes, the DC offsets, and the lack of quadrature are determined and reduced by data processing based on an ellipse-specific, least-squares fitting to obtain nanometric accuracy. The performance of the described <span class="hlt">interferometer</span> is demonstrated through the measurement of high-amplitude and high-frequency laser-induced ultrasound.</p> <div class="credits"> <p class="dwt_author">Požar, T.; Gregor?i?, P.; Možina, J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-11-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_4");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a style="font-weight: bold;">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_6");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_5 div --> <div id="page_6" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_5");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a style="font-weight: bold;">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_7");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">101</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/49451289"> <span id="translatedtitle">Intestinal absorption and intestinal lymphatic transport of sirolimus from self-microemulsifying drug delivery systems assessed using the <span class="hlt">single-pass</span> intestinal perfusion (SPIP) technique and a chylomicron flow blocking approach: Linear correlation with oral bioavailabilities in rats</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This work aims to investigate the impact of different amount of oil or surfactant included in self-microemulsifying drug delivery systems on the intestinal lymphatic transport of sirolimus using the <span class="hlt">single-pass</span> intestinal perfusion (SPIP) technique and a chylomicron flow blocking approach. Male Sprague-Dawley rats were pretreated intraperitoneally with 3.0mg\\/kg cycloheximide or saline. One hour later, <span class="hlt">single-pass</span> intestinal perfusion experiments in jejunum</p> <div class="credits"> <p class="dwt_author">Minghui Sun; Xuezhen Zhai; Kewen Xue; Lei Hu; Xiangliang Yang; Gao Li; Luqin Si</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">102</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/872426"> <span id="translatedtitle">Phase shifting <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">An <span class="hlt">interferometer</span> which has the capability of measuring optical elements and systems with an accuracy of .lambda./1000 where .lambda. is the wavelength of visible light. Whereas current <span class="hlt">interferometers</span> employ a reference surface, which inherently limits the accuracy of the measurement to about .lambda./50, this <span class="hlt">interferometer</span> uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. Whereas current <span class="hlt">interferometers</span> illuminate the optic to be tested with an aberrated wavefront which also limits the accuracy of the measurement, this <span class="hlt">interferometer</span> uses an essentially perfect spherical measurement wavefront generated by the fundamental process of diffraction. This <span class="hlt">interferometer</span> is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms.</p> <div class="credits"> <p class="dwt_author">Sommargren, Gary E. (Santa Cruz, CA) [Santa Cruz, CA</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">103</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23041884"> <span id="translatedtitle">Generation of 43 W of quasi-continuous 780 nm laser light via high-efficiency, <span class="hlt">single-pass</span> frequency doubling in periodically poled lithium niobate crystals.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">We demonstrate high-efficiency frequency doubling of the combined output of two 1560 nm 30 W fiber amplifiers via <span class="hlt">single</span> <span class="hlt">pass</span> through periodically poled lithium niobate (PPLN) crystals. The temporal profile of the 780 nm output is controlled by adjusting the relative phase between the seeds of the amplifiers. We obtain a peak power of 34 W of 780 nm light by passing the combined output through one PPLN crystal, and a peak power of 43 W by passing through two cascading PPLN crystals. This source provides high optical power, excellent beam quality and spectral purity, and agile frequency and amplitude control in a simple and compact setup, which is ideal for applications such as atom optics using Rb atoms. PMID:23041884</p> <div class="credits"> <p class="dwt_author">Chiow, Sheng-wey; Kovachy, Tim; Hogan, Jason M; Kasevich, Mark A</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-09-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">104</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3045941"> <span id="translatedtitle"><span class="hlt">Single-pass</span> Kelvin force microscopy and dC/dZ measurements in the intermittent contact: applications to polymer materials</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Summary We demonstrate that <span class="hlt">single-pass</span> Kelvin force microscopy (KFM) and capacitance gradient (dC/dZ) measurements with force gradient detection of tip–sample electrostatic interactions can be performed in the intermittent contact regime in different environments. Such combination provides sensitive detection of the surface potential and capacitance gradient with nanometer-scale spatial resolution as it was verified on self-assemblies of fluoroalkanes and a metal alloy. The KFM and dC/dZ applications to several heterogeneous polymer materials demonstrate the compositional mapping of these samples in dry and humid air as well as in organic vapors. In situ imaging in different environments facilitates recognition of the constituents of multi-component polymer systems due to selective swelling of components.</p> <div class="credits"> <p class="dwt_author">Alexander, John</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">105</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/2308007"> <span id="translatedtitle">Evaluation of a potential generator-produced PET tracer for cerebral perfusion imaging: <span class="hlt">single-pass</span> cerebral extraction measurements and imaging with radiolabeled Cu-PTSM.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Copper(II) pyruvaldehyde bis(N4-methylthiosemicarbazone) (Cu-PTSM), copper(II) pyruvaldehyde bis(N4-dimethylthiosemicarbazone) (Cu-PTSM2), and copper(II) ethylglyoxal bis(N4-methylthiosemicarbazone) (Cu-ETSM), have been proposed as PET tracers for cerebral blood flow (CBF) when labeled with generator-produced 62Cu (t1/2 = 9.7 min). To evaluate the potential of Cu-PTSM for CBF PET studies, baboon <span class="hlt">single-pass</span> cerebral extraction measurements and PET imaging were carried out with the use of 67Cu (t1/2 = 2.6 days) and 64Cu (t1/2 = 12.7 hr), respectively. All three chelates were extracted into the brain with high efficiency. There was some clearance of all chelates in the 10-50-sec time frame and Cu-PTSM2 continued to clear. Cu-PTSM and Cu-ETSM have high residual brain activity. PET imaging of baboon brain was carried out with the use of [64Cu]-Cu-PTSM. For comparison with the 64Cu brain image, a CBF (15O-labeled water) image (40 sec) was first obtained. Qualitatively, the H2(15)O and [64Cu]-Cu-PTSM images were very similar; for example, a comparison of gray to white matter uptake resulted in ratios of 2.42 for H2(15)O and 2.67 for Cu-PTSM. No redistribution of 64Cu was observed in 2 hr of imaging, as was predicted from the <span class="hlt">single-pass</span> study results. Quantitative determination of blood flow using Cu-PTSM showed good agreement with blood flow determined with H2(15)O. This data suggests that [62Cu]-Cu-PTSM may be a useful generator-produced radiopharmaceutical for blood flow studies with PET. PMID:2308007</p> <div class="credits"> <p class="dwt_author">Mathias, C J; Welch, M J; Raichle, M E; Mintun, M A; Lich, L L; McGuire, A H; Zinn, K R; John, E K; Green, M A</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">106</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1988wi...book.....L"> <span id="translatedtitle"><span class="hlt">Radar</span> principles</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The basic operating principles, design, and applications of <span class="hlt">radars</span> are discussed in an introductory text intended for first-year graduate students. Topics addressed include <span class="hlt">radar</span> measurements, <span class="hlt">radar</span> target cross sections, <span class="hlt">radar</span> detection, ground effects, matched filters, ambiguity functions, coded <span class="hlt">radar</span> signals, and <span class="hlt">radar</span> measurement accuracy. Consideration is given to processing coherent pulse trains, moving-target indicators, CFAR, SAR, and monopulse antenna tracking. Extensive diagrams and graphs are provided.</p> <div class="credits"> <p class="dwt_author">Levanon, Nadav</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">107</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20100001355&hterms=Feng&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DFeng"> <span id="translatedtitle">Sub-Aperture <span class="hlt">Interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Sub-aperture <span class="hlt">interferometers</span> -- also called wavefront-split <span class="hlt">interferometers</span> -- have been developed for simultaneously measuring displacements of multiple targets. The terms "sub-aperture" and "wavefront-split" signify that the original measurement light beam in an <span class="hlt">interferometer</span> is split into multiple sub-beams derived from non-overlapping portions of the original measurement-beam aperture. Each measurement sub-beam is aimed at a retroreflector mounted on one of the targets. The splitting of the measurement beam is accomplished by use of truncated mirrors and masks, as shown in the example below</p> <div class="credits"> <p class="dwt_author">Zhao, Feng</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">108</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/372585"> <span id="translatedtitle">Phase shifting diffraction <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">An <span class="hlt">interferometer</span> which has the capability of measuring optical elements and systems with an accuracy of {lambda}/1000 where {lambda} is the wavelength of visible light. Whereas current <span class="hlt">interferometers</span> employ a reference surface, which inherently limits the accuracy of the measurement to about {lambda}/50, this <span class="hlt">interferometer</span> uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This <span class="hlt">interferometer</span> is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms. 8 figs.</p> <div class="credits"> <p class="dwt_author">Sommargren, G.E.</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-08-29</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">109</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=%22interferometers%22&pg=2&id=EJ096826"> <span id="translatedtitle">Michelson and His <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">Presents a brief historical account of Michelson's invention of his <span class="hlt">interferometer</span> with some subsequent ingenious applications of its capabilities for precise measurement discussed in details, including the experiment on detrmination of the diameters for heavenly bodies. (CC)</p> <div class="credits"> <p class="dwt_author">Shankland, Robert S.</p> <p class="dwt_publisher"></p> <p class="publishDate">1974-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">110</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA355744"> <span id="translatedtitle">Atom Wave <span class="hlt">Interferometers</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Atom <span class="hlt">interferometers</span> have proven to be versatile tools, applicable in many different scientific and technical arenas. We have concentrated our efforts in the three major areas of precision measurements of important quantities in atomic physics, basic rese...</p> <div class="credits"> <p class="dwt_author">D. E. Pritchard</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">111</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA385249"> <span id="translatedtitle">Atom Wave <span class="hlt">Interferometers</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Matter wave <span class="hlt">interferometers</span>, in which de Broglie waves are coherently split and then recombined to produce interference fringes, have opened exciting new possibilities for precision and fundamental measurements with complex particles. The aim of our resea...</p> <div class="credits"> <p class="dwt_author">D. E. Pritchard</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">112</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20010088374&hterms=boresighting+multiple+cameras+off+axis+parabola&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dboresighting%2Bmultiple%2Bcameras%2Boff%2Baxis%2Bparabola"> <span id="translatedtitle">The Palomar Testbed <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The Palomar Testbed <span class="hlt">Interferometer</span> (PTI) is a long-baseline infrared <span class="hlt">interferometer</span> located at Palomar Observatory, California. It was built as a testbed for interferometric techniques applicable to the Keck <span class="hlt">Interferometer</span>. First fringes were obtained in 1995 July. PTI implements a dual-star architecture, tracking two stars simultaneously for phase referencing and narrow-angle astrometry. The three fixed 40 cm apertures can be combined pairwise to provide baselines to 110 m. The <span class="hlt">interferometer</span> actively tracks the white-light fringe using an array detector at 2.2 microns and active delay lines with a range of +/-38 m. Laser metrology of the delay lines allows for servo control, and laser metrology of the complete optical path enables narrow-angle astrometric measurements. The instrument is highly automated, using a multiprocessing computer system for instrument control and sequencing.</p> <div class="credits"> <p class="dwt_author">Colavita, M. M.; Wallace, J. K.; Hines, B. E.; Gursel, Y.; Malbet, F.; Palmer, D. L.; Pan, X. P.; Shao, M.; Yu, J. W.; Boden, A. F.</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">113</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/870577"> <span id="translatedtitle">Phase shifting diffraction <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">An <span class="hlt">interferometer</span> which has the capability of measuring optical elements and systems with an accuracy of .lambda./1000 where .lambda. is the wavelength of visible light. Whereas current <span class="hlt">interferometers</span> employ a reference surface, which inherently limits the accuracy of the measurement to about .lambda./50, this <span class="hlt">interferometer</span> uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This <span class="hlt">interferometer</span> is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms.</p> <div class="credits"> <p class="dwt_author">Sommargren, Gary E. (Santa Cruz, CA) [Santa Cruz, CA</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">114</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010AGUFM.C41A0513M"> <span id="translatedtitle">High-precision Ice Surface Topography Mapping Using <span class="hlt">Radar</span> Interferometry</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In May 2009 a new <span class="hlt">radar</span> technique for mapping ice surface topography was demonstrated in a Greenland campaign as part of the NASA International Polar Year activities. This was achieved with the airborne Glacier and Ice Surface Topography <span class="hlt">Interferometer</span> (GLISTIN-A): a 35.6 GHz <span class="hlt">single-pass</span> <span class="hlt">interferometer</span>. Although the technique of using <span class="hlt">radar</span> interferometry for mapping terrain has been demonstrated before, this is the first such application at millimeter-wave frequencies. Instrument performance indicates swath widths over the ice between 5-7km, with height precisions ranging from 30cm-3m at a posting of 3m x 3m. However, for this application the electromagnetic wave will penetrate an unknown amount into the snow cover thus producing an effective bias that must be calibrated. To evaluate this, GLISTIN-A flew a coordinated collection with the NASA Wallops Airborne Topographic Mapper (ATM) on a transect from Greenland’s Summit to its West coast. Two field calibration sites were established at Colorado Institute for Research in Environmental Science’s Swiss Camp and the National Science Foundation’s Summit station. Additional collections entailed flying a mosaic over Jakobshavn glacier which was repeated after 6 days to reveal surface dynamics. Through detailed calibration and inter-sensor comparisons we were able to observe penetration biases and compare them with theoretical expectations. We also demonstrated GLISTIN-A’s capability to measure the topography of large glacier systems in a seamless fashion and accurately measuring volume changes with a high level of spatial detail. In particular, repeating the airborne campaigns to observe elevation changes over time will allow very accurate volume change measurements. Not only is this very important for mass balance studies to have a precise mass-loss estimate, but the spatial pattern can reveal ice dynamics effects and surface mass balance effects. In this manner a high resolution, high-precision topographic mapping capability is an ideal complement to the ICESat, ICESat II and Cryosat altimeters. Interpolating between the high-accuracy elevation profiles from altimeters such as the ATM or ICESat II with the high-resolution GLISTIN-A swath will enable detailed ice-surface topography maps and extended spatial coverage. The result is the potential for higher fidelity mass-balance estimates and improved observational coverage. Upgrades are currently underway to improve the performance and portability of GLISTIN-A such that, onboard a long-range aircraft this <span class="hlt">radar</span> can map Greenland’s significant glaciers in a few days. The upgraded GLISTIN-A will be compatible with GlobalHawk installation making, Antarctica basin and coastal mapping feasible. GLISTIN will make more topographic products available to glaciologists, initially through dedicated airborne campaigns or ultimately, perhaps, as a satellite mission.</p> <div class="credits"> <p class="dwt_author">Moller, D.; Hensley, S.; Michel, T.; Rignot, E. J.; Simard, M.; Krabill, W. B.; Sonntag, J. G.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">115</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/8990508"> <span id="translatedtitle">No effect of albumin on the dermal absorption rate of hydrocortisone 21-butyrate, permethrin or diflunisal in the isolated, <span class="hlt">single-pass</span> perfused rabbit ear.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Rabbit ears were <span class="hlt">single-pass</span> perfused with a buffer solution containing either 6% hetastarch or 5% bovine serum albumin. Hydrocortisone 21-butyrate (5 mM), diflunisal (17 mM) or permethrin (33 mM) was added to isopropyl myristate with 5% polyethylene, and applied to about 40% of the epithelial surface area of the ear. Hydrocortisone 21-butyrate or permethrin were not found in the effluent with hetastarch or albumin. Following cutaneous ester hydrolysis, the appearance rate of hydrocortisone was about 4 pmol/min per cm2 in the hetastarch- or the albumin-containing buffer solution. No hydrolysis of permethrin was detected; the appearance rate of 3-phenoxybenzyl alcohol with 3-phenoxybenzoic acid corresponded to the absorption rate of the substrate impurities. During ex vivo perfusion of intact skin, serum albumin in the perfusion fluid may not enhance the appearance rate of xenobiotics in the effluent following dermal application when the distribution coefficient n-octanol/water is > 2,000 or when the xenobiotic is ionized at physiological pH. In general, for all substances investigated with our perfusion model thus far, the appearance rates decreased with rising distribution coefficient (n-octanol/buffer pH 7.4). High lipophilicity hinders the release from isopropyl myristate and the penetration through the skin. PMID:8990508</p> <div class="credits"> <p class="dwt_author">Bast, G E; Kampffmeyer, H G</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">116</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19740045837&hterms=fresnel+zone+plate&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dfresnel%2Bzone%2Bplate"> <span id="translatedtitle">Zone plate <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">A developed form of the Fresner zone-plate <span class="hlt">interferometer</span> is described. Three basic configurations are distinguished, associated with the real and virtual first order foci of a zone plate. Related versions and higher order variants are also educed. Compensated phase zone plates used in this application are found to produce uniform amplitude wavefronts. The properties of the <span class="hlt">interferometer</span> in this form are discussed and an example given of its high-quality performance.</p> <div class="credits"> <p class="dwt_author">Smartt, R. N.</p> <p class="dwt_publisher"></p> <p class="publishDate">1974-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">117</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19920021808&hterms=XD&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DXD"> <span id="translatedtitle"><span class="hlt">Interferometers</span> adaptations to lidars</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">To perform daytime measurements of the density and temperature by Rayleigh lidar, it is necessary to select the wavelength with a very narrow spectral system. This filter is composed by an interference filter and a Fabry Perot etalon. The Fabry Perot etalon is the more performent compound, and it is necessary to build a specific optic around it. The image of the entrance pupil or the field diaphragm is at the infinite and the other diaphragm is on the etalon. The optical quality of the optical system is linked to the spectral resolution of the system to optimize the reduction of the field of view. The resolution is given by the formula: R = 8(xD/Fd)exp 2 where R = lambda/delta(lambda), x = diameter of the field diaphragm, D = diameter of the reception mirror, F = focal length of the telescope, and d = useful diameter of the etalon. In the Doppler Rayleigh lidars, the PF <span class="hlt">interferometer</span> is the main part of the experiment and the exact spectral adaptation is the most critical problem. In the spectral adaptation of <span class="hlt">interferometers</span>, the transmittance of the system will be acceptable if the etalon is exactly adjusted to the wavelength of the laser. It is necessary to work with a monomode laser, and adjust the shift to the bandpass of the <span class="hlt">interferometer</span>. We are working with an <span class="hlt">interferometer</span> built with molecular optical contact. This <span class="hlt">interferometer</span> is put in a special pressure closed chamber.</p> <div class="credits"> <p class="dwt_author">Porteneuve, J.</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">118</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.agu.org/journals/rs/v026/i004/91RS01164/91RS01164.pdf"> <span id="translatedtitle">Meteor wind observations with the MU <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Meteor wind observations were conducted with the middle and upper atmosphere (MU) <span class="hlt">radar</span> at Shigaraki, Japan (35 deg N, 136 deg E), utilizing an <span class="hlt">interferometer</span> to determine the arrival angle of a meteor echo. Meteor echoes are widely distributed in zenith angles as large as 50 deg and the narrow main lobe of a transmitting antenna cannot effectively detect meteor</p> <div class="credits"> <p class="dwt_author">T. Nakamura; M. Tsutsumi; T. Uehara; S. Fukao; S. Kato</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">119</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19810021425&hterms=Schindler&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3D%2522Schindler%2522"> <span id="translatedtitle"><span class="hlt">Interferometer</span>. [high resolution</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">A high resolution <span class="hlt">interferometer</span> is described. The <span class="hlt">interferometer</span> is insensitive to slight misalignment of its elements, avoids channeling in the spectrum, generates a maximum equal path fringe contrast, produces an even two sided interferogram without critical matching of the wedge angles of the beamsplitter and compensator wedges, and is optically phase tunable. The <span class="hlt">interferometer</span> includes a mirror along the path of each beam component produced by the beamsplitter, for reflecting the beam component from the beamsplitter, for reflecting the beam component from the beamsplitter to a corresponding retroreflector and for reflecting the beam returned by the retroreflector back to the beamsplitter. A wedge located along each beam component path, is large enough to cover the retroreflector, so that each beam component passes through the wedge during movement towards the retroreflector and away therefrom.</p> <div class="credits"> <p class="dwt_author">Breckinridge, J. B.; Norton, R. H.; Schindler, R. A. (inventors)</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">120</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2003SPIE.4838.1246V"> <span id="translatedtitle">Keck <span class="hlt">interferometer</span> autoaligner</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A key thrust of NASA's Origins program is the development of astronomical <span class="hlt">interferometers</span>. Pursuing this goal in a cost-effective and expedient manner from the ground has led NASA to develop the Keck <span class="hlt">Interferometer</span>, which saw first fringes between the twin 10m Keck telescopes in March of 2001. In order to enhance the imaging potential of this facility, and to add astrometric capabilities for the detection of giant planets about nearby stars, four 1.8 m 'outrigger' telescopes may be added to the <span class="hlt">interferometer</span>. Robust performance of the multi-aperture instrument will require precise alignment of the large number of optical elements found in the six optical beamtrains spread about the observatory site. The requirement for timely and reliable alignments dictated the development of an automatic alignment system for the Keck <span class="hlt">Interferometer</span>. The autoaligner consists of swing-arm actuators that insert light-emitting diodes on the optical axis at the location of each optical element, which are viewed by a simple fixed-focus CCD camera at the end of the beamtrain. Sub-pixel centroiding is performed upon the slightly out-of-focus target spots using images provided by a frame grabber, providing steering information to the two-axis actuated optical elements. Resulting mirror-to-mirror alignments are good to within 2 arcseconds, and trimming the alignment of a full beamtrain is designed to take place between observations, within a telescope repointing time. The interactions of the autoaligner with the <span class="hlt">interferometer</span> delay lines and coude trains are discussed in detail. The overall design of the <span class="hlt">interferometer</span>'s autoaligner system is presented, examining the design philosophy, system sequencing, optical element actuation, and subsystem co-alignment, within the context of satisfying performance requirements and cost constraints.</p> <div class="credits"> <p class="dwt_author">van Belle, Gerard T.; Colavita, M. Mark; Ligon, Edgar R., III; Moore, James D.; Palmer, Dean L.; Reder, Leonard J.; Smythe, Robert F.</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-02-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_5");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a style="font-weight: bold;">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_7");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_6 div --> <div id="page_7" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_6");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a style="font-weight: bold;">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_8");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">121</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19930018979&hterms=naked&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dnaked"> <span id="translatedtitle">Optical <span class="hlt">interferometer</span> testbed</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Viewgraphs on optical <span class="hlt">interferometer</span> testbed presented at the MIT Space Research Engineering Center 3rd Annual Symposium are included. Topics covered include: space-based optical <span class="hlt">interferometer</span>; optical metrology; sensors and actuators; real time control hardware; controlled structures technology (CST) design methodology; identification for MIMO control; FEM/ID correlation for the naked truss; disturbance modeling; disturbance source implementation; structure design: passive damping; low authority control; active isolation of lightweight mirrors on flexible structures; open loop transfer function of mirror; and global/high authority control.</p> <div class="credits"> <p class="dwt_author">Blackwood, Gary H.</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">122</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1991acst.symp.....B"> <span id="translatedtitle">Optical <span class="hlt">interferometer</span> testbed</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Viewgraphs on optical <span class="hlt">interferometer</span> testbed presented at the MIT Space Research Engineering Center 3rd Annual Symposium are included. Topics covered include: space-based optical <span class="hlt">interferometer</span>; optical metrology; sensors and actuators; real time control hardware; controlled structures technology (CST) design methodology; identification for MIMO control; FEM/ID correlation for the naked truss; disturbance modeling; disturbance source implementation; structure design: passive damping; low authority control; active isolation of lightweight mirrors on flexible structures; open loop transfer function of mirror; and global/high authority control.</p> <div class="credits"> <p class="dwt_author">Blackwood, Gary H.</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">123</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20070019850&hterms=insar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3D%2522insar%2522"> <span id="translatedtitle">The Glacier and Land Ice Surface Topography <span class="hlt">Interferometer</span> (GLISTIN): A Novel Ka-band Digitally Beamformed <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The estimation of the mass balance of ice sheets and glaciers on Earth is a problem of considerable scientific and societal importance. A key measurement to understanding, monitoring and forecasting these changes is ice-surface topography, both for ice-sheet and glacial regions. As such NASA identified 'ice topographic mapping instruments capable of providing precise elevation and detailed imagery data for measurements on glacial scales for detailed monitoring of ice sheet, and glacier changes' as a science priority for the most recent Instrument Incubator Program (IIP) opportunities. Funded under this opportunity is the technological development for a Ka-Band (35GHz) <span class="hlt">single-pass</span> digitally beamformed interferometric synthetic aperture <span class="hlt">radar</span> (InSAR). Unique to this concept is the ability to map a significant swath impervious of cloud cover with measurement accuracies comparable to laser altimeters but with variable resolution as appropriate to the differing scales-of-interest over ice-sheets and glaciers.</p> <div class="credits"> <p class="dwt_author">Moller, Delwyn K.; Heavey, Brandon; Hodges, Richard; Rengarajan, Sembiam; Rignot, Eric; Rogez, Francois; Sadowy, Gregory; Simard, Marc; Zawadzki, Mark</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">124</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20020028885&hterms=turer&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dturer"> <span id="translatedtitle">Phase-Shifting Shearing <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">A single-element phase-shifting <span class="hlt">interferometer</span> has been developed based on the lateral shearing <span class="hlt">interferometer</span>. This new <span class="hlt">interferometer</span> requires no precise alignment, and the phase is continuously varied by changes in the voltage across a commercially available liquid-crystal phase retarder.</p> <div class="credits"> <p class="dwt_author">Griffin, DeVon W.</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">125</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/14356643"> <span id="translatedtitle">The <span class="hlt">interferometer</span> in radio astronomy</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A theory is developed for the response of a two-element radio <span class="hlt">interferometer</span> to a partially coherent field, without restriction as to bandwidth or antenna properties. It is shown that for a completely incoherent source the narrow-band <span class="hlt">interferometer</span> output is a component of the Fourier transform of the source brightness, which can therefore be mapped by repeated <span class="hlt">interferometer</span> observations. A partially</p> <div class="credits"> <p class="dwt_author">N. C. Mathur</p> <p class="dwt_publisher"></p> <p class="publishDate">1968-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">126</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pems.adfa.edu.au/~s9104004/trews/ww_re_df.htm"> <span id="translatedtitle"><span class="hlt">Radar</span> Entomology</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary"><span class="hlt">Radar</span> tracking used to profile insect migration, mating and flight patterns. Many links to various pages include current workers in <span class="hlt">radar</span> entomology, historical uses of the technology, and many images.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">0002-11-30</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">127</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20080006044&hterms=DFIG&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DDFIG"> <span id="translatedtitle">Dual beam optical <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">A dual beam <span class="hlt">interferometer</span> device is disclosed that enables moving an optics module in a direction, which changes the path lengths of two beams of light. The two beams reflect off a surface of an object and generate different speckle patterns detected by an element, such as a camera. The camera detects a characteristic of the surface.</p> <div class="credits"> <p class="dwt_author">Gutierrez, Roman C. (Inventor)</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">128</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/19210672"> <span id="translatedtitle">Multiple Beam Atomic <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We have demonstrated a multiple beam atom <span class="hlt">interferometer</span>. Atoms in a cesium atomic beam are optically pumped into a spatially separating nonabsorbing superposition state consisting of five partial beams in different Zeeman sublevels separated by a momentum of two photon recoils each. When the partial waves are spatially recombined, we observe an interference signal which shows the sharply peaked Airy</p> <div class="credits"> <p class="dwt_author">M. Weitz; T. Heupel; T. W. Hänsch</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">129</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/18326666"> <span id="translatedtitle">Bicrystal pi-<span class="hlt">interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Experimental results for DC <span class="hlt">interferometers</span> of asymmetric topology with high-Tc bicrystal Josephson junctions are reported. Model of the tilted bicrystal junctions is discussed. As a model, parallel array of alternating `0' and `?' contacts was studied numerically. It has been shown that the array can act as either 0- or ?-junction. Both the array characteristics and the critical current dependence</p> <div class="credits"> <p class="dwt_author">V. K Kornev; G. A Ovsyannikov; P. B Mozhaev; I. V Borisenko; N. F Pedersen</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">130</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19910017301&hterms=ionospheric+observation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3D%2522ionospheric%2Bobservation%2522"> <span id="translatedtitle"><span class="hlt">Radar</span> principles</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Discussed here is a kind of <span class="hlt">radar</span> called atmospheric <span class="hlt">radar</span>, which has as its target clear air echoes from the earth's atmosphere produced by fluctuations of the atmospheric index of refraction. Topics reviewed include the vertical structure of the atmosphere, the radio refractive index and its fluctuations, the <span class="hlt">radar</span> equation (a relation between transmitted and received power), <span class="hlt">radar</span> equations for distributed targets and spectral echoes, near field correction, pulsed waveforms, the Doppler principle, and velocity field measurements.</p> <div class="credits"> <p class="dwt_author">Sato, Toru</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">131</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011MeScT..22h5301P"> <span id="translatedtitle">Enhanced ellipse fitting in a two-detector homodyne quadrature laser <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The choice of fitting methods for elliptically scattered data obtained with displacement-measuring homodyne quadrature laser <span class="hlt">interferometers</span> significantly influences the accuracy of the <span class="hlt">interferometer</span>. This is especially important when the data contain a lot of noise or provide only a segment of the ellipse. The ellipse parameters extracted by the fitting are used either to correct the data or the basic arctangent phase-unwrapping function in order to enhance the accuracy of the measured displacement by reducing the common nonlinearities. We propose the use of linear, ellipse-specific, least-squares fitting that is further bias-corrected using a linear algorithm. This stable fitting method provides a good balance between the accuracy of the fit and the computational efficiency, and never returns corrupt, non-ellipse parameters. It is therefore applicable for an online, uniform fringe subdivision when there is a demand for sub-nanometric resolution. An experimental confirmation of the improvement over traditional fitting methods was carried out with a <span class="hlt">single-pass</span>, two-detector homodyne quadrature laser <span class="hlt">interferometer</span>. We were able to operate the <span class="hlt">interferometer</span> with nanometric accuracy, provided the data draw out at least a quarter-arc of an ellipse.</p> <div class="credits"> <p class="dwt_author">Požar, T.; Možina, J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-08-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">132</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/10594"> <span id="translatedtitle">Evaluation of the Long-Term Performance of Titanate Ceramics for Immobilization of Excess Weapons Plutonium: Results from Pressurized Unsaturated Flow and <span class="hlt">Single</span> <span class="hlt">Pass</span> Flow-Through Testing</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This report summarizes our findings from pressurized unsaturated flow (PUF) and <span class="hlt">single-pass</span> flow-through (SPFT) experiments to date. Results from the PUF test of a Pu-bearing ceramic with enclosing surrogate high-level waste glass show that the glass reacts rapidly to alteration products. Glass reaction causes variations in the solution pH in contact with the ceramic materials. We also document variable concentrations of Pu in solution, primarily in colloidal form, which appear to be related to secular variations in solution composition. The apparent dissolution rate of the ceramic waste form, based on Ba concentrations in the effluent, is estimated at {le} 10{sup {minus}5} g/(m{sup 2} {center_dot} d). Pu-bearing colloids were recovered in the size range of 0.2 to 2 {micro}m, but it is not clear that such entities would be transported in a system that is not advective-flow dominated. Results from SPFT experiments give information on the corrosion resistance of two surrogate Pu-ceramics (Ce-pyrochlore and Ce-zirconolite) at 90 C over a pH range of 2 to 12. The two ceramics were doped with minor quantities ({approximately}0.1 mass%) of MoO{sub 3}, so that concentrations of Mo in the effluent solution could be used to monitor the reaction behavior of the materials. The data obtained thus far from experiments with durations up to 150 d do not conclusively prove that the solid-aqueous solution systems have reached steady-state conditions. Therefore, the dissolution mechanism cannot be determined. Apparent dissolution rates of the two ceramic materials based on Ce, Gd, and Mo concentrations in the effluent solutions from the SPFT are nearly identical and vary between 1.1 to 8.5 x 10{sup {minus}4} g/(m{sup 2} {center_dot} d). In addition, the data reveal a slightly amphoteric dissolution behavior, with a minimum apparent rate at pH = 7 to 8, over the pH range examined. Results from two related ceramic samples suggest that radiation damage can have a measurable effect on the dissolution of titanium-based ceramics. The rare earth pyrochlores, Gd{sub 2}Ti{sub 2}O{sub 7} and Lu{sub 2}Ti{sub 2}O{sub 7}, are being studied as part of the DOE Environmental Management Science Program, and the results are germane to this study. The corrosion resistances of both heavy-ion bombarded and pristine (non-bombarded) specimens are being examined with the SPFT test. Initial data indicate that the dissolution rate may increase by a factor of 3 times or more when these materials become amorphous from radiation damage.</p> <div class="credits"> <p class="dwt_author">BP McGrail; HT Schaef; JP Icenhower; PF Martin; RD Orr; VL Legore</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-09-13</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">133</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/11031652"> <span id="translatedtitle"><span class="hlt">Interferometers</span> and decoherence matrices</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">It is shown that the Lorentz group is the natural language for two-beam <span class="hlt">interferometers</span> if there are no decoherence effects. This aspect of the <span class="hlt">interferometer</span> can be translated into six-parameter representations of the Lorentz group, as in the case of polarization optics where there are two orthogonal components of one light beam. It is shown that there are groups of transformations which leave the coherency or density matrix invariant, and this symmetry property is formulated within the framework of Wigner's little groups. An additional mathematical apparatus is needed for the transition from a pure state to an impure state. Decoherence matrices are constructed for this process, and their properties are studied in detail. Experimental tests of this symmetry property are possible. PMID:11031652</p> <div class="credits"> <p class="dwt_author">Han; Kim; Noz</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">134</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20080013269&hterms=vakili&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dvakili"> <span id="translatedtitle">The Antarctic Planet <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The Antarctic Planet <span class="hlt">Interferometer</span> is an instrument concept designed to detect and characterize extrasolar planets by exploiting the unique potential of the best accessible site on earth for thermal infrared interferometry. High-precision interferometric techniques under development for extrasolar planet detection and characterization (differential phase, nulling and astrometry) all benefit substantially from the slow, low-altitude turbulence, low water vapor content, and low temperature found on the Antarctic plateau. At the best of these locations, such as the Concordia base being developed at Dome C, an <span class="hlt">interferometer</span> with two-meter diameter class apertures has the potential to deliver unique science for a variety of topics, including extrasolar planets, active galactic nuclei, young stellar objects, and protoplanetary disks.</p> <div class="credits"> <p class="dwt_author">Swain, Mark R.; Walker, Christopher K.; Traub, Wesley A.; Storey, John W.; CoudeduForesto, Vincent; Fossat, Eric; Vakili, Farrok; Stark, Anthony A.; Lloyd, James P.; Lawson, Peter R.; Burrows, Adam S.; Ireland, Michael; Millan-Gabet, Rafael; vanBelle, Gerard T.; Lane, Benjamin; Vasisht, Gautam; Travouillon, Tony</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">135</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2003AAS...203.3815S"> <span id="translatedtitle">The Antarctic Planet <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The Antarctic Planet <span class="hlt">Interferometer</span> is a concept designed to detect and characterize extrasolar planets by exploiting the unique potential of the best accessible site on Earth for thermal infrared interferometry. High-precision interferometric techniques under development for extrasolar planet detection and characterization (differential phase, nulling and astrometry) all benefit substantially from the slow, low-altitude turbulence, low water vapor content, and low temperatures found on the Antarctic plateau. At the best of these locations, such as the Concordia base being developed at dome C, an <span class="hlt">interferometer</span> with two-meter diameter class apertures has the potential to deliver unique science for a variety of topics, including extrasolar planets, active galactic nuclei, young stellar objects, and protoplanetary disks.</p> <div class="credits"> <p class="dwt_author">Swain, M.; Lloyd, J.; Traub, W.; Walker, C.; Stark, A.; Lawson, P.; Storey, J.; Coudé du Foresto, V.; Fossat, E.; Ireland, M.; Burrows, A.; Vakili, F.</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">136</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/53578019"> <span id="translatedtitle">Improved skin friction <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">An improved system for measuring aerodynamic skin friction which uses a dual-laser-beam oil-film <span class="hlt">interferometer</span> was developed. Improvements in the optical hardware provided equal signal characteristics for each beam and reduced the cost and complexity of the system by replacing polarization rotation by a mirrored prism for separation of the two signals. An automated, objective, data-reduction procedure was implemented to eliminate</p> <div class="credits"> <p class="dwt_author">R. V. Westphal; W. D. Bachalo; M. H. Houser</p> <p class="dwt_publisher"></p> <p class="publishDate">1986-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">137</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007AIPC..899..689Y"> <span id="translatedtitle">Vibration Free <span class="hlt">Interferometer</span> Mirror</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Optic tables may be an obstacle for the interferometric studies when they are exposed to mechanical vibrations in the particular frequency range. To reduce the mechanical noise, a moveable mirror of the FTIR spectrometer was used as an <span class="hlt">interferometer</span> mirror. The vibration response of this mirror was investigated with a fiber optic Fabry-Perot <span class="hlt">interferometer</span> that was built in our laboratory. The moveable mirror is mounted on a coil that is located between the permanent magnets. When the proper current is applied to the coil, the mirror becomes magnetically suspended and resistant to the mechanical vibrations. This work presents a non-contact vibration-monitoring technique with the extrinsic Fabry-Perot interferometric displacement sensor implemented using 4/125 ?m single-mode fiber with 3 dB fiber optic coupler. This device is based on a low finesse Fabry-Perot cavity which is formed by the end of a sensing optical fiber (fiber probe) and the magnetically-suspended mirror. The incoming light is emitted by a 660 nm laser diode. During the vibration test an ADC (NI 6070E) and a Labview software program were used. This technique helps to reduce the mechanical noise and to improve the stability of the <span class="hlt">interferometer</span>.</p> <div class="credits"> <p class="dwt_author">Yaltkaya, S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">138</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1993STIA...9314697E"> <span id="translatedtitle"><span class="hlt">Radar</span> - Principles, technology, applications</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">An overview of modern <span class="hlt">radar</span> is presented. The topics addressed include: functions and parameters of the <span class="hlt">radar</span> system, the <span class="hlt">radar</span> equation, targets and interfering signals, target echo information extraction, tracking <span class="hlt">radar</span>, <span class="hlt">radar</span> transmitters and microwave components, <span class="hlt">radar</span> antennas, receivers and displays, <span class="hlt">radar</span> signal processing, high resolution <span class="hlt">radar</span>.</p> <div class="credits"> <p class="dwt_author">Edde, Byron</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">139</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1992STIA...9239830K"> <span id="translatedtitle"><span class="hlt">Radar</span> observables</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A comprehensive account is given of missile design considerations relevant to the prediction, control, and measurement of airframe <span class="hlt">radar</span> cross sections (RCSs), with a view to the minimization of missile observability. RCS reduction may proceed through airframe shaping to deflect incident <span class="hlt">radar</span> emissions, as well as through the use of <span class="hlt">radar</span>-absorbing surface materials and the devision of active <span class="hlt">radar</span> signal-cancellation methods; some combination of these is often required, due to the deficiencies of any one method. The interaction of all RCS-reduction methods with airframe aerodynamic-design criteria are stressed.</p> <div class="credits"> <p class="dwt_author">Knott, Eugene F.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">140</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013ApPhL.102i2602M"> <span id="translatedtitle">Fully balanced heat <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A tunable and balanced heat <span class="hlt">interferometer</span> is proposed and analyzed. The device consists of two superconductors linked together to form a double-loop interrupted by three parallel-coupled Josephson junctions. Both superconductors are held at different temperatures, allowing the heat currents flowing through the structure to interfere. We demonstrate that thermal transport is coherently modulated through the application of a magnetic flux. Furthermore, such modulation can be tailored at will or even suppressed through the application of an extra control flux. Such a device allows for a versatile operation appearing as an attractive key to the onset of low-temperature coherent caloritronic circuits.</p> <div class="credits"> <p class="dwt_author">Martínez-Pérez, M. J.; Giazotto, F.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-03-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_6");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a style="font-weight: bold;">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_8");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_7 div --> <div id="page_8" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_7");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a style="font-weight: bold;">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_9");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">141</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19860018916&hterms=reducing+skin+friction&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dreducing%2Bskin%2Bfriction"> <span id="translatedtitle">Improved Skin Friction <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">An improved system for measuring aerodynamic skin friction which uses a dual-laser-beam oil-film <span class="hlt">interferometer</span> was developed. Improvements in the optical hardware provided equal signal characteristics for each beam and reduced the cost and complexity of the system by replacing polarization rotation by a mirrored prism for separation of the two signals. An automated, objective, data-reduction procedure was implemented to eliminate tedious manual manipulation of the interferometry data records. The present system was intended for use in two-dimensional, incompressible flows over a smooth, level surface without pressure gradient, but the improvements discussed are not limited to this application.</p> <div class="credits"> <p class="dwt_author">Westphal, R. V.; Bachalo, W. D.; Houser, M. H.</p> <p class="dwt_publisher"></p> <p class="publishDate">1986-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">142</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012EGUGA..14.4330S"> <span id="translatedtitle">Aperture Synthesis Imaging at the EISCAT Svalbard <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The EISCAT incoherent <span class="hlt">radar</span> on Svalbard has two dishes. In addition to this two dishes three smaller passive array antennas were built to attempt to implement <span class="hlt">radar</span> aperture synthesis imaging. Limited to measurements of coherent backscatter the primary science goal of this new receiver system is to study so called naturally enhanced ion acoustic lines. In order to compare <span class="hlt">radar</span> aperture synthesis images with optical data phase calibration of the <span class="hlt">interferometer</span> system is needed. We present the phase calibration of the Svalbard <span class="hlt">interferometer</span> system including the passive array antennas. The calibration was done using optical signatures of satellite transits and the coherent backscatter of the satellites. The optical signature provide accurate position of the satellites. Furthermore we will present sudo-3D aperture synthesis <span class="hlt">radar</span> images from first observations of satellites conducted with this system.</p> <div class="credits"> <p class="dwt_author">Schlatter, N. M.; Goodbody, B. C.; Grydeland, T.; Ivchenko, N.; Gustavsson, B.; Belyey, V.; Lanchester, B. S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-04-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">143</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=AD638231"> <span id="translatedtitle"><span class="hlt">Radar</span> Astronomy.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">A general review of <span class="hlt">radar</span> astronomy is given. Typical <span class="hlt">radar</span> systems are described and results cited. Methods of determining elements of orbits and rotation rates of planets are discussed. A proposed test of the Einstein theory of general relativity is des...</p> <div class="credits"> <p class="dwt_author">G. H. Pettengill I. I. Shapiro</p> <p class="dwt_publisher"></p> <p class="publishDate">1965-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">144</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/18795669"> <span id="translatedtitle"><span class="hlt">Radar</span> astronomy</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Radar</span> Astronomy is a new and growing branch of Astronomy. Although it seems that radio echo studies must be confined to the solar system, they can play an important part in developing our understanding of the Sun and the planets. At the present time these objects are barely detectable by <span class="hlt">radar</span> techniques and much of the work has been concerned</p> <div class="credits"> <p class="dwt_author">J. V. Evans</p> <p class="dwt_publisher"></p> <p class="publishDate">1960-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">145</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1997AnGeo..15.1099M"> <span id="translatedtitle">Comparisons between Canadian prairie MF <span class="hlt">radars</span>, FPI (green and OH lines) and UARS HRDI systems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Detailed comparisons have been completed between the MF <span class="hlt">radars</span> (MFR) in the Canadian prairies and three other systems: two ground-based Fabry-Perot <span class="hlt">interferometers</span> (FPI) and the UARS high resolution Doppler imager (HRDI) system. The <span class="hlt">radars</span> were at Sylvan Lake (52°N, 114</p> <div class="credits"> <p class="dwt_author">Meek, C. E.; Manson, A. H.; Burrage, M. D.; Garbe, G.; Cogger, L. L.