These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

The Glacier and Ice Surface Topography Interferometer: UAVSAR's Single-pass Ka-Band Interferometer  

NASA Astrophysics Data System (ADS)

In May 2009 a new radar technique for mapping ice surface topography was demonstrated in a Greenland campaign as part of the NASA International Polar Year (IPY) activities. This was achieved with the airborne Glacier and Ice Surface Topography Interferometer (GLISTIN-A): a 35.6 GHz single-pass interferometer. Although the technique of using radar interferometry for mapping terrain has been demonstrated before, this is the first such application at millimeter-wave frequencies. The proof-of-concept demonstration was achieved by interfacing Ka-band RF and antenna hardware with the Uninhabited Airborne Vehicle Synthetic Aperture Radar (UAVSAR). The GLISTIN-A was implemented as a custom installation of the NASA Dryden Flight Research Center Gulfstream III. Instrument performance indicates swath widths over the ice between 5-7km, with height precisions ranging from 30cm-3m at a posting of 3m x 3m. Processing challenges were encountered in achieving the accuracy requirements on several fronts including, aircraft motion sensitivity, multipath and systematic drifts. However, through a combination of processor optimization, a modified phase-screen and motion-compensation implementations were able to minimize the impact of these systematic error sources. We will present results from the IPY data collections including system performance evaluations and imagery. This includes a large area digital elevation model (DEM) collected over Jakobshavn glacier as an illustrative science data product. Further, by intercomparison with the NASA Wallops Airborne Topographic Mapper (ATM) and calibration targets we quantify the interferometric penetration bias of the Ka-band returns into the snow cover. Following the success of the IPY campaign, we are funded under the Earth Science Techonology Office (ESTO) Airborne Innovative Technology Transition (AITT) program to transition GLISTIN-A to a permanently-available pod-only system compatible with unpressurized operation. In addition fundamental system upgrades will greatly enhance the performance and make wider-swath and higher altitude operation possible. We will show results from first flights of GLISTIN-A and summarize the plans for the near future including GLISTIN-H: GLISTIN on the NASA Global Hawk Spring 2013.

Moller, D.; Hensley, S.; Sadowy, G.; Wu, X.; Carswell, J.; Fisher, C.; Michel, T.; Lou, Y.

2012-12-01

2

The Glacier and Ice Surface Topography Interferometer: UAVSAR's Single-pass Ka-Band Interferometer  

NASA Astrophysics Data System (ADS)

In May 2009 a new radar technique for mapping ice surface topography was demonstrated in a Greenland campaign as part of the NASA International Polar Year (IPY) activities. This was achieved with the airborne Glacier and Ice Surface Topography Interferometer (GLISTIN-A): a 35.6 GHz single-pass interferometer. The proof-of-concept demonstration was achieved by interfacing Ka-band RF and antenna hardware with the Uninhabited Airborne Vehicle Synthetic Aperture Radar (UAVSAR). The GLISTIN-A was implemented as a custom installation of the NASA Dryden Flight Research Center Gulfstream III. Instrument performance indicated swath widths over the ice between 5-7km, with height precisions ranging from 30cm-3m at a posting of 3m x 3m. Following the success of the IPY campaign, the Earth Science Techonology Office (ESTO) Airborne Innovative Technology Transition (AITT) program funded the upgrade of GLISTIN-A to a permanently-available pod-only system compatible with unpressurized operation. The AITT made three fundamental upgrades to improve system performance: 1. State-of-the-art solid-state power amplifiers (80W peak) were integrated directly on the antenna panel reducing front-end losses; 2. A ping-pong capability was incorporated to effectively double the baseline thereby improving height measurement precision by a factor of two; and 3. A high-fidelity calibration loop was implemented which is critical for routine processing. Upon completion of our engineering flights in February 2013, GLISTIN-A flew a brief campaign to Alaska (4/24-4/27/13). The purpose was to fully demonstrate GLISTIN-A's ability to generate high-precision, high resolution maps of ice surface topography with swaths in excess of 10km. Furthermore, the question of the utility of GLISTIN-A for sea-ice mapping, tracking and inventory has received a great deal of interest. To address this GLISTIN-A collected data over sea-ice in the Beaufort sea including an underflight of CryoSAT II. Note that there are ongoing activities to stage GLISTIN on the Global Hawk (GLISTIN-H) for which sea ice-mapping is a primary driver. Analysis of the data will focus on assessment of performance and interpretation over ice to include: 1. intercomparison of GLISTIN-A glacier height maps with lidar data and heritage SRTM DEM's for performance validation of GLISTIN-A over ice, 2. quantitative evaluation of mass change over the Columbia glacier via repeat observations made by GLISTIN-A with a 3 day separation, 3. assessment of GLISTIN-A's ability map sea ice extent, dynamics and possibly to measure freeboard.

Moller, D.; Hensley, S.; Wu, X.; Michel, T.; Muellerschoen, R.; Carswell, J.; Fisher, C.; Miller, T.; Milligan, L.; Sadowy, G.; Sanchez-Barbetty, M.; Lou, Y.

2013-12-01

3

Synthetic interferometer radar for topographic mapping  

Microsoft Academic Search

The production of topographic maps requires two kinds of information. First, the detail to be placed on the map sheet must be identified. Second, the positions of the various objects and features must be measured in three dimensions. Current airborne radar technology provides the means to satisfy both of these requirements in adverse weather and at any time, day or

L. C. Graham

1974-01-01

4

Radar Interferometer for Topographic Mapping of Glaciers and Ice Sheets  

NASA Technical Reports Server (NTRS)

A report discusses Ka-band (35-GHz) radar for mapping the surface topography of glaciers and ice sheets at high spatial resolution and high vertical accuracy, independent of cloud cover, with a swath-width of 70 km. The system is a single- pass, single-platform interferometric synthetic aperture radar (InSAR) with an 8-mm wavelength, which minimizes snow penetration while remaining relatively impervious to atmospheric attenuation. As exhibited by the lower frequency SRTM (Shuttle Radar Topography Mission) AirSAR and GeoSAR systems, an InSAR measures topography using two antennas separated by a baseline in the cross-track direction, to view the same region on the ground. The interferometric combination of data received allows the system to resolve the pathlength difference from the illuminated area to the antennas to a fraction of a wavelength. From the interferometric phase, the height of the target area can be estimated. This means an InSAR system is capable of providing not only the position of each image point in along-track and slant range as with a traditional SAR but also the height of that point through interferometry. Although the evolution of InSAR to a millimeter-wave center frequency maximizes the interferometric accuracy from a given baseline length, the high frequency also creates a fundamental problem of swath coverage versus signal-to-noise ratio. While the length of SAR antennas is typically fixed by mass and stowage or deployment constraints, the width is constrained by the desired illuminated swath width. As the across-track beam width which sets the swath size is proportional to the wavelength, a fixed swath size equates to a smaller antenna as the frequency is increased. This loss of antenna size reduces the two-way antenna gain to the second power, drastically reducing the signal-to-noise ratio of the SAR system. This fundamental constraint of high-frequency SAR systems is addressed by applying digital beam-forming (DBF) techniques to synthesize multiple simultaneous receive beams in elevation while maintaining a broad transmit illumination. Through this technique, a high antenna gain on receive is preserved, thereby reducing the required transmit power and thus enabling high-frequency SARs and high-precision InSAR from a single spacecraft.

Moller, Delwyn K.; Sadowy, Gregory A.; Rignot, Eric J.; Madsen, Soren N.

2007-01-01

5

Mutual coupling of antennas in a meteor radar interferometer  

NASA Astrophysics Data System (ADS)