</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">146</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/54098532"> <span id="translatedtitle"><span class="hlt">Radar</span> and optical observations of mesospheric wave activity during the lunar eclipse of 6 July 1982</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Simultaneous measurements were made using a 2.66 MHz <span class="hlt">interferometer</span> <span class="hlt">radar</span>, infrared photometers, and imaging systems during the total lunar eclipse of July 6, 1982. The <span class="hlt">radar</span> data showed that a series of six discrete scatterers passed overhead at 103 km with an average spacing of 54 min, and two passed overhead at 88 km, also 54 min apart. The speed</p> <div class="credits"> <p class="dwt_author">Gene W. Adams; Alan W. Peterson; John W. Brosnahan; John W. Neuschaefer</p> <p class="dwt_publisher"></p> <p class="publishDate">1988-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">147</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013RaSc...48..709M"> <span id="translatedtitle">Elevation angle-of-arrival determination for a standard and a modified superDARN HF <span class="hlt">radar</span> layout</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Calculations have been developed for the determination of elevation angle of arrival for a modified Super Dual Auroral <span class="hlt">Radar</span> Network (SuperDARN) HF <span class="hlt">radar</span> antenna layout consisting of dual auxiliary <span class="hlt">interferometer</span> arrays: one behind and one in front of the main array. These calculations show that such a layout removes the 2? ambiguity or angle-of-arrival aliasing effect observed in existing SuperDARN HF <span class="hlt">radars</span>. Ray tracing and simulation results are presented which show that there is significant potential for aliasing with existing SuperDARN <span class="hlt">radars</span> and the standard <span class="hlt">interferometer</span> algorithm under routine operating conditions.</p> <div class="credits"> <p class="dwt_author">McDonald, Andrew J.; Whittington, James; Larquier, Sebastien; Custovic, Edhem; Kane, Thomas A.; Devlin, John C.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">148</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19830000301&hterms=fresnel+zone+plate&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dfresnel%2Bzone%2Bplate"> <span id="translatedtitle">Holographic Twyman-Green <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Off-axis Fresnel zone plate used to obtain fringe visibility close to unity. Holographic Twyman-Green <span class="hlt">Interferometer</span> (HTG) employs off-axis Fresnel zone plate (OFZP) as beam splitter and beam diverger in place of two separate elements that perform those functions in conventional TwymanGreen <span class="hlt">interferometer</span>.</p> <div class="credits"> <p class="dwt_author">Chen, C. W.; Wyant, J. C.; Breckinridge, J. B.</p> <p class="dwt_publisher"></p> <p class="publishDate">1984-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">149</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1985ApOpt..24.2290V"> <span id="translatedtitle">Ring <span class="hlt">interferometers</span> with unit transmittance</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The phenomenon of lossless ring <span class="hlt">interferometers</span> may be explained by recourse to a formalism in which the numerator and denominator are complex conjugates, constituting the optical analog of loss-free systems in electrical network theory. In the ring <span class="hlt">interferometer</span> presently employed to demonstrate the property of unit transmittance, an He-Ne laser is used as a light source.</p> <div class="credits"> <p class="dwt_author">van de Stadt, H.</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-08-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">150</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20080004361&hterms=eye+surgery&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3D%2522eye%2Bsurgery%2522"> <span id="translatedtitle">Wavelength independent <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">A polychromatic <span class="hlt">interferometer</span> utilizing a plurality of parabolic reflective surfaces to properly preserve the fidelity of light wavefronts irrespective of their wavelengths as they pass through the instrument is disclosed. A preferred embodiment of the invention utilizes an optical train which comprises three off-axis parabolas arranged in conjunction with a beam-splitter and a reference mirror to form a Twyman-Green <span class="hlt">interferometer</span>. An illumination subsystem is provided and comprises a pair of lasers at different preselected wavelengths in the visible spectrum. The output light of the two lasers is coaxially combined by means of a plurality of reflectors and a grating beam combiner to form a single light source at the focal point of the first parabolic reflection surface which acts as a beam collimator for the rest of the optical train. By using visible light having two distinct wavelengths, the present invention provides a long equivalent wavelength interferogram which operates at visible light wherein the effective wavelength is equal to the product of the wavelengths of the two laser sources divided by their difference in wavelength. As a result, the invention provides the advantages of what amounts to long wavelength interferometry but without incurring the disadvantage of the negligible reflection coefficient of the human eye to long wavelength frequencies which would otherwise defeat any attempt to form an interferogram at that low frequency using only one light source.</p> <div class="credits"> <p class="dwt_author">Hochberg, Eric B. (Inventor); Page, Norman A. (Inventor)</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">151</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/20588462"> <span id="translatedtitle"><span class="hlt">Single-pass</span> sum-frequency-generation of 589-nm yellow light based on dual-wavelength Nd:YAG laser with periodically-poled LiTaO(3) crystal.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">We demonstrate a compact all-solid-state yellow laser source based on Q-switched dual-wavelength Nd:YAG laser and periodically-poled LiTaO(3) crystal. 589-nm yellow light was generated by <span class="hlt">single-pass</span> sum-frequency generation of the fundamental IR waves at 1064 and 1319 nm. The maximum output power of yellow light was 506 mW and the corresponding conversion efficiency was approximately 5.5% [W(-1)cm(-1)]. PMID:20588462</p> <div class="credits"> <p class="dwt_author">Zhao, L N; Su, J; Hu, X P; Lv, X J; Xie, Z D; Zhao, G; Xu, P; Zhu, S N</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-06-21</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">152</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009AGUSMSA14A..03L"> <span id="translatedtitle">The Michelson <span class="hlt">Interferometer</span> for Airglow Dynamics Imaging (MIADI)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The Michelson <span class="hlt">Interferometer</span> for Airglow Dynamics Imaging (MIADI) is a new implementation of the imaging field-widened Michelson <span class="hlt">interferometer</span> concept which images airglow signatures in the mesopause region and simultaneously records wind and intensity images. The scientific purpose of this instrument is to provide unambiguous information on gravity waves since the background horizontal wind and irradiance variations will be simultaneously obtained. Calibration and characterization of instrument parameters has been completed at a field site in Shigaraki Japan and initial observations have been taken. Co-located alongside MIADI are the MU <span class="hlt">radar</span>, Na Lidar and several All-Sky Imagers. Observation campaigns are ongoing to acquire simultaneous data sets from these instruments. In this paper, the calibration and characterization results will be summarized. The initial measurements of winds and intensity will be presented and the scientific goals of the current observing campaign outlined.</p> <div class="credits"> <p class="dwt_author">Langille, J.; Nakamura, T.; Ward, W. E.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">153</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1465676"> <span id="translatedtitle">Digital elevation models of the Moon from Earth-based <span class="hlt">radar</span> interferometry</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Three-dimensional (3D) maps of the nearside and polar regions of the Moon can be obtained with an Earth-based <span class="hlt">radar</span> <span class="hlt">interferometer</span>. This paper describes the theoretical background, experimental setup, and processing techniques for a sequence of observations performed with the Goldstone Solar System <span class="hlt">Radar</span> in 1997. These data provide <span class="hlt">radar</span> imagery and digital elevation models of the polar areas and other</p> <div class="credits"> <p class="dwt_author">Jean-Luc Margot; Donald B. Campbell; Raymond F. Jurgens; Martin A. Slade</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">154</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/10162419"> <span id="translatedtitle">A 250 GHz microwave <span class="hlt">interferometer</span> for divertor experiments on DIII-D</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A new 250 GHz, two-frequency microwave <span class="hlt">interferometer</span> system has been developed to diagnose divertor plasmas on DIII-D. This diagnostic will measure the line-averaged density across both the inner and outer, lower divertor legs. With a cut-off density of over 7 {times} 10{sup 14} cm{sup {minus}3}, temporal measurements of ELMs, MARFs and plasma detachment are expected. The outer leg system will use a double pass method while the inner leg system will be <span class="hlt">single</span> <span class="hlt">pass</span>. Two special 3D carbon composite tiles are used, one to protect the microwave antennas mounted directly under the strike point and the other as the outer leg reflecting surface. Performance, design constraints, and the thermalmechanical design of the 3D carbon composite tiles are discussed.</p> <div class="credits"> <p class="dwt_author">James, R.A.; Nilson, D.G.; Stever, R.D.; Hill, D.N.; Casper, T.A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-01-31</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">155</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20100033124&hterms=HUET&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3D%2522HUET%2522"> <span id="translatedtitle">The Fizeau <span class="hlt">Interferometer</span> Testbed</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The Fizeau <span class="hlt">Interferometer</span> Testbed (FIT) is a collaborative effort between NASA's Goddard Space Flight Center, the Naval Research Laboratory, Sigma Space Corporation, and the University of Maryland. The testbed will be used to explore the principles of and the requirements for the full, as well as the pathfinder, Stellar Imager mission concept. It has a long term goal of demonstrating closed-loop control of a sparse array of numerous articulated mirrors to keep optical beams in phase and optimize interferometric synthesis imaging. In this paper we present the optical and data acquisition system design of the testbed, and discuss the wavefront sensing and control algorithms to be used. Currently we have completed the initial design and hardware procurement for the FIT. The assembly and testing of the Testbed will be underway at Goddard's Instrument Development Lab in the coming months.</p> <div class="credits"> <p class="dwt_author">Zhang, Xiaolei; Carpenter, Kenneth G.; Lyon, Richard G,; Huet, Hubert; Marzouk, Joe; Solyar, Gregory</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">156</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008IAUS..248...44R"> <span id="translatedtitle">The VLT <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The ESO Very Large Telescope <span class="hlt">Interferometer</span> (VLTI) is arguably the most powerful optical interferometric facility available at present. In addition to the wide choice of baselines and the light collecting power of its 8.2 m and 1.8 m telescopes, the VLTI also offers a smooth and user-friendly operation which makes interferometry accessible to any astronomer and covers a wide range of scientific applications. Behind the routine scientific operations, however, the VLTI is in constant evolution. I will present some of the technological and instrumental improvements which are planned for the near and mid-term future, and discuss their implications for astrometry in particular. Among them, the PRIMA facility and the proposed GRAVITY instrument are designed to reach the level of 10 microarcseconds in the near-infrared.</p> <div class="credits"> <p class="dwt_author">Richichi, A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">157</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2002PASP..114.1150H"> <span id="translatedtitle">Radio Seeing Monitor <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A two-element <span class="hlt">interferometer</span> for monitoring atmospheric phase fluctuations (radio seeing) is presented; this uses the unmodulated beacon signal at 11.715 GHz from a geostationary satellite. The system measures phase differences on the signal received by two small antennas separated by 50 m. The system incorporates the best features from previous designs: a heterodyne phase-lock receiver and an IQ demodulator system. Phase fluctuations measured at this frequency may be extrapolated to millimetric and submillimetric wavelengths since the atmosphere is not dispersive at these frequencies. The instrument has been tested at the Observatory San Pedro Martir (Mexico) at 2800 m above sea level. The final destination of the instrument is Cerro la Negra (Mexico), where the Large Millimeter Telescope is under construction, at an altitude of 4600 m.</p> <div class="credits"> <p class="dwt_author">Hiriart, David; Valdez, Jorge; Zaca, Placido; Medina, José L.</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-10-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">158</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012ApJ...748...55S"> <span id="translatedtitle">The Keck <span class="hlt">Interferometer</span> Nuller</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The Keck <span class="hlt">Interferometer</span> Nuller (KIN), the first operational separated-aperture infrared nulling <span class="hlt">interferometer</span>, was designed to null the mid-infrared emission from nearby stars so as to ease the measurement of faint circumstellar emission. This paper describes the basis of the KIN's four-beam, two-stage measurement approach and compares it to the simpler case of a two-beam nuller. In the four-beam KIN system, the starlight is first nulled in a pair of nullers operating on parallel 85 m Keck-Keck baselines, after which "cross-combination" on 4 m baselines across the Keck apertures is used to modulate and detect residual coherent off-axis emission. Comparison to the constructive stellar fringe provides calibration. The response to an extended source is similar in the two cases, except that the four-beam response includes a term due to the visibility of the source on the cross-combiner baseline—a small effect for relatively compact sources. The characteristics of the dominant null depth errors are also compared for the two cases. In the two-beam nuller, instrumental imperfections and asymmetries lead to a series of quadratic, positive-definite null leakage terms. For the four-beam nuller, the leakage is instead a series of correlation cross-terms combining corresponding errors in each of the two nullers, which contribute offsets only to the extent that these errors are correlated on the timescale of the measurement. This four-beam architecture has allowed a significant (~order of magnitude) improvement in mid-infrared long-baseline fringe-visibility accuracies.</p> <div class="credits"> <p class="dwt_author">Serabyn, E.; Mennesson, B.; Colavita, M. M.; Koresko, C.; Kuchner, M. J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">159</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19930016647&hterms=CeCl&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DCeCl"> <span id="translatedtitle">MIT's <span class="hlt">interferometer</span> CST testbed</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The MIT Space Engineering Research Center (SERC) has developed a controlled structures technology (CST) testbed based on one design for a space-based optical <span class="hlt">interferometer</span>. The role of the testbed is to provide a versatile platform for experimental investigation and discovery of CST approaches. In particular, it will serve as the focus for experimental verification of CSI methodologies and control strategies at SERC. The testbed program has an emphasis on experimental CST--incorporating a broad suite of actuators and sensors, active struts, system identification, passive damping, active mirror mounts, and precision component characterization. The SERC testbed represents a one-tenth scaled version of an optical <span class="hlt">interferometer</span> concept based on an inherently rigid tetrahedral configuration with collecting apertures on one face. The testbed consists of six 3.5 meter long truss legs joined at four vertices and is suspended with attachment points at three vertices. Each aluminum leg has a 0.2 m by 0.2 m by 0.25 m triangular cross-section. The structure has a first flexible mode at 31 Hz and has over 50 global modes below 200 Hz. The stiff tetrahedral design differs from similar testbeds (such as the JPL Phase B) in that the structural topology is closed. The tetrahedral design minimizes structural deflections at the vertices (site of optical components for maximum baseline) resulting in reduced stroke requirements for isolation and pointing of optics. Typical total light path length stability goals are on the order of lambda/20, with a wavelength of light, lambda, of roughly 500 nanometers. It is expected that active structural control will be necessary to achieve this goal in the presence of disturbances.</p> <div class="credits"> <p class="dwt_author">Hyde, Tupper; Kim, ED; Anderson, Eric; Blackwood, Gary; Lublin, Leonard</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">160</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5537464"> <span id="translatedtitle">JET polari-<span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A multichannel far-infrared <span class="hlt">interferometer</span> used on the Joint European Torus (JET) is described. The light source is a 195-{mu}m DCN laser. The instrument is of the Mach--Zehnder type, with a heterodyne detection system. The modulation frequency (100 kHz) is produced by diffraction from a rotating grating. There are six vertical and two oblique channels. The latter rely on retroreflection from mirrors mounted on the vessel wall. Their vibration is compensated by a second wavelength <span class="hlt">interferometer</span> at 118.8 {mu}m. The various subsystems are described, with emphasis on features necessitated by (a) large path lengths, (b) remote handling requirements, (c) fluctuations in atmospheric humidity, and (d) unmanned automatic operation. Typical measurements, along with real-time and off-line data analysis, are presented. The phase-shift measurement is made with an accuracy of (1)/(20) of a fringe, corresponding to a line-integrated electron density of 5{times}10{sup 17} m{sup {minus}2}. Comparison with other electron density diagnostics are shown. The introduction of additional optics allows measurements of the Faraday effect and a determination of the poloidal magnetic field distribution. The signal processing and data analysis are described. Errors introduced by the calibration procedure, birefringence of the probing beams, toroidal field pickup, the flux geometry, and the density profile are considered. The Faraday angle is measured with an accuracy of 5% and a time resolution of 1--10 ms. The poloidal magnetic field is deduced with an accuracy of {plus minus}15%.</p> <div class="credits"> <p class="dwt_author">Braithwaite, G.; Gottardi, N.; Magyar, G.; O'Rourke, J.; Ryan, J.; Veron, D. (JET Joint Undertaking, Abingdon, Oxon OX14 3EA, United Kingdom (GB))</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-09-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_7");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a style="font-weight: bold;">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_9");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_8 div --> <div id="page_9" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_8");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a style="font-weight: bold;">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_10");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">161</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/22016137"> <span id="translatedtitle">THE KECK <span class="hlt">INTERFEROMETER</span> NULLER</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The Keck <span class="hlt">Interferometer</span> Nuller (KIN), the first operational separated-aperture infrared nulling <span class="hlt">interferometer</span>, was designed to null the mid-infrared emission from nearby stars so as to ease the measurement of faint circumstellar emission. This paper describes the basis of the KIN's four-beam, two-stage measurement approach and compares it to the simpler case of a two-beam nuller. In the four-beam KIN system, the starlight is first nulled in a pair of nullers operating on parallel 85 m Keck-Keck baselines, after which 'cross-combination' on 4 m baselines across the Keck apertures is used to modulate and detect residual coherent off-axis emission. Comparison to the constructive stellar fringe provides calibration. The response to an extended source is similar in the two cases, except that the four-beam response includes a term due to the visibility of the source on the cross-combiner baseline-a small effect for relatively compact sources. The characteristics of the dominant null depth errors are also compared for the two cases. In the two-beam nuller, instrumental imperfections and asymmetries lead to a series of quadratic, positive-definite null leakage terms. For the four-beam nuller, the leakage is instead a series of correlation cross-terms combining corresponding errors in each of the two nullers, which contribute offsets only to the extent that these errors are correlated on the timescale of the measurement. This four-beam architecture has allowed a significant ({approx}order of magnitude) improvement in mid-infrared long-baseline fringe-visibility accuracies.</p> <div class="credits"> <p class="dwt_author">Serabyn, E.; Mennesson, B.; Colavita, M. M. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Koresko, C. [Argon ST, Inc., 1386 Connellsville Road, Lemont Furnace, PA 15456 (United States); Kuchner, M. J., E-mail: Gene.Serabyn@jpl.nasa.gov [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-03-20</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">162</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/21530655"> <span id="translatedtitle">Intestinal absorption and intestinal lymphatic transport of sirolimus from self-microemulsifying drug delivery systems assessed using the <span class="hlt">single-pass</span> intestinal perfusion (SPIP) technique and a chylomicron flow blocking approach: linear correlation with oral bioavailabilities in rats.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">This work aims to investigate the impact of different amount of oil or surfactant included in self-microemulsifying drug delivery systems on the intestinal lymphatic transport of sirolimus using the <span class="hlt">single-pass</span> intestinal perfusion (SPIP) technique and a chylomicron flow blocking approach. Male Sprague-Dawley rats were pretreated intraperitoneally with 3.0mg/kg cycloheximide or saline. One hour later, <span class="hlt">single-pass</span> intestinal perfusion experiments in jejunum and ileum and in vivo bioavailability studies were carried out to calculate the effective permeability coefficient and pharmacokinetic parameters, respectively. Drug absorption from oil-free formulation was mostly via the portal blood. In contrast, for the SMEDDS formulations containing ?25% MCT, the lymphatic transport of sirolimus was a major contributor to oral bioavailability. The formulation including more content of oil presented higher lymphatic transport of drug and further exhibited the increased oral bioavailability. Besides, distal ileum presented much more lymphatic transport of drug compared to proximal jejunum. Furthermore, even though the smaller droplet size of resultant microemulsions and more surfactant content also can positively influence the intestinal absorption of drug, their influences on the drug intestinal lymphatic transport were relatively weaker than that of more oil content. In addition, there was a high linear correlation between the AUC values and the mean of P(eff) values in jejunum and ileum. PMID:21530655</p> <div class="credits"> <p class="dwt_author">Sun, Minghui; Zhai, Xuezhen; Xue, Kewen; Hu, Lei; Yang, Xiangliang; Li, Gao; Si, Luqin</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-06-14</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">163</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1467092"> <span id="translatedtitle">Directional borehole <span class="hlt">radar</span> with dipole antenna array using optical modulators</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In this paper, we describe a directional borehole <span class="hlt">radar</span> comprising a dipole antenna array with an optical modulator capable of determining the position of targets in three dimensions (3-D). Optical modulators using a Mach-Zehnder <span class="hlt">interferometer</span> are used to transform electrical signals into optical signals at the feeding points of the dipole antennas. The advantages of using these modulators are that</p> <div class="credits"> <p class="dwt_author">Satoshi Ebihara</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">164</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009SPIE.7440E..38L"> <span id="translatedtitle">Balloon exoplanet nulling <span class="hlt">interferometer</span> (BENI)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We evaluate the feasibility of a balloon-borne nulling <span class="hlt">interferometer</span> to detect and characterize an exosolar planet and the surrounding debris disk. The existing instrument consists of a three-telescope Fizeau imaging <span class="hlt">interferometer</span> with thre fast steering mirrors and three delay lines operating at 800 Hz for closed-loop control of wavefront errors and fine pointing. A compact visible nulling <span class="hlt">interferometer</span> would be coupled to the imaging <span class="hlt">interferometer</span> and in principle, allows deep starlight suppression. Atmospheric simulations of the environment above 100,000 feet show that balloonborne payloads are a possible path towards the direct detection and characterization of a limited set of exoplanets and debris disks. Furthermore, rapid development of lower cost balloon payloads provide a path towards advancement of NASA technology readiness levels for future space-based exoplanet missions. Discussed are the BENI mission and instrument, the balloon environment and the feasibility of such a balloon-borne mission.</p> <div class="credits"> <p class="dwt_author">Lyon, Richard G.; Clampin, Mark; Woodruff, Robert A.; Vasudevan, Gopal; Ford, Holland; Petro, Larry; Herman, Jay; Rinehart, Stephen; Carpenter, Kenneth; Marzouk, Joe</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-08-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">165</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20090031860&hterms=carpenter&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dcarpenter"> <span id="translatedtitle">Balloon Exoplanet Nulling <span class="hlt">Interferometer</span> (BENI)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">We evaluate the feasibility of using a balloon-borne nulling <span class="hlt">interferometer</span> to detect and characterize exosolar planets and debris disks. The existing instrument consists of a 3-telescope Fizeau imaging <span class="hlt">interferometer</span> with 3 fast steering mirrors and 3 delay lines operating at 800 Hz for closed-loop control of wavefront errors and fine pointing. A compact visible nulling <span class="hlt">interferometer</span> is under development which when coupled to the imaging <span class="hlt">interferometer</span> would in-principle allow deep suppression of starlight. We have conducted atmospheric simulations of the environment above 100,000 feet and believe balloons are a feasible path forward towards detection and characterization of a limited set of exoplanets and their debris disks. Herein we will discuss the BENI instrument, the balloon environment and the feasibility of such as mission.</p> <div class="credits"> <p class="dwt_author">Lyon, Richard G.; Clampin, Mark; Woodruff, Robert A.; Vasudevan, Gopal; Ford, Holland; Petro, Larry; Herman, Jay; Rinehart, Stephen; Carpenter, Kenneth; Marzouk, Joe</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">166</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=DE93019630"> <span id="translatedtitle">Angle <span class="hlt">interferometer</span> cross axis errors.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The authors have found what appears to be a previously unreported error in the measurement of surface plate flatness and the measurement of angular displacement errors in rotary tables using angle <span class="hlt">interferometers</span>.</p> <div class="credits"> <p class="dwt_author">J. B. Bryan D. L. Carter S. L. Thompson</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">167</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/17514267"> <span id="translatedtitle">Electro-optic heterodyne <span class="hlt">interferometer</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">We propose a new configuration for using a triangle-wave signal to drive the electro-optic modulator in an electro-optic heterodyne <span class="hlt">interferometer</span> system. The new configuration is adapted to measure the phase retardation of a wave plate and the optical rotation angle of a chiral medium. By adding optic elements, the second-harmonic component amplitude of the <span class="hlt">interferometer</span> photodetector output signal became proportional to the phase retardation or optical rotation angle of the samples being tested. PMID:17514267</p> <div class="credits"> <p class="dwt_author">Kuo, Wen-Kai; Kuo, Jen-Yu; Huang, Cheng-Yung</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-06-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">168</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/435080"> <span id="translatedtitle">Fiber Sagnac <span class="hlt">interferometer</span> temperature sensor</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A modified Sagnac <span class="hlt">interferometer</span>-based fiber temperature sensor is proposed. Polarization independent operation and high temperature sensitivity of this class of sensors make them cost effective instruments for temperature measurements. A comparison of the proposed sensor with Bragg grating and long-period grating fiber sensors is derived. A temperature-induced spectral displacement of 0.99 nm/K is demonstrated for an internal stress birefringent fiber-based Sagnac <span class="hlt">interferometer</span>. {copyright} {ital 1997 American Institute of Physics.}</p> <div class="credits"> <p class="dwt_author">Starodumov, A.N.; Zenteno, L.A.; Monzon, D.; De La Rosa, E. [Centro de Investigaciones en Optica, 37150 Leon, Gto (Mexico)] [Centro de Investigaciones en Optica, 37150 Leon, Gto (Mexico)</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">169</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/6295560"> <span id="translatedtitle">Compact portable diffraction moire <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">A compact and portable moire <span class="hlt">interferometer</span> used to determine surface deformations of an object. The improved <span class="hlt">interferometer</span> is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent wave splitters, and collimating lenses directing the split beam at one or more specimen gratings. Observations means including film and video cameras may be used to view and record the resultant fringe patterns. 7 figs.</p> <div class="credits"> <p class="dwt_author">Deason, V.A.; Ward, M.B.</p> <p class="dwt_publisher"></p> <p class="publishDate">1988-05-23</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">170</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/17443182"> <span id="translatedtitle">A quantum scattering <span class="hlt">interferometer</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The collision of two ultracold atoms results in a quantum mechanical superposition of the two possible outcomes: each atom continues without scattering, and each atom scatters as an outgoing spherical wave with an s-wave phase shift. The magnitude of the s-wave phase shift depends very sensitively on the interaction between the atoms. Quantum scattering and the underlying phase shifts are vitally important in many areas of contemporary atomic physics, including Bose-Einstein condensates, degenerate Fermi gases, frequency shifts in atomic clocks and magnetically tuned Feshbach resonances. Precise experimental measurements of quantum scattering phase shifts have not been possible because the number of scattered atoms depends on the s-wave phase shifts as well as the atomic density, which cannot be measured precisely. Here we demonstrate a scattering experiment in which the quantum scattering phase shifts of individual atoms are detected using a novel atom <span class="hlt">interferometer</span>. By performing an atomic clock measurement using only the scattered part of each atom's wavefunction, we precisely measure the difference of the s-wave phase shifts for the two clock states in a density-independent manner. Our method will enable direct and precise measurements of ultracold atom-atom interactions, and may be used to place stringent limits on the time variations of fundamental constants. PMID:17443182</p> <div class="credits"> <p class="dwt_author">Hart, Russell A; Xu, Xinye; Legere, Ronald; Gibble, Kurt</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-04-19</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">171</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.agu.org/journals/rs/v033/i001/97RS03050/97RS03050.pdf"> <span id="translatedtitle">An improved <span class="hlt">interferometer</span> design for use with meteor <span class="hlt">radars</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The measurement of the directions of radio meteors with an inter- ferometric system is beset by two problems: (1) The ambiguity in the measured directions for antennas spaced by more than )\\/2 and (2) the effects of mutual impedance when the antennas are spaced at )\\/2 and less to avoid these ambiguities. In this paper we discuss the effects of</p> <div class="credits"> <p class="dwt_author">J. Jones; A. R. Webster; W. K. Hocking</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">172</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1990PhDT.........9S"> <span id="translatedtitle">Observation and theory of the <span class="hlt">radar</span> aurora</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Plasma density irregularities occurring near the Aurora Borealis cause scattering of HF, VHF, and UHF radio waves. The scattering is so strong that a small <span class="hlt">radar</span>, such as the Cornell University Portable <span class="hlt">Radar</span> <span class="hlt">Interferometer</span> (CUPRI), can easily detect this <span class="hlt">radar</span> aurora. Analysis of the resulting <span class="hlt">radar</span> signal provides great detail about the spatial and temporal characteristics of these auroral E region irregularities. Observations are presented of the <span class="hlt">radar</span> aurora from recent campaigns in northern Sweden. After reviewing the basic theory and observations of auroral electrojet irregularities, a simple nonlinear fluid theory of electrojet ion-acoustic waves is introduced, and reduced to a form of the three-wave interaction equations. This theory provides a simple mechanism for excitation of linearly stable waves at large aspect and flow angles, as well as a prediction of the power spectra that a coherent scatter <span class="hlt">radar</span> should observe. In addition, this theory may be able to account for type 3 waves without resorting to ion gyro modes, such as the electrostatic ion-cyclotron wave. During the course of the research a simple new <span class="hlt">radar</span> transmitting mode and signal processing algorithm was generated which very simply solves a frequency aliasing problem that often occurs in CUPRI auroral <span class="hlt">radar</span> studies when a single-pulse spectral mode is used. Several new <span class="hlt">radar</span> data analysis routines were developed, including the principally cross-beam image and scatter plots of the second versus first moments of the power spectrum of the irregularities. Analysis of vertical <span class="hlt">interferometer</span> data shows that type 3 waves originate at ordinary electrojet altitudes, not in the upper E region, from which it is concluded that the electrostatic ion-cyclotron mode does not generate type 3 waves. The measured height of type 3 waves and other spectral analyses provide support for the pure ion-acoustic theory of type 3 waves. Suggestions are offered for hardware improvements to the CUPRI <span class="hlt">radar</span>, new experiments to test new and existing theories, as well as specific paths for further theoretical exploration.</p> <div class="credits"> <p class="dwt_author">Sahr, John David</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">173</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1990PhDT.......227S"> <span id="translatedtitle">Observation and Theory of the <span class="hlt">Radar</span> Aurora</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Plasma density irregularities occurring near the Aurora Borealis cause scattering of HF, VHF, and UHF radio waves. The scattering is so strong that a small <span class="hlt">radar</span>, such a the Cornell University Portable <span class="hlt">Radar</span> <span class="hlt">Interferometer</span> (CUPRI), can easily detect this "<span class="hlt">radar</span> aurora." Analysis of the resulting <span class="hlt">radar</span> signal provides great detail about the spatial and temporal characteristics of these auroral E region irregularities. We present observations of the <span class="hlt">radar</span> aurora from recent campaigns in northern Sweden. After reviewing the basic theory and observations of auroral electrojet irregularities, we introduce a simple nonlinear fluid theory of electrojet ion-acoustic waves, and reduce it to a form of the "three-wave interaction" equations. This theory provides a simple mechanism for excitation of linearly stable waves at large aspect and flow angles, as well as a prediction of the power spectra that a coherent scatter <span class="hlt">radar</span> should observe. In addition, this theory may be able account for "type 3" waves without resorting to ion gyro modes, such as the electrostatic ion-cyclotron wave. During the course of our research we have generated a simple new <span class="hlt">radar</span> transmitting mode and signal processing algorithm which very simply solves a frequency aliasing problem that often occurs in CUPRI auroral <span class="hlt">radar</span> studies when a single-pulse spectral mode is used. Several new <span class="hlt">radar</span> data analysis routines have been developed, including principally the "cross-beam image" and scatter plots of the second versus first moments of the power spectrum of the irregularities. Analysis of vertical <span class="hlt">interferometer</span> data shows that "type 3" waves originate at ordinary electrojet altitudes, not in the upper E region, from which we conclude that the electrostatic ion-cyclotron mode does not generate "type 3" waves. The measured height of type 3 waves and other spectral analyses provide support for our pure ion -acoustic theory of type 3 waves. In closing, we offer suggestions for hardware improvements to the CUPRI <span class="hlt">radar</span>, new experiments to test new and existing theories, as well as specific paths for further theoretical exploration.</p> <div class="credits"> <p class="dwt_author">Sahr, John David</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">174</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1997SPIE.3134..461A"> <span id="translatedtitle">IR <span class="hlt">interferometers</span> using modern cameras</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Laser <span class="hlt">interferometers</span> have been used widely in the optics and disk drive industries. Often the surface of the sample is either too curved to resolve the fringes or too rough to reflect the incident beam back into the <span class="hlt">interferometer</span>. Illuminating at a graze incident angle effectively increases the equivalent wavelength, and hence the reflectivity, but the image of a circular aperture becomes elliptical. Lasers with a long IR wavelength seem to be the solution. However,the spatial resolution of the vidicon cameras is usually poor, and the image lag is often too long. These limit the accuracy of an IR phase-shifting <span class="hlt">interferometer</span>. Recently, we have designed tow types of <span class="hlt">interferometers</span> for 3.39 micrometers and 10.6 micrometers using an InSb array and a micro- bolometer array, respectively. These modern cameras have a high resolution and hence greatly extend the range of measurable material from a blank to a finished optics. Because the refractive index of the optical material at the IR wavelength is usually very high, the anti-reflection coating of the optics at IR is more critical than that at a visible wavelength. The <span class="hlt">interferometer</span>'s design, the resolution, the dependence of the fringe contrast on the sample roughness, and the measurement results of various samples are presented.</p> <div class="credits"> <p class="dwt_author">Ai, Chiayu</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">175</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADD006301"> <span id="translatedtitle"><span class="hlt">Radar</span> Antenna.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">An antenna is described for range-gated, pulse doppler, <span class="hlt">radar</span> systems. The antenna includes first and second, shortened, half-wave dipoles and first and second reflecting screens. One dipole is fed through a fixed 22 1/2 degree phase-shift network while t...</p> <div class="credits"> <p class="dwt_author">O. E. Rittenback</p> <p class="dwt_publisher"></p> <p class="publishDate">1978-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">176</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA360595"> <span id="translatedtitle"><span class="hlt">Radar</span> Roadmap.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Instrumentation <span class="hlt">radar</span> has played a very significant role in testing and training for more than 50 years. Along with optics, it has been a major supplier of time space position information (TSPI). With the advent of the Global Positioning System (GPS), the...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">1998-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">177</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1544390"> <span id="translatedtitle"><span class="hlt">Radar</span> nomenclature</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Like much of the equipment used by the armed forces, both civil and military <span class="hlt">radar</span> systems may be allocated an identification resolved from a synonym, mnemonic, project name, number, application notation, or specialised nomenclature and sometimes may even be based upon the whims of an intelligence reporting service. Of these, mnemonics are very popular; whilst of designation systems used by</p> <div class="credits"> <p class="dwt_author">J. C. Wise</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">178</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/1113735"> <span id="translatedtitle"><span class="hlt">Single</span> <span class="hlt">Pass</span> Electron Cooling Simulations for MEIC</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Cooling of medium energy protons is critical for the proposed Jefferson Lab Medium Energy Ion Collider (MEIC). We present simulations of electron cooling of protons up to 60 GeV. In the beam frame in which the proton and electrons are co-propagating, their motion is non-relativistic. We use a binary collision model which treats the cooling process as the sum of a large number of two-body collisions which are calculated exactly. This model can treat even very close collisions between an electron and ion with high accuracy. We also calculate dynamical friction using a delta-f PIC model. The code VSim (formerly Vorpal) is used to perform the simulations. We compare the friction rates with that obtained by a 3D integral over electron velocities which is used by BETACOOL.</p> <div class="credits"> <p class="dwt_author">Bell, G. I. [Tech-X Corp.; Pogorelov, I. V. [Tech-X Corp.; Schwartz, B. T. [Tech-X Corp.; Zhang, Yuhong [JLAB; Zhang, He [JLAB</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">179</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19780010448&hterms=Schindler&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3D%2522Schindler%2522"> <span id="translatedtitle"><span class="hlt">Interferometer</span> mirror tilt correcting system</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">An <span class="hlt">interferometer</span> is described, having several means for automatically adjusting the angular tilt of a reflecting surface in one of two paths to maintain the exit beams from the two paths parallel to each other. Three detectors at the output of the <span class="hlt">interferometer</span> were disposed on mutually perpendicular axes which define a plane normal to the nominal exit beam axis. One detector at the origin of the axes was used as a reference for separate phase difference comparison with the outputs of the other two detectors on the X and Y axes to develop servo error signals.</p> <div class="credits"> <p class="dwt_author">Schindler, R. A. (inventor)</p> <p class="dwt_publisher"></p> <p class="publishDate">1977-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">180</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009JaJAP..48h2501L"> <span id="translatedtitle">Two-Frequency Paired Polarization <span class="hlt">Interferometer</span> for Faraday Rotation Angle Detection</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A highly sensitive two-frequency paired linear polarized <span class="hlt">interferometer</span> (TPPI) for measuring the Faraday rotation angle and Verdet constant of the Bi12SiO20 (BSO) crystal in real time was set up by an amplitude-sensitive detection method. TPPI features a common-path heterodyne <span class="hlt">interferometer</span> in conjunction with a highly correlated paired linear polarized laser beam. Then, the antisymmetry of polarized heterodyne signals is produced and Faraday rotation angle detection by a balanced detector scheme is satisfied automatically. As a result, shot-noise-limited detection of Faraday rotation angle is possible. In addition, the Faraday rotation angle detection is also insensitive to the scattering and absorption caused by the specimen because of the common-path propagation of the paired linear polarized laser beam. Experimentally, the sensitivities of Faraday rotation angle and Verdet constant measurements of the BSO crystal under the arrangement with a <span class="hlt">single</span> <span class="hlt">pass</span> of the laser beam in TPPI are 4.93× 10-5 rad/mm and 2.6× 10-7 rad/(mT\\cdotmm), respectively. This suggests that the Faraday rotation angle detection sensitivity has the potential to be on the order of 10-8 rad/mm if a Fabry-Perot cavity with a finesse of F=120 is used in TPPI.</p> <div class="credits"> <p class="dwt_author">Lin, Chu-En; Chang, Jin-Gor; Chou, Li-Dek; Yu, Chih-Jen; Lee, Cheng-Chung; Chou, Chien</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-08-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_8");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a style="font-weight: bold;">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_10");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_9 div --> <div id="page_10" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_9");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a style="font-weight: bold;">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_11");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">181</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/12818855"> <span id="translatedtitle">Atom <span class="hlt">Interferometers</span> with Scalable Enclosed Area</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Bloch oscillations (i.e., coherent acceleration of matter waves by an optical lattice) and Bragg diffraction are integrated into light-pulse atom <span class="hlt">interferometers</span> with large momentum splitting between the <span class="hlt">interferometer</span> arms, and hence enhanced sensitivity. Simultaneous acceleration of both arms in the same internal states suppresses systematic effects, and simultaneously running a pair of <span class="hlt">interferometers</span> suppresses the effect of vibrations. Ramsey-Bordé <span class="hlt">interferometers</span></p> <div class="credits"> <p class="dwt_author">Holger Müller; Sheng-Wey Chiow; Sven Herrmann; Steven Chu</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">182</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19870001043&hterms=media+bias&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dmedia%2Bbias"> <span id="translatedtitle">Mesospheric wind measurements using a medium-frequency imaging Doppler <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Wind results from a medium-frequency <span class="hlt">radar</span> operated as an imaging Doppler <span class="hlt">interferometer</span> are presented. Ten independent antennas, together with mesospheric wind motions, were used to Doppler-sort and then echo-locate individual scattering points. The three-dimensional location and radial velocity of each discrete scattering point was determined. Mean winds were then determined by a least squares fit to the radial velocities of the ensemble of scatterers.</p> <div class="credits"> <p class="dwt_author">Adams, G. W.; scatterers.</p> <p class="dwt_publisher"></p> <p class="publishDate">1986-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">183</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55481512"> <span id="translatedtitle">Equatorial <span class="hlt">radar</span> system</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A large clear air <span class="hlt">radar</span> with the sensitivity of an incoherent scatter <span class="hlt">radar</span> for observing the whole equatorial atmosphere up to 1000 km altitude is now being designed in Japan. The <span class="hlt">radar</span>, called the Equatorial <span class="hlt">Radar</span>, will be built in Pontianak, Kalimantan Island, Indonesia (0.03 N, 109.3 E). The system is a 47 MHz monostatic Doppler <span class="hlt">radar</span> with an active</p> <div class="credits"> <p class="dwt_author">S. Rukao; T. Tsuda; T. Sato; S. Kato</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">184</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA461577"> <span id="translatedtitle">Magdalena Ridge Observatory <span class="hlt">Interferometer</span>: Status Update.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The Magdalena Ridge Observatory <span class="hlt">Interferometer</span> (MROI) is a ten element optical and near-infrared imaging <span class="hlt">interferometer</span> being built in the Magdalena mountains west of Socorro, NM at an altitude of 3230 m. The <span class="hlt">interferometer</span> is being designed and built by ...</p> <div class="credits"> <p class="dwt_author">C. A. Haniff D. F. Buscher E. J. Bakker M. J. Creech-Eakman T. A. Coleman</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">185</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19690000012&hterms=Iceland&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DIceland"> <span id="translatedtitle">Microwave <span class="hlt">interferometer</span> controls cutting depth of plastics</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Microwave <span class="hlt">interferometer</span> system controls the cutting of plastic materials to a prescribed depth. The <span class="hlt">interferometer</span> is mounted on a carriage with a spindle and cutting tool. A cross slide, mounted on the carriage, allows the <span class="hlt">interferometer</span> and cutter to move toward or away from the plastic workpiece.</p> <div class="credits"> <p class="dwt_author">Heisman, R. M.; Iceland, W. F.</p> <p class="dwt_publisher"></p> <p class="publishDate">1969-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">186</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/19206723"> <span id="translatedtitle">Atomic <span class="hlt">interferometer</span> based on adiabatic population transfer</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We demonstrate an atomic <span class="hlt">interferometer</span> based on the transfer of population between two ground states via adiabatic following using a nonabsorbing ``dark'' superposition state. This type of <span class="hlt">interferometer</span> promises to be useful for precise measurement of the photon recoil energy and also for large area atomic <span class="hlt">interferometers</span> since it allows transfer of a large number of photon recoil momenta to</p> <div class="credits"> <p class="dwt_author">Martin Weitz; Brenton C. Young; Steven Chu</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">187</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/19163109"> <span id="translatedtitle">Orientational atom <span class="hlt">interferometers</span> sensitive to gravitational waves</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We present an atom <span class="hlt">interferometer</span> that differs from common atom <span class="hlt">interferometers</span> as it is not based on the spatial splitting of electronic wave functions, but on orienting atoms in space. As an example we present how an orientational atom <span class="hlt">interferometer</span> based on highly charged hydrogen-like atoms is affected by gravitational waves. We show that a monochromatic gravitational wave will cause</p> <div class="credits"> <p class="dwt_author">Dennis Lorek; Claus Lämmerzahl; Andreas Wicht</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">188</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19980045330&hterms=quad&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dquad"> <span id="translatedtitle">First Results of the TOPSAR C-Band/L-Band <span class="hlt">Interferometer</span>: Calibration and Differential Penetration</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The NASA/JPL TOPSAR instrument recently was extended from a single- wavelength C-band (5.6 cm-lambda) dual aperture synthetic aperture <span class="hlt">radar</span> <span class="hlt">interferometer</span> to include a second wavelength at L-band (24 cm). Adding the second wavelength invites comparison of wavelength-diverse effects in topographic mapping of surfaces, with the principal goal of understanding the penetration of the <span class="hlt">radar</span> signals in vegetation canopies, and determining the inferred topographic height. A first analysis of these data was conducted at two sites. Elkhorn Slough near Monterey, California presented flat, vegetation free terrain required for calibrating the <span class="hlt">radar</span> interferometric parameters. A second site stretching from San Jose to Santa Cruz, CA, which is heavily vegetated, provided the first test case for wavelength diverse penetration studies. Preliminary results show that: (a) the <span class="hlt">interferometer</span> calibration determined at Elkhorn Slough is extendable to Laurel Quad and gives confidence in the C- and L-band height measurements; and (b) Clear differences are observed between the C- and L-band heights associated with vegetation, with C-band-derived topographic heights generally higher than those from L-band. The noise level in the L-band <span class="hlt">interferometer</span> is presently the limiting factor in penetration studies.</p> <div class="credits"> <p class="dwt_author">Rosen, Paul A.; Hensley, Scott</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">189</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1993sbir.symp..119O"> <span id="translatedtitle">TRMM <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The results of a conceptual design study and the performance of key components of the Bread Board Model (BBM) of the Tropical Rainfall Measuring Mission (TRMM) <span class="hlt">radar</span> are presented. The <span class="hlt">radar</span>, which operates at 13.8 GHz and is designed to meet TRMM mission objectives, has a minimum measurable rain rate of 0.5 mm/h with a range resolution of 250 m, a horizontal resolution of about 4 km, and a swath width of 220 km. A 128-element active phased array system is adopted to achieve contiguous scanning within the swath. The basic characteristics of BBM were confirmed by experiments. The development of EM started with the cooperation of NASDA and CRL.</p> <div class="credits"> <p class="dwt_author">Okamoto, Kenichi</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">190</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19940011421&hterms=phased+array+radar+japan&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dphased%2Barray%2Bradar%2Bjapan"> <span id="translatedtitle">TRMM <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The results of a conceptual design study and the performance of key components of the Bread Board Model (BBM) of the Tropical Rainfall Measuring Mission (TRMM) <span class="hlt">radar</span> are presented. The <span class="hlt">radar</span>, which operates at 13.8 GHz and is designed to meet TRMM mission objectives, has a minimum measurable rain rate of 0.5 mm/h with a range resolution of 250 m, a horizontal resolution of about 4 km, and a swath width of 220 km. A 128-element active phased array system is adopted to achieve contiguous scanning within the swath. The basic characteristics of BBM were confirmed by experiments. The development of EM started with the cooperation of NASDA and CRL.</p> <div class="credits"> <p class="dwt_author">Okamoto, Kenichi</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">191</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60115782"> <span id="translatedtitle">Achromatic self-referencing <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A self-referencing Mach-Zehnder <span class="hlt">interferometer</span> for accurately measuring laser wavefronts over a broad wavelength range (for example, 600 nm to 900 nm). The apparatus directs a reference portion of an input beam to a reference arm and a measurement portion of the input beam to a measurement arm, recombines the output beams from the reference and measurement arms, and registers the</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">1994-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">192</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60122241"> <span id="translatedtitle">Achromatic self-referencing <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A self-referencing Mach-Zehnder <span class="hlt">interferometer</span> is described for accurately measuring laser wavefronts over a broad wavelength range (for example, 600 nm to 900 nm). The apparatus directs a reference portion of an input beam to a reference arm and a measurement portion of the input beam to a measurement arm, recombines the output beams from the reference and measurement arms, and</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">1994-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">193</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=AD677806"> <span id="translatedtitle">Stellar <span class="hlt">Interferometer</span> at Narrabri Observatory.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Angular diameters of 15 bright stars having a wide range of spectral types were measured with the stellar <span class="hlt">interferometer</span> at Narrabri in Australia. The instrument is now being tried cut on different types of stars including binaries. Summary data on stars ...</p> <div class="credits"> <p class="dwt_author">R. H. Brown</p> <p class="dwt_publisher"></p> <p class="publishDate">1968-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">194</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19820056699&hterms=fresnel+zone+plate&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dfresnel%2Bzone%2Bplate"> <span id="translatedtitle">Holographic Twyman-Green <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">A dichromated gelatin off-axis Fresnel zone plate was designed, fabricated, and used in a new type of <span class="hlt">interferometer</span> for optical metrology. This single hologram optical element combines the functions of a beam splitter, beam diverger, and aberrated null lens. Data presented show the successful application for an interferometric test of an f/6, 200-mm diam parabolic mirror.</p> <div class="credits"> <p class="dwt_author">Chen, C. W.; Breckinridge, J. B.</p> <p class="dwt_publisher"></p> <p class="publishDate">1982-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">195</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/19152457"> <span id="translatedtitle">Diffraction phases in atom <span class="hlt">interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Diffraction of atoms by lasers is a very important tool for matter wave optics. Although the process is well understood, the phase shifts induced by this diffraction process are not well known. In this paper, we make analytical calculations of these phase shifts in some simple cases and use these results to model the contrast <span class="hlt">interferometer</span> recently built by Pritchard</p> <div class="credits"> <p class="dwt_author">M. Buechner; R. Delhuille; A. Miffre; Cecile Robilliard; J. Vigué; C. Champenois</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">196</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/19146144"> <span id="translatedtitle">Three-beam atom <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We present an atom <span class="hlt">interferometer</span> based on the interference of three partial matter waves in three different internal and external states. Coherent laser excitation acts as a beamsplitter to create a superposition state of the ground state and two Zeeman sublevels of the metastable state of magnesium atoms. The interference pattern of the output ports shows high contrast and the</p> <div class="credits"> <p class="dwt_author">H. Hinderthür; A. Pautz; V. Rieger; F. Ruschewitz; J. L. Peng; K. Sengstock; W. Ertmer</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">197</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2001LIACo..36...27G"> <span id="translatedtitle">ESO's VLT <span class="hlt">interferometer</span> - first results</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The VLT <span class="hlt">Interferometer</span> had its First Fringes in March 2001. We describe the events up to first fringes with the test instrument VINCI using the siderostats, and the planning for the immediate future including the science instruments and extensions to the VLTI. A brief outlook for the second generation instrument will be given as well.</p> <div class="credits"> <p class="dwt_author">Glindemann, A.; Bauvir, B.; van Boekel, R.; Correia, S.; Delplancke, F.; Derie, F.; di Folco, E.; Gennai, A.; Gitton, P.; Huxley, A.; Housen, N.; Kervella, P.; Koehler, B.; Lévêque, S.; Ménardi, S.; Morel, S.; Paresce, F.; Phan Duc, T.; Richichi, A.; Schöller, M.; Tarenghi, M.; Wallander, A.; Wilhelm, R.; Wittkowski, M.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">198</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=N20000072493"> <span id="translatedtitle">Overview of the Keck <span class="hlt">Interferometer</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">This is a presentation about the Keck <span class="hlt">Interferometer</span> which is being constructed on top of Mauna Kea, Hawaii. This includes using the world's largest telescopes for optical and near-infrared astronomy, the twin 10 meter Keck telescopes. The two Keck telesc...</p> <div class="credits"> <p class="dwt_author">G. vanBelle</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">199</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=N8210972"> <span id="translatedtitle">Planetary <span class="hlt">Radar</span> Studies.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">A catalog of lunar and <span class="hlt">radar</span> anomalies was generated to provide a base for comparison with Venusian <span class="hlt">radar</span> signatures. The relationships between lunar <span class="hlt">radar</span> anomalies and regolith processes were investigated, and a consortium was formed to compare lunar an...</p> <div class="credits"> <p class="dwt_author">T. W. Thompson J. A. Cutts</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">200</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/20636644"> <span id="translatedtitle">A Martin-Puplett cartridge FIR <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A compact prealigned Martin-Puplett <span class="hlt">interferometer</span> (MPI) cartridge for plasma interferometry is described. The MPI cartridge groups all components of a MP <span class="hlt">interferometer</span>, with the exception of the end mirror for the scene beam, on a stand-alone rigid platform. The <span class="hlt">interferometer</span> system is completed by positioning a cartridge anywhere along and coaxial with the scene beam, considerably reducing the amount of effort in alignment over a discrete component layout. This allows the <span class="hlt">interferometer</span> to be expanded to any number of interferometry chords consistent with optical access, limited only by the laser power. The cartridge <span class="hlt">interferometer</span> has been successfully incorporated as a second chord on the Helicity Injected Torus II (HIT-II) far infrared <span class="hlt">interferometer</span> system and a comparison with the discrete component system is presented. Given the utility and compactness of the cartridge, a possible design for a five-chord <span class="hlt">interferometer</span> arrangement on the HIT-II device is described.</p> <div class="credits"> <p class="dwt_author">Smith, Roger J.; Penniman, Edwin E.; Jarboe, Thomas R. [University of Washington, Seattle, Washington 98195 (United States); Ball Aerospace and Technologies Corporation, Boulder, Colorado 80301 (United States); University of Washington, Seattle, Washington 98195 (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-10-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_9");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a style="font-weight: bold;">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_11");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_10 div --> <div id="page_11" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_10");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a style="font-weight: bold;">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_12");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">201</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5223841"> <span id="translatedtitle">A general statistical instrument theory of atmospheric and ionospheric <span class="hlt">radars</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Some basic functional relationships between the statistics of the signals received in a <span class="hlt">radar</span> and the statistics of the density fluctuations of a scattering medium are derived. They vary in their degree of generality, but they are all very general in scope. They include monostatic and bistatic <span class="hlt">radars</span> scattering from either atmospheric, ionospheric, or meteorological media. They are valid for refractive and slightly dispersive media, so they can also be used for HF ionospheric <span class="hlt">radars</span>. They include the effects of filtering, including receiver filtering, pulse compression coding and decoding schemes, and coherent integration, or any alternative linear digital filtering scheme. Functional relationships to include cross-correlation schemes, such as Faraday rotation experiments and <span class="hlt">interferometers</span>, are included. Some simplified expressions are derived for frequently encountered situations, where different approximations can be made. These simplified expressions cover a large number of <span class="hlt">radar</span> techniques currently in use for atmospheric and ionospheric applications.</p> <div class="credits"> <p class="dwt_author">Woodman, R.F. (Instituto Geofisico del Peru, Lima (Peru))</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">202</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5391804"> <span id="translatedtitle">Observation and theory of the <span class="hlt">radar</span> aurora</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Plasma density irregularities occurring near the Aurora Borealis cause scattering of HF, VHF, and UHF radio waves. Analysis of the resulting <span class="hlt">radar</span> signal provides great detail about the spatial and temporal characteristics of these auroral E region irregularities. Observations are presented of the <span class="hlt">radar</span> aurora from recent campaigns in northern Sweden. After reviewing the basic theory and observations of auroral electrojet irregularities, a simple nonlinear fluid theory of electrojet ion-acoustic waves is introduced, and reduced to a form of the three-wave interaction equations. This theory provides a simple mechanism for excitation of linearly stable waves at large aspect and flow angles, as well as a prediction of the power spectra that a coherent scatter <span class="hlt">radar</span> should observe. In addition, this theory may be able to account for type 3 waves without resorting to ion gyro modes, such as the electrostatic ion-cyclotron wave. During the course of the research a simple new <span class="hlt">radar</span> transmitting mode and signal processing algorithm was generated which very simply solves a frequency aliasing problem that often occurs in CUPRI auroral <span class="hlt">radar</span> studies. Several new <span class="hlt">radar</span> data analysis routines were developed, including the principally cross-beam image and scatter plots of the second versus first moments of the power spectrum of the irregularities. Analysis of vertical <span class="hlt">interferometer</span> data shows that type 3 waves originate at ordinary electrojet altitudes, not in the upper E region, from which it is concluded that the electrostatic ion-cyclotron mode does not generate type 3 waves. The measured height of type 3 waves and other spectral analyses provide support for the pure ion-acoustic theory of type 3 waves. Suggestions are offered for hardware improvements to the CUPRI <span class="hlt">radar</span>, new experiments to test new and existing theories.</p> <div class="credits"> <p class="dwt_author">Sahr, J.D.</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">203</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20070017411&hterms=Cancel&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3D%2522Cancel%2522"> <span id="translatedtitle">Nulling at the Keck <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The nulling mode of the Keck <span class="hlt">Interferometer</span> is being commissioned at the Mauna Kea summit. The nuller combines the two Keck telescope apertures in a split-pupil mode to both cancel the on-axis starlight and to coherently detect the residual signal. The nuller, working at 10 um, is tightly integrated with the other <span class="hlt">interferometer</span> subsystems including the fringe and angle trackers, the delay lines and laser metrology, and the real-time control system. Since first 10 um light in August 2004, the system integration is proceeding with increasing functionality and performance, leading to demonstration of a 100:1 on-sky null in 2005. That level of performance has now been extended to observations with longer coherent integration times. An overview of the overall system is presented, with emphasis on the observing sequence, phasing system, and differences with respect to the V2 system, along with a presentation of some recent engineering data.</p> <div class="credits"> <p class="dwt_author">Colavita, M. Mark; Serabyn, Gene; Wizinowich, Peter L.; Akeson, Rachel L.</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">204</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/12739751"> <span id="translatedtitle">Gravitational decoherence of atomic <span class="hlt">interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">:   We study the decoherence of atomic <span class="hlt">interferometers</span> due to the scattering of stochastic gravitational waves. We evaluate the\\u000a “direct” gravitational effect registered by the phase of the matter waves as well as the “indirect” effect registered by the\\u000a light waves used as beam-splitters and mirrors for the matter waves. Considering as an example the space project HYPER, we\\u000a show</p> <div class="credits"> <p class="dwt_author">Brahim Lamine; Marc-Thierry Jaekel; Serge Reynaud</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">205</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/18326583"> <span id="translatedtitle">Dynamics of ?-junction <span class="hlt">interferometer</span> circuits</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The ?-junction superconducting circuit dynamics was studied by means of numerical simulation technique. Parallel arrays consisting of Josephson junctions of both 0- and ?-type were studied as a model of high-Tc grain-boundary Josephson junction. The array dynamics and the critical current dependence on magnetic field are discussed. Experimental results for dc <span class="hlt">interferometers</span> with 0 and ? high-Tc bi-crystal Josephson junctions</p> <div class="credits"> <p class="dwt_author">I. V. Borisenko; P. B. Mozhaev; G. A. Ovsyannikov; N. F. Pedersen</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">206</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19950016672&hterms=CNG&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3D%2522CNG%2522"> <span id="translatedtitle">Stellar <span class="hlt">Interferometer</span> Technology Experiment (SITE)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The MIT Space Engineering Research Center and the Jet Propulsion Laboratory stand ready to advance science sensor technology for discrete-aperture astronomical instruments such as space-based optical <span class="hlt">interferometers</span>. The objective of the Stellar <span class="hlt">Interferometer</span> Technology Experiment (SITE) is to demonstrate system-level functionality of a space-based stellar <span class="hlt">interferometer</span> through the use of enabling and enhancing Controlled-Structures Technologies (CST). SITE mounts to the Mission Peculiar Experiment Support System inside the Shuttle payload bay. Starlight, entering through two apertures, is steered to a combining plate where it is interferred. Interference requires 27 nanometer pathlength (phasing) and 0.29 archsecond wavefront-tilt (pointing) control. The resulting 15 milli-archsecond angular resolution exceeds that of current earth-orbiting telescopes while maintaining low cost by exploiting active optics and structural control technologies. With these technologies, unforeseen and time-varying disturbances can be rejected while relaxing reliance on ground alignment and calibration. SITE will reduce the risk and cost of advanced optical space systems by validating critical technologies in their operational environment. Moreover, these technologies are directly applicable to commercially driven applications such as precision matching, optical scanning, and vibration and noise control systems for the aerospace, medical, and automotive sectors. The SITE team consists of experienced university, government, and industry researchers, scientists, and engineers with extensive expertise in optical interferometry, nano-precision opto-mechanical control and spaceflight experimentation. The experience exists and the technology is mature. SITE will validate these technologies on a functioning <span class="hlt">interferometer</span> science sensor in order to confirm definitely their readiness to be baselined for future science missions.</p> <div class="credits"> <p class="dwt_author">Crawley, Edward F.; Miller, David; Laskin, Robert; Shao, Michael</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">207</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1995mit..reptQ....C"> <span id="translatedtitle">Stellar <span class="hlt">Interferometer</span> Technology Experiment (SITE)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The MIT Space Engineering Research Center and the Jet Propulsion Laboratory stand ready to advance science sensor technology for discrete-aperture astronomical instruments such as space-based optical <span class="hlt">interferometers</span>. The objective of the Stellar <span class="hlt">Interferometer</span> Technology Experiment (SITE) is to demonstrate system-level functionality of a space-based stellar <span class="hlt">interferometer</span> through the use of enabling and enhancing Controlled-Structures Technologies (CST). SITE mounts to the Mission Peculiar Experiment Support System inside the Shuttle payload bay. Starlight, entering through two apertures, is steered to a combining plate where it is interferred. Interference requires 27 nanometer pathlength (phasing) and 0.29 archsecond wavefront-tilt (pointing) control. The resulting 15 milli-archsecond angular resolution exceeds that of current earth-orbiting telescopes while maintaining low cost by exploiting active optics and structural control technologies. With these technologies, unforeseen and time-varying disturbances can be rejected while relaxing reliance on ground alignment and calibration. SITE will reduce the risk and cost of advanced optical space systems by validating critical technologies in their operational environment. Moreover, these technologies are directly applicable to commercially driven applications such as precision matching, optical scanning, and vibration and noise control systems for the aerospace, medical, and automotive sectors. The SITE team consists of experienced university, government, and industry researchers, scientists, and engineers with extensive expertise in optical interferometry, nano-precision opto-mechanical control and spaceflight experimentation. The experience exists and the technology is mature. SITE will validate these technologies on a functioning <span class="hlt">interferometer</span> science sensor in order to confirm definitely their readiness to be baselined for future science missions.</p> <div class="credits"> <p class="dwt_author">Crawley, Edward F.; Miller, David; Laskin, Robert; Shao, Michael</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-02-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">208</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20050050994&hterms=Cancel&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3D%2522Cancel%2522"> <span id="translatedtitle">Unequal-Arms Michelson <span class="hlt">Interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Michelson <span class="hlt">interferometers</span> allow phase measurements many orders of magnitude below the phase stability of the laser light injected into their two almost equal-length arms. If, however, the two arms are unequal, the laser fluctuations can not be removed by simply recombining the two beams. This is because the laser jitters experience different time delays in the two arms, and therefore can not cancel at the photo detector. We present here a method for achieving exact laser noise cancellation, even in an unequal-arm <span class="hlt">interferometer</span>. The method presented in this paper requires a separate readout of the relative phase in each arm, made by interfering the returning beam in each arm with a fraction of the outgoing beam. By linearly combining the two data sets with themselves, after they have been properly time-shifted, we show that it is possible to construct a new data set that is free of laser fluctuations. An application of this technique to future planned space-based laser <span class="hlt">interferometer</span> detectors of gravitational radiation is discussed.</p> <div class="credits"> <p class="dwt_author">Tinto, Massimo; Armstrong, J. W.</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">209</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20000059209&hterms=Cancel&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3D%2522Cancel%2522"> <span id="translatedtitle">Unequal-Arms Michelson <span class="hlt">Interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Michelson <span class="hlt">interferometers</span> allow phase measurements many orders of magnitude below the phase stability of the laser light injected into their two almost equal-length arms. If, however, the two arms are unequal, the laser fluctuations can not be removed by simply recombining the two beams. This is because the laser jitters experience different time delays in the two arms, and therefore can not cancel at the photo detector. We present here a method for achieving exact laser noise cancellation, even in an unequal-arm <span class="hlt">interferometer</span>. The method presented in this paper requires a separate readout of the relative phase in each arm, made by interfering the returning beam in each arm with a fraction of the outgoing beam. By linearly combining the two data sets with themselves, after they have been properly time shifted, we show that it is possible to construct a new data set that is free of laser fluctuations. An application of this technique to future planned space-based laser <span class="hlt">interferometer</span> detector3 of gravitational radiation is discussed.</p> <div class="credits"> <p class="dwt_author">Tinto, Massimo; Armstrong, J. W.</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">210</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19840012737&hterms=ERP+Implementation+cost+case+study&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DERP%2BImplementation%2Bcost%2Bcase%2Bstudy"> <span id="translatedtitle">Polarized-<span class="hlt">interferometer</span> feasibility study</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The feasibility of using a polarized-<span class="hlt">interferometer</span> system as a rendezvous and docking sensor for two cooperating spacecraft was studied. The polarized <span class="hlt">interferometer</span> is a radio frequency system for long range, real time determination of relative position and attitude. Range is determined by round trip signal timing. Direction is determined by radio interferometry. Relative roll is determined from signal polarization. Each spacecraft is equipped with a transponder and an antenna array. The antenna arrays consist of four crossed dipoles that can transmit or receive either circularly or linearly polarized signals. The active spacecraft is equipped with a sophisticated transponder and makes all measurements. The transponder on the passive spacecraft is a relatively simple repeater. An initialization algorithm is developed to estimate position and attitude without any a priori information. A tracking algorithm based upon minimum variance linear estimators is also developed. Techniques to simplify the transponder on the passive spacecraft are investigated and a suitable configuration is determined. A multiple carrier CW signal format is selected. The dependence of range accuracy and ambiguity resolution error probability are derived and used to design a candidate system. The validity of the design and the feasibility of the polarized <span class="hlt">interferometer</span> concept are verified by simulation.</p> <div class="credits"> <p class="dwt_author">Raab, F. H.</p> <p class="dwt_publisher"></p> <p class="publishDate">1983-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">211</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=N8929857"> <span id="translatedtitle">Equatorial <span class="hlt">Radar</span> System.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">A large clear air <span class="hlt">radar</span> with the sensitivity of an incoherent scatter <span class="hlt">radar</span> for observing the whole equatorial atmosphere up to 1000 km altitude is now being designed in Japan. The <span class="hlt">radar</span>, called the Equatorial <span class="hlt">Radar</span>, will be built in Pontianak, Kalimantan...</p> <div class="credits"> <p class="dwt_author">S. Rukao T. Tsuda T. Sato S. Kato</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">212</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19880008241&hterms=radar+wind+farm&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dradar%2Bwind%2Bfarm"> <span id="translatedtitle">Wind shear <span class="hlt">radar</span> simulation</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Viewgraphs used in a presentation on wind shear <span class="hlt">radar</span> simulation are given. Information on a microburst model of <span class="hlt">radar</span> reflectivity and wind velocity, <span class="hlt">radar</span> pulse output, the calculation of <span class="hlt">radar</span> return, microburst power spectrum, and simulation plans are given. A question and answer session is transcribed.</p> <div class="credits"> <p class="dwt_author">Britt, Charles L.</p> <p class="dwt_publisher"></p> <p class="publishDate">1988-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">213</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50235588"> <span id="translatedtitle"><span class="hlt">Radar</span> cross section</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The technological evolution in signal processing that has been made in last decades led to improvements in <span class="hlt">radar</span> performances. Increasing the <span class="hlt">radar</span> range by improving its sensitivity has been made by the designers of aircraft and other military systems to try to decrease the <span class="hlt">radar</span> cross section of these types of equipment. The <span class="hlt">radar</span> cross section is a matter of</p> <div class="credits"> <p class="dwt_author">L. Nicolaescu; Teofil Oroian</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">214</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://patft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&u=%2Fnetahtml%2FPTO%2Fsearch-adv.htm&r=1&p=1&f=G&l=50&d=PTXT&S1=suvrath&OS=suvrath&RS=suvrath"> <span id="translatedtitle">Stable monolithic <span class="hlt">interferometer</span> for wavelenghth calibration</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://patft.uspto.gov/netahtml/PTO/search-adv.htm">US Patent & Trademark Office Database</a></p> <p class="result-summary">Calibration of an arbitrary spectrometer can use a stable monolithic <span class="hlt">interferometer</span> as a wavelength calibration standard. Light from a polychromatic light source is input to the monolithic <span class="hlt">interferometer</span> where it undergoes interference based on the optical path difference (OPD) of the <span class="hlt">interferometer</span>. The resulting wavelength-modulated output beam is analyzed by a reference spectrometer to generate reference data. The output beam from the <span class="hlt">interferometer</span> can be provided to an arbitrary spectral instrument. Wavelength calibration of the arbitrary spectral instrument may then be performed based on a comparison of the spectral instrument output with the reference data. By appropriate choice of materials for the monolithic <span class="hlt">interferometer</span>, a highly stable structure can be fabricated that has a wide field and/or is thermally compensated. Because the <span class="hlt">interferometer</span> is stable, the one-time generated reference data can be used over an extended period of time without re-characterization.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">2013-10-29</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">215</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/22722276"> <span id="translatedtitle">Dual-probe homodyne quadrature laser <span class="hlt">interferometer</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">We present a dual-probe homodyne quadrature laser <span class="hlt">interferometer</span> for the measurements of displacement at two separate spatial locations. This is a coupled homodyne <span class="hlt">interferometer</span> with inverted polarity of probe signals featuring a wide dynamic range and constant sensitivity. As an application of this dual-probe <span class="hlt">interferometer</span>, we demonstrate how to locate the pulsed-laser interaction site on a plate without knowing the propagation velocities of the laser-induced mechanical waves. PMID:22722276</p> <div class="credits"> <p class="dwt_author">Požar, Tomaž; Možina, Janez</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-06-20</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">216</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007APS..DMP.B5009E"> <span id="translatedtitle">A Thermal-beam Calcium <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We report on the construction of a next-generation atom <span class="hlt">interferometer</span>. Our research includes developing passive stabilization techniques, low-noise laser current drivers, high-speed scan-balancing lock circuits, and high-speed low-noise photo-detecting units. Our efforts have lead to developing an extremely stable laser locked to an ultra-high finesse optical cavity for use in a Ramsey-Bord'e <span class="hlt">interferometer</span> scheme. The <span class="hlt">interferometer</span> itself is based on a thermal calcium beam and will be upgraded in the future to a dual species Ca/Sr <span class="hlt">interferometer</span> sensitive enough to improve measurements of possible time variance of the fine structure constant.</p> <div class="credits"> <p class="dwt_author">Erickson, Christopher; van Zjill, Marshall; Washburn, Matthew; Archibald, James; Christensen, Dan; Birrell, Jeremiah; Burdett, Adam; Durfee, Dallin</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-06-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">217</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2004SPIE.5532...28P"> <span id="translatedtitle">LVDT calibration using a phase modulation optical <span class="hlt">interferometer</span> calibrated by an x-ray <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We have calibrated an LVDT using an optical and x-ray <span class="hlt">interferometer</span>. We have calibrated optical <span class="hlt">interferometer</span> using x-ray <span class="hlt">interferometer</span>. The LVDT has calibrated by the optical <span class="hlt">interferometer</span>. We made the monolithic x-ray <span class="hlt">interferometer</span> with a double parallel spring structure for the translation of an analyzer lamella. One period of the x-ray interference fringe corresponds to the lattice parameter, 0.192 nm. The nonlinearity of optical <span class="hlt">interferometer</span> has been calibrated by an x-ray <span class="hlt">interferometer</span>. We have used a phase modulation optical <span class="hlt">interferometer</span>. This calibration using the x-ray <span class="hlt">interferometer</span> is directly traceable to primary standards. We have achieved the resolution of an x-ray <span class="hlt">interferometer</span> and optical <span class="hlt">interferometer</span> better than 0.01 nm. The optical phase stability of the <span class="hlt">interferometer</span> is less than +/- 150 pm. For the control of environmental temperature, we have used PID method. PID controller controlled the temperature inside chamber. Temperature drift was less than +/- 3 mK (k = 2).</p> <div class="credits"> <p class="dwt_author">Park, Jin Won; Jo, Jae Gun; Byun, Sang Ho; Kim, Jeong Eun; Eom, Cheon Il</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-08-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">218</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2005AGUFM.P31C0213H"> <span id="translatedtitle">Challenges to Airborne and Orbital <span class="hlt">Radar</span> Sounding in the Presence of Surface Clutter: Lessons Learned (so far) from the Dry Valleys of Antarctica</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The search for life and in-situ resources for exploration on Mars targets both liquid and solid water, whether distributed or in reservoirs. Massive surface ice may cover potential habitats or other features of great interest. Ice-rich layering in the high latitudes holds clues to the climatic history of the planet. Multiple geophysical methods will clearly be necessary to fully characterize these various states of water (and other forms of ice), but <span class="hlt">radar</span> sounding will be a critical component of the effort. Orbital <span class="hlt">radar</span> sounders are already being employed and plans for surface-based and suborbital, above-surface <span class="hlt">radar</span> sounders are being discussed. The difficulties in interpreting data from each type of platform are quite different. Given the lack of existing orbital <span class="hlt">radar</span> sounding data from any planetary body, the analysis of airborne <span class="hlt">radar</span> sounding data is quite useful for assessing the advantages and disadvantages of above-surface <span class="hlt">radar</span> sounding on Mars. In addition to over 300,000 line-km of data collected over the Antarctic ice sheet by airborne <span class="hlt">radar</span> sounding, we have recently analyzed data from the Dry Valleys of Antarctica where conditions and features emulate Mars in several respects. These airborne <span class="hlt">radar</span> sounding data were collected over an ice-free area of Taylor Valley, ice-covered lakes, Taylor Glacier, and Beacon Valley. The pulsed <span class="hlt">radar</span> (52.5 - 67.5 MHz chirp) was coherently recorded. Pulse compression and unfocused SAR processing were applied. One of the most challenging aspects of above-surface <span class="hlt">radar</span> sounding is the determination of echo sources. This can, of course, be problematic for surface-based <span class="hlt">radar</span> sounders given possible subsurface scattering geometries, but it is most severe for above-surface sounders because echoes from cross-track surface topography (surface clutter) can have similar time delays to those from the subsurface. We have developed two techniques to accomplish the identification of this surface clutter in <span class="hlt">single-pass</span> airborne <span class="hlt">radar</span> sounding data. The first technique simulates <span class="hlt">radar</span> data using a digital elevation model (DEM) of surface topography to predict the location and shape of surface echoes in the <span class="hlt">radar</span> data. This is complemented by the cross-track migration of <span class="hlt">radar</span> echoes onto the surface. These migrated echoes are superimposed on imagery in order to correlate them with potential surface sources. Using these techniques enabled us to identify a number of echoes in a 24-km segment of the Dry Valleys flight path as arising from the surface and to identify subsurface echoes under the main trunk of Taylor Glacier and possibly multiple reflectors beneath the toe of Taylor Glacier. Surface-based <span class="hlt">radar</span> confirms the thickness of the glacier at three crossing points. In the ice-free section of the test segment no real subsurface reflectors were found, indicating that the electromagnetic properties of the ground there do not allow significant <span class="hlt">radar</span> penetration at 60 MHz and/or no <span class="hlt">radar</span>-significant subsurface interfaces exist. These results illustrate the importance of using complementary techniques, the usefulness of a DEM, and the limitations of <span class="hlt">single-pass</span> <span class="hlt">radar</span> sounding data. Advanced processing techniques utilizing <span class="hlt">radar</span> phase information show promise for achieving better clutter removal for <span class="hlt">single-pass</span> data. Multi-pass data that we recently collected in the Dry Valleys should allow for the development of techniques to reduce or eliminate the need for a surface elevation model.</p> <div class="credits"> <p class="dwt_author">Holt, J. W.; Peters, M. E.; Kempf, S. D.; Morse, D. L.; Blankenship, D. D.</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">219</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/40750962"> <span id="translatedtitle">An intercomparison of meteor <span class="hlt">radar</span> measurements at the South Pole using two different processing systems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A new meteor <span class="hlt">radar</span> system was installed at the Amundsen–Scott station South Pole in 2001 to further the understanding of the dynamics of the Antarctic region. The antenna array consists of four yagis pointed along the 0°, 90°, 180°, and 270° meridians and five folded crossed dipoles arranged in a cross configuration and operating as an <span class="hlt">interferometer</span> to provide position</p> <div class="credits"> <p class="dwt_author">Elías M. Lau; Hiroyuki Iimura; Scott E. Palo; Susan K. Avery; James P. Avery; Chunmei Kang; Nikolai A. Makarov</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">220</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/52794872"> <span id="translatedtitle">An intercomparison of meteor <span class="hlt">radar</span> measurements at the South Pole using two different processing systems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A new meteor <span class="hlt">radar</span> system was installed at the Amundsen Scott station South Pole in 2001 to further the understanding of the dynamics of the Antarctic region. The antenna array consists of four yagis pointed along the 0°, 90°, 180°, and 270° meridians and five folded crossed dipoles arranged in a cross configuration and operating as an <span class="hlt">interferometer</span> to provide</p> <div class="credits"> <p class="dwt_author">Elías M. Lau; Hiroyuki Iimura; Scott E. Palo; Susan K. Avery; James P. Avery; Chunmei Kang; Nikolai A. Makarov</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_10");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a style="font-weight: bold;">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_12");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_11 div --> <div id="page_12" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_11");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a style="font-weight: bold;">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_13");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">221</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.agu.org/journals/rs/v029/i003/93RS03590/93RS03590.pdf"> <span id="translatedtitle">Temperature fluctuations near the mesopause inferred from meteor observations with the middle and upper atmosphere <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Using meteor echo measurements with the middle and upper atmosphere (MU) <span class="hlt">radar</span> (35 deg N, 136 deg E), operated at 46.5 MHz, we examined time-height variation of the ambipolar diffusion coefficient D, determined from the decay rate of meteor echoes. The height of a meteor trail was determined with an accuracy of about 1 km, by using an <span class="hlt">interferometer</span> for</p> <div class="credits"> <p class="dwt_author">Masaki Tsutsumi; Toshitaka Tsuda; Takuji Nakamura; Shoichiro Fukao</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">222</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/20639945"> <span id="translatedtitle">Diffraction phases in atom <span class="hlt">interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Diffraction of atoms by lasers is a very important tool for matter wave optics. Although the process is well understood, the phase shifts induced by this diffraction process are not well known. In this paper, we make analytical calculations of these phase shifts in some simple cases and use these results to model the contrast <span class="hlt">interferometer</span> recently built by Pritchard and co-workers. We thus show that the values of the diffraction phases are large and that they probably contribute to the phase noise observed in this experiment.</p> <div class="credits"> <p class="dwt_author">Buechner, M.; Delhuille, R.; Miffre, A.; Robilliard, C.; Vigue, J.; Champenois, C. [Laboratoire Collisions Agregats Reactivite-IRSAMC, Universite Paul Sabatier and CNRS UMR 5589, 118, Route de Narbonne, 31062 Toulouse Cedex, (France); PIIM, Universite de Provence and CNRS UMR 6633, Centre de Saint Jerome Case C21, 13397 Marseille Cedex 20, (France)</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">223</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21408903"> <span id="translatedtitle">Quantum noise in optical <span class="hlt">interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We study the photon counting noise in optical <span class="hlt">interferometers</span> used for gravitational wave detection. In order to reduce quantum noise, a squeezed vacuum is injected into the usually unused input port. It is investigated under which conditions the gravitational wave signal may be amplified without increasing counting noise concurrently. Such a possibility was suggested as a consequence of the entanglement of the two output ports of a beam splitter. We find that amplification without concurrent increase of noise is not possible for reasonable squeezing parameters. Photon distributions for various beam splitter angles and squeezing parameters are calculated.</p> <div class="credits"> <p class="dwt_author">Voronov, Volodymyr G.; Weyrauch, Michael [Faculty of Physics, Taras Shevchenko National University of Kyiv, 03022 Kyiv (Ukraine); Physikalisch-Technische Bundesanstalt, D-38116 Braunschweig (Germany)</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-05-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">224</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1985IEEEP..73..182S"> <span id="translatedtitle">Fifty years of <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A development history of <span class="hlt">radar</span> technology is presented, with attention to the driving of <span class="hlt">radar</span> system design advances by the emergence of such weapon systems as long range aircraft and cruise missiles in World War II and the range of current applications for state-of-the-art <span class="hlt">radar</span> techniques. The applications noted encompass over-the-horizon backscatter <span class="hlt">radars</span> for aircraft detection at 500-1800 nmi ranges, ultralow sidelobe antenna military <span class="hlt">radars</span>, a long range, frequency scanning three-dimensional S-band <span class="hlt">radar</span>, a shipborne phased array <span class="hlt">radar</span> for the collection of exoatmospheric and endoatmospheric data on ballistic missile reentry vehicles, multimission/multimode X-band fighter aircraft <span class="hlt">radars</span>, and phased array air defense <span class="hlt">radars</span>.</p> <div class="credits"> <p class="dwt_author">Skolnik, M. I.</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-02-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">225</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012GeoRL..3914104W"> <span id="translatedtitle">First daytime thermospheric wind observation from a balloon-borne Fabry-Perot <span class="hlt">interferometer</span> over Kiruna (68N)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">HIWIND (High altitude <span class="hlt">Interferometer</span> WIND Observation) is the first balloon Fabry-Perot <span class="hlt">interferometer</span> (FPI) to achieve successful thermospheric wind measurement for both day and night. By flying at ˜40 km altitude, HIWIND avoids the high solar scattering background and enables daytime remote sensing of Doppler shift in airglow for thermospheric wind observation. During its first flight in June 2011 from Kiruna, (68N, 65 MLAT), HIWIND observed persistent equatorward winds, while the NCAR TIEGCM model predicted poleward winds on the dayside. Combined with simultaneous EISCAT incoherent scatter <span class="hlt">radar</span> observation, HIWIND yielded a daytime Burnside factor value of 0.85. HIWIND data appear to suggest that upward vertical winds near the auroral oval may be the cause for large differences between the FPI measured and <span class="hlt">radar</span> derived winds near midnight.</p> <div class="credits"> <p class="dwt_author">Wu, Qian; Wang, W.; Roble, R. G.; Häggström, Ingemar; Strømme, Anja</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">226</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/52109845"> <span id="translatedtitle">Studying Quantum Decoherence with an Atom <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A famous Feynman gedankenexperiment describes the loss of the observed interference pattern in a Young's double slit experiment with matter waves due to scattering a single photon from the particle in the <span class="hlt">interferometer</span>. We have realized this experiment using a Mach-Zehnder atom <span class="hlt">interferometer</span>. We relate the two standard interpretations for this decoherence. 1) the scattered light can provide information on</p> <div class="credits"> <p class="dwt_author">David E. Pritchard</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">227</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19930000135&hterms=spurious&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dspurious"> <span id="translatedtitle">Suppressing Spurious Reflections In An <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Dynamic-aperture fringe discriminator is simple device enhancing operation of <span class="hlt">interferometer</span> of spherical-wave-front type used to test lenses, telescopes, and other optical instruments. Device suppresses reflections from surfaces of refractive optical elements in instrument and/or test setup. Reflections from refractive optical components eliminated by blocking half of <span class="hlt">interferometer</span> aperture.</p> <div class="credits"> <p class="dwt_author">Steimle, Lawrence J.; Thiessen, David L.</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">228</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/12578199"> <span id="translatedtitle">Coherence Properties of Guided-Atom <span class="hlt">Interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We present a detailed theoretical investigation of the coherence properties of beam splitters and Mach-Zehnder <span class="hlt">interferometers</span> for guided neutral atoms. We show that such a setup permits coherent wave packet splitting and leads to the appearance of interference fringes for both single-mode and thermal input states, evidencing thus the robustness of the <span class="hlt">interferometer</span>.</p> <div class="credits"> <p class="dwt_author">H. Kreutzmann; U. V. Poulsen; M. Lewenstein; R. Dumke; W. Ertmer; G. Birkl; A. Sanpera</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">229</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.physics.gatech.edu/ultracool/Papers/rotation_ifm_prl97.pdf"> <span id="translatedtitle">Rotation Sensing with an Atom <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We have measured the phase shift induced by rotation of an atom <span class="hlt">interferometer</span> at rates of -2 to +2 earth rates and obtained 1% agreement with the predicted Sagnac phase shift for atomic matter waves. The rotational rms noise of our <span class="hlt">interferometer</span> was 42 milliearth rates for 1 sec of integration time, within 9% of shot noise. The high sensitivity</p> <div class="credits"> <p class="dwt_author">Alan Lenef; Troy D. Hammond; Edward T. Smith; Michael S. Chapman; Richard A. Rubenstein; David E. Pritchard</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">230</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/18374635"> <span id="translatedtitle">Gravimetry using atom <span class="hlt">interferometers</span>: Some systematic effects</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We present a theoretical investigation of some systematic effects in atom <span class="hlt">interferometers</span> that have been used to measure the acceleration of gravity, g. We derive an explicit expression for the <span class="hlt">interferometer</span> phase difference that differs from previously obtained results by a number of correction terms. These terms result from a rigorous treatment of the variation of the laser frequencies necessary</p> <div class="credits"> <p class="dwt_author">Peter Wolf; Philippe Tourrenc</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">231</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://physics.okstate.edu/summy/publications/PhysRevLett_81_495.pdf"> <span id="translatedtitle">Separated-Path Ramsey Atom <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We demonstrate a novel type of cesium atom <span class="hlt">interferometer</span> which uses a combination of a microwave ground state transition and momentum changing adiabatic transfer light pulses as the atom optical components. It is the first atom <span class="hlt">interferometer</span> where the mechanism which forms the internal superposition plays no part in spatially splitting the atomic wave packets. The coherence length of the</p> <div class="credits"> <p class="dwt_author">P. D. Featonby; G. S. Summy; C. L. Webb; R. M. Godun; M. K. Oberthaler; A. C. Wilson; C. J. Foot; K. Burnett</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">232</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/46380653"> <span id="translatedtitle">A longitudinal stern-gerlach atomic <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A new magnetic field configuration has been used in the mixing and elongating regions of the longitudinal Stern-Gerlach <span class="hlt">interferometer</span>. This configuration has proven to considerably improve the performances of the <span class="hlt">interferometer</span>. An analysis in terms of the vector model of a spin 1 particle is presented.</p> <div class="credits"> <p class="dwt_author">Ch. Miniatura; J. Robert; S. Boiteux; J. Reinhardt; J. Baudon</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">233</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/15169227"> <span id="translatedtitle">Coherence properties of guided-atom <span class="hlt">interferometers</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">We present a detailed theoretical investigation of the coherence properties of beam splitters and Mach-Zehnder <span class="hlt">interferometers</span> for guided neutral atoms. We show that such a setup permits coherent wave packet splitting and leads to the appearance of interference fringes for both single-mode and thermal input states, evidencing thus the robustness of the <span class="hlt">interferometer</span>. PMID:15169227</p> <div class="credits"> <p class="dwt_author">Kreutzmann, H; Poulsen, U V; Lewenstein, M; Dumke, R; Ertmer, W; Birkl, G; Sanpera, A</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-04-23</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">234</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20060038091&hterms=bender&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dbender"> <span id="translatedtitle">Algorithms for Unequal-Arm Michelson <span class="hlt">Interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">A method of data acquisition and data analysis is described in which the performance of Michelson-type <span class="hlt">interferometers</span> with unequal arms can be made nearly the same as <span class="hlt">interferometers</span> with equal arms. The method requires a separate readout of the relative phase in each arm, made by interfering the returning beam in each arm with a fraction of the outgoing beam.</p> <div class="credits"> <p class="dwt_author">Giampieri, Giacomo; Hellings, Ronald W.; Tinto, Massimo; Bender, Peter L.; Faller, James E.</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">235</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/67754"> <span id="translatedtitle">CIST....CORRTEX <span class="hlt">interferometer</span> simulation test</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Testing was performed in order to validate and cross calibrate an RF <span class="hlt">interferometer</span> and the crush threshold of cable. Nitromethane was exploded (inside of PVC pipe). The explosion was used to crush the <span class="hlt">interferometer</span> sensor cables which had been placed inside and outside the pipe. Results are described.</p> <div class="credits"> <p class="dwt_author">Heinle, R.A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">236</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19960024429&hterms=liquid+crystal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dliquid%2Bcrystal"> <span id="translatedtitle">Liquid-Crystal Point-Diffraction <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Liquid-crystal point-diffraction <span class="hlt">interferometer</span> (LCPDI) invented to combine flexible control of liquid-crystal phase-shifts with robustness of point-diffraction <span class="hlt">interferometers</span>. Produces interferograms indicative of shapes of wavefronts of laser beams having passed through or reflected from objects of interest. Interferograms combined in computers to produce phase maps describing wavefronts.</p> <div class="credits"> <p class="dwt_author">Mercer, Carolyn R.