Abstract Meteor <span class="hlt">radars</span> have become common and important tools in the study of the climate and dynamics of the mesosphere/lower thermosphere (MLT) region. These systems depend on accurate angle-of-arrival measurements to locate the positions of meteor trails in the atmosphere. Mutual coupling between antennas, although small, produces a measurable error in the antenna pair phase differences used to deduce the angle of arrival of incident radiation. Measurements of the scattering parameter matrix for antennas in an interferometric meteor <span class="hlt">radar</span> array have been made and applied to the existing angle-of-arrival calculation algorithm. The results indicate that mutual coupling of antennas in the array produces errors in the zenith angle estimate of less than ± 0.5°. This error is primarily in the form of a gradient across the field of view of the <span class="hlt">radar</span>, which can be removed using existing phase calibration methods. The remaining error is small but will produce small systematic variations in the height estimates for detected meteors.</p> <div class="credits"> <p class="dwt_author">Younger, J. P.; Reid, I. M.; Vincent, R. A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">6</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19850062287&hterms=churchill&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dchurchill"> <span id="translatedtitle">Plasma irregularities associated with a morning discrete auroral arc - <span class="hlt">Radar</span> <span class="hlt">interferometer</span> observations and theory</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">A description is given of E region auroral plasma irregularities associated with an intense auroral morning arc observed over Fort Churchill by <span class="hlt">radar</span>. The observations are compared with data from an all-sky camera (ASC) operated at Fort Churchill by the National Research Council of Canada. The particular event described was chosen because of the rapid variation in structure and motion of the arc as it traveled through the <span class="hlt">radar</span> beam. The horizontal vector electron drift velocity and electric field along the poleward boundary of the morning discrete auroral arc was successfully measured with a <span class="hlt">radar</span> <span class="hlt">interferometer</span>. This instrument provided information concerning the temporal and spatial structure of the electrostatic plasma turbulence in the arc. The observations are described.</p> <div class="credits"> <p class="dwt_author">Providakes, J.; Farley, D. T.; Swartz, W. E.; Riggin, D.</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">7</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20120001227&hterms=onboard+data+processors&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Donboard%2Bdata%2Bprocessors"> <span id="translatedtitle">Onboard Interferometric SAR Processor for the Ka-Band <span class="hlt">Radar</span> <span class="hlt">Interferometer</span> (KaRIn)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">An interferometric synthetic aperture <span class="hlt">radar</span> (SAR) onboard processor concept and algorithm has been developed for the Ka-band <span class="hlt">radar</span> <span class="hlt">interferometer</span> (KaRIn) instrument on the Surface and Ocean Topography (SWOT) mission. This is a mission- critical subsystem that will perform interferometric SAR processing and multi-look averaging over the oceans to decrease the data rate by three orders of magnitude, and therefore enable the downlink of the <span class="hlt">radar</span> data to the ground. The onboard processor performs demodulation, range compression, coregistration, and re-sampling, and forms nine azimuth squinted beams. For each of them, an interferogram is generated, including common-band spectral filtering to improve correlation, followed by averaging to the final 1 1-km ground resolution pixel. The onboard processor has been prototyped on a custom FPGA-based cPCI board, which will be part of the <span class="hlt">radar</span> s digital subsystem. The level of complexity of this technology, dictated by the implementation of interferometric SAR processing at high resolution, the extremely tight level of accuracy required, and its implementation on FPGAs are unprecedented at the time of this reporting for an onboard processor for flight applications.</p> <div class="credits"> <p class="dwt_author">Esteban-Fernandez, Daniel; Rodriquez, Ernesto; Peral, Eva; Clark, Duane I.; Wu, Xiaoqing</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">8</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013AGUFM.G33A0968W"> <span id="translatedtitle">Terrestrial <span class="hlt">Radar</span> <span class="hlt">Interferometer</span> Observations of a Rapid Landslide Over Vegetated Terrain</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In the Spring of 2013 a landslide in the Hintergraben region of canton Obwalden in Switzerland showed a rapid increase in velocity. Hintergraben, at an elevation of about 900 meters is characterized by meadow and some trees. A region approximately 200 meters wide and 500 meters long was affected. Starting in February, the velocity increased to 30 cm/day by 1-May and continued to accelerate by deceleration to 8 cm/day by 27-May. We report on observations of this landslide using the Gamma Portable <span class="hlt">Radar</span> <span class="hlt">Interferometer</span> (GPRI). The GPRI is an FM-CW <span class="hlt">radar</span> operating at 17.2 GHz (Ku-Band) with an operational range up to 10 km. Range resolution is 90 cm along the LOS. The instrument operates in real-aperture mode with 0.4 degree wide fan-beam giving an azimuth resolution better than 7 meters at 1 kilometer range. During data acquisition, the <span class="hlt">radar</span> performed an azimuth scan of the scene at a rate of 5 degrees/sec. The <span class="hlt">radar</span> is phase coherent and capable of acquiring data suitable for differential interferometry with a precision for measuring changes in the LOS distance > 0.1 mm. Limiting factors in the accuracy of LOS motion are interferometric phase coherence and variations in delay due to water vapor. The GPRI was deployed to map ground motion for 2 campaigns on 6 May and 26-27 May 2013. The <span class="hlt">radar</span> position over 3.5 km from the landslide on the opposite side of Lake Sarnen. Due to rapid temporal decorrelation at Ku-Band data, acquisitions were made at 1 minute intervals. The GPRI deformation maps cover almost the entire region of the active landslide during both observation periods of 6 hours on 6 May and 9 hours on 26-27 May. Measured peak velocities were 35 and 8 cm/day respectively. Point-wise verification of the <span class="hlt">radar</span> observations was carried out using a Leica TCR803 total station with an estimated accuracy of 1/2 mm at 3.5 km distance. A set of optical corner cubes and <span class="hlt">radar</span> reflectors were set up in the region of the landslide on 26-May. The <span class="hlt">radar</span> deformation measurements are within 1/2 mm of the values derived using the total station. Operating the GPRI with 1 minute intervals between successive scans permitted making accurate maps of deformation with millimeter level accuracy over meadow and permitted reconstruction of complete deformation time series. Hitergraben deformation map measured with the GPRI for 6-May 2013. Contours are in cm/day along the LOS.</p> <div class="credits"> <p class="dwt_author">Werner, C. L.; Caduff, R.; Strozzi, T.; Wegmüller, U.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">9</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/52322514"> <span id="translatedtitle">Quantum <span class="hlt">interferometer</span> and <span class="hlt">radar</span> theory based on N00N, M and M or linear combinations of entangled states</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">With the goal in mind of designing <span class="hlt">radars</span>, <span class="hlt">interferometers</span> and other sensors based on quantum entanglement the virtues of N00N states, plain M and M states (PMMSs) and linear combinations of M and M states (LCMMS) are considered. A derivation of the closed form expression for the detection operator that is optimal subject to constraints is provided. The raising and</p> <div class="credits"> <p class="dwt_author">James F. Smith III</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">10</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19810009365&hterms=passing+out&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3D%2522passing%2Bout%2522"> <span id="translatedtitle"><span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">An <span class="hlt">interferometer</span> of relatively simple design which is tilt compensated, and which facilitates adjustment of the path lengths of split light beams is described. The <span class="hlt">interferometer</span> includes a pair of plate-like elements with a dielectric coating and an oil film between them, that forms a beamsplitter interface, and with a pair of reflector surfaces at the ends of the plates. A pair of retroreflectors are positioned so that each split beam component is directed by a retroreflector onto one of the reflector surfaces and is then returned to the beamsplitter interface, so that the reflector surfaces tilt in a direction and amount that compensates for tilting of the beamsplitter interface.</p> <div class="credits"> <p class="dwt_author">Breckinridge, J. B. (inventor)</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">11</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/910832"> <span id="translatedtitle">The <span class="hlt">Single</span> <span class="hlt">Pass</span> Multi-component Harvester</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The authors are solely responsible for the content of this technical presentation. The technical presentation does not necessarily reflect the official position of the American Society of Agricultural Engineers (ASAE), and its printing and distribution does not constitute an endorsement of views which may be expressed. Technical presentations are not subject to the formal peer review process by ASAE editorial committees; therefore, they are not to be presented as refereed publications. Citation of this work should state that it is from an ASAE meeting paper. EXAMPLE: Author's Last Name, Initials. 2004. Title of Presentation. ASAE Paper No. 04xxxx. St. Joseph, Mich.: ASAE. For information about securing permission to reprint or reproduce a technical presentation, please contact ASAE at hq@asae.org or 269-429-0300 (2950 Niles Road, St. Joseph, MI 49085-9659 USA). Abstract. In order to meet the U. S. government’s goal of supplementing the energy available from petroleum by increasing the production of energy from renewable resources, increased production of bioenergy has become one of the new goals of the United States government and our society. U.S. Executive Orders and new Federal Legislation have mandated changes in government procedures and caused reorganizations within the government to support these goals. The Biomass Research and Development Initiative is a multi-agency effort to coordinate and accelerate all U.S. Federal biobased products and bioenergy research and development. The Initiative is managed by the National Biomass Coordination Office, which is staffed by both the DOE and the USDA. One of the most readily available sources of biomass from which to produce bioenergy is an agricultural crop residue, of which straw from small grains is the most feasible residue with which to start. For the straw residue to be used its collection must be energy efficient and its removal must not impact the sustainability of the growing environment. In addition, its collection must be economically advantageous to the producer. To do all that, a <span class="hlt">single</span> <span class="hlt">pass</span> multi-component harvester system is most desirable. Results from our first prototype suggest that current combines probably do adequate threshing and that a separate chassis can be developed that does additional separation and that is economically feasible.</p> <div class="credits"> <p class="dwt_author">Reed Hoskinson; John R. Hess</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-08-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">12</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3660879"> <span id="translatedtitle">Intestinal Permeability of Lamivudine Using <span class="hlt">Single</span> <span class="hlt">Pass</span> Intestinal Perfusion</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">The intestinal transport of lamivudine, a nucleotide reverse transcriptase inhibitor, was investigated using the <span class="hlt">single</span> <span class="hlt">pass</span> intestinal perfusion technique in male Wistar rats. <span class="hlt">Single</span> <span class="hlt">pass</span> intestinal perfusion was performed in small intestine at a flow rate of 0.20 ml/min. Lamivudine exhibits a high intestinal permeability over the length of the small intestine indicative of compounds that are well absorbed. The Peff of lamivudine is in the range of drugs with high intestinal permeability and high fraction of dose absorbed indicating that lamivudine readily crosses the intestine. This also suggests that lamivudine belongs to biopharmaceutics classification system class I and is a good candidate for biopharmaceutics classification system based biowaiver. The permeability values obtained from this study may be useful in models of exposure assessment. PMID:23716881</p> <div class="credits"> <p class="dwt_author">Patel, J. R.; Barve, Kalyani H.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">13</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/22262658"> <span id="translatedtitle">Thermal efficiency of <span class="hlt">single-pass</span> solar air collector</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Efficiency of a finned <span class="hlt">single-pass</span> solar air collector was studied. This paper presents the experimental study to investigate the effect of solar radiation and mass flow rate on efficiency. The fins attached at the back of absorbing plate to improve the thermal efficiency of the system. The results show that the efficiency is increased proportional to solar radiation and mass flow rate. Efficiency of the collector archived steady state when reach to certain value or can be said the maximum performance.</p> <div class="credits"> <p class="dwt_author">Ibrahim, Zamry; Ibarahim, Zahari; Yatim, Baharudin [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan (Malaysia); Ruslan, Mohd Hafidz [Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan (Malaysia)</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-11-27</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">14</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1988JATP...50..339P"> <span id="translatedtitle">Observations of auroral E-region plasma waves and electron heating with EISCAT and a VHF <span class="hlt">radar</span> <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Two <span class="hlt">radars</span> were used simultaneously to study naturally occurring electron heating events in the auroral E-region ionosphere. During a joint campaign in March 1986 the Cornell University Portable <span class="hlt">Radar</span> <span class="hlt">Interferometer</span> (CUPRI) was positioned to look perpendicular to the magnetic field to observe unstable plasma waves over Tromso, Norway, while EISCAT measured the ambient conditions in the unstable region. On two nights EISCAT detected intense but short lived (less than 1 min) electron heating events during which the temperature suddenly increased by a factor of 2-4 at altitudes near 108 km and the electron densities were less than 70,000/cu cm. On the second of these nights CUPRI was operating and detected strong plasma waves with very large phase velocities at precisely the altitudes and times at which the heating was observed. The altitudes, as well as one component of the irregularity drift velocity, were determined by interferometric techniques. From the observations and our analysis, it is concluded that the electron temperature increases were caused by plasma wave heating and not by either Joule heating or particle precipitation.</p> <div class="credits"> <p class="dwt_author">Providakes, J.; Farley, D. T.; Fejer, B. G.; Sahr, J.; Swartz, W. E.</p> <p class="dwt_publisher"></p> <p class="publishDate">1988-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">15</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014JGRA..11910276P"> <span id="translatedtitle">First results on low-latitude E and F region irregularities obtained using the Gadanki Ionospheric <span class="hlt">Radar</span> <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A 30 MHz <span class="hlt">radar</span> has recently been established at Gadanki (13.5°N, 79.2°E; 6.5°N magnetic latitude) to make unattended observations of the ionospheric field-aligned irregularities (FAI). This <span class="hlt">radar</span>, called the Gadanki Ionospheric <span class="hlt">Radar</span> <span class="hlt">Interferometer</span> (GIRI), has been designed to have scanning capability of 100° in the east-west plane perpendicular to Earth's magnetic field and interferometry/imaging system to study drifts and spatial distribution of plasma irregularities at both large and small scales. In this paper, we present the first results on the E and F region FAI made using the scanning capability of the GIRI. Daytime observations of E region FAI show type 2 echoes with velocities predominantly upward northward (downward-southward) at altitudes >100 km (<100 km) and westward (eastward) in the forenoon (afternoon) with signature of tidal wind field. F region irregularities show bottom-type, bottomside and plume structures with close resemblance to those observed over the magnetic equator. Observations made with the east-west scanning capability have been used to study the origin, evolution, and drift of the FAI for the first time from Gadanki. Eastward drifts are estimated to be 90-210 m s-1 during 20-24 LT. Upward velocity as large as 500 m s-1 has been observed in the initial phase of the plume structures. Intriguingly, downward velocity as large as 60 m s-1 has also been observed in the plumes, displaying descending pattern, observed in the early evening hours. These results are presented and discussed in the light of current understanding of low-latitude plasma irregularities, and future prospects of GIRI are outlined.</p> <div class="credits"> <p class="dwt_author">Patra, A. K.; Srinivasulu, P.; Chaitanya, P. Pavan; Rao, M. Durga; Jayaraman, A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">16</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20070030942&hterms=Chen&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DJ%2BChen"> <span id="translatedtitle">Error Analysis for High Resolution Topography with Bi-Static <span class="hlt">Single-Pass</span> SAR Interferometry</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">We present a flow down error analysis from the <span class="hlt">radar</span> system to topographic height errors for bi-static <span class="hlt">single</span> <span class="hlt">pass</span> SAR interferometry for a satellite tandem pair. Because of orbital dynamics the baseline length and baseline orientation evolve spatially and temporally, the height accuracy of the system is modeled as a function of the spacecraft position and ground location. Vector sensitivity equations of height and the planar error components due to metrology, media effects, and <span class="hlt">radar</span> system errors are derived and evaluated globally for a baseline mission. Included in the model are terrain effects that contribute to layover and shadow and slope effects on height errors. The analysis also accounts for nonoverlapping spectra and the non-overlapping bandwidth due to differences between the two platforms' viewing geometries. The model is applied to a 514 km altitude 97.4 degree inclination tandem satellite mission with a 300 m baseline separation and X-band SAR. Results from our model indicate that global DTED level 3 can be achieved.</p> <div class="credits"> <p class="dwt_author">Muellerschoen, Ronald J.; Chen, Curtis W.; Hensley, Scott; Rodriguez, Ernesto</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">17</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010SPIE.7702E..0IS"> <span id="translatedtitle">Quantum <span class="hlt">interferometer</span> and <span class="hlt">radar</span> theory based on N00N, M and M or linear combinations of entangled states</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">With the goal in mind of designing <span class="hlt">radars</span>, <span class="hlt">interferometers</span> and other sensors based on quantum entanglement the virtues of N00N states, plain M and M states (PMMSs) and linear combinations of M and M states (LCMMS) are considered. A derivation of the closed form expression for the detection operator that is optimal subject to constraints is provided. The raising and lowering properties of the detection operator and its square are developed. The expectations of the optimal detection operator and its square are derived. The expression for the visibility, the maximum expectation of the optimal detection operator, is developed. From the expectation of the square of the detection operator and the visibility, the phase error and the minimum phase error for the detection operator are derived. The optimal resolution for the maximum visibility and minimum phase error are found. For the visibility, comparisons between PMMSs, LCMMS and N00N states are provided. For the minimum phase error comparisons between LCMMS, PMMSs, N00N states, separate photon states (SPSs), the shot noise limit (SNL), and the Heisenberg limit (HL) are provided. A representative collection of computational results illustrating the superiority of LCMMS when compared to PMMSs and N00N states is given. It is found for a resolution 12 times the classical result LCMMS has visibility 11 times that of N00N states and four times that of PMMSs. For the same case, the minimum phase error for LCMMS is 10.7 times smaller than that of PMMS and 29.7 times smaller than that of N00N states.</p> <div class="credits"> <p class="dwt_author">Smith, James F., III</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">18</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20030066037&hterms=turtles&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dturtles"> <span id="translatedtitle">Fine Resolution Topographic Mapping of the Jovian Moons: A Ka-Band High Resolution Topographic Mapping Interferometric Synthetic Aperture <span class="hlt">Radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The topographic data set obtained by MOLA has provided an unprecedented level of information about Mars' geologic features. The proposed flight of JIMO provides an opportunity to accomplish a similar mapping of and comparable scientific discovery for the Jovian moons through use of an interferometric imaging <span class="hlt">radar</span> analogous to the Shuttle <span class="hlt">radar</span> that recently generated a new topographic map of Earth. A Ka-band <span class="hlt">single</span> <span class="hlt">pass</span> across-track synthetic aperture <span class="hlt">radar</span> (SAR) <span class="hlt">interferometer</span> can provide very high resolution surface elevation maps. The concept would use two antennas mounted at the ends of a deployable boom (similar to the Shuttle <span class="hlt">Radar</span> Topographic Mapper) extended orthogonal to the direction of flight. Assuming an orbit altitude of approximately 100km and a ground velocity of approximately 1.5 km/sec, horizontal resolutions at the 10 meter level and vertical resolutions at the sub-meter level are possible.</p> <div class="credits"> <p class="dwt_author">Madsen, S. N.; Carsey, F. D.; Turtle, E. P.</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">19</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20060043796&hterms=turtles&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dturtles"> <span id="translatedtitle">Fine resolution topographic mapping of the Jovian moons: a Ka-band high resolution topographic mapping interferometric synthetic aperture <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The topographic data set obtained by MOLA has provided an unprecedented level of information about Mars' geologic features. The proposed flight of JIMO provides an opportunity to accomplish a similar mapping of and comparable scientific discovery for the Jovian moons through us of an interferometric imaging <span class="hlt">radar</span> analogous to the Shuttle <span class="hlt">radar</span> that recently generated a new topographic map of Earth. A Ka-band <span class="hlt">single</span> <span class="hlt">pass</span> across-track synthetic aperture <span class="hlt">radar</span> (SAR) <span class="hlt">interferometer</span> can provide very high resolution surface elevation maps. The concept would use two antennas mounted at the ends of a deployable boom (similar to the Shuttle <span class="hlt">Radar</span> Topographic Mapper) extended orthogonal to the direction of flight. Assuming an orbit altitude of approximately 100 km and a ground velocity of approximately 1.5 km/sec, horizontal resolutions at the 10 meter level and vertical resolutions at the sub-meter level are possible.</p> <div class="credits"> <p class="dwt_author">Madsen, Soren N.; Carsey, Frank D.; Turtle, Elizabeth P.</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">20</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19900017828&hterms=CIRCULAR+SYNTHETIC+APERTURE+RADAR&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DCIRCULAR%2BSYNTHETIC%2BAPERTURE%2BRADAR"> <span id="translatedtitle"><span class="hlt">Radars</span> in space</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The capabilities of active microwave devices operating from space (typically, <span class="hlt">radar</span>, scatterometers, <span class="hlt">interferometers</span>, and altimeters) are discussed. General <span class="hlt">radar</span> parameters and basic <span class="hlt">radar</span> principles are explained. Applications of these parameters and principles are also explained. Trends in space <span class="hlt">radar</span> technology, and where space <span class="hlt">radars</span> and active microwave sensors in orbit are going are discussed.</p> <div class="credits"> <p class="dwt_author">Delnore, Victor E.</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_1");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a style="font-weight: bold;">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_2");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_1 div --> <div id="page_2" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_1");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a style="font-weight: bold;">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_3");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">21</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.attoworld.de/Documents/papers/OpticsLetters/OptLett36_17p3428_2011.pdf"> <span id="translatedtitle"><span class="hlt">Single-pass</span> high-harmonic generation at 20.8 MHz repetition rate</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/eprints/">E-print Network</a></p> <p class="result-summary"><span class="hlt">Single-pass</span> high-harmonic generation at 20.8 MHz repetition rate Andreas Vernaleken,1, * Johannes Weitenberg,2 Thomas Sartorius,3 Peter Russbueldt,3 Waldemar Schneider,1 Sarah L. Stebbings,1 Matthias F</p> <div class="credits"> <p class="dwt_author">Kling, Matthias</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">22</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/21643316"> <span id="translatedtitle">Experimental demonstration of frequency pulling in <span class="hlt">single-pass</span> free-electron lasers.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Frequency pulling is a well-known phenomenon in standard laser physics, leading to a shift of the laser frequency when the cavity and maximum gain frequencies are detuned. In this letter we present the first experimental demonstration of frequency pulling in <span class="hlt">single-pass</span> free-electron lasers. Measurements are performed using the <span class="hlt">single-pass</span> free-electron laser installed on the Elettra storage ring. PMID:21643316</p> <div class="credits"> <p class="dwt_author">Allaria, E; De Ninno, G; Spezzani, C</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-05-23</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">23</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/10176662"> <span id="translatedtitle">Fuel-element failures in Hanford <span class="hlt">single-pass</span> reactors 1944--1971</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The primary objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation dose that individuals could have received as a result of emissions since 1944 from the US Department of Energy`s (DOE) Hanford Site near Richland, Washington. To estimate the doses, the staff of the Source Terms Task use operating information from historical documents to approximate the radioactive emissions. One source of radioactive emissions to the Columbia River came from leaks in the aluminum cladding of the uranium metal fuel elements in <span class="hlt">single-pass</span> reactors. The purpose of this letter report is to provide photocopies of the documents that recorded these failures. The data from these documents will be used by the Source Terms Task to determine the contribution of <span class="hlt">single-pass</span> reactor fuel-element failures to the radioactivity of the reactor effluent from 1944 through 1971. Each referenced fuel-element failure occurring in the Hanford <span class="hlt">single-pass</span> reactors is addressed. The first recorded failure was in 1948, the last in 1970. No records of fuel-element failures were found in documents prior to 1948. Data on the approximately 2000 failures which occurred during the 28 years (1944--1971) of Hanford <span class="hlt">single-pass</span> reactor operations are provided in this report.</p> <div class="credits"> <p class="dwt_author">Gydesen, S.P.</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">24</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/39268127"> <span id="translatedtitle">A compact <span class="hlt">single-pass</span> architecture for hysteresis thresholding and component labeling</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Hysteresis thresholding offers enhanced edge\\/object detection in the presence of noise. However, due to its recursive nature, it requires a lot of memory and execution time. Thus, it is restricted and sometimes totally avoided in streaming processors with limited memory. We propose an efficient architecture coupling hysteresis thresholding with component labeling and feature extraction in a <span class="hlt">single</span> <span class="hlt">pass</span> over the</p> <div class="credits"> <p class="dwt_author">Mayssaa Al Najjar; Swetha Karlapudi; Magdy A. Bayoumi</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">25</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.lehigh.edu/~inemg/assets/Publications/Nawrocki%20-%20Dec%202000%20-%20The%20Stress-Relief%20Cracking%20Susceptibility%201.pdf"> <span id="translatedtitle">ABSTRACT. The stress-relief cracking (SRC) susceptibility of <span class="hlt">single-pass</span> welds</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/eprints/">E-print Network</a></p> <p class="result-summary">(HAZ) mechanical properties and reduce susceptibility to hydrogen cracking. These preheat and PWHTABSTRACT. The stress-relief cracking (SRC) susceptibility of <span class="hlt">single-pass</span> welds in a new ferritic techniques. HCM2S was found to be more susceptible to stress-relief cracking than 2.25Cr-1Mo steel. Simulated</p> <div class="credits"> <p class="dwt_author">DuPont, John N.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">26</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/ru41q10u260nx57j.pdf"> <span id="translatedtitle">Investigation of catalysts based on activated aluminum oxide, prepared by <span class="hlt">single-pass</span> continuous precipitation</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The properties of an activated aluminum oxide obtained by continuous <span class="hlt">single-pass</span> precipitation of the hydroxide from solutions of basic aluminum sulfate and sodium aluminate with a low alkali modulus have been studied by physicochemicalmethods; this study has shown that the crystalline and porous structure of this aluminum oxide differs considerably from that of aluminum oxide obtained by a double-pass batch</p> <div class="credits"> <p class="dwt_author">N. P. Poezd; I. Ya. Perezhigina; E. D. Radchenko; D. F. Poezd; A. V. Agafonov; A. N. Chagovets</p> <p class="dwt_publisher"></p> <p class="publishDate">1978-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">27</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ars.usda.gov/research/publications/Publications.htm?seq_no_115=252911"> <span id="translatedtitle">Aerobic and anaerobic storage of <span class="hlt">single-pass</span>, chopped corn stover</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ars.usda.gov/services/TekTran.htm">Technology Transfer Automated Retrieval System (TEKTRAN)</a></p> <p class="result-summary">Corn stover has great potential as a biomass feedstock due its widespread availability. However, storage characteristics of moist corn stover harvested from <span class="hlt">single-pass</span> harvesters have not been well quantified. In 2007, whole-plant corn stover at 19.1 to 40.3 % (w.b.) moisture content was stored fo...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">28</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013AGUFM.C42B..07W"> <span id="translatedtitle">Observations of ice motion changes at the terminus of Hubbard Glacier using co-located ground-based <span class="hlt">radar</span> <span class="hlt">interferometer</span> and LiDAR scanning systems (Invited)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The tidewater terminus of Hubbard Glacier extends into Disenchantment Bay and currently blocks most of the mouth of Russell Fjord. Recent advances of Hubbard Glacier (1986 and 2002) caused the damming of Russell Fjord, creating one of the largest glacier-dammed lakes on the continent and exposing the community of Yakutat to a host of potential hazards. Detailed observations of the terminus of Hubbard Glacier were conducted during a field campaign in May 2013. Ground-based <span class="hlt">radar</span> <span class="hlt">interferometer</span> (GBRI) and ground-based light detection and ranging (LiDAR) scanning systems were deployed to observe changes in ice motion in response to calving events and tidal cycles. GBRI and LiDAR units were co-located and data acquisition was synchronized to maximize data recovery and to aid inter-system comparisons. Observations from ground-based scanners were also compared to meteorological and tidal measurements and to time-lapse photography and satellite data. Both ground-based scanning systems capture ice motion at very high resolution, but each offer specific technical and logistical advantages. The combination of these ground-based remote sensing techniques allows us to quantify high-frequency changes in the velocity and surface deformation at the terminus of Hubbard Glacier and to develop a better understanding of the mechanisms associated with advancing tidewater termini.</p> <div class="credits"> <p class="dwt_author">Wolken, G. J.; Finnegan, D. C.; Sharp, M. J.; LeWinter, A.; Fahnestock, M. A.; Stevens, R.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">29</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://books.nips.cc/papers/files/nips22/NIPS2009_1160.pdf"> <span id="translatedtitle">Periodic Step-Size Adaptation for <span class="hlt">Single-Pass</span> On-line Learning</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">It has been established that the second-order stochastic gr adient descent (2SGD) method can potentially achieve generalization performance as well as empirical optimum in a <span class="hlt">single</span> <span class="hlt">pass</span> (i.e., epoch) through the training examples. However, 2SGD requires computing the inverse of the Hessian matrix of the loss function, which is prohibitively expensive. This paper presents Periodic Step-size Adapta- tion (PSA), which</p> <div class="credits"> <p class="dwt_author">Chun-Nan Hsu; Yu-Ming Chang; Han-Shen Huang; Yuh-Jye Lee</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">30</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/939971"> <span id="translatedtitle">Emittance Reduction between EBIS LINAC and Booster by Electron Beam Cooling; Is <span class="hlt">Single</span> <span class="hlt">Pass</span> Cooling Possible?</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Electron beam cooling is examined as an option to reduce momentum of gold ions exiting the EBIS LINAC before injection into the booster. Electron beam parameters are based on experimental data (obtained at BNL) of electron beams extracted from a plasma cathode. Preliminary calculations indicate that <span class="hlt">single</span> <span class="hlt">pass</span> cooling is feasible; momentum spread can be reduced by more than an order of magnitude in less than one meter.</p> <div class="credits"> <p class="dwt_author">Hershcovitch,A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-04-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">31</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.davidcwhite.org/fulltext/323.pdf"> <span id="translatedtitle">Biodegradation of chlorinated aliphatic hydrocarbon mixtures in a <span class="hlt">single-pass</span> packed-bed reactor</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Aliphatic chlorinated compounds, such as trichloroethylene (TCE) and tetrachloroethylene (PCE), are major contaminants of\\u000a ground water. A <span class="hlt">single-pass</span> packed-bed bioreactor was utilized to study the biodegradation of organic waste mixtures consisting\\u000a of PCE, TCE, and other short-chain chlorinated organics. The bioreactor consisted of two 1960-mL glass columns joined in a\\u000a series. One column was packed with sand containing a microbial</p> <div class="credits"> <p class="dwt_author">L. W. Lackey; T. J. Phelps; P. R. Bienkowski; D. C. White</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">32</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55514547"> <span id="translatedtitle"><span class="hlt">Single-pass</span> high-harmonic generation at 20.8 MHz repetition rate</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We report on <span class="hlt">single-pass</span> high-harmonic generation (HHG) with amplified driving laser pulses at a repetition rate of 20.8MHz. An Yb:YAG Innoslab amplifier system provides 35fs pulses with 20W average power at 1030nm after external pulse compression. Following tight focusing into a xenon gas jet, we observe the generation of high-harmonic radiation of up to the seventeenth order. Our results show</p> <div class="credits"> <p class="dwt_author">Andreas Vernaleken; Johannes Weitenberg; Thomas Sartorius; Peter Russbueldt; Waldemar Schneider; Sarah L. Stebbings; Matthias F. Kling; Peter Hommelhoff; Hans-Dieter Hoffmann; Reinhart Poprawe; Ferenc Krausz; Theodor W. Hänsch; Thomas Udem</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">33</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013AIPC.1528..118I"> <span id="translatedtitle">Experimental studies on the thermal efficiency of the <span class="hlt">single-pass</span> solar air collector with fins</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The experimental study on a forced-convective <span class="hlt">single-pass</span> solar air collector with fins has been conducted. The work is a comparative study of performance analysis of solar collector at different mass flow rate, solar radiation and depth of the air flow channel. The fins attached at the back of absorbing plate to improve the thermal performance of the system. The results showed that the thermal efficiency increase with flow rate to 60% at 730 Wm-2. The study concluded that the thermal efficiency is increased proportion to solar radiation, flow rate and the depth of the channel.</p> <div class="credits"> <p class="dwt_author">Ibrahim, Zamry; Ibarahim, Zahari; Yatim, Baharudin; Ruslan, Mohd Hafidz</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">34</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://pubs.er.usgs.gov/publication/70026197"> <span id="translatedtitle">Assessing the efficacy of <span class="hlt">single-pass</span> backpack electrofishing to characterize fish community structure</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p class="result-summary">Two-pass backpack electrofishing data collected as part of the U.S. Geological Survey's National Water-Quality Assessment Program were analyzed to assess the efficacy of <span class="hlt">single-pass</span> backpack electrofishing. A two-capture removal model was used to estimate, within 10 river basins across the United States, proportional fish species richness from one-pass electrofishing and probabilities of detection for individual fish species. Mean estimated species richness from first-pass sampling (p??s1) ranged from 80.7% to 100% of estimated total species richness for each river basin, based on at least seven samples per basin. However, p??s1 values for individual sites ranged from 40% to 100% of estimated total species richness. Additional species unique to the second pass were collected in 50.3% of the samples. Of these, cyprinids and centrarchids were collected most frequently. Proportional fish species richness estimated for the first pass increased significantly with decreasing stream width for 1 of the 10 river basins. When used to calculate probabilities of detection of individual fish species, the removal model failed 48% of the time because the number of individuals of a species was greater in the second pass than in the first pass. <span class="hlt">Single-pass</span> backpack electrofishing data alone may make it difficult to determine whether characterized fish community structure data are real or spurious. The two-pass removal model can be used to assess the effectiveness of sampling species richness with a single electrofishing pass. However, the two-pass removal model may have limited utility to determine probabilities of detection of individual species and, thus, limit the ability to assess the effectiveness of <span class="hlt">single-pass</span> sampling to characterize species relative abundances. Multiple-pass (at least three passes) backpack electrofishing at a large number of sites may not be cost-effective as part of a standardized sampling protocol for large-geographic-scale studies. However, multiple-pass electrofishing at some sites may be necessary to better evaluate the adequacy of <span class="hlt">single-pass</span> electrofishing and to help make meaningful interpretations of fish community structure.</p> <div class="credits"> <p class="dwt_author">Meador, M.R.; McIntyre, J.P.; Pollock, K.H.</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">35</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/22038945"> <span id="translatedtitle">High-aspect-ratio grooves fabricated in silicon by a <span class="hlt">single</span> <span class="hlt">pass</span> of femtosecond laser pulses</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">High-aspect-ratio grooves have been fabricated in silicon by a <span class="hlt">single</span> <span class="hlt">pass</span> of femtosecond laser pulses in water and ambient air. Scanning electron microscopy and energy dispersive x-ray spectroscopy were employed to image for the morphology of the photoinduced grooves and analyze the chemical composition in the surrounding of the grooves. It was observed that the sidewall of the grooves fabricated in water was much smoother than that in ambient air, and there were homogeneous nano-scale protrusions on the sidewall of the grooves fabricated in water. Meanwhile, oxygen species, which was incorporated into the grooves fabricated in air, was not observed in those in water.</p> <div class="credits"> <p class="dwt_author">Ma Yuncan; Shi Haitao; Si Jinhai; Ren Hai; Chen Tao; Chen Feng; Hou Xun [Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Laboratory of Information Photonic Technique, School of Electronics and Information Engineering, Xi'an Jiaotong University, Xianning West Road 28, Xi'an 710049 (China)</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">36</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2015OptCo.334..170O"> <span id="translatedtitle">Improved reduced models for <span class="hlt">single-pass</span> and reflective semiconductor optical amplifiers</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We present highly accurate and easy to implement, improved lumped semiconductor optical amplifier (SOA) models for both <span class="hlt">single-pass</span> and reflective semiconductor optical amplifiers (RSOA). The key feature of the model is the inclusion of the internal losses and we show that a few SOA subdivisions are required to achieve a computational accuracy of <0.12 dB. For the case of RSOAs, we generalize a recently published model to account for the internal losses that are vital to replicate the observed RSOA behavior. The results of the improved reduced RSOA model show large overlap when compared to a full bidirectional travelling wave model for over a 40 dB dynamic range of input powers and a 20 dB dynamic range of reflectivity values. The models would be useful for the rapid system simulation of signals in communication systems, i.e. passive optical networks that employ RSOAs, signal processing using SOAs.</p> <div class="credits"> <p class="dwt_author">O Duill, S. P.; Barry, L. P.</p> <p class="dwt_publisher"></p> <p class="publishDate">2015-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">37</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/1007884"> <span id="translatedtitle"><span class="hlt">Single</span> <span class="hlt">pass</span> electron beam cooling of gold ions between EBIS LINAC and booster is theoretically possible!</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Electron beam cooling is examined as an option to reduce momentum of gold ions exiting the EBIS LINAC before injection into the booster. Electron beam parameters are based on experimental data (obtained at BNL) of electron beams extracted from a plasma cathode. Many issues, regarding a low energy high current electron beam that is needed for electron beam cooling to reduce momentum of gold ions exiting the EBIS LINAC before injection into the booster, were examined. Computations and some experimental data indicate that none of these issues is a show stopper. Preliminary calculations indicate that <span class="hlt">single</span> <span class="hlt">pass</span> cooling is feasible; momentum spread can be reduced by more than an order of magnitude in about one meter. Hence, this option cooling deserves further more serious considerations.</p> <div class="credits"> <p class="dwt_author">Hershcovitch, A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">38</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013SPIE.8599E..0DM"> <span id="translatedtitle">Gain-switched <span class="hlt">single-pass</span> Cr:ZnSe amplifier</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In this paper, we report on building and testing a Cr:ZnSe gain-switched amplifier pumped by a Q-switched Ho:YAG laser and seeded by a continuous wave (CW) tunable Cr:ZnSe laser. A 0.5%-doped, Brewster-cut Ho:YAG rod in an actively Q-switched, folded cavity produced 250 ?J pump pulses at 2.09 ?m with pulse widths on the order of 400 ns. The seeded <span class="hlt">single-pass</span> Cr:ZnSe amplifier exhibited output pulse energy as high as 3.8 ?J at 2.45 ?m while pumped at a 10 kHz repetition rate. The gain-switched process showed a peak gain of 380 and an extraction efficiency of 1.5%. The system was tunable from 2160 nm to 2560 nm and had gain of 200 over a 400 nm range.</p> <div class="credits"> <p class="dwt_author">McDaniel, Sean A.; Berry, Patrick A.; Schepler, Kenneth L.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">39</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/861065"> <span id="translatedtitle">AN EXPERIMENTAL TEST OF SUPERRADIANCE IN A <span class="hlt">SINGLE</span> <span class="hlt">PASS</span> SEEDED FEL.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Superradiance and nonlinear evolution of a FEL pulse in a <span class="hlt">single-pass</span> FEL were experimentally demonstrated at the National Synchrotron Light Source (NSLS) Source Development Laboratory (SDL). The experiment was performed using a 1.5 ps high-brightness electron beam and a 100fs Ti:Sapphire seed laser. The seed laser and electron beam interact in the 10 meter long NISUS undulator with a period of 3.89 cm. The FEL spectrum, energy and pulse length along the undulator were measured. FEL saturation was observed, and gain of more the 200 (relative to seed laser) was measured. Both FEL spectrum widening and pulse length shortening were observed; FEL pulses as short as 65 fs FWHM were measured. The superradiance and nonlinear evolution were also simulated using the numerical code GENESIS1.3 yielding good agreement with the experimental results.</p> <div class="credits"> <p class="dwt_author">WATANABE, T.; LIU, D.; MURPHY, J.B.; ROSE, J.; SHAFTAN, T.; TSANG, T.; WANG, X.J.; YU, L.H.</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-08-21</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">40</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012LaPhy..22.1401J"> <span id="translatedtitle">Walk off compensation, multicrystal, cascaded, <span class="hlt">single</span> <span class="hlt">pass</span>, second harmonic generation in LBO</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Walk off compensation and multi crystal (MC) cascaded <span class="hlt">single</span> <span class="hlt">pass</span> second harmonic generation (SP-SHG) in LBO was combined to improve the SHG conversion efficiency. We report a simple and compact implementation for (SP-SHG) of radiation, based on a cascaded multicrystal (MC) scheme that can provide high conversion efficiency without other focusing device, the enhancement factor of 2.9 was realized. At an incident pump power of 20 W, the average power of 6.1 W and pulse width of 12 ns green laser was obtained at a repetition rate of 42.4 kHz, corresponding to a peak power of 12 kW and single pulse energy of 144 ?J. The optical to optical conversion efficiency from diode to green and from IR to green laser are about 30.5 and 67.8%, the whole length of this system is about 150 mm, the output fluctuation of this system is less than 5% in 2 h.</p> <div class="credits"> <p class="dwt_author">Ji, B.; Zheng, X. S.; Cai, Z. P.; Xu, H. Y.; Jia, F. Q.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-09-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_1");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a style="font-weight: bold;">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_3");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_2 div --> <div id="page_3" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_2");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a style="font-weight: bold;">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_4");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">41</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013AIPC.1567.1069C"> <span id="translatedtitle">Parametric analysis of plastic strain and force distribution in <span class="hlt">single</span> <span class="hlt">pass</span> metal spinning</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Metal spinning also known as spin forming is one of the sheet metal working processes by which an axis-symmetric part can be formed from a flat sheet metal blank. Parts are produced by pressing a blunt edged tool or roller on to the blank which in turn is mounted on a rotating mandrel. This paper discusses about the setting up a 3-D finite element simulation of <span class="hlt">single</span> <span class="hlt">pass</span> metal spinning in LS-Dyna. Four parameters were considered namely blank thickness, roller nose radius, feed ratio and mandrel speed and the variation in forces and plastic strain were analysed using the full-factorial design of experiments (DOE) method of simulation experiments. For some of these DOE runs, physical experiments on extra deep drawing (EDD) sheet metal were carried out using En31 tool on a lathe machine. Simulation results are able to predict the zone of unsafe thinning in the sheet and high forming forces that are hint to the necessity for less-expensive and semi-automated machine tools to help the household and small scale spinning workers widely prevalent in India.