</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">237</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011R%26QE...53..505A"> <span id="translatedtitle">New-generation radio <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Studies of physical conditions in active galactic nuclei and cosmological studies require low-frequency observations of compact radio sources with high sensitivity and resolution. To advance considerably in this research, observations in the meter wavelength range with a sensitivity of about 1 mJy are needed. The sensitivity of low-frequency observations of extragalactic radio sources is limited by the confusion effect. To suppress it to a 1 mJy level, one needs antennas with apertures of 300-400 km. Currently, new-generation SKA and LOFAR radio telescopes are developed, which are aperture-synthesis systems based on small antennas which have dimensions of several hundreds of kilometers. Such measuring complexes will allow one to achieve a sensitivity of 1 mJy. In this work, we propose to make an <span class="hlt">interferometer</span> with baseline exceeding 5000 km on the basis of in-phase kilometer antenna arrays. It is shown that such a system will have a sensitivity of about 1 mJy at a frequency of 100 MHz. Along with the high sensitivity, the proposed <span class="hlt">interferometer</span> based on diffraction gratings will make it possible to form a multilobe directional pattern that will cover the entire observable hemisphere in terms of inclination. This opens up new opportunities for fast surveys of weak small-size radio sources.</p> <div class="credits"> <p class="dwt_author">Artyukh, V. S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-02-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">238</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/22026831"> <span id="translatedtitle">102?k large area atom <span class="hlt">interferometers</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">We demonstrate atom <span class="hlt">interferometers</span> utilizing a novel beam splitter based on sequential multiphoton Bragg diffractions. With this sequential Bragg large momentum transfer (SB-LMT) beam splitter, we achieve high contrast atom <span class="hlt">interferometers</span> with momentum splittings of up to 102 photon recoil momenta (102?k). To our knowledge, this is the highest momentum splitting achieved in any atom <span class="hlt">interferometer</span>, advancing the state-of-the-art by an order of magnitude. We also demonstrate strong noise correlation between two simultaneous SB-LMT <span class="hlt">interferometers</span>, which alleviates the need for ultralow noise lasers and ultrastable inertial environments in some future applications. Our method is intrinsically scalable and can be used to dramatically increase the sensitivity of atom <span class="hlt">interferometers</span> in a wide range of applications, including inertial sensing, measuring the fine structure constant, and detecting gravitational waves. PMID:22026831</p> <div class="credits"> <p class="dwt_author">Chiow, Sheng-wey; Kovachy, Tim; Chien, Hui-Chun; Kasevich, Mark A</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-09-23</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">239</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21408293"> <span id="translatedtitle">Orientational atom <span class="hlt">interferometers</span> sensitive to gravitational waves</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We present an atom <span class="hlt">interferometer</span> that differs from common atom <span class="hlt">interferometers</span> as it is not based on the spatial splitting of electronic wave functions, but on orienting atoms in space. As an example we present how an orientational atom <span class="hlt">interferometer</span> based on highly charged hydrogen-like atoms is affected by gravitational waves. We show that a monochromatic gravitational wave will cause a frequency shift that scales with the binding energy of the system rather than with its physical dimension. For a gravitational wave amplitude of h=10{sup -23} the frequency shift is of the order of 110 {mu}Hz for an atom <span class="hlt">interferometer</span> based on a 91-fold charged uranium ion. A frequency difference of this size can be resolved by current atom <span class="hlt">interferometers</span> in 1 s.</p> <div class="credits"> <p class="dwt_author">Lorek, Dennis; Laemmerzahl, Claus; Wicht, Andreas [Center of Applied Space Technology and Microgravity, University of Bremen, Am Fallturm, D-28359 Bremen (Germany); Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Strasse 4, D-12489 Berlin (Germany); Humboldt-Universitaet zu Berlin, Institut fuer Physik, Hausvogteiplatz 5-7, D-10117 Berlin (Germany)</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-02-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">240</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011AGUFM.B51C0410L"> <span id="translatedtitle">Estimating forest biomass using repeat-pass polarimetric <span class="hlt">radar</span> interferometry</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Biomass is identified by the United Nations Framework Convention on Climate Change (UNFCCC) as an essential climate variable needed to reduce uncertainties in our knowledge of the climate system [1]. <span class="hlt">Radar</span> remote sensing is the most suitable tool to measure and map Earth's forest biomass, but current methods are limited by saturation issues (backscatter-based methods) or by large uncertainties (interferometric volumetric correlation-based methods) [2]. Here, we developed a new method for estimating forest biomass, which overcomes these limitations. The method utilizes a repeat-pass polarimetric <span class="hlt">radar</span> <span class="hlt">interferometer</span> that measures the temporal-volumetric correlation between consecutive <span class="hlt">radar</span> acquisitions. Using our physical model [3], we are able to relate a set of temporal-volumetric correlation samples (obtained for several combinations of wave polarizations) to important biophysical parameters of forests. We designed a model-based algorithm for parameters estimation that gives maps of forest tree height, using all available information returned by the polarimetric <span class="hlt">interferometer</span>, including <span class="hlt">radar</span> backscatter. Forest height estimated from simulated and actual <span class="hlt">radar</span> UAVSAR data is found in agreement with forest height derived from lidar LVIS data. Height-biomass allometric equations, previously validated with ground observations, are used to estimate the aboveground biomass [4]. Our method allows quantifying the worldwide biomass distribution and monitoring biomass dynamic changes (e.g., deforestation). Future <span class="hlt">radar</span> missions, such as the NASA/DESDynI, JAXA/ALOS-2 and ESA/BIOMASS can exploit this method [5]. Moreover, our theoretical modeling has unveiled new insights into the temporal decorrelation, such as the dependence on wave polarization and target structure [3], bringing benefits to all techniques exploiting <span class="hlt">radar</span> time series, beyond the remote sensing of vegetated lands. [1] Second report on the Adequacy of the Global Observing System for Climate in Support of the UNFCCC. GCOS-82 (WMO/TD No. 1143): World Meteorological Organization, 2003. [2] Le Toan, T., et al., The BIOMASS mission: "Mapping global forest biomass to better understand the terrestrial carbon cycle", Remote Sensing of Environment, 2011. [3] Lavalle, M., Simard, M., Hensley, S., "A Temporal Decorrelation Model for Polarimetric <span class="hlt">Radar</span> <span class="hlt">Interferometers</span>", accepted for publication in IEEE Trans. on Geoscience and Remote Sensing, 2011. [4] Mette, T., Papathanassiou, K.P., Hajnsek, I., "Biomass estimation from Pol-InSAR over heterogeneous Terrain", IEEE Geoscience and Remote Sensing Symposium, 2004. [5] Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, National Research Council, 2007.</p> <div class="credits"> <p class="dwt_author">Lavalle, M.; Simard, M.; Hensley, S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-12-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_11");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a style="font-weight: bold;">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_13");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_12 div --> <div id="page_13" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_12");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a style="font-weight: bold;">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_14");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">241</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20090011885&hterms=digital+signal+processing&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Ddigital%2Bsignal%2Bprocessing"> <span id="translatedtitle">Customizable Digital Receivers for <span class="hlt">Radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Compact, highly customizable digital receivers are being developed for the system described in '<span class="hlt">Radar</span> <span class="hlt">Interferometer</span> for Topographic Mapping of Glaciers and Ice Sheets' (NPO-43962), NASA Tech Briefs, Vol. 31, No. 7 (August 2007), page 72. The receivers are required to operate in unison, sampling <span class="hlt">radar</span> returns received by the antenna elements in a digital beam-forming (DBF) mode. The design of these receivers could also be adapted to commercial <span class="hlt">radar</span> systems. At the time of reporting the information for this article, there were no commercially available digital receivers capable of satisfying all of the operational requirements and compact enough to be mounted directly on the antenna elements. A provided figure depicts the overall system of which the digital receivers are parts. Each digital receiver includes an analog-to-digital converter (ADC), a demultiplexer (DMUX), and a field-programmable gate array (FPGA). The ADC effects 10-bit band-pass sampling of input signals having frequencies up to 3.5 GHz. The input samples are demultiplexed at a user-selectable rate of 1:2 or 1:4, then buffered in part of the FPGA that functions as a first-in/first-out (FIFO) memory. Another part of the FPGA serves as a controller for the ADC, DMUX, and FIFO memory and as an interface between (1) the rest of the receiver and (2) a front-panel data port (FPDP) bus, which is an industry-standard parallel data bus that has a high data-rate capability and multichannel configuration suitable for DBF. Still other parts of the FPGA in each receiver perform signal-processing functions. The digital receivers can be configured to operate in a stand-alone mode, or in a multichannel mode as needed for DBF. The customizability of the receiver makes it applicable to a broad range of system architectures. The capability for operation of receivers in either a stand-alone or a DBF mode enables the use of the receivers in an unprecedentedly wide variety of <span class="hlt">radar</span> systems.</p> <div class="credits"> <p class="dwt_author">Moller, Delwyn; Heavey, Brandon; Sadowy, Gregory</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">242</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA145407"> <span id="translatedtitle"><span class="hlt">Radar</span>, Target and Ranging.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">This Test Operations Procedure (TOP) provides conventional test methods employing conventional test instrumentation for testing conventional <span class="hlt">radars</span>. Single tests and subtests designed to test <span class="hlt">radar</span> components, transmitters, receivers, antennas, etc., and ...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">1984-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">243</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA418302"> <span id="translatedtitle"><span class="hlt">Radar</span> Absorbing Material Design.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Low observable platforms have extremely low <span class="hlt">radar</span> cross section specifications that cannot be achieved by shaping alone. The application of <span class="hlt">radar</span> absorbing material is necessary, in which case the appropriate constitutive parameters and thickness must be ...</p> <div class="credits"> <p class="dwt_author">C. K. Yuzcelik</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">244</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20060044126&hterms=pollard&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3D%2522pollard%2522"> <span id="translatedtitle">The wide swath ocean altimeter: <span class="hlt">radar</span> interferometry for global ocean mapping with centimetric accuracy</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">We have developed an instrument concept that combines a conventional nadir altimeter with a <span class="hlt">radar</span> <span class="hlt">interferometer</span> to meet the above requirements. In this paper, we describe the overall mission concept and the interferometric <span class="hlt">radar</span> design. We also describe several new technology developments that facilitate the inclusion of this instrument on a small, inexpensive spacecraft bus. Those include ultra-light, deployable reflectarray antennas for the <span class="hlt">radar</span> <span class="hlt">interferometer</span>; a novel five frequency feed horn for the radiometer and altimeter; a lightweight, low power integrated three frequency radiometer; and a field programmable gate array-based onboard data processor. Finally, we discuss recent algorithm developments for the onboard date processing, and present the expected instatements performance improvements over previously reported results.</p> <div class="credits"> <p class="dwt_author">Pollard, Brian D.; Rodriguez, Ernesto; Veilleux, Louise; Akins, Torry; Brown, Paula; Kitiyakara, Amirit; Zawadski, Mark</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">245</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/40740489"> <span id="translatedtitle">Equatorial <span class="hlt">radar</span> system</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A large clear air <span class="hlt">radar</span> with the sensitivity of an incoherent scatter <span class="hlt">radar</span> for observing the whole equatorial atmosphere up to 1000 km altitude is now being designed in Japan. The <span class="hlt">radar</span> will be built in Pontianak, West Kalimantan, Indonesia (0.03 deg N, 109.29 deg E). The system is a 47-MHz monostatic Doppler <span class="hlt">radar</span> with an active phased array configuration</p> <div class="credits"> <p class="dwt_author">Shoichiro Fukao; Toshitaka Tsuda; Toru Sato; Susumu Kato</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">246</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19900039956&hterms=27001&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3D27001"> <span id="translatedtitle"><span class="hlt">Radar</span> observations of asteroids</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The type of information that can be obtained from <span class="hlt">radar</span> observations of asteroids includes sizes, shapes, spin vectors, and such surface characteristics as the decimeter-scale morphology, topographic relief, regolith porosity, and metal concentration. This paper describes the two <span class="hlt">radar</span> facilities active in asteroid studies (the Arecibo Observatory in Puerto Rico and the Goldstone <span class="hlt">Radar</span> in California) and techniques used in <span class="hlt">radar</span> observations of asteroids. Results available for main-belt and near-earth asteroids are discussed.</p> <div class="credits"> <p class="dwt_author">Ostro, Steven J.</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">247</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/14359886"> <span id="translatedtitle">Fifty years of <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A development history of <span class="hlt">radar</span> technology is presented, with attention to the driving of <span class="hlt">radar</span> system design advances by the emergence of such weapon systems as long range aircraft and cruise missiles in World War II and the range of current applications for state-of-the-art <span class="hlt">radar</span> techniques. The applications noted encompass over-the-horizon backscatter <span class="hlt">radars</span> for aircraft detection at 500-1800 nmi ranges,</p> <div class="credits"> <p class="dwt_author">M. I. Skolnik</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">248</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=N8210298"> <span id="translatedtitle">Harmonic <span class="hlt">Radar</span> Literature Harmonisk <span class="hlt">Radar</span> - en Litteraturstudie.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">A harmonic <span class="hlt">radar</span> sends on a given frequency f sub o and receives on another frequency usually 3 f sub o. The overtone is generated on joints between the metal parts of the <span class="hlt">radar</span> target. The generated high harmonic frequency is very weak, which is why this...</p> <div class="credits"> <p class="dwt_author">B. Jansson</p> <p class="dwt_publisher"></p> <p class="publishDate">1980-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">249</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/53990899"> <span id="translatedtitle">Harmonic <span class="hlt">radar</span> literature</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A harmonic <span class="hlt">radar</span> sends on a given frequency f sub o and receives on another frequency usually 3 f sub o. The overtone is generated on joints between the metal parts of the <span class="hlt">radar</span> target. The generated high harmonic frequency is very weak, which is why this <span class="hlt">radar</span> has an extremely low range of detection. Natural objects in the target</p> <div class="credits"> <p class="dwt_author">B. Jansson</p> <p class="dwt_publisher"></p> <p class="publishDate">1980-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">250</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19800002740&hterms=Plato&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DPlato"> <span id="translatedtitle">Lunar <span class="hlt">radar</span> backscatter studies</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The lunar surface material in the Plato area is characterized using Earth based visual, infrared, and <span class="hlt">radar</span> signatures. <span class="hlt">Radar</span> scattering in the lunar regolith with an existing optical scattering computer program is modeled. Mapping with 1 to 2 km resolution of the Moon using a 70 cm Arecibo <span class="hlt">radar</span> is presented.</p> <div class="credits"> <p class="dwt_author">Thompson, T. W.</p> <p class="dwt_publisher"></p> <p class="publishDate">1979-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">251</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/51699244"> <span id="translatedtitle"><span class="hlt">Radar</span> cross section measurements</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The present status of <span class="hlt">radar</span> cross section (RCS) measurements is addressed. The fundamental considerations and definitions associated with RCS measurements are reviewed, including <span class="hlt">radar</span> waveform, polarization requirements, far-field requirements, and target dimensional scaling. Different types of measurement facilities are examined, including their range geometries, target support systems, calibration standards, and facility evaluation. Instrumentation <span class="hlt">radar</span> requirements and designs are reviewed, and</p> <div class="credits"> <p class="dwt_author">Robert B. Dybdal</p> <p class="dwt_publisher"></p> <p class="publishDate">1987-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">252</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.egr.msu.edu/~aviyente/jssp07.pdf"> <span id="translatedtitle">Automatic <span class="hlt">Radar</span> Waveform Recognition</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In this paper, a system for automatically recognizing <span class="hlt">radar</span> waveforms is introduced. This type of techniques are needed in various spectrum management, surveillance and cognitive radio or <span class="hlt">radar</span> applications. The intercepted <span class="hlt">radar</span> signal is classified to eight classes based on the pulse compression waveform: linear frequency modulation (LFM), discrete frequency codes (Costas codes), binary phase, and Frank, P1, P2, P3,</p> <div class="credits"> <p class="dwt_author">Jarmo Lundn; Visa Koivunen</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">253</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60437234"> <span id="translatedtitle">Controlling <span class="hlt">radar</span> signature</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Low observable technologies for military and tactical aircraft are reviewed including signature-reduction techniques and signal detection\\/jamming. Among the applications considered are low-signature sensors and the reduction of <span class="hlt">radar</span> cross section in conjunction with <span class="hlt">radar</span>-absorbing structures and materials. Technologies for reducing <span class="hlt">radar</span> cross section are shown to present significant technological challenges, although they afford enhanced aircraft survivability.</p> <div class="credits"> <p class="dwt_author">Foulke</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">254</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/868875"> <span id="translatedtitle">Beam shuttering <span class="hlt">interferometer</span> and method</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">A method and apparatus resulting in the simplification of phase shifting interferometry by eliminating the requirement to know the phase shift between interferograms or to keep the phase shift between interferograms constant. The present invention provides a simple, inexpensive means to shutter each independent beam of the <span class="hlt">interferometer</span> in order to facilitate the data acquisition requirements for optical interferometry and phase shifting interferometry. By eliminating the requirement to know the phase shift between interferograms or to keep the phase shift constant, a simple, economical means and apparatus for performing the technique of phase shifting interferometry is provide which, by thermally expanding a fiber optical cable changes the optical path distance of one incident beam relative to another.</p> <div class="credits"> <p class="dwt_author">Deason, Vance A. (Idaho Falls, ID); Lassahn, Gordon D. (Idaho Falls, ID)</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">255</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/985339"> <span id="translatedtitle">X-ray shearing <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">An x-ray <span class="hlt">interferometer</span> for analyzing high density plasmas and optically opaque materials includes a point-like x-ray source for providing a broadband x-ray source. The x-rays are directed through a target material and then are reflected by a high-quality ellipsoidally-bent imaging crystal to a diffraction grating disposed at 1.times. magnification. A spherically-bent imaging crystal is employed when the x-rays that are incident on the crystal surface are normal to that surface. The diffraction grating produces multiple beams which interfere with one another to produce an interference pattern which contains information about the target. A detector is disposed at the position of the image of the target produced by the interfering beams.</p> <div class="credits"> <p class="dwt_author">Koch, Jeffrey A. (Livermore, CA) [Livermore, CA</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-07-08</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">256</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2005SPIE.6020..573W"> <span id="translatedtitle">Michelson <span class="hlt">interferometer</span> for laser wavelength</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A wavemeter based on Michelson <span class="hlt">interferometer</span> accurately measure static wavelength of a tunable laser. Its operation principle is formulated in details. Double longitudinal-mode He-Ne laser with frequency stabilization is used as the reference optical source of the wavemeter. Voice-coil motor using PID means can realize to move in uniform motion. Phase-locked loop circuit including NE564 and 74LS193 is used to enhance resolution of the wavemeter. Data processing is carried out by the counter unit including two 8254 programmable timer, a MCU, a LCD. The test shows that its measurement accuracy is 1×10 -6 and is higher than those of other wavemeters such as Fizeau interference and Fabry-Perot wavemeter.</p> <div class="credits"> <p class="dwt_author">Wang, Liqiang; Ren, Wenjie</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">257</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/10119707"> <span id="translatedtitle">Angle <span class="hlt">interferometer</span> cross axis errors</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Angle <span class="hlt">interferometers</span> are commonly used to measure surface plate flatness. An error can exist when the centerline of the double comer cube mirror assembly is not square to the surface plate and the guide bar for the mirror sled is curved. Typical errors can be one to two microns per meter. A similar error can exist in the calibration of rotary tables when the centerline of the double comer cube mirror assembly is not square to the axes of rotation of the angle calibrator and the calibrator axis is not parallel to the rotary table axis. Commercial double comer cube assemblies typically have non-parallelism errors of ten milli-radians between their centerlines and their sides and similar values for non-squareness between their centerlines and end surfaces. The authors have developed a simple method for measuring these errors and correcting them by remachining the reference surfaces.</p> <div class="credits"> <p class="dwt_author">Bryan, J.B.; Carter, D.L.; Thompson, S.L.</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">258</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1993STIA...9580421B"> <span id="translatedtitle">Miniature Angle Measuring <span class="hlt">Interferometer</span> (MIAMI)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The miniature Angle Measuring <span class="hlt">Interferometer</span> (MIAMI) is a compact laser <span class="hlt">interferometer</span> that was developed by Ball to satisfy the sensor needs of various pointing and tracking applications. These include: (1) attitude sensing for fast-steering mirrors and other optical elements, (2) structural monitoring and control for optical benches and other structures requiring micro-positioning, and (3) high-precision encoders for use in measuring the angular position of gimballed payloads and drives. MIAMI is constructed from off-the-shelf optical elements, using the inherent precision of the optical faces for alignment when feasible. In the present configuration, the laser light makes eight passes between the sensor head and the retroreflective target, amplifying the sensitivity of this device by a factor of eight. The interference of the two laser beams create fringe patterns, and the separation between fringes is equivalent to one wavelength of laser light (0.6328 micrometers). MIAMI uses interpolation to further subdivide each fringe spacing by a factor of 8 or 16, depending on configuration. MIAMI exhibits excellent performance characteristics, Its angular resolution is 175 nanoradians, and it achieves this with incremental data rates exceeding 5 MHz. MIAMI can accommodate rapid slew rates (greater than 50 deg/sec) and large angular travel (greater than +/- 20 deg). When used as a linear calibration sensor, MIAMI is capable of approxiamtely 10 nanometer linear resolution. The compact design (approximately 5 cubic in.) and light weight (approximately 8 oz) for the sensor head optics make it a very attractive candidate for space sensor applications.</p> <div class="credits"> <p class="dwt_author">Bauer, Robert J.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">259</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/12027177"> <span id="translatedtitle">Dynamic models of Fabry-Perot <span class="hlt">interferometers</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Long-baseline, high-finesse Fabry-Perot <span class="hlt">interferometers</span> can be used to make distance measurements that are precise enough to detect gravity waves. This level of sensitivity is achieved in part when the <span class="hlt">interferometer</span> mirrors are isolated dynamically, with pendulum mounts and high-bandwidth cavity length control servos to reduce the effects of seismic noise. We present dynamical models of the cavity fields and signals of Fabry-Perot <span class="hlt">interferometers</span> for use in the design and evaluation of length control systems for gravity-wave detectors. Models are described and compared with experimental data. PMID:12027177</p> <div class="credits"> <p class="dwt_author">Redding, David; Regehr, Martin; Sievers, Lisa</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-05-20</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">260</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/450430"> <span id="translatedtitle">Rotation Sensing with an Atom <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We have measured the phase shift induced by rotation of an atom <span class="hlt">interferometer</span> at rates of -2 to +2 earth rates and obtained 1{percent} agreement with the predicted Sagnac phase shift for atomic matter waves. The rotational rms noise of our <span class="hlt">interferometer</span> was 42 milliearth rates for 1 sec of integration time, within 9{percent} of shot noise. The high sensitivity and agreement of predicted and measured behavior suggest useful future scientific applications of atom <span class="hlt">interferometers</span> as inertial sensors. {copyright} {ital 1997} {ital The American Physical Society}</p> <div class="credits"> <p class="dwt_author">Lenef, A.; Hammond, T.D.; Smith, E.T.; Chapman, M.S.; Rubenstein, R.A.; Pritchard, D.E. [Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)] [Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-02-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_12");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a style="font-weight: bold;">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_14");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_13 div --> <div id="page_14" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_13");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a style="font-weight: bold;">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_15");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">261</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21259966"> <span id="translatedtitle">Classes and configurations of atom <span class="hlt">interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We establish the fundamental properties of two classes of <span class="hlt">interferometers</span>: those forming a pattern in momentum space, based on the superposition of two different momentum states and described by their relative propagation, and those forming a pattern in real space, based on two or more <span class="hlt">interferometer</span> arms and described by the propagation between their local ends. These two classes are characterized by different sensitivity functions and different noise sources; we will compare the sensitivity functions of two possible configurations of atom <span class="hlt">interferometer</span> and identify the most promising realization, with a view to applications to tests of general relativity and investigations of alterations of the spacetime curvature.</p> <div class="credits"> <p class="dwt_author">D'Ambrosio, Erika [Istituto Nazionale di Fisica Nucleare, Sez. di Firenze, Via Bruno Rossi 1/3-50019 Sesto Fiorentino (Italy)</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-02-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">262</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20040074298&hterms=blip&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3D%2522blip%2522"> <span id="translatedtitle">The Millimeter-Wave Bolometric <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The Millimeter-wave Bolometric <span class="hlt">Interferometer</span> (MBI) is a proposed ground-based instrument designed for a wide range of cosmological and astrophysical observations including studies of the polarization of the cosmic microwave background (CMB). MBI combines the advantages of two well-developed technologies - <span class="hlt">interferometers</span> and bolometric detectors. <span class="hlt">Interferometers</span> have many advantages over .filled-aperture telescopes and are particularly suitable for high resolution imaging. Cooled bolometers are the highest sensitivity detectors at millimeter and sub-millimeter wavelengths. The combination of these two technologies results in an instrument with both high sensitivity and high angular resolution.</p> <div class="credits"> <p class="dwt_author">Ali, S.; Ade, P. A. R.; Bock, J. J.; Novak, G.; Piccirillo, L.; Timbie, P.; Tucker, G. S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">263</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://w8lrk.org/article/RadarTutorial.pdf"> <span id="translatedtitle"><span class="hlt">Radar</span> Meteorology Tutorial</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">Brian McNoldy at Multi-community Environmental Storm Observatory (MESO) educates the public about the use of <span class="hlt">radar</span> in meteorology in this pdf document. After reading about the history of <span class="hlt">radar</span>, visitors can find out how <span class="hlt">radar</span> can detect storms by transmitting a high-power beam of radiation. Students can learn how scatter, absorption, frequencies, scan angles, and moments impact the <span class="hlt">radar</span> display. With the help of many example images, the author also discusses how to interpret the images collected. At the end of the online document, visitors can learn about the characteristics and capabilities of NEXRAD WSR-88D, the <span class="hlt">radar</span> used throughout the United States.</p> <div class="credits"> <p class="dwt_author">Mcnoldy, Brian</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-08-16</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">264</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20120009289&hterms=light&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dlight"> <span id="translatedtitle">Comparative Sensitivities of Gravitational Wave Detectors Based on Atom <span class="hlt">Interferometers</span> and Light <span class="hlt">Interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">We consider a class of proposed gravitational wave detectors based on multiple atomic <span class="hlt">interferometers</span> separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, non-inertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light <span class="hlt">interferometers</span>. We find that atom <span class="hlt">interferometers</span> and light <span class="hlt">interferometers</span> are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g. multiple arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and favors the atom <span class="hlt">interferometers</span> in the low-frequency limit, although the limit in both cases is severe. Whether this potential advantage outweighs the additional complexity associated with including atom <span class="hlt">interferometers</span> will require further study.</p> <div class="credits"> <p class="dwt_author">Baker, John G.; Thorpe, J. I.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">265</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010EGUGA..1215611W"> <span id="translatedtitle">Multidimensional <span class="hlt">radar</span> picture</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In marine navigation systems, the three-dimensional (3D) visualization is often and often used. Echosonders and sonars working in hydroacustic systems can present pictures in three dimensions. Currently, vector maps also offer 3D presentation. This presentation is used in aviation and underwater navigation. In the nearest future three-dimensional presentation may be obligatory presentation in displays of navigation systems. A part of these systems work with <span class="hlt">radar</span> and communicates with it transmitting data in a digital form. 3D presentation of <span class="hlt">radar</span> picture require a new technology to develop. In the first step it is necessary to compile digital form of <span class="hlt">radar</span> signal. The modern navigation <span class="hlt">radar</span> do not present data in three-dimensional form. Progress in technology of digital signal processing make it possible to create multidimensional <span class="hlt">radar</span> pictures. For instance, the RSC (<span class="hlt">Radar</span> Scan Converter) - digital <span class="hlt">radar</span> picture recording and transforming tool can be used to create new picture online. Using RSC and techniques of modern computer graphics multidimensional <span class="hlt">radar</span> pictures can be generated. The <span class="hlt">radar</span> pictures mentioned should be readable for ECDIS. The paper presents a method for generating multidimensional <span class="hlt">radar</span> picture from original signal coming from <span class="hlt">radar</span> receiver.</p> <div class="credits"> <p class="dwt_author">Waz, Mariusz</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">266</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19720048111&hterms=induced+polarization&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dinduced%2Bpolarization"> <span id="translatedtitle">Polarization mismatch errors in radio phase <span class="hlt">interferometers</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">An analysis is presented which deals with the effects of polarization mismatch errors on the accuracy of a phase <span class="hlt">interferometer</span> used for position location of unknown emitters relative to known calibration emitters. Closed-form expressions for the induced phase difference between <span class="hlt">interferometer</span> antennas are derived for several combinations of receiving and transmitting antenna polarizations. Errors contributed by mechanical misalignment between antennas, as well as effects of power loss attributable to polarization mismatch, are also considered. The analysis leads to the conclusion that circularly polarized <span class="hlt">interferometer</span> and transmitter antennas are best suited for the position location application, if it is assumed that polarization tracking of the <span class="hlt">interferometer</span> antennas is not available. It is shown that a reasonable amount of ellipticity can be tolerated before the phase error becomes significant.</p> <div class="credits"> <p class="dwt_author">Muehldorf, E. I.; Teichman, M. A.; Kramer, E.</p> <p class="dwt_publisher"></p> <p class="publishDate">1972-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">267</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/22380106"> <span id="translatedtitle">Active noise cancellation in a suspended <span class="hlt">interferometer</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">We demonstrate feed-forward vibration isolation on a suspended Fabry-Perot <span class="hlt">interferometer</span> using Wiener filtering and a variant of the common least mean square adaptive filter algorithm. We compare the experimental results with theoretical estimates of the cancellation efficiency. Using data from the recent Laser <span class="hlt">Interferometer</span> Gravitational Wave Observatory (LIGO) Science Run, we also estimate the impact of this technique on full scale gravitational wave <span class="hlt">interferometers</span>. In the future, we expect to use this technique also to remove acoustic, magnetic, and gravitational noise perturbations from the LIGO <span class="hlt">interferometers</span>. This noise cancellation technique is simple enough to implement in standard laboratory environments and can be used to improve signal-to-noise ratio for a variety of high precision experiments. PMID:22380106</p> <div class="credits"> <p class="dwt_author">Driggers, Jennifer C; Evans, Matthew; Pepper, Keenan; Adhikari, Rana</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-02-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">268</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA470710"> <span id="translatedtitle">Stroboscopic Imaging <span class="hlt">Interferometer</span> for MEMS Performance Measurement.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The insertion of MEMS components into aerospace systems requires advanced testing to characterize performance in a space environment. Here we report a novel stroboscopic <span class="hlt">interferometer</span> test system that measures nanometer- scale displacements of moving MEM...</p> <div class="credits"> <p class="dwt_author">J. A. Conway J. D. Fowler J. V. Osborn</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">269</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/19658985"> <span id="translatedtitle">Atom <span class="hlt">interferometers</span> with scalable enclosed area.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Bloch oscillations (i.e., coherent acceleration of matter waves by an optical lattice) and Bragg diffraction are integrated into light-pulse atom <span class="hlt">interferometers</span> with large momentum splitting between the <span class="hlt">interferometer</span> arms, and hence enhanced sensitivity. Simultaneous acceleration of both arms in the same internal states suppresses systematic effects, and simultaneously running a pair of <span class="hlt">interferometers</span> suppresses the effect of vibrations. Ramsey-Bordé <span class="hlt">interferometers</span> using four such Bloch-Bragg-Bloch beam splitters exhibit 15% contrast at 24variant Planck's over 2pik splitting, the largest so far (variant Planck's over 2pik is the photon momentum); single beam splitters achieve 88variant Planck's over 2pik. The prospects for reaching 100 s of variant Planck's over 2pik and applications such as gravitational wave sensors are discussed. PMID:19658985</p> <div class="credits"> <p class="dwt_author">Müller, Holger; Chiow, Sheng-wey; Herrmann, Sven; Chu, Steven</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-06-19</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">270</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21346962"> <span id="translatedtitle">Atom <span class="hlt">Interferometers</span> with Scalable Enclosed Area</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Bloch oscillations (i.e., coherent acceleration of matter waves by an optical lattice) and Bragg diffraction are integrated into light-pulse atom <span class="hlt">interferometers</span> with large momentum splitting between the <span class="hlt">interferometer</span> arms, and hence enhanced sensitivity. Simultaneous acceleration of both arms in the same internal states suppresses systematic effects, and simultaneously running a pair of <span class="hlt">interferometers</span> suppresses the effect of vibrations. Ramsey-Borde <span class="hlt">interferometers</span> using four such Bloch-Bragg-Bloch beam splitters exhibit 15% contrast at 24(Planck constant/2pi)k splitting, the largest so far ((Planck constant/2pi)k is the photon momentum); single beam splitters achieve 88(Planck constant/2pi)k. The prospects for reaching 100 s of (Planck constant/2pi)k and applications such as gravitational wave sensors are discussed.</p> <div class="credits"> <p class="dwt_author">Mueller, Holger; Chu, Steven [Department of Physics, 366 Le Conte Hall, University of California, Berkeley, California 94720-7300 (United States); Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720 (United States); Chiow, Sheng-wey; Herrmann, Sven [Physics Department, Stanford University, 382 Via Pueblo Mall, Stanford, California 94305 (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-06-19</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">271</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19780000177&hterms=Schindler&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3D%2522Schindler%2522"> <span id="translatedtitle">Improved double-pass michelson <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary"><span class="hlt">Interferometer</span> design separates beams by offsetting centerlines of cat's-eye retroreflectors vertically rather than horizontally. Since beam splitter is insensitive to minimum-thickness condition in this geometry, relatively-low-cost, optically flat plate can be used.</p> <div class="credits"> <p class="dwt_author">Schindler, R. A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1978-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">272</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013SPIE.8906E..0ZL"> <span id="translatedtitle">Polarization phase shifting lateral shearing <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A polarization phase shifting lateral shearing <span class="hlt">interferometer</span> based on a polarization beam splitting plate(PBSP) is proposed. The front surface of the PBSP is coated with polarization beam splitting film and its back surface is coated with total reflection film. The beam to be tested is split by the PBSP with an incidence angle of 45° and divided into two mutually perpendicular linearly polarization beams. Phase shifting can be introduced to the <span class="hlt">interferometer</span> when the PBSP is combined with a polarzation temporal or spatial phase shifter. A polarizaiton temporal phase shifting lateral shearing <span class="hlt">interferometer</span> system is built up both with the ASAP software and the experiments. The usefulness of the <span class="hlt">interferometer</span> is verified.</p> <div class="credits"> <p class="dwt_author">Liu, Lei; Zeng, Aijun; Zhu, Linglin; Song, Qiang; Huang, Huijie</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-08-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">273</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA587430"> <span id="translatedtitle">Navy Precision Optical <span class="hlt">Interferometer</span> (NPOI): An Update.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The Navy Precision Optical <span class="hlt">Interferometer</span> (NPOI) has two purposes: wide angle precise astrometry and high-resolution imaging, both at visible wavelengths. It operates with up to six 12-cm diameter apertures simultaneously, with baseline lengths (distances...</p> <div class="credits"> <p class="dwt_author">D. J. Hutter E. K. Baines J. A. Benson J. T. Armstrong R. M. Bevilacqua</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">274</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013OptRv..20..453N"> <span id="translatedtitle">Unbalanced nulling <span class="hlt">interferometer</span> and precise wavefront control</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A nulling <span class="hlt">interferometer</span> was proposed to achieve direct detection of extra-solar planets (exoplanets) by suppressing light from the central star using a pair of telescopes. Recently, the stellar coronagraph method has shown rapid progress, which uses an extended concept of the nulling <span class="hlt">interferometer</span> within single telescope optics. A dynamic range larger than 1 × 109 for the detection of Earth-like exoplanets can be attained by reducing diffraction patterns using the nulling coronagraph, and by suppressing speckle noise using an adaptive optics with an accuracy of ?/10000 rms. An unbalanced nulling <span class="hlt">interferometer</span> (UNI), which is used as fore-optics, improves the wavefront sensing sensitivity and compensation level of the adaptive optics by a factor of 10. Consequently, the dynamic range of the coronagraph can also be improved by two orders of magnitude. The UNI is composed of a modified coronagraph or a traditional <span class="hlt">interferometer</span> and magnifies the aberrations of incoming wavefronts.</p> <div class="credits"> <p class="dwt_author">Nishikawa, Jun; Murakami, Naoshi</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-11-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">275</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20020038918&hterms=Hammer&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DHammer"> <span id="translatedtitle">Digital Array Scanned <span class="hlt">Interferometer</span>: Sensors And Results</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Digital Array Scanned <span class="hlt">Interferometers</span> (DASI), blend characteristics of a grating spectrometer and a two-beam <span class="hlt">interferometer</span> for acquisition of hyperspectra. DASIs possess field widened capabilities that permit very high throughput. Aspects of DASI design, hyperspectra and data processing methods are presented. In particular, we provide data showing the important result that photon noise limited hyperspectra are achievable for DASI data acquired with a variety of FPAs.</p> <div class="credits"> <p class="dwt_author">Smith, William Hyaden; Hammer, Philip D.; Peterson, David L. (Technical Monitor)</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">276</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/873223"> <span id="translatedtitle">Single and double superimposing <span class="hlt">interferometer</span> systems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary"><span class="hlt">Interferometers</span> which can imprint a coherent delay on a broadband uncollimated beam are described. The delay value can be independent of incident ray angle, allowing interferometry using uncollimated beams from common extended sources such as lamps and fiber bundles, and facilitating Fourier Transform spectroscopy of wide angle sources. Pairs of such <span class="hlt">interferometers</span> matched in delay and dispersion can measure velocity and communicate using ordinary lamps, wide diameter optical fibers and arbitrary non-imaging paths, and not requiring a laser.</p> <div class="credits"> <p class="dwt_author">Erskine, David J. (Oakland, CA)</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">277</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/12485053"> <span id="translatedtitle"><span class="hlt">Interferometer</span>-type structures for guided atoms.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">We experimentally demonstrate <span class="hlt">interferometer</span>-type guiding structures for neutral atoms based on dipole potentials created by microfabricated optical systems. As a central element we use an array of atom waveguides being formed by focusing a red-detuned laser beam with an array of cylindrical microlenses. Combining two of these arrays, we realize X-shaped beam splitters and more complex systems like the geometries for Mach-Zehnder and Michelson-type <span class="hlt">interferometers</span> for atoms. PMID:12485053</p> <div class="credits"> <p class="dwt_author">Dumke, R; Müther, T; Volk, M; Ertmer, W; Birkl, G</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-11-25</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">278</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/27644053"> <span id="translatedtitle">Nonlinear atom <span class="hlt">interferometer</span> surpasses classical precision limit</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Interference is fundamental to wave dynamics and quantum mechanics. The quantum wave properties of particles are exploited in metrology using atom <span class="hlt">interferometers</span>, allowing for high-precision inertia measurements. Furthermore, the state-of-the-art time standard is based on an interferometric technique known as Ramsey spectroscopy. However, the precision of an <span class="hlt">interferometer</span> is limited by classical statistics owing to the finite number of atoms</p> <div class="credits"> <p class="dwt_author">Christian Gross; Tilman Zibold; Eike Nicklas; J. Estève; M. K. Oberthaler</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">279</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/869244"> <span id="translatedtitle">Achromatic self-referencing <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">A self-referencing Mach-Zehnder <span class="hlt">interferometer</span> for accurately measuring laser wavefronts over a broad wavelength range (for example, 600 nm to 900 nm). The apparatus directs a reference portion of an input beam to a reference arm and a measurement portion of the input beam to a measurement arm, recombines the output beams from the reference and measurement arms, and registers the resulting interference pattern ("first" interferogram) at a first detector. Optionally, subportions of the measurement portion are diverted to second and third detectors, which respectively register intensity and interferogram signals which can be processed to reduce the first interferogram's sensitivity to input noise. The reference arm includes a spatial filter producing a high quality spherical beam from the reference portion, a tilted wedge plate compensating for off-axis aberrations in the spatial filter output, and mirror collimating the radiation transmitted through the tilted wedge plate. The apparatus includes a thermally and mechanically stable baseplate which supports all reference arm optics, or at least the spatial filter, tilted wedge plate, and the collimator. The tilted wedge plate is mounted adjustably with respect to the spatial filter and collimator, so that it can be maintained in an orientation in which it does not introduce significant wave front errors into the beam propagating through the reference arm. The apparatus is polarization insensitive and has an equal path length configuration enabling measurement of radiation from broadband as well as closely spaced laser line sources.</p> <div class="credits"> <p class="dwt_author">Feldman, Mark (Pleasanton, CA) [Pleasanton, CA</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">280</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012SPIE.8445E..07M"> <span id="translatedtitle">Keck <span class="hlt">Interferometer</span> Nuller science highlights</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We report here on some of the major astronomical observations obtained by the Keck <span class="hlt">Interferometer</span> Nuller (KIN), the high dynamic range instrument recombining the Keck Telescopes at wavelengths of 8 to 13 microns. A few science targets were observed during the commissioning phase (2004-2007). These early observations aimed at demonstrating the KIN’s ability to spatially resolve and characterize circumstellar dust emission around a variety of targets, ranging from evolved stars to young debris disks. Science operations started then in 2008 with the more demanding KIN exozodi key science programs, augmented by observations of YSOs and hot debris disks between 2009 and 2011. The last KIN observations were gathered in 2011B, and the interpretation of some of the results depicted here is still preliminary (exo-zodi survey) or pending (complicated behavior observed in YSOs). We discuss in particular the initial results of the KIN’s exo-zodi observations, which targeted a total of 40 nearby main sequence single stars. We look for trends in this sample, searching for possible correlations between the measured KIN excesses and basic stellar properties such as spectral type or the presence of dust inferred from separate observations.</p> <div class="credits"> <p class="dwt_author">Mennesson, Bertrand; Millan-Gabet, Rafael; Colavita, M. M.; Serabyn, E.; Hinz, P.; Kuchner, M.; Liu, W.; Barry, R.; Stark, C.; Ragland, S.; Woillez, J.; Traub, W.; Absil, O.; Defrère, Denis; Augereau, J. C.; Lebreton, J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-07-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_13");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a style="font-weight: bold;">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_15");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_14 div --> <div id="page_15" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_14");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a style="font-weight: bold;">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_16");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">281</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1998SPIE.3350..362V"> <span id="translatedtitle">Astrometry with the Keck <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A key thrust of NASA's Origins program is the search for and detection of planetary systems about other stars. Pursuing this goal in a cost-effective and expedient manner from the ground has led NASA to begin work on the Keck <span class="hlt">Interferometer</span>, which will add 4 1.8m 'outrigger' telescopes at the Keck Observatory on Mauna Kea. In addition to the imaging science to be performed by the Keck 10m telescopes with the outriggers, another one of the principal capabilities of the instrument will be the ability for the outriggers to conduct relative astrometry at the 25 microarcsecond level per root hour. Astrometry of this accuracy will enable the array to detect planetary systems composed of Uranus-mass or larger bodies orbiting at 5 AU solar mass stars at a distance of 20 pc; over 300 stars are to be surveyed by the outriggers annually. The astrometric capabilities of the Keck array can also be utilized other astrophysical investigations, such as characterization of spectroscopic binary orbits, and the measurement of the center-of-light shift of MACHO microlensing events, which will allow for a model-independent determinations of lens masses.</p> <div class="credits"> <p class="dwt_author">van Belle, Gerard T.; Boden, Andrew F.; Colavita, M. Mark; Shao, Michael; Vasisht, Gautam; Wallace, J. Kent</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">282</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/5031415"> <span id="translatedtitle">Achromatic self-referencing <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">A self-referencing Mach-Zehnder <span class="hlt">interferometer</span> is described for accurately measuring laser wavefronts over a broad wavelength range (for example, 600 nm to 900 nm). The apparatus directs a reference portion of an input beam to a reference arm and a measurement portion of the input beam to a measurement arm, recombines the output beams from the reference and measurement arms, and registers the resulting interference pattern ([open quotes]first[close quotes] interferogram) at a first detector. Optionally, subportions of the measurement portion are diverted to second and third detectors, which respectively register intensity and interferogram signals which can be processed to reduce the first interferogram's sensitivity to input noise. The reference arm includes a spatial filter producing a high quality spherical beam from the reference portion, a tilted wedge plate compensating for off-axis aberrations in the spatial filter output, and mirror collimating the radiation transmitted through the tilted wedge plate. The apparatus includes a thermally and mechanically stable baseplate which supports all reference arm optics, or at least the spatial filter, tilted wedge plate, and the collimator. The tilted wedge plate is mounted adjustably with respect to the spatial filter and collimator, so that it can be maintained in an orientation in which it does not introduce significant wave front errors into the beam propagating through the reference arm. The apparatus is polarization insensitive and has an equal path length configuration enabling measurement of radiation from broadband as well as closely spaced laser line sources. 3 figures.</p> <div class="credits"> <p class="dwt_author">Feldman, M.</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-04-19</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">283</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19720016521&hterms=harmonic+radar+transmitter&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dharmonic%2Bradar%2Btransmitter"> <span id="translatedtitle">Apollo experience report: Lunar module landing <span class="hlt">radar</span> and rendezvous <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">A developmental history of the Apollo lunar module landing and rendezvous <span class="hlt">radar</span> subsystems is presented. The Apollo <span class="hlt">radar</span> subsystems are discussed from initial concept planning to flight configuration testing. The major <span class="hlt">radar</span> subsystem accomplishments and problems are discussed.</p> <div class="credits"> <p class="dwt_author">Rozas, P.; Cunningham, A. R.</p> <p class="dwt_publisher"></p> <p class="publishDate">1972-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">284</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/215465"> <span id="translatedtitle">Laser <span class="hlt">radar</span> in robotics</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">In this paper the authors describe the basic operating principles of laser <span class="hlt">radar</span> sensors and the typical algorithms used to process laser <span class="hlt">radar</span> imagery for robotic applications. The authors review 12 laser <span class="hlt">radar</span> sensors to illustrate the variety of systems that have been applied to robotic applications wherein information extracted from the laser <span class="hlt">radar</span> data is used to automatically control a mechanism or process. Next, they describe selected robotic applications in seven areas: autonomous vehicle navigation, walking machine foot placement, automated service vehicles, manufacturing and inspection, automotive, military, and agriculture. They conclude with a discussion of the status of laser <span class="hlt">radar</span> technology and suggest trends seen in the application of laser <span class="hlt">radar</span> sensors to robotics. Many new applications are expected as the maturity level progresses and system costs are reduced.</p> <div class="credits"> <p class="dwt_author">Carmer, D.C.; Peterson, L.M. [Environmental Research Inst. of Michigan, Ann Arbor, MI (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-02-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">285</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19820003099&hterms=crrt&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3D%2522crrt%2522"> <span id="translatedtitle">Planetary <span class="hlt">radar</span> studies</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">A catalog of lunar and <span class="hlt">radar</span> anomalies was generated to provide a base for comparison with Venusian <span class="hlt">radar</span> signatures. The relationships between lunar <span class="hlt">radar</span> anomalies and regolith processes were investigated, and a consortium was formed to compare lunar and Venusian <span class="hlt">radar</span> images of craters. Time was scheduled at the Arecibo Observatory to use the 430 MHz <span class="hlt">radar</span> to obtain high resolution <span class="hlt">radar</span> maps of six areas of the lunar suface. Data from 1978 observations of Mare Serenitas and Plato are being analyzed on a PDP 11/70 computer to construct the computer program library necessary for the eventual reduction of the May 1981 and subsequent data acquisitions. Papers accepted for publication are presented.</p> <div class="credits"> <p class="dwt_author">Thompson, T. W.; Cutts, J. A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">286</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2000SPIE.4035..248H"> <span id="translatedtitle">Multifunction laser <span class="hlt">radar</span>: II</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Laser <span class="hlt">radar</span> systems are required for various military applications including obstacle detection, target recognition, and terrain mapping. Each application requires different system parameters such as pulse energy, repetition rate, and field of view. This paper is the second in a series of papers describing the progress toward a multifunction laser <span class="hlt">radar</span> system under construction for the Cooperative Eyesafe Laser <span class="hlt">Radar</span> Program (CELRAP) of the U.S. Army CECOM Night Vision and Electronic Sensors Directorate.</p> <div class="credits"> <p class="dwt_author">Hutchinson, James A.; Trussell, Charlie W.; Allik, Toomas H.; Hamlin, Scott J.; McCarthy, John C.; Jack, Michael D.</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">287</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20000075269&hterms=Reis&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3D%2522Reis%2522"> <span id="translatedtitle">GeoSAR: A <span class="hlt">Radar</span> Terrain Mapping System for the New Millennium</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">GeoSAR Geographic Synthetic Aperture <span class="hlt">Radar</span>) is a new 3 year effort to build a unique, dual-frequency, airborne Interferometric SAR for mapping of terrain. This is being pursued via a Consortium of the Jet Propulsion Laboratory (JPL), Calgis, Inc., and the California Department of Conservation. The airborne portion of this system will operate on a Calgis Gulfstream-II aircraft outfitted with P- and X-band Interferometric SARs. The ground portions of this system will be a suite of Flight Planning Software, an IFSAR Processor and a <span class="hlt">Radar</span>-GIS Workstation. The airborne P-band and X-band <span class="hlt">radars</span> will be constructed by JPL with the goal of obtaining foliage penetration at the longer P-band wavelengths. The P-band and X-band <span class="hlt">radar</span> will operate at frequencies of 350 Mhz and 9.71 Ghz with bandwidths of either 80 or 160 Mhz. The airborne <span class="hlt">radars</span> will be complemented with airborne laser system for measuring antenna positions. Aircraft flight lines and <span class="hlt">radar</span> operating instructions will be computed with the Flight Planning Software The ground processing will be a two-step step process. First, the raw <span class="hlt">radar</span> data will be processed into <span class="hlt">radar</span> images and <span class="hlt">interferometer</span> derived Digital Elevation Models (DEMs). Second, these <span class="hlt">radar</span> images and DEMs will be processed with a <span class="hlt">Radar</span> GIS Workstation which performs processes such as Projection Transformations, Registration, Geometric Adjustment, Mosaicking, Merging and Database Management. JPL will construct the IFSAR Processor and Calgis, Inc. will construct the <span class="hlt">Radar</span> GIS Workstation. The GeoSAR Project was underway in November 1996 with a goal of having the <span class="hlt">radars</span> and laser systems fully integrated onto the Calgis Gulfstream-II aircraft in early 1999. Then, Engineering Checkout and Calibration-Characterization Flights will be conducted through November 1999. The system will be completed at the end of 1999 and ready for routine operations in the year 2000.</p> <div class="credits"> <p class="dwt_author">Thompson, Thomas; vanZyl, Jakob; Hensley, Scott; Reis, James; Munjy, Riadh; Burton, John; Yoha, Robert</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">288</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA364669"> <span id="translatedtitle"><span class="hlt">Radar</span> Imaging and Feature Extraction.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Advanced spectral estimation methods are presented for <span class="hlt">radar</span> imaging and target feature extraction. We study problems involved in inverse synthetic aperture <span class="hlt">radar</span> (ISAR) autofocus and imaging, synthetic aperture <span class="hlt">radar</span> (SAR) autofocus and motion compensati...</p> <div class="credits"> <p class="dwt_author">J. Li</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">289</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA379137"> <span id="translatedtitle">Stepped Frequency Imaging <span class="hlt">Radar</span> Simulation.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">In this thesis, a technique involving Stepped Frequency and Inverse Synthetic Aperture <span class="hlt">Radar</span> (ISAR) processing have been employed to develop two- dimensional <span class="hlt">radar</span> images of an aircraft target. <span class="hlt">Radar</span> returns from prominent scatterers of various parts of t...</p> <div class="credits"> <p class="dwt_author">K. L. Mun</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">290</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA436262"> <span id="translatedtitle">Review of <span class="hlt">Radar</span> Absorbing Materials.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary"><span class="hlt">Radar</span> is a sensitive detection tool and since its development, methods for reducing microwave reflections have been explored. <span class="hlt">Radar</span> absorbers can be classified as impedance matching or resonant absorbers. <span class="hlt">Radar</span> absorbing materials are made from resistive ...</p> <div class="credits"> <p class="dwt_author">P. Saville</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">291</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=N8723443"> <span id="translatedtitle">Landform Identification: Lunar <span class="hlt">Radar</span> Images.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Three sets of polarized <span class="hlt">radar</span>-echo images of the Moon were examined to establish the relation between <span class="hlt">radar</span> resolution and landform-identification resolution. After comparison with lunar maps and photographs, real and apparent landforms on the <span class="hlt">radar</span> image...</p> <div class="credits"> <p class="dwt_author">H. J. Moore T. W. Thompson</p> <p class="dwt_publisher"></p> <p class="publishDate">1987-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">292</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20120011249&hterms=light&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dlight"> <span id="translatedtitle">Comparison of Atom <span class="hlt">Interferometers</span> and Light <span class="hlt">Interferometers</span> as Space-Based Gravitational Wave Detectors</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">We consider a class of proposed gravitational wave detectors based on multiple atomic <span class="hlt">interferometers</span> separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, non-inertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light <span class="hlt">interferometers</span>. We find that atom <span class="hlt">interferometers</span> and light <span class="hlt">interferometers</span> are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g. multiple arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and favors the atom <span class="hlt">interferometers</span> in the low-frequency limit, although the limit in both cases is severe.</p> <div class="credits"> <p class="dwt_author">Baker, John G.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">293</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1989maph...27...13R"> <span id="translatedtitle">Equatorial <span class="hlt">radar</span> system</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A large clear air <span class="hlt">radar</span> with the sensitivity of an incoherent scatter <span class="hlt">radar</span> for observing the whole equatorial atmosphere up to 1000 km altitude is now being designed in Japan. The <span class="hlt">radar</span>, called the Equatorial <span class="hlt">Radar</span>, will be built in Pontianak, Kalimantan Island, Indonesia (0.03 N, 109.3 E). The system is a 47 MHz monostatic Doppler <span class="hlt">radar</span> with an active phased array configuration similar to that of the MU <span class="hlt">radar</span> in Japan, which has been in successful operation since 1983. It will have a PA product of more than 5 x 10(9) sq. Wm (P = average transmitter power, A = effective antenna aperture) with sensitivity more than 10 times that of the MU <span class="hlt">radar</span>. This system configuration enables pulse-to-pulse beam steering within 25 deg from the zenith. As is the case of the MU <span class="hlt">radar</span>, a variety of sophisticated operations will be made feasible under the supervision of the <span class="hlt">radar</span> controller. A brief description of the system configuration is presented.</p> <div class="credits"> <p class="dwt_author">Rukao, S.; Tsuda, T.; Sato, T.; Kato, S.</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">294</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19890020486&hterms=Supervision&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3D%2522Supervision%2522"> <span id="translatedtitle">Equatorial <span class="hlt">radar</span> system</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">A large clear air <span class="hlt">radar</span> with the sensitivity of an incoherent scatter <span class="hlt">radar</span> for observing the whole equatorial atmosphere up to 1000 km altitude is now being designed in Japan. The <span class="hlt">radar</span>, called the Equatorial <span class="hlt">Radar</span>, will be built in Pontianak, Kalimantan Island, Indonesia (0.03 N, 109.3 E). The system is a 47 MHz monostatic Doppler <span class="hlt">radar</span> with an active phased array configuration similar to that of the MU <span class="hlt">radar</span> in Japan, which has been in successful operation since 1983. It will have a PA product of more than 5 x 10(9) sq. Wm (P = average transmitter power, A = effective antenna aperture) with sensitivity more than 10 times that of the MU <span class="hlt">radar</span>. This system configuration enables pulse-to-pulse beam steering within 25 deg from the zenith. As is the case of the MU <span class="hlt">radar</span>, a variety of sophisticated operations will be made feasible under the supervision of the <span class="hlt">radar</span> controller. A brief description of the system configuration is presented.</p> <div class="credits"> <p class="dwt_author">Rukao, S.; Tsuda, T.; Sato, T.; Kato, S.</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">295</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1980STIN...8210298J"> <span id="translatedtitle">Harmonic <span class="hlt">radar</span> literature</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A harmonic <span class="hlt">radar</span> sends on a given frequency f sub o and receives on another frequency usually 3 f sub o. The overtone is generated on joints between the metal parts of the <span class="hlt">radar</span> target. The generated high harmonic frequency is very weak, which is why this <span class="hlt">radar</span> has an extremely low range of detection. Natural objects in the target area do not disturb the high frequency harmonics. The <span class="hlt">radar</span> becomes clutter free. The principals of generating high frequency harmonics cover tunneling, semiconductor and microwave effects. Signal generation is most powerful when f sub o is between 100 and 1000 MHz.</p> <div class="credits"> <p class="dwt_author">Jansson, B.</p> <p class="dwt_publisher"></p> <p class="publishDate">1980-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">296</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/17932519"> <span id="translatedtitle">Fabry-Perot <span class="hlt">interferometer</span> based Mie Doppler lidar for low tropospheric wind observation.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Similar in principle to recent implementations of a lidar system at 355 nm [Opt. Lett. 25, 1231 (2000), Appl. Opt. 44, 6023 (2005)], an incoherent-detection Mie Doppler wind lidar at 1064 nm was developed and deployed in 2005 [Opt. Rev. 12, 409 (2005)] for wind measurements in the low troposphere, taking advantage of aerosol scattering for signal enhancement. We present a number of improvements made to the original 1064 nm system to increase its robustness for long-period operation. These include a multimode fiber for receiving the reference signal, a mode scrambler to allow uniform illumination over the Fabry-Perot <span class="hlt">interferometer</span>, and a fast scannable Fabry-Perot <span class="hlt">interferometer</span> for calibration and for the determination of outgoing laser frequency during the wind observation. With these improvements in stability, the standard deviation of peak transmission and FWHM of the Fabry-Perot <span class="hlt">interferometer</span> was determined to be 0.49% and 0.36%, respectively. The lidar wind measurements were validated within a dynamic range of +/-40 m/s. Comparison experiments with both wind profiler <span class="hlt">radar</span> and Vaisala wiresonde show good agreement with expected observation error. An example of 24 h continuous observations of wind field and aerosol backscatter coefficients in the boundary layer with 1 min and 30 m temporal and spatial resolution and 3 m/s tolerated wind velocity error is presented and fully demonstrates the stability and robustness of this lidar. PMID:17932519</p> <div class="credits"> <p class="dwt_author">Xia, Haiyun; Sun, Dongsong; Yang, Yuanhong; Shen, Fahua; Dong, Jingjing; Kobayashi, Takao</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-10-10</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">297</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/24686646"> <span id="translatedtitle">Heterodyne displacement <span class="hlt">interferometer</span>, insensitive for input polarization.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Periodic nonlinearity (PNL) in displacement <span class="hlt">interferometers</span> is a systematic error source that limits measurement accuracy. The PNL of coaxial heterodyne <span class="hlt">interferometers</span> is highly influenced by the polarization state and orientation of the source frequencies. In this Letter, we investigate this error source and discuss two <span class="hlt">interferometer</span> designs, designed at TU Delft, that showed very low levels of PNL when subjected to any polarization state and/or polarization orientation. In the experiments, quarter-wave plates (qwps) and half-wave plates (hwps) were used to manipulate the polarization state and polarization orientation, respectively. Results from a commercial coaxial system showed first-order PNL exceeding 10 nm (together with higher order PNL) when the system ceased operation at around ±15°??hwp rotation or ±20°??qwp rotation. The two "Delft <span class="hlt">interferometers</span>," however, continued operation beyond these maxima and obtained first-order PNLs in the order of several picometers, without showing higher order PNLs. The major advantage of these <span class="hlt">interferometers</span>, beside their high linearity, is that they can be fully fiber coupled and thus allow for a modular system buildup. PMID:24686646</p> <div class="credits"> <p class="dwt_author">Meskers, Arjan J H; Spronck, Jo W; Schmidt, Robert H Munnig</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">298</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013PASP..125..951G"> <span id="translatedtitle">Optimal Beam Combiner Design for Nulling <span class="hlt">Interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A scheme to optimally design a beam combiner is discussed for any predetermined fixed geometry nulling <span class="hlt">interferometer</span> aimed at detection and characterization of exoplanets with multiple telescopes or a single telescope (aperture masking). We show that considerably higher order nulls can be achieved with 1D (one-dimensional) <span class="hlt">interferometer</span> geometries than possible with 2D (two-dimensional) geometries with the same number of apertures. Any 1D <span class="hlt">interferometer</span> with N apertures can achieve a 2(N - 1)-order null, while the order of the deepest null for a random 2D aperture geometry <span class="hlt">interferometer</span> is the order of the Nth term in the Taylor expansion of ei(x2+y2) around x=0, y=0 (2nd order null for N=2,3; 4th order null for N=4,5,6). We also show that an optimal beam combiner for nulling interferometry relies on only 0 or ? phase shifts. Examples of nulling <span class="hlt">interferometer</span> designs are shown to illustrate these findings.</p> <div class="credits"> <p class="dwt_author">Guyon, Olivier; Mennesson, Bertrand; Serabyn, Eugene; Martin, Stefan</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-08-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">299</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/869157"> <span id="translatedtitle">Process control system using polarizing <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing <span class="hlt">interferometer</span> is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the <span class="hlt">interferometer</span> by only one photon multiplier. In addition the <span class="hlt">interferometer</span> includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The <span class="hlt">interferometer</span> also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the <span class="hlt">interferometer</span> per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading.</p> <div class="credits"> <p class="dwt_author">Schultz, Thomas J. (Maumee, OH); Kotidis, Petros A. (Waban, MA); Woodroffe, Jaime A. (North Reading, MA); Rostler, Peter S. (Newton, MA)</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">300</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/869806"> <span id="translatedtitle">Furnace control apparatus using polarizing <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing <span class="hlt">interferometer</span> is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the <span class="hlt">interferometer</span> by only one photon multiplier. In addition the <span class="hlt">interferometer</span> includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The <span class="hlt">interferometer</span> also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the <span class="hlt">interferometer</span> per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading.</p> <div class="credits"> <p class="dwt_author">Schultz, Thomas J. (Maumee, OH); Kotidis, Petros A. (Waban, MA); Woodroffe, Jaime A. (North Reading, MA); Rostler, Peter S. (Newton, MA)</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_14");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a style="font-weight: bold;">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_16");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_15 div --> <div id="page_16" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_15");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a style="font-weight: bold;">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_17");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">301</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/5284265"> <span id="translatedtitle">Process control system using polarizing <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">A system for nondestructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing <span class="hlt">interferometer</span> is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the <span class="hlt">interferometer</span> by only one photon multiplier. In addition the <span class="hlt">interferometer</span> includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The <span class="hlt">interferometer</span> also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the <span class="hlt">interferometer</span> per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading. 38 figures.</p> <div class="credits"> <p class="dwt_author">Schultz, T.J.; Kotidis, P.A.; Woodroffe, J.A.; Rostler, P.S.</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-02-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">302</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/35076"> <span id="translatedtitle">Furnace control apparatus using polarizing <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">A system for nondestructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing <span class="hlt">interferometer</span> is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the <span class="hlt">interferometer</span> by only one photon multiplier. In addition the <span class="hlt">interferometer</span> includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The <span class="hlt">interferometer</span> also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the <span class="hlt">interferometer</span> per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading. 38 figures.</p> <div class="credits"> <p class="dwt_author">Schultz, T.J.; Kotidis, P.A.; Woodroffe, J.A.; Rostler, P.S.</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-03-28</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">303</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011AGUFMSA43A1891B"> <span id="translatedtitle">Multi-instrument coordinated observations of auroral dynamics at EISCAT Svalbard and Sondrestrom <span class="hlt">Radar</span> sites</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A multi-instrument campaign to observe auroral dynamics was conducted during February 7-10, 2011 at the EISCAT Svalbard <span class="hlt">Radar</span> (ESR) in Norway and the Sondrestrom <span class="hlt">radar</span> in Greenland. This campaign involved measurements of incoherent scatter spectra from both the <span class="hlt">radars</span>, optical observations of aurora on both sites, and auroral radio emissions measured with a spectrum analyzer and with an LF/MF/HF <span class="hlt">interferometer</span> at Sondrestrom. In this paper, we will present data from this coordinated study, focusing on correlations of plasma line enhancements and any NEIALs events with other datasets during auroral precipitation periods and substorm onsets. We will also present a comparative analysis of the same event reflected in two <span class="hlt">radars</span> with very different wavelengths.</p> <div class="credits"> <p class="dwt_author">Bhatt, A.; Stromme, A.; Häggström, I.; Samara, M.; Michell, R. G.; Labelle, J. W.; Broughton, M.; Lanchester, B. S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">304</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/5544147"> <span id="translatedtitle">Full-field Fabry-Perot <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This paper describes the use of a Fabry-Perot <span class="hlt">interferometer</span> for simultaneously measuring velocity at many points on the surface of a shock-loaded solid. The method is based upon work reported by S. Gidon and G. Behar in 1986, but the data analysis has been improved by the application of image-processing techniques. Light from a pulsed single-frequency laser is focused onto a moving target and the returned Doppler-shifted image passed through a Fabry-Perot <span class="hlt">interferometer</span>. Output of the <span class="hlt">interferometer</span> is a set of fringes that are formed for specific combinations of wavelength and light angle. These fringes are recorded on film for subsequent analysis. Fringe position determines the velocity for each point on the target that forms a fringe. A method for determining the velocity as a function of both position and time will also be discussed. 5 refs., 6 figs.</p> <div class="credits"> <p class="dwt_author">Mathews, A.R.; Boat, R.M.; Hemsing, W.F.; Warnes, R.H.; Whittemore, G.R.</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">305</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20060005576&hterms=optics+physics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Doptics%2Bphysics"> <span id="translatedtitle">Modeling the Laser <span class="hlt">Interferometer</span> Space Antenna Optics</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The Laser <span class="hlt">Interferometer</span> Space Antenna (LISA), shown below, will detect gravitational waves produced by objects such as binary black holes or objects falling into black holes (extreme mass ratio inspirals) over a frequency range of l0(exp -4) to 0.1 Hz. Within the conceptual frame work of Newtonian physics, a gravitational wave produces a strain, (Delta)l/l, with magnitudes of the order of Earth based gravitational wave detectors, such as the Laser <span class="hlt">Interferometer</span> Gravitational-Wave Observatory (LIGO) project, use Michelson <span class="hlt">interferometers</span> with arm lengths l = 4 km to detect these strains. Earth induced seismic noise limits ground-based instruments detecting gravitational waves with frequencies lower than approx. 1 Hz.</p> <div class="credits"> <p class="dwt_author">Waluschka, Eugene; Pedersen, Tracy R.; McNamara, paul</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">306</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19800030302&hterms=33&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3D8.33"> <span id="translatedtitle">The Table Mountain 8-mm wavelength <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">A two-element radio <span class="hlt">interferometer</span> operating at 8.33-mm wavelength has been developed at the Jet Propulsion Laboratory's Table Mountain Observatory near Wrightwood, CA. The <span class="hlt">interferometer</span> employs a 5.5-m and a 3-m diameter antenna on an east-west baseline of 60 or 120 m, yielding fringe spacings at transit of 28 or 14 arcsec, respectively. The broad intermediate-frequency bandpass of 100-350 MHz and the system noise temperature of 500 K provide high sensitivity for the measurement of continuum sources. The <span class="hlt">interferometer</span> has been used for high-resolution studies of the planets and the sun, and it is currently being adapted to study solar flare emissions at high spatial and time resolution.</p> <div class="credits"> <p class="dwt_author">Janssen, M. A.; Gary, B. L.; Gulkis, S.; Olsen, E. T.; Soltis, F. S.; Yamane, N. I.</p> <p class="dwt_publisher"></p> <p class="publishDate">1979-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">307</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013SPIE.8759E..22L"> <span id="translatedtitle">A high sensitive roll angle <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A roll angle <span class="hlt">interferometer</span> with high sensitivity is designed in this paper. Two sets of centrosymmetric beams are used to travel through the measurement and reference arms of the roll angle <span class="hlt">interferometer</span> which contains two specific optical devices: wedge prism assembly and wedge mirror assembly. The optical path change in both arms caused by roll is converted into phase shift which can be measured by <span class="hlt">interferometer</span>. Because of the adoption of the centrosymmetric measurement structure, the straightness errors, yaw error and pitch error can be avoided and the dead path is minimized, so that the stability and the accuracy of the measurement can be greatly enhanced. The resolution for the roll measurement is about 0.006? with the measurement range of ±1°.</p> <div class="credits"> <p class="dwt_author">Le, Yanfen; Hou, Wenmei; Hu, Kai; Ju, Aisong</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">308</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/24104824"> <span id="translatedtitle">High-sensitivity roll-angle <span class="hlt">interferometer</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">A roll-angle <span class="hlt">interferometer</span> with high sensitivity is presented in this Letter. Two sets of centrosymmetric beams are used to travel through the measurement and reference arms of the roll-angle <span class="hlt">interferometer</span>, which contains two specific optical devices: wedge prism assembly and wedge mirror assembly. Changes of the optical path in the interferometric arms caused by roll are differential and converted into phase shift through a particular <span class="hlt">interferometer</span> system. The interferometric beams are a completely common path for the adoption of the centrosymmetric measurement structure, and the cross talk of the straightness, yaw, and pitch errors is avoided. The dead path is minimized, so the stability and the accuracy of the measurement can be greatly enhanced. The experimental results fit well with the theoretical analysis, and a measurement resolution of sub-microradian is achieved experimentally. PMID:24104824</p> <div class="credits"> <p class="dwt_author">Le, Yanfen; Hou, Wenmei; Hu, Kai; Shi, Kai</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-09-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">309</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23027234"> <span id="translatedtitle">Circular common-path point diffraction <span class="hlt">interferometer</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">A simple and compact point-diffraction <span class="hlt">interferometer</span> with circular common-path geometry configuration is developed. The <span class="hlt">interferometer</span> is constructed by a beam-splitter, two reflection mirrors, and a telescope system composed by two lenses. The signal and reference waves travel along the same path. Furthermore, an opaque mask containing a reference pinhole and a test object holder or test window is positioned in the common focal plane of the telescope system. The object wave is divided into two beams that take opposite paths along the <span class="hlt">interferometer</span>. The reference wave is filtered by the reference pinhole, while the signal wave is transmitted through the object holder. The reference and signal waves are combined again in the beam-splitter and their interference is imaged in the CCD. The new design is compact, vibration insensitive, and suitable for the measurement of moving objects or dynamic processes. PMID:23027234</p> <div class="credits"> <p class="dwt_author">Du, Yongzhao; Feng, Guoying; Li, Hongru; Vargas, J; Zhou, Shouhuan</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-10-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">310</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1985tpss.procV....R"> <span id="translatedtitle">Wide Angle Michelson Doppler Imaging <span class="hlt">Interferometer</span> (WAMDII)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The wide angle Michelson Doppler imaging <span class="hlt">interferometer</span> (WAMDII) is a specialized type of optical Michelson <span class="hlt">interferometer</span> working at sufficiently long path difference to measure Doppler shifts and to infer Doppler line widths of naturally occurring upper atmospheric Gaussian line emissions. The instrument is intended to measure vertical profiles of atmospheric winds and temperatures within the altitude range of 85 km to 300 km. The WAMDII consists of a Michelson <span class="hlt">interferometer</span> followed by a camera lens and an 85 x 106 charge coupled device photodiode array. Narrow band filters in a filter wheel are used to isolate individual line emissions and the lens forms an image of the emitting region on the charge coupled device array.</p> <div class="credits"> <p class="dwt_author">Roberts, W. T.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">311</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1986stos.work...22R"> <span id="translatedtitle">Wide Angle Michelson Doppler Imaging <span class="hlt">Interferometer</span> (WAMDII)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The wide angle Michelson Doppler imaging <span class="hlt">interferometer</span> (WAMDII) is a specialized type of optical Michelson <span class="hlt">interferometer</span> working at sufficiently long path difference to measure Doppler shifts and to infer Doppler line widths of naturally occurring upper atmospheric Gaussian line emissions. The instrument is intended to measure vertical profiles of atmospheric winds and temperatures within the altitude range of 85 km to 300 km. The WAMDII consists of a Michelson <span class="hlt">interferometer</span> followed by a camera lens and an 85 x 106 charge coupled device photodiode array. Narrow band filters in a filter wheel are used to isolate individual line emissions and the lens forms an image of the emitting region on the charge coupled device array.</p> <div class="credits"> <p class="dwt_author">Roberts, B.</p> <p class="dwt_publisher"></p> <p class="publishDate">1986-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">312</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012JPhCS.400d2050P"> <span id="translatedtitle"><span class="hlt">Interferometers</span> from single-atom mirrors</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary"><span class="hlt">Interferometers</span> are ubiquitous devices in optics, consisting of arrangements of totally reflective and semitransparent mirrors, fiber optics, detectors, etc. The smallest possible mirror consists of a single atom, and with recent advances in nanotechnology it is possible to fabricate them and couple them to transmission lines. This can be realized for example with superconducting qubits and superconducting coplanar waveguide resonators or with dipole emitters coupled to surface-plasmon nanowires. Based on a recent proposal [G S Paraoanu, Phys. Rev. A 82, 023802 (2010)], here we give a brief overview of the two-atom Mach-Zender <span class="hlt">interferometer</span>. Here we show that both the phase and the amplitude of the output field can be used to extract information about the phase difference between the two arms of the <span class="hlt">interferometer</span>. Also, we point out that this device can be used as well in the reflection mode.</p> <div class="credits"> <p class="dwt_author">Paraoanu, G. S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">313</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55183860"> <span id="translatedtitle">Active <span class="hlt">radar</span> stealth device</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This patent discloses an active <span class="hlt">radar</span> stealth device mounted on a host platform for minimizing the <span class="hlt">radar</span> cross-section of the host platform. A coating which is essentially microwave transparent is attached to the surface of a host platform and is exposed to an incident microwave field. A plurality of detector\\/emitter pairs contained within the coating detect and actively cancel, respectively,</p> <div class="credits"> <p class="dwt_author">R. N. Cain; Albert J. Corda</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">314</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50818436"> <span id="translatedtitle">Researches on <span class="hlt">radar</span> technology</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In Electronic Systems Research Center (ESRC), various researches have been conducted to realize defense <span class="hlt">radars</span> with excellent functions and performance. This presentation introduces some of those <span class="hlt">radar</span> research programs. Especially, the research concerning active phased array antenna started in an early stage of the 1970s. Successive various basic research programs have been conducted and finally led to successful development of</p> <div class="credits"> <p class="dwt_author">T. Itoh</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">315</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1990AdSpR..10..151F"> <span id="translatedtitle">Equatorial <span class="hlt">radar</span> system</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A large clear air <span class="hlt">radar</span> with the sensitivity of an incoherent scatter <span class="hlt">radar</span> for observing the whole equatorial atmosphere up to 1000 km altitude is now being designed in Japan. The <span class="hlt">radar</span> will be built in Pontianak, West Kalimantan, Indonesia (0.03 deg N, 109.29 deg E). The system is a 47-MHz monostatic Doppler <span class="hlt">radar</span> with an active phased array configuration similar to that of the MU <span class="hlt">radar</span> in Japan, which has been in successful operation since 1983. It will have a PA product of about 3 x 10 to the 9th W sq m (P = average transmitter power, A = effective antenna aperture) with a sensitivity of approximately 10 times that of the MU <span class="hlt">radar</span>. This system configuration enables pulse-to-pulse beam steering within 20 deg from the zenith. As is the case of the MU <span class="hlt">radar</span>, a variety of operations will be made feasible under the supervision of the <span class="hlt">radar</span> controller. A brief description of the system configuration is presented.</p> <div class="credits"> <p class="dwt_author">Fukao, Shoichiro; Tsuda, Toshitaka; Sato, Toru; Kato, Susumu</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">316</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20030106262&hterms=Diagram+understanding&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DDiagram%2Bunderstanding"> <span id="translatedtitle">The Cloud <span class="hlt">Radar</span> System</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Improvement in our understanding of the radiative impact of clouds on the climate system requires a comprehensive view of clouds including their physical dimensions, dynamical generation processes, and detailed microphysical properties. To this end, millimeter vave <span class="hlt">radar</span> is a powerful tool by which clouds can be remotely sensed. The NASA Goddard Space Flight Center has developed the Cloud <span class="hlt">Radar</span> System (CRS). CRS is a highly sensitive 94 GHz (W-band) pulsed-Doppler polarimetric <span class="hlt">radar</span> that is designed to fly on board the NASA high-altitude ER-2 aircraft. The instrument is currently the only millimeter wave <span class="hlt">radar</span> capable of cloud and precipitation measurements from above most all clouds. Because it operates from high-altitude, the CRS provides a unique measurement perspective for cirrus cloud studies. The CRS emulates a satellite view of clouds and precipitation systems thus providing valuable measurements for the implementation and algorithm validation for the upcoming NASA CloudSat mission that is designed to measure ice cloud distributions on the global scale using a spaceborne 94 GHz <span class="hlt">radar</span>. This paper describes the CRS instrument and preliminary data from the recent Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE). The <span class="hlt">radar</span> design is discussed. Characteristics of the <span class="hlt">radar</span> are given. A block diagram illustrating functional components of the <span class="hlt">radar</span> is shown. The performance of the CRS during the CRYSTAL-FACE campaign is discussed.</p> <div class="credits"> <p class="dwt_author">Racette, Paul; Heymsfield, Gerald; Li, Lihua; Tian, Lin; Zenker, Ed</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">317</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA389889"> <span id="translatedtitle">Digital LPI <span class="hlt">Radar</span> Detector.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The function of a Low Probability of Intercept (LPI) <span class="hlt">radar</span> is to prevent its interception by an Electronic Support (ES) receiver. This objective is generally achieved through the use of a <span class="hlt">radar</span> waveform that is mismatched to those waveforms for which an E...</p> <div class="credits"> <p class="dwt_author">P. G. Ong H. K. Teng</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">318</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011PhRvE..83b6601J"> <span id="translatedtitle"><span class="hlt">Radar</span> illusion via metamaterials</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">An optical illusion is an image of a real target perceived by the eye that is deceptive or misleading due to a physiological illusion or a specific visual trick. The recently developed metamaterials provide efficient approaches to generate a perfect optical illusion. However, all existing research on metamaterial illusions has been limited to theory and numerical simulations. Here, we propose the concept of a <span class="hlt">radar</span> illusion, which can make the electromagnetic (EM) image of a target gathered by <span class="hlt">radar</span> look like a different target, and we realize a <span class="hlt">radar</span> illusion device experimentally to change the <span class="hlt">radar</span> image of a metallic target into a dielectric target with predesigned size and material parameters. It is well known that the <span class="hlt">radar</span> signatures of metallic and dielectric objects are significantly different. However, when a metallic target is enclosed by the proposed illusion device, its EM scattering characteristics will be identical to that of a predesigned dielectric object under the illumination of <span class="hlt">radar</span> waves. Such an illusion device will confuse the <span class="hlt">radar</span>, and hence the real EM properties of the metallic target cannot be perceived. We designed and fabricated the <span class="hlt">radar</span> illusion device using artificial metamaterials in the microwave frequency, and good illusion performances are observed in the experimental results.</p> <div class="credits"> <p class="dwt_author">Jiang, Wei Xiang; Cui, Tie Jun</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-02-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">319</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/56165475"> <span id="translatedtitle">HWL <span class="hlt">radar</span> system analysis</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Research is reported relating to the weapons-location problem as it relates to Marine Corps Hostile Weapons Locating (HWL) <span class="hlt">radar</span> and lightweight mortar locator requirements. Several technical system problems are discussed, including a review of the HWL system mechanical design. A detailed description is also given of the EES computer modeling program (ballistic trajectory model and <span class="hlt">radar</span> operational simulation) that was</p> <div class="credits"> <p class="dwt_author">F. R. Williamson; R. R. Sheppard; C. E. Summers; E. K. Reedy</p> <p class="dwt_publisher"></p> <p class="publishDate">1976-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">320</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2005IJTFM.125...15S"> <span id="translatedtitle">Advances in <span class="hlt">Radar</span> Techniques</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Most of the clutter received by L, S, C, X, and Ku band <span class="hlt">radars</span> obeys a Weibull ditribution. To suppress such Weibull-distributed sea and weather clutter, Weibull CFAR techniques are applied to data taken by an X-band <span class="hlt">radar</span> using computer in real time. The results show the usefulness of Weibull CFAR.</p> <div class="credits"> <p class="dwt_author">Sekine, Matsuo</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_15");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a style="font-weight: bold;">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_17");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_16 div --> <div id="page_17" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_16");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a style="font-weight: bold;">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_18");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">321</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50087689"> <span id="translatedtitle">F-22 <span class="hlt">radar</span> development</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The USAF F-22 Engineering, Manufacturing and Development (EMD) program has pushed the state of airborne fire control <span class="hlt">radar</span> technology well beyond that found in today's fielded systems. Advancements in performance, reliability, and low observability have been realized in the design of the F-22's new APG-77 <span class="hlt">Radar</span> through the implementation of active array technology, low noise receiver components, high density packaging,</p> <div class="credits"> <p class="dwt_author">J. A. Malas</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">322</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50515182"> <span id="translatedtitle">Chaotic signals in <span class="hlt">radar</span>?</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Chaotic signals add to the design repertoire for <span class="hlt">radar</span>. This paper discusses the properties of chaotic signals, their generation and use, including transmitter hardware and efficiency, with reference to results in communications research and recent theoretical and practical results in sonar, and development throughout the world for <span class="hlt">radar</span>. Practical issues arising from the unique properties of chaotic systems are considered.</p> <div class="credits"> <p class="dwt_author">S. A. Harman; A. J. Fenwick; C. Williams</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">323</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19750008534&hterms=fire+control+system&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dfire%2Bcontrol%2Bsystem"> <span id="translatedtitle">Noncooperative rendezvous <span class="hlt">radar</span> system</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">A fire control <span class="hlt">radar</span> system was developed, assembled, and modified. The baseline system and modified angle tracking system are described along with the performance characteristics of the baseline and modified systems. Proposed changes to provide additional techniques for <span class="hlt">radar</span> evaluation are presented along with flight test data.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">1974-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">324</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19840019078&hterms=Czechowsky&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DCzechowsky"> <span id="translatedtitle">Decoders for MST <span class="hlt">radars</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Decoding techniques and equipment used by MST <span class="hlt">radars</span> are described and some recommendations for new systems are presented. Decoding can be done either by software in special-purpose (array processors, etc.) or general-purpose computers or in specially designed digital decoders. Both software and hardware decoders are discussed and the special case of decoding for bistatic <span class="hlt">radars</span> is examined.</p> <div class="credits"> <p class="dwt_author">Woodman, R. F.</p> <p class="dwt_publisher"></p> <p class="publishDate">1983-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">325</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55052553"> <span id="translatedtitle"><span class="hlt">Radar</span> applications overview</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">During the fifty years since its initial development as a means of providing early warning of airborne attacks against allied countries during World War II, <span class="hlt">radar</span> systems have developed to the point of being highly mobile and versatile systems capable of supporting a wide variety of remote sensing applications. Instead of being tied to stationary land-based sites, <span class="hlt">radar</span> systems have</p> <div class="credits"> <p class="dwt_author">Marshall Greenspan</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">326</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/53262757"> <span id="translatedtitle"><span class="hlt">Radar</span> - The Future</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Progress in civil and military <span class="hlt">radar</span> units since the invention of <span class="hlt">radar</span> in 1935 is summarized, noting the trend to multipurpose units. The earliest systems functioned at 10 cm, then 3 cm after development of a cavity magnetron to provide power for shorter wavelengths. Military needs are driving improvements in three-dimensional scanning capabilities, Primarily to locate aircraft in the presence</p> <div class="credits"> <p class="dwt_author">G. Warwick</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">327</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA111852"> <span id="translatedtitle"><span class="hlt">Radar</span> Frequency Radiation.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">A method is presented for the determination of <span class="hlt">radar</span> frequency radiation power densities that the PAVE PAWS <span class="hlt">radar</span> system could produce in its air and ground environment. The effort was prompted by the concern of the people in the vicinity of OTIS AFB MA a...</p> <div class="credits"> <p class="dwt_author">E. Malowicki</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">328</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1981IEEES..18...46J"> <span id="translatedtitle">Laser <span class="hlt">radar</span> improvements</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A short history of the uses of various laser <span class="hlt">radars</span> is presented, and appropriate applications of laser and microwave <span class="hlt">radars</span> are discussed. CO2 laser <span class="hlt">radar</span>, operating at 10.6 microns, is considered for use in aircraft navigation systems, fire-control systems for armored vehicle and aircraft, missile guidance, severe storm research, line-of-sight command of missiles, wind turbine site surveys, clear-air turbulence monitors for aircraft, and satellite tracking. Microwave <span class="hlt">radar</span> is all-weather, but is subject to multipath inaccuracies, countermeasures, and angular resolution limitations, so hybrid laser microwave systems look promising for microwave target acquisition and laser tracking. Advantages and disadvantages of the use of ruby, YAG, and CO2 lasers in varying atmospheric conditions are discussed. Development of a laser <span class="hlt">radar</span> pod for obstacle detection, Doppler navigation, automatic terrain following, hover control, weapon delivery, and precision searching is noted.</p> <div class="credits"> <p class="dwt_author">Jelalian, A. V.