</p> <div class="credits"> <p class="dwt_author">Choudhary, Shashank; Tejesh, Chiruvolu Mohan; Regalla, Srinivasa Prakash; Suresh, Kurra</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">42</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2005APS..DFD.GB004K"> <span id="translatedtitle"><span class="hlt">Single</span> <span class="hlt">Pass</span> Drop Size Distributions in an Inline Rotor-Stator Mixer</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Rotor-stator mixers are employed to produce liquid-liquid dispersions. Despite their importance, there have been few studies that examine the fundamentals governing dispersion processes occurring in them. We have developed a technique to measure <span class="hlt">single</span> <span class="hlt">pass</span> drop size distributions (DSD) exiting an inline rotor-stator device. A continuous, turbulent water phase is fed to the mixer. At time zero, a single drop of oil is injected into the device, and the resulting daughter DSD is measured at the exit via Phase Doppler Anemometry. Bivariate statistics of drop size and residence time are obtained. Results indicate that, for the operating conditions studied, lower viscosity fluids have a bimodal distribution, with a shift towards a monomodal distribution at higher RPM or decreased throughput. More viscous fluids exhibit a monomodal distribution and a shift towards a bimodal distribution at higher RPM's and decreased throughput. Turbulent RANS CFD simulations are being performed in order to assist in interpretation of experimental data. Preliminary results indicate that bimodal distributions may be the result of droplet reentrainment into the stator and / or a large spread in the internal time distributions that drops spend in the region close to the rotor blade.</p> <div class="credits"> <p class="dwt_author">Kevala, Karl</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-11-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">43</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013JMEP...22.2477L"> <span id="translatedtitle">Double-Sided <span class="hlt">Single-Pass</span> Submerged Arc Welding for 2205 Duplex Stainless Steel</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The duplex stainless steel (DSS), which combines the characteristics of ferritic steel and austenitic steel, is used widely. The submerged arc welding (SAW) method is usually applied to join thick plates of DSS. However, an effective welding procedure is needed in order to obtain ideal DSS welds with an appropriate proportion of ferrite (?) and austenite (?) in the weld zone, particularly in the melted zone and heat-affected zone. This study evaluated the effectiveness of a high efficiency double-sided <span class="hlt">single-pass</span> (DSSP) SAW joining method for thick DSS plates. The effectiveness of the converse welding procedure, characterizations of weld zone, and mechanical properties of welded joint are analyzed. The results show an increasing appearance and continuous distribution feature of the ? phase in the fusion zone of the leading welded seam. The converse welding procedure promotes the ? phase to precipitate in the fusion zone of leading welded side. The microhardness appears to significantly increase in the center of leading welded side. Ductile fracture mode is observed in the weld zone. A mixture fracture feature appears with a shear lip and tears in the fusion zone near the fusion line. The ductility, plasticity, and microhardness of the joints have a significant relationship with ? phase and heat treatment effect influenced by the converse welding step. An available heat input controlling technology of the DSSP formation method is discussed for SAW of thick DSS plates.</p> <div class="credits"> <p class="dwt_author">Luo, Jian; Yuan, Yi; Wang, Xiaoming; Yao, Zongxiang</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">44</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/22261654"> <span id="translatedtitle">Parametric analysis of plastic strain and force distribution in <span class="hlt">single</span> <span class="hlt">pass</span> metal spinning</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Metal spinning also known as spin forming is one of the sheet metal working processes by which an axis-symmetric part can be formed from a flat sheet metal blank. Parts are produced by pressing a blunt edged tool or roller on to the blank which in turn is mounted on a rotating mandrel. This paper discusses about the setting up a 3-D finite element simulation of <span class="hlt">single</span> <span class="hlt">pass</span> metal spinning in LS-Dyna. Four parameters were considered namely blank thickness, roller nose radius, feed ratio and mandrel speed and the variation in forces and plastic strain were analysed using the full-factorial design of experiments (DOE) method of simulation experiments. For some of these DOE runs, physical experiments on extra deep drawing (EDD) sheet metal were carried out using En31 tool on a lathe machine. Simulation results are able to predict the zone of unsafe thinning in the sheet and high forming forces that are hint to the necessity for less-expensive and semi-automated machine tools to help the household and small scale spinning workers widely prevalent in India.</p> <div class="credits"> <p class="dwt_author">Choudhary, Shashank, E-mail: shashankbit08@gmail.com, E-mail: mohantejesh93@gmail.com, E-mail: regalla@hyderabad.bits-pilani.ac.in, E-mail: ksuresh@hyderabad.bits-pilani.ac.in; Tejesh, Chiruvolu Mohan, E-mail: shashankbit08@gmail.com, E-mail: mohantejesh93@gmail.com, E-mail: regalla@hyderabad.bits-pilani.ac.in, E-mail: ksuresh@hyderabad.bits-pilani.ac.in; Regalla, Srinivasa Prakash, E-mail: shashankbit08@gmail.com, E-mail: mohantejesh93@gmail.com, E-mail: regalla@hyderabad.bits-pilani.ac.in, E-mail: ksuresh@hyderabad.bits-pilani.ac.in; Suresh, Kurra, E-mail: shashankbit08@gmail.com, E-mail: mohantejesh93@gmail.com, E-mail: regalla@hyderabad.bits-pilani.ac.in, E-mail: ksuresh@hyderabad.bits-pilani.ac.in [Department of Mechanical Engineering, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, Andhra Pradesh (India)</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-12-16</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">45</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://research.rem.sfu.ca/theses/BonamisAlston_2011_MRM523.pdf"> <span id="translatedtitle">UTILIZATION OF TWO-STAGE <span class="hlt">SINGLE-PASS</span> ELECTROFISHING TO ESTIMATE ABUNDANCE AND DEVELOP RECOVERY-MONITORING</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/eprints/">E-print Network</a></p> <p class="result-summary">UTILIZATION OF TWO-STAGE <span class="hlt">SINGLE-PASS</span> ELECTROFISHING TO ESTIMATE ABUNDANCE AND DEVELOP RECOVERY-MONITORING abundance and develop recovery- monitoring protocols for the endangered Nooksack dace (Rhinichthys River, Bertrand Creek, Pepin Creek, and Fishtrap Creek were 2,763 fish (95% confidence intervals (CI): 1</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">46</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/939985"> <span id="translatedtitle">Part II/Addendum Electron Beam Cooling between EBIS LINAC and Booster; Is <span class="hlt">Single</span> <span class="hlt">Pass</span> Cooling Possible?</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Due to some miscommunication, incomplete data was erroneously used in examining electron beam cooling for reducing momentum of gold ions exiting the EBIS LINAC before injection into the booster. Corrected calculations still indicate that <span class="hlt">single</span> <span class="hlt">pass</span> cooling is, in principle, feasible; momentum spread can be reduced by an order of magnitude in about one meter. Preliminary results suggest that this cooling deserves further consideration.</p> <div class="credits"> <p class="dwt_author">Hershcovitch,A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">47</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ars.usda.gov/research/publications/Publications.htm?seq_no_115=198295"> <span id="translatedtitle"><span class="hlt">SINGLE-PASS</span>, SPLIT-STREAM OF CORN GRAIN AND STOVER: CHARACTERISTIC PERFORMANCE OF THREE HARVESTER CONFIGURATIONS.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ars.usda.gov/services/TekTran.htm">Technology Transfer Automated Retrieval System (TEKTRAN)</a></p> <p class="result-summary">A grain combine was modified to produce <span class="hlt">single-pass</span>, whole-plant corn harvesting with two crop streams, grain and stover. Three corn heads were used: ear-snapper, stalk-gathering and whole plant. Capture of potential stover dry matter (DM) was 30, 67, and 90% of DM for a combine harvester configur...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">48</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009SPIE.7168E..09T"> <span id="translatedtitle">Velocity-resolved <span class="hlt">single-pass</span> volumetric retinal flow imaging spectral domain optical coherence tomography</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Advances in Doppler spectral domain optical coherence tomography (SDOCT) have demonstrated several image acquisition schemes that enable real-time, high-resolution, volumetric display of blood flow maps. Current generation Doppler SDOCT systems use phase differences between sequential A-scans acquired at a single spatial position to calculate the velocity of moving scatterers. Recently, several methods for optical angiography have been developed which resolve moving scatterers by imposing a spatial frequency modulation across a lateral scan dimension. The carrier frequency is generated by adding a reference phase delay using a moving reference arm or an off-pivot scanning beam. The resulting data is spatial frequency windowed such that all moving scatterers (flow) modulating the carrier frequency can be separated from non-moving scatterers (structure). However, spatial frequency modulation requires precise synchronization of the reference arm delay with B-scan acquisition and multiple B-scans are required to image bidirectional flow into and out-of the A-scan axis. Here we demonstrate <span class="hlt">single-pass</span> volumetric bidirectional blood flow imaging (SPFI) SDOCT using a modified Hilbert transform without the use of spatial frequency modulation. By windowing low-spatial frequency scatterers across a B-scan, bidirectionally moving scatterers centered at Doppler frequencies outside of the frequency window are resolved. Additionally, 3D velocimetry maps can be constructed by setting the spatial frequency window to a corresponding velocity range and shifting it across all spatial frequencies to image scatterers moving within a particular velocity range. We show that SPFI SDOCT allows for 3D imaging of in vivo human retinal microvasculature down to 20?m, thus providing information about vessel morphology and dynamics.</p> <div class="credits"> <p class="dwt_author">Tao, Yuankai K.; Kennedy, Kristen M.; Izatt, Joseph A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-02-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">49</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/18357742"> <span id="translatedtitle">[In situ rats <span class="hlt">single</span> <span class="hlt">pass</span> perfusion intestinal absorption of the effectivein components in Radix Angelicae Pubescentis].</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">In order to study the intestinal absorption behaviors of three active constituents, columbianetin acetate, osthole and columbianadin in Radix Angelicae Pubescentis extracts, in situ rat <span class="hlt">single</span> <span class="hlt">pass</span> intestine perfusion (SPIP) was carried out by the perfusion solution of the extract I containing less than 10% total coumarins. The absorption of extract II containing more than 60% total coumarins was compared with that of extract I by rat colon SPIP to elucidate the influence on absorption of the different coumarin content extracts of the Chinese traditional medicine. The samples of the perfusion solution were collected in certain intervals. The concentrations of three active components in the perfusion samples were determined by HPLC method. The results demonstrated that the absorption rate constants (Ka) or apparent permeability coefficients (Papp) of columbianetin acetate, osthole and columbianadin from extract I had no significant difference among concentration ranges of 62-555 microg x mL(-1), 101-887 microg x mL(-1), 19-186 microg x mL(-1), respectively. The absorption quantity of three components was proportional to its concentration respectively and the saturate absorption phenomena were not observed. This suggested that the absorption of columbianetin acetate, osthole and columbianadin showed the passive diffusion process. Three components could be absorbed in whole intestinal sections. The Ka and Papp of three components all showed colon > duodenum > jejunum > ileum in four different regions of rat intestine. At colon, Ka and P app were significant different from the others. The Ka or Papp of three components from the extract I was significantly more than that of same components from extract II. The extract I redounded to increase the absorption of three active components. PMID:18357742</p> <div class="credits"> <p class="dwt_author">Wu, Ya-Na; Luan, Li-Biao</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">50</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50419236"> <span id="translatedtitle">Reliability improvement of Cu\\/low-k interconnects by integrating novel <span class="hlt">single</span> <span class="hlt">pass</span> single wafer wet clean</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A novel solvent-based single wafer clean process with megasonic feature and <span class="hlt">single</span> <span class="hlt">pass</span> fresh solvent spray has been developed This process mitigated the copper undercut problem which existed in the conventional system. The electrical parametric performance meets or outperforms that from the baseline bench process. More importantly, the undercut mitigation resulted in significant improvements on Cu\\/low-k interconnect reliability including EM</p> <div class="credits"> <p class="dwt_author">Runzi Chang; Jianshe Tang; Steven Verhaverbeke; Konstantin Smekalin; J. T. C. Lee; M. D. Armacost</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">51</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/18879333"> <span id="translatedtitle">Phase-stable <span class="hlt">single-pass</span> cryogenic amplifier for high repetition rate few-cycle laser pulses</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We demonstrate cryogenic Ti:sapphire <span class="hlt">single-pass</span> amplification of sub-7 fs laser pulses with 80 MHz repetition rate. We amplify the output of a broadband Ti:sapphire oscillator by more than a factor of two, re-compress the pulses down to sub-7 fs, and show that the rms carrier-envelope phase jitter stays below 70 as after amplification. The amplified output exceeds 2 MW of</p> <div class="credits"> <p class="dwt_author">Akira Ozawa; Waldemar Schneider; Theodor W. Hänsch; Thomas Udem; Peter Hommelhoff</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">52</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/5324689"> <span id="translatedtitle">Periodic step-size adaptation in second-order gradient descent for <span class="hlt">single-pass</span> on-line structured learning</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Abstract It has been established that the second-order stochastic gradient descent (SGD) method,can potentially achieve generalization performance,as well as empirical optimum in a <span class="hlt">single</span> <span class="hlt">pass</span> through the training examples. However, second-order SGD requires com- puting the inverse of the Hessian matrix of the loss function, which is prohibitively expen- sive for structured prediction problems,that usually involve a very high dimensional,feature</p> <div class="credits"> <p class="dwt_author">Chun-nan Hsu; Han-shen Huang; Yu-ming Chang; Yuh-jye Lee</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">53</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://arxiv.org/pdf/0712.3703v1"> <span id="translatedtitle">Atom <span class="hlt">Interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/eprints/">E-print Network</a></p> <p class="result-summary">Interference with atomic and molecular matter waves is a rich branch of atomic physics and quantum optics. It started with atom diffraction from crystal surfaces and the separated oscillatory fields technique used in atomic clocks. Atom interferometry is now reaching maturity as a powerful art with many applications in modern science. In this review we first describe the basic tools for coherent atom optics including diffraction by nanostructures and laser light, three-grating <span class="hlt">interferometers</span>, and double wells on AtomChips. Then we review scientific advances in a broad range of fields that have resulted from the application of atom <span class="hlt">interferometers</span>. These are grouped in three categories: (1) fundamental quantum science, (2) precision metrology and (3) atomic and molecular physics. Although some experiments with Bose Einstein condensates are included, the focus of the review is on linear matter wave optics, i.e. phenomena where each single atom interferes with itself.</p> <div class="credits"> <p class="dwt_author">Alexander D. Cronin; Joerg Schmiedmayer; David E. Pritchard</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-12-21</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">54</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/29242288"> <span id="translatedtitle">Feasibility of Dual-Chamber (DDD) Pacing via a <span class="hlt">Single-Pass</span> (VDD) Pacing Lead Employing a Floating Atrial Ring (Dipole): Case Series, Future Considerations, and Refinements</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The objective of this study was to assess the feasibility of DDD pacing from a standard <span class="hlt">single-pass</span> VDD pacemaker system. Over the past 2 decades significant advances have been made in the development of <span class="hlt">single-pass</span> VDD pacing systems. These have been shown in long-term prospective studies to effectively preserve atrioventricular (AV) synchrony in patients with AV block and normal sinus</p> <div class="credits"> <p class="dwt_author">John Kassotis; Louis Voigt; Mbu Mongwa; C. V. R. Reddy</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">55</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20110024195&hterms=using+ohm+law&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3D%2528%2528using%2Bohm%2527s%2529%2Blaw%2529"> <span id="translatedtitle">Michelson <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The Michelson <span class="hlt">Interferometer</span> is a device used in many applications, but here it was used to measure small differences in distance, in the milli-inch range, specifically for defects in the Orbiter windows. In this paper, the method of using the Michelson <span class="hlt">Interferometer</span> for measuring small distances is explained as well as the mathematics of the system. The coherence length of several light sources was calculated in order to see just how small a defect could be measured. Since white light is a very broadband source, its coherence length is very short and thus can be used to measure small defects in glass. After finding the front and back reflections from a very thin glass slide with ease and calculating the thickness of it very accurately, it was concluded that this system could find and measure small defects on the Orbiter windows. This report also discusses a failed attempt for another use of this technology as well as describes an area of promise for further analysis. The latter of these areas has applications for finding possible defects in Orbiter windows without moving parts.</p> <div class="credits"> <p class="dwt_author">Rogers, Ryan</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">56</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/878377"> <span id="translatedtitle">Lucretia: A Matlab-Based Toolbox for the Modellingand Simulation of <span class="hlt">Single-Pass</span> Electron Beam Transport Systems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We report on Lucretia, a new simulation tool for the study of <span class="hlt">single-pass</span> electron beam transport systems. Lucretia supports a combination of analytic and tracking techniques to model the tuning and operation of bunch compressors, linear accelerators, and beam delivery systems of linear colliders and linac-driven Free Electron Laser (FEL) facilities. Extensive use of Matlab scripting, graphics, and numerical capabilities maximize the flexibility of the system, and emphasis has been placed on representing and preserving the fixed relationships between elements (common girders, power supplies, etc.) which must be respected in the design of tuning algorithms. An overview of the code organization, some simple examples, and plans for future development are discussed.</p> <div class="credits"> <p class="dwt_author">Tenenbaum, P.; /SLAC</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-09-30</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">57</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/5839380"> <span id="translatedtitle"><span class="hlt">Single-pass</span> continuous-flow leach test of PNL 76-68 glass: some selected Bead Leach I results</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A <span class="hlt">single-pass</span> continuous-flow leach test of PNL 76-68 glass beads (7 mm dia) was concluded after 420 days of uninterrupted operation. Variables included in the experimental matrix were flow-rate, leachant composition, and temperature. Analysis was conducted on all leachate samples for /sup 237/Np and /sup 239/Pu as well as a number of nonradioactive elements. Results indicated that flow-rate and leachant systematically affected the leach rate, but only slightly. Temperature effects were significant. Plutonium leach rate was lower at higher temperature suggesting that Pu sorption onto the beads was enhanced at the higher temperature. The range of leach rates for all analyzed elements (except Pu), at both temperatures, at all three flow rates, and with all three leachant compositions varied over only three orders of magnitude. The range of variables used in this experiment covered those expected in many proposed repository environments.</p> <div class="credits"> <p class="dwt_author">Coles, D.G.</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-08-20</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">58</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/24707867"> <span id="translatedtitle">Intestinal absorptive transport of Genkwanin from Flos genkwa using a <span class="hlt">single-pass</span> intestinal perfusion rat model.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">To investigate the absorptive transport behavior of genkwanin and the beneficial effects of monoterpene enhancers with different functional groups, the <span class="hlt">single-pass</span> intestinal perfusion (SPIP) of rats was used. The results showed that genkwanin was segmentally-dependent and the best absorptive site was the duodenum. The effective permeability coefficient (P eff ) was 1.97 × 10(-4) cm/s and the absorption rate constant (Ka) was 0.62 × 10(-2) s(-1). Transepithelial transportation descended with increasing concentrations of genkwanin. This was a 1.4-fold increase in P eff by probenecid, whereas a 1.4-fold or 1.6-fold decrease was observed by verapamil and pantoprazole, respectively. Furthermore, among the absorption enhancers, the enhancement with carbonyl (camphor and menthone) was higher than that with hydroxyl (borneol and menthol). The concentration-independent permeability and enhancement by coperfusion of probenecid indicated that genkwanin was transported by both passive diffusion and multidrug resistance protein (MDR)-mediated efflux mechanisms. PMID:24707867</p> <div class="credits"> <p class="dwt_author">Jiang, Cui-Ping; He, Xin; Yang, Xiao-Lin; Zhang, Su-Li; Li, Hui; Song, Zi-Jing; Zhang, Chun-Feng; Yang, Zhong-Lin; Li, Ping</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">59</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2015JMiMi..25c5010P"> <span id="translatedtitle">Profile and depth prediction in <span class="hlt">single-pass</span> and two-pass CO2 laser microchanneling processes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Polymer based microfluidic channels are used in many chemical and biological devices. Polymethylmethacrylate (PMMA) has emerged as a key material for such devices owing to its high optical transparency and mechanical strength. The use of CO2 laser processing for fabricating microchannels on PMMA has been proved as an efficient and cost effective method. In this work, theoretical models for predicting microchannel profile and depth have been proposed. A model for <span class="hlt">single-pass</span> laser processing has been proposed based on energy balance. A two-pass laser process for microchannel fabrication produces smoother microchannels with better surface topography and reduced bulging around the microchannel edges. An energy balance based model has also been proposed for two-pass processing. The experimental verification of the proposed models was conducted. Spectroscopic tests were carried out to determine the absorptivity, and simultaneous thermogravimetric analysis/differential scanning calorimetry (TGA/DSC) tests were performed to determine the thermo-physical properties of the PMMA used in the proposed model. The results predicted using the model were found to be in close agreement with the actual values.</p> <div class="credits"> <p class="dwt_author">Prakash, Shashi; Kumar, Subrata</p> <p class="dwt_publisher"></p> <p class="publishDate">2015-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">60</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/95293"> <span id="translatedtitle">Merits of a sub-harmonic approach to a <span class="hlt">single-pass</span>, 1.5-{Angstrom} FEL</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">SLAC/SSRL and collaborators elsewhere are studying th physics of a <span class="hlt">single-pass</span>, FEL amplifier operating in th 1 -- 2 {Angstrom}, wavelength region based on electron beams from the SLAC linac at {approximately} 15 GeV energy. Hoping to reduce the total wiggler length needed to reach saturation when starting from shot noise, we have examined the benefits of making the first part of the wiggler resonant at a subharmonic wavelength (e.g. 4.5 {Angstrom}) at which the gain length can be significantly shorter. This leads to bunching of the electron beam at both the subharmonic and fundaments wavelengths, thus providing a strong coherent ``seed`` for exponential growth of radiation at the fundamental in the second part of the wiggler. Using both multi-harmonic and multi-frequency 2D FEL simulation codes, we have examined the predicted performance of such devices and the sensitivity to electron beam parameters such as current, emittance, and instantaneous energy spread.</p> <div class="credits"> <p class="dwt_author">Fawley, W.M. [Lawrence Berkeley Lab., CA (United States); Nuhn, H.D.; Bonifacio, R. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Scharlemann, E.T. [Lawrence Livermore National Lab., CA (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-03-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_2");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a style="font-weight: bold;">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_4");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_3 div --> <div id="page_4" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_3");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a style="font-weight: bold;">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_5");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">61</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://cds.cern.ch/record/1461006/files/BOlUp8aypPl8c.pdf"> <span id="translatedtitle">Standard practice for measurement of the glass dissolution rate using the <span class="hlt">single-pass</span> flow-through test method</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/eprints/">E-print Network</a></p> <p class="result-summary">1.1 This practice describes a <span class="hlt">single-pass</span> flow-through (SPFT) test method that can be used to measure the dissolution rate of a homogeneous silicate glass, including nuclear waste glasses, in various test solutions at temperatures less than 100°C. Tests may be conducted under conditions in which the effects from dissolved species on the dissolution rate are minimized to measure the forward dissolution rate at specific values of temperature and pH, or to measure the dependence of the dissolution rate on the concentrations of various solute species. 1.2 Tests are conducted by pumping solutions in either a continuous or pulsed flow mode through a reaction cell that contains the test specimen. Tests must be conducted at several solution flow rates to evaluate the effect of the flow rate on the glass dissolution rate. 1.3 This practice excludes static test methods in which flow is simulated by manually removing solution from the reaction cell and replacing it with fresh solution. 1.4 Tests may be conducted wit...</p> <div class="credits"> <p class="dwt_author">American Society for Testing and Materials. Philadelphia</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">62</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21091350"> <span id="translatedtitle"><span class="hlt">Single-Pass</span> Percutaneous Liver Biopsy for Diffuse Liver Disease Using an Automated Device: Experience in 154 Procedures</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Purpose: To describe our experience with ultrasound (US)-guided percutaneous liver biopsies using the INRAD 18G Express core needle biopsy system.Methods: One hundred and fifty-four consecutive percutaneous core liver biopsy procedures were performed in 153 men in a single institution over 37 months. The medical charts, pathology reports, and radiology files were retrospectively reviewed. The number of needle passes, type of guidance, change in hematocrit level, and adequacy of specimens for histologic analysis were evaluated.Results: All biopsies were performed for histologic staging of chronic liver diseases. The majority of patients had hepatitis C (134/153, 90.2%). All patients were discharged to home after 4 hr of postprocedural observation. In 145 of 154 (94%) biopsies, a single needle pass was sufficient for diagnosis. US guidance was utilized in all but one of the procedures (153/154, 99.4%). The mean hematocrit decrease was 1.2% (44.1-42.9%). Pain requiring narcotic analgesia, the most frequent complication, occurred in 28 of 154 procedures (18.2%). No major complications occurred. The specimens were diagnostic in 152 of 154 procedures (98.7%).Conclusions: <span class="hlt">Single-pass</span> percutaneous US-guided liver biopsy with the INRAD 18G Express core needle biopsy system is safe and provides definitive pathologic diagnosis of chronic liver disease. It can be performed on an outpatient basis. Routine post-biopsy monitoring of hematocrit level in stable, asymptomatic patients is probably not warranted.</p> <div class="credits"> <p class="dwt_author">Rivera-Sanfeliz, Gerant, E-mail: gerantrivera@ucsd.edu; Kinney, Thomas B.; Rose, Steven C.; Agha, Ayad K.M.; Valji, Karim; Miller, Franklin J.; Roberts, Anne C. [UCSD Medical Center, Department of Radiology (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-06-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">63</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23460978"> <span id="translatedtitle">[Intestinal absorption of different combinations of active compounds from Gegenqinlian decoction by rat <span class="hlt">single</span> <span class="hlt">pass</span> intestinal perfusion in situ].</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The aim is to study the intestinal absorption of different combinations of active compounds out of Gegenqinlian decoction. Rat <span class="hlt">single</span> <span class="hlt">pass</span> intestinal perfusion model with jugular vein cannulated was used. Samples were obtained continuously from the outlet perfusate and the mesenteric vein. The levels of puerarin, daidzin, liquilitin, baicalin, wogonoside, jatrorrhizine, berberine and palmatine were determined by LC-MS/MS and their permeability coefficients were calculated. The results showed that Glycyrrhiza could promote the absorption of the active ingredients in Pueraria which is the monarch herb; meanwhile, Pueraria also played a role in promoting the absorption of liquilitin. Based on the Gegenqinlian decoction and the different combinations experiments, the results concerning the absorption of baicalin and wogonoside were as follows. For baicalin, Pueraria and Glycyrrhiza could promote its absorption and the effect of Pueraria was more obvious. For wogonoside, Pueraria could also promote its absorption, while Glycyrrhiza played a opposite role. Pueraria and Glycyrrhiza both played a part in promoting the absorption of jateorhizine, berberine and palmatine, the effective compounds in Coptis. PMID:23460978</p> <div class="credits"> <p class="dwt_author">An, Rui; Zhang, Hua; Zhang, Yi-Zhu; Xu, Ran-Chi; Wang, Xin-Hong</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">64</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2928426"> <span id="translatedtitle">Immiscible Phase Nucleic Acid Purification Eliminates PCR Inhibitors with a <span class="hlt">Single</span> <span class="hlt">Pass</span> of Paramagnetic Particles through a Hydrophobic Liquid</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Extraction and purification of nucleic acids from complex biological samples for PCR are critical steps because inhibitors must be removed that can affect reaction efficiency and the accuracy of results. This preanalytical processing generally involves capturing nucleic acids on microparticles that are then washed with a series of buffers to desorb and dilute out interfering substances. We have developed a novel purification method that replaces multiple wash steps with a <span class="hlt">single</span> <span class="hlt">pass</span> of paramagnetic particles (PMPs) though an immiscible hydrophobic liquid. Only two aqueous solutions are required: a lysis buffer, in which nucleic acids are captured on PMPs, and an elution buffer, in which they are released for amplification. The PMPs containing the nucleic acids are magnetically transported through a channel containing liquid wax that connects the lysis chamber to the elution chamber in a specially designed cartridge. Transporting PMPs through the immiscible phase yielded DNA and RNA as pure as that obtained after extensive wash steps required by comparable purification methods. Our immiscible-phase process has been applied to targets in whole blood, plasma, and urine and will enable the development of faster and simpler purification systems. PMID:20581047</p> <div class="credits"> <p class="dwt_author">Sur, Kunal; McFall, Sally M.; Yeh, Emilie T.; Jangam, Sujit R.; Hayden, Mark A.; Stroupe, Stephen D.; Kelso, David M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">65</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/42062653"> <span id="translatedtitle">Numerical simulations of <span class="hlt">single-pass</span> hydrothermal convection at mid-ocean ridges: Effects of the extrusive layer and temperature-dependent permeability</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We develop numerical models of hydrothermal convection at oceanic spreading centers to understand the interplay between deeply circulating high-temperature hydrothermal fluid and cooler seawater circulating in basalts of the upper crust. We assume the deep circulation follows an idealized <span class="hlt">single-pass</span> geometry and consider the effects of the thickness h and permeability of the extrusive layer k ext both on the</p> <div class="credits"> <p class="dwt_author">Robert P. Lowell; Sawyer Gosnell; Yang Yang</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">66</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.agu.org/journals/gc/gc0710/2007GC001653/2007GC001653.pdf"> <span id="translatedtitle">Numerical simulations of <span class="hlt">single-pass</span> hydrothermal convection at mid-ocean ridges: Effects of the extrusive layer and temperature-dependent permeability</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We develop numerical models of hydrothermal convection at oceanic spreading centers to understand the interplay between deeply circulating high-temperature hydrothermal fluid and cooler seawater circulating in basalts of the upper crust. We assume the deep circulation follows an idealized <span class="hlt">single-pass</span> geometry and consider the effects of the thickness h and permeability of the extrusive layer kext both on the shallow</p> <div class="credits"> <p class="dwt_author">Robert P. Lowell; Sawyer Gosnell; Yang Yang</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">67</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/49260428"> <span id="translatedtitle">Mechanical properties, microstructure and texture of <span class="hlt">single</span> <span class="hlt">pass</span> equal channel angular pressed 1050, 5083, 6082 and 7010 aluminum alloys with different dies</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Four important commercial aluminum alloys, namely 1050, 5083, 6082 and 7010AA are processed through a <span class="hlt">single</span> <span class="hlt">pass</span> via two equal channel angular pressing (ECAP) dies with different geometries (die angles of 90° and 120°). Electron back scattered diffraction (EBSD) is applied on the flow plane of the processed samples. Large scans with a step size of 7?m for grain size</p> <div class="credits"> <p class="dwt_author">Ehab A. El-Danaf</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">68</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/15001823"> <span id="translatedtitle">Dissolution Kinetics of Titanium Pyrochlore Ceramics at 90?C by <span class="hlt">Single-Pass</span> Flow-Through Experiments</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Corrosion resistances of titanium-based ceramics are quantified using <span class="hlt">single-pass</span> flow-through (SPFT) experiments. The materials tested include simple pyrochlore group (B2Ti2O7, where B=Lu^3+ or Gd^3+) and complex multiphase materials that are either pyrochlore- (PY12) or zirconolite-dominated (BSL3). Experiments are conducted at 90?C over a range of pH-buffered conditions with typical duration of experiments in excess of 120 days. Apparent steady-state dissolution rates at pH=2 determined on the Gd2Ti2O7 and Lu2Ti2O7 samples indicate congruent dissolution, with rates of the former (1.3x10^-3 to 4.3x10^-3) slightly faster than the latter (4.4x10^-4 to 7.0x10^-4 g m^-2 d^-1). Rates for PY12 materials into pH=2 solutions are 5.9x10^-5 to 8.6x10^-5 g m^-2 d^-1. In contrast, experiments with BSL3 material do not reach steady-state conditions, and appear to undergo rapid physical and chemical corrosion into solution. At faster flow-through rates, dissolution rates display a shallow amphoteric behavior, with a minimum (4.6x10^-5 to 5.8x10^-5 g m^-2 d^-1) near pH values of 7. Dissolution rates display a measurable increase (~10X) with increasing flow-through rate indicating the strong influence that chemical affinity asserts on the system. These results step towards an evaluation of the corrosion mechanism and an evaluation of the long-term performance of Pu-bearing titanite engineered materials in the subsurface.</p> <div class="credits"> <p class="dwt_author">Icenhower, Jonathan P.; McGrail, B. Peter; Schaef, Herbert T.; Cordova, Elsa A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">69</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2015OptLT..67...93K"> <span id="translatedtitle">An efficient continuous-wave and Q-switched <span class="hlt">single-pass</span> two-stage Ho:YLF MOPA system</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We report on the efficient operation of an Ho:YLF laser <span class="hlt">single-pass</span> in-band pumped by a Tm-doped fiber laser. The research in a continuous-wave (CW) operation in an oscillator scheme was done for a crystal of 0.5 at% Ho dopant concentration and the length of 30 mm for the output coupler transmittances of TOC=10%, 20%, 30% and 40%. At room temperature, for the output coupling transmission of 20%, the maximum CW output power of 24.5 W for 82.5 W of incident pump power, corresponding to the slope efficiency of 35.4% and optical-to-optical conversion efficiency of 29.7% was achieved. The highest slope efficiency of 81.6% with respect to absorbed pump power was obtained. Carrying out the measurements of the laser spectrum, for the out-coupling transmittance of TOC=30%, we observed a very short time wavelength shift between 2051.5 and 2062.4 nm in an Ho:YLF laser operation. Trying to fully utilize the pump power unabsorbed by the active crystal in an oscillator stage, an amplifier system based on two additional Ho:YLF crystals was developed. For the output coupling transmission of 40% the slope efficiency increased from 31.5% in an oscillator scheme to 47.3% with respect to the incident pump power in a two-stage amplifier scheme with a beam quality parameter of M2 better than 1.1. For a Q-switched operation, for the maximum incident pump power and the pulse repetition frequency (PRF) of 1 kHz, pulse energies of 18.5 mJ with a 22 ns FWHM pulse width corresponding to 841 kW peak power in the amplifier system were recorded.</p> <div class="credits"> <p class="dwt_author">Kwiatkowski, Jacek; Jabczynski, Jan Karol; Zendzian, Waldemar</p> <p class="dwt_publisher"></p> <p class="publishDate">2015-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">70</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/20931771"> <span id="translatedtitle">[Intestinal absorption of the effective components of Schisandra chinensis Baill by rats <span class="hlt">single-pass</span> perfusion in situ].</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The aim of the study is to investigate rat intestinal absorption behavior of three main active components, schisandrol A, schisandrin A and schisandrin B in Schisandra chinensis Baill extracts in intestine of rats. With phenol red as the indicator, in situ <span class="hlt">single</span> <span class="hlt">pass</span> intestinal perfusion (SPIP) model was used and the concentrations of three main active components in perfusion solution of different intestinal segments (duodenum, jejunum, ileum, and colon) were determined by HPLC in combination with diode array detection. The results showed that the absorption rate constant (Ka) and effective permeability values (Peff) of three main active components in Schisandra chinensis Baill extracts had significant difference (P < 0.05) at different concentrations of perfusion solution, the Ka and Peff first increased and then decreased with the increase of drug concentration, the middle concentration was higher than those of the other two concentrations. The saturate absorption phenomena were observed, and it suggested that the transport mechanisms of three main active components in vivo were similar to active transport or facilitated diffusion. Three active components can be well absorbed in all of the intestinal segments, while duodenum is the best absorption region. The Ka and Peff of three active components in jejunum and ileum had no significant difference (P > 0.05). The absorption of the three active components displayed significant difference (P < 0.05) at different intestinal segments of rats. Schisandrin A had the best absorption in duodenum. The Ka and Peff among three active components were sequenced as follows: schisandrin A > schisandrin B > schisandrol A in other intestinal segments, and there is significant difference (P < 0.05) between them. PMID:20931771</p> <div class="credits"> <p class="dwt_author">Chen, Xin-Min; Li, Jun-Song; Li, Wen; Han, Lei; Liu, Xun-Hong; Di, Liu-Qing; Cai, Bao-Chang</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">71</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19880054697&hterms=special+relativity&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3D%2528special%2Brelativity%2529"> <span id="translatedtitle">Special relativity and <span class="hlt">interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">A new generation of gravitational wave detectors is expected to be based on <span class="hlt">interferometers</span>. Yurke et al. (1986) introduced a class of <span class="hlt">interferometers</span> characterized by SU(1,1) which can in principle achieve a phase sensitivity approaching 1/N, where N is thte total number of photons entering the <span class="hlt">interferometer</span>. It is shown here that the SU(1,1) <span class="hlt">interferometer</span> can serve as an analog computer for Wigner's little group of the Poincare\\'| group.</p> <div class="credits"> <p class="dwt_author">Han, D.; Kim, Y. S.</p> <p class="dwt_publisher"></p> <p class="publishDate">1988-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">72</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007AGUFMIN23B..03M"> <span id="translatedtitle">The Glacier and Ice Sheet Topography <span class="hlt">Interferometer</span>: An Update on a Unique Sensor for High Accuracy Swath Mapping of Land Ice</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We discuss the innovative concept and technology development of a Ka-band (35 GHz) <span class="hlt">radar</span> for mapping the surface topography of glaciers and ice sheets. The "Glacier and Land Ice Surface Topography <span class="hlt">Interferometer</span>" (GLISTIN) is a <span class="hlt">single-pass</span>, single platform interferometric synthetic aperture <span class="hlt">radar</span> (InSAR) with an 8mm wavelength, which minimizes snow penetration yet remains relatively impervious to atmospheric attenuation. Such a system has the potential for delivering topographic maps at high spatial resolution, high vertical accuracy, independent of cloud cover, with a subseasonal update and would greatly enhance current observational and modeling capabilities of ice mass-balance and glacial retreat. To enable such measurements, a digitally beamformed antenna array is utilized to provide a wide measurement swath at a technologically feasible transmit power. To prove this concept and advance the technology readiness of this design we are currently funded by the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP) to build and test a 1m x 1m digitally-beamformed (DBF) Ka-band slotted waveguide antenna with integrated digital receivers. This antenna provides 16 simultaneous receive beams, effectively broadening the swath without reducing receive antenna gain. The implementation of such a large aperture at Ka-band presents many design, manufacturing and calibration challenges which are addressed as part of this IIP. The integrated DBF array will be fielded at the Jet Propulsion Laboratory's antenna range to demonstrate the overall calibration, beamforming and interferometric performance through creation of topographic imagery of the local Arroyo Seco. Currently entering the third year of the program, we will overview the system concept, array implementation and status of the technology. While the IIP addresses the development of the major technology challenges, an additional effort will demonstrate the phenomenology of the measurement by adapting the NASA ESTO-funded Uninhabited Aerial Vehicle - Synthetic Aperture <span class="hlt">Radar</span> (UAVSAR) system for Ka-band <span class="hlt">single-pass</span> interferometry. The conversion to Ka-Band will utilize the modular UAVSAR system originally designed for L-Band operation, retaining the <span class="hlt">radar</span> control, data acquisition and processing infrastructure and requiring only minor pod and RF modifications. We will fly the Ka-Band <span class="hlt">interferometer</span> aboard the UAVSAR platform over regions of Greenland, flying a grid over Jakobshavn glacier, then a transect from the coast to Swiss Camp ending at Greenland's Summit. Over a period of 4-5 weeks at the beginning of the melt season, these flight missions will be repeated in different snow/ice conditions. The flight data will be compared with airborne laser altimetry (Airborne Topographic Mapper lidar instrument, NASA GSFC/Wallops), field observations (GPS data at Swiss Camp, Summit), and climate data from the Automatic Weather Station (Colorado University) network (snowfall, corrected for densification) to estimate penetration and produce topographic surface maps. Topography is an essential piece of information for glaciology and a high-quality topographic map (tens of cm height accuracy over 10m pixels) will be produced. The experiment will pave the way to making more topographic products available to glaciologists and aid in the design a spaceborne mission capable of delivering similar products at the continental scale.</p> <div class="credits"> <p class="dwt_author">Moller, D.; Heavey, B.; Hensley, S.; Hodges, R.; Rengarajan, S.; Rignot, E.; Sadowy, G.; Simard, M.; Zawadzki, M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">73</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/6612423"> <span id="translatedtitle">A <span class="hlt">single-pass</span> free-electron laser for soft x-rays with wavelengths less than or equal to 10 nm</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We consider a <span class="hlt">single-pass</span> FEL amplifier, driven by an rf-linac followed by a damping ring for reduced emittance, for use in generating intense coherent light at wavelengths <10 nm. The dependence of the optical gain on electron beam quality, studied with the 3-D FEL simulation code FELEX, is given and related to the expected power of self-amplified spontaneous emission. Design issues for the damping ring to achieve the required electron beam quality are discussed.</p> <div class="credits"> <p class="dwt_author">Goldstein, J.C.; Wang, T.F.; Newnam, B.E.; McVey, B.D.</p> <p class="dwt_publisher"></p> <p class="publishDate">1987-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">74</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60137681"> <span id="translatedtitle">Evaluation of the Long-Term Performance of Titanate Ceramics for Immobilization of Excess Weapons Plutonium: Results from Pressurized Unsaturated Flow and <span class="hlt">Single</span> <span class="hlt">Pass</span> Flow-Through Testing</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This report summarizes our findings from pressurized unsaturated flow (PUF) and <span class="hlt">single-pass</span> flow-through (SPFT) experiments to date. Results from the PUF test of a Pu-bearing ceramic with enclosing surrogate high-level waste glass show that the glass reacts rapidly to alteration products. Glass reaction causes variations in the solution pH in contact with the ceramic materials. We also document variable concentrations</p> <div class="credits"> <p class="dwt_author">BP McGrail; HT Schaef; JP Icenhower; PF Martin; VL Legore</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">75</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19860044542&hterms=barium+titanate&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dbarium%2Btitanate"> <span id="translatedtitle">Lens collimation and testing using a Twyman-Green <span class="hlt">interferometer</span> with a self-pumped phase-conjugating mirror</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Ordinarily Twyman-Green <span class="hlt">interferometers</span> are employed testing optical elements. In a modification of the basic configuration, the ordinary mirror in the test arm is replaced with a self-pumped phase-conjugating mirror using a barium titanate crystal. It is shown that, with a redefinition of components, the new configuration permits retention and improvement of the optical element testing function while simultaneously serving as a sensitive test for collimation. The optical path difference resulting from the double pass in the original Twyman-Green <span class="hlt">interferometer</span> approximately equals that of the <span class="hlt">single</span> <span class="hlt">pass</span> and phase conjugation in the modification.</p> <div class="credits"> <p class="dwt_author">Howes, W. L.</p> <p class="dwt_publisher"></p> <p class="publishDate">1986-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">76</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/872426"> <span id="translatedtitle">Phase shifting <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">An <span class="hlt">interferometer</span> which has the capability of measuring optical elements and systems with an accuracy of .lambda./1000 where .lambda. is the wavelength of visible light. Whereas current <span class="hlt">interferometers</span> employ a reference surface, which inherently limits the accuracy of the measurement to about .lambda./50, this <span class="hlt">interferometer</span> uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. Whereas current <span class="hlt">interferometers</span> illuminate the optic to be tested with an aberrated wavefront which also limits the accuracy of the measurement, this <span class="hlt">interferometer</span> uses an essentially perfect spherical measurement wavefront generated by the fundamental process of diffraction. This <span class="hlt">interferometer</span> is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms.</p> <div class="credits"> <p class="dwt_author">Sommargren, Gary E. (Santa Cruz, CA)</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">77</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/678613"> <span id="translatedtitle">Phase shifting <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">An <span class="hlt">interferometer</span> is disclosed which has the capability of measuring optical elements and systems with an accuracy of {lambda}/1000 where {lambda} is the wavelength of visible light. Whereas current <span class="hlt">interferometers</span> employ a reference surface, which inherently limits the accuracy of the measurement to about {lambda}/50, this <span class="hlt">interferometer</span> uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. Whereas current <span class="hlt">interferometers</span> illuminate the optic to be tested with an aberrated wavefront which also limits the accuracy of the measurement, this <span class="hlt">interferometer</span> uses an essentially perfect spherical measurement wavefront generated by the fundamental process of diffraction. This <span class="hlt">interferometer</span> is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms. 11 figs.</p> <div class="credits"> <p class="dwt_author">Sommargren, G.E.</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-08-03</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">78</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/56178011"> <span id="translatedtitle">Infrared Spatial <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">THe IR Spatial <span class="hlt">Interferometer</span> (ISI) is an <span class="hlt">interferometer</span> installed on Mt. Wilson and operating in the 10 micrometers wavelength region, using heterodyne detection and two movable 1.65 m telescopes. Its general technology and characteristics, recent changes, and observational results are broadly discussed. Some compensation for atmospheric path length fluctuations is demonstrated. Stellar observations show, among other characteristics, that many stars</p> <div class="credits"> <p class="dwt_author">Charles H. Townes; Manfred Bester; William C. Danchi; D. D. Hale; John D. Monnier; Everett A. Lipman; Peter G. Tuthill; Mark A. Johnson; Donald L. Walters</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">79</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/17632611"> <span id="translatedtitle">Sodium D2 resonance radiation in <span class="hlt">single-pass</span> sum-frequency generation with actively mode-locked Nd:YAG lasers.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">We report on a sodium D(2) resonance coherent light source achieved in <span class="hlt">single-pass</span> sum-frequency generation in periodically poled MgO-doped stoichiometric lithium tantalate with actively mode-locked Nd:YAG lasers. Mode-locked pulses at 1064 and 1319 nm are synchronized with a time resolution of 37 ps with the phase adjustment of the radio frequencies fed to acousto-optic mode lockers. An output power of 4.6 W at 589.1586 nm is obtained, and beam quality near the diffraction limit is also achieved in a simple design. PMID:17632611</p> <div class="credits"> <p class="dwt_author">Saito, Norihito; Akagawa, Kazuyuki; Ito, Mayumi; Takazawa, Akira; Hayano, Yutaka; Saito, Yoshihiko; Ito, Meguru; Takami, Hideki; Iye, Masanori; Wada, Satoshi</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-07-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">80</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007OptL...32.1965S"> <span id="translatedtitle">Sodium D2 resonance radiation in <span class="hlt">single-pass</span> sum-frequency generation with actively mode-locked Nd:YAG lasers</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We report on a sodium D2 resonance coherent light source achieved in <span class="hlt">single-pass</span> sum-frequency generation in periodically poled MgO-doped stoichiometric lithium tantalate with actively mode-locked Nd:YAG lasers. Mode-locked pulses at 1064 and 1319 nm are synchronized with a time resolution of 37 ps with the phase adjustment of the radio frequencies fed to acousto-optic mode lockers. An output power of 4.6 W at 589.1586 nm is obtained, and beam quality near the diffraction limit is also achieved in a simple design.</p> <div class="credits"> <p class="dwt_author">Saito, Norihito; Akagawa, Kazuyuki; Ito, Mayumi; Takazawa, Akira; Hayano, Yutaka; Saito, Yoshihiko; Ito, Meguru; Takami, Hideki; Iye, Masanori; Wada, Satoshi</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-07-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_3");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a style="font-weight: bold;">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_5");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_4 div --> <div id="page_5" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_4");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a style="font-weight: bold;">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_6");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">81</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20100001355&hterms=zhao&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dzhao"> <span id="translatedtitle">Sub-Aperture <span class="hlt">Interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Sub-aperture <span class="hlt">interferometers</span> -- also called wavefront-split <span class="hlt">interferometers</span> -- have been developed for simultaneously measuring displacements of multiple targets. The terms "sub-aperture" and "wavefront-split" signify that the original measurement light beam in an <span class="hlt">interferometer</span> is split into multiple sub-beams derived from non-overlapping portions of the original measurement-beam aperture. Each measurement sub-beam is aimed at a retroreflector mounted on one of the targets. The splitting of the measurement beam is accomplished by use of truncated mirrors and masks, as shown in the example below</p> <div class="credits"> <p class="dwt_author">Zhao, Feng</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">82</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pems.adfa.edu.au/~s9104004/trews/ww_re_df.htm"> <span id="translatedtitle"><span class="hlt">Radar</span> Entomology</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary"><span class="hlt">Radar</span> tracking used to profile insect migration, mating and flight patterns. Many links to various pages include current workers in <span class="hlt">radar</span> entomology, historical uses of the technology, and many images.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">0000-00-00</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">83</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19910017301&hterms=upper+air+refractivity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dupper%2Bair%2Brefractivity"> <span id="translatedtitle"><span class="hlt">Radar</span> principles</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Discussed here is a kind of <span class="hlt">radar</span> called atmospheric <span class="hlt">radar</span>, which has as its target clear air echoes from the earth's atmosphere produced by fluctuations of the atmospheric index of refraction. Topics reviewed include the vertical structure of the atmosphere, the radio refractive index and its fluctuations, the <span class="hlt">radar</span> equation (a relation between transmitted and received power), <span class="hlt">radar</span> equations for distributed targets and spectral echoes, near field correction, pulsed waveforms, the Doppler principle, and velocity field measurements.</p> <div class="credits"> <p class="dwt_author">Sato, Toru</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">84</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.agu.org/journals/rs/v026/i004/91RS01164/91RS01164.pdf"> <span id="translatedtitle">Meteor wind observations with the MU <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Meteor wind observations were conducted with the middle and upper atmosphere (MU) <span class="hlt">radar</span> at Shigaraki, Japan (35 deg N, 136 deg E), utilizing an <span class="hlt">interferometer</span> to determine the arrival angle of a meteor echo. Meteor echoes are widely distributed in zenith angles as large as 50 deg and the narrow main lobe of a transmitting antenna cannot effectively detect meteor</p> <div class="credits"> <p class="dwt_author">T. Nakamura; M. Tsutsumi; T. Uehara; S. Fukao; S. Kato</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">85</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20010088374&hterms=CT+metrology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DCT%2Bmetrology"> <span id="translatedtitle">The Palomar Testbed <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The Palomar Testbed <span class="hlt">Interferometer</span> (PTI) is a long-baseline infrared <span class="hlt">interferometer</span> located at Palomar Observatory, California. It was built as a testbed for interferometric techniques applicable to the Keck <span class="hlt">Interferometer</span>. First fringes were obtained in 1995 July. PTI implements a dual-star architecture, tracking two stars simultaneously for phase referencing and narrow-angle astrometry. The three fixed 40 cm apertures can be combined pairwise to provide baselines to 110 m. The <span class="hlt">interferometer</span> actively tracks the white-light fringe using an array detector at 2.2 microns and active delay lines with a range of +/-38 m. Laser metrology of the delay lines allows for servo control, and laser metrology of the complete optical path enables narrow-angle astrometric measurements. The instrument is highly automated, using a multiprocessing computer system for instrument control and sequencing.</p> <div class="credits"> <p class="dwt_author">Colavita, M. M.; Wallace, J. K.; Hines, B. E.; Gursel, Y.; Malbet, F.; Palmer, D. L.; Pan, X. P.; Shao, M.; Yu, J. W.; Boden, A. F.</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">86</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/870577"> <span id="translatedtitle">Phase shifting diffraction <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">An <span class="hlt">interferometer</span> which has the capability of measuring optical elements and systems with an accuracy of .lambda./1000 where .lambda. is the wavelength of visible light. Whereas current <span class="hlt">interferometers</span> employ a reference surface, which inherently limits the accuracy of the measurement to about .lambda./50, this <span class="hlt">interferometer</span> uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This <span class="hlt">interferometer</span> is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms.</p> <div class="credits"> <p class="dwt_author">Sommargren, Gary E. (Santa Cruz, CA)</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">87</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/6086986"> <span id="translatedtitle">Dual surface <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">A double-pass <span class="hlt">interferometer</span> is provided which allows direct measurement of relative displacement between opposed surfaces. A conventional plane mirror <span class="hlt">interferometer</span> may be modified by replacing the beam-measuring path cube-corner reflector with an additional quarterwave plate. The beam path is altered to extend to an opposed plane mirrored surface and the reflected beam is placed in interference with a retained reference beam split from dual-beam source and retroreflected by a reference cube-corner reflector mounted stationary with the <span class="hlt">interferometer</span> housing. This permits direct measurement of opposed mirror surfaces by laser interferometry while doubling the resolution as with a conventional double-pass plane mirror laser <span class="hlt">interferometer</span> system.</p> <div class="credits"> <p class="dwt_author">Pardue, R.M.; Williams, R.R.</p> <p class="dwt_publisher"></p> <p class="publishDate">1980-09-12</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">88</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/864236"> <span id="translatedtitle">Dual surface <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">A double-pass <span class="hlt">interferometer</span> is provided which allows direct measurement of relative displacement between opposed surfaces. A conventional plane mirror <span class="hlt">interferometer</span> may be modified by replacing the beam-measuring path cube-corner reflector with an additional quarter-wave plate. The beam path is altered to extend to an opposed plane mirrored surface and the reflected beam is placed in interference with a retained reference beam split from dual-beam source and retroreflected by a reference cube-corner reflector mounted stationary with the <span class="hlt">interferometer</span> housing. This permits direct measurement of opposed mirror surfaces by laser interferometry while doubling the resolution as with a conventional double-pass plane mirror laser <span class="hlt">interferometer</span> system.</p> <div class="credits"> <p class="dwt_author">Pardue, Robert M. (Knoxville, TN); Williams, Richard R. (Oak Ridge, TN)</p> <p class="dwt_publisher"></p> <p class="publishDate">1982-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">89</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/372585"> <span id="translatedtitle">Phase shifting diffraction <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">An <span class="hlt">interferometer</span> which has the capability of measuring optical elements and systems with an accuracy of {lambda}/1000 where {lambda} is the wavelength of visible light. Whereas current <span class="hlt">interferometers</span> employ a reference surface, which inherently limits the accuracy of the measurement to about {lambda}/50, this <span class="hlt">interferometer</span> uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This <span class="hlt">interferometer</span> is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms. 8 figs.</p> <div class="credits"> <p class="dwt_author">Sommargren, G.E.</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-08-29</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">90</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3045941"> <span id="translatedtitle"><span class="hlt">Single-pass</span> Kelvin force microscopy and dC/dZ measurements in the intermittent contact: applications to polymer materials</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Summary We demonstrate that <span class="hlt">single-pass</span> Kelvin force microscopy (KFM) and capacitance gradient (dC/dZ) measurements with force gradient detection of tip–sample electrostatic interactions can be performed in the intermittent contact regime in different environments. Such combination provides sensitive detection of the surface potential and capacitance gradient with nanometer-scale spatial resolution as it was verified on self-assemblies of fluoroalkanes and a metal alloy. The KFM and dC/dZ applications to several heterogeneous polymer materials demonstrate the compositional mapping of these samples in dry and humid air as well as in organic vapors. In situ imaging in different environments facilitates recognition of the constituents of multi-component polymer systems due to selective swelling of components. PMID:21977411</p> <div class="credits"> <p class="dwt_author">Alexander, John</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">91</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/1521704"> <span id="translatedtitle">Frictional coefficients of ion-implanted alumina against ion-implanted beta-titanium in the low load, low velocity, <span class="hlt">single</span> <span class="hlt">pass</span> regime.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The frictional coefficients were measured for four wire alloys against the flats of polycrystalline alumina cylinders using a low load, low velocity, <span class="hlt">single</span> <span class="hlt">pass</span> device. Ion-implantations of titanium into polycrystalline alumina flats and nitrogen into beta-titanium wires reduced the static and kinetic coefficients from 0.50 and 0.44 before implantation to 0.20 and 0.25 after implantation, respectively. These results are similar in magnitude to frictional coefficients for unimplanted, control couples of stainless steel, cobalt-chromium, and nickel titanium wires against polycrystalline alumina flats. For orthodontic applications, we conclude that more efficient and reproducible appliances can be engineered for tooth movement if ion-implantation is used to reduce the abrasion of beta-titanium by polycrystalline alumina. PMID:1521704</p> <div class="credits"> <p class="dwt_author">Kusy, R P; Tobin, E J; Whitley, J Q; Sioshansi, P</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">92</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/22293539"> <span id="translatedtitle"><span class="hlt">Single</span> <span class="hlt">Pass</span> Flow-Through (SPFT) Test Results of Fluidized Bed Steam Reforming (FBSR) Waste Forms used for LAW Immobilization - 12252</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) are being evaluated. One such immobilization technology being considered is the Fluidized Bed Steam Reforming (FBSR) product, which is granular and will be monolithed into a final waste form. The granular component is composed of insoluble sodium aluminosilicate (NAS) feldspathoid minerals. Production of the FBSR mineral product has been demonstrated at the industrial, engineering, and laboratory scales. <span class="hlt">Single-Pass</span> Flow-Through (SPFT) tests at various flow rates have been conducted with the granular products fabricated using the engineering- and laboratory-scale methods. Results show that the forward dissolution rate for the engineering-scale mineral product is 0.6 (±0.2)x10{sup -3} g/m{sup 2}d while the forward dissolution rate for the laboratory-scale mineral product is 1.3 (±0.5)x10{sup -3} g/m{sup 2}d. (authors)</p> <div class="credits"> <p class="dwt_author">Neeway, James J.; Qafoku, Nikolla P.; Williams, Benjamin D.; Valenta, Michelle M.; Cordova, Elsa A.; Strandquist, Sara C.; Dage, DeNomy C.; Brown, Christopher F. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">93</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6969296"> <span id="translatedtitle">Evaluation of a potential generator-produced PET tracer for cerebral perfusion imaging: <span class="hlt">Single-pass</span> cerebral extraction measurements and imaging with radiolabeled Cu-PTSM</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Copper(II) pyruvaldehyde bis(N4-methylthiosemicarbazone) (Cu-PTSM), copper(II) pyruvaldehyde bis(N4-dimethylthiosemicarbazone) (Cu-PTSM2), and copper(II) ethylglyoxal bis(N4-methylthiosemicarbazone) (Cu-ETSM), have been proposed as PET tracers for cerebral blood flow (CBF) when labeled with generator-produced 62Cu (t1/2 = 9.7 min). To evaluate the potential of Cu-PTSM for CBF PET studies, baboon <span class="hlt">single-pass</span> cerebral extraction measurements and PET imaging were carried out with the use of 67Cu (t1/2 = 2.6 days) and 64Cu (t1/2 = 12.7 hr), respectively. All three chelates were extracted into the brain with high efficiency. There was some clearance of all chelates in the 10-50-sec time frame and Cu-PTSM2 continued to clear. Cu-PTSM and Cu-ETSM have high residual brain activity. PET imaging of baboon brain was carried out with the use of (64Cu)-Cu-PTSM. For comparison with the 64Cu brain image, a CBF (15O-labeled water) image (40 sec) was first obtained. Qualitatively, the H2(15)O and (64Cu)-Cu-PTSM images were very similar; for example, a comparison of gray to white matter uptake resulted in ratios of 2.42 for H2(15)O and 2.67 for Cu-PTSM. No redistribution of 64Cu was observed in 2 hr of imaging, as was predicted from the <span class="hlt">single-pass</span> study results. Quantitative determination of blood flow using Cu-PTSM showed good agreement with blood flow determined with H2(15)O. This data suggests that (62Cu)-Cu-PTSM may be a useful generator-produced radiopharmaceutical for blood flow studies with PET.</p> <div class="credits"> <p class="dwt_author">Mathias, C.J.; Welch, M.J.; Raichle, M.E.; Mintun, M.A.; Lich, L.L.; McGuire, A.H.; Zinn, K.R.; John, E.K.; Green, M.A. (Washington Univ. School of Medicine, St. Louis, MO (USA))</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">94</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20070019850&hterms=incubator&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dincubator"> <span id="translatedtitle">The Glacier and Land Ice Surface Topography <span class="hlt">Interferometer</span> (GLISTIN): A Novel Ka-band Digitally Beamformed <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The estimation of the mass balance of ice sheets and glaciers on Earth is a problem of considerable scientific and societal importance. A key measurement to understanding, monitoring and forecasting these changes is ice-surface topography, both for ice-sheet and glacial regions. As such NASA identified 'ice topographic mapping instruments capable of providing precise elevation and detailed imagery data for measurements on glacial scales for detailed monitoring of ice sheet, and glacier changes' as a science priority for the most recent Instrument Incubator Program (IIP) opportunities. Funded under this opportunity is the technological development for a Ka-Band (35GHz) <span class="hlt">single-pass</span> digitally beamformed interferometric synthetic aperture <span class="hlt">radar</span> (InSAR). Unique to this concept is the ability to map a significant swath impervious of cloud cover with measurement accuracies comparable to laser altimeters but with variable resolution as appropriate to the differing scales-of-interest over ice-sheets and glaciers.</p> <div class="credits"> <p class="dwt_author">Moller, Delwyn K.; Heavey, Brandon; Hodges, Richard; Rengarajan, Sembiam; Rignot, Eric; Rogez, Francois; Sadowy, Gregory; Simard, Marc; Zawadzki, Mark</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">95</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20100036546&hterms=perpendicular+categories&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dperpendicular%2Bcategories"> <span id="translatedtitle">Heterodyne <span class="hlt">Interferometer</span> Angle Metrology</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">A compact, high-resolution angle measurement instrument has been developed that is based on a heterodyne <span class="hlt">interferometer</span>. The common-path heterodyne <span class="hlt">interferometer</span> metrology is used to measure displacements of a reflective target surface. In the <span class="hlt">interferometer</span> setup, an optical mask is used to sample the measurement laser beam reflecting back from a target surface. Angular rotations, around two orthogonal axes in a plane perpendicular to the measurement- beam propagation direction, are determined simultaneously from the relative displacement measurement of the target surface. The device is used in a tracking telescope system where pitch and yaw measurements of a flat mirror were simultaneously performed with a sensitivity of 0.1 nrad, per second, and a measuring range of 0.15 mrad at a working distance of an order of a meter. The nonlinearity of the device is also measured less than one percent over the measurement range.</p> <div class="credits"> <p class="dwt_author">Hahn, Inseob; Weilert, Mark A.; Wang, Xu; Goullioud, Renaud</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">96</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010SPIE.7790E..0GM"> <span id="translatedtitle">Self-calibrating lateral scanning white-light <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The concept of lateral scanning white-light <span class="hlt">interferometer</span> (LSWLI) has been introduced nearly a decade ago [1] as an alternative to the conventional white-light (WL) <span class="hlt">interferometers</span> [2-14], capable of improved speed and image stitching. The general principle of this type of measurement is shown in Figure 1. A conventional white light <span class="hlt">interferometer</span> is equipped with an XYZ stage which can perform an accurate lateral (XY) translation. The <span class="hlt">interferometer</span> objective is tilted with respect to this stage such that the zero optical path difference (OPD) makes an angle ? with respect to the direction of the translation. By convention, the tilt angle will be measured from the direction of the translation. For the case when this angle is different than zero, an object placed on the stage will present a specific fringe pattern whose density is dictated by the magnitude of the angle. In Figure 2, a linear fringe pattern obtained from a flat surface is shown. As the profiled object is translated at a constant speed, the CCD will record interference frames at a constant rate. Figure 3 shows how different pixels of the object (marked by up or down pointing arrows) will be recorded in consecutive frames during the object translation. In the case when the CCD frame rate and the stage speed are properly correlated, a given point of the object will be translated by exactly one pixel from one CCD frame to the other. The correlogram of each object point can thus be recovered by taking a "diagonal section" through the stack of recorded frames (Figure 4). Because during the scan the optical path difference of each point of the sample changes continuously, the LSWLI correlogram looks similar with its counterpart obtained by using WL <span class="hlt">interferometers</span>. As mentioned before, the LSWLI measurements allow for a continuous data acquisition process, eliminating thus the need for a cumbersome stitching procedure that must be done for large samples when measured by using a standard WL <span class="hlt">interferometer</span>. It also allows for a faster data acquisition and, in principle, it is possible for very large samples to be measured during a <span class="hlt">single</span> <span class="hlt">pass</span>.</p> <div class="credits"> <p class="dwt_author">Munteanu, Florin</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-08-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">97</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/41980093"> <span id="translatedtitle"><span class="hlt">Radar</span> observations of ion cyclotron waves associated with two barium shaped-charge releases</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A 50-MHz Doppler <span class="hlt">radar</span> <span class="hlt">interferometer</span> and a 138-MHz Doppler <span class="hlt">radar</span> were operated from Kennedy Space Center to study 3-m and 1-m plasma waves associated with two shaped-charged barium releases from Wallops Island, Virginia, on May 13, 1986. During the first release, <span class="hlt">interferometer</span> and Doppler power spectral studies showed the existence of short-lived (<2 s) coherent 3-m and 1-m waves centered</p> <div class="credits"> <p class="dwt_author">Jason Providakes; Wesley E. Swartz; Michael C. Kelley; Frank T. Djuth; Steve Noble; R. J. Jost</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">98</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2003SPIE.5229..279R"> <span id="translatedtitle"><span class="hlt">Interferometer</span> systems in machine industry</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In the report the arrangements of laser <span class="hlt">interferometers</span> for machine history are presented; the laser <span class="hlt">interferometer</span> LSP30 for investigation of geometry of machine tools, the setup for inspection of ball screw and laser liner for CNC machine. Outstanding feature of the <span class="hlt">interferometers</span> is the stabilization system of laser frequency using surface stabilized ferroelectric liquid cells (SSFLC).</p> <div class="credits"> <p class="dwt_author">Rzepka, Janusz; Pienkowski, Janusz; Sambor, Slawomir; Budzyn, Grzegorz</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">99</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/866782"> <span id="translatedtitle">Rotatable shear plate <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">A rotatable shear plate <span class="hlt">interferometer</span> comprises a transparent shear plate mounted obliquely in a tubular supporting member at 45.degree. with respect to its horizontal center axis. This tubular supporting member is supported rotatably around its center axis and a collimated laser beam is made incident on the shear plate along this center axis such that defocus in different directions can be easily measured.</p> <div class="credits"> <p class="dwt_author">Duffus, Richard C. (Livermore, CA)</p> <p class="dwt_publisher"></p> <p class="publishDate">1988-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">100</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=optics&pg=6&id=EJ891979"> <span id="translatedtitle">Ultrasonic <span class="hlt">Interferometers</span> Revisited</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">I have been tinkering with ultrasonic transducers once more. In earlier notes I reported on optics-like experiments performed with ultrasonics, described a number of ultrasonic <span class="hlt">interferometers</span>, and showed how ultrasonic transducers can be used for Fourier analysis. This time I became interested in trying the technique of using two detectors in…</p> <div class="credits"> <p class="dwt_author">Greenslade, Thomas B., Jr.</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_4");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a style="font-weight: bold;">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_6");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_5 div --> <div id="page_6" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_5");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a style="font-weight: bold;">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_7");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">101</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20080006044&hterms=Gutierrez&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DGutierrez"> <span id="translatedtitle">Dual beam optical <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">A dual beam <span class="hlt">interferometer</span> device is disclosed that enables moving an optics module in a direction, which changes the path lengths of two beams of light. The two beams reflect off a surface of an object and generate different speckle patterns detected by an element, such as a camera. The camera detects a characteristic of the surface.</p> <div class="credits"> <p class="dwt_author">Gutierrez, Roman C. (Inventor)</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">102</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19830017004&hterms=cherry+cherry&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dcherry%2Bcherry"> <span id="translatedtitle">Spaceborne <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The spaceborne <span class="hlt">radar</span> panel considered how <span class="hlt">radar</span> could be used to measure precipitation from satellites. The emphasis was on how <span class="hlt">radar</span> could be used with radiometry (at microwave, visible (VIS), and infrared (IR) wavelengths) to reduce the uncertainties of measuring precipitation with radiometry alone. In addition, the fundamental electromagnetic interactions involved in the measurements were discussed to determine the key work areas for research and development to produce effective instruments. Various approaches to implementing <span class="hlt">radar</span> systems on satellites were considered for both shared and dedicated instruments. Finally, a research and development strategy was proposed for establishing the parametric relations and retrieval algorithms required for extracting precipitation information from the <span class="hlt">radar</span> and associated radiometric data.</p> <div class="credits"> <p class="dwt_author">Moore, R. K.; Eckerman, J.; Meneghini, R.; Atlas, D.; Boerner, W. M.; Cherry, S.; Clark, J. F.; Doviak, R. J.; Goldhirsh, J.; Lhermitte, R. M.</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">103</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/11741276"> <span id="translatedtitle">Comparison of the gravimetric, phenol red, and 14C-PEG-3350 methods to determine water absorption in the rat <span class="hlt">single-pass</span> intestinal perfusion model.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">This study was undertaken to determine whether the gravimetric method provided an accurate measure of water flux correction and to compare the gravimetric method with methods that employ nonabsorbed markers (eg, phenol red and 14C-PEG-3350). Phenol red,14C-PEG-3350, and 4-[2-[[2-(6-amino-3-pyridinyl)-2-hydroxyethyl]amino]ethoxy]-, methyl ester, (R)-benzene acetic acid (Compound I) were co-perfused in situ through the jejunum of 9 anesthetized rats (<span class="hlt">single-pass</span> intestinal perfusion [SPIP]). Water absorption was determined from the phenol red,14C-PEG-3350, and gravimetric methods. The absorption rate constant (ka) for Compound I was calculated. Both phenol red and 14C-PEG-3350 were appreciably absorbed, underestimating the extent of water flux in the SPIP model. The average +/- SD water flux microg/h/cm) for the 3 methods were 68.9 +/- 28.2 (gravimetric), 26.8 +/- 49.2 (phenol red), and 34.9 +/- 21.9 (14C-PEG-3350). The (average +/- SD) ka for Compound I (uncorrected for water flux) was 0.024 +/- 0.005 min(-1). For the corrected, gravimetric method, the average +/- SD was 0.031 +/- 0.001 min(-1). The gravimetric method for correcting water flux was as accurate as the 2 "nonabsorbed" marker methods. PMID:11741276</p> <div class="credits"> <p class="dwt_author">Sutton, S C; Rinaldi, M T; Vukovinsky, K E</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">104</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/25595387"> <span id="translatedtitle">In-situ intestinal rat perfusions for human Fabs prediction and BCS permeability class determination: Investigation of the <span class="hlt">single-pass</span> vs. the Doluisio experimental approaches.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Intestinal drug permeability has been recognized as a critical determinant of the fraction dose absorbed, with direct influence on bioavailability, bioequivalence and biowaiver. The purpose of this research was to compare intestinal permeability values obtained by two different intestinal rat perfusion methods: the <span class="hlt">single-pass</span> intestinal perfusion (SPIP) model and the Doluisio (closed-loop) rat perfusion method. A list of 15 model drugs with different permeability characteristics (low, moderate, and high, as well as passively and actively absorbed) was constructed. We assessed the rat intestinal permeability of these 15 model drugs in both SPIP and the Doluisio methods, and evaluated the correlation between them. We then evaluated the ability of each of these methods to predict the fraction dose absorbed (Fabs) in humans, and to assign the correct BCS permeability class membership. Excellent correlation was obtained between the two experimental methods (r(2)=0.93). An excellent correlation was also shown between literature Fabs values and the predictions made by both rat perfusion techniques. Similar BCS permeability class membership was designated by literature data and by both SPIP and Doluisio methods for all compounds. In conclusion, the SPIP model and the Doluisio (closed-loop) rat perfusion method are both equally useful for obtaining intestinal permeability values that can be used for Fabs prediction and BCS classification. PMID:25595387</p> <div class="credits"> <p class="dwt_author">Lozoya-Agullo, Isabel; Zur, Moran; Wolk, Omri; Beig, Avital; González-Álvarez, Isabel; González-Álvarez, Marta; Merino-Sanjuán, Matilde; Bermejo, Marival; Dahan, Arik</p> <p class="dwt_publisher"></p> <p class="publishDate">2015-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">105</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/1064567"> <span id="translatedtitle"><span class="hlt">Single-Pass</span> Flow-Through Test Elucidation of Weathering Behavior and Evaluation of Contaminant Release Models for Hanford Tank Residual Radioactive Waste</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Contaminant release models are required to evaluate and predict long-term environmental impacts of even residual amounts of high-level radioactive waste after cleanup and closure of radioactively contaminated sites such as the DOE’s Hanford Site. More realistic and representative models have been developed for release of uranium, technetium, and chromium from Hanford Site tanks C-202, C-203, and C-103 residual wastes using data collected with a <span class="hlt">single-pass</span> flow-through test (SPFT) method. These revised models indicate that contaminant release concentrations from these residual wastes will be considerably lower than previous estimates based on batch experiments. For uranium, a thermodynamic solubility model provides an effective description of uranium release, which can account for differences in pore fluid chemistry contacting the waste that could occur through time and as a result of different closure scenarios. Under certain circumstances in the SPFT experiments various calcium rich precipitates (calcium phosphates and calcite) form on the surfaces of the waste particles, inhibiting dissolution of the underlying uranium phases in the waste. This behavior was not observed in previous batch experiments. For both technetium and chromium, empirical release models were developed. In the case of technetium, release from all three wastes was modeled using an equilibrium Kd model. For chromium release, a constant concentration model was applied for all three wastes.</p> <div class="credits"> <p class="dwt_author">Cantrell, Kirk J.; Carroll, Kenneth C.; Buck, Edgar C.; Neiner, Doinita; Geiszler, Keith N.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">106</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/25393711"> <span id="translatedtitle">Capric Acid Absorption in the Presence of Hydroxypropyl-?-Cyclodextrin in the Rat Ileum using the In Situ <span class="hlt">Single-Pass</span> Perfusion Technique.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The purpose of the present study was to gain quantitative mechanistic insight into the role cyclodextrin carriers may play in the intestinal absorption of highly lipophilic molecules. The physical model approach was employed to investigate capric acid absorption in the rat ileum using the in situ <span class="hlt">single-pass</span> method with 2-hydroxypropyl-?-cyclodextrin (HPB) present in the perfusate. Two physical models were examined: the flat surface model in which the intestinal wall was treated as a hollow, smooth, circular cylinder, and the villus model in which the intestinal surface allowed for the presence of villi. Capric acid absorption was found to be essentially 100% aqueous boundary layer controlled at low HPB concentrations and increasingly membrane controlled at the higher HPB concentrations. Theoretical calculations based on the experimental data and model parameters were found to be consistent with: at low HPB concentrations, capric acid was mainly absorbed at the villus tips and there was very little capric acid penetration into the intervillus space; in contrast, at 50 mM HPB, there was considerable capric acid penetration into the intervillus space, this corresponding to around a 4.5-fold increase in the accessible area for absorption when compared with 0 mM HPB. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci. PMID:25393711</p> <div class="credits"> <p class="dwt_author">Hymas, Richard V; Ho, Norman F H; Higuchi, William I</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-11-12</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">107</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20080013269&hterms=low+water&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3D%2522low%2Bwater%2522"> <span id="translatedtitle">The Antarctic Planet <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The Antarctic Planet <span class="hlt">Interferometer</span> is an instrument concept designed to detect and characterize extrasolar planets by exploiting the unique potential of the best accessible site on earth for thermal infrared interferometry. High-precision interferometric techniques under development for extrasolar planet detection and characterization (differential phase, nulling and astrometry) all benefit substantially from the slow, low-altitude turbulence, low water vapor content, and low temperature found on the Antarctic plateau. At the best of these locations, such as the Concordia base being developed at Dome C, an <span class="hlt">interferometer</span> with two-meter diameter class apertures has the potential to deliver unique science for a variety of topics, including extrasolar planets, active galactic nuclei, young stellar objects, and protoplanetary disks.</p> <div class="credits"> <p class="dwt_author">Swain, Mark R.; Walker, Christopher K.; Traub, Wesley A.; Storey, John W.; CoudeduForesto, Vincent; Fossat, Eric; Vakili, Farrok; Stark, Anthony A.; Lloyd, James P.; Lawson, Peter R.; Burrows, Adam S.; Ireland, Michael; Millan-Gabet, Rafael; vanBelle, Gerard T.; Lane, Benjamin; Vasisht, Gautam; Travouillon, Tony</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">108</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014MNRAS.444.2128B"> <span id="translatedtitle">One-element <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We apply the phase-switching method of Ryle to convert single dish radio telescopes to one-element <span class="hlt">interferometers</span> and thereby accord them the benefit of correlation measurements, viz. to measure only the flux from the celestial sources avoiding contributions from the receiver and the atmosphere. This application has many uses: (a) enables single dishes to image the sky efficiently without the need to scan, measuring all sources, point, extended, spectral and continuum, with both bolometric and coherent receivers; (b) enables adding reliable short-spacing data to existing <span class="hlt">interferometers</span> such as Atacama Large Millimetre-wave Array,, mitigating calibration issues; (c) enables ground-based NIR/MIR imaging to accurately remove atmospheric contributions; (d) can be adapted to provide an alternate surface measurement method for telescopes.</p> <div class="credits"> <p class="dwt_author">Balasubramanyam, Ramesh</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-11-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">109</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013pss1.book..241T"> <span id="translatedtitle">Optical and Infrared <span class="hlt">Interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Stellar <span class="hlt">interferometers</span> achieve limiting angular resolution inaccessible to evennext-generation single-aperture telescopes. Arrays of small or modest apertureshave achieved baselines exceeding 300 m producing submilliarcsecond resolutionsat visible and near-infrared wavelengths. The technical cost and challenge inbuilding interferometric arrays is substantial due to the very high toleranceimposed by optical physics on the precision of beam combination and optical pathlength matching for two or more telescopes. This chapter presents the basic theoryand overall design considerations for an <span class="hlt">interferometer</span> with an emphasis on thepractical aspects of constructing a working instrument that overcomes obstaclesimposed by the atmosphere, submicron path length matching requirements,limitations on number of telescopes and their layout, light losses throughmultiple reflections and transmissions necessary to superimpose telescopebeams in the beam-combining laboratory, and other realities of the art ofinterferometry. The basic design considerations for an <span class="hlt">interferometer</span> arelaid out starting with site selection and telescope placement and thenfollowed through to beam combination and measurement of interferometricvisibility and closure phase after the encountering of numerous subsystems byincoming wavefronts. These subsystems include active wavefront sensing fortip/tilt correction or even full-up adaptive optics, telescope design fordirecting collimated beams over large distances, diffraction losses, polarizationmatching, optical path length insertion and active compensation, correctionfor atmospheric refraction and differential dispersion in glass and air,separation of light into visible and near-infrared channels, alignment over longoptical paths, high-precision definition of the three-dimensional layout of aninterferometric array, and, finally, a variety of beam-combining schemes fromsimple two-way combiners to multitelescope imaging combiners in thepupil and image planes. Much has been learned from a modest but robustcollection of successful <span class="hlt">interferometers</span> over the last 25 years or so, andinterferometry is poised to become a mainstream technique for astrophysicalresearch.</p> <div class="credits"> <p class="dwt_author">ten Brummelaar, Theo A.; McAlister, Harold A.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">110</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2004SPIE.5484..665R"> <span id="translatedtitle">Automotive <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary"><span class="hlt">Radar</span> networks for automtovie short-range applications (up to 30m) based on powerful but inexpensive 24GHz high range resolution pulse or FMCW <span class="hlt">radar</span> systems have been developed at the Technical University of Hamburg-Harburg. The described system has been integrated in to an experimental vehicle and tested in real street environment. This paper considers the general network design, the individual pulse or FMCW <span class="hlt">radar</span> sensors, the network signal processing scheme, the tracking procedure and possible automotive applications, respectively. Object position estimation is accomplished by the very precise range measurement of each individual sensor and additional trilateration procedures. The paper concludes with some results obtained in realistic traffic conditions with multiple target situations using 24 GHz <span class="hlt">radar</span> network.</p> <div class="credits"> <p class="dwt_author">Rohling, Hermann</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">111</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/56276499"> <span id="translatedtitle"><span class="hlt">Radar</span> observations of ion cyclotron waves associated with two barium shaped-charge releases</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Plasma waves associated with two shaped-charge barium releases from Wallops Island (Virginia) on May 13, 1986 were investigated using a 50 MHz Doppler <span class="hlt">radar</span> <span class="hlt">interferometer</span> and a 138-MHz Doppler <span class="hlt">radar</span> operated from Kennedy Space Center. During the first barium release, measurements showed the existence of short-lived coherent 3-m and 1-m waves centered near 30 Hz. The coherent 30-Hz <span class="hlt">radar</span> echoes</p> <div class="credits"> <p class="dwt_author">Jason Providakes; Wesley E. Swartz; Michael C. Kelley; Frank T. Djuth; Steve Noble</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">112</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19860018916&hterms=friction+rotation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dfriction%2Brotation"> <span id="translatedtitle">Improved Skin Friction <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">An improved system for measuring aerodynamic skin friction which uses a dual-laser-beam oil-film <span class="hlt">interferometer</span> was developed. Improvements in the optical hardware provided equal signal characteristics for each beam and reduced the cost and complexity of the system by replacing polarization rotation by a mirrored prism for separation of the two signals. An automated, objective, data-reduction procedure was implemented to eliminate tedious manual manipulation of the interferometry data records. The present system was intended for use in two-dimensional, incompressible flows over a smooth, level surface without pressure gradient, but the improvements discussed are not limited to this application.</p> <div class="credits"> <p class="dwt_author">Westphal, R. V.; Bachalo, W. D.; Houser, M. H.</p> <p class="dwt_publisher"></p> <p class="publishDate">1986-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">113</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50027841"> <span id="translatedtitle">Survey of Chinese <span class="hlt">radars</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Open information on about 200 Chinese <span class="hlt">radars</span> including earlier <span class="hlt">radars</span> is now available. By number of model types China is an important <span class="hlt">radar</span> country. This Chinese <span class="hlt">radar</span> survey paper shows that Chinese <span class="hlt">radars</span> cover a wide spectrum of civilian and military applications. Chinese civilian <span class="hlt">radars</span> include air-borne weather avoidance\\/navigation, air traffic control (ASR, ARSR, GCA, SSR), harbor surveillance, industrial applications,</p> <div class="credits"> <p class="dwt_author">S. L. Johnston</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">114</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007GGG.....810011L"> <span id="translatedtitle">Numerical simulations of <span class="hlt">single-pass</span> hydrothermal convection at mid-ocean ridges: Effects of the extrusive layer and temperature-dependent permeability</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We develop numerical models of hydrothermal convection at oceanic spreading centers to understand the interplay between deeply circulating high-temperature hydrothermal fluid and cooler seawater circulating in basalts of the upper crust. We assume the deep circulation follows an idealized <span class="hlt">single-pass</span> geometry and consider the effects of the thickness h and permeability of the extrusive layer kext both on the shallow circulation and on the temperature and heat output of the high-temperature discharge. We also attempt to model the effect of mineral precipitation on mixing in the shallow crust by emplacing a low-permeability vertical barrier in the extrusives to separate the high-temperature discharge from the circulation in the extrusives. Finally, we investigate the effects of temperature-dependent permeability on the mixing scenarios. The results show that maximum discharge temperature Tv is impacted more by the ratio kext/kd, where kd is the permeability of the deep discharge channel, than by h. Generally, high-temperature discharge (Tv > 250°C) occurs provided kd > kext. In this case, the presence of a low-permeability barrier further enhances Tv. Low-temperature discharge (Tv < 150°C) can occur provided kext > 10kd. For systems such as the Galapagos Spreading Center, where vent temperatures are ˜20°C, kext/kd > 104, and the extrusive layer is likely to be thick. The results also suggest that sites of diffuse flow will occur either between high-temperature vents along the ridge axis or off axis. The chemical composition of the fluid at these distal sites would be seawater, perhaps modified by low-temperature water-rock reactions. In contrast, the diffuse flow fluids near high-temperature vents are mixture of seawater with high-temperature hydrothermal fluid. Finally, the results show that the 150°C isotherm, which lies nearly horizontally at some distance from the discharge channel, may be within the extrusive layer, near the extrusive-dike interface, or within the low-permeability dike layer. This result supports the idea that the seismically defined layer 2A-2B boundary within the oceanic crust may represent a mineral precipitation front rather than a lithologic boundary.