</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-11-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">329</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://southport.jpl.nasa.gov/cdrom/sirced03/cdrom/DOCUMENT/HTML/LESSONS/MODULE04.HTM"> <span id="translatedtitle">Looking at <span class="hlt">Radar</span> Images</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">These activities pertain to the value of the different types of images, including a false color mosaic, a Compressed Stokes image, a vegetation map and key, and various ground photographs. Students are given specific directions on how to decide what features of a <span class="hlt">radar</span> image indicate such structures as upland forest, clear-cut areas, and roads. In a second activity, students look at the <span class="hlt">radar</span> images to see if they can produce a vegetation map similar to the one they have been given. The third activity introduces 15 Decade Volcanoes that pose a particular threat to humans. Using the Decade Volcanoes as examples, students view <span class="hlt">radar</span> images of volcanoes that occur around the world. The final exercise is aimed at helping students distinguish the differences between <span class="hlt">radar</span> image data and visible photographs. Students will look at <span class="hlt">radar</span> data and photographs of three sites taken by the astronauts.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">330</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA580385"> <span id="translatedtitle">Binary Studies with the Navy Precision Optical <span class="hlt">Interferometer</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Observations of binary stars are the bread-and-butter for optical <span class="hlt">interferometers</span>. An easy exploit for the unrivaled angular resolution of long baseline <span class="hlt">interferometers</span>, the measurement of the orbits of double-lined spectroscopic binaries affords the dete...</p> <div class="credits"> <p class="dwt_author">C. A. Hummel J. Sanborn R. T. Zavala</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">331</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20060038861&hterms=interferometers&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3D%2522interferometers%2522"> <span id="translatedtitle">(presentation) Precision Mechanisms for Space <span class="hlt">Interferometers</span>: A Tutorial</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">To maximize salability, spaceborne <span class="hlt">interferometer</span> designs must minimize actuator cost while maximizing science quality and quantity. <span class="hlt">Interferometer</span> designers must have the knowledge to design a system with the simplist, most reliable, and least expensive actuators possible.</p> <div class="credits"> <p class="dwt_author">Agronin, Michael L.</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">332</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/20641070"> <span id="translatedtitle">Optimum quantum states for <span class="hlt">interferometers</span> with fixed and moving mirrors</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We address a systematic approach to the study of the optimum states reaching maximum resolution for <span class="hlt">interferometers</span> with moving mirrors. We find a correspondence between the optimum states for <span class="hlt">interferometers</span> with fixed and moving mirrors.</p> <div class="credits"> <p class="dwt_author">Luis, Alfredo [Departamento de Optica, Facultad de Ciencias Fisicas, Universidad Complutense, 28040 Madrid (Spain)</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-04-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">333</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=N8717323"> <span id="translatedtitle"><span class="hlt">Radar</span> Cross Section (RCS) Data Base Deduced from <span class="hlt">Radar</span> Images.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The creation of <span class="hlt">radar</span> cross section (RCS) catalogs using existing <span class="hlt">radar</span> images is discussed. Analysis of SIR-B images shows that spatial resolution has a significant impact on the <span class="hlt">radar</span> data information content. Interpretation of <span class="hlt">radar</span> data must be based ...</p> <div class="credits"> <p class="dwt_author">A. J. Sieber</p> <p class="dwt_publisher"></p> <p class="publishDate">1986-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">334</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21020563"> <span id="translatedtitle">Bayesian estimation of differential <span class="hlt">interferometer</span> phase</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We apply Bayesian logic to optimally estimate the differential phase in a discrete-time, dual-<span class="hlt">interferometer</span> measurement. This method is particularly relevant to the case of a gravity gradiometer, where the gravity gradient between cold-atom fountain <span class="hlt">interferometers</span> can be estimated from the differential phase, despite the presence of large common phase (acceleration) fluctuations. Given an accurate model, the bias-free algorithm we present is optimal and leverages experimental knowledge of the system noise, classical or quantum, to outperform other typical estimators, including ellipse-fitting techniques.</p> <div class="credits"> <p class="dwt_author">Stockton, John K.; Wu Xinan; Kasevich, Mark A. [Department of Physics, Stanford University, Stanford, California 94305-4060 (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-09-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">335</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/19792621"> <span id="translatedtitle">Lattice <span class="hlt">interferometer</span> for laser-cooled atoms.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">We demonstrate an atom <span class="hlt">interferometer</span> in which atoms are laser cooled into a 1D optical lattice, suddenly released, and later subjected to a pulsed optical lattice. For short pulses, a simple analytical theory predicts the signal. We investigate both short and longer pulses where the analytical theory fails. Longer pulses yield higher precision and larger signals, and we observe a coherent signal at times that can differ significantly from the expected echo time. The <span class="hlt">interferometer</span> has potential for precision measurements of variant Planck's/m(A), and can probe the dynamics of atoms in an optical lattice. PMID:19792621</p> <div class="credits"> <p class="dwt_author">Andersen, Mikkel F; Sleator, Tycho</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-08-14</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">336</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21370645"> <span id="translatedtitle">Lattice <span class="hlt">Interferometer</span> for Laser-Cooled Atoms</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We demonstrate an atom <span class="hlt">interferometer</span> in which atoms are laser cooled into a 1D optical lattice, suddenly released, and later subjected to a pulsed optical lattice. For short pulses, a simple analytical theory predicts the signal. We investigate both short and longer pulses where the analytical theory fails. Longer pulses yield higher precision and larger signals, and we observe a coherent signal at times that can differ significantly from the expected echo time. The <span class="hlt">interferometer</span> has potential for precision measurements of (Planck constant/2pi)/m{sub A}, and can probe the dynamics of atoms in an optical lattice.</p> <div class="credits"> <p class="dwt_author">Andersen, Mikkel F.; Sleator, Tycho [Atomic Physics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8424 (United States) and Jack Dodd Center for Quantum Technology, Department of Physics, University of Otago (New Zealand); Department of Physics, New York University, 4 Washington Place, New York, New York 10003 (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-08-14</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">337</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23381269"> <span id="translatedtitle">Plasmon <span class="hlt">interferometers</span> for high-throughput sensing.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">In this letter, we demonstrate a refractive index sensor based on a subwavelength plasmon <span class="hlt">interferometer</span>. Illumination of an atilt subwavelength slit-grove pair on a metal surface with monochromatic light generates high-contrast interference fringes of the transmitted light. Detection of the refractive index of the dielectric medium on the metal surface is based on examining the relative position of the interference fringes. Integration of the plasmon <span class="hlt">interferometer</span> with a microfluidic channel provides a sensitive, high-throughput sensor with small detection volume. PMID:23381269</p> <div class="credits"> <p class="dwt_author">Yavas, Ozlem; Kocabas, Coskun</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-08-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">338</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/24159897"> <span id="translatedtitle">[Design of a compact structure <span class="hlt">interferometer</span>].</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">A novel <span class="hlt">interferometer</span> system based on the combinations of cube-corner reflectors and fixed plane mirrors was designed, the moving mirror drive system was designed and analysed, and its governor PID algorithm was used to ensure that the movement of the moving mirror is collimated, uniform and smooth. The parameters of the optical system of the <span class="hlt">interferometer</span> and the optical devices were described. Finally, after validation of the experiment, it was indicated that the wave number accuracy, resolution, signal to noise ratio and other key indicators can meet the needs of practical application. PMID:24159897</p> <div class="credits"> <p class="dwt_author">Shi, Lei; Li, Kai; Gao, Zhi-Fan; Zeng, Li-Bo; Wu, Qiong-Shui</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-08-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">339</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19780025753&hterms=truth+lies+rings&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dtruth%2Blies%2Brings"> <span id="translatedtitle">GEOS-3 ocean current investigation using <span class="hlt">radar</span> altimeter profiling. [Gulf Stream surface topography</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Both quasi-stationary and dynamic departures from the marine geoid were successfully detected using altitude measurements from the GEOS-3 <span class="hlt">radar</span> altimeter. The quasi-stationary departures are observed either as elevation changes in <span class="hlt">single</span> <span class="hlt">pass</span> profiles across the Gulf Stream or at the crowding of contour lines at the western and northern areas of topographic maps generated using altimeter data spanning one month or longer. Dynamic features such as current meandering and spawned eddies can be monitored by comparing monthly mean maps. Comparison of altimeter inferred eddies with IR detected thermal rings indicates agreement of the two techniques. Estimates of current velocity are made using derived slope estimates in conjunction with the geostrophic equation.</p> <div class="credits"> <p class="dwt_author">Leitao, C. D.; Huang, N. E.; Parra, C. G.</p> <p class="dwt_publisher"></p> <p class="publishDate">1978-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">340</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/57044u072736h861.pdf"> <span id="translatedtitle">Cold atom <span class="hlt">interferometers</span> and their applications in precision measurements</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Experimental realization of cold 85Rb atom <span class="hlt">interferometers</span> and their applications in precision measurements are reported in this paper. Mach-Zehnder and Ramsey-Bordè\\u000a type <span class="hlt">interferometers</span> were demonstrated. Detailed descriptions of the <span class="hlt">interferometers</span> are given including manipulation of cold\\u000a atoms, Rabi oscillation, stimulated Raman transitions, and optical pumping. As an example of using atom <span class="hlt">interferometers</span> in\\u000a precision measurements, the quadratic Zeeman shift of</p> <div class="credits"> <p class="dwt_author">Jin Wang; Lin Zhou; Run-Bing Li; Min Liu; Ming-Sheng Zhan</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_16");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a style="font-weight: bold;">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_18");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_17 div --> <div id="page_18" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_17");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a style="font-weight: bold;">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_19");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">341</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013JAI.....240001B"> <span id="translatedtitle">The Conceptual Design of the Magdalena Ridge Observatory <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We describe the scientific motivation for and conceptual design of the Magdalena Ridge Observatory <span class="hlt">Interferometer</span>, an imaging <span class="hlt">interferometer</span> designed to operate at visible and near-infrared wavelengths. The rationale for the major technical decisions in the <span class="hlt">interferometer</span> design is discussed, the success of the concept is appraised, and the implications of this analysis for the design of future arrays are drawn out.</p> <div class="credits"> <p class="dwt_author">Buscher, D. F.; Creech-Eakman, M.; Farris, A.; Haniff, C. A.; Young, J. S.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">342</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1991CaJPh..69.1175S"> <span id="translatedtitle">The development of wide-angle Michelson <span class="hlt">interferometers</span> in Canada</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The history, since its beginning in 1961, of the development in Canada of wide-angle Michelson <span class="hlt">interferometers</span> (WAMIs) is overviewed. Special attention is given to the operation principles of scanning WAMIs, the first Michelson Doppler imaging <span class="hlt">interferometer</span>, and the wide-angle Michelson Doppler-imaging <span class="hlt">interferometer</span>, which may be regarded as the culmination of all that was learned during the WAMI history.</p> <div class="credits"> <p class="dwt_author">Shepherd, G. G.; Gault, W. A.; Koehler, R. A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">343</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/22217771"> <span id="translatedtitle">An electron Talbot-Lau <span class="hlt">interferometer</span> and magnetic field sensing</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We present a demonstration of a three grating Talbot-Lau <span class="hlt">interferometer</span> for electrons. As a proof of principle, the <span class="hlt">interferometer</span> is used to measure magnetic fields. The device is similar to the classical Moiré deflectometer. The possibility to extend this work to build a scaled-up electron deflectometer or <span class="hlt">interferometer</span> for sensitive magnetic field sensing is discussed.</p> <div class="credits"> <p class="dwt_author">Bach, Roger; Batelaan, Herman [Department of Physics and Astronomy, University of Nebraska-Lincoln, Theodore P. Jorgensen Hall, Lincoln, Nebraska 68588 (United States)] [Department of Physics and Astronomy, University of Nebraska-Lincoln, Theodore P. Jorgensen Hall, Lincoln, Nebraska 68588 (United States); Gronniger, Glen [The National Secure Manufacturing Center (NSMC), National Nuclear Security Administration's Kansas City Plant, National Security Campus, 14520 Botts Road, Kansas City, Missouri 64147 (United States)] [The National Secure Manufacturing Center (NSMC), National Nuclear Security Administration's Kansas City Plant, National Security Campus, 14520 Botts Road, Kansas City, Missouri 64147 (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-12-16</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">344</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/26255195"> <span id="translatedtitle">FMCW <span class="hlt">radars</span> for snow research</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Frequency Modulated Continuous Wave (FMCW) <span class="hlt">radars</span> have been used by snow scientists for the past 30 years. This <span class="hlt">radar</span> technology provides a promising alternative to point measurements, as properties such as snow depth can be measured quickly and non-destructively. Recent advances in microwave FMCW <span class="hlt">radar</span> technology have resulted in lightweight, portable instrumentation. This is in contrast to the early FMCW <span class="hlt">radar</span></p> <div class="credits"> <p class="dwt_author">Hans-Peter Marshall; Gary Koh</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">345</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20070034821&hterms=zernike+polynomial+aberration&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dzernike%2Bpolynomial%2Baberration"> <span id="translatedtitle">Control of Formation-Flying Multi-Element Space <span class="hlt">Interferometers</span> with Direct <span class="hlt">Interferometer</span>-Output Feedback</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The long-baseline space <span class="hlt">interferometer</span> concept involving formation flying of multiple spacecrafts holds great promise as future space missions for high-resolution imagery. A major challenge of obtaining high-quality interferometric synthesized images from long-baseline space <span class="hlt">interferometers</span> is to accurately control these spacecraft and their optics payloads in the specified configuration. Our research focuses on the determination of the optical errors to achieve fine control of long-baseline space <span class="hlt">interferometers</span> without resorting to additional sensing equipment. We present a suite of estimation tools that can effectively extract from the raw interferometric image relative x/y, piston translational and tip/tilt deviations at the exit pupil aperture. The use of these error estimates in achieving control of the <span class="hlt">interferometer</span> elements is demonstrated using simulated as well as laboratory-collected interferometric stellar images.</p> <div class="credits"> <p class="dwt_author">Lu, Hui-Ling; Cheng, Victor H. L.; Lyon, Richard G.; Carpenter, Kenneth G.</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">346</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1996SPIE.2747....2G"> <span id="translatedtitle"><span class="hlt">Radar</span> applications overview</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">During the fifty years since its initial development as a means of providing early warning of airborne attacks against allied countries during World War II, <span class="hlt">radar</span> systems have developed to the point of being highly mobile and versatile systems capable of supporting a wide variety of remote sensing applications. Instead of being tied to stationary land-based sites, <span class="hlt">radar</span> systems have found their way into highly mobile land vehicles as well as into aircraft, missiles, and ships of all sizes. Of all these applications, however, the most exciting revolution has occurred in the airborne platform arena where advanced technology <span class="hlt">radars</span> can be found in all shapes and sizes...ranging from the large AWACS and Joint STARS long range surveillance and targeting systems to small millimeter wave multi-spectral sensors on smart weapons that can detect and identify their targets through the use of highly sophisticated digital signal processing hardware and software. This paper presents an overview of these <span class="hlt">radar</span> applications with the emphasis on modern airborne sensors that span the RF spectrum. It will identify and describe the factors that influence the parameters of low frequency and ultra wide band <span class="hlt">radars</span> designed to penetrate ground and dense foliage environments and locate within them buried mines, enemy armor, and other concealed or camouflaged weapons of war. It will similarly examine the factors that lead to the development of airborne <span class="hlt">radar</span> systems that support long range extended endurance airborne surveillance platforms designed to detect and precision-located both small high speed airborne threats as well as highly mobile time critical moving and stationary surface vehicles. The mission needs and associated <span class="hlt">radar</span> design impacts will be contrasted with those of <span class="hlt">radar</span> systems designed for high maneuverability rapid acquisition tactical strike warfare platforms, and shorter range cued air-to-surface weapons with integral smart <span class="hlt">radar</span> sensors.</p> <div class="credits"> <p class="dwt_author">Greenspan, Marshall</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-06-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">347</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1981STIN...8225424M"> <span id="translatedtitle"><span class="hlt">Radar</span> frequency radiation</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A method is presented for the determination of <span class="hlt">radar</span> frequency radiation power densities that the PAVE PAWS <span class="hlt">radar</span> system could produce in its air and ground environment. The effort was prompted by the concern of the people in the vicinity of OTIS AFB MA and BEALE AFB CA about the possible <span class="hlt">radar</span> frequency radiation hazard of the PAVE PAWS <span class="hlt">radar</span>. The method is based on the following main assumptions that: (a) the total field can be computed as the vector summation of the individual fields due to each antenna element; (b) the individual field can be calculated using distances for which the field point is in the far field of the antenna element. An RFR computer program was coded for the RADC HE 6180 digital computer and exercised to calculate the radiation levels in the air and ground space for the present baseline and the possible Six DB and 10 DB growth systems of the PAVE PAWS <span class="hlt">radar</span> system at OTIS AFB MA. The average radiation levels due to the surveillance fence were computed for three regions: in the air space in front of the <span class="hlt">radar</span>, at the <span class="hlt">radar</span> hazard fence at OTIS AFB MA and at representative ground points in the OTIS AFB vicinity. It was concluded that the <span class="hlt">radar</span> frequency radiation of PAVE PAWS does not present a hazard to personnel provided there is no entry to the air hazard zone or to the area within the hazard fence. The method developed offers a cost effective way to determine radiation levels from a phased array <span class="hlt">radar</span> especially in the near field and transition regions.</p> <div class="credits"> <p class="dwt_author">Malowicki, E.</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">348</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=Doppler&pg=3&id=EJ474949"> <span id="translatedtitle">A Microwave <span class="hlt">Interferometer</span> on an Air Track.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">Uses an air track and microwave transmitters and receivers to make a Michelson <span class="hlt">interferometer</span>. Includes three experiments: (1) measuring the wavelength of microwaves, (2) measuring the wavelength of microwaves by using the Doppler Effect, and (3) measuring the Doppler shift. (MVL)</p> <div class="credits"> <p class="dwt_author">Polley, J. Patrick</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">349</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=AD669912"> <span id="translatedtitle">The Stellar <span class="hlt">Interferometer</span> at Narrabri Observatory. i.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">A stellar intensity <span class="hlt">interferometer</span> has been installed at Narrabri Observatory in New South Wales, and is being used to measure the angular diameters of bright stars in the spectral range O to F. This paper describes the instrument and the observational pr...</p> <div class="credits"> <p class="dwt_author">R. H. Brown J. Davis L. R. Allen</p> <p class="dwt_publisher"></p> <p class="publishDate">1967-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">350</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA593168"> <span id="translatedtitle">Analysis of Atom-<span class="hlt">Interferometer</span> Clocks.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">We analyze the nature and performance of clocks formed by stabilizing an oscillator to the phase difference between two paths of an atom <span class="hlt">interferometer</span>. The phase evolution has been modeled as being driven by the proper-time difference between the two pat...</p> <div class="credits"> <p class="dwt_author">C. R. Ekstrom S. Peil</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">351</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.wpi.edu/Pubs/ETD/Available/etd-0430103-095432/unrestricted/dpulido.pdf"> <span id="translatedtitle">Instability in a cold atom <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Abstract In this thesis we present a theoretical anaylsis of the instability in a cold atom in- terferometer. <span class="hlt">Interferometers</span> are often used to split a signal (e.g. optical beam, matter wave), where each part of the signal evolves separately, then the interferom- eter recombines the signal. Interference eects from the recombination can be used to extract information about the dierent</p> <div class="credits"> <p class="dwt_author">Daniel Pulido</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">352</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/20357767"> <span id="translatedtitle">Nonlinear atom <span class="hlt">interferometer</span> surpasses classical precision limit.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Interference is fundamental to wave dynamics and quantum mechanics. The quantum wave properties of particles are exploited in metrology using atom <span class="hlt">interferometers</span>, allowing for high-precision inertia measurements. Furthermore, the state-of-the-art time standard is based on an interferometric technique known as Ramsey spectroscopy. However, the precision of an <span class="hlt">interferometer</span> is limited by classical statistics owing to the finite number of atoms used to deduce the quantity of interest. Here we show experimentally that the classical precision limit can be surpassed using nonlinear atom interferometry with a Bose-Einstein condensate. Controlled interactions between the atoms lead to non-classical entangled states within the <span class="hlt">interferometer</span>; this represents an alternative approach to the use of non-classical input states. Extending quantum interferometry to the regime of large atom number, we find that phase sensitivity is enhanced by 15 per cent relative to that in an ideal classical measurement. Our nonlinear atomic beam splitter follows the 'one-axis-twisting' scheme and implements interaction control using a narrow Feshbach resonance. We perform noise tomography of the quantum state within the <span class="hlt">interferometer</span> and detect coherent spin squeezing with a squeezing factor of -8.2 dB (refs 11-15). The results provide information on the many-particle quantum state, and imply the entanglement of 170 atoms. PMID:20357767</p> <div class="credits"> <p class="dwt_author">Gross, C; Zibold, T; Nicklas, E; Estève, J; Oberthaler, M K</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-04-22</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">353</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19800000175&hterms=Schindler&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3D%2522Schindler%2522"> <span id="translatedtitle">High-resolution spectrometrometry/<span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Modified double-pass <span class="hlt">interferometer</span> has several features that maximize its resolution. Proposed for rocket-borne probes of upper atmosphere, it includes cat's-eye retroreflectors in both arms, wedge-shaped beam splitter, and wedged optical-path compensator. Advantages are full tilt compensation, minimal spectrum "channeling," easy tunability, maximum fringe contrast, and even two-sided interferograms.</p> <div class="credits"> <p class="dwt_author">Breckinridge, J. B.; Norton, R. H.; Schindler, R. A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1980-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">354</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19760000033&hterms=Schindler&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3D%2522Schindler%2522"> <span id="translatedtitle">Stepping optical path difference in an <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Stepping method permits higher amplitude modulation of secondary mirror of Fourier <span class="hlt">interferometer</span>. Amplitude of mirror motion is limited only by available voltage drive on error-correcting actuator. Closed-loop controller provides servo error voltage linearly proportional to offset from proper null position. Bidirectional counter serves to count number of reference laser fringes offset from null position.</p> <div class="credits"> <p class="dwt_author">Schindler, R. A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1976-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">355</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012NJPh...14d3004C"> <span id="translatedtitle">Coherent nonlocal correlations in Andreev <span class="hlt">interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Andreev <span class="hlt">interferometers</span>, hybrid normal-superconducting loops, are well suited for studying phase-coherent effects, as they combine the robust quantum phase of a superconductor with a finite resistance normal section where phase-dependent transport properties can be easily measured. While they have previously been used to demonstrate local, phase-coherent properties, they may also be integrated into structures where nonlocal phase coherence occurs. In this paper, we use Andreev <span class="hlt">interferometer</span> devices to experimentally establish the existence of nonlocal phase coherence between two normal metals linked by a superconductor. The generation of phase-coherent nonlocal signals is brought about by producing a nonequilibrium quasiparticle distribution in the normal section of the <span class="hlt">interferometer</span> and tuning the phase with an external magnetic flux through the loop. Quasiclassical modeling of our experiment shows that the nonequilibrium distribution, coupled with the flux, leads to an induced supercurrent that is not constant along the length of the <span class="hlt">interferometer</span>'s normal section. The supercurrent-quasiparticle current conversion that occurs in this section is manifested in the production of flux-dependent nonlocal voltages through the mechanisms of crossed Andreev reflection and elastic cotunneling.</p> <div class="credits"> <p class="dwt_author">Cadden-Zimansky, P.; Wei, J.; Chandrasekhar, V.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">356</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012SPIE.8452E..2AO"> <span id="translatedtitle">Development of the test <span class="hlt">interferometer</span> for ALMA</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The ALMA Test <span class="hlt">Interferometer</span> appeared as an infrastructure solution to increase both ALMA time availability for science activities and time availability for Software testing and Engineering activities at a reduced cost (<30000K USD) and a low setup time of less than 1 hour. The Test <span class="hlt">Interferometer</span> could include up to 16 Antennas when used with only AOS resources and a possible maximum of 4 Antennas when configured using Correlator resources at OSF. A joined effort between ADC and ADE-IG took the challenge of generate the Test <span class="hlt">Interferometer</span> from an already defined design for operations which imposed a lot of complex restrictions on how to implement it. Through and intensive design and evaluation work it was determined that is possible to make an initial implementation using the ACA Correlator and now it is also being tested the feasibility to implement the Testing <span class="hlt">Interferometer</span> connecting the Test Array at AOS with Correlator equipment installed at the OSF, separated by 30 km. app. Lastly, efforts will be done to get interferometry between AOS and OSF Antennas with a baseline of approximately 24 km.</p> <div class="credits"> <p class="dwt_author">Olguin, R.; Shen, T.; Brito, R.; Saez, A.; Soto, R.; Asayama, S.; Follert, C.; Knee, L.; Quintana, A.; Rabanus, D.; Reynolds, E.; Saez, N.; Sepulveda, J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">357</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/18618251"> <span id="translatedtitle">The VIRGO <span class="hlt">interferometer</span> for gravitational wave detection</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The Virgo gravitational wave detector is an <span class="hlt">interferometer</span> with 3 km long arms in construction near Pisa in Italy. The accessible sources at the design sensitivity and main noises are reviewed. Virgo has devoted a significant effort to extend sensitivity to low frequency reaching the strain level h~ = 10-21 Hz-1\\/2 at 10 Hz while at 200 Hzh~ = 3</p> <div class="credits"> <p class="dwt_author">V. Ferrari; E. Majorana; P. Puppo; P. Rapagnani; F. Ricci; F. Marion; L. Massonnet; C. Mehmel; R. Morand; B. Mours; V. Sannibale; M. Yvert; D. Babusci; S. Bellucci; S. Candusso; G. Giordano; G. Matone; J.-M. Mackowski; L. Pinard; F. Barone; E. Calloni; L. di Fiore; M. Flagiello; F. Garuti; A. Grado; M. Longo; M. Lops; S. Marano; L. Milano; S. Solimeno; V. Brisson; F. Cavalier; M. Davier; P. Hello; P. Heusse; P. Mann; Y. Acker; M. Barsuglia; B. Bhawal; F. Bondu; A. Brillet; H. Heitmann; J.-M. Innocent; L. Latrach; C. N. Man; M. Pham-Tu; E. Tournier; M. Taubmann; J.-Y. Vinet; C. Boccara; Ph. Gleyzes; V. Loriette; J.-P. Roger; G. Cagnoli; L. Gammaitoni; J. Kovalik; F. Marchesoni; M. Punturo; M. Beccaria; M. Bernardini; E. Bougleux; S. Braccini; C. Bradaschia; G. Cella; A. Ciampa; E. Cuoco; G. Curci; R. del Fabbro; R. de Salvo; A. di Virgilio; D. Enard; I. Ferrante; F. Fidecaro; A. Giassi; A. Giazotto; L. Holloway; P. La Penna; G. Losurdo; S. Mancini; M. Mazzoni; F. Palla; H.-B. Pan; D. Passuello; P. Pelfer; R. Poggiani; R. Stanga; A. Vicere; Z. Zhang</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">358</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20060043873&hterms=visibility&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dvisibility"> <span id="translatedtitle">Visibility science operations with the Keck <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The visibility science mode of the Keck <span class="hlt">Interferometer</span> fully transitioned into operations with the successful completion of its operational readiness review in April, 2004. The goal of this paper is to describe this science mode and the operations structure that supports it.</p> <div class="credits"> <p class="dwt_author">Wizinowich, P.; Akeson, R.; Colavita, M.; Gathright, J.; Appleby, E.; Bell, J.; Booth, A.; Dahl, W.; Hrynevych, M; Lynn, I.; Millan-Gabet, R.; Neyman, C.; Rudeen, A.; Saloga, T.; Summers, K.; Tsubota, K.</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">359</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2005JAP....97e4301K"> <span id="translatedtitle">Smart photogalvanic running-grating <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Photogalvanic effect produces actuation of periodic motion of macroscopic LiNbO3 crystal. This effect was applied to the development of an all-optical moving-grating <span class="hlt">interferometer</span> usable for optical trapping and transport of algae chlorella microorganisms diluted in water with a concentration of 27×104 ml-1.</p> <div class="credits"> <p class="dwt_author">Kukhtarev, N. V.; Kukhtareva, T.; Edwards, M. E.; Jones, J.; Bayssie, M.; Wang, J.; Lyuksyutov, S. F.; Reagan, M. A.; Buchhave, P.</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">360</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20110016547&hterms=amyl+acetate&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3D%2522amyl%2Bacetate%2522"> <span id="translatedtitle">The StarLight Space <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Two papers describe the StarLight space <span class="hlt">interferometer</span> a Michelson <span class="hlt">interferometer</span> that would be implemented by two spacecraft flying in formation. The StarLight formation flying <span class="hlt">interferometer</span> project has been testing and demonstrating engineering concepts for a new generation of space <span class="hlt">interferometers</span> that would be employed in a search for extrasolar planets and in astrophysical investigations. As described in the papers, the original StarLight concept called for three spacecraft, and the main innovation embodied is a modification that makes it possible to reduce complexity by eliminating the third spacecraft. The main features of the modification are (1) introduction of an optical delay line on one spacecraft and (2) controlling the flying formation such that the two spacecraft are located at two points along a specified parabola so as to define the required baseline of specified length (which could be varied up to 125 m) perpendicular to the axis of the parabola. One of the papers presents a detailed description of the optical layout and discusses computational modeling of the performance; the other paper presents an overview of the requirements for operation and design, the overall architecture, and subsystems.</p> <div class="credits"> <p class="dwt_author">Folkner, William; Shao, Michael; Gorham, Peter</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_17");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a style="font-weight: bold;">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_19");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_18 div --> <div id="page_19" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_18");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a style="font-weight: bold;">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_20");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">361</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=N7917203"> <span id="translatedtitle">A Laser <span class="hlt">Interferometer</span> for Measuring Linear Vibration.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">A reference-beam type <span class="hlt">interferometer</span> for the measurement of vibration is described. In the technique used, laser light reflected from a vibrating object is shifted in frequency (Doppler shift) because of the velocity of the object. The reflected light is ...</p> <div class="credits"> <p class="dwt_author">D. G. Simpson D. G. S. Lamb</p> <p class="dwt_publisher"></p> <p class="publishDate">1978-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">362</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010AIPC.1211.2092C"> <span id="translatedtitle">Microwave <span class="hlt">Interferometer</span> for Non-Destructive Testing</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A K-band microwave <span class="hlt">interferometer</span> for non-destructive sensing of high frequency low amplitude (nm) vibration is demonstrated. This sensor uses direct-conversion receiver architecture with a phase shifter to adjust its sensitivity while varying the target distance. Detection of nanoscale vibration and laser-generated ultrasound waves through thin aluminum plate are measured and then compared with the theoretical results.</p> <div class="credits"> <p class="dwt_author">Choi, J.; Breugnot, S.; Itoh, T.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-02-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">363</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012SPIE.8697E..0EL"> <span id="translatedtitle">Displacement measurement with over-determined <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We present a concept combining traditional displacement incremental interferometry with a tracking refractometer following the fluctuations of the refractive index of air. This concept is represented by an interferometric system of three Michelson-type <span class="hlt">interferometers</span> where two are arranged in a counter-measuring configuration and the third one is set to measure the changes of the fixed length, here the measuring range of the overall displacement. In this configuration the two counter-measuring <span class="hlt">interferometers</span> have identical beam paths with proportional parts of the overall one. The fixed <span class="hlt">interferometer</span> with its geometrical length of the measuring beam linked to a mechanical reference made of a high thermal-stability material (Zerodur) operates as a tracking refractometer monitoring the atmospheric refractive index directly in the beam path of the displacement measuring <span class="hlt">interferometers</span>. This principle has been demonstrated experimentally through a set of measurements in a temperature controlled environment under slowly changing refractive index of air in comparison with its indirect measurement through Edlen formula. With locking of the laser optical frequency to fixed value of the overall optical length the concept can operate as an interferometric system with compensation of the fluctuations of the refractive index of air.</p> <div class="credits"> <p class="dwt_author">Lazar, Josef; Holá, Miroslava; Hrabina, Jan; Buchta, Zden?k.; ?íp, Ond?ej; Oulehla, Jind?ich</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">364</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3583753"> <span id="translatedtitle">Electronic transmittance phase extracted from mesoscopic <span class="hlt">interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">The usual experimental set-up for measuring the wave function phase shift of electrons tunneling through a quantum dot (QD) embedded in a ring (i.e., the transmittance phase) is the so-called ‘open’ <span class="hlt">interferometer</span> as first proposed by Schuster et al. in 1997, in which the electrons back-scattered at source and the drain contacts are absorbed by additional leads in order to exclude multiple interference. While in this case one can conveniently use a simple two-path interference formula to extract the QD transmittance phase, the open <span class="hlt">interferometer</span> has also a number of draw-backs, such as a reduced signal and some uncertainty regarding the effects of the extra leads. Here we present a meaningful theoretical study of the QD transmittance phase in ‘closed’ <span class="hlt">interferometers</span> (i.e., connected only to source and drain leads). By putting together data from existing literature and giving some new proofs, we show both analytically and by numerical simulations that the existence of phase lapses between consecutive resonances of the ‘bare’ QD is related to the signs of the corresponding Fano parameters - of the QD + ring system. More precisely, if the Fano parameters have the same sign, the transmittance phase of the QD exhibits a ? lapse. Therefore, closed mesoscopic <span class="hlt">interferometers</span> can be used to address the ‘universal phase lapse’ problem. Moreover, the data from already existing Fano interference experiments from Kobayashi et al. in 2003 can be used to infer the phase lapses.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">365</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/12666420"> <span id="translatedtitle">Gravitational wave detectors based on matter wave <span class="hlt">interferometers</span> (MIGO) are no better than laser <span class="hlt">interferometers</span> (LIGO)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We show that a recent claim that matter wave <span class="hlt">interferometers</span> have a much\\u000ahigher sensitivity than laser <span class="hlt">interferometers</span> for a comparable physical setup\\u000ais unfounded. We point out where the mistake in the earlier analysis is made.\\u000aWe also disprove the claim that only a description based on the geodesic\\u000adeviation equation can produce the correct physical result. The equations</p> <div class="credits"> <p class="dwt_author">Albert Roura; Dieter R. Brill; B. L. Hu; Charles W. Misner; William D. Phillips</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">366</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.prometheus-inc.com/asi/imaging2006/papers/griffiths.pdf"> <span id="translatedtitle"><span class="hlt">RADAR</span> IMAGING FOR COMBATTING TERRORISM</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Radar</span>, and in particular imaging <span class="hlt">radar</span>, have many and varied applications to counterterrorism. <span class="hlt">Radar</span> is a day\\/night all-weather\\u000a sensor, and imaging <span class="hlt">radars</span> carried by aircraft or satellites are routinely able to achieve high-resolution images of target\\u000a scenes, and to detect and classify stationary and moving targets at operational ranges. Short-range <span class="hlt">radar</span> techniques may be\\u000a used to identify small targets, even</p> <div class="credits"> <p class="dwt_author">Hugh D. Griffiths; Chris J. Baker</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">367</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013SPIE.8714E..0EM"> <span id="translatedtitle">Multitone harmonic <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Nonlinear <span class="hlt">radar</span> exploits the electronic response from a target whose reflected frequencies are different from those transmitted. Reception of frequencies that are not part of the transmitted probe distinguishes the received signal from a linear return produced by clutter and indicates the presence of electronics. Presented in this paper is a type of nonlinear <span class="hlt">radar</span> that transmits multiple frequencies and listens for a harmonic of these frequencies as well as other frequencies near that harmonic. A laboratory test-bed has been constructed to demonstrate the multitone <span class="hlt">radar</span> concept. Measurements of nonlinear responses from RF devices probed by multiple tones are reported.</p> <div class="credits"> <p class="dwt_author">Mazzaro, Gregory J.; Martone, Anthony F.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">368</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19870001085&hterms=programmable+controller&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dprogrammable%2Bcontroller"> <span id="translatedtitle">A microprogrammable <span class="hlt">radar</span> controller</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The Wave Propagation Lab. has completed the design and construction of a microprogrammable <span class="hlt">radar</span> controller for atmospheric wind profiling. Unlike some <span class="hlt">radar</span> controllers using state machines or hardwired logic for <span class="hlt">radar</span> timing, this design is a high speed programmable sequencer with signal processing resources. A block diagram of the device is shown. The device is a single 8 1/2 inch by 10 1/2 inch printed circuit board and consists of three main subsections: (1) the host computer interface; (2) the microprogram sequencer; and (3) the signal processing circuitry. Each of these subsections are described in detail.</p> <div class="credits"> <p class="dwt_author">Law, D. C.</p> <p class="dwt_publisher"></p> <p class="publishDate">1986-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">369</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1990EOSTr..71R.301."> <span id="translatedtitle">New airborne Doppler <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">U.S. and French research establishments will build and share an airborne Doppler <span class="hlt">radar</span> that they will design to gather data on large-scale storm structures and global atmospheric processes.The University Corporation for Atmospheric Research (UCAR), Boulder, Colo., the Centre National d'Etudes des Telecommunications (CNET) and the Institut National des Sciences de l'Univers in Paris, France, have signed an $11 million agreement for joint development, operation and research use of the <span class="hlt">radar</span>. The scheduled completion date of the Electra Doppler <span class="hlt">Radar</span> (ELDORA) system is November 1, 1992.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">370</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20140002070&hterms=radar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dradar"> <span id="translatedtitle"><span class="hlt">Radar</span> Remote Sensing</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">This lecture was just a taste of <span class="hlt">radar</span> remote sensing techniques and applications. Other important areas include Stereo <span class="hlt">radar</span> grammetry. PolInSAR for volumetric structure mapping. Agricultural monitoring, soil moisture, ice-mapping, etc. The broad range of sensor types, frequencies of observation and availability of sensors have enabled <span class="hlt">radar</span> sensors to make significant contributions in a wide area of earth and planetary remote sensing sciences. The range of applications, both qualitative and quantitative, continue to expand with each new generation of sensors.</p> <div class="credits"> <p class="dwt_author">Rosen, Paul A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">371</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20030105593&hterms=flight+formation+control&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dflight%2Bformation%2Bcontrol"> <span id="translatedtitle">Investigation of Space <span class="hlt">Interferometer</span> Control Using Imaging Sensor Output Feedback</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Numerous space interferometry missions are planned for the next decade to verify different enabling technologies towards very-long-baseline interferometry to achieve high-resolution imaging and high-precision measurements. These objectives will require coordinated formations of spacecraft separately carrying optical elements comprising the <span class="hlt">interferometer</span>. High-precision sensing and control of the spacecraft and the <span class="hlt">interferometer</span>-component payloads are necessary to deliver sub-wavelength accuracy to achieve the scientific objectives. For these missions, the primary scientific product of <span class="hlt">interferometer</span> measurements may be the only source of data available at the precision required to maintain the spacecraft and <span class="hlt">interferometer</span>-component formation. A concept is studied for detecting the <span class="hlt">interferometer</span>'s optical configuration errors based on information extracted from the <span class="hlt">interferometer</span> sensor output. It enables precision control of the optical components, and, in cases of space <span class="hlt">interferometers</span> requiring formation flight of spacecraft that comprise the elements of a distributed instrument, it enables the control of the formation-flying vehicles because independent navigation or ranging sensors cannot deliver the high-precision metrology over the entire required geometry. Since the concept can act on the quality of the <span class="hlt">interferometer</span> output directly, it can detect errors outside the capability of traditional metrology instruments, and provide the means needed to augment the traditional instrumentation to enable enhanced performance. Specific analyses performed in this study include the application of signal-processing and image-processing techniques to solve the problems of <span class="hlt">interferometer</span> aperture baseline control, <span class="hlt">interferometer</span> pointing, and orientation of multiple <span class="hlt">interferometer</span> aperture pairs.</p> <div class="credits"> <p class="dwt_author">Leitner, Jesse A.; Cheng, Victor H. L.</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">372</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20030032246&hterms=flight+formation+control&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dflight%2Bformation%2Bcontrol"> <span id="translatedtitle">Investigation of Space <span class="hlt">Interferometer</span> Control Using Imaging Sensor Output Feedback</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Numerous space interferometry missions are planned for the next decade to verify different enabling technologies towards very-long-baseline interferometry to achieve high-resolution imaging and high-precision measurements. These objectives will require coordinated formations of spacecraft separately carrying optical elements comprising the <span class="hlt">interferometer</span>. High-precision sensing and control of the spacecraft and the <span class="hlt">interferometer</span>-component payloads are necessary to deliver sub-wavelength accuracy to achieve the scientific objectives. For these missions, the primary scientific product of <span class="hlt">interferometer</span> measurements may be the only source of data available at the precision required to maintain the spacecraft and <span class="hlt">interferometer</span>-component formation. A concept is studied for detecting the <span class="hlt">interferometer</span>'s optical configuration errors based on information extracted from the <span class="hlt">interferometer</span> sensor output. It enables precision control of the optical components, and, in cases of space <span class="hlt">interferometers</span> requiring formation flight of spacecraft that comprise the elements of a distributed instrument, it enables the control of the formation flying vehicles because independent navigation or ranging sensors cannot deliver the high-precision metrology over the entire required geometry. Since the concept can act on the quality of the <span class="hlt">interferometer</span> output directly, it can detect errors outside the capability of traditional metrology instruments, and provide the means needed to augment the traditional instrumentation to enable enhanced performance. Specific analyses performed in this study include the application of signal-processing and image-processing techniques to solve the problems of <span class="hlt">interferometer</span> aperture baseline control, <span class="hlt">interferometer</span> pointing, and orientation of multiple <span class="hlt">interferometer</span> aperture pairs.</p> <div class="credits"> <p class="dwt_author">Cheng, Victore H. L.; Leitner, Jesse A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">373</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19910014855&hterms=blocking+frequency&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dblocking%2Bfrequency"> <span id="translatedtitle"><span class="hlt">RADAR</span> performance experiments</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Theoretical studies and experimental results obtained at Coulommiers airport showed the capability of Proust <span class="hlt">radar</span> to detect wind shears, in clear air condition as well as in presence of clouds or rain. Several examples are presented: in a blocking highs situation an atmospheric wave system at the Brunt-Vaisala frequency can be clearly distinguished; in a situation of clouds without rain the limit between clear air and clouds can be easily seen; and a windshear associated with a gust front in rainy conditions is shown. A comparison of 30 cm clear air <span class="hlt">radar</span> Proust and 5 cm weather Doppler <span class="hlt">radar</span> Ronsard will allow to select the best candidate for wind shear detection, taking into account the low sensibility to ground clutter of Ronsard <span class="hlt">radar</span>.</p> <div class="credits"> <p class="dwt_author">Leroux, C.; Bertin, F.; Mounir, H.</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">374</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA004907"> <span id="translatedtitle">Phase Signature <span class="hlt">Radars</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The identification and classification of <span class="hlt">radar</span> targets is facilitated by a newly developed technique based on measurements of the differential phase shift of the target scattering obtained at harmonic phase-locked frequencies. These phase differences are ...</p> <div class="credits"> <p class="dwt_author">W. B. Goggins P. Blacksmith C. J. Sletten</p> <p class="dwt_publisher"></p> <p class="publishDate">1974-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">375</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA552170"> <span id="translatedtitle">Netted LPI <span class="hlt">RADARs</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">A significant number of Low Probability of Intercept (LPI) <span class="hlt">radars</span> are used in various military applications, from guided weapons (such anti-ship missile), to large platforms (aircrafts, ships), to large systems (Integrated Air Defense Systems - IADS). The...</p> <div class="credits"> <p class="dwt_author">C. Fougias C. Menychtas</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">376</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA584020"> <span id="translatedtitle">Passive MIMO <span class="hlt">Radar</span> Detection.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Passive multiple-input multiple-output (MIMO) <span class="hlt">radar</span> is a sensor network comprised of multiple distributed receivers that detects and localizes targets using the emissions from multiple non-cooperative radio frequency transmitters. This dissertation advanc...</p> <div class="credits"> <p class="dwt_author">D. E. Hack</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">377</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.youtube.com/watch?v=KT-a2POYLSQ"> <span id="translatedtitle">Laser <span class="hlt">Radar</span> Animation</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.nasa.gov/multimedia/videogallery/index.html">NASA Video Gallery</a></p> <p class="result-summary">Laser and <span class="hlt">radar</span> instruments aboard NASA aircraft provide measurements of the snow and ice surface and down to the bedrock under the ice. Lasers, with a shorter wavelength, measure the surface eleva...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">378</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1985FlInt.127...23W"> <span id="translatedtitle"><span class="hlt">Radar</span> - The Future</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Progress in civil and military <span class="hlt">radar</span> units since the invention of <span class="hlt">radar</span> in 1935 is summarized, noting the trend to multipurpose units. The earliest systems functioned at 10 cm, then 3 cm after development of a cavity magnetron to provide power for shorter wavelengths. Military needs are driving improvements in three-dimensional scanning capabilities, Primarily to locate aircraft in the presence of ground clutter and sea surface scattering. Autonomous, separate transmitter and receiver units are being tested. Lengthening ground-based <span class="hlt">radar</span> wavelengths to tens of meters will permit over-the-horizon sensing with backscattering, ionospheric bounce, or induction of a potential in the sea surface as the possible techniques. Mode S monopulse <span class="hlt">radars</span> will permit transponder queries between small and large aircraft. Finally, pulse Doppler SAR systems may afford terrain recognition with no corroborating data except an expert systems data base.</p> <div class="credits"> <p class="dwt_author">Warwick, G.</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-02-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">379</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pbslearningmedia.org/resource/phy03.sci.phys.energy.radar/"> <span id="translatedtitle">Imaging with <span class="hlt">Radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">This interactive activity from NOVA features synthetic aperture <span class="hlt">radar</span> (SAR), which uses radio waves to create high-quality images. Examine SAR images of Washington, D.C., and learn about this technology's unique advantages.</p> <div class="credits"> <p class="dwt_author">Foundation, Wgbh E.</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-29</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">380</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=AD744242"> <span id="translatedtitle"><span class="hlt">Radar</span> Target Approach Simulator.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">A technique employed to generate nondispersive, continuously variable microwave time delay for the simulation of the approach of a <span class="hlt">radar</span> to its target is described. A bulk elastic wave excited in a transparent crystal enables thousands of feet of propagat...</p> <div class="credits"> <p class="dwt_author">H. A. Cook</p> <p class="dwt_publisher"></p> <p class="publishDate">1971-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_18");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a style="font-weight: bold;">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_20");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_19 div --> <div id="page_20" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_19");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a style="font-weight: bold;">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_21");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">381</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1991navy.reptW....C"> <span id="translatedtitle">Active <span class="hlt">radar</span> stealth device</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This patent discloses an active <span class="hlt">radar</span> stealth device mounted on a host platform for minimizing the <span class="hlt">radar</span> cross-section of the host platform. A coating which is essentially microwave transparent is attached to the surface of a host platform and is exposed to an incident microwave field. A plurality of detector/emitter pairs contained within the coating detect and actively cancel, respectively, the microwave field at each respective detector/emitter pair.</p> <div class="credits"> <p class="dwt_author">Cain, R. N.; Corda, Albert J.</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">382</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/p2234737t4t58187.pdf"> <span id="translatedtitle"><span class="hlt">Radar</span> Imaging of Mercury</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Earth-based <span class="hlt">radar</span> has been one of the few, and one of the most important, sources of new information about Mercury during\\u000a the three decades since the Mariner 10 encounters. The emphasis during the past 15 years has been on full-disk, dual-polarization\\u000a imaging of the planet, an effort that has been facilitated by the development of novel <span class="hlt">radar</span> techniques and by</p> <div class="credits"> <p class="dwt_author">John K. Harmon</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">383</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/48183774"> <span id="translatedtitle"><span class="hlt">Radar</span> Imaging of Mercury</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Earth-based <span class="hlt">radar</span> has been one of the few, and one of the most important, sources of new information about Mercury during\\u000a the three decades since the Mariner 10 encounters. The emphasis during the past 15 years has been on full-disk, dual-polarization\\u000a imaging of the planet, an effort that has been facilitated by the development of novel <span class="hlt">radar</span> techniques and by</p> <div class="credits"> <p class="dwt_author">J. Harmon</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">384</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/53407994"> <span id="translatedtitle"><span class="hlt">Radar</span> Imaging of Mercury</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Earth-based <span class="hlt">radar</span> has been one of the few, and one of the most important, sources of new information about Mercury during the three decades since the Mariner 10 encounters. The emphasis during the past 15 years has been on full-disk, dual-polarization imaging of the planet, an effort that has been facilitated by the development of novel <span class="hlt">radar</span> techniques and by</p> <div class="credits"> <p class="dwt_author">John K. Harmon</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">385</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5903568"> <span id="translatedtitle">Downhole pulse <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A borehole logging tool generates a fast rise-time, short duration, high peak-power <span class="hlt">radar</span> pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. <span class="hlt">Radar</span> returns from geological discontinuities are samples for transmission uphole.</p> <div class="credits"> <p class="dwt_author">Chang, H.T.</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-03-21</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">386</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/6866222"> <span id="translatedtitle">Downhole pulse <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">A borehole logging tool generates a fast rise-time, short duration, high peak-power <span class="hlt">radar</span> pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. <span class="hlt">Radar</span> returns from geological discontinuities are sampled for transmission uphole. 7 figs.</p> <div class="credits"> <p class="dwt_author">Chang, Hsi-Tien</p> <p class="dwt_publisher"></p> <p class="publishDate">1987-09-28</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">387</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/866890"> <span id="translatedtitle">Downhole pulse <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">A borehole logging tool generates a fast rise-time, short duration, high peak-power <span class="hlt">radar</span> pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. <span class="hlt">Radar</span> returns from geological discontinuities are sampled for transmission uphole.</p> <div class="credits"> <p class="dwt_author">Chang, Hsi-Tien (Albuquerque, NM)</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">388</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.crh.noaa.gov/lmk/soo/88d/index.php"> <span id="translatedtitle">Doppler <span class="hlt">Radar</span> Technology</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">This resource provides an introduction to the function and uses of the The National Weather Service's (NWS) Weather Surveillance Doppler <span class="hlt">Radar</span> (WSR-88D). Topics include the components of the system, an overview of the products and overlays the system creates, and some example images with captions explaining what is being shown. There are also links to <span class="hlt">radar</span> meteorology tutorials and to information on training to use the system and interpret its imagery.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">389</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1985SciAm.252...94B"> <span id="translatedtitle">Phased-array <span class="hlt">radars</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The operating principles, technology, and applications of phased-array <span class="hlt">radars</span> are reviewed and illustrated with diagrams and photographs. Consideration is given to the antenna elements, circuitry for time delays, phase shifters, pulse coding and compression, and hybrid <span class="hlt">radars</span> combining phased arrays with lenses to alter the beam characteristics. The capabilities and typical hardware of phased arrays are shown using the US military systems COBRA DANE and PAVE PAWS as examples.</p> <div class="credits"> <p class="dwt_author">Brookner, E.</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-02-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">390</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://patft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&u=%2Fnetahtml%2FPTO%2Fsearch-adv.htm&r=1&p=1&f=G&l=50&d=PTXT&S1=%28%22PRAP%22.TI.%29&OS=ttl%2F%28%22PRAP%22%29&RS=TTL%2F%22PRAP%22"> <span id="translatedtitle">Passive <span class="hlt">radar</span> augmented projectile (PRAP)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://patft.uspto.gov/netahtml/PTO/search-adv.htm">US Patent & Trademark Office Database</a></p> <p class="result-summary">The invention disclosed relates to gun-launched target projectiles wherein a <span class="hlt">radar</span>-augmentor is included to increase the <span class="hlt">radar</span> cross-section of the projectile to simulate on <span class="hlt">radar</span>, an actual airborne threat such as aircraft and missiles. The <span class="hlt">radar</span> augmentor comprises a base member, a uniform dielectric lens attached to said base member and a resilient support means between said base member and said lens. The dielectric lens is configured to provide a frontal <span class="hlt">radar</span> return echo which simulates the actual airborne threat on <span class="hlt">radar</span>.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">1991-01-29</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">391</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20090020381&hterms=aCOSTA&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DaCOSTA"> <span id="translatedtitle">Data Processing for Atmospheric Phase <span class="hlt">Interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">This paper presents a detailed discussion of calibration procedures used to analyze data recorded from a two-element atmospheric phase <span class="hlt">interferometer</span> (API) deployed at Goldstone, California. In addition, we describe the data products derived from those measurements that can be used for site intercomparison and atmospheric modeling. Simulated data is used to demonstrate the effectiveness of the proposed algorithm and as a means for validating our procedure. A study of the effect of block size filtering is presented to justify our process for isolating atmospheric fluctuation phenomena from other system-induced effects (e.g., satellite motion, thermal drift). A simulated 24 hr <span class="hlt">interferometer</span> phase data time series is analyzed to illustrate the step-by-step calibration procedure and desired data products.</p> <div class="credits"> <p class="dwt_author">Acosta, Roberto J.; Nessel, James A.; Morabito, David D.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">392</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014PhRvA..89a4101P"> <span id="translatedtitle">Analysis of atom-<span class="hlt">interferometer</span> clocks</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We analyze the nature and performance of clocks formed by stabilizing an oscillator to the phase difference between two paths of an atom <span class="hlt">interferometer</span>. The phase evolution has been modeled as being driven by the proper-time difference between the two paths, although it has an ambiguous origin in the nonrelativistic limit and it requires a full quantum-field-theory treatment in the general case. We present conditions for identifying deviations from the nonrelativistic limit as a way of testing the proper-time-driven phase evolution model. We show that the system performance belies the premise that an atom-<span class="hlt">interferometer</span> clock is referenced to a divided-down Compton oscillation, and we suggest that this implies there is no physical oscillation at the Compton frequency.</p> <div class="credits"> <p class="dwt_author">Peil, Steven; Ekstrom, Christopher R.</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">393</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013PhRvA..88e3628P"> <span id="translatedtitle">Soliton-based matter-wave <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We consider a matter-wave bright soliton <span class="hlt">interferometer</span> composed of a harmonic potential trap with a Rosen-Morse barrier at its center on which an incident soliton collides and splits into two solitons. These two solitons recombine after a dipole oscillation in the trap at the position of the barrier. We focus on the characterization of the splitting process in the case in which the reflected and transmitted solitons have the same number of atoms. We obtain that the velocity of the split solitons strongly depends on the nonlinearity and on the width of the barrier and that the reflected soliton is in general slower than the transmitted one. Also, we study the phase difference acquired between the two solitons during the splitting and we fit semianalytically the main dependences with the velocity of the incident soliton, the nonlinearity, and the width of the barrier. The implementation of the full <span class="hlt">interferometer</span> sequence is tested by means of the phase imprinting method.</p> <div class="credits"> <p class="dwt_author">Polo, J.; Ahufinger, V.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">394</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/22072165"> <span id="translatedtitle">Analysis of a free oscillation atom <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We analyze a Bose-Einstein condensate (BEC)-based free oscillation atom Michelson <span class="hlt">interferometer</span> in a weakly confining harmonic magnetic trap. A BEC at the center of the trap is split into two harmonics by a laser standing wave. The harmonics move in opposite directions with equal speeds and turn back under the influence of the trapping potential at their classical turning points. The harmonics are allowed to pass through each other and a recombination pulse is applied when they overlap at the end of a cycle after they return for the second time. We derive an expression for the contrast of the interferometric fringes and obtain the fundamental limit of performance of the <span class="hlt">interferometer</span> in the parameter space.</p> <div class="credits"> <p class="dwt_author">Kafle, Rudra P.; Zozulya, Alex A. [Department of Physics, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609 (United States); Anderson, Dana Z. [Department of Physics and JILA, University of Colorado and National Institute of Standards and Technology, Boulder, Colorado 80309-0440 (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-09-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">395</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21448563"> <span id="translatedtitle">Numerical simulation of a multilevel atom <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We present a comprehensive numerical simulation of an echo-type atom <span class="hlt">interferometer</span>. The simulation confirms an interesting theoretical description of this <span class="hlt">interferometer</span> that includes effects due to spontaneous emission and magnetic sublevels. Both the simulation and the theoretical model agree with the results of experiments. These developments provide an improved understanding of several observable effects. The evolution of state populations due to stimulated emission and absorption during the standing-wave interaction imparts a time-dependent phase on each atomic momentum state. This manifests itself as an asymmetry in the signal shape that depends on the strength of the interaction as well as spontaneous emission due to a nonzero population in the excited states. The degree of asymmetry is a measure of a nonzero relative phase between interfering momentum states.</p> <div class="credits"> <p class="dwt_author">Barrett, B.; Beattie, S.; Kumarakrishnan, A. [Department of Physics and Astronomy, York University, Toronto, Ontario M3J 1P3 (Canada); Yavin, I. [Center of Cosmology and Particle Physics, New York University, New York, New York 10003 (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-08-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">396</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20100021285&hterms=low+friction+coatings&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dlow%2Bfriction%2Bcoatings"> <span id="translatedtitle"><span class="hlt">Interferometer</span> for Low-Uncertainty Vector Metrology</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">A simplified schematic diagram of a tilt-sensing unequal-path <span class="hlt">interferometer</span> set up to measure the orientation of the normal vector of one surface of a cube mounted on a structure under test is described herein. This <span class="hlt">interferometer</span> has been named a "theoferometer" to express both its interferometric nature and the intention to use it instead of an autocollimating theodolite. The theoferometer optics are mounted on a plate, which is in turn mounted on orthogonal air bearings for near-360 rotation in azimuth and elevation. Rough alignment of the theoferometer to the test cube is done by hand, with fine position adjustment provided by a tangent arm drive using linear inchwormlike motors.</p> <div class="credits"> <p class="dwt_author">Toland, Ronald W.; Leviton, Douglas B.</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">397</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2004SPIE.5503...85M"> <span id="translatedtitle">Simple shearing <span class="hlt">interferometer</span> suitable for vibration measurements</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Recently there has been an increasing interest in the application of shearography for modal analysis of vibrating objects. New interferometric systems, which are simple and flexible are of interest for engineering and industrial applications. An electronic speckle pattern shearing <span class="hlt">interferometer</span> (ESPSI) with a very simple shearing device is used for study of vibrations. The shearing device consists of two partially reflective glass plates. The reflection coefficients of the coatings are 0.3 and 0.7 respectively. The distance between the two glass plates controls the size of the shear. The versatility of this simple shearing <span class="hlt">interferometer</span> is shown. It is demonstrated that the ESPSI system can be used for vibration measurements and phase-shifting implemented for fringe analysis. The results obtained are promising for future applications of the system for modal analysis.</p> <div class="credits"> <p class="dwt_author">Mihaylova, Emilia M.; Whelan, Maurice P.; Toal, Vincent</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-06-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">398</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/19904328"> <span id="translatedtitle">Automatic null ellipsometry with an <span class="hlt">interferometer</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">A new approach to automatic null ellipsometry is described in which the analyzer of a traditional polarizer compensator sample analyzer (PCSA) null ellipsometer is replaced with a heterodyne Michelson <span class="hlt">interferometer</span>. One arm of this <span class="hlt">interferometer</span> is modified such that it produces a fixed, linearly polarized reference beam, irrespective of the input polarization state. This beam is recombined interferometrically with the measurement beam and spatially separated into its p and s polarizations. The relative phase of the resulting temporal fringes is a linear function of the polarizer azimuthal angle P, and thus this component can be driven to its null position without iteration. Once at null, the azimuthal angle of the reflected, linearly polarized light is trivially determined from the relative amplitude of the fringes. Measurements made with this instrument on a native oxide film on a silicon wafer were in excellent agreement with those made with a traditional PCSA null ellipsometer. PMID:19904328</p> <div class="credits"> <p class="dwt_author">Watkins, Lionel R</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-11-10</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">399</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20040086908&hterms=DFT&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DDFT"> <span id="translatedtitle">Adaptive DFT-based <span class="hlt">Interferometer</span> Fringe Tracking</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">An automatic <span class="hlt">interferometer</span> fringe tracking system has been developed, implemented, and tested at the Infrared Optical Telescope Array (IOTA) observatory at Mt. Hopkins, Arizona. The system can minimize the optical path differences (OPDs) for all three baselines of the Michelson stellar <span class="hlt">interferometer</span> at IOTA. Based on sliding window discrete Fourier transform (DFT) calculations that were optimized for computational efficiency and robustness to atmospheric disturbances, the algorithm has also been tested extensively on off-line data. Implemented in ANSI C on the 266 MHz PowerPC processor running the VxWorks real-time operating system, the algorithm runs in approximately 2.0 milliseconds per scan (including all three interferograms), using the science camera and piezo scanners to measure and correct the OPDs. The adaptive DFT-based tracking algorithm should be applicable to other systems where there is a need to detect or track a signal with an approximately constant-frequency carrier pulse.</p> <div class="credits"> <p class="dwt_author">Wilson, Edward; Pedretti, Ettore; Bregman, Jesse; Mah, Robert W.; Traub, Wesley A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">400</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/22036422"> <span id="translatedtitle">Automatic null ellipsometry with an <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A new approach to automatic null ellipsometry is described in which the analyzer of a traditional polarizer compensator sample analyzer (PCSA) null ellipsometer is replaced with a heterodyne Michelson <span class="hlt">interferometer</span>. One arm of this <span class="hlt">interferometer</span> is modified such that it produces a fixed, linearly polarized reference beam, irrespective of the input polarization state. This beam is recombined interferometrically with the measurement beam and spatially separated into its p and s polarizations. The relative phase of the resulting temporal fringes is a linear function of the polarizer azimuthal angle P, and thus this component can be driven to its null position without iteration. Once at null, the azimuthal angle of the reflected, linearly polarized light is trivially determined from the relative amplitude of the fringes. Measurements made with this instrument on a native oxide film on a silicon wafer were in excellent agreement with those made with a traditional PCSA null ellipsometer.</p> <div class="credits"> <p class="dwt_author">Watkins, Lionel R.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-11-10</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_19");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a style="font-weight: bold;">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_21");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_20 div --> <div id="page_21" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_20");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a style="font-weight: bold;">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_22");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">401</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23680804"> <span id="translatedtitle">A ballistic quantum ring Josephson <span class="hlt">interferometer</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">We report the realization of a ballistic Josephson <span class="hlt">interferometer</span>. The <span class="hlt">interferometer</span> is made from a quantum ring etched in a nanofabricated two-dimensional electron gas confined in an InAs-based heterostructure laterally contacted to superconducting niobium leads. The Josephson current flowing through the structure shows oscillations with h/e flux periodicity when threading the loop with a perpendicular magnetic field. This periodicity, in sharp contrast with the h/2e one observed in conventional dc superconducting quantum interference devices, confirms the ballistic nature of the device in agreement with theoretical predictions. This system paves the way for the implementation of interferometric Josephson ?-junctions, and for the investigation of Majorana fermions. PMID:23680804</p> <div class="credits"> <p class="dwt_author">Fornieri, A; Amado, M; Carillo, F; Dolcini, F; Biasiol, G; Sorba, L; Pellegrini, V; Giazotto, F</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-06-21</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">402</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/675841"> <span id="translatedtitle">Phase-shifting point diffraction <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">Disclosed is a point diffraction <span class="hlt">interferometer</span> for evaluating the quality of a test optic. In operation, the point diffraction <span class="hlt">interferometer</span> includes a source of radiation, the test optic, a beam divider, a reference wave pinhole located at an image plane downstream from the test optic, and a detector for detecting an interference pattern produced between a reference wave emitted by the pinhole and a test wave emitted from the test optic. The beam divider produces separate reference and test beams which focus at different laterally separated positions on the image plane. The reference wave pinhole is placed at a region of high intensity (e.g., the focal point) for the reference beam. This allows reference wave to be produced at a relatively high intensity. Also, the beam divider may include elements for phase shifting one or both of the reference and test beams. 8 figs.</p> <div class="credits"> <p class="dwt_author">Medecki, H.</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-11-10</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">403</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/871971"> <span id="translatedtitle">Phase-shifting point diffraction <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">Disclosed is a point diffraction <span class="hlt">interferometer</span> for evaluating the quality of a test optic. In operation, the point diffraction <span class="hlt">interferometer</span> includes a source of radiation, the test optic, a beam divider, a reference wave pinhole located at an image plane downstream from the test optic, and a detector for detecting an interference pattern produced between a reference wave emitted by the pinhole and a test wave emitted from the test optic. The beam divider produces separate reference and test beams which focus at different laterally separated positions on the image plane. The reference wave pinhole is placed at a region of high intensity (e.g., the focal point) for the reference beam. This allows reference wave to be produced at a relatively high intensity. Also, the beam divider may include elements for phase shifting one or both of the reference and test beams.</p> <div class="credits"> <p class="dwt_author">Medecki, Hector (Berkeley, CA)</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">404</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/25032924"> <span id="translatedtitle">Bright solitonic matter-wave <span class="hlt">interferometer</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">We present the first realization of a solitonic atom <span class="hlt">interferometer</span>. A Bose-Einstein condensate of 1×10^{4} atoms of rubidium-85 is loaded into a horizontal optical waveguide. Through the use of a Feshbach resonance, the s-wave scattering length of the ^{85}Rb atoms is tuned to a small negative value. This attractive atomic interaction then balances the inherent matter-wave dispersion, creating a bright solitonic matter wave. A Mach-Zehnder <span class="hlt">interferometer</span> is constructed by driving Bragg transitions with the use of an optical lattice colinear with the waveguide. Matter-wave propagation and interferometric fringe visibility are compared across a range of s-wave scattering values including repulsive, attractive and noninteracting values. The solitonic matter wave is found to significantly increase fringe visibility even compared with a noninteracting cloud. PMID:25032924</p> <div class="credits"> <p class="dwt_author">McDonald, G D; Kuhn, C C N; Hardman, K S; Bennetts, S; Everitt, P J; Altin, P A; Debs, J E; Close, J D; Robins, N P</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">405</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/6777701"> <span id="translatedtitle">Line-imaging Fabry-Perot <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A method for measuring the velocity history of a line element on a shock-loaded solid has been demonstrated. Light from single-frequency laser is focused through a cylindrical lens to a line on a moving target. The return Doppler-shifted image is passed through a Fabry-Perot <span class="hlt">interferometer</span>. Because only specific combinations of incident light angle and frequency can pass through the <span class="hlt">interferometer</span> the output is an incomplete image of the moving target appearing as a set of fringes. This image is focused onto an electronic streak camera and swept in time. The fringe pattern changes with time as the target surface moves, allowing determination of velocity for each point on the target that forms a fringe. Because the velocity can only be measured at the fringe positions, it is necessary to use an interpolating polynomial to obtain a continuous function of time and velocity along the sampled lien. 9 refs., 7 figs.</p> <div class="credits"> <p class="dwt_author">Mathews, A.R.; Warnes, R.H.; Hemsing, W.F.; Whittemore, G.R.</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">406</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/52988106"> <span id="translatedtitle">The Millimeter-wave Bolometric <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The Millimeter-wave Bolometeric <span class="hlt">Interferometer</span> (MBI) is a novel instrument for measuring signals from the cosmic microwave background (CMB) radiation. MBI is a proof-of-concept designed to control systematic effects with the use of bolometers and interferometry. This scheme extends radio astronomy techniques of spatial interferometry, which rely on coherent receivers, to a system using incoherent detectors. In this thesis we outline</p> <div class="credits"> <p class="dwt_author">Peter Owen Hyland</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">407</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/24690858"> <span id="translatedtitle">Digital phase-shifting point diffraction <span class="hlt">interferometer</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">A digital phase-shifting (PS) point diffraction <span class="hlt">interferometer</span> is demonstrated with a transmitting liquid crystal spatial light modulator. This novel wavefront sensor allows tunability in the choice of pinhole size and eliminates the need for mechanically moving parts to achieve PS. It is shown that this wavefront sensor is capable of sensing Zernike aberrations introduced with a deformable mirror. The results obtained are compared with those of a commercial Hartmann-Shack wavefront sensor. PMID:24690858</p> <div class="credits"> <p class="dwt_author">Akondi, Vyas; Jewel, A R; Vohnsen, Brian</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-03-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">408</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55598032"> <span id="translatedtitle">Beam transport for the TPF <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The Terrestrial Planet Finder <span class="hlt">Interferometer</span> (TPF-I) is a future NASA mission for mid-infrared astronomy in space, using formation flying to position the telescopes. A unique and significant challenge for TPF-I is control of stray light from thermally emitting objects near the starlight beam paths, such as sunshades and other warm parts of the neighboring spacecraft. A proposed strategy for stray</p> <div class="credits"> <p class="dwt_author">Martin C. Noecker; James W. Leitch</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">409</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/53988935"> <span id="translatedtitle">Hexagonal configuration of cross-correlation <span class="hlt">interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">New configurations of <span class="hlt">interferometers</span> ensuring practically equal resolution in all beam cross-sections are suggested. The suggestion is based on the arrangement of elements along the hexagon perimeter (or partly inside it) due to which a complete equidistant (regular) coverage of a hexagonal domain in the U,V-plane in the cross-correlation regime is obtained. A comparison of the systems proposed with a</p> <div class="credits"> <p class="dwt_author">L. G. Sodin; L. E. Kopilovich</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">410</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009Msngr.137...25L"> <span id="translatedtitle">First Images from the VLT <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The ESO Very Large Telescope <span class="hlt">Interferometer</span> has recently produced its first images, achieving a spatial resolution of a few milliarcseconds. The published images reveal the precise astrometry of close massive binaries (?1 Ori C and HD87643), the presence of material close to the surface of an old, variable star (T Lep), and the dusty environment of an active galactic nucleus (NGC 1068). However, this is only a first step and additional results and numerous improvements are expected in the forthcoming years.</p> <div class="credits"> <p class="dwt_author">Le Bouquin, Jean-Baptiste; Millour, Florentin; Merand, Antoine; Vlti Science Operations Team</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">411</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19800020077&hterms=time+domain+antenna&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dtime%2Bdomain%2Bantenna"> <span id="translatedtitle">Scannable beam forming <span class="hlt">interferometer</span> antenna array system</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">An antenna array is described which comprises three <span class="hlt">interferometer</span> pairs of antenna elements with selected spacings made to form a single beam which is readily scannable. All spatial frequencies generated by a signal and intercepted by the array are derived from a signal processing technique applied to the array. The array samples space in the spatial frequency domain while the signal processing technique utilizes real time convolution of functions in the spectral frequency domain. Summation of the appropriate spatial frequencies is equilvalent to a Fourier transform operation, yielding the location of the signal source in space. Resolution and freedom from interference of the <span class="hlt">interferometer</span> system is equal to that of a fully filled array of the same aperture size containing element spacings of one half wavelength. An antenna array system comprising four antenna elements forming six <span class="hlt">interferometer</span> pairs with a resolution equal to that of a sixteen element array with spacings of one half wavelength is described, as well as other multiples of one quarter wavelength of partial multiples of a wave length.</p> <div class="credits"> <p class="dwt_author">Kaiser, J. A., Jr. (inventor)</p> <p class="dwt_publisher"></p> <p class="publishDate">1980-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">412</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012PhRvD..85f4007H"> <span id="translatedtitle"><span class="hlt">Interferometers</span> as probes of Planckian quantum geometry</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A theory of position of massive bodies is proposed that results in an observable quantum behavior of geometry at the Planck scale, tP. Departures from classical world lines in flat spacetime are described by Planckian noncommuting operators for position in different directions, as defined by interactions with null waves. The resulting evolution of position wave functions in two dimensions displays a new kind of directionally coherent quantum noise of transverse position. The amplitude of the effect in physical units is predicted with no parameters, by equating the number of degrees of freedom of position wave functions on a 2D space-like surface with the entropy density of a black hole event horizon of the same area. In a region of size L, the effect resembles spatially and directionally coherent random transverse shear deformations on time scale ?L/c with typical amplitude ?ctPL. This quantum-geometrical “holographic noise” in position is not describable as fluctuations of a quantized metric, or as any kind of fluctuation, dispersion or propagation effect in quantum fields. In a Michelson <span class="hlt">interferometer</span> the effect appears as noise that resembles a random Planckian walk of the beam splitter for durations up to the light-crossing time. Signal spectra and correlation functions in <span class="hlt">interferometers</span> are derived, and predicted to be comparable with the sensitivities of current and planned experiments. It is proposed that nearly colocated Michelson <span class="hlt">interferometers</span> of laboratory scale, cross-correlated at high frequency, can test the Planckian noise prediction with current technology.</p> <div class="credits"> <p class="dwt_author">Hogan, Craig J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">413</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1980RScI...51.1304B"> <span id="translatedtitle">CO2 <span class="hlt">interferometer</span> operation in Doublet III</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A CO2 laser <span class="hlt">interferometer</span> is used for measuring the average free electron density along a vertical path in Doublet III, a large fusion research tokamak. The CO2 laser is used together with a collinear HeNe laser to form a two-wavelength <span class="hlt">interferometer</span> capable of measuring plasma fringe shifts which are much less than the fringe shifts due to mechanical vibrations. This diagnostic has been shown to be able to resolve plasma electron fringe shifts smaller than 1/17 of a fringe during the pulsed operation which causes mechanical motion resulting in as many as 10 fringe shifts. The <span class="hlt">interferometer</span> is operated in the Michelson configuration with a total double path length through the plasma of 6 m. The density resolution then is better than 2 x 10 to the 12th per cu cm. A density resolution of about 0.5 x 10 to the 12th per cu cm has been achieved during relatively quiet operation.</p> <div class="credits"> <p class="dwt_author">Baker, D. R.</p> <p class="dwt_publisher"></p> <p class="publishDate">1980-10-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">414</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014SPIE.8988E..0NK"> <span id="translatedtitle">Hybrid photonic chip <span class="hlt">interferometer</span> for embedded metrology</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Embedded metrology is the provision of metrology on the manufacturing platform, enabling measurement without the removal of the work piece. Providing closer integration of metrology upon the manufacturing platform can lead to the better control and increased throughput. In this work we present the development of a high precision hybrid optical chip <span class="hlt">interferometer</span> metrology device. The complete metrology sensor system is structured into two parts; optical chip and optical probe. The hybrid optical chip <span class="hlt">interferometer</span> is based on a silica-on-silicon etched integrated-optic motherboard containing waveguide structures and evanescent couplers. Upon the motherboard, electro-optic components such as photodiodes and a semiconductor gain block are mounted and bonded to provide the required functionality. The key structure in the device is a tunable laser module based upon an external-cavity diode laser (ECDL). Within the cavity is a multi-layer thin film filter which is rotated to select the longitudinal mode at which the laser operates. An optical probe, which uses a blazed diffracting grating and collimating objective lens, focuses light of different wavelengths laterally over the measurand. Incident laser light is then tuned in wavelength time to effectively sweep an `optical stylus' over the surface. Wavelength scanning and rapid phase shifting can then retrieve the path length change and thus the surface height. We give an overview of the overall design of the final hybrid photonic chip <span class="hlt">interferometer</span>, constituent components, device integration and packaging as well as experimental test results from the current version now under evaluation.</p> <div class="credits"> <p class="dwt_author">Kumar, P.; Martin, H.; Maxwell, G.; Jiang, X.</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">415</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1996APS..DPP..4P03H"> <span id="translatedtitle">Results from a Prototype Second Harmonic <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A tabletop second harmonic <span class="hlt">interferometer</span> operating at 1.06 and 0.53 ?m has been built to test its sensitivity for use on tokamaks. This type of <span class="hlt">interferometer</span> is insensitive to vibrations. The prototype uses a pulsed, 35 mJ, 10 Hz multimode, Nd:YAG laser, LiB_3O5 non-critically phase matched doublers, a retro-reflector, and a CCD camera detector. This <span class="hlt">interferometer</span> has beam diameters of a few millimeters and spatial resolution of a few centimeters. Commercial lasers and CCD arrays are available which can scale this design to 20kHz. Tokamak applications typically require a sensitivity of 10-3 fringes and maximum changes of 1 fringe. The sensitivity of the prototype system has been investigated along with technical limitations on elements of the optical system relevant to its use on tokamaks. In particular, methods of normalizing shot-to-shot and spatial mode variations in the laser intensity are examined. A gas cell whose pressure can be varied has been used as a dispersive medium for calibrating and testing the instrumental sensitivity. The use of visible and near visible components allows a compact optical design and efficient use of port space.</p> <div class="credits"> <p class="dwt_author">Humensky, B.; Bretz, N.; Jobes, F.</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">416</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1993ApOpt..32.1789C"> <span id="translatedtitle">Orbiting stellar <span class="hlt">interferometer</span> for astrometry and imaging</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The orbiting stellar <span class="hlt">interferometer</span> (OSI) is a concept for a first-generation space <span class="hlt">interferometer</span> with astrometric and imaging goals. The OSI is a triple Michelson <span class="hlt">interferometer</span> with articulating siderostats and optical delay lines. Two point designs for the instrument are described. The 18-m design uses an 18-m maximum baseline and aperture diameters of 40 cm; the targeted astrometric performance is a wide-field accuracy of 10 microarsec for 16-mag objects in 100 s of integration time and for 20-mag objects in 1 h. The instrument would also be capable of synthesis imaging with a resolution of 5 marcsec, which corresponds to the diffraction limit of the 18-m base line. The design uses a deployed structure, which would fold to fit into an Atlas IIAS shroud, for insertion into a 900-km sun-synchronous orbit. In addition to the 18-m point design, a 7-m point design that uses a shorter base line in order to simplify deployment is also discussed. OSI's high performance is made possible by utilizing laser metrology and controlled-optics technology.</p> <div class="credits"> <p class="dwt_author">Colavita, M. M.; Shao, M.; Rayman, M. D.</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-04-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">417</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20030016517&hterms=computer+simulator&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dcomputer%2Bsimulator"> <span id="translatedtitle">A Study of Imaging <span class="hlt">Interferometer</span> Simulators</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Several new space science mission concepts under development at NASA-GSFC for astronomy are intended to carry out synthetic imaging using Michelson <span class="hlt">interferometers</span> or direct (Fizeau) imaging with sparse apertures. Examples of these mission concepts include the Stellar Imager (SI), the Space Infrared Interferometric Telescope (SPIRIT), the Submillimeter Probe of the Evolution of Cosmic Structure (SPECS), and the Fourier-Kelvin Stellar <span class="hlt">Interferometer</span> (FKSI). We have been developing computer-based simulators for these missions. These simulators are aimed at providing a quantitative evaluation of the imaging capabilities of the mission by modelling the performance on different realistic targets in terms of sensitivity, angular resolution, and dynamic range. Both Fizeau and Michelson modes of operation can be considered. Our work is based on adapting a computer simulator called imSIM, which was initially written for the Space <span class="hlt">Interferometer</span> Mission in order to simulate the imaging mode of new missions such as those listed. In a recent GSFC-funded study we have successfully written a preliminary version of a simulator SISIM for the Stellar Imager and carried out some preliminary studies with it. In a separately funded study we have also been applying these methods to SPECS/SPIRIT.</p> <div class="credits"> <p class="dwt_author">Allen, Ronald J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">418</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/48667418"> <span id="translatedtitle">Polarimetric Borehole <span class="hlt">Radar</span> System for Fracture Measurement</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Radar</span> polarimetry is a technology that overcomes the limitation between the <span class="hlt">radar</span> resolution and the penetration depth of borehole <span class="hlt">radar</span>. We have developed a stepped-frequency polarimetric borehole <span class="hlt">radar</span> system. This is a polarimetric borehole <span class="hlt">radar</span> system which measures the full-<span class="hlt">radar</span> polarimetry in a borehole by changing the antenna arrangements. By using a network analyzer and an optical analog signal link,</p> <div class="credits"> <p class="dwt_author">Motoyuki Sato; Takashi Miwa</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">419</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/6411667"> <span id="translatedtitle">High Resolution Capabilities of MIMO <span class="hlt">Radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Multiple-input multiple-output (MIMO) <span class="hlt">radar</span> is a multistatic architecture composed of multiple transmitters and receivers, which seeks to exploit the spatial diversity of <span class="hlt">radar</span> backscatter. In conjunction with centralized processing, MIMO <span class="hlt">radar</span> has the potential to significantly improve <span class="hlt">radar</span> functions such as detection and parameter estimation. MIMO <span class="hlt">radar</span> is distinct from other types of array <span class="hlt">radars</span> such as phased array or</p> <div class="credits"> <p class="dwt_author">Nikolaus H. Lehmann; Alexander M. Haimovich; Rick S. Blum; Len Cimini</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">420</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/53721863"> <span id="translatedtitle">Mars <span class="hlt">Radar</span> Observations with the Goldstone Solar System <span class="hlt">Radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The Goldstone Solar System <span class="hlt">Radar</span> (GSSR) has successfully collected <span class="hlt">radar</span> echo data from Mars over the past 30 years. As such, the GSSR has played a role as a specific mission element within Mars exploration. The older data provided local elevation information for Mars, along with <span class="hlt">radar</span> scattering information with global resolution. Since the upgrade to the 70-m Deep Space</p> <div class="credits"> <p class="dwt_author">A. F. C. Haldemann; R. F. Jurgens; K. W. Larsen; R. E. Arvidson; M. A. Slade</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_20");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a style="font-weight: bold;">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_22");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_21 div --> <div id="page_22" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_21");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a style="font-weight: bold;">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_23");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">421</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1467001"> <span id="translatedtitle">Microphysical cross validation of spaceborne <span class="hlt">radar</span> and ground polarimetric <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Ground-based polarimetric <span class="hlt">radar</span> observations along the beam path of the Tropical Rainfall Measuring Mission (TRMM) Precipitation <span class="hlt">Radar</span> (PR), matched in resolution volume and aligned to PR measurements, are used to estimate the parameters of a gamma raindrop size distribution (RSD) model along the <span class="hlt">radar</span> beam in the presence of rain. The PR operates at 13.8 GHz, and its signal returns</p> <div class="credits"> <p class="dwt_author">V. Chandrasekar; Steven M. Bolen; Eugenio Gorgucci</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">422</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21366741"> <span id="translatedtitle">A Software Tool for Processing the Displacement Time Series Extracted from Raw <span class="hlt">Radar</span> Data</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The application of high-resolution <span class="hlt">radar</span> waveform and interferometric principles recently led to the development of a microwave <span class="hlt">interferometer</span>, suitable to simultaneously measuring the (static or dynamic) deflection of several points on a large structure. From the technical standpoint, the sensor is a Stepped Frequency Continuous Wave (SF-CW), coherent <span class="hlt">radar</span>, operating in the K{sub u} frequency band.In the paper, the main procedures adopted to extract the deflection time series from raw <span class="hlt">radar</span> data and to assess the quality of data are addressed, and the MATLAB toolbox developed is described. Subsequently, other functions implemented in the software tool (e.g. evaluation of the spectral matrix of the deflection time-histories, identification of natural frequencies and operational mode shapes evaluation) are described and the application to data recorded on full-scale bridges is exemplified.</p> <div class="credits"> <p class="dwt_author">Coppi, Francesco; Paolo Ricci, Pier [IDS Ingegneria Dei Sistemi S.p.A., Pisa (Italy); Gentile, Carmelo [Politecnico di Milano, Dept. of Structural Engineering, Milan (Italy)</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-05-28</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">423</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=N8333015"> <span id="translatedtitle">Phase Modulating the Urbana <span class="hlt">Radar</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The design and operation of a switched phase modulation system for the Urbana <span class="hlt">Radar</span> System are discussed. The system is implemented and demonstrated using a simple procedure. The <span class="hlt">radar</span> system and circuits are described and analyzed.</p> <div class="credits"> <p class="dwt_author">L. J. Herrington S. A. Bowhill</p> <p class="dwt_publisher"></p> <p class="publishDate">1983-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">424</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19830024744&hterms=Urbana&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3D%2522Urbana%2522"> <span id="translatedtitle">Phase modulating the Urbana <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The design and operation of a switched phase modulation system for the Urbana <span class="hlt">Radar</span> System are discussed. The system is implemented and demonstrated using a simple procedure. The <span class="hlt">radar</span> system and circuits are described and analyzed.</p> <div class="credits"> <p class="dwt_author">Herrington, L. J., Jr.; Bowhill, S. A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1983-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">425</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA099560"> <span id="translatedtitle"><span class="hlt">Radar</span> Background Signal Reduction Study.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">This report summarizes a study whose objective was to identify materials and/or techniques to reduce <span class="hlt">radar</span> background signals for ground plane <span class="hlt">radar</span> cross section (RCS) ranges. Background signal reduction is essential for improving the accuracy of RCS mea...</p> <div class="credits"> <p class="dwt_author">E. F. Knott C. J. Ray M. S. West R. J. Wohlers</p> <p class="dwt_publisher"></p> <p class="publishDate">1980-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">426</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/51667502"> <span id="translatedtitle">Helicopter obstacle detection <span class="hlt">radar</span> system</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We have analyzed and experimentally tested the feasibility of thin wire detection using millimeter wave <span class="hlt">radar</span>. The <span class="hlt">radar</span> system includes a novel, fast scanning antenna and a transceiver\\/signal processor unit from BAE systems.</p> <div class="credits"> <p class="dwt_author">Lev S. Sadovnik; Vladimir A. Manasson; Robert M. Mino</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">427</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50668141"> <span id="translatedtitle">CFAR detection for multistatic <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A multistatic <span class="hlt">radar</span> system with n transmitters and one receiver is modelled. Several CFAR algorithms for detection are introduced. The proposed CFAR detectors are simulated and the performances are compared with the performance of a monostatic <span class="hlt">radar</span> of higher power.</p> <div class="credits"> <p class="dwt_author">Vahideh Amanipour; Ali Olfat</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">428</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/52711039"> <span id="translatedtitle">The UK <span class="hlt">radar</span> scene today</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Primary <span class="hlt">radar</span> systems in the United Kingdom that recently entered service or are at an advanced stage of development are presented. Naval, airborne, and land-based types and civil and military <span class="hlt">radars</span>, especially airborne equipment, are discussed.</p> <div class="credits"> <p class="dwt_author">J. Clarke</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">429</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1985rsre.nasa....1C"> <span id="translatedtitle">The UK <span class="hlt">radar</span> scene today</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Primary <span class="hlt">radar</span> systems in the United Kingdom that recently entered service or are at an advanced stage of development are presented. Naval, airborne, and land-based types and civil and military <span class="hlt">radars</span>, especially airborne equipment, are discussed.</p> <div class="credits"> <p class="dwt_author">Clarke, J.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">430</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012AGUFM.A53I0254P"> <span id="translatedtitle">Cloud Base Height and Effective Cloud Emissivity Retrieval with Ground-Based Infrared <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Based on ground-based Atmospheric Emitted Radiance <span class="hlt">Interferometer</span> (AERI) observations in Shouxian, Anhui province, China, the cloud base height (CBH) and effective cloud emissivity are retrieved by using the minimum root-mean-square difference method. This method was originally developed for satellite remote sensing. The high-temporal-resolution retrieval results can depict the trivial variations of the zenith clouds continuously. The retrieval results are evaluated by comparing them with observations by the cloud <span class="hlt">radar</span>. The comparison shows that the retrieval bias is smaller for the middle and low clouds, especially for opaque clouds. When two layers of clouds exist, the retrieval results reflect the weighting radiative contribution of the multi-layer cloud. The retrieval accuracy is affected by uncertainties of the AERI radiances and sounding profiles, in which the role of uncertainty in the temperature profile is dominant.</p> <div class="credits"> <p class="dwt_author">Pan, L.; Lu, D.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">431</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010cosp...38.3763M"> <span id="translatedtitle">The University of Florida LISA <span class="hlt">interferometer</span> simulator</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Interferometric gravitational wave detectors such as LISA are built around two major subsys-tems. Gravitational reference sensors (GRS) consist of several freely-falling proof masses which follow variations in space time caused by passing gravitational waves. Spurious accelerations of the proof masses caused by technical or environmental forces have to be below the fN/rtHz level in the frequency band of interest. <span class="hlt">Interferometer</span> measurement systems (IMS) measure the changes in the distances between the proof masses with sufficient sensitivity. The GRS-system for LISA has been developed over the last ten years and will be tested in a dedicated test mission, the LISA Test Package (LTP), scheduled for launch in 2012. The IMS of LISA is one of the most dynamic and longest <span class="hlt">interferometers</span> ever envisioned. It consists of many subsystems which depend on the long light-travel times, the changes in the light-travel times and the induced Doppler shifts. The signals of the IMS are beat tones taken between vari-ous lasers at various locations on the three spacecraft. The phase evolution of each signal is measured against on-board clocks, after which linear combinations between appropriately time-shifted signals are formed to cancel about 10 orders of magnitude of laser frequency noise and thereby reach LISA sensitivity. Achieving 10 orders of magnitude of common mode rejection is already a daunting task for a small static <span class="hlt">interferometer</span> in an optical laboratory. LISA is a very large and highly dynamic <span class="hlt">interferometer</span> with constantly changing arms which for exam-ple requires to adapt permanently the noise cancelling linear combinations to the current arm lengths and spacecraft velocities while continuously monitoring the relative noise between the three independent on-board clocks. The University of Florida LISA <span class="hlt">Interferometer</span> Simulator (UFLIS) is a hardware-in-the-loop simulator which includes multiple lasers, LISA-like signal travel-times and LISA-like Doppler shifts. UFLIS generates signals that currently are the most LISA-like signals in the world; these can be used to develop, test, and verify various techniques and algorithms proposed to achieve the required LISA performance. In this presentation I will discuss the core elements of UFLIS and how these elements are used to generate LISA-like signals. I will present results from tests we have performed and discuss our future test plans. This work is supported by NASA grants NNX08AG75G and NNX09AF99G</p> <div class="credits"> <p class="dwt_author">Mueller, Guido; Hochman, Steven; Mitryk, Shawn; Sanjuan Munoz, Jose; Preston, Alix; Sweeney, Dylan; Yu, Yinan; Tanner, David B.; Mueller, Guido</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">432</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1991PhDT.......245B"> <span id="translatedtitle">Polarizing Michelson <span class="hlt">Interferometer</span> for Measuring Thermospheric Winds.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The Polarizing Atmospheric Michelson <span class="hlt">Interferometer</span>, PAMI, a new version of the Wide Angle Michelson <span class="hlt">Interferometer</span>, is used to measure winds in the thermosphere. In the polarizing instrument, the optical path difference is changed simply by rotating a polarizing filter external to the <span class="hlt">interferometer</span>. This allows a very simple scanning mechanism. PAMI's general behavior has been modeled in terms of Mueller matrices providing a framework for the analysis of partial polarization states within the Michelson <span class="hlt">Interferometer</span> (MI). A field instrument based on the above concept was designed and built. PAMI is similar to other instruments such as WAMDII (Shepherd et al., 1985) that measure thermospheric winds and temperatures, retaining the benefits of high light throughput, while offering advantages including lower cost, simplicity, and portability. PAMI was constructed from readily available components wherever possible to facilitate replacement. The instrument is highly sensitive and thus is designed to be used for field measurements at locations far from city lights. Results are shown from the AIDA observation campaign in Puerto Rico (17^circ57 ^'0^{ ''}N, 66^ circ52^'42 ^{''}W) where coordinated observations were made by PAMI along with other optical and radio measurements during April and May 1989. Intensities of the green line layer at 95 km were compared to those observed by several other instruments. For example, MORTI (Mesopause Oxygen Rotational Temperature Imager), a co-located instrument which was looking at the 94 km 867.6 nm molecular oxygen emission. MORTI and PAMI emission rates were found to show the same trends. PAMI intensities were also compared to two green-line photometers. In these comparisons the trends in observed emission rates were the same for all three instruments. On the brightest night recorded during April, the zenith emission rate reached over 400 Rayleighs; emission enhancements were sometimes related to auroral events. During the observing period of April 4 to April 11, 1989, most of the observations of the 95 km airglow were after midnight where the winds were found to be generally towards the north east at about 50 to 100 m/s. During auroral activity this wind vector always turned counterclockwise, towards the west. During the nights of May 2 and May 6 these wind vectors follow a wave-like variation in magnitude and direction. It is concluded that auroral activity changes the global circulation in a way that sometimes transports increased amounts of oxygen atoms over Arecibo. Wind comparisons were made with a Fabry-Perot <span class="hlt">interferometer</span> operating at the same time at the Arecibo observatory, 60 km away. The agreement was generally good, with some differences in detail, in some cases, for the eastward wind component.</p> <div class="credits"> <p class="dwt_author">Bird, John C.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">433</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20110011956&hterms=radar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dradar"> <span id="translatedtitle">Miniaturized Ka-Band Dual-Channel <span class="hlt">Radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Smaller (volume, mass, power) electronics for a Ka-band (36 GHz) <span class="hlt">radar</span> <span class="hlt">interferometer</span> were required. To reduce size and achieve better control over RFphase versus temperature, fully hybrid electronics were developed for the RF portion of the <span class="hlt">radar</span> s two-channel receiver and single-channel transmitter. In this context, fully hybrid means that every active RF device was an open die, and all passives were directly attached to the subcarrier. Attachments were made using wire and ribbon bonding. In this way, every component, even small passives, was selected for the fabrication of the two <span class="hlt">radar</span> receivers, and the devices were mounted relative to each other in order to make complementary components isothermal and to isolate other components from potential temperature gradients. This is critical for developing receivers that can track each other s phase over temperature, which is a key mission driver for obtaining ocean surface height. Fully hybrid, Ka-band (36 GHz) <span class="hlt">radar</span> transmitter and dual-channel receiver were developed for spaceborne <span class="hlt">radar</span> interferometry. The fully hybrid fabrication enables control over every aspect of the component selection, placement, and connection. Since the two receiver channels must track each other to better than 100 millidegrees of RF phase over several minutes, the hardware in the two receivers must be "identical," routed the same (same line lengths), and as isothermal as possible. This level of design freedom is not possible with packaged components, which include many internal passive, unknown internal connection lengths/types, and often a single orientation of inputs and outputs.</p> <div class="credits"> <p class="dwt_author">Hoffman, James P.; Moussessian, Alina; Jenabi, Masud; Custodero, Brian</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">434</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1990EOSTr..71S.387."> <span id="translatedtitle">Polarimetric <span class="hlt">radar</span> modified</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Modification of 11-cm Doppler <span class="hlt">radar</span>, to permit measurement of the complete polari-metric matrix of signals backscattered from meteorological media, was recently completed by the Ground Based Remote Sensing Branch of the Geophysics Laboratory, U.S. Air Force Base, Hanscom, Mass. It is believed that this <span class="hlt">radar</span> is the only meteorological research <span class="hlt">radar</span> in the world having such a capability at this wavelength. Signals can be transmitted with either linear or circular polarization and switched pulse-to-pulse either between horizontal and vertical or between right and left circular polarization.Backscattered signals with polarizations identical and orthogonal to that of the transmitted signal pass through coherent and logarithmic receivers and are recorded as time series in 40 selectable range gates. The resulting data archive supports a wide range of analyses, including auto- and cross-covariance calculations and spectral analyses.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">435</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/49816672"> <span id="translatedtitle">Target identification from <span class="hlt">radar</span> signatures</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Modern high resolution <span class="hlt">radar</span> techniques and real time digital signal processing advances indicate the feasibility of extracting characteristic features of aircraft targets from their <span class="hlt">radar</span> signatures. Two basic approaches have been suggested. The low frequency approach utilizes harmonically related <span class="hlt">radar</span> frequencies with wavelengths comparable to the target dimensions. The microwave approach utilizes spread spectrum techniques to achieve high range resolution.</p> <div class="credits"> <p class="dwt_author">R. Strattan</p> <p class="dwt_publisher"></p> <p class="publishDate">1978-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">436</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA246315"> <span id="translatedtitle">Interception of LPI <span class="hlt">Radar</span> Signals.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Most current <span class="hlt">radars</span> are designed to transmit short duration pulses with relatively high peak power. These <span class="hlt">radars</span> can be detected easily by the use of relatively modest EW intercept receivers. Three <span class="hlt">radar</span> functions, namely search, anti-ship missile (ASM) s...</p> <div class="credits"> <p class="dwt_author">J. P. Lee</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">437</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19760006244&hterms=side+chain&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dside%2Bchain"> <span id="translatedtitle">Side looking <span class="hlt">radar</span> calibration study</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Calibration of an airborne sidelooking <span class="hlt">radar</span> is accomplished by the use of a model that relates the <span class="hlt">radar</span> parameters to the physical mapping situation. Topics discussed include: characteristics of the transmitters; the antennas; target absorption and reradiation; the receiver and map making or <span class="hlt">radar</span> data processing; and the calibration process.</p> <div class="credits"> <p class="dwt_author">Edwards, W. D.</p> <p class="dwt_publisher"></p> <p class="publishDate">1975-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">438</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/27067568"> <span id="translatedtitle"><span class="hlt">Radar</span> Cross Section of Ships</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A laboratory method to determine the magnitude and position of <span class="hlt">radar</span> reflection sources on complex targets is described. In addition the method provides a way to measure the modification of the <span class="hlt">radar</span> cross section (RCS) due to multipath. The method has application in modeling RCS for <span class="hlt">radar</span> and electronic countermeasure (ECM) system performance analysis and in the study of the</p> <div class="credits"> <p class="dwt_author">F. C. Paddison; C. A. Shipley; A. L. Maffett; M. H. Dawson</p> <p class="dwt_publisher"></p> <p class="publishDate">1978-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">439</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/18707218"> <span id="translatedtitle">Gravitational wave detection with single-laser atom <span class="hlt">interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We present a new general design approach of a broad-band detector of gravitational radiation that relies on two atom <span class="hlt">interferometers</span>\\u000a separated by a distance L. In this scheme, only one arm and one laser will be used for operating the two atom <span class="hlt">interferometers</span>. We consider atoms in\\u000a the atom <span class="hlt">interferometers</span> not only as perfect inertial reference sensors, but also as</p> <div class="credits"> <p class="dwt_author">Nan Yu; Massimo Tinto</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">440</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19980027609&hterms=musics+effect&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dmusics%2Beffect"> <span id="translatedtitle">A Comparison of Structurally Connected and Multiple Spacecraft <span class="hlt">Interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Structurally connected and multiple spacecraft <span class="hlt">interferometers</span> are compared in an attempt to establish the maximum baseline (referred to as the "cross-over baseline") for which it is preferable to operate a single-structure <span class="hlt">interferometer</span> in space rather than an <span class="hlt">interferometer</span> composed of numerous, smaller spacecraft. This comparison is made using the total launched mass of each configuration as the comparison metric. A framework of study within which structurally connected and multiple spacecraft <span class="hlt">interferometers</span> can be compared is presented in block diagram form. This methodology is then applied to twenty-two different combinations of trade space parameters to investigate the effects of different orbits, orientations, truss materials, propellants, attitude control actuators, onboard disturbance sources, and performance requirements on the cross-over baseline. Rotating <span class="hlt">interferometers</span> and the potential advantages of adding active structural control to the connected truss of the structurally connected <span class="hlt">interferometer</span> are also examined. The minimum mass design of the structurally connected <span class="hlt">interferometer</span> that meets all performance-requirements and satisfies all imposed constraints is determined as a function of baseline. This minimum mass design is then compared to the design of the multiple spacecraft <span class="hlt">interferometer</span>. It is discovered that the design of the minimum mass structurally connected <span class="hlt">interferometer</span> that meets all performance requirements and constraints in solar orbit is limited by the minimum allowable aspect ratio, areal density, and gage of the struts. In the formulation of the problem used in this study, there is no advantage to adding active structural control to the truss for <span class="hlt">interferometers</span> in solar orbit. The cross-over baseline for missions of practical duration (ranging from one week to thirty years) in solar orbit is approximately 400 m for non-rotating <span class="hlt">interferometers</span> and 650 m for rotating <span class="hlt">interferometers</span>.</p> <div class="credits"> <p class="dwt_author">Surka, Derek M.; Crawley, Edward F.</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_21");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a style="font-weight: bold;">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_23");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_22 div --> <div id="page_23" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_22");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a style="font-weight: bold;">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_24");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">441</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2003SPIE.4852..818W"> <span id="translatedtitle">Fringe tracking in the StarLight formation <span class="hlt">interferometer</span> testbed</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">StarLight, a NASA/JPL mission originally scheduled for launch in 2006, proposed to fly a two spacecraft visible light stellar <span class="hlt">interferometer</span>. The Formation <span class="hlt">Interferometer</span> Testbed (FIT) is a ground laboratory at JPL dedicated to validating technologies for StarLight and future formation flying spacecraft such as Terrestrial Planet Finder. The FIT <span class="hlt">interferometer</span> achieved first fringes in February 2002. In this paper we present our status and review progress towards fringe tracking on a moving collector target.</p> <div class="credits"> <p class="dwt_author">Wehmeier, Udo J.; Liewer, Kurt M.; Shields, Joel F.</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-02-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">442</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20110012245&hterms=atoms&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Datoms"> <span id="translatedtitle">Gravitational Wave Detection with Single-Laser Atom <span class="hlt">Interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">A new design for a broadband detector of gravitational radiation relies on two atom <span class="hlt">interferometers</span> separated by a distance L. In this scheme, only one arm and one laser are used for operating the two atom <span class="hlt">interferometers</span>. The innovation here involves the fact that the atoms in the atom <span class="hlt">interferometers</span> are not only considered as perfect test masses, but also as highly stable clocks. Atomic coherence is intrinsically stable, and can be many orders of magnitude more stable than a laser.</p> <div class="credits"> <p class="dwt_author">Yu, Nan; Tinto, Massimo</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">443</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19900012569&hterms=Real+madrid&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DReal%2Bmadrid"> <span id="translatedtitle">Using connected-element <span class="hlt">interferometer</span> phase-delay data for Magellan navigation in Venus orbit</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The pointing accuracy needed to support Magellan's Synthetic Aperture <span class="hlt">Radar</span> mapping of Venus places stringent requirements on navigation accuracy. This need is met with a combination of two-way Doppler and narrowband delta Very Long Baseline <span class="hlt">Interferometer</span> (delta VLBI) data, which are capable of determining the spacecraft's orbit to the required level, typically about one-kilometer position uncertainty. Differenced Doppler (two-way Doppler minus three-way Doppler) is also capable of meeting mission navigation requirements, and serves as a backup to narrowband delta VLBI. The Magellan Project specifies that the turn-around time for processing narrowband delta VLBI data must be 12 hours or less, a very difficult requirement to meet operationally. The use of phase-delay data, taken from a Connected-Element <span class="hlt">Interferometer</span> (CEI) with a 21-km baseline, for Magellan orbit determination was investigated to determine if navigation performance comparable with narrowband delta VLBI and differenced Doppler could be achieved. CEI possesses an operational advantage over delta VLBI data in that the observables are constructed in near-real time, thus greatly reducing the turn-around time needed to process the data, relative to the off-line system used to generate delta VLBI observables. Unfortunately, the results indicate that CEI data are much less powerful than narrowband delta VLBI and differenced Doppler for orbiter navigation, although there was some marginal improvement over the navigation performance obtained when only two-way Doppler data were used.</p> <div class="credits"> <p class="dwt_author">Thurman, S. W.; Badilla, G.</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">444</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19840008322&hterms=ice+pliocene&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dice%2Bpliocene"> <span id="translatedtitle">Spaceborne Imaging <span class="hlt">Radar</span> Symposium</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">An overview of the present state of the art in the different scientific and technological fields related to spaceborne imaging <span class="hlt">radars</span> was presented. The data acquired with the SEASAT SAR (1978) and Shuttle Imaging <span class="hlt">Radar</span>, SIR-A (1981) clearly demonstrated the important emphasis in the 80's is going to be on in-depth research investigations conducted with the more flexible and sophisticated SIR series instruments and on long term monitoring of geophysical phenomena conducted from free-flying platforms such as ERS-1 and RADARSAT.</p> <div class="credits"> <p class="dwt_author">Elachi, C.</p> <p class="dwt_publisher"></p> <p class="publishDate">1983-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">445</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19930072874&hterms=Strauch&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3D%2522Strauch%2522"> <span id="translatedtitle"><span class="hlt">Radar</span> wind profilers</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Continuous, automated measurement of tropospheric wind profiles with UHF and VHF Doppler <span class="hlt">radars</span> has been demonstrated. Ground-based networks of these <span class="hlt">radars</span> will be available as part of a global wind measurement system, and remote single stations could be built to further complement a spaceborne measurement device. A number of ground-based wind profilers will be in place by the time a space system is tested so the global wind measurement system should be designed with these ground-based profilers providing part of the picture.</p> <div class="credits"> <p class="dwt_author">Strauch, R. G.</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">446</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/20786479"> <span id="translatedtitle">Nonlocal labeling of paths in a single-photon <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We prepared polarization-entangled photon pairs and sent one of the photons through a Mach-Zehnder <span class="hlt">interferometer</span>. The apparatus was arranged so that when going through each arm of the <span class="hlt">interferometer</span> the pairs were in a different Bell state. The distinguishability of the <span class="hlt">interferometer</span> paths was determined by projecting the entangled state of the two photons with a polarizer placed in the path of the photon that does not go through the <span class="hlt">interferometer</span>. As a consequence, actions on the remote photon determined nonlocally the visibility of the interference pattern. We present a full theoretical analysis and experimental results that confirm the theoretical predictions.</p> <div class="credits"> <p class="dwt_author">Pysher, M. J.; Galvez, E. J.; Misra, K.; Wilson, K. R.; Melius, B. C.; Malik, M. [Department of Physics and Astronomy, Colgate University, Hamilton, NY 13346 (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-11-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">447</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2003MeScT..14..376L"> <span id="translatedtitle">A neural network approach to correcting nonlinearity in optical <span class="hlt">interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Real <span class="hlt">interferometers</span> with phase quadrature detecting subsystems usually demonstrate nonlinearity with length measurements. Conventional nonlinearity correction techniques based on elliptical fittings are reviewed and their limitation is investigated using computer simulations. A new approach based on neural networks (NNs) for correcting nonlinearity in optical <span class="hlt">interferometers</span> for length and displacement measurements is introduced, the principle of which is given (including the architecture of the NN) and its training method. An experimental setup was developed based on a differential plane-mirror <span class="hlt">interferometer</span> for testing the proposed method. The experimental results show that this new approach is successfully applicable to real, noisy <span class="hlt">interferometer</span> signals.</p> <div class="credits"> <p class="dwt_author">Li, Zhi; Herrmann, Konrad; Pohlenz, Frank</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">448</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2006SPIE.6349E.114R"> <span id="translatedtitle"><span class="hlt">Single</span> <span class="hlt">pass</span> die-to-database tritone reticle inspection capability</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Tritone reticle designs present many challenges for both photomask manufacturers and defect inspection equipment suppliers. From a fabrication standpoint, multi-write and process steps for tritone layers add levels of complexity and increased cost not encountered with most traditional binary (two tone) masks. For inspection tools, the presence of three distinctive light levels presents a challenge for algorithms originally designed to inspect gray scale data between two tones (black and white): especially for database transmitted light modes. While most die-to-die and STARlightTM inspections on tritone reticles produce successful results using binary algorithms, database inspections typically require two separate recipes to reveal all lithographically significant defects. With this dual-inspection technique, DNIR (Do Not Inspect Regions) are often added to eliminate the presence of third tone (typically Chrome) features: a process that adds considerable time to recipe creation. Additional workarounds when using binary inspection algorithms include implementing special light calibration techniques during setup in an effort to minimize nuisance defects caused by the presence of a third tone. As a result of these workarounds, reticle throughput is either reduced or sensitivity compromised when using binary database inspection algorithms on tritone reticles. This paper examines the benefits of using a tritone database inspection algorithm from both productivity and sensitivity standpoints as compared to results obtained from using the aforementioned workarounds and existing binary inspection modes. The results and conclusions contained within are based on data obtained from standard test vehicles and a variety of tritone production reticles.</p> <div class="credits"> <p class="dwt_author">Reese, Bryan; Heumann, Jan; Schmidt, Norbert</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">449</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/15006737"> <span id="translatedtitle">SATURATION OF A HIGH GRAIN <span class="hlt">SINGLE-PASS</span> FEL.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We study a perturbation expansion for the solution of the nonlinear one-dimensional FEL equations. We show that in the case of a monochromatic wave, the radiated intensity satisfies a scaling relation that implies, for large distance z traveled along the undulator, a change in initial value of the radiation field corresponds to a translation in z (lethargy). Analytic continuation using Pade approximates yields accurate results for the radiation field early in saturation.</p> <div class="credits"> <p class="dwt_author">KRINSKY, S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-07</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">450</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1997AIPC..413..155P"> <span id="translatedtitle">Photocathode guns for <span class="hlt">single</span> <span class="hlt">pass</span> X-ray FELs</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The present state of the art in photoinjector designs will be presented in this review. We will discuss both proposed and operational photoinjectors with operating frequencies from L-band (1.424 GHz) to X-band (11.424 GHz). Also a novel pulsed DC gun will be presented. All the RF photoinjector discussed here use an emittance compensation scheme to align the different slices of the electron beam to decrease the beams normalized rms emittance.</p> <div class="credits"> <p class="dwt_author">Palmer, D. T.</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-06-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">451</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19900017242&hterms=ISSR&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DISSR"> <span id="translatedtitle"><span class="hlt">Single-pass</span> memory system evaluation for multiprogramming workloads</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Modern memory systems are composed of levels of cache memories, a virtual memory system, and a backing store. Varying more than a few design parameters and measuring the performance of such systems has traditionally be constrained by the high cost of simulation. Models of cache performance recently introduced reduce the cost simulation but at the expense of accuracy of performance prediction. Stack-based methods predict performance accurately using one pass over the trace for all cache sizes, but these techniques have been limited to fully-associative organizations. This paper presents a stack-based method of evaluating the performance of cache memories using a recurrence/conflict model for the miss ratio. Unlike previous work, the performance of realistic cache designs, such as direct-mapped caches, are predicted by the method. The method also includes a new approach to the problem of the effects of multiprogramming. This new technique separates the characteristics of the individual program from that of the workload. The recurrence/conflict method is shown to be practical, general, and powerful by comparing its performance to that of a popular traditional cache simulator. The authors expect that the availability of such a tool will have a large impact on future architectural studies of memory systems.</p> <div class="credits"> <p class="dwt_author">Conte, Thomas M.; Hwu, Wen-Mei W.</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">452</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/1024628"> <span id="translatedtitle">A Study of <span class="hlt">Single</span> <span class="hlt">Pass</span> Ion Effects at the ALS</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We report the results of experiments on a 'fast beam-ion instability' at the Advanced Light Source (ALS). This ion instability, which can arise even when the ions are not trapped over multiple beam passages, will likely be important for many future accelerators. In our experiments, we filled the ALS storage ring with helium gas, raising the pressure approximately two orders of magnitude above the nominal pressure. With gaps in the bunch train large enough to avoid conventional (multi-turn) ion trapping, we observed a factor of 2-3 increase in the vertical beam size along with coherent beam oscillations which increased along the bunch train. Ion trapping has long been recognized as a potential limitation in electron storage rings. The ions, generated by beam-gas collisions, become trapped in the negative potential of the beam and accumulate over multiple beam passages. The trapped ions are then observed to cause a number of deleterious effects such as an increasing beam phase space, a broadening and shifting of the beam transverse oscillation frequencies (tunes), collective beam instabilities, and beam lifetime reductions. All of these effects are of concern for the next generation of accelerators, such as the B-factories or damping rings for future linear colliders, which will store high beam currents with closely spaced bunches and ultra-low beam emittances. One of the standard solutions used to prevent ion trapping is to include a gap in the bunch train which is long compared to the bunch spacing. In this case, the ions are first strongly-focused by the passing electron bunches and then over-focused in the gap. With a sufficiently large gap, the ions can be driven to large amplitudes where they form a diffuse halo and do not affect the beam. In this paper, we describe experiments that study a new regime of transient ion instabilities predicted to arise in future electron storage rings, and linacs with bunch trains. These future rings and linacs, which will be operated with higher beam currents, small transverse beam emittances, and long bunch trains, will use ion clearing gaps to prevent conventional ion trapping. But, while the ion clearing gap may suppress the conventional ion instabilities, it will not suppress a transient beam-ion instability where ions generated and trapped during the passage of a single train lead to a fast instability. While both conventional and transient ion instabilities have the same origin, namely ions produced by the beam, they have different manifestations and, more importantly, the new transient instability can arise even after the conventional ion instability is cured. This new instability is called the 'Fast Beam-Ion Instability' (FBII). In many future rings, the FBII is predicted to have very fast growth rates, much faster than the damping rates of existing and proposed transverse feedback systems, and thus is a potential limitation. To study the FBII, we performed experiments at the ALS, a 1.5 GeV electron storage ring. At the nominal ALS pressure of about 0.24 nTorr, the FBII is not evident. To study the instability, we intentionally added helium gas to the storage-ring vacuum system until the residual gas pressure was increased about 80 nTorr. This brought the predicted growth rate of the instability at least an order of magnitude above the growth rate of conventional multibunch instabilities driven by the RF cavities and above the damping rate of the transverse feedback system (TFB) in the ALS and, thereby, established conditions very similar to those in a future storage ring. We then filled the ring with a relatively short train of bunches, suppressing conventional ion instabilities. In the following, we will first briefly describe This paper describes the experiment and results in more detail.</p> <div class="credits"> <p class="dwt_author">Byrd, J.M.; Thomson, J.; /LBL, Berkeley; Chao, A.W.; Heifets, S.; Minty, M.G.; Seeman, J.T.; Stupakov, G.V.; Zimmermann, F.; /SLAC; Raubenheimer, T.O.; /CERN</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-09-13</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">453</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA258705"> <span id="translatedtitle">Cryogenic Michelson <span class="hlt">Interferometer</span> on the Space Shuttle. (Reannouncement with New Availability Information).</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">A helium-cooled <span class="hlt">interferometer</span> was flown aboard shuttle flight STS-39. This <span class="hlt">interferometer</span>, along with its sister radiometer, set new benchmarks for the quantity and quality of data collected. The <span class="hlt">interferometer</span> generated approximately 150,000 interferogr...</p> <div class="credits"> <p class="dwt_author">S. Wellard J. Blakely S. Brown B. Bartschi E. R. Huppi</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">454</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=N7728395"> <span id="translatedtitle">Method and Apparatus for Providing a Servo Drive Signal in a High-Speed Stepping <span class="hlt">Interferometer</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">In infrared spectroscopy utilizing an <span class="hlt">interferometer</span>, position stepping of the optical path difference in the <span class="hlt">interferometer</span> is accomplished by causing a drive signal to be applied to the movable mirror in the <span class="hlt">interferometer</span>. This signal is proportional t...</p> <div class="credits"> <p class="dwt_author">R. A. Schindler</p> <p class="dwt_publisher"></p> <p class="publishDate">1977-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">455</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60368657"> <span id="translatedtitle">VISAR (Velocity <span class="hlt">Interferometer</span> System for Any Reflector): Line-imaging <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper describes a Velocity <span class="hlt">Interferometer</span> System for Any Reflector (VISAR) technique that extends velocity measurements from single points to a line. Single-frequency argon laser light was focused through a cylindrical lens to illuminate a line on a surface. The initially stationary, flat surface was accelerated unevenly during the experiment. Motion produced a Doppler-shift of light reflected from the surface</p> <div class="credits"> <p class="dwt_author">W. F. Hemsing; A. R. Mathews; R. H. Warnes; G. R. Whittemore</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">456</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20100005262&hterms=Feng&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DFeng"> <span id="translatedtitle">Measuring Cyclic Error in Laser Heterodyne <span class="hlt">Interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">An improved method and apparatus have been devised for measuring cyclic errors in the readouts of laser heterodyne <span class="hlt">interferometers</span> that are configured and operated as displacement gauges. The cyclic errors arise as a consequence of mixing of spurious optical and electrical signals in beam launchers that are subsystems of such <span class="hlt">interferometers</span>. The conventional approach to measurement of cyclic error involves phase measurements and yields values precise to within about 10 pm over air optical paths at laser wavelengths in the visible and near infrared. The present approach, which involves amplitude measurements instead of phase measurements, yields values precise to about .0.1 microns . about 100 times the precision of the conventional approach. In a displacement gauge of the type of interest here, the laser heterodyne <span class="hlt">interferometer</span> is used to measure any change in distance along an optical axis between two corner-cube retroreflectors. One of the corner-cube retroreflectors is mounted on a piezoelectric transducer (see figure), which is used to introduce a low-frequency periodic displacement that can be measured by the gauges. The transducer is excited at a frequency of 9 Hz by a triangular waveform to generate a 9-Hz triangular-wave displacement having an amplitude of 25 microns. The displacement gives rise to both amplitude and phase modulation of the heterodyne signals in the gauges. The modulation includes cyclic error components, and the magnitude of the cyclic-error component of the phase modulation is what one needs to measure in order to determine the magnitude of the cyclic displacement error. The precision attainable in the conventional (phase measurement) approach to measuring cyclic error is limited because the phase measurements are af-</p> <div class="credits"> <p class="dwt_author">Ryan, Daniel; Abramovici, Alexander; Zhao, Feng; Dekens, Frank; An, Xin; Azizi, Alireza; Chapsky, Jacob; Halverson, Peter</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">457</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/15011531"> <span id="translatedtitle">Shuttle Imaging <span class="hlt">Radar</span> Experiment</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The shuttle imaging <span class="hlt">radar</span> (SIR-A) acquired images of a variety of the earth's geologic areas covering about 10 million square kilometers. Structural and geomorphic features such as faults, folds, outcrops, and dunes are clearly visible in both tropical and arid regions. The combination of SIR-A and Seasat images provides additional information about the surface physical properties: topography and roughness. Ocean</p> <div class="credits"> <p class="dwt_author">C. Elachi; J. B. Cimino; T. Dixon; D. L. Evans; J. P. Ford; R. S. Saunders; C. Breed; H. Masursky; J. F. McCauley; G. Schaber; L. Dellwig; A. England; H. MacDonald; P. Martin-Kaye; F. Sabins</p> <p class="dwt_publisher"></p> <p class="publishDate">1982-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">458</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50854798"> <span id="translatedtitle">Strategies for FMCW <span class="hlt">radars</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In this paper, we present a comparison of two strategies for FMCW <span class="hlt">radars</span>. The potential presence of multiple targets implies using specific waveforms for beat frequencies association. Here, we compare performance of two such waveforms in terms of targets distance and velocity estimation. Our comparison, based on theoretical bounds derivation is validated by Monte Carlo simulations. In particular we show</p> <div class="credits"> <p class="dwt_author">Ali Bazzi; Thierry Chonavel; Camilla Karnfelt; Alain Péden; Frantz Bodereau</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">459</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/40281808"> <span id="translatedtitle">Directional borehole <span class="hlt">radar</span> calibration</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We are developing an innovative low-noise directional borehole <span class="hlt">radar</span> system. Harsh and changing operating environments are a challenge to the low-noise sensitive electronic design. Additionally a system with such high sensitivity is susceptible to temperature changes and to component parameter variations. Therefore a calibration module was developed to calibrate the overall measurement system with a test signal generator. This calibration</p> <div class="credits"> <p class="dwt_author">O. Borchert; K. Behaimanot; A. Glasmachers</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">460</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/119057"> <span id="translatedtitle">Impulse <span class="hlt">radar</span> studfinder</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">An impulse <span class="hlt">radar</span> studfinder propagates electromagnetic pulses and detects reflected pulses from a fixed range. Unmodulated pulses, about 200 ps wide, are emitted. A large number of reflected pulses are sampled and averaged. Background reflections are subtracted. Reflections from wall studs or other hidden objects are detected and displayed using light emitting diodes. 9 figs.</p> <div class="credits"> <p class="dwt_author">McEwan, T.E.</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-10-10</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_22");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a style="font-weight: bold;">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_24");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_23 div --> <div id="page_24" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_23");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a style="font-weight: bold;">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_25");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">461</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/870113"> <span id="translatedtitle">Impulse <span class="hlt">radar</span> studfinder</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">An impulse <span class="hlt">radar</span> studfinder propagates electromagnetic pulses and detects reflected pulses from a fixed range. Unmodulated pulses, about 200 ps wide, are emitted. A large number of reflected pulses are sampled and averaged. Background reflections are subtracted. Reflections from wall studs or other hidden objects are detected and displayed using light emitting diodes.</p> <div class="credits"> <p class="dwt_author">McEwan, Thomas E. (Livermore, CA)</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">462</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55560968"> <span id="translatedtitle"><span class="hlt">Radar</span> track extraction systems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The main constituents of a largely automatic <span class="hlt">radar</span> track-while-scan system are described. It contains a plot extractor, clutter map, stationary plot filter, and automatic tracking software. The system is designed to operate in high false alarm conditions without formation of false tracks. The clutter map is used to select the optimum video for processes by the plot extractor, which is</p> <div class="credits"> <p class="dwt_author">A. L. C. Quigley; J. E. Holmes; R. J. Tunnicliffe</p> <p class="dwt_publisher"></p> <p class="publishDate">1977-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">463</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA480068"> <span id="translatedtitle">Wind Farms and <span class="hlt">Radar</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">As part of its 2008 Winter Study, JASON was asked by the Department of Homeland Security (DHS) to review the current status of the conflict between the ever-growing number of wind-turbine farms and air-security <span class="hlt">radars</span> that are located within some tens of ...</p> <div class="credits"> <p class="dwt_author">D. Eardley F. Dyson M. Brenner M. J. Cornwall S. Cazares</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">464</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1996SPIE.2958..375V"> <span id="translatedtitle">Rain <span class="hlt">radar</span> instrument definition</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">As a result of a pre-phase a study, founded by ESA, this paper presents the definition of a spaceborne Rain <span class="hlt">Radar</span>, candidate instrument for earth explorer precipitation mission. Based upon the description of user requirements for such a dedicated mission, a mission analysis defines the most suitable space segment. At system level, a parametric analysis compares pros and cons of instrument concepts associated with rain rate retrieval algorithms in order to select the most performing one. Several trade-off analysis at subsystem level leads then to the definition of the proposed design. In particular, as pulse compression is implemented in order to increase the <span class="hlt">radar</span> sensitivity, the selected method to achieve a pulse response with a side-lobe level below--60 dB is presented. Antenna is another critical rain <span class="hlt">radar</span> subsystem and several designs are com pared: direct radiating array, single or dual reflector illuminated by single or dual feed arrays. At least, feasibility of centralized amplification using TWTA is compared with criticality of Tx/Rx modules for distributed amplification. Mass and power budgets of the designed instrument are summarized as well as standard deviations and bias of simulated rain rate retrieval profiles. The feasibility of a compliant rain <span class="hlt">radar</span> instrument is therefore demonstrated.</p> <div class="credits"> <p class="dwt_author">Vincent, Nicolas; Chenebault, J.; Suinot, Noel; Mancini, Paolo L.</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">465</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/51248829"> <span id="translatedtitle"><span class="hlt">Radar</span> guidance of missiles</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The development of antiaircraft guided missile systems along two lines: guided missile seeker improvements and the development of supporting weapon control <span class="hlt">radars</span> for land and ship based systems. The contribution of the inverse receiver to improved tracking (e.g., the Improved Hawk Program) is explained. Weapon control ground equipment for the Improved Hawk Battery, the Tartar MK 74 shipboard fire control</p> <div class="credits"> <p class="dwt_author">J. J. Long; A. Ivanov</p> <p class="dwt_publisher"></p> <p class="publishDate">1974-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">466</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA589905"> <span id="translatedtitle">Retrodirective <span class="hlt">Radar</span> Calibration Nanosatellite.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">For more than eight years, the DMSP F-15 and RADCAL satellites have been operating past their operational lifetimes and are facing imminent failure, leaving the US military without a reliable means for C-Band <span class="hlt">radar</span> calibration and performance monitoring. ...</p> <div class="credits"> <p class="dwt_author">L. K. Martin N. G. Fisher W. A. Shiroma</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">467</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/7270785"> <span id="translatedtitle">Automatic alignment of a Michelson <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This paper describes the control system for the automatic control of a very large dual-wave Michelson <span class="hlt">interferometer</span> to be used in the VIRGO experiment, a gravitational wave search in the band 10 to 3000 Hz. The system is mainly based on a VME bus architecture for the local controls, on which numeric control system based on digital filters are implemented. The authors describe these control systems, and the way they are linked together to form the global control system, in a hierarchical configuration.</p> <div class="credits"> <p class="dwt_author">Barone, F.; Di Fiore, L.; Milano, L.; Russo, G.; Solimeno, S. (Inst. Nazionale di Fisica Nucleare, Napoli (IT))</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">468</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/22713687"> <span id="translatedtitle">Macroscopic coherent rectification in Andreev <span class="hlt">interferometers</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">We investigate nonlinear transport through quantum coherent metallic conductors contacted to superconducting components. We find that in certain geometries, the presence of superconductivity generates a large, finite-average rectification effect. Specializing to Andreev <span class="hlt">interferometers</span>, we show that the direction and magnitude of rectification can be controlled by a magnetic flux tuning the superconducting phase difference at two contacts. In particular, this results in the breakdown of an Onsager reciprocity relation at finite bias. The rectification current is macroscopic in that it scales with the linear conductance, and we find that it exceeds 5% of the linear current at sub-gap biases of a few tens of microelectronvolts. PMID:22713687</p> <div class="credits"> <p class="dwt_author">Meair, Jonathan; Jacquod, Philippe</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-07-11</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">469</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012SPIE.8370E..19V"> <span id="translatedtitle">Mach-Zehnder <span class="hlt">interferometer</span> for movement monitoring</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Fiber optical <span class="hlt">interferometers</span> belong to highly sensitive equipments that are able to measure slight changes like distortion of shape, temperature and electric field variation and etc. Their great advantage is that they are insensitive on ageing component, from which they are composed of. It is in virtue of herewith, that there are evaluated no changes in optical signal intensity but number interference fringes. To monitor the movement of persons, eventually to analyze the changes in state of motion we developed method based on analysis the dynamic changes in interferometric pattern. We have used Mach- Zehnder <span class="hlt">interferometer</span> with conventional SM fibers excited with the DFB laser at wavelength of 1550 nm. It was terminated with optical receiver containing InGaAs PIN photodiode. Its output was brought into measuring card module that performs on FFT of the received <span class="hlt">interferometer</span> signal. The signal rises with the composition of two waves passing through single <span class="hlt">interferometer</span> arm. The optical fiber SMF 28e in one arm is referential; the second one is positioned on measuring slab at dimensions of 1x2m. A movement of persons around the slab was monitored, signal processed with FFT and frequency spectra were evaluated. They rose owing to dynamic changes of interferometric pattern. The results reflect that the individual subjects passing through slab embody characteristic frequency spectra, which are individual for particular persons. The scope of measuring frequencies proceeded from zero to 10 kHz. It was also displayed in experiments that the experimental subjects, who walked around the slab and at the same time they have had changed their state of motion (knee joint fixation), embodied characteristic changes in their frequency spectra. At experiments the stability of interferometric patterns was evaluated as from time aspects, so from the view of repeated identical experiments. Two kinds of balls (tennis and ping-pong) were used to plot the repeatability measurements and the gained spectra at repeated drops of balls were compared. Those stroked upon the same place and from the same elevation and dispersion of the obtained frequency spectra was evaluated. These experiments were performed on the series of 20 repeated drops from highs of 0,5 and 1m. The evaluation of experiments displayed that the dispersion of measured values is lower than 4%. Frequency response has been verified with the loudspeaker connected to signal generator and amplifier. Various slabs have been measured and frequency ranges were compared for particular slab designs.</p> <div class="credits"> <p class="dwt_author">Vasinek, Vladimir; Cubik, Jakub; Kepak, Stanislav; Doricak, Jan; Latal, Jan; Koudelka, Petr</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-05-01</p> </div> </div> </div> </div> <div class="floatContainer r