</p> <div class="credits"> <p class="dwt_author">Lowell, Robert P.; Gosnell, Sawyer; Yang, Yang</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">115</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/15185"> <span id="translatedtitle">The Stress-Relief Cracking Susceptibility of a New Ferritic Steel - Part I: <span class="hlt">Single-Pass</span> Heat-Affected Zone Simulations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The stress-relief cracking susceptibility of <span class="hlt">single-pass</span> welds in a new ferritic steel, HCM2S, has been evaluated and compared to 2.25Cr-1Mo steel using Gleeble techniques. Simulated coarse-grained heat-affected zones (CGHAZ) were produced under a range of energy inputs and tested at various post-weld heat treatment (PWHT) temperatures. Both alloys were tested at a stress of 325 MPa. The 2.25 Cr-1Mo steel was also tested at 270 MPa to normalize for the difference in yield strength between the two materials. Light optical and scanning electron microscopy were used to characterize the CGHAZ microstructure. The ''as-welded'' CGHAZ of each alloy consisted of lath martensite or bainite and had approximately equal prior austenite grain sizes. The as-welded hardness of the 2.25Cr-1Mo steel CGHAZ was significantly higher than that of the HCM2S alloy. Over the range studied energy input had no effect on the as-welded microstructure or hardness of either alloy. The energy input also had no effect on the stress-relief cracking susceptibility of either material. Both alloys failed intergranularly along prior austenite grain boundaries under all test conditions. The 2.25Cr-1Mo steel samples experienced significant macroductility and some microductility when tested at 325 MPa. The ductility decreased significantly when tested at 270 MPa but was still higher that than of HCM2S at each test condition. The time to failure decreased with increasing PWHT Temperature for each material. There was no significant difference in the times to failure between the two materials. Varying energy input and stress had no effect on the time-to failure. The ductility, as measured by reduction in are% increased with increasing PWHT temperature for 2.25 Cr-1Mo steel tested at both stresses. However, PWHT temperature had no effect on the ductility of HCM2S. The hardness of the CGHAZ for 2.25Cr-1Mo steel decreased significantly after PWHT, but remained constant for HCM2S. The differences in stress-relief cracking response are discussed in terms of the differences in composition and expected carbide precipitation sequence for each alloy during PWHT.</p> <div class="credits"> <p class="dwt_author">NAWROCKI,J.G.; DUPONT,J.N.; ROBINO,CHARLES V.; MARDER,A.R.</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-12-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">116</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/6218870"> <span id="translatedtitle">The single antenna <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Air and space borne platforms using synthetic aperture <span class="hlt">radars</span> (SAR) have made interferometric measurements by using either two physical antennas mounted on one air-frame or two passes of one antenna over a scene. In this paper, a new interferometric technique using one pass of a single-antenna SAR system is proposed and demonstrated on data collected by the NASA-JPL AirSAR. Remotely sensed L-band microwave data are used to show the sensitivity of this technique to ocean surface features as well as a baseline for comparison with work by others using two-antenna systems. 7 refs., 3 figs.</p> <div class="credits"> <p class="dwt_author">Fitch, J.P.</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">117</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2015OptCo.338..253W"> <span id="translatedtitle">Heterodyne imaging speckle <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A heterodyne imaging speckle <span class="hlt">interferometer</span> coupled with lithium niobate is developed for whole field dynamic deformation imaging. In this device, the carrier frequency is introduced by the dual-transverse linear electro-optic effect. It is electrically controlled within a large range, which is twice the angular velocity of the driving alternating electric fields. By setting the angular velocity, the carrier frequency can fit most of area-array detectors, making it feasible to achieve whole field real time imaging. By using temporal evolution of the light intensity in heterodyne interferometry, the temporal intensity analysis method is employed to extract the deformation at each pixel dynamically. The principle and system configuration are described. The preliminary experiment is conducted with a cantilever beam and the results are compared with theoretical simulations to validate the proposed approach.</p> <div class="credits"> <p class="dwt_author">Wang, Shengjia; Gao, Zhan; Feng, Ziang; Zhang, Xiaoqiong; Yang, Dong; Yuan, Hao</p> <p class="dwt_publisher"></p> <p class="publishDate">2015-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">118</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2004SPIE.5487.1181L"> <span id="translatedtitle">Solar viewing <span class="hlt">interferometer</span> prototype</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The Earth Atmospheric Solar-Occultation Imager (EASI) is a proposed <span class="hlt">interferometer</span> with 5 telescopes on an 8-meter boom in a 1D Fizeau configuration. Placed at the Earth-Sun L2 Lagrange point, EASI would perform absorption spectroscopy of the Earth"s atmosphere occulting the Sun. Fizeau <span class="hlt">interferometers</span> give spatial resolution comparable to a filled aperture but lower collecting area. Even with the small collecting area the high solar flux requires most of the energy to be reflected back to space. EASI will require closed loop control of the optics to compensate for spacecraft and instrument motions, thermal and structural transients and pointing jitter. The Solar Viewing Interferometry Prototype (SVIP) is a prototype ground instrument to study the needed wavefront control methods. SVIP consists of three 10 cm aperture telescopes, in a linear configuration, on a 1.2-meter boom that will estimate atmospheric abundances of O2, H2O, CO2, and CH4 versus altitude and azimuth in the 1.25 - 1.73 micron band. SVIP measures the Greenhouse Gas absorption while looking at the sun, and uses solar granulation to deduce piston, tip and tilt misalignments from atmospheric turbulence and the instrument structure. Tip/tilt sensors determine relative/absolute telescope pointing and operate from 0.43 - 0.48 microns to maximize contrast. Two piston sensors, using a robust variation of dispersed fringes, determine piston shifts between the baselines and operate from 0.5 - 0.73 microns. All sensors are sampled at 800 Hz and processed with a DSP computer and fed back at 200 Hz (3 dB) to the active optics. A 4 Hz error signal is also fed back to the tracking platform. Optical performance will be maintained to better than ?/8 rms in closed-loop.</p> <div class="credits"> <p class="dwt_author">Lyon, Richard G.; Herman, Jay R.; Abuhassan, Nader; Marx, Catherine T.; Kizhner, Semion; Crooke, Julie; Toland, Ronald W.; Mariano, Albert; Salerno, Cheryl; Brown, Gary; Cazeau, Tony; Petrone, Peter P., III; Mamakos, Billy; Tournois, Severine C.</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">119</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19930016647&hterms=70+vertices&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3D70%2Bvertices"> <span id="translatedtitle">MIT's <span class="hlt">interferometer</span> CST testbed</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The MIT Space Engineering Research Center (SERC) has developed a controlled structures technology (CST) testbed based on one design for a space-based optical <span class="hlt">interferometer</span>. The role of the testbed is to provide a versatile platform for experimental investigation and discovery of CST approaches. In particular, it will serve as the focus for experimental verification of CSI methodologies and control strategies at SERC. The testbed program has an emphasis on experimental CST--incorporating a broad suite of actuators and sensors, active struts, system identification, passive damping, active mirror mounts, and precision component characterization. The SERC testbed represents a one-tenth scaled version of an optical <span class="hlt">interferometer</span> concept based on an inherently rigid tetrahedral configuration with collecting apertures on one face. The testbed consists of six 3.5 meter long truss legs joined at four vertices and is suspended with attachment points at three vertices. Each aluminum leg has a 0.2 m by 0.2 m by 0.25 m triangular cross-section. The structure has a first flexible mode at 31 Hz and has over 50 global modes below 200 Hz. The stiff tetrahedral design differs from similar testbeds (such as the JPL Phase B) in that the structural topology is closed. The tetrahedral design minimizes structural deflections at the vertices (site of optical components for maximum baseline) resulting in reduced stroke requirements for isolation and pointing of optics. Typical total light path length stability goals are on the order of lambda/20, with a wavelength of light, lambda, of roughly 500 nanometers. It is expected that active structural control will be necessary to achieve this goal in the presence of disturbances.</p> <div class="credits"> <p class="dwt_author">Hyde, Tupper; Kim, ED; Anderson, Eric; Blackwood, Gary; Lublin, Leonard</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">120</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.agu.org/journals/rs/v033/i001/97RS03050/97RS03050.pdf"> <span id="translatedtitle">An improved <span class="hlt">interferometer</span> design for use with meteor <span class="hlt">radars</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The measurement of the directions of radio meteors with an inter- ferometric system is beset by two problems: (1) The ambiguity in the measured directions for antennas spaced by more than )\\/2 and (2) the effects of mutual impedance when the antennas are spaced at )\\/2 and less to avoid these ambiguities. In this paper we discuss the effects of</p> <div class="credits"> <p class="dwt_author">J. Jones; A. R. Webster; W. K. Hocking</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_5");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a style="font-weight: bold;">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_7");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_6 div --> <div id="page_7" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_6");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a style="font-weight: bold;">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_8");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">121</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/10594"> <span id="translatedtitle">Evaluation of the Long-Term Performance of Titanate Ceramics for Immobilization of Excess Weapons Plutonium: Results from Pressurized Unsaturated Flow and <span class="hlt">Single</span> <span class="hlt">Pass</span> Flow-Through Testing</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This report summarizes our findings from pressurized unsaturated flow (PUF) and <span class="hlt">single-pass</span> flow-through (SPFT) experiments to date. Results from the PUF test of a Pu-bearing ceramic with enclosing surrogate high-level waste glass show that the glass reacts rapidly to alteration products. Glass reaction causes variations in the solution pH in contact with the ceramic materials. We also document variable concentrations of Pu in solution, primarily in colloidal form, which appear to be related to secular variations in solution composition. The apparent dissolution rate of the ceramic waste form, based on Ba concentrations in the effluent, is estimated at {le} 10{sup {minus}5} g/(m{sup 2} {center_dot} d). Pu-bearing colloids were recovered in the size range of 0.2 to 2 {micro}m, but it is not clear that such entities would be transported in a system that is not advective-flow dominated. Results from SPFT experiments give information on the corrosion resistance of two surrogate Pu-ceramics (Ce-pyrochlore and Ce-zirconolite) at 90 C over a pH range of 2 to 12. The two ceramics were doped with minor quantities ({approximately}0.1 mass%) of MoO{sub 3}, so that concentrations of Mo in the effluent solution could be used to monitor the reaction behavior of the materials. The data obtained thus far from experiments with durations up to 150 d do not conclusively prove that the solid-aqueous solution systems have reached steady-state conditions. Therefore, the dissolution mechanism cannot be determined. Apparent dissolution rates of the two ceramic materials based on Ce, Gd, and Mo concentrations in the effluent solutions from the SPFT are nearly identical and vary between 1.1 to 8.5 x 10{sup {minus}4} g/(m{sup 2} {center_dot} d). In addition, the data reveal a slightly amphoteric dissolution behavior, with a minimum apparent rate at pH = 7 to 8, over the pH range examined. Results from two related ceramic samples suggest that radiation damage can have a measurable effect on the dissolution of titanium-based ceramics. The rare earth pyrochlores, Gd{sub 2}Ti{sub 2}O{sub 7} and Lu{sub 2}Ti{sub 2}O{sub 7}, are being studied as part of the DOE Environmental Management Science Program, and the results are germane to this study. The corrosion resistances of both heavy-ion bombarded and pristine (non-bombarded) specimens are being examined with the SPFT test. Initial data indicate that the dissolution rate may increase by a factor of 3 times or more when these materials become amorphous from radiation damage.</p> <div class="credits"> <p class="dwt_author">BP McGrail; HT Schaef; JP Icenhower; PF Martin; RD Orr; VL Legore</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-09-13</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">122</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20090031860&hterms=Exoplanet&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DExoplanet"> <span id="translatedtitle">Balloon Exoplanet Nulling <span class="hlt">Interferometer</span> (BENI)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">We evaluate the feasibility of using a balloon-borne nulling <span class="hlt">interferometer</span> to detect and characterize exosolar planets and debris disks. The existing instrument consists of a 3-telescope Fizeau imaging <span class="hlt">interferometer</span> with 3 fast steering mirrors and 3 delay lines operating at 800 Hz for closed-loop control of wavefront errors and fine pointing. A compact visible nulling <span class="hlt">interferometer</span> is under development which when coupled to the imaging <span class="hlt">interferometer</span> would in-principle allow deep suppression of starlight. We have conducted atmospheric simulations of the environment above 100,000 feet and believe balloons are a feasible path forward towards detection and characterization of a limited set of exoplanets and their debris disks. Herein we will discuss the BENI instrument, the balloon environment and the feasibility of such as mission.</p> <div class="credits"> <p class="dwt_author">Lyon, Richard G.; Clampin, Mark; Woodruff, Robert A.; Vasudevan, Gopal; Ford, Holland; Petro, Larry; Herman, Jay; Rinehart, Stephen; Carpenter, Kenneth; Marzouk, Joe</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">123</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/867049"> <span id="translatedtitle">Compact portable diffraction moire <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">A compact and portable moire <span class="hlt">interferometer</span> used to determine surface deformations of an object. The improved <span class="hlt">interferometer</span> is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent wave splitters, and collimating lenses directing the split beam at one or more specimen gratings. Observation means including film and video cameras may be used to view and record the resultant fringe patterns.</p> <div class="credits"> <p class="dwt_author">Deason, Vance A. (Shelley, ID); Ward, Michael B. (Idaho Falls, ID)</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">124</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/6295560"> <span id="translatedtitle">Compact portable diffraction moire <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">A compact and portable moire <span class="hlt">interferometer</span> used to determine surface deformations of an object. The improved <span class="hlt">interferometer</span> is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent wave splitters, and collimating lenses directing the split beam at one or more specimen gratings. Observations means including film and video cameras may be used to view and record the resultant fringe patterns. 7 figs.</p> <div class="credits"> <p class="dwt_author">Deason, V.A.; Ward, M.B.</p> <p class="dwt_publisher"></p> <p class="publishDate">1988-05-23</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">125</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19940017173&hterms=Mints&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DMints"> <span id="translatedtitle">Michelson <span class="hlt">Interferometer</span> (MINT)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">MINT is a Michelson <span class="hlt">interferometer</span> designed to measure the thermal emission from the earth at high spectral resolution (2/cm) over a broad spectral range (250-1700/cm, 6-40 mu m) with contiguous 3-pixel wide (12 mrad, 8 km field of view) along-track sampling. MINT is particularly well suited for monitoring cloud properties (cloud cover, effective temperature, optical thickness, ice/water phase, and effective particle size) both day and night, as well as tropospheric water vapor, ozone, and temperature. The key instrument characteristics that make MINT ideally suited for decadal monitoring purposes are: high wavelength to wavelength precision across the full IR spectrum with high spectral resolution; space-proven long-term durability and calibration stability; and small size, low cost, low risk instrument incorporating the latest detector and electronics technology. MINT also incorporates simplicity in design and operation by utilizing passively cooled DTGS detectors and nadir viewing geometry (with target motion compensation). MINT measurement objectives, instrument characteristics, and key advantages are summarized in this paper.</p> <div class="credits"> <p class="dwt_author">Lacis, Andrew; Carlson, Barbara</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">126</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.rsmas.miami.edu/users/pzuidema/ams_radar_postprint.pdf"> <span id="translatedtitle">JP2.4 On Integrating Cloud-<span class="hlt">Radar</span>-Derived Arctic Ice Cloud Properties into the Radiative Transfer Model "Streamer"</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/eprints/">E-print Network</a></p> <p class="result-summary">an Atmospheric Emitted Ra- diance <span class="hlt">Interferometer</span> (AERI;Revercomb et al., 1993). A <span class="hlt">radar</span> estimate of the volume April 28 1998 AERI-tuned <span class="hlt">radar</span>-retrieved extinction 12 14 16 18 20 22 0 2 4 6 8 10 12 height(km) 0.0 0 time 0.0 0.5 1.0 1.5 2.0 2.5 opticaldepth c) 0 AERI 1 <span class="hlt">radar</span> retrieval, not-aeri-tuned FIG. 1: a) AERI</p> <div class="credits"> <p class="dwt_author">Zuidema, Paquita</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">127</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=https://www.meted.ucar.edu/training_module.php?id=960"> <span id="translatedtitle">Weather <span class="hlt">Radar</span> Fundamentals</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">This 2-hour module presents the fundamental principles of Doppler weather <span class="hlt">radar</span> operation and how to interpret common weather phenomena using <span class="hlt">radar</span> imagery. This is accomplished via conceptual animations and many interactive <span class="hlt">radar</span> examples in which the user can practice interpreting both <span class="hlt">radar</span> reflectivity and <span class="hlt">radar</span> velocity imagery. Although intended as an accelerated introduction to understanding and using basic Doppler weather <span class="hlt">radar</span> products, the module can also serve as an excellent refresher for more experienced users.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">2014-09-14</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">128</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/1175412"> <span id="translatedtitle">Using dynamic interferometric synthetic aperature <span class="hlt">radar</span> (InSAR) to image fast-moving surface waves</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">A new differential technique and system for imaging dynamic (fast moving) surface waves using Dynamic Interferometric Synthetic Aperture <span class="hlt">Radar</span> (InSAR) is introduced. This differential technique and system can sample the fast-moving surface displacement waves from a plurality of moving platform positions in either a repeat-pass single-antenna or a <span class="hlt">single-pass</span> mode having a single-antenna dual-phase receiver or having dual physically separate antennas, and reconstruct a plurality of phase differentials from a plurality of platform positions to produce a series of desired interferometric images of the fast moving waves.</p> <div class="credits"> <p class="dwt_author">Vincent, Paul</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-06-28</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">129</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50108192"> <span id="translatedtitle">Future Trends in Automotive <span class="hlt">Radar</span> \\/ Imaging <span class="hlt">Radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">There is a growing interest of car manufacturers in sensors monitoring the car's surrounding area in order to improve safety systems from mere crash survival to crash prediction or prevention by early detection of hazardous situations. Therefore <span class="hlt">radar</span> sensors have been intensively investigated for many years. A large variety of <span class="hlt">radar</span> based vehicular sensors have been developed. Narrow-beam <span class="hlt">radars</span> are</p> <div class="credits"> <p class="dwt_author">J. Wenger</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">130</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008SPIE.7013E..2FM"> <span id="translatedtitle">Novel spectral imaging method for Fizeau <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">There are two different types of beam combination: Fizeau <span class="hlt">interferometer</span> and Michelson <span class="hlt">interferometer</span>. Pupil plane beam combination is referred as Fizeau <span class="hlt">interferometer</span>. On the other hand, image plane beam combination is referred as Michelson <span class="hlt">interferometer</span>. In general, working principles of Michelson <span class="hlt">interferometers</span> are based on double Fourier interferometry. It is possible to acquire two-dimensional spatial and one-dimensional spectral information of the sky by applying a Fourier transform spectrometer algorithm and the Van Cittert-Zernike theorem. This imaging scheme is referred to as the double Fourier interferometry. On the other hand, it is so far thought to be difficult to perform the imaging with a Fizeau <span class="hlt">interferometer</span>, because Fizeau <span class="hlt">interferometers</span> basically don't have a delay line that is equipped with Michelson <span class="hlt">interferometers</span>. Here, Matsuo et al.1 presented a new spectral imaging method for Fizeau <span class="hlt">interferometers</span>, based on double Fourier interferometry. They noticed that a delay axis in Michelson <span class="hlt">interferometers</span> is equal to the axis of a fringe pattern on an image plane in Fizeau <span class="hlt">interferometers</span>. Therefore, this new approach can acquire three-dimensional information of the sky using a linear array detector placed on the image plane. In this paper, we compare the new spectral imaging method for Fizeau <span class="hlt">interferometer</span> with the conventional one used for Michelson <span class="hlt">interferometer</span> and discuss spectral resolutions and field of views of these imaging methods.</p> <div class="credits"> <p class="dwt_author">Matsuo, Taro; Shibai, H.; Kawada, M.; Hattori, M.; Ohta, S. I.; Matsuo, H.</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">131</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1466851"> <span id="translatedtitle">Temporal analysis of a landslide by means of a ground-based SAR <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A ground-based synthetic aperture <span class="hlt">radar</span> (GB-SAR) <span class="hlt">interferometer</span> is used to retrieve the velocity field of a landslide. High-resolution images are obtained by means of a time domain SAR processor. An in-depth analysis of the sequence of SAR interferograms enables the recognition of a slowly deforming upper scarp in the scene, and a debris flow that feeds the accumulation zone of</p> <div class="credits"> <p class="dwt_author">Davide Leva; Giovanni Nico; Dario Tarchi; Joaquim Fortuny-Guasch; Alois J. Sieber</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">132</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/20867443"> <span id="translatedtitle">Optomechanical cooling with generalized <span class="hlt">interferometers</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The fields in multiple-pass <span class="hlt">interferometers</span>, such as the Fabry-Pérot cavity, exhibit great sensitivity not only to the presence but also to the motion of any scattering object within the optical path. We consider the general case of an <span class="hlt">interferometer</span> comprising an arbitrary configuration of generic beam splitters and calculate the velocity-dependent radiation field and the light force exerted on a moving scatterer. We find that a simple configuration, in which the scatterer interacts with an optical resonator from which it is spatially separated, can enhance the optomechanical friction by several orders of magnitude. PMID:20867443</p> <div class="credits"> <p class="dwt_author">Xuereb, André; Freegarde, Tim; Horak, Peter; Domokos, Peter</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">133</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/40737/1/04-1670.pdf"> <span id="translatedtitle">Keck <span class="hlt">Interferometer</span> Science: Present and Future</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The Keck <span class="hlt">Interferometer</span> is a NASA funded project developed by the Jet Propulsion Laboratory, the William M. Keck Observatory and the Michelson Science Center at the California Institute of Technology. A technical description of the <span class="hlt">interferometer</span> is given elsewhere in this volume1. This paper will discuss the science topics and goals ofthe Keck <span class="hlt">Interferometer</span> project, including a brief description of</p> <div class="credits"> <p class="dwt_author">Rachel Akeson</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">134</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/r641q5lpmth5t923.pdf"> <span id="translatedtitle">The magnesium ramsey <span class="hlt">interferometer</span>: Applications and prospects</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In this paper it will be shown that an atom <span class="hlt">interferometer</span>, based on the coherent splitting of the atomic wavefunction by four travelling waves (Ramsey <span class="hlt">interferometer</span>), may be explained by a purely mechanical interpretation. As our first application of this Ramsey <span class="hlt">interferometer</span> we have measured the phase shifts respectively optical length changes in a magnesium atomic beam caused by the</p> <div class="credits"> <p class="dwt_author">U. Sterr; K. Sengstock; J. H. Müller; D. Bettermann; W. Ertmer</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">135</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/26676321"> <span id="translatedtitle">Angle <span class="hlt">interferometer</span> cross axis errors</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Angle <span class="hlt">interferometers</span> are commonly used to measure surface plate flatness. An error can exist when the centerline of the double comer cube mirror assembly is not square to the surface plate and the guide bar for the mirror sled is curved. Typical errors can be one to two microns per meter. A similar error can exist in the calibration of</p> <div class="credits"> <p class="dwt_author">J. B. Bryan; D. L. Carter; S. L. Thompson</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">136</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1987aiaa.rept.....G"> <span id="translatedtitle"><span class="hlt">Radar</span> electronic warfare</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">An overview of <span class="hlt">radar</span> and electronic warfare is given. Definitions, common terms, and principles of <span class="hlt">radar</span> and electronic warfare, and simple analyses of interactions between <span class="hlt">radar</span> systems and electronic countermeasures (ECM) are presented. Electronic counter-countermeasure and electronic support measures are discussed. Background material in mathematics, electromagnetics, and probability necessary for an understanding of <span class="hlt">radar</span> and electronic warfare is given and <span class="hlt">radar</span> tracking models are examined. The effects of various ECM emissions on <span class="hlt">radar</span> systems are analyzed, including discussion of active ECM and angle scanning systems, angle measurement in monopulse, and automatic gain control.</p> <div class="credits"> <p class="dwt_author">Golden, August, Jr.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">137</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014E%26ES...17a2278Y"> <span id="translatedtitle">The Analysis of Moonborne Cross Track Synthetic Aperture <span class="hlt">Radar</span> Interferometry for Global Environment Change Monitoring</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Faced to the earth observation requirement of large scale global environment change, a SAR (Synthetic Aperture <span class="hlt">Radar</span>) antenna system is proposed to set on Moon's surface for interferometry in this paper. With several advantages superior to low earth obit SAR, such as high space resolution, large range swath and short revisit interval, the moonborne SAR could be a potential data resource of global changes monitoring and environment change research. Due to the high stability and ease of maintenance, the novel system is competent for offering a long and continuous time series of remote sensing imagery. The Moonborne SAR system performance is discussed at the beginning. Then, the peculiarity of interferometry is analyzed in both repeat pass and <span class="hlt">single</span> <span class="hlt">pass</span> cases. The chief distinguishing feature which is worth to research the potentiality of repeat pass interferometry is that the revisit interval is reduced to one day in most cases, and in worst case one month. Decorrelation deriving from geometry variety is discussed in detail. It turns out that the feasibility of moonborne SAR repeat pass interferometry depends on the declination of Moon. The severity of shift effects in <span class="hlt">radar</span> echoes increased as Moon approaches to the equatorial plane. Moreover, referring to the <span class="hlt">single</span> <span class="hlt">pass</span> interferometry, two antennas are assumed to set on different latitude of Moon. There is enough space on Moon to form a long baseline, which is highly related to the interferogram precision.</p> <div class="credits"> <p class="dwt_author">Yixing, Ding; Huadong, Guo; Guang, Liu; Daowei, Zhang</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">138</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.univ-bpclermont.fr/IMG/pdf/Caracteristiques_techniques_remorque.pdf"> <span id="translatedtitle">Remorque <span class="hlt">RADAR</span> Description technique</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/eprints/">E-print Network</a></p> <p class="result-summary">ANNEXE: Remorque <span class="hlt">RADAR</span> Description technique Le but de la remorque est de transporter un <span class="hlt">RADAR</span> et pour héberger l'électronique <span class="hlt">radar</span> et son opérateur. Caractéristiques générales de la remorque : · PTC'un côté, une baie de l'autre. Un hublot sur le toit et une baie donnant sur la partie <span class="hlt">RADAR</span>. Un plafonnier</p> <div class="credits"> <p class="dwt_author">Heurteaux, Yanick</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">139</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19950016672&hterms=sound+activated+technology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dsound%2Bactivated%2Btechnology"> <span id="translatedtitle">Stellar <span class="hlt">Interferometer</span> Technology Experiment (SITE)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The MIT Space Engineering Research Center and the Jet Propulsion Laboratory stand ready to advance science sensor technology for discrete-aperture astronomical instruments such as space-based optical <span class="hlt">interferometers</span>. The objective of the Stellar <span class="hlt">Interferometer</span> Technology Experiment (SITE) is to demonstrate system-level functionality of a space-based stellar <span class="hlt">interferometer</span> through the use of enabling and enhancing Controlled-Structures Technologies (CST). SITE mounts to the Mission Peculiar Experiment Support System inside the Shuttle payload bay. Starlight, entering through two apertures, is steered to a combining plate where it is interferred. Interference requires 27 nanometer pathlength (phasing) and 0.29 archsecond wavefront-tilt (pointing) control. The resulting 15 milli-archsecond angular resolution exceeds that of current earth-orbiting telescopes while maintaining low cost by exploiting active optics and structural control technologies. With these technologies, unforeseen and time-varying disturbances can be rejected while relaxing reliance on ground alignment and calibration. SITE will reduce the risk and cost of advanced optical space systems by validating critical technologies in their operational environment. Moreover, these technologies are directly applicable to commercially driven applications such as precision matching, optical scanning, and vibration and noise control systems for the aerospace, medical, and automotive sectors. The SITE team consists of experienced university, government, and industry researchers, scientists, and engineers with extensive expertise in optical interferometry, nano-precision opto-mechanical control and spaceflight experimentation. The experience exists and the technology is mature. SITE will validate these technologies on a functioning <span class="hlt">interferometer</span> science sensor in order to confirm definitely their readiness to be baselined for future science missions.</p> <div class="credits"> <p class="dwt_author">Crawley, Edward F.; Miller, David; Laskin, Robert; Shao, Michael</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">140</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.agu.org/journals/rs/v029/i003/93RS03590/93RS03590.pdf"> <span id="translatedtitle">Temperature fluctuations near the mesopause inferred from meteor observations with the middle and upper atmosphere <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Using meteor echo measurements with the middle and upper atmosphere (MU) <span class="hlt">radar</span> (35 deg N, 136 deg E), operated at 46.5 MHz, we examined time-height variation of the ambipolar diffusion coefficient D, determined from the decay rate of meteor echoes. The height of a meteor trail was determined with an accuracy of about 1 km, by using an <span class="hlt">interferometer</span> for</p> <div class="credits"> <p class="dwt_author">Masaki Tsutsumi; Toshitaka Tsuda; Takuji Nakamura; Shoichiro Fukao</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_6");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a style="font-weight: bold;">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_8");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_7 div --> <div id="page_8" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_7");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a style="font-weight: bold;">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_9");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">141</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19840012737&hterms=quad+ridge+horn&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dquad%2Bridge%2Bhorn"> <span id="translatedtitle">Polarized-<span class="hlt">interferometer</span> feasibility study</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The feasibility of using a polarized-<span class="hlt">interferometer</span> system as a rendezvous and docking sensor for two cooperating spacecraft was studied. The polarized <span class="hlt">interferometer</span> is a radio frequency system for long range, real time determination of relative position and attitude. Range is determined by round trip signal timing. Direction is determined by radio interferometry. Relative roll is determined from signal polarization. Each spacecraft is equipped with a transponder and an antenna array. The antenna arrays consist of four crossed dipoles that can transmit or receive either circularly or linearly polarized signals. The active spacecraft is equipped with a sophisticated transponder and makes all measurements. The transponder on the passive spacecraft is a relatively simple repeater. An initialization algorithm is developed to estimate position and attitude without any a priori information. A tracking algorithm based upon minimum variance linear estimators is also developed. Techniques to simplify the transponder on the passive spacecraft are investigated and a suitable configuration is determined. A multiple carrier CW signal format is selected. The dependence of range accuracy and ambiguity resolution error probability are derived and used to design a candidate system. The validity of the design and the feasibility of the polarized <span class="hlt">interferometer</span> concept are verified by simulation.</p> <div class="credits"> <p class="dwt_author">Raab, F. H.</p> <p class="dwt_publisher"></p> <p class="publishDate">1983-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">142</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19800002740&hterms=Plato&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DPlato"> <span id="translatedtitle">Lunar <span class="hlt">radar</span> backscatter studies</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The lunar surface material in the Plato area is characterized using Earth based visual, infrared, and <span class="hlt">radar</span> signatures. <span class="hlt">Radar</span> scattering in the lunar regolith with an existing optical scattering computer program is modeled. Mapping with 1 to 2 km resolution of the Moon using a 70 cm Arecibo <span class="hlt">radar</span> is presented.</p> <div class="credits"> <p class="dwt_author">Thompson, T. W.</p> <p class="dwt_publisher"></p> <p class="publishDate">1979-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">143</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.geo.unizh.ch/oldrsl/research/SARLab/GMTILiterature/Ver09/PDF/RHJ+00.pdf"> <span id="translatedtitle">Synthetic aperture <span class="hlt">radar</span> interferometry</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Synthetic aperture <span class="hlt">radar</span> interferometry is an imaging technique for measuring the topography of a surface, its changes over time, and other changes in the detailed characteristic of the surface. By exploiting the phase of the coherent <span class="hlt">radar</span> signal, interferometry has transformed <span class="hlt">radar</span> remote sensing from a largely interpretive science to a quantitative tool, with applications in cartography, geodesy, land cover</p> <div class="credits"> <p class="dwt_author">PAUL A. ROSEN; SCOTT HENSLEY; IAN R. JOUGHIN; FUK K. LI; SØREN N. MADSEN; ERNESTO RODRÍGUEZ; RICHARD M. GOLDSTEIN</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">144</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011AGUFM.B51C0410L"> <span id="translatedtitle">Estimating forest biomass using repeat-pass polarimetric <span class="hlt">radar</span> interferometry</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Biomass is identified by the United Nations Framework Convention on Climate Change (UNFCCC) as an essential climate variable needed to reduce uncertainties in our knowledge of the climate system [1]. <span class="hlt">Radar</span> remote sensing is the most suitable tool to measure and map Earth's forest biomass, but current methods are limited by saturation issues (backscatter-based methods) or by large uncertainties (interferometric volumetric correlation-based methods) [2]. Here, we developed a new method for estimating forest biomass, which overcomes these limitations. The method utilizes a repeat-pass polarimetric <span class="hlt">radar</span> <span class="hlt">interferometer</span> that measures the temporal-volumetric correlation between consecutive <span class="hlt">radar</span> acquisitions. Using our physical model [3], we are able to relate a set of temporal-volumetric correlation samples (obtained for several combinations of wave polarizations) to important biophysical parameters of forests. We designed a model-based algorithm for parameters estimation that gives maps of forest tree height, using all available information returned by the polarimetric <span class="hlt">interferometer</span>, including <span class="hlt">radar</span> backscatter. Forest height estimated from simulated and actual <span class="hlt">radar</span> UAVSAR data is found in agreement with forest height derived from lidar LVIS data. Height-biomass allometric equations, previously validated with ground observations, are used to estimate the aboveground biomass [4]. Our method allows quantifying the worldwide biomass distribution and monitoring biomass dynamic changes (e.g., deforestation). Future <span class="hlt">radar</span> missions, such as the NASA/DESDynI, JAXA/ALOS-2 and ESA/BIOMASS can exploit this method [5]. Moreover, our theoretical modeling has unveiled new insights into the temporal decorrelation, such as the dependence on wave polarization and target structure [3], bringing benefits to all techniques exploiting <span class="hlt">radar</span> time series, beyond the remote sensing of vegetated lands. [1] Second report on the Adequacy of the Global Observing System for Climate in Support of the UNFCCC. GCOS-82 (WMO/TD No. 1143): World Meteorological Organization, 2003. [2] Le Toan, T., et al., The BIOMASS mission: "Mapping global forest biomass to better understand the terrestrial carbon cycle", Remote Sensing of Environment, 2011. [3] Lavalle, M., Simard, M., Hensley, S., "A Temporal Decorrelation Model for Polarimetric <span class="hlt">Radar</span> <span class="hlt">Interferometers</span>", accepted for publication in IEEE Trans. on Geoscience and Remote Sensing, 2011. [4] Mette, T., Papathanassiou, K.P., Hajnsek, I., "Biomass estimation from Pol-InSAR over heterogeneous Terrain", IEEE Geoscience and Remote Sensing Symposium, 2004. [5] Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, National Research Council, 2007.</p> <div class="credits"> <p class="dwt_author">Lavalle, M.; Simard, M.; Hensley, S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">145</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://w8lrk.org/article/RadarTutorial.pdf"> <span id="translatedtitle"><span class="hlt">Radar</span> Meteorology Tutorial</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">Brian McNoldy at Multi-community Environmental Storm Observatory (MESO) educates the public about the use of <span class="hlt">radar</span> in meteorology in this pdf document. After reading about the history of <span class="hlt">radar</span>, visitors can find out how <span class="hlt">radar</span> can detect storms by transmitting a high-power beam of radiation. Students can learn how scatter, absorption, frequencies, scan angles, and moments impact the <span class="hlt">radar</span> display. With the help of many example images, the author also discusses how to interpret the images collected. At the end of the online document, visitors can learn about the characteristics and capabilities of NEXRAD WSR-88D, the <span class="hlt">radar</span> used throughout the United States.</p> <div class="credits"> <p class="dwt_author">McNoldy, Brian</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">146</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://arxiv.org/pdf/1408.5310v2"> <span id="translatedtitle">A nonlocal polarization <span class="hlt">interferometer</span> for entanglement detection</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/eprints/">E-print Network</a></p> <p class="result-summary">We report a nonlocal <span class="hlt">interferometer</span> capable of detecting entanglement and identifying Bell states statistically. This is possible due to the <span class="hlt">interferometer</span>'s unique correlation dependence on the anti-diagonal elements of the density matrix, which have distinct bounds for separable states and unique values for the four Bell states. The <span class="hlt">interferometer</span> consists of two spatially separated balanced Mach-Zehnder or Sagnac <span class="hlt">interferometers</span> that share a polarization entangled source. Correlations between these <span class="hlt">interferometers</span> exhibit non-local interference, while single photon interference is suppressed. This <span class="hlt">interferometer</span> also allows for a unique version of the CHSH-Bell test where the local reality is the photon polarization. We present the relevant theory and experimental results.</p> <div class="credits"> <p class="dwt_author">Brian P. Williams; Travis S. Humble; Warren P. Grice</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-10-22</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">147</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014PhRvA..90d2121W"> <span id="translatedtitle">Nonlocal polarization <span class="hlt">interferometer</span> for entanglement detection</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We report a nonlocal <span class="hlt">interferometer</span> capable of detecting entanglement and identifying Bell states statistically. This is possible due to the <span class="hlt">interferometer</span>'s unique correlation dependence on the antidiagonal elements of the density matrix, which have distinct bounds for separable states and unique values for the four Bell states. The <span class="hlt">interferometer</span> consists of two spatially separated balanced Mach-Zehnder or Sagnac <span class="hlt">interferometers</span> that share a polarization-entangled source. Correlations between these <span class="hlt">interferometers</span> exhibit nonlocal interference, while single-photon interference is suppressed. This <span class="hlt">interferometer</span> also allows for a unique version of the Clauser-Horne-Shimony-Holt-Bell test where the local reality is the photon polarization. We present the relevant theory and experimental results.</p> <div class="credits"> <p class="dwt_author">Williams, Brian P.; Humble, Travis S.; Grice, Warren P.</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-10-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">148</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/18144774"> <span id="translatedtitle">Wavelength-Tunable Laser-Diode <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Laser diodes (LDs) have been applied to a phase-measuring <span class="hlt">interferometer</span> through the wavelength tunability of LDs by controlling their currents. Laser-diode <span class="hlt">interferometers</span> based on a heterodyne technique are reviewed. A two-wavelength laser-diode <span class="hlt">interferometer</span> is demonstrated with current control of dual LDs in opposite directions. A synthetic wavelength makes it possible to extend the range of interferometric measurements. The wavelength is</p> <div class="credits"> <p class="dwt_author">Yukihiro Ishii</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">149</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.loc.gov/pictures/collection/hh/item/mi0425.photos.340240p/"> <span id="translatedtitle">2. VIEW SOUTHWEST, prime search <span class="hlt">radar</span> tower, height finder <span class="hlt">radar</span> ...</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p class="result-summary">2. VIEW SOUTHWEST, prime search <span class="hlt">radar</span> tower, height finder <span class="hlt">radar</span> towards, height finder <span class="hlt">radar</span> towers, and <span class="hlt">radar</span> tower (unknown function) - Fort Custer Military Reservation, P-67 <span class="hlt">Radar</span> Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">150</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2004SPIE.5532...28P"> <span id="translatedtitle">LVDT calibration using a phase modulation optical <span class="hlt">interferometer</span> calibrated by an x-ray <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We have calibrated an LVDT using an optical and x-ray <span class="hlt">interferometer</span>. We have calibrated optical <span class="hlt">interferometer</span> using x-ray <span class="hlt">interferometer</span>. The LVDT has calibrated by the optical <span class="hlt">interferometer</span>. We made the monolithic x-ray <span class="hlt">interferometer</span> with a double parallel spring structure for the translation of an analyzer lamella. One period of the x-ray interference fringe corresponds to the lattice parameter, 0.192 nm. The nonlinearity of optical <span class="hlt">interferometer</span> has been calibrated by an x-ray <span class="hlt">interferometer</span>. We have used a phase modulation optical <span class="hlt">interferometer</span>. This calibration using the x-ray <span class="hlt">interferometer</span> is directly traceable to primary standards. We have achieved the resolution of an x-ray <span class="hlt">interferometer</span> and optical <span class="hlt">interferometer</span> better than 0.01 nm. The optical phase stability of the <span class="hlt">interferometer</span> is less than +/- 150 pm. For the control of environmental temperature, we have used PID method. PID controller controlled the temperature inside chamber. Temperature drift was less than +/- 3 mK (k = 2).</p> <div class="credits"> <p class="dwt_author">Park, Jin Won; Jo, Jae Gun; Byun, Sang Ho; Kim, Jeong Eun; Eom, Cheon Il</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-08-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">151</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21443428"> <span id="translatedtitle">Ordinary SQUID <span class="hlt">interferometers</span> and superfluid helium matter wave <span class="hlt">interferometers</span>: The role of quantum fluctuations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">When comparing the operation of a superfluid helium matter wave quantum <span class="hlt">interferometer</span> (He SQUID) with that of an ordinary direct-current quantum <span class="hlt">interferometer</span> (dc SQUID), we estimate their resolution limitation that correspond to quantum fluctuations. An alternative mode of operation of the <span class="hlt">interferometer</span> as a unified macroquantum system is considered.</p> <div class="credits"> <p class="dwt_author">Golovashkin, A. I.; Zherikhina, L. N., E-mail: zherikh@sci.lebedev.ru; Tskhovrebov, A. M. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Izmailov, G. N.; Ozolin, V. V. [Moscow Aviation Institute (State Technical University) (Russian Federation)</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-08-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">152</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1998RScI...69.4156K"> <span id="translatedtitle">Variable path cryogenic acoustic <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We describe a variable path acoustic <span class="hlt">interferometer</span> for use at cryogenic temperatures. Movement is enabled without mechanical coupling via two piezoelectric bimorphs wired and mounted in a manner that preserves the parallelism of two ultrasonic transducers that define the acoustic path. A certain degree of in situ alignment can also be accomplished. Path length sweeps from 0 to 180 ?m have been made at cryogenic temperatures and preliminary sound velocity measurements in liquid 4He and gaseous 3He near 4 K are presented which agree well with past measurements.</p> <div class="credits"> <p class="dwt_author">Kucera, D. M.; Ketterson, J. B.</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">153</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/1113735"> <span id="translatedtitle"><span class="hlt">Single</span> <span class="hlt">Pass</span> Electron Cooling Simulations for MEIC</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Cooling of medium energy protons is critical for the proposed Jefferson Lab Medium Energy Ion Collider (MEIC). We present simulations of electron cooling of protons up to 60 GeV. In the beam frame in which the proton and electrons are co-propagating, their motion is non-relativistic. We use a binary collision model which treats the cooling process as the sum of a large number of two-body collisions which are calculated exactly. This model can treat even very close collisions between an electron and ion with high accuracy. We also calculate dynamical friction using a delta-f PIC model. The code VSim (formerly Vorpal) is used to perform the simulations. We compare the friction rates with that obtained by a 3D integral over electron velocities which is used by BETACOOL.</p> <div class="credits"> <p class="dwt_author">Bell, G. I. [Tech-X Corp.; Pogorelov, I. V. [Tech-X Corp.; Schwartz, B. T. [Tech-X Corp.; Zhang, Yuhong [JLAB; Zhang, He [JLAB</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">154</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.csc.villanova.edu/~mdamian/Past/csc3990fa08/csrs2008/02-csrs2008-JosephCharpentier.pdf"> <span id="translatedtitle"><span class="hlt">Radar</span> Imaging Systems Joseph Charpentier</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/eprints/">E-print Network</a></p> <p class="result-summary"><span class="hlt">Radar</span> Imaging Systems Joseph Charpentier Department of Computing Sciences Villanova University types of <span class="hlt">radar</span> imaging systems; synthetic aperture <span class="hlt">radar</span> (SAR), through-the-wall <span class="hlt">radar</span>, and digital holographic near field <span class="hlt">radar</span>. Each system surveyed experiments that improved the quality of the resulting</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">155</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.loc.gov/pictures/collection/hh/item/nd0078.photos.199422p/"> <span id="translatedtitle">30. Perimeter acquisition <span class="hlt">radar</span> building room #318, showing <span class="hlt">radar</span> control. ...</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p class="result-summary">30. Perimeter acquisition <span class="hlt">radar</span> building room #318, showing <span class="hlt">radar</span> control. Console and line printers - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition <span class="hlt">Radar</span> Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">156</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.loc.gov/pictures/collection/hh/item/mi0425.photos.340241p/"> <span id="translatedtitle">3. VIEW NORTHWEST, height finder <span class="hlt">radar</span> towers, and <span class="hlt">radar</span> tower ...</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p class="result-summary">3. VIEW NORTHWEST, height finder <span class="hlt">radar</span> towers, and <span class="hlt">radar</span> tower (unknown function) - Fort Custer Military Reservation, P-67 <span class="hlt">Radar</span> Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">157</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20030020823&hterms=window+profile&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dwindow%2Bprofile"> <span id="translatedtitle"><span class="hlt">Interferometer</span> for Space Station Windows</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Inspection of space station windows for micrometeorite damage would be a difficult task insitu using current inspection techniques. Commercially available optical profilometers and inspection systems are relatively large, about the size of a desktop computer tower, and require a stable platform to inspect the test object. Also, many devices currently available are designed for a laboratory or controlled environments requiring external computer control. This paper presents an approach using a highly developed optical <span class="hlt">interferometer</span> to inspect the windows from inside the space station itself using a self- contained hand held device. The <span class="hlt">interferometer</span> would be capable as a minimum of detecting damage as small as one ten thousands of an inch in diameter and depth while interrogating a relatively large area. The current developmental state of this device is still in the proof of concept stage. The background section of this paper will discuss the current state of the art of profilometers as well as the desired configuration of the self-contained, hand held device. Then, a discussion of the developments and findings that will allow the configuration change with suggested approaches appearing in the proof of concept section.</p> <div class="credits"> <p class="dwt_author">Hall, Gregory</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">158</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/20653107"> <span id="translatedtitle">The DELTA Synchrotron Light <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Synchrotron radiation sources like DELTA, the Dortmund Electron Accelerator, a third generation synchrotron light source, need an optical monitoring system to measure the beam size at different points of the ring with high resolution and accuracy. These measurements also allow an investigation of the emittance of the storage ring, an important working parameter for the efficiency of working beamlines with experiments using the synchrotron radiation. The resolution limits of the different types of optical synchrotron light monitors at DELTA are investigated. The minimum measurable beamsize with the normal synchrotron light monitor using visible light at DELTA is about 80 {mu}m. Due to this a synchrotron light <span class="hlt">interferometer</span> was built up and tested at DELTA. The <span class="hlt">interferometer</span> uses the same beamline in the visible range. The minimum measurable beamsize is with about 8 {mu}m one order of magnitude smaller. This resolution is sufficient for the expected small vertical beamsizes at DELTA. The electron beamsize and emittance were measured with both systems at different electron beam energies of the storage ring. The theoretical values of the present optics are smaller than the measured emittance. So possible reasons for beam movements are investigated.</p> <div class="credits"> <p class="dwt_author">Berges, U. [DELTA, University of Dortmund, Maria-Goeppert-Mayer Str. 2, 4421 Dortmund (Germany); Fachbereich Physik, University of Dortmund, Otto-Hahn-Str. 4, 44221 Dortmund (Germany)</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-05-12</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">159</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013JLTP..172..162J"> <span id="translatedtitle">A Continuously Operating, Flux Locked, Superfluid <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We report the characteristics of a flux locked, superfluid 4He <span class="hlt">interferometer</span> that can continuously measure time-varying rotation rates. We describe the principles underlying the <span class="hlt">interferometer</span>, including the dynamics of a superfluid chemical potential battery used to obtain continuous operation. We also discuss noise and drift issues and their possible amelioration.</p> <div class="credits"> <p class="dwt_author">Joshi, Aditya; Packard, Richard</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">160</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/67754"> <span id="translatedtitle">CIST....CORRTEX <span class="hlt">interferometer</span> simulation test</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Testing was performed in order to validate and cross calibrate an RF <span class="hlt">interferometer</span> and the crush threshold of cable. Nitromethane was exploded (inside of PVC pipe). The explosion was used to crush the <span class="hlt">interferometer</span> sensor cables which had been placed inside and outside the pipe. Results are described.</p> <div class="credits"> <p class="dwt_author">Heinle, R.A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-12-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_7");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a style="font-weight: bold;">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_9");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_8 div --> <div id="page_9" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_8");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a style="font-weight: bold;">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_10");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">161</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1532254"> <span id="translatedtitle">In-line Sagnac <span class="hlt">interferometer</span> current sensor</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The authors demonstrate for the first time a near shot noise limited in-line Sagnac <span class="hlt">interferometer</span> current sensor. It is shown to have a number of advantages over the optical current sensors based on polarimetric Faraday and Faraday\\/Sagnac loop <span class="hlt">interferometer</span> topologies, including lower sensitivity to environmental disturbances, less demanding optical components, and easy installation.</p> <div class="credits"> <p class="dwt_author">J. Blake; P. Tantaswadi; R. T. de Carvalho</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">162</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21175912"> <span id="translatedtitle">Dual-prism <span class="hlt">interferometer</span> for collimation testing</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">An air-wedge lateral-shear <span class="hlt">interferometer</span> using two prisms is presented. With a variable shear, the <span class="hlt">interferometer</span> is suitable for testing collimation of a wide range of beam sizes down to a few millimeters in diameter. No antireflection coatings are necessary. Collimation for a light source with short coherent length is also demonstrated.</p> <div class="credits"> <p class="dwt_author">Hii, King Ung; Kwek, Kuan Hiang</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-10</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">163</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.atomwave.org/otherarticles/greenbergthesis.pdf"> <span id="translatedtitle">AN ATOM <span class="hlt">INTERFEROMETER</span> GYROSCOPE JAMES GREENBERG</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/eprints/">E-print Network</a></p> <p class="result-summary">AN ATOM <span class="hlt">INTERFEROMETER</span> GYROSCOPE By JAMES GREENBERG A Thesis Submitted to the Honors College gyroscope that is sensitive to the abso- lute rotation rate of the lab with respect to an inertial frame. We accelerations of ±0.005g and absolute rotation rates of ±0.5E. Sensitive atom <span class="hlt">interferometer</span> gyroscopes</p> <div class="credits"> <p class="dwt_author">Cronin, Alex D.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">164</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19820003099&hterms=Plato&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DPlato"> <span id="translatedtitle">Planetary <span class="hlt">radar</span> studies</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">A catalog of lunar and <span class="hlt">radar</span> anomalies was generated to provide a base for comparison with Venusian <span class="hlt">radar</span> signatures. The relationships between lunar <span class="hlt">radar</span> anomalies and regolith processes were investigated, and a consortium was formed to compare lunar and Venusian <span class="hlt">radar</span> images of craters. Time was scheduled at the Arecibo Observatory to use the 430 MHz <span class="hlt">radar</span> to obtain high resolution <span class="hlt">radar</span> maps of six areas of the lunar suface. Data from 1978 observations of Mare Serenitas and Plato are being analyzed on a PDP 11/70 computer to construct the computer program library necessary for the eventual reduction of the May 1981 and subsequent data acquisitions. Papers accepted for publication are presented.</p> <div class="credits"> <p class="dwt_author">Thompson, T. W.; Cutts, J. A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">165</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/215465"> <span id="translatedtitle">Laser <span class="hlt">radar</span> in robotics</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">In this paper the authors describe the basic operating principles of laser <span class="hlt">radar</span> sensors and the typical algorithms used to process laser <span class="hlt">radar</span> imagery for robotic applications. The authors review 12 laser <span class="hlt">radar</span> sensors to illustrate the variety of systems that have been applied to robotic applications wherein information extracted from the laser <span class="hlt">radar</span> data is used to automatically control a mechanism or process. Next, they describe selected robotic applications in seven areas: autonomous vehicle navigation, walking machine foot placement, automated service vehicles, manufacturing and inspection, automotive, military, and agriculture. They conclude with a discussion of the status of laser <span class="hlt">radar</span> technology and suggest trends seen in the application of laser <span class="hlt">radar</span> sensors to robotics. Many new applications are expected as the maturity level progresses and system costs are reduced.</p> <div class="credits"> <p class="dwt_author">Carmer, D.C.; Peterson, L.M. [Environmental Research Inst. of Michigan, Ann Arbor, MI (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-02-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">166</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1984IEEEP..72..540B"> <span id="translatedtitle">CHIRP Doppler <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The present investigation is concerned with the concept of a combination of the clinical procedure of reconstruction tomography with the <span class="hlt">radar</span> processing for linear FM pulse compression. An approach based on such a combination is to be employed to map <span class="hlt">radar</span> backscatter energy. <span class="hlt">Radar</span> systems employing pulse compression of linear frequency modulated (CHIRP) pulses are considered along with the inversion formula employed by reconstruction tomography. The conventional system enabling <span class="hlt">radar</span> backscatter mapping is based on pulse-Doppler <span class="hlt">radar</span> which basically incorporates range-gated spectrum analysis. CHIRP Doppler <span class="hlt">radar</span> represents a potential alternative. Advantages are related to an absence of requirements to maintain coherence from pulse to pulse, and the suppression of interference due to second-time-around signals. Raabe (1976) has discussed an application involving the imaging of the wakes of reentering space vehicles.</p> <div class="credits"> <p class="dwt_author">Bernfeld, M.</p> <p class="dwt_publisher"></p> <p class="publishDate">1984-04-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">167</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ee.caltech.edu/EE/Groups/dsp/ppv/papers/conference08post/Asil09/PPVAsil09main.pdf"> <span id="translatedtitle">MIMO <span class="hlt">radar</span>, SIMO <span class="hlt">radar</span>, and IFIR <span class="hlt">radar</span>: a P. P. Vaidyanathan and Piya Pal</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/eprints/">E-print Network</a></p> <p class="result-summary">MIMO <span class="hlt">radar</span>, SIMO <span class="hlt">radar</span>, and IFIR <span class="hlt">radar</span>: a comparison P. P. Vaidyanathan and Piya Pal Dept and SIMO <span class="hlt">radar</span> systems for the case where the transmitter and receiver are collocated. The simplicity of the application allows one to see clearly where the advantages of MIMO <span class="hlt">radar</span> come from, and what the tradeoffs are</p> <div class="credits"> <p class="dwt_author">Vaidyanathan, P. P.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">168</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1537321"> <span id="translatedtitle">Improving on police <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The use of lasers, cameras, and advanced signal processing to help isolate individual offenders on crowded highways is discussed. The limitations of the predominant <span class="hlt">radar</span> in use today, namely down-the-road Doppler-<span class="hlt">radar</span> in which the axis of the antenna is directed along the line of travel of the target vehicle, are described. The potential of video records, across-the-road <span class="hlt">radar</span>, and both</p> <div class="credits"> <p class="dwt_author">P. D. Fisher</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">169</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=https://www.meted.ucar.edu/training_module.php?id=968"> <span id="translatedtitle">Caribbean <span class="hlt">Radar</span> Cases</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">This module presents <span class="hlt">radar</span> case studies taken from events in the Caribbean that highlight <span class="hlt">radar</span> signatures of severe weather. These cases include examples of deep convection, squall lines, bow echoes, tornadoes, and heavy rain resulting in flooding. Each case study includes a discussion of the conceptual models of each type of event as a review before showing the <span class="hlt">radar</span> signatures and allowing the learner to analyze each one.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">2014-09-14</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">170</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.teachengineering.org/view_activity.php?url=collection/uta_/activities/uta_invisible/uta_invisible_activity1.xml"> <span id="translatedtitle">The Invisible <span class="hlt">Radar</span> Triangle</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">Students learn about <span class="hlt">radar</span> imaging and its various military and civilian applications that include recognition and detection of human-made targets, and the monitoring of space, deforestation and oil spills. They learn how the concepts of similarity and scaling are used in <span class="hlt">radar</span> imaging to create three-dimensional models of various targets. Students apply the critical attributes of similar figures to create scale models of a <span class="hlt">radar</span> imaging scenario using infrared range sensors (to emulate <span class="hlt">radar</span> functions) and toy airplanes (to emulate targets). They use technology tools to measure angles and distances, and relate the concept of similar figures to real-world applications.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">2014-09-18</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">171</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2003SPIE.4852...79B"> <span id="translatedtitle"><span class="hlt">Interferometer</span> real time control development for SIM</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Real Time Control (RTC) for the Space Interferometry Mission will build on the real time core <span class="hlt">interferometer</span> control technology under development at JPL since the mid 1990s, with heritage from the ground based MKII and Palomar Testbed <span class="hlt">Interferometer</span> projects developed in the late '80s and early '90s. The core software and electronics technology for SIM <span class="hlt">interferometer</span> real time control is successfully operating on several SIM technology demonstration testbeds, including the Real-time <span class="hlt">Interferometer</span> Control System Testbed, System Testbed-3, and the Microarcsecond Metrology testbed. This paper provides an overview of the architecture, design, integration, and test of the SIM flight <span class="hlt">interferometer</span> real time control to meet challenging flight system requirements for the high processor throughput, low-latency interconnect, and precise synchronization to support microarcsecond-level astrometric measurements for greater than five years at 1 AU in Earth-trailing orbit. The electronics and software architecture of the <span class="hlt">interferometer</span> real time control core and its adaptation to a flight design concept are described. Control loops for pointing and pathlength control within each of four flight <span class="hlt">interferometers</span> and for coordination of control and data across <span class="hlt">interferometers</span> are illustrated. The nature of onboard data processing to fit average downlink rates while retaining post-processed astrometric measurement precision and accuracy is also addressed. <span class="hlt">Interferometer</span> flight software will be developed using a software simulation environment incorporating models of the metrology and starlight sensors and actuators to close the real time control loops. RTC flight software and instrument flight electronics will in turn be integrated utilizing the same simulation architecture for metrology and starlight component models to close real time control loops and verify RTC functionality and performance prior to delivery to flight <span class="hlt">interferometer</span> system integration at Lockheed Martin's Sunnyvale facility. A description is provided of the test environment architecture supporting the RTC path to flight.</p> <div class="credits"> <p class="dwt_author">Bell, Charles E.</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-02-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">172</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://vision.unige.ch/publications/postscript/2001/GeneralizedRadarRadiometryImagingProblems.pdf"> <span id="translatedtitle">Generalized <span class="hlt">radar</span>/radiometry imaging problems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/eprints/">E-print Network</a></p> <p class="result-summary">Paper Generalized <span class="hlt">radar</span>/radiometry imaging problems Ivan Prudyus, Sviatoslav Voloshynovskiy, Andriy- ing simulation based on <span class="hlt">radar</span>, synthetic aperture <span class="hlt">radar</span> (SAR) and radiometry systems are presented systems, synthetic aperture <span class="hlt">radar</span>, spatio-temporal imaging. 1. Introduction Resolution of <span class="hlt">radar</span></p> <div class="credits"> <p class="dwt_author">Genève, Université de</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">173</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/985339"> <span id="translatedtitle">X-ray shearing <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">An x-ray <span class="hlt">interferometer</span> for analyzing high density plasmas and optically opaque materials includes a point-like x-ray source for providing a broadband x-ray source. The x-rays are directed through a target material and then are reflected by a high-quality ellipsoidally-bent imaging crystal to a diffraction grating disposed at 1.times. magnification. A spherically-bent imaging crystal is employed when the x-rays that are incident on the crystal surface are normal to that surface. The diffraction grating produces multiple beams which interfere with one another to produce an interference pattern which contains information about the target. A detector is disposed at the position of the image of the target produced by the interfering beams.</p> <div class="credits"> <p class="dwt_author">Koch, Jeffrey A. (Livermore, CA)</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-07-08</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">174</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/6252280"> <span id="translatedtitle">Beam shuttering <span class="hlt">interferometer</span> and method</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">A method and apparatus resulting in the simplification of phase shifting interferometry by eliminating the requirement to know the phase shift between interferograms or to keep the phase shift between interferograms constant. The present invention provides a simple, inexpensive means to shutter each independent beam of the <span class="hlt">interferometer</span> in order to facilitate the data acquisition requirements for optical interferometry and phase shifting interferometry. By eliminating the requirement to know the phase shift between interferograms or to keep the phase shift constant, a simple, economical means and apparatus for performing the technique of phase shifting interferometry is provide which, by thermally expanding a fiber optical cable changes the optical path distance of one incident beam relative to another.</p> <div class="credits"> <p class="dwt_author">Deason, V.A.; Lassahn, G.D.</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-07-27</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">175</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/868875"> <span id="translatedtitle">Beam shuttering <span class="hlt">interferometer</span> and method</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">A method and apparatus resulting in the simplification of phase shifting interferometry by eliminating the requirement to know the phase shift between interferograms or to keep the phase shift between interferograms constant. The present invention provides a simple, inexpensive means to shutter each independent beam of the <span class="hlt">interferometer</span> in order to facilitate the data acquisition requirements for optical interferometry and phase shifting interferometry. By eliminating the requirement to know the phase shift between interferograms or to keep the phase shift constant, a simple, economical means and apparatus for performing the technique of phase shifting interferometry is provide which, by thermally expanding a fiber optical cable changes the optical path distance of one incident beam relative to another.</p> <div class="credits"> <p class="dwt_author">Deason, Vance A. (Idaho Falls, ID); Lassahn, Gordon D. (Idaho Falls, ID)</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">176</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20000075269&hterms=FOLIAGE&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DFOLIAGE"> <span id="translatedtitle">GeoSAR: A <span class="hlt">Radar</span> Terrain Mapping System for the New Millennium</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">GeoSAR Geographic Synthetic Aperture <span class="hlt">Radar</span>) is a new 3 year effort to build a unique, dual-frequency, airborne Interferometric SAR for mapping of terrain. This is being pursued via a Consortium of the Jet Propulsion Laboratory (JPL), Calgis, Inc., and the California Department of Conservation. The airborne portion of this system will operate on a Calgis Gulfstream-II aircraft outfitted with P- and X-band Interferometric SARs. The ground portions of this system will be a suite of Flight Planning Software, an IFSAR Processor and a <span class="hlt">Radar</span>-GIS Workstation. The airborne P-band and X-band <span class="hlt">radars</span> will be constructed by JPL with the goal of obtaining foliage penetration at the longer P-band wavelengths. The P-band and X-band <span class="hlt">radar</span> will operate at frequencies of 350 Mhz and 9.71 Ghz with bandwidths of either 80 or 160 Mhz. The airborne <span class="hlt">radars</span> will be complemented with airborne laser system for measuring antenna positions. Aircraft flight lines and <span class="hlt">radar</span> operating instructions will be computed with the Flight Planning Software The ground processing will be a two-step step process. First, the raw <span class="hlt">radar</span> data will be processed into <span class="hlt">radar</span> images and <span class="hlt">interferometer</span> derived Digital Elevation Models (DEMs). Second, these <span class="hlt">radar</span> images and DEMs will be processed with a <span class="hlt">Radar</span> GIS Workstation which performs processes such as Projection Transformations, Registration, Geometric Adjustment, Mosaicking, Merging and Database Management. JPL will construct the IFSAR Processor and Calgis, Inc. will construct the <span class="hlt">Radar</span> GIS Workstation. The GeoSAR Project was underway in November 1996 with a goal of having the <span class="hlt">radars</span> and laser systems fully integrated onto the Calgis Gulfstream-II aircraft in early 1999. Then, Engineering Checkout and Calibration-Characterization Flights will be conducted through November 1999. The system will be completed at the end of 1999 and ready for routine operations in the year 2000.</p> <div class="credits"> <p class="dwt_author">Thompson, Thomas; vanZyl, Jakob; Hensley, Scott; Reis, James; Munjy, Riadh; Burton, John; Yoha, Robert</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">177</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20110016436&hterms=Java&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DJava"> <span id="translatedtitle">Java <span class="hlt">Radar</span> Analysis Tool</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Java <span class="hlt">Radar</span> Analysis Tool (JRAT) is a computer program for analyzing two-dimensional (2D) scatter plots derived from <span class="hlt">radar</span> returns showing pieces of the disintegrating Space Shuttle Columbia. JRAT can also be applied to similar plots representing <span class="hlt">radar</span> returns showing aviation accidents, and to scatter plots in general. The 2D scatter plots include overhead map views and side altitude views. The superposition of points in these views makes searching difficult. JRAT enables three-dimensional (3D) viewing: by use of a mouse and keyboard, the user can rotate to any desired viewing angle. The 3D view can include overlaid trajectories and search footprints to enhance situational awareness in searching for pieces. JRAT also enables playback: time-tagged <span class="hlt">radar</span>-return data can be displayed in time order and an animated 3D model can be moved through the scene to show the locations of the Columbia (or other vehicle) at the times of the corresponding <span class="hlt">radar</span> events. The combination of overlays and playback enables the user to correlate a <span class="hlt">radar</span> return with a position of the vehicle to determine whether the return is valid. JRAT can optionally filter single <span class="hlt">radar</span> returns, enabling the user to selectively hide or highlight a desired <span class="hlt">radar</span> return.</p> <div class="credits"> <p class="dwt_author">Zaczek, Mariusz P.</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">178</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/46789035"> <span id="translatedtitle">Phased-array <span class="hlt">radars</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The operating principles, technology, and applications of phased-array <span class="hlt">radars</span> are reviewed and illustrated with diagrams and photographs. Consideration is given to the antenna elements, circuitry for time delays, phase shifters, pulse coding and compression, and hybrid <span class="hlt">radars</span> combining phased arrays with lenses to alter the beam characteristics. The capabilities and typical hardware of phased arrays are shown using the US</p> <div class="credits"> <p class="dwt_author">Eli Brookner</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">179</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/52033203"> <span id="translatedtitle"><span class="hlt">Radar</span> image interpretability analysis</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The utility of <span class="hlt">radar</span> images with respect to trained image interpreter ability to identify, classify and detect specific terrain features (linear, natural area, complex area features, and individual man-made features) was qualitatively determined. Further, <span class="hlt">radar</span> images were evaluated with respect to their utility for determining vehicle movement potential and the level of activity within the test areas. Because there are</p> <div class="credits"> <p class="dwt_author">V. S. Frost; J. A. Stiles; J. C. Holtzman</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">180</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19750008534&hterms=pressure+range+mega+pa+01-10&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dpressure%2Brange%2Bmega%2Bpa%2B01-10"> <span id="translatedtitle">Noncooperative rendezvous <span class="hlt">radar</span> system</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">A fire control <span class="hlt">radar</span> system was developed, assembled, and modified. The baseline system and modified angle tracking system are described along with the performance characteristics of the baseline and modified systems. Proposed changes to provide additional techniques for <span class="hlt">radar</span> evaluation are presented along with flight test data.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">1974-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_8");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a style="font-weight: bold;">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_10");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_9 div --> <div id="page_10" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_9");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a style="font-weight: bold;">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_11");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">181</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/20653052"> <span id="translatedtitle">X-ray <span class="hlt">Interferometer</span> Using Prism Optics</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Two-beam X-ray <span class="hlt">interferometer</span> using refractive optics has been developed. A prism made of acrylic resin is used as the beam deflector for hard X-ray wavefront dividing <span class="hlt">interferometer</span>. This configuration is the same as that of the Fresnel's bi-prism <span class="hlt">interferometer</span> or the Leith-Upatnieks type two-beam holography in visible light region. Therefore, quantitative analysis of the degree of transversal coherence can be performed by measuring the visibility of interference fringes. It is also possible to realize two-beam holographic imaging in hard X-ray regions.</p> <div class="credits"> <p class="dwt_author">Suzuki, Yoshio [JASRI/SPring-8 Mikazuki, Hyogo 6791-5198 (Japan)</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-05-12</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">182</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://southport.jpl.nasa.gov/cdrom/sirced03/cdrom/DOCUMENT/HTML/LESSONS/MODULE04.HTM"> <span id="translatedtitle">Looking at <span class="hlt">Radar</span> Images</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">These activities pertain to the value of the different types of images, including a false color mosaic, a Compressed Stokes image, a vegetation map and key, and various ground photographs. Students are given specific directions on how to decide what features of a <span class="hlt">radar</span> image indicate such structures as upland forest, clear-cut areas, and roads. In a second activity, students look at the <span class="hlt">radar</span> images to see if they can produce a vegetation map similar to the one they have been given. The third activity introduces 15 Decade Volcanoes that pose a particular threat to humans. Using the Decade Volcanoes as examples, students view <span class="hlt">radar</span> images of volcanoes that occur around the world. The final exercise is aimed at helping students distinguish the differences between <span class="hlt">radar</span> image data and visible photographs. Students will look at <span class="hlt">radar</span> data and photographs of three sites taken by the astronauts.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">183</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.loc.gov/pictures/collection/hh/item/mi0425.photos.340243p/"> <span id="translatedtitle">5. VIEW EAST, height finder <span class="hlt">radar</span> towers, <span class="hlt">radar</span> tower (unknown ...</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p class="result-summary">5. VIEW EAST, height finder <span class="hlt">radar</span> towers, <span class="hlt">radar</span> tower (unknown function), prime search <span class="hlt">radar</span> tower, operations building, and central heating plant - Fort Custer Military Reservation, P-67 <span class="hlt">Radar</span> Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">184</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.loc.gov/pictures/collection/hh/item/mi0425.photos.340242p/"> <span id="translatedtitle">4. VIEW NORTHEAST, <span class="hlt">radar</span> tower (unknown function), prime search <span class="hlt">radar</span> ...</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p class="result-summary">4. VIEW NORTHEAST, <span class="hlt">radar</span> tower (unknown function), prime search <span class="hlt">radar</span> tower, emergency power building, and height finder <span class="hlt">radar</span> tower - Fort Custer Military Reservation, P-67 <span class="hlt">Radar</span> Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">185</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.latp.univ-mrs.fr/~preaux/PDF/IEEE_raout_preaux.pdf"> <span id="translatedtitle">Browse > Conferences> <span class="hlt">Radar</span> Conference, 2008. <span class="hlt">RADAR</span> ... INDEX TERMS</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/eprints/">E-print Network</a></p> <p class="result-summary">Browse > Conferences> <span class="hlt">Radar</span> Conference, 2008. <span class="hlt">RADAR</span> ... INDEX TERMS REFERENCES CITING DOCUMENTS Force, MorphoAnalysis in Signal Process. Lab., Salon-de-Provence This paper appears in: <span class="hlt">Radar</span> Conference, 2008. <span class="hlt">RADAR</span> '08. IEEE Issue Date: 26-30 May 2008 On page(s): 1 - 5 Location: Rome ISSN: 1097-5659 Print</p> <div class="credits"> <p class="dwt_author">Préaux, Jean-Philippe</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">186</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20120009289&hterms=atom&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Datom"> <span id="translatedtitle">Comparative Sensitivities of Gravitational Wave Detectors Based on Atom <span class="hlt">Interferometers</span> and Light <span class="hlt">Interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">We consider a class of proposed gravitational wave detectors based on multiple atomic <span class="hlt">interferometers</span> separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, non-inertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light <span class="hlt">interferometers</span>. We find that atom <span class="hlt">interferometers</span> and light <span class="hlt">interferometers</span> are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g. multiple arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and favors the atom <span class="hlt">interferometers</span> in the low-frequency limit, although the limit in both cases is severe. Whether this potential advantage outweighs the additional complexity associated with including atom <span class="hlt">interferometers</span> will require further study.</p> <div class="credits"> <p class="dwt_author">Baker, John G.; Thorpe, J. I.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">187</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.met.tamu.edu/class/atmo151/tut/radar/radmain.html"> <span id="translatedtitle">Use and Interpretation of <span class="hlt">Radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">This undergraduate meteorology tutorial from Texas A&M University discusses the basic principles of operation of weather <span class="hlt">radars</span>, describes how to interpret <span class="hlt">radar</span> mosaics, and discusses the use of <span class="hlt">radar</span> in weather forecasting. Students learn the relationship between range and elevation and how to use <span class="hlt">radar</span> images and mosaics in short-range forecasting.</p> <div class="credits"> <p class="dwt_author">John Nielsen-Gammon</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">188</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ars.usda.gov/research/publications/Publications.htm?seq_no_115=218762"> <span id="translatedtitle">Ground-penetrating <span class="hlt">radar</span> methods</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ars.usda.gov/services/TekTran.htm">Technology Transfer Automated Retrieval System (TEKTRAN)</a></p> <p class="result-summary">Ground-penetrating <span class="hlt">radar</span> geophysical methods are finding greater and greater use in agriculture. With the ground-penetrating <span class="hlt">radar</span> (GPR) method, an electromagnetic radio energy (<span class="hlt">radar</span>) pulse is directed into the subsurface, followed by measurement of the elapsed time taken by the <span class="hlt">radar</span> signal as it ...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">189</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19720048111&hterms=induced+polarization&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dinduced%2Bpolarization"> <span id="translatedtitle">Polarization mismatch errors in radio phase <span class="hlt">interferometers</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">An analysis is presented which deals with the effects of polarization mismatch errors on the accuracy of a phase <span class="hlt">interferometer</span> used for position location of unknown emitters relative to known calibration emitters. Closed-form expressions for the induced phase difference between <span class="hlt">interferometer</span> antennas are derived for several combinations of receiving and transmitting antenna polarizations. Errors contributed by mechanical misalignment between antennas, as well as effects of power loss attributable to polarization mismatch, are also considered. The analysis leads to the conclusion that circularly polarized <span class="hlt">interferometer</span> and transmitter antennas are best suited for the position location application, if it is assumed that polarization tracking of the <span class="hlt">interferometer</span> antennas is not available. It is shown that a reasonable amount of ellipticity can be tolerated before the phase error becomes significant.</p> <div class="credits"> <p class="dwt_author">Muehldorf, E. I.; Teichman, M. A.; Kramer, E.</p> <p class="dwt_publisher"></p> <p class="publishDate">1972-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">190</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1983SPIE..429...22."> <span id="translatedtitle">A Heterodyne <span class="hlt">Interferometer</span> For Testing Laser Diodes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A heterodyne, Mach-Zehnder <span class="hlt">interferometer</span> system has been developed for testing the wavefront quality of laser diode collimator pens. The testing system is described and the problems associated with testing laser diodes are discussed.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">1983-11-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">191</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014AnPhy.350...95M"> <span id="translatedtitle">The effect of rotations on Michelson <span class="hlt">interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In the contest of the special theory of relativity, it is shown that uniform rotations induce a phase shift in Michelson <span class="hlt">interferometers</span>. The effect is second order in the ratio of the <span class="hlt">interferometer</span>'s speed to the speed of light, further suppressed by the ratio of the <span class="hlt">interferometer</span>'s arms length to the radius of rotation and depends on the <span class="hlt">interferometer</span>'s position in the co-rotating frame. The magnitude of the phase shift is just beyond the sensitivity of turntable rotated optical resonators used in present tests of Lorentz invariance. It grows significantly large in Earth's rotated kilometer-scale Fabry-Perot enhanced interferometric gravitational-wave detectors where it appears as a constant bias. The effect can provide the means of sensing center and radius of rotations.</p> <div class="credits"> <p class="dwt_author">Maraner, Paolo</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">192</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://dspace.mit.edu/handle/1721.1/88408"> <span id="translatedtitle">Active noise cancellation in a suspended <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/eprints/">E-print Network</a></p> <p class="result-summary">We demonstrate feed-forward vibration isolation on a suspended Fabry-Perot <span class="hlt">interferometer</span> using Wiener filtering and a variant of the common least mean square adaptive filter algorithm. We compare the experimental results ...</p> <div class="credits"> <p class="dwt_author">Driggers, Jennifer C.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">193</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/22380106"> <span id="translatedtitle">Active noise cancellation in a suspended <span class="hlt">interferometer</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">We demonstrate feed-forward vibration isolation on a suspended Fabry-Perot <span class="hlt">interferometer</span> using Wiener filtering and a variant of the common least mean square adaptive filter algorithm. We compare the experimental results with theoretical estimates of the cancellation efficiency. Using data from the recent Laser <span class="hlt">Interferometer</span> Gravitational Wave Observatory (LIGO) Science Run, we also estimate the impact of this technique on full scale gravitational wave <span class="hlt">interferometers</span>. In the future, we expect to use this technique also to remove acoustic, magnetic, and gravitational noise perturbations from the LIGO <span class="hlt">interferometers</span>. This noise cancellation technique is simple enough to implement in standard laboratory environments and can be used to improve signal-to-noise ratio for a variety of high precision experiments. PMID:22380106</p> <div class="credits"> <p class="dwt_author">Driggers, Jennifer C; Evans, Matthew; Pepper, Keenan; Adhikari, Rana</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-02-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">194</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://repository.tamu.edu/handle/1969.1/ETD-TAMU-1993-THESIS-D666"> <span id="translatedtitle">Temperature compensated two-mode fiber <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/eprints/">E-print Network</a></p> <p class="result-summary">In this thesis we propose an innovative approach of designing and implementing a temperature compensated two-mode optical fiber <span class="hlt">interferometer</span> in a control system of stabilizing the wavelength of a laser. We give the procedure for designing...</p> <div class="credits"> <p class="dwt_author">Doma, Jagdish Ramchandra</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">195</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014MsT..........4M"> <span id="translatedtitle">The VLA Atmospheric Phase <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The Atmospheric Phase <span class="hlt">Interferometer</span> (API) is a two-element atmospheric seeing monitor located at the Very Large Array (VLA) site. The instrument measures turbulent refractive index variation through the atmosphere by examining phase differences in a satellite beacon signal detected at two (or more) antennas. With this measurement, the VLA scheduling software is able to consider atmospheric stability when determining which frequency observation to schedule next. We are in the process of extending this two-element <span class="hlt">interferometer</span> to four elements, which will allow us to measure the turbulence in two dimensions and at multiple length scales. This thesis will look at some statistical properties of turbulence, the effects of atmospheric stability on radio interferometric observations, and discuss details of the instrument and the data that it collects. The thesis will also cover some techniques and principles of signal processing, and an analysis of some data from the instrument. The results demonstrate that other surface atmospheric variables (e.g. windspeed, water vapor pressure) show the same structure function exponent as the atmospheric phase fluctuations. In particular, the structure functions of water vapor partial pressure and wind speed show the same exponent as the phase. Though the agreement between meteorological variables and atmospheric phase is scientifically satisfying, these surface measurements are not nearly as sensitive as the API saturation phase measurement, and therefore cannot be used to schedule telescope time in its stead. What is informative about these results is that the similar structure functions for API and meteorological data are detecting reinforce the claim that both measurements represent turbulent transport, and not instrumental noise. Data from the instrument reveals that measurements are consistent with both Kolmogorov turbulence theory, and with prior observations. The API predominately measures three-dimensional isotropic turbulence, but is capable of seeing the transition to two-dimensional "thin screen" turbulence. There is evidence that water vapor scale height can be estimated from the API data. We can expect to be able measure and document variations in the water vapor scale height by looking at variation of structure function exponents. Once the reliability of the method is established, a series of altitude profiles could allow further validation of this method of scale height determination. We look at a method for statistical excision of instrumental noise from the data. The ability to discriminate noise from signal based on structure function exponent leads to a path to possible noise elimination techniques. With the redundant measurement baselines of the new API, experimental processing techniques such as this could be deployed on some baselines, but not others, leaving the production functions for VLA scheduling in a known state while allowing instrument improvement studies to proceed.</p> <div class="credits"> <p class="dwt_author">Morris, Keith</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">196</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1642172"> <span id="translatedtitle">Stroboscopic <span class="hlt">interferometer</span> system for dynamic MEMS characterization</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We describe a computer-controlled stroboscopic phase-shifting <span class="hlt">interferometer</span> system for measuring out-of-plane motions and deformations of MEMS structures with nanometer accuracy. To aid rapid device characterization, our system incorporates (1) an imaging <span class="hlt">interferometer</span> that records motion at many points simultaneously without point-by-point scanning, (2) an integrated computer-control and data-acquisition unit to automate measurement, and (3) an analysis package that generates sequences</p> <div class="credits"> <p class="dwt_author">Matthew R. Hart; Robert A. Conant; Kam Y. Lau; Richard S. Muller</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">197</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007OptCo.277...67K"> <span id="translatedtitle">Temporal impulse response of the Talbot <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The Talbot <span class="hlt">interferometer</span> has been shown earlier to act as an optical tapped delay-line in the time domain. The <span class="hlt">interferometer</span> is based on the self-imaging effect. It consists of two gratings separated by a multiple of the self-imaging distance. Here, we determine its temporal behaviour experimentally. First, the impulse response is measured directly in the time domain by means of femtosecond pulse technology and second, by spectroscopy we measure its power spectrum. Results confirm earlier theoretical considerations.</p> <div class="credits"> <p class="dwt_author">Knuppertz, Hans; Jahns, Jürgen; Grunwald, Rüdiger</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">198</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/873223"> <span id="translatedtitle">Single and double superimposing <span class="hlt">interferometer</span> systems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary"><span class="hlt">Interferometers</span> which can imprint a coherent delay on a broadband uncollimated beam are described. The delay value can be independent of incident ray angle, allowing interferometry using uncollimated beams from common extended sources such as lamps and fiber bundles, and facilitating Fourier Transform spectroscopy of wide angle sources. Pairs of such <span class="hlt">interferometers</span> matched in delay and dispersion can measure velocity and communicate using ordinary lamps, wide diameter optical fibers and arbitrary non-imaging paths, and not requiring a laser.</p> <div class="credits"> <p class="dwt_author">Erskine, David J. (Oakland, CA)</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">199</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19890018756&hterms=modelling+rainfall&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dmodelling%2Brainfall"> <span id="translatedtitle">Spaceborne meteorological <span class="hlt">radar</span> studies</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Various <span class="hlt">radar</span> designs and methods are studied for the estimation of rainfall parameters from space. An immediate goal is to support the development of the spaceborne <span class="hlt">radar</span> that has been proposed for the Tropical Rain Measuring Mission (TRMM). The effort is divided into two activities: a cooperative airborne rain measuring experiment with the Radio Research Laboratory of Japan (RRL), and the modelling of spaceborne weather <span class="hlt">radars</span>. An airborne rain measuring experiment was conducted at Wallops Flight Facility in 1985 to 1986 using the dual-wavelength <span class="hlt">radar</span>/radiometer developed by RRL. The data are presently being used to test a number of methods that are relevant to spaceborne weather <span class="hlt">radars</span>. An example is shown of path-averaged rain rates as estimated from three methods: the standard reflectivity rain rate method (Z-R), a dual-wavelength method, and a surface reference method. The results from the experiment shows for the first time the feasibility of using attenuation methods from space. The purposes of the modelling are twofold: to understand in a quantitative manner the relationships between a particular <span class="hlt">radar</span> design and its capability for estimating precipitation parameters and to help devise and test new methods. The models are being used to study the impact of various TRMM <span class="hlt">radar</span> designs on the accuracy of rain rate estimation as well as to test the performance of range-profiling algorithms, the mirror-image method, and some recently devised graphical methods for the estimation of the drop size distribution.</p> <div class="credits"> <p class="dwt_author">Meneghini, R.</p> <p class="dwt_publisher"></p> <p class="publishDate">1988-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">200</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1996SPIE.2747....2G"> <span id="translatedtitle"><span class="hlt">Radar</span> applications overview</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">During the fifty years since its initial development as a means of providing early warning of airborne attacks against allied countries during World War II, <span class="hlt">radar</span> systems have developed to the point of being highly mobile and versatile systems capable of supporting a wide variety of remote sensing applications. Instead of being tied to stationary land-based sites, <span class="hlt">radar</span> systems have found their way into highly mobile land vehicles as well as into aircraft, missiles, and ships of all sizes. Of all these applications, however, the most exciting revolution has occurred in the airborne platform arena where advanced technology <span class="hlt">radars</span> can be found in all shapes and sizes...ranging from the large AWACS and Joint STARS long range surveillance and targeting systems to small millimeter wave multi-spectral sensors on smart weapons that can detect and identify their targets through the use of highly sophisticated digital signal processing hardware and software. This paper presents an overview of these <span class="hlt">radar</span> applications with the emphasis on modern airborne sensors that span the RF spectrum. It will identify and describe the factors that influence the parameters of low frequency and ultra wide band <span class="hlt">radars</span> designed to penetrate ground and dense foliage environments and locate within them buried mines, enemy armor, and other concealed or camouflaged weapons of war. It will similarly examine the factors that lead to the development of airborne <span class="hlt">radar</span> systems that support long range extended endurance airborne surveillance platforms designed to detect and precision-located both small high speed airborne threats as well as highly mobile time critical moving and stationary surface vehicles. The mission needs and associated <span class="hlt">radar</span> design impacts will be contrasted with those of <span class="hlt">radar</span> systems designed for high maneuverability rapid acquisition tactical strike warfare platforms, and shorter range cued air-to-surface weapons with integral smart <span class="hlt">radar</span> sensors.</p> <div class="credits"> <p class="dwt_author">Greenspan, Marshall</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-06-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_9");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a style="font-weight: bold;">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_11");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_10 div --> <div id="page_11" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_10");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a style="font-weight: bold;">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_12");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">201</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/5031415"> <span id="translatedtitle">Achromatic self-referencing <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">A self-referencing Mach-Zehnder <span class="hlt">interferometer</span> is described for accurately measuring laser wavefronts over a broad wavelength range (for example, 600 nm to 900 nm). The apparatus directs a reference portion of an input beam to a reference arm and a measurement portion of the input beam to a measurement arm, recombines the output beams from the reference and measurement arms, and registers the resulting interference pattern ([open quotes]first[close quotes] interferogram) at a first detector. Optionally, subportions of the measurement portion are diverted to second and third detectors, which respectively register intensity and interferogram signals which can be processed to reduce the first interferogram's sensitivity to input noise. The reference arm includes a spatial filter producing a high quality spherical beam from the reference portion, a tilted wedge plate compensating for off-axis aberrations in the spatial filter output, and mirror collimating the radiation transmitted through the tilted wedge plate. The apparatus includes a thermally and mechanically stable baseplate which supports all reference arm optics, or at least the spatial filter, tilted wedge plate, and the collimator. The tilted wedge plate is mounted adjustably with respect to the spatial filter and collimator, so that it can be maintained in an orientation in which it does not introduce significant wave front errors into the beam propagating through the reference arm. The apparatus is polarization insensitive and has an equal path length configuration enabling measurement of radiation from broadband as well as closely spaced laser line sources. 3 figures.</p> <div class="credits"> <p class="dwt_author">Feldman, M.</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-04-19</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">202</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012SPIE.8445E..07M"> <span id="translatedtitle">Keck <span class="hlt">Interferometer</span> Nuller science highlights</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We report here on some of the major astronomical observations obtained by the Keck <span class="hlt">Interferometer</span> Nuller (KIN), the high dynamic range instrument recombining the Keck Telescopes at wavelengths of 8 to 13 microns. A few science targets were observed during the commissioning phase (2004-2007). These early observations aimed at demonstrating the KIN’s ability to spatially resolve and characterize circumstellar dust emission around a variety of targets, ranging from evolved stars to young debris disks. Science operations started then in 2008 with the more demanding KIN exozodi key science programs, augmented by observations of YSOs and hot debris disks between 2009 and 2011. The last KIN observations were gathered in 2011B, and the interpretation of some of the results depicted here is still preliminary (exo-zodi survey) or pending (complicated behavior observed in YSOs). We discuss in particular the initial results of the KIN’s exo-zodi observations, which targeted a total of 40 nearby main sequence single stars. We look for trends in this sample, searching for possible correlations between the measured KIN excesses and basic stellar properties such as spectral type or the presence of dust inferred from separate observations.</p> <div class="credits"> <p class="dwt_author">Mennesson, Bertrand; Millan-Gabet, Rafael; Colavita, M. M.; Serabyn, E.; Hinz, P.; Kuchner, M.; Liu, W.; Barry, R.; Stark, C.; Ragland, S.; Woillez, J.; Traub, W.; Absil, O.; Defrère, Denis; Augereau, J. C.; Lebreton, J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">203</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19780025753&hterms=anal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Danal"> <span id="translatedtitle">GEOS-3 ocean current investigation using <span class="hlt">radar</span> altimeter profiling. [Gulf Stream surface topography</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Both quasi-stationary and dynamic departures from the marine geoid were successfully detected using altitude measurements from the GEOS-3 <span class="hlt">radar</span> altimeter. The quasi-stationary departures are observed either as elevation changes in <span class="hlt">single</span> <span class="hlt">pass</span> profiles across the Gulf Stream or at the crowding of contour lines at the western and northern areas of topographic maps generated using altimeter data spanning one month or longer. Dynamic features such as current meandering and spawned eddies can be monitored by comparing monthly mean maps. Comparison of altimeter inferred eddies with IR detected thermal rings indicates agreement of the two techniques. Estimates of current velocity are made using derived slope estimates in conjunction with the geostrophic equation.</p> <div class="credits"> <p class="dwt_author">Leitao, C. D.; Huang, N. E.; Parra, C. G.</p> <p class="dwt_publisher"></p> <p class="publishDate">1978-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">204</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20140002070&hterms=radar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dradar"> <span id="translatedtitle"><span class="hlt">Radar</span> Remote Sensing</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">This lecture was just a taste of <span class="hlt">radar</span> remote sensing techniques and applications. Other important areas include Stereo <span class="hlt">radar</span> grammetry. PolInSAR for volumetric structure mapping. Agricultural monitoring, soil moisture, ice-mapping, etc. The broad range of sensor types, frequencies of observation and availability of sensors have enabled <span class="hlt">radar</span> sensors to make significant contributions in a wide area of earth and planetary remote sensing sciences. The range of applications, both qualitative and quantitative, continue to expand with each new generation of sensors.</p> <div class="credits"> <p class="dwt_author">Rosen, Paul A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">205</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://dspace.mit.edu/handle/1721.1/58911"> <span id="translatedtitle">GMTI MIMO <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/eprints/">E-print Network</a></p> <p class="result-summary">Multiple-input multiple-output (MIMO) extensions to <span class="hlt">radar</span> systems enable a number of advantages compared to traditional approaches. These advantages include improved angle estimation and target detection. In this paper, ...</p> <div class="credits"> <p class="dwt_author">Bliss, Daniel W., Jr.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">206</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=https://www.meted.ucar.edu/training_module.php?id=1021"> <span id="translatedtitle">Caribbean <span class="hlt">Radar</span> Products</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">This module provides examples of <span class="hlt">radar</span> imagery from various locations in the Caribbean to demonstrate the different types of images available. Also, examples of different meteorological and non meteorological features are presented to show features seen in island locations.</p> <div class="credits"> <p class="dwt_author">COMET</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-12-31</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">207</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pbslearningmedia.org/resource/phy03.sci.phys.energy.radar/"> <span id="translatedtitle">Imaging with <span class="hlt">Radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">This interactive activity from NOVA features synthetic aperture <span class="hlt">radar</span> (SAR), which uses radio waves to create high-quality images. Examine SAR images of Washington, D.C., and learn about this technology's unique advantages.</p> <div class="credits"> <p class="dwt_author">WGBH Educational Foundation</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-29</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">208</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.crh.noaa.gov/lmk/soo/88d/index.php"> <span id="translatedtitle">Doppler <span class="hlt">Radar</span> Technology</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">This resource provides an introduction to the function and uses of the The National Weather Service's (NWS) Weather Surveillance Doppler <span class="hlt">Radar</span> (WSR-88D). Topics include the components of the system, an overview of the products and overlays the system creates, and some example images with captions explaining what is being shown. There are also links to <span class="hlt">radar</span> meteorology tutorials and to information on training to use the system and interpret its imagery.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">209</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/6866222"> <span id="translatedtitle">Downhole pulse <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">A borehole logging tool generates a fast rise-time, short duration, high peak-power <span class="hlt">radar</span> pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. <span class="hlt">Radar</span> returns from geological discontinuities are sampled for transmission uphole. 7 figs.</p> <div class="credits"> <p class="dwt_author">Chang, Hsi-Tien</p> <p class="dwt_publisher"></p> <p class="publishDate">1987-09-28</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">210</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/866890"> <span id="translatedtitle">Downhole pulse <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A borehole logging tool generates a fast rise-time, short duration, high peak-power <span class="hlt">radar</span> pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. <span class="hlt">Radar</span> returns from geological discontinuities are sampled for transmission uphole.</p> <div class="credits"> <p class="dwt_author">Chang, Hsi-Tien (Albuquerque, NM)</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">211</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50714326"> <span id="translatedtitle">Adaptive MIMO <span class="hlt">radar</span> waveforms</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Multiple-Input, Multiple-Output (MIMO) <span class="hlt">radars</span> enhance performance by transmitting and receiving coded waveforms from multiple locations. To date, the theoretical literature on MIMO <span class="hlt">radar</span> has focused largely on the use of ldquoorthogonal waveforms.rdquo Practical approaches to approximate orthogonality (e.g., via waveforms characterized by low cross-correlation and low autocorrelation sidelobe levels) have also started to emerge. We show, however, that such waveforms</p> <div class="credits"> <p class="dwt_author">Daniel J. Rabideau; Lexington MA</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">212</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014OcDyn.tmp...74E"> <span id="translatedtitle">On wave <span class="hlt">radar</span> measurement</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The SAAB REX Wave<span class="hlt">Radar</span> sensor is widely used for platform-based wave measurement systems by the offshore oil and gas industry. It offers in situ surface elevation wave measurements at relatively low operational costs. Furthermore, there is adequate flexibility in sampling rates, allowing in principle sampling frequencies from 1 to 10 Hz, but with an angular microwave beam width of 10° and an implied ocean surface footprint in the order of metres, significant limitations on the spatial and temporal resolution might be expected. Indeed there are reports that the accuracy of the measurements from wave <span class="hlt">radars</span> may not be as good as expected. We review the functionality of a Wave<span class="hlt">Radar</span> using numerical simulations to better understand how Wave<span class="hlt">Radar</span> estimates compare with known surface elevations. In addition, we review recent field measurements made with a Wave<span class="hlt">Radar</span> set at the maximum sampling frequency, in the light of the expected functionality and the numerical simulations, and we include inter-comparisons between SAAB <span class="hlt">radars</span> and buoy measurements for locations in the North Sea.</p> <div class="credits"> <p class="dwt_author">Ewans, Kevin; Feld, Graham; Jonathan, Philip</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-08-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">213</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014OcDyn..64.1281E"> <span id="translatedtitle">On wave <span class="hlt">radar</span> measurement</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The SAAB REX Wave<span class="hlt">Radar</span> sensor is widely used for platform-based wave measurement systems by the offshore oil and gas industry. It offers in situ surface elevation wave measurements at relatively low operational costs. Furthermore, there is adequate flexibility in sampling rates, allowing in principle sampling frequencies from 1 to 10 Hz, but with an angular microwave beam width of 10° and an implied ocean surface footprint in the order of metres, significant limitations on the spatial and temporal resolution might be expected. Indeed there are reports that the accuracy of the measurements from wave <span class="hlt">radars</span> may not be as good as expected. We review the functionality of a Wave<span class="hlt">Radar</span> using numerical simulations to better understand how Wave<span class="hlt">Radar</span> estimates compare with known surface elevations. In addition, we review recent field measurements made with a Wave<span class="hlt">Radar</span> set at the maximum sampling frequency, in the light of the expected functionality and the numerical simulations, and we include inter-comparisons between SAAB <span class="hlt">radars</span> and buoy measurements for locations in the North Sea.</p> <div class="credits"> <p class="dwt_author">Ewans, Kevin; Feld, Graham; Jonathan, Philip</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">214</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://arxiv.org/pdf/1201.5656v1"> <span id="translatedtitle">Comparison of Atom <span class="hlt">Interferometers</span> and Light <span class="hlt">Interferometers</span> as Space-Based Gravitational Wave Detectors</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/eprints/">E-print Network</a></p> <p class="result-summary">We consider a class of proposed gravitational wave detectors based on multiple atomic <span class="hlt">interferometers</span> separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, non-inertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light <span class="hlt">interferometers</span>. We find that atom <span class="hlt">interferometers</span> and light <span class="hlt">interferometers</span> are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g. multiple arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and favors the atom <span class="hlt">interferometers</span> in the low-frequency limit, although the limit in both cases is severe.</p> <div class="credits"> <p class="dwt_author">John G. Baker; James Ira Thorpe</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-26</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">215</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20120011249&hterms=atom&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Datom"> <span id="translatedtitle">Comparison of Atom <span class="hlt">Interferometers</span> and Light <span class="hlt">Interferometers</span> as Space-Based Gravitational Wave Detectors</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">We consider a class of proposed gravitational wave detectors based on multiple atomic <span class="hlt">interferometers</span> separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, non-inertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light <span class="hlt">interferometers</span>. We find that atom <span class="hlt">interferometers</span> and light <span class="hlt">interferometers</span> are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g. multiple arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and favors the atom <span class="hlt">interferometers</span> in the low-frequency limit, although the limit in both cases is severe.</p> <div class="credits"> <p class="dwt_author">Baker, John G.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">216</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1993JGR....9810259T"> <span id="translatedtitle">Synthetic aperture <span class="hlt">radar</span> interferometry applied to ship-generated internal waves in the 1989 Loch Linnhe experiment</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary"><span class="hlt">Interferometer</span> synthetic aperture <span class="hlt">radar</span> images collected during the 1989 Loch Linnhe experiment showed mean Doppler variations across the phase of ship-generated internal waves that corresponded to "velocity" variations of the order of 50 to 100 cm/s. The in situ current data, however, showed surface currents associated with the internal wave features of the order of 5 to 10 cm/s and virtually ruled out the existence of surface currents as large as the <span class="hlt">interferometer</span>-inferred values. In this paper we show how the pixel-to-pixel phase difference measured by the Jet Propulsion Laboratory <span class="hlt">interferometer</span> is related to the mean Doppler frequency of the backscattered field. Model calculations are used to show how this frequency can sometimes change by a large amount, even when rather small surface currents are present. In particular, for winds blowing roughly across the internal wave features, as was the case for the <span class="hlt">interferometer</span> runs in Loch Linnhe, computations based on our wave-current interaction and time dependent scattering models show that changes in the mean Doppler frequency corresponding to large velocities can, in fact, be produced from the much smaller measured surface currents. We show that the larger <span class="hlt">interferometer</span> velocity estimates are essentially due to the different modulation strengths of the surface Bragg waves advancing toward and receding from the <span class="hlt">radar</span>. Thus for these crosswind conditions, care must be taken in converting the phase differences measured by the <span class="hlt">interferometer</span> to a surface current image. When the wind is aligned more nearly along the internal wave propagation direction, the mean Doppler shifts (and the phase differences) are dominated mostly by advection, and <span class="hlt">interferometer</span> current estimates are more accurate. C band computations predict that if the antenna spacing is small enough so that the fields from the two antennas remain correlated, then the C band <span class="hlt">interferometer</span> current estimates will be better than those at L band.</p> <div class="credits"> <p class="dwt_author">Thompson, D. R.; Jensen, J. R.</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-06-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">217</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/869806"> <span id="translatedtitle">Furnace control apparatus using polarizing <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing <span class="hlt">interferometer</span> is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the <span class="hlt">interferometer</span> by only one photon multiplier. In addition the <span class="hlt">interferometer</span> includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The <span class="hlt">interferometer</span> also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the <span class="hlt">interferometer</span> per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading.</p> <div class="credits"> <p class="dwt_author">Schultz, Thomas J. (Maumee, OH); Kotidis, Petros A. (Waban, MA); Woodroffe, Jaime A. (North Reading, MA); Rostler, Peter S. (Newton, MA)</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">218</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/869157"> <span id="translatedtitle">Process control system using polarizing <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing <span class="hlt">interferometer</span> is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the <span class="hlt">interferometer</span> by only one photon multiplier. In addition the <span class="hlt">interferometer</span> includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The <span class="hlt">interferometer</span> also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the <span class="hlt">interferometer</span> per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading.</p> <div class="credits"> <p class="dwt_author">Schultz, Thomas J. (Maumee, OH); Kotidis, Petros A. (Waban, MA); Woodroffe, Jaime A. (North Reading, MA); Rostler, Peter S. (Newton, MA)</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">219</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014PhRvA..90c2315W"> <span id="translatedtitle">Quantum correlations in a noisy neutron <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We investigate quantum coherences in the presence of noise by entangling the spin and path degrees of freedom of the output neutron beam from a noisy three-blade perfect crystal neutron <span class="hlt">interferometer</span>. We find that in the presence of dephasing noise on the path degree of freedom the entanglement of the output state reduces to 0, however the quantum discord remains nonzero for all noise values. Hence even in the presence of strong phase noise nonclassical correlations persist between the spin and the path of the neutron beam. This indicates that measurements performed on the spin of the neutron beam will induce a disturbance on the path state. We calculate the effect of the spin measurement by observing the changes in the observed contrast of the <span class="hlt">interferometer</span> for an output beam postselected on a given spin state. In doing so we demonstrate that these measurements allow us to implement a quantum eraser and a which-way measurement of the path taken by the neutron through the <span class="hlt">interferometer</span>. While strong phase noise removes the quantum eraser, the spin-filtered which-way measurement is robust to phase noise. We experimentally demonstrate this disturbance by comparing the contrasts of the output beam with and without spin measurements of three neutron <span class="hlt">interferometers</span> with varying noise strengths. This demonstrates that even in the presence of noise that suppresses path coherence and spin-path entanglement, a neutron <span class="hlt">interferometer</span> still exhibits uniquely quantum behavior.</p> <div class="credits"> <p class="dwt_author">Wood, Christopher J.; Abutaleb, Mohamed O.; Huber, Michael G.; Arif, Muhammad; Cory, David G.; Pushin, Dmitry A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">220</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19760024402&hterms=hybrid+transmission+case&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dhybrid%2Btransmission%2Bcase"> <span id="translatedtitle">High resolution Fourier <span class="hlt">interferometer</span>-spectrophotopolarimeter</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">A high-resolution Fourier <span class="hlt">interferometer</span>-spectrophotopolarimeter is provided using a single linear polarizer-analyzer the transmission axis azimuth of which is positioned successively in the three orientations of 0 deg, 45 deg, and 90 deg, in front of a detector; four flat mirrors, three of which are switchable to either of two positions to direct an incoming beam from an <span class="hlt">interferometer</span> to the polarizer-analyzer around a sample cell transmitted through a medium in a cell and reflected by medium in the cell; and four fixed focussing lenses, all located in a sample chamber attached at the exit side of the <span class="hlt">interferometer</span>. This arrangement can provide the distribution of energy and complete polarization state across the spectrum of the reference light entering from the <span class="hlt">interferometer</span>; the same light after a fixed-angle reflection from the sample cell containing a medium to be analyzed; and the same light after direct transmission through the same sample cell, with the spectral resolution provided by the <span class="hlt">interferometer</span>.</p> <div class="credits"> <p class="dwt_author">Fymat, A. L. (inventor)</p> <p class="dwt_publisher"></p> <p class="publishDate">1976-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_10");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a style="font-weight: bold;">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_12");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_11 div --> <div id="page_12" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_11");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a style="font-weight: bold;">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_13");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">221</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/35076"> <span id="translatedtitle">Furnace control apparatus using polarizing <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">A system for nondestructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing <span class="hlt">interferometer</span> is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the <span class="hlt">interferometer</span> by only one photon multiplier. In addition the <span class="hlt">interferometer</span> includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The <span class="hlt">interferometer</span> also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the <span class="hlt">interferometer</span> per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading. 38 figures.</p> <div class="credits"> <p class="dwt_author">Schultz, T.J.; Kotidis, P.A.; Woodroffe, J.A.; Rostler, P.S.</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-03-28</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">222</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://arxiv.org/pdf/1304.6935v3"> <span id="translatedtitle">Quantum correlations in a noisy neutron <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/eprints/">E-print Network</a></p> <p class="result-summary">We investigate quantum coherences in the presence of noise by entangling the spin and path degrees of freedom of the output neutron beam from a noisy three-blade perfect crystal neutron <span class="hlt">interferometer</span>. We find that in the presence of dephasing noise on the path degree of freedom the entanglement of the output state reduces to zero, however the quantum discord remains non-zero for all noise values. Hence even in the presence of strong phase noise non-classical correlations persist between the spin and path of the neutron beam. This indicates that measurements performed on the spin of the neutron beam will induce a disturbance on the path state. We calculate the effect of the spin measurement by observing the changes in the observed contrast of the <span class="hlt">interferometer</span> for an output beam post-selected on a given spin state. In doing so we demonstrate that these measurements allow us to implement a quantum eraser, and a which-way measurement of the path taken by the neutron through the <span class="hlt">interferometer</span>. While strong phase noise removes the quantum eraser, the spin-filtered which-way measurement is robust to phase noise. We experimentally demonstrate this disturbance by comparing the contrasts of the output beam with and without spin measurements of three neutron <span class="hlt">interferometers</span> with varying noise strengths. This demonstrates that even in the presence of noise that suppresses path coherence and spin-path entanglement, a neutron <span class="hlt">interferometer</span> still exhibits uniquely quantum behaviour.</p> <div class="credits"> <p class="dwt_author">Christopher J. Wood; David G. Cory; Mohamed O. Abutaleb; Michael G. Huber; Muhammad Arif; Dmitry A. Pushin</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-05-30</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">223</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011AGUFM.G13A0863L"> <span id="translatedtitle">Polarimetric Ground Based Interferometric <span class="hlt">Radar</span> for Surface Deformation Mapping</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Ground based interferometric <span class="hlt">radar</span> (GBIR) measurements of surface deformation at sub-millimeter sensitivity may be desirable for a number of earth science applications including terrain mapping and monitoring of landslide movements. Through University of Missouri (MU) led efforts, a portable polarimetric GBIR has been developed for surface deformation mapping. Fully polarimetric capabilities allow the application of polarimetric interferometry, scatterer decomposition, and other advanced polarimetric methods. Using open literature techniques, polarimetric calibration and absolute radiometric calibration using known targets may be performed. The MU GBIR radiates electromagnetic waves at a number of free space wavelengths including C-band approximately 5.7 cm and Ku-band about 1.8 cm. The initial mechanical deployment setup time is typically about 10 minutes. For image formation, the MU GBIR employs azimuth scanning, which may collect data for a <span class="hlt">single</span> <span class="hlt">pass</span> interferogram in 20 seconds for a 180 degree azimuth sweep. Initial inteferograms may be formed at the deployment site in near real time. Moreover, the MU GBIR can be removed and re-positioned at the same point with relatively high (geodetic-grade) precision. A number of field experiments have been performed at various sites using the system. Demonstration of millimeter and better sensitivity to deformation over the course of a day of data collects has been performed at a test site using the MU GBIR. Study results and further development progress will be presented. This project is sponsored by a grant from the National Science Foundation.</p> <div class="credits"> <p class="dwt_author">Legarsky, J. J.; Gomez, F. G.; Rosenblad, B.; Loehr, E.; Deng, H.; Held, B.; Jenkins, W.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">224</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://radarmet.atmos.colostate.edu/olduser/wxdave/notes/Ch1_History_Basic.pdf"> <span id="translatedtitle"><span class="hlt">Radar</span> Meteorology<span class="hlt">Radar</span> Meteorology Feb 20, 1941 10 cm (S-band) <span class="hlt">radar</span> used to track rain showers (Ligda)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/eprints/">E-print Network</a></p> <p class="result-summary"><span class="hlt">Radar</span> Meteorology<span class="hlt">Radar</span> Meteorology Feb 20, 1941 10 cm (S-band) <span class="hlt">radar</span> used to track rain showers similar observations in the early 1940's (U.S. Air Corps meteorologists receiving "<span class="hlt">radar</span>" training at MIT in 1943 First operational weather <span class="hlt">radar</span>, Panama, 1943 Science of <span class="hlt">radar</span> meteorology born from WWII research</p> <div class="credits"> <p class="dwt_author">Rutledge, Steven</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">225</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.loc.gov/pictures/collection/hh/item/ca1500.photos.012957p/"> <span id="translatedtitle">66. VIEW SHOWING HOLD FOR <span class="hlt">RADAR</span> CABLES AT <span class="hlt">RADAR</span> SITE, ...</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p class="result-summary">66. VIEW SHOWING HOLD FOR <span class="hlt">RADAR</span> CABLES AT <span class="hlt">RADAR</span> SITE, LOOKING NORTH Everett Weinreb, photographer, March 1988 - Mount Gleason Nike Missile Site, Angeles National Forest, South of Soledad Canyon, Sylmar, Los Angeles County, CA</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">226</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20060005576&hterms=hz+triangular+wave&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dhz%2Btriangular%2Bwave"> <span id="translatedtitle">Modeling the Laser <span class="hlt">Interferometer</span> Space Antenna Optics</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The Laser <span class="hlt">Interferometer</span> Space Antenna (LISA), shown below, will detect gravitational waves produced by objects such as binary black holes or objects falling into black holes (extreme mass ratio inspirals) over a frequency range of l0(exp -4) to 0.1 Hz. Within the conceptual frame work of Newtonian physics, a gravitational wave produces a strain, (Delta)l/l, with magnitudes of the order of Earth based gravitational wave detectors, such as the Laser <span class="hlt">Interferometer</span> Gravitational-Wave Observatory (LIGO) project, use Michelson <span class="hlt">interferometers</span> with arm lengths l = 4 km to detect these strains. Earth induced seismic noise limits ground-based instruments detecting gravitational waves with frequencies lower than approx. 1 Hz.</p> <div class="credits"> <p class="dwt_author">Waluschka, Eugene; Pedersen, Tracy R.; McNamara, paul</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">227</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/18542551"> <span id="translatedtitle">Computing extinction maps of star nulling <span class="hlt">interferometers</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Herein is discussed the performance of spaceborne nulling <span class="hlt">interferometers</span> searching for extra-solar planets, in terms of their extinction maps projected on-sky. In particular, it is shown that the designs of Spatial Filtering (SF) and Achromatic Phase Shifter (APS) subsystems, both required to achieve planet detection and characterization, can sensibly affect the nulling maps produced by a simple Bracewell <span class="hlt">interferometer</span>. Analytical relationships involving cross correlation products are provided and numerical simulations are performed, demonstrating marked differences in the aspect of extinction maps and the values of attained fringes contrasts. It is concluded that depending on their basic principles and designs, FS and APS will result in variable capacities for serendipitous discoveries of planets orbiting around their parent star. The mathematical relationships presented in this paper are assumed to be general, i.e. they should apply to other types of multi-apertures nulling <span class="hlt">interferometers</span>. PMID:18542551</p> <div class="credits"> <p class="dwt_author">Hénault, Francois</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-03-31</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">228</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1981SPIE..235..129L"> <span id="translatedtitle">Aspheric Surfaces Centration (Rotary Scan <span class="hlt">Interferometer</span>)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Tilt and offset of aspheric surfaces are detected by a narrow aperture <span class="hlt">interferometer</span> which performs a zonal rotary scan by means of a precise air-bearing spindle. Positioning of unknown aspheric surfaces with respect to machining or measuring apparatus requires centration of the samples (i.e. tilt and offset) and also longitudinal setting. The accuracy of the scanning <span class="hlt">interferometer</span> is based on the precise axis of rotation of an Intop-Watt-type air-bearing spindle which steers the contactlessly probing laser <span class="hlt">interferometer</span> beam on a conical path. Thus, a center and an axis of symmetry are defined. The system allows alignment of the aspheric surface and it also permits to detect coincidence between the scan-cone apex and the center of the sphere best fit to the zone being scanned.</p> <div class="credits"> <p class="dwt_author">Langenbeck, Peter</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">229</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://arrc.ou.edu/modules"> <span id="translatedtitle">Weather <span class="hlt">Radar</span> and Instrumentation: Laboratory Modules</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">These 16 <span class="hlt">radar</span> education modules, developed for the Weather <span class="hlt">Radar</span> and Instrumentation Curriculum at the University of Oklahoma, provide hands-on instruction for beginning, intermediate, or advanced students to learn about <span class="hlt">radar</span> systems, especially weather <span class="hlt">radar</span>. Topics include hardware, weather <span class="hlt">radar</span>, adaptive systems, advanced hydrometeors, applications of weather <span class="hlt">radar</span>, and atmospheric interpretations. The modules may be downloaded.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">230</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.loc.gov/pictures/collection/hh/item/nd0078.photos.199425p/"> <span id="translatedtitle">33. Perimeter acquisition <span class="hlt">radar</span> building room #320, perimeter acquisition <span class="hlt">radar</span> ...</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p class="result-summary">33. Perimeter acquisition <span class="hlt">radar</span> building room #320, perimeter acquisition <span class="hlt">radar</span> operations center (PAROC), contains the tactical command and control group equipment required to control the par site. Showing spacetrack monitor console - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition <span class="hlt">Radar</span> Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">231</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/49927735"> <span id="translatedtitle">Synthetic Aperture <span class="hlt">Radar</span> Simulation On <span class="hlt">Radar</span> Terrain Clutter</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The subject of this paper is related to a new method of Synthetic Aperture <span class="hlt">Radar</span> (i.e., SAR) simulation on <span class="hlt">radar</span> terrain clutter. Usually, images are simulated at pixel level after Doppler compression. In this case this study deals with the simulation of the raw signal at the output of the antenna i.e. for each pulse emitted by the <span class="hlt">radar</span> during</p> <div class="credits"> <p class="dwt_author">ARMAND Pierre; VIDAL-MADJAR Daniel</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">232</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19780042150&hterms=grubb&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dgrubb"> <span id="translatedtitle">Computer control of a far infrared <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">A simple interface has been designed for the automatic control and data collection from a Grubb Parsons Mark III cube <span class="hlt">interferometer</span>. A computer is used to automatically step the movable mirror on the <span class="hlt">interferometer</span>. Data may be directly input into the computer for immediate transformation or stored for later analysis via a fast Fourier transformation. The interface is based on a commercial analog-to-digital converter having a parallel-to-serial data converter. The device can also display ASCII characters sent from the computer in parallel binary code. The system is applicable to recording interferograms having long time durations and to measuring multiple interferograms for statistical averaging.</p> <div class="credits"> <p class="dwt_author">Breecher, J.</p> <p class="dwt_publisher"></p> <p class="publishDate">1977-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">233</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1988OptCo..65..157C"> <span id="translatedtitle">Heterodyne <span class="hlt">interferometers</span> - Practical limitations and improvements</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Heterodyne <span class="hlt">interferometers</span> are very sensitive tools for probing surface displacements. The wide bandwidth (about 1 GHz) and the high resolution allow many applications in the field of bulk (BAW) and surface acoustic waves (SAW). However all these <span class="hlt">interferometers</span> exhibit low-frequency phase fluctuations depending on the optical mounting. Recent versions of these instruments reduce the noise down to the theoretical value. This paper shows the spectral density of phase fluctuations for three different configurations. The results are analyzed and the noise sources are identified.</p> <div class="credits"> <p class="dwt_author">Cretin, B.; Xie, W.-X.; Hauden, D.</p> <p class="dwt_publisher"></p> <p class="publishDate">1988-02-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">234</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://repository.tamu.edu/handle/1969.1/ETD-TAMU-1994-THESIS-F499"> <span id="translatedtitle">Microwave emissions from police <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/eprints/">E-print Network</a></p> <p class="result-summary">The purpose of this study was to evaluate police officers exposures to microwaves emitted by traffic <span class="hlt">radar</span> units at the ocular and testicular level. Additionally, comparisons were made of the <span class="hlt">radar</span> manufacturers published maximum power density...</p> <div class="credits"> <p class="dwt_author">Fink, John Michael</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">235</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://arxiv.org/pdf/gr-qc/0409002v2"> <span id="translatedtitle">Gravitational wave detectors based on matter wave <span class="hlt">interferometers</span> (MIGO) are no better than laser <span class="hlt">interferometers</span> (LIGO)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/eprints/">E-print Network</a></p> <p class="result-summary">We show that a recent claim that matter wave <span class="hlt">interferometers</span> have a much higher sensitivity than laser <span class="hlt">interferometers</span> for a comparable physical setup is unfounded. We point out where the mistake in the earlier analysis is made. We also disprove the claim that only a description based on the geodesic deviation equation can produce the correct physical result. The equations for the quantum dynamics of non-relativistic massive particles in a linearly perturbed spacetime derived here are useful for treating a wider class of related physical problems. A general discussion on the use of atom <span class="hlt">interferometers</span> for the detection of gravitational waves is also provided.</p> <div class="credits"> <p class="dwt_author">Albert Roura; Dieter R. Brill; B. L. Hu; Charles W. Misner; William D. Phillips</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-12-17</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">236</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20150003163&hterms=radar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dradar"> <span id="translatedtitle">Systems and Methods for <span class="hlt">Radar</span> Data Communication</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">A <span class="hlt">radar</span> information processing system is operable to process high bandwidth <span class="hlt">radar</span> information received from a <span class="hlt">radar</span> system into low bandwidth <span class="hlt">radar</span> information that may be communicated to a low bandwidth connection coupled to an electronic flight bag (EFB). An exemplary embodiment receives <span class="hlt">radar</span> information from a <span class="hlt">radar</span> system, the <span class="hlt">radar</span> information communicated from the <span class="hlt">radar</span> system at a first bandwidth; processes the received <span class="hlt">radar</span> information into processed <span class="hlt">radar</span> information, the processed <span class="hlt">radar</span> information configured for communication over a connection operable at a second bandwidth, the second bandwidth lower than the first bandwidth; and communicates the <span class="hlt">radar</span> information from a <span class="hlt">radar</span> system, the <span class="hlt">radar</span> information communicated from the <span class="hlt">radar</span> system at a first bandwidth.</p> <div class="credits"> <p class="dwt_author">Bunch, Brian (Inventor); Szeto, Roland (Inventor); Miller, Brad (Inventor)</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">237</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20060038861&hterms=tutorial&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dtutorial"> <span id="translatedtitle">(presentation) Precision Mechanisms for Space <span class="hlt">Interferometers</span>: A Tutorial</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">To maximize salability, spaceborne <span class="hlt">interferometer</span> designs must minimize actuator cost while maximizing science quality and quantity. <span class="hlt">Interferometer</span> designers must have the knowledge to design a system with the simplist, most reliable, and least expensive actuators possible.</p> <div class="credits"> <p class="dwt_author">Agronin, Michael L.</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">238</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19840019990&hterms=Discrete+all-pole+modeling+Signal+Processing&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DDiscrete%2Ball-pole%2Bmodeling%2B-%2BSignal%2BProcessing"> <span id="translatedtitle"><span class="hlt">Radar</span> data smoothing filter study</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The accuracy of the current Wallops Flight Facility (WFF) data smoothing techniques for a variety of <span class="hlt">radars</span> and payloads is examined. Alternative data reduction techniques are given and recommendations are made for improving <span class="hlt">radar</span> data processing at WFF. A data adaptive algorithm, based on Kalman filtering and smoothing techniques, is also developed for estimating payload trajectories above the atmosphere from noisy time varying <span class="hlt">radar</span> data. This algorithm is tested and verified using <span class="hlt">radar</span> tracking data from WFF.</p> <div class="credits"> <p class="dwt_author">White, J. V.</p> <p class="dwt_publisher"></p> <p class="publishDate">1984-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">239</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2015SPIE.9442E..1AS"> <span id="translatedtitle">Jamin <span class="hlt">interferometer</span> for precise measurement of refractive index of gases</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Modified folded Jamin <span class="hlt">interferometer</span> for on-line measurement of refractive index of gases was designed, constructed and tested. The accuracy of this <span class="hlt">interferometer</span> is better than 10-6 and can be still approved about two orders by appropriate mathematical method. <span class="hlt">Interferometer</span> is almost vibration insensitive with vibration noise equivalent to refractive index variation 2•10-9. The <span class="hlt">interferometer</span> qualities were tested by air refractive index monitoring.</p> <div class="credits"> <p class="dwt_author">Sulc, Miroslav</p> <p class="dwt_publisher"></p> <p class="publishDate">2015-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">240</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/12420887"> <span id="translatedtitle">The Shuttle <span class="hlt">Radar</span> Topography Mission</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The Shuttle <span class="hlt">Radar</span> Topography Mission produced the most complete, highest-resolution digital elevation model of the Earth. The project was a joint endeavor of NASA, the National Geospatial-Intelligence Agency, and the German and Italian Space Agencies and flew in February 2000. It used dual <span class="hlt">radar</span> antennas to acquire interferometric <span class="hlt">radar</span> data, processed to digital topographic data at 1 arc sec resolution.</p> <div class="credits"> <p class="dwt_author">Tom G. Farr; Paul A. Rosen; Edward Caro; Robert Crippen; Riley Duren; Scott Hensley; Michael Kobrick; Mimi Paller; Ernesto Rodriguez; Ladislav Roth; David Seal; Scott Shaffer; Joanne Shimada; Jeffrey Umland; Marian Werner; Michael Oskin; Douglas Burbank; Douglas Alsdorf</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_11");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a style="font-weight: bold;">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_13");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_12 div --> <div id="page_13" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_12");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a style="font-weight: bold;">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_14");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">241</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1986naec.conf..997M"> <span id="translatedtitle">Threat <span class="hlt">radar</span> system simulations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The capabilities, requirements, and goals of <span class="hlt">radar</span> emitter simulators are discussed. Simulators are used to evaluate competing receiver designs, to quantify the performance envelope of a <span class="hlt">radar</span> system, and to model the characteristics of a transmitted signal waveform. A database of candidate threat systems is developed and, in concert with intelligence data on a given weapons system, permits upgrading simulators to new projected threat capabilities. Four currently available simulation techniques are summarized, noting the usefulness of developing modular software for fast controlled-cost upgrades of simulation capabilities.</p> <div class="credits"> <p class="dwt_author">Miller, L.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">242</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19840008322&hterms=geology+indonesia&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dgeology%2Bindonesia"> <span id="translatedtitle">Spaceborne Imaging <span class="hlt">Radar</span> Symposium</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">An overview of the present state of the art in the different scientific and technological fields related to spaceborne imaging <span class="hlt">radars</span> was presented. The data acquired with the SEASAT SAR (1978) and Shuttle Imaging <span class="hlt">Radar</span>, SIR-A (1981) clearly demonstrated the important emphasis in the 80's is going to be on in-depth research investigations conducted with the more flexible and sophisticated SIR series instruments and on long term monitoring of geophysical phenomena conducted from free-flying platforms such as ERS-1 and RADARSAT.</p> <div class="credits"> <p class="dwt_author">Elachi, C.</p> <p class="dwt_publisher"></p> <p class="publishDate">1983-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">243</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19840009032&hterms=Adonis&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DAdonis"> <span id="translatedtitle"><span class="hlt">Radar</span> Investigations of Asteroids</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary"><span class="hlt">Radar</span> investigations of asteroids, including observations during 1984 to 1985 of at least 8 potential targets and continued analyses of <span class="hlt">radar</span> data obtained during 1980 to 1984 for 30 other asteroids is proposed. The primary scientific objectives include estimation of echo strength, polarization, spectral shape, spectral bandwidth, and Doppler shift. These measurements yield estimates of target size, shape, and spin vector; place constraints on topography, morphology, density, and composition of the planetary surface; yield refined estimates of target orbital parameters; and reveals the presence of asteroidal satellites.</p> <div class="credits"> <p class="dwt_author">Ostro, S. J.</p> <p class="dwt_publisher"></p> <p class="publishDate">1984-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">244</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/17847261"> <span id="translatedtitle"><span class="hlt">Radar</span> detection of phobos.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary"><span class="hlt">Radar</span> echoes from the martian satellite Phobos provide information about that object's surface properties at scales near the 3.5-cm observing wavelength. Phobos appears less rough than the moon at centimeter-to-decimeter scales. The uppermost few decimeters of the satellite's regolith have a mean bulk density within 20% of 2.0 g cm(-3). The <span class="hlt">radar</span> signature of Phobos (albedo, polarization ratio, and echo spectral shape) differs from signatures measured for small, Earth-approaching objects, but resembles those of large (>/=100-km), C-class, mainbelt asteroids. PMID:17847261</p> <div class="credits"> <p class="dwt_author">Ostro, S J; Jurgens, R F; Yeomans, D K; Standish, E M; Greiner, W</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-03-24</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">245</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19890018787&hterms=SCR&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DSCR"> <span id="translatedtitle">Microwave <span class="hlt">radar</span> oceanographic investigations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The <span class="hlt">Radar</span> Ocean Wave Spectrometer (ROWS) technique was developed and demonstrated for measuring ocean wave directional spectra from air and space platforms. The measurement technique was well demonstrated with data collected in a number of flight experiments involving wave spectral comparisons with wave buoys and the Surface Contour <span class="hlt">Radar</span> (SCR). Recent missions include the SIR-B underflight experiment (1984), FASINEX (1986), and LEWEX (1987). ROWS related activity is presently concentrating on using the aircraft instrument for wave-processes investigations and obtaining the necessary support (consensus) for a satellite instrument development program. Prospective platforms include EOS and the Canadian RADARSAT.</p> <div class="credits"> <p class="dwt_author">Jackson, F. C.</p> <p class="dwt_publisher"></p> <p class="publishDate">1988-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">246</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20070034821&hterms=k-means&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dk-means"> <span id="translatedtitle">Control of Formation-Flying Multi-Element Space <span class="hlt">Interferometers</span> with Direct <span class="hlt">Interferometer</span>-Output Feedback</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The long-baseline space <span class="hlt">interferometer</span> concept involving formation flying of multiple spacecrafts holds great promise as future space missions for high-resolution imagery. A major challenge of obtaining high-quality interferometric synthesized images from long-baseline space <span class="hlt">interferometers</span> is to accurately control these spacecraft and their optics payloads in the specified configuration. Our research focuses on the determination of the optical errors to achieve fine control of long-baseline space <span class="hlt">interferometers</span> without resorting to additional sensing equipment. We present a suite of estimation tools that can effectively extract from the raw interferometric image relative x/y, piston translational and tip/tilt deviations at the exit pupil aperture. The use of these error estimates in achieving control of the <span class="hlt">interferometer</span> elements is demonstrated using simulated as well as laboratory-collected interferometric stellar images.</p> <div class="credits"> <p class="dwt_author">Lu, Hui-Ling; Cheng, Victor H. L.; Lyon, Richard G.; Carpenter, Kenneth G.</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">247</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014SPIE.9274E..1YC"> <span id="translatedtitle">Optical fiber voltage sensor based on Michelsion <span class="hlt">interferometer</span> using Fabry-Perot demodulation <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We present an optical fiber voltage sensor by Michelsion <span class="hlt">interferometer</span> (MI) employing a Fabry-Perot (F-P) <span class="hlt">interferometer</span> and the DC phase tracking (DCPT) signal processing method. By mounting a MI fabricated by an optical fiber coupler on a piezoelectric (PZT) transducer bar, a dynamic strain would be generated to change the optical path difference (OPD) of the <span class="hlt">interferometer</span> when the measured voltage was applied on the PZT. Applying an F-P <span class="hlt">interferometer</span> to demodulate the optical intensity variation output of the MI, the voltage can be obtained. The experiment results show that the relationship between the optical intensity variation and the voltage applied on the PZT is approximately linear. Furthermore, the phase generate carrier (PGC) algorithm was applied to demodulate the output of the sensor also.</p> <div class="credits"> <p class="dwt_author">Chen, Xinwei; He, Shengnan; Li, Dandan; Wang, Kai; Fan, Yan'en; Wu, Shuai</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">248</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/18618251"> <span id="translatedtitle">The VIRGO <span class="hlt">interferometer</span> for gravitational wave detection</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The Virgo gravitational wave detector is an <span class="hlt">interferometer</span> with 3 km long arms in construction near Pisa in Italy. The accessible sources at the design sensitivity and main noises are reviewed. Virgo has devoted a significant effort to extend sensitivity to low frequency reaching the strain level h~ = 10-21 Hz-1\\/2 at 10 Hz while at 200 Hzh~ = 3</p> <div class="credits"> <p class="dwt_author">V. Ferrari; E. Majorana; P. Puppo; P. Rapagnani; F. Ricci; F. Marion; L. Massonnet; C. Mehmel; R. Morand; B. Mours; V. Sannibale; M. Yvert; D. Babusci; S. Bellucci; S. Candusso; G. Giordano; G. Matone; J.-M. Mackowski; L. Pinard; F. Barone; E. Calloni; L. di Fiore; M. Flagiello; F. Garuti; A. Grado; M. Longo; M. Lops; S. Marano; L. Milano; S. Solimeno; V. Brisson; F. Cavalier; M. Davier; P. Hello; P. Heusse; P. Mann; Y. Acker; M. Barsuglia; B. Bhawal; F. Bondu; A. Brillet; H. Heitmann; J.-M. Innocent; L. Latrach; C. N. Man; M. Pham-Tu; E. Tournier; M. Taubmann; J.-Y. Vinet; C. Boccara; Ph. Gleyzes; V. Loriette; J.-P. Roger; G. Cagnoli; L. Gammaitoni; J. Kovalik; F. Marchesoni; M. Punturo; M. Beccaria; M. Bernardini; E. Bougleux; S. Braccini; C. Bradaschia; G. Cella; A. Ciampa; E. Cuoco; G. Curci; R. del Fabbro; R. de Salvo; A. di Virgilio; D. Enard; I. Ferrante; F. Fidecaro; A. Giassi; A. Giazotto; L. Holloway; P. La Penna; G. Losurdo; S. Mancini; M. Mazzoni; F. Palla; H.-B. Pan; D. Passuello; P. Pelfer; R. Poggiani; R. Stanga; A. Vicere; Z. Zhang</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">249</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/52289872"> <span id="translatedtitle">A stellar <span class="hlt">interferometer</span> on the Moon</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The work I present in this document has been divided into two main parts, the first one related to the IOTA project and the second one related to the study on the lunar <span class="hlt">interferometer</span>, and an introduction section. Each section can be read independently from the other, however they are presented following the logical order in which the research work</p> <div class="credits"> <p class="dwt_author">Irene Porro</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">250</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/20357767"> <span id="translatedtitle">Nonlinear atom <span class="hlt">interferometer</span> surpasses classical precision limit.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Interference is fundamental to wave dynamics and quantum mechanics. The quantum wave properties of particles are exploited in metrology using atom <span class="hlt">interferometers</span>, allowing for high-precision inertia measurements. Furthermore, the state-of-the-art time standard is based on an interferometric technique known as Ramsey spectroscopy. However, the precision of an <span class="hlt">interferometer</span> is limited by classical statistics owing to the finite number of atoms used to deduce the quantity of interest. Here we show experimentally that the classical precision limit can be surpassed using nonlinear atom interferometry with a Bose-Einstein condensate. Controlled interactions between the atoms lead to non-classical entangled states within the <span class="hlt">interferometer</span>; this represents an alternative approach to the use of non-classical input states. Extending quantum interferometry to the regime of large atom number, we find that phase sensitivity is enhanced by 15 per cent relative to that in an ideal classical measurement. Our nonlinear atomic beam splitter follows the 'one-axis-twisting' scheme and implements interaction control using a narrow Feshbach resonance. We perform noise tomography of the quantum state within the <span class="hlt">interferometer</span> and detect coherent spin squeezing with a squeezing factor of -8.2 dB (refs 11-15). The results provide information on the many-particle quantum state, and imply the entanglement of 170 atoms. PMID:20357767</p> <div class="credits"> <p class="dwt_author">Gross, C; Zibold, T; Nicklas, E; Estève, J; Oberthaler, M K</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-04-22</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">251</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012SPIE.8452E..2AO"> <span id="translatedtitle">Development of the test <span class="hlt">interferometer</span> for ALMA</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The ALMA Test <span class="hlt">Interferometer</span> appeared as an infrastructure solution to increase both ALMA time availability for science activities and time availability for Software testing and Engineering activities at a reduced cost (<30000K USD) and a low setup time of less than 1 hour. The Test <span class="hlt">Interferometer</span> could include up to 16 Antennas when used with only AOS resources and a possible maximum of 4 Antennas when configured using Correlator resources at OSF. A joined effort between ADC and ADE-IG took the challenge of generate the Test <span class="hlt">Interferometer</span> from an already defined design for operations which imposed a lot of complex restrictions on how to implement it. Through and intensive design and evaluation work it was determined that is possible to make an initial implementation using the ACA Correlator and now it is also being tested the feasibility to implement the Testing <span class="hlt">Interferometer</span> connecting the Test Array at AOS with Correlator equipment installed at the OSF, separated by 30 km. app. Lastly, efforts will be done to get interferometry between AOS and OSF Antennas with a baseline of approximately 24 km.</p> <div class="credits"> <p class="dwt_author">Olguin, R.; Shen, T.; Brito, R.; Saez, A.; Soto, R.; Asayama, S.; Follert, C.; Knee, L.; Quintana, A.; Rabanus, D.; Reynolds, E.; Saez, N.; Sepulveda, J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">252</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2005JAP....97e4301K"> <span id="translatedtitle">Smart photogalvanic running-grating <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Photogalvanic effect produces actuation of periodic motion of macroscopic LiNbO3 crystal. This effect was applied to the development of an all-optical moving-grating <span class="hlt">interferometer</span> usable for optical trapping and transport of algae chlorella microorganisms diluted in water with a concentration of 27×104ml-1.</p> <div class="credits"> <p class="dwt_author">Kukhtarev, N. V.; Kukhtareva, T.; Edwards, M. E.; Jones, J.; Bayssie, M.; Wang, J.; Lyuksyutov, S. F.; Reagan, M. A.; Buchhave, P.</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">253</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3583753"> <span id="translatedtitle">Electronic transmittance phase extracted from mesoscopic <span class="hlt">interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">The usual experimental set-up for measuring the wave function phase shift of electrons tunneling through a quantum dot (QD) embedded in a ring (i.e., the transmittance phase) is the so-called ‘open’ <span class="hlt">interferometer</span> as first proposed by Schuster et al. in 1997, in which the electrons back-scattered at source and the drain contacts are absorbed by additional leads in order to exclude multiple interference. While in this case one can conveniently use a simple two-path interference formula to extract the QD transmittance phase, the open <span class="hlt">interferometer</span> has also a number of draw-backs, such as a reduced signal and some uncertainty regarding the effects of the extra leads. Here we present a meaningful theoretical study of the QD transmittance phase in ‘closed’ <span class="hlt">interferometers</span> (i.e., connected only to source and drain leads). By putting together data from existing literature and giving some new proofs, we show both analytically and by numerical simulations that the existence of phase lapses between consecutive resonances of the ‘bare’ QD is related to the signs of the corresponding Fano parameters - of the QD + ring system. More precisely, if the Fano parameters have the same sign, the transmittance phase of the QD exhibits a ? lapse. Therefore, closed mesoscopic <span class="hlt">interferometers</span> can be used to address the ‘universal phase lapse’ problem. Moreover, the data from already existing Fano interference experiments from Kobayashi et al. in 2003 can be used to infer the phase lapses. PMID:23061877</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">254</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=Doppler+AND+effect&pg=3&id=EJ474949"> <span id="translatedtitle">A Microwave <span class="hlt">Interferometer</span> on an Air Track.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">Uses an air track and microwave transmitters and receivers to make a Michelson <span class="hlt">interferometer</span>. Includes three experiments: (1) measuring the wavelength of microwaves, (2) measuring the wavelength of microwaves by using the Doppler Effect, and (3) measuring the Doppler shift. (MVL)</p> <div class="credits"> <p class="dwt_author">Polley, J. Patrick</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">255</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012PhRvB..86x5105L"> <span id="translatedtitle">Theory of fractional quantum Hall <span class="hlt">interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Interference of fractionally charged quasiparticles is expected to lead to Aharonov-Bohm oscillations with periods larger than the flux quantum. However, according to the Byers-Yang theorem, observables of an electronic system are invariant under an adiabatic insertion of a quantum of singular flux. We resolve this seeming paradox by considering a microscopic model of electronic <span class="hlt">interferometers</span> made from a quantum Hall liquid at filling factor 1/m with the shape of a Corbino disk. In such <span class="hlt">interferometers</span>, the quantum Hall edge states are utilized in place of optical beams, the quantum point contacts play the role of beam splitters connecting different edge channels, and Ohmic contacts represent a source and drain of quasiparticle currents. Depending on the position of Ohmic contacts, one distinguishes <span class="hlt">interferometers</span> of Fabry-Pérot (FP) and Mach-Zehnder (MZ) type. An approximate ground state of such <span class="hlt">interferometers</span> is described by a Laughlin-type wave function, and low-energy excitations are incompressible deformations of this state. We construct a low-energy effective theory by restricting the microscopic Hamiltonian of electrons to the space of incompressible deformations and show that the theory of the quantum Hall edge so obtained is a generalization of a chiral conformal field theory. In our theory, a quasiparticle tunneling operator is found to be a single-valued function of tunneling point coordinates, and its phase depends on the topology determined by the positions of Ohmic contacts. We describe strong coupling of the edge states to Ohmic contacts and the resulting quasiparticle current through the <span class="hlt">interferometer</span> with the help of a master equation. We find that the coherent contribution to the average quasiparticle current through MZ <span class="hlt">interferometers</span> does not vanish after summation over quasiparticle degrees of freedom. However, it acquires oscillations with the electronic period, in agreement with the Byers-Yang theorem. Importantly, our theory does not rely on any ad hoc constructions, such as Klein factors, etc. When the magnetic flux through an FP <span class="hlt">interferometer</span> is varied with a modulation gate, current oscillations have the quasiparticle periodicity, thus allowing for spectroscopy of quantum Hall edge states.</p> <div class="credits"> <p class="dwt_author">Levkivskyi, Ivan P.; Fröhlich, Jürg; Sukhorukov, Eugene V.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">256</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20110011956&hterms=alina&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dalina"> <span id="translatedtitle">Miniaturized Ka-Band Dual-Channel <span class="hlt">Radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Smaller (volume, mass, power) electronics for a Ka-band (36 GHz) <span class="hlt">radar</span> <span class="hlt">interferometer</span> were required. To reduce size and achieve better control over RFphase versus temperature, fully hybrid electronics were developed for the RF portion of the <span class="hlt">radar</span> s two-channel receiver and single-channel transmitter. In this context, fully hybrid means that every active RF device was an open die, and all passives were directly attached to the subcarrier. Attachments were made using wire and ribbon bonding. In this way, every component, even small passives, was selected for the fabrication of the two <span class="hlt">radar</span> receivers, and the devices were mounted relative to each other in order to make complementary components isothermal and to isolate other components from potential temperature gradients. This is critical for developing receivers that can track each other s phase over temperature, which is a key mission driver for obtaining ocean surface height. Fully hybrid, Ka-band (36 GHz) <span class="hlt">radar</span> transmitter and dual-channel receiver were developed for spaceborne <span class="hlt">radar</span> interferometry. The fully hybrid fabrication enables control over every aspect of the component selection, placement, and connection. Since the two receiver channels must track each other to better than 100 millidegrees of RF phase over several minutes, the hardware in the two receivers must be "identical," routed the same (same line lengths), and as isothermal as possible. This level of design freedom is not possible with packaged components, which include many internal passive, unknown internal connection lengths/types, and often a single orientation of inputs and outputs.</p> <div class="credits"> <p class="dwt_author">Hoffman, James P.; Moussessian, Alina; Jenabi, Masud; Custodero, Brian</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">257</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013PhDT.......173G"> <span id="translatedtitle">The millimeter-wave bolometric <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The Millimeter-wave Bolometric <span class="hlt">Interferometer</span> (MBI) is a technology demonstrator for future searches for the B-mode polarization of the Cosmic Microwave Background (CMB). If observed, B-modes would be a direct probe of the energy scale of inflation, an energy scale that is impossible to reach with even the most sophisticated particle accelerators. In this thesis, I outline the technology differences between MBI and conventional <span class="hlt">interferometers</span>, including the Faraday effect phase modulators (FPM) used both to control systematic effects and to allow for phase sensitive detection of signals. MBI is a four element adding <span class="hlt">interferometer</span> with a Fizeau optical beam combiner. This allows simple scaling of the instrument to a large numbers of baselines without requiring complicated pair-wise correlations of signals. <span class="hlt">Interferometers</span> have an advantage over imaging telescopes when measuring the CMB power spectrum as each baseline is sensitive to a single Fourier mode (angular scale) on the sky. Recovering individual baseline information with this combination scheme requires phase modulating the signal from each antenna. MBI performs this modulation with Faraday effect phase modulators. In these novel cryogenic devices a modulated magnetic field switches the phase of a millimeter-wave RF signal by +/- 90 degrees at frequencies up to a few Hertz. MBI's second season of observations occurred in the winter of 2009 at Pine Bluff Observatory a few miles west of Madsion, WI. We successfully observed interference fringes of a microwave test source located in the far field of the instrument that agree well with those expected from simulations. MBI has inspired a second generation bolometric <span class="hlt">interferometer</span>, QUBIC, which will have hundreds of antennas and thousands of detectors. When it deploys in 2015, it will be sensitive enough to search for B-mode signals from the CMB.</p> <div class="credits"> <p class="dwt_author">Gault, Amanda Charlotte</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">258</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1997ApJ...475..843K"> <span id="translatedtitle">The Shapes of Cross-Correlation <span class="hlt">Interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Cross-correlation imaging <span class="hlt">interferometers</span> designed in the shape of a curve of constant width offer better sensitivity and imaging characteristics than other designs because they sample the Fourier space of the image better than other shapes, for example, ``T's'' or ``Y's.'' In a cross-correlation <span class="hlt">interferometer</span> each pair of antennas measures one Fourier component with a spatial wavenumber proportional to the separation of the pair. Placing the individual antennas of the <span class="hlt">interferometer</span> along a curve of constant width, a curve that has the same diameter in all directions, guarantees that the spatial resolution of the instrument will be independent of direction because the measured Fourier components will have the same maximum spatial wavenumber in all directions. The most uniform sampling within this circular region in Fourier space will be created by the particular symmetric curve of constant width that has the lowest degree of rotational symmetry or fewest number of sides, which is the Reuleaux triangle. The constant width curve with the highest symmetry, the circle is the least satisfactory although still considerably better than T's or Y's. In all cases, the sampling can be further improved by perturbing the antenna locations slightly off a perfect curve to break down symmetries in the antenna pattern which cause symmetries and hence nonuniformities in the sampling pattern in Fourier space. Appropriate patterns of perturbations can be determined numerically. As a numerical problem, optimizing the sampling in Fourier space can be thought of as a generalization of the traveling salesman problem to a continuous two-dimensional space. Self-organizing neural networks which are effective in solving the traveling salesman problem are also effective in generating optimal <span class="hlt">interferometer</span> shapes. The Smithsonian Astrophysical Observatory's Submillimeter Array, a cross-correlation imaging <span class="hlt">interferometer</span> for astronomy, will be constructed with a design based on the Reuleaux triangle.</p> <div class="credits"> <p class="dwt_author">Keto, Eric</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-02-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">259</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/20935712"> <span id="translatedtitle">Accurate measurement of <span class="hlt">interferometer</span> group delay using field-compensated scanning white light <span class="hlt">interferometer</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary"><span class="hlt">Interferometers</span> are key elements in radial velocity (RV) experiments in astronomy observations, and accurate calibration of the group delay of an <span class="hlt">interferometer</span> is required for high precision measurements. A novel field-compensated white light scanning Michelson <span class="hlt">interferometer</span> is introduced as an <span class="hlt">interferometer</span> calibration tool. The optical path difference (OPD) scanning was achieved by translating a compensation prism, such that even if the light source were in low spatial coherence, the interference stays spatially phase coherent over a large <span class="hlt">interferometer</span> scanning range. In the wavelength region of 500-560 nm, a multimode fiber-coupled LED was used as the light source, and high optical efficiency was essential in elevating the signal-to-noise ratio of the interferogram signal. The achromatic OPD scanning required a one-time calibration, and two methods using dual-laser wavelength references and an iodine absorption spectrum reference were employed and cross-verified. In an experiment measuring the group delay of a fixed Michelson <span class="hlt">interferometer</span>, Fourier analysis was employed to process the interferogram data. The group delay was determined at an accuracy of 1×10(-5), and the phase angle precision was typically 2.5×10(-6) over the wide wavelength region. PMID:20935712</p> <div class="credits"> <p class="dwt_author">Wan, Xiaoke; Wang, Ji; Ge, Jian</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-10-10</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">260</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19770000267&hterms=levinson&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dlevinson"> <span id="translatedtitle">Multiline <span class="hlt">radar</span> scan</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Scanning scheme is more efficient than conventional scanning. Originally designed for optical <span class="hlt">radar</span> in space vehicles, scheme may also find uses in site-surveillance security systems and in other industrial applications. It should be particularly useful when system must run on battery energy, as would be case in power outages.</p> <div class="credits"> <p class="dwt_author">Levinson, S.</p> <p class="dwt_publisher"></p> <p class="publishDate">1977-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_12");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a style="font-weight: bold;">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_14");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_13 div --> <div id="page_14" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_13");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a style="font-weight: bold;">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_15");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">261</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50112819"> <span id="translatedtitle">Airborne firefinder <span class="hlt">radar</span> concept</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">An airborne firefinder <span class="hlt">radar</span> (AFFR) is suggested for an upgraded version of the forthcoming Global Hawk Unmanned Aerial Vehicle (UAV). The AFFR could detect an artillery shell within 1 second of firing and, within a few seconds, determine its trajectory origin location (position of the gun) to a circular error probable (CEP) of less than 50 meters. The AFFR could</p> <div class="credits"> <p class="dwt_author">R. J. Sullivan; J. F. Nicoll; J. M. Ralston</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">262</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/870113"> <span id="translatedtitle">Impulse <span class="hlt">radar</span> studfinder</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">An impulse <span class="hlt">radar</span> studfinder propagates electromagnetic pulses and detects reflected pulses from a fixed range. Unmodulated pulses, about 200 ps wide, are emitted. A large number of reflected pulses are sampled and averaged. Background reflections are subtracted. Reflections from wall studs or other hidden objects are detected and displayed using light emitting diodes.</p> <div class="credits"> <p class="dwt_author">McEwan, Thomas E. (Livermore, CA)</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">263</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/119057"> <span id="translatedtitle">Impulse <span class="hlt">radar</span> studfinder</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">An impulse <span class="hlt">radar</span> studfinder propagates electromagnetic pulses and detects reflected pulses from a fixed range. Unmodulated pulses, about 200 ps wide, are emitted. A large number of reflected pulses are sampled and averaged. Background reflections are subtracted. Reflections from wall studs or other hidden objects are detected and displayed using light emitting diodes. 9 figs.</p> <div class="credits"> <p class="dwt_author">McEwan, T.E.</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-10-10</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">264</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1988wusl.reptR....S"> <span id="translatedtitle">High resolution <span class="hlt">radar</span> imaging</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The goal of this project is to formulate and investigate new approaches for forming images of <span class="hlt">radar</span> targets from spotlight-mode, delay-doppler measurements. These measurements could be acquired with a high-resolution <span class="hlt">radar</span>-imaging system operating with an optical-or radio-frequency carrier. Two approaches are under study. The first is motivated by an image-reconstruction algorithm used in radionuclide imaging called the confidence-weighted algorithm; here, we will refer to this approach as the chirp-rate modulation approach. The second approach is based on more fundamental principles which starts with a mathematical model that accurately describes the physics of an imaging <span class="hlt">radar</span>-system and then uses statistical-estimation theory with this model to derive processing algorithms; we will refer to this as the estimation-theory approach. Progress during this reporting period has been made on: (1) extending the estimation-theory approach to include a constraint on input signal-to-noise ratio; (2) extending the estimation-theory approach to include a sieve constraint for stabilizing image estimates, (3) extending the estimation-theory approach to include a specular or glint component in the <span class="hlt">radar</span>-echo data; (4) analyzing the performance of the estimation-theory approach through computer simulations; and (5) modifying the chirp-rate modulation approach through the introduction of the Wigner-Ville distribution. A patent was awarded associated with the chirp-rate modulation approach.</p> <div class="credits"> <p class="dwt_author">Snyder, Donald L.</p> <p class="dwt_publisher"></p> <p class="publishDate">1988-11-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">265</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/27101093"> <span id="translatedtitle">Compressed Synthetic Aperture <span class="hlt">Radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In this paper, we introduce a new synthetic aperture <span class="hlt">radar</span> (SAR) imaging modality which can provide a high-resolution map of the spatial distribution of targets and terrain using a significantly reduced number of needed transmitted and\\/or received electromagnetic waveforms. This new imaging scheme, requires no new hardware components and allows the aperture to be compressed. It also presents many new</p> <div class="credits"> <p class="dwt_author">Vishal M. Patel; Glenn R. Easley; Dennis M. Healy; Jr.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">266</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014SPIE.9207E..03S"> <span id="translatedtitle">X-ray multilens <span class="hlt">interferometer</span> based on Si refractive lenses</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We report a multilens X-ray <span class="hlt">interferometer</span> consisting of six parallel arrays of planar compound refractive lenses. The main concept of new <span class="hlt">interferometer</span> is based on the same principle such a bilens <span class="hlt">interferometer</span>. The interference fringe pattern produced by the multilens <span class="hlt">interferometer</span> was described by Talbot imaging formalism. A theoretical analysis of the interference pattern formation was carried out and corresponding computer simulations were performed. The proposed multilens <span class="hlt">interferometer</span> was experimentally tested at ID06 ESRF beamline in the X-ray energy range from 10 to 30 keV. Experimentally recorded fractional Talbot images are in a good agreement with computer calculations.</p> <div class="credits"> <p class="dwt_author">Snigirev, A.; Snigireva, I.; Lyubomirskiy, M.; Kohn, V.; Yunkin, V.; Kuznetsov, S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">267</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20030105593&hterms=CT+metrology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DCT%2Bmetrology"> <span id="translatedtitle">Investigation of Space <span class="hlt">Interferometer</span> Control Using Imaging Sensor Output Feedback</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Numerous space interferometry missions are planned for the next decade to verify different enabling technologies towards very-long-baseline interferometry to achieve high-resolution imaging and high-precision measurements. These objectives will require coordinated formations of spacecraft separately carrying optical elements comprising the <span class="hlt">interferometer</span>. High-precision sensing and control of the spacecraft and the <span class="hlt">interferometer</span>-component payloads are necessary to deliver sub-wavelength accuracy to achieve the scientific objectives. For these missions, the primary scientific product of <span class="hlt">interferometer</span> measurements may be the only source of data available at the precision required to maintain the spacecraft and <span class="hlt">interferometer</span>-component formation. A concept is studied for detecting the <span class="hlt">interferometer</span>'s optical configuration errors based on information extracted from the <span class="hlt">interferometer</span> sensor output. It enables precision control of the optical components, and, in cases of space <span class="hlt">interferometers</span> requiring formation flight of spacecraft that comprise the elements of a distributed instrument, it enables the control of the formation-flying vehicles because independent navigation or ranging sensors cannot deliver the high-precision metrology over the entire required geometry. Since the concept can act on the quality of the <span class="hlt">interferometer</span> output directly, it can detect errors outside the capability of traditional metrology instruments, and provide the means needed to augment the traditional instrumentation to enable enhanced performance. Specific analyses performed in this study include the application of signal-processing and image-processing techniques to solve the problems of <span class="hlt">interferometer</span> aperture baseline control, <span class="hlt">interferometer</span> pointing, and orientation of multiple <span class="hlt">interferometer</span> aperture pairs.</p> <div class="credits"> <p class="dwt_author">Leitner, Jesse A.; Cheng, Victor H. L.</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">268</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20030032246&hterms=optical+sensors+orientation+navigation&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Doptical%2Bsensors%2Borientation%2Bnavigation"> <span id="translatedtitle">Investigation of Space <span class="hlt">Interferometer</span> Control Using Imaging Sensor Output Feedback</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Numerous space interferometry missions are planned for the next decade to verify different enabling technologies towards very-long-baseline interferometry to achieve high-resolution imaging and high-precision measurements. These objectives will require coordinated formations of spacecraft separately carrying optical elements comprising the <span class="hlt">interferometer</span>. High-precision sensing and control of the spacecraft and the <span class="hlt">interferometer</span>-component payloads are necessary to deliver sub-wavelength accuracy to achieve the scientific objectives. For these missions, the primary scientific product of <span class="hlt">interferometer</span> measurements may be the only source of data available at the precision required to maintain the spacecraft and <span class="hlt">interferometer</span>-component formation. A concept is studied for detecting the <span class="hlt">interferometer</span>'s optical configuration errors based on information extracted from the <span class="hlt">interferometer</span> sensor output. It enables precision control of the optical components, and, in cases of space <span class="hlt">interferometers</span> requiring formation flight of spacecraft that comprise the elements of a distributed instrument, it enables the control of the formation flying vehicles because independent navigation or ranging sensors cannot deliver the high-precision metrology over the entire required geometry. Since the concept can act on the quality of the <span class="hlt">interferometer</span> output directly, it can detect errors outside the capability of traditional metrology instruments, and provide the means needed to augment the traditional instrumentation to enable enhanced performance. Specific analyses performed in this study include the application of signal-processing and image-processing techniques to solve the problems of <span class="hlt">interferometer</span> aperture baseline control, <span class="hlt">interferometer</span> pointing, and orientation of multiple <span class="hlt">interferometer</span> aperture pairs.</p> <div class="credits"> <p class="dwt_author">Cheng, Victore H. L.; Leitner, Jesse A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">269</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3916837"> <span id="translatedtitle">Quantum metrology with parametric amplifier-based photon correlation <span class="hlt">interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Conventional <span class="hlt">interferometers</span> usually utilize beam splitters for wave splitting and recombination. These <span class="hlt">interferometers</span> are widely used for precision measurement. Their sensitivity for phase measurement is limited by the shot noise, which can be suppressed with squeezed states of light. Here we study a new type of <span class="hlt">interferometer</span> in which the beam splitting and recombination elements are parametric amplifiers. We observe an improvement of 4.1±0.3?dB in signal-to-noise ratio compared with a conventional <span class="hlt">interferometer</span> under the same operating condition, which is a 1.6-fold enhancement in rms phase measurement sensitivity beyond the shot noise limit. The improvement is due to signal enhancement. Combined with the squeezed state technique for shot noise suppression, this <span class="hlt">interferometer</span> promises further improvement in sensitivity. Furthermore, because nonlinear processes are involved in this <span class="hlt">interferometer</span>, we can couple a variety of different waves and form new types of hybrid <span class="hlt">interferometers</span>, opening a door for many applications in metrology. PMID:24476950</p> <div class="credits"> <p class="dwt_author">Hudelist, F.; Kong, Jia; Liu, Cunjin; Jing, Jietai; Ou, Z.Y.; Zhang, Weiping</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">270</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://arxiv.org/pdf/1502.00047.pdf"> <span id="translatedtitle">Laser-Ranging Long Baseline Differential Atom <span class="hlt">Interferometers</span> for Space</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/eprints/">E-print Network</a></p> <p class="result-summary">High sensitivity differential atom <span class="hlt">interferometers</span> are promising for precision measurements in science frontiers in space, including gravity field mapping for Earth science studies and gravitational wave detection. We propose a new configuration of twin atom <span class="hlt">interferometers</span> connected by a laser ranging <span class="hlt">interferometer</span> (LRI-AI) to provide precise information of the displacements between the two AI reference mirrors and a means to phase-lock the two independent <span class="hlt">interferometer</span> lasers over long distances, thereby further enhancing the feasibility of long baseline differential atom <span class="hlt">interferometers</span>. We show that a properly implemented LRI-AI can achieve equivalent functionality to the conventional differential atom <span class="hlt">interferometer</span> measurement system. LRI-AI isolates the laser requirements for atom <span class="hlt">interferometers</span> and for optical phase readout between distant locations, thus enabling optimized allocation of available laser power within a limited physical size and resource budget. A unique aspect of LRI-AI also enables...</p> <div class="credits"> <p class="dwt_author">Chiow, Sheng-wey; Yu, Nan</p> <p class="dwt_publisher"></p> <p class="publishDate">2015-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">271</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009SPIE.7511E..1TZ"> <span id="translatedtitle">Measuring the wavefront distortion of a phased-array laser <span class="hlt">radar</span> by using a real-time optoelectronic measurement system</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A real-time optoelectronic measurement system is proposed to measure the wavefront distortions of scanning beams of a phased-array laser <span class="hlt">radar</span>. This measurement system includes electric control rotating and translating platforms and a cyclic radial shearing <span class="hlt">interferometer</span>(CRSI). CRSI is an effective interferometry to mesure the laser wavefront. A inversion algorithm is used to precisely reconstruct wavefront phase distribution from interferograms generated by the CRSI. An actual experiment of laser wavefront distortion measurement is implemented successfully. The experimental results show that this optoelectromic measurement system can measure laser wavefront distortion of a phased-array laser <span class="hlt">radar</span> in accuracy and in real time.</p> <div class="credits"> <p class="dwt_author">Zheng, Chunyan; Wu, Jian</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">272</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/27096302"> <span id="translatedtitle">MIMO <span class="hlt">Radar</span> with Widely Separated Antennas</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">MIMO (multiple-input multiple-output) <span class="hlt">radar</span> refers to an architecture that employs multiple, spatially distributed transmitters and receivers. While, in a general sense, MIMO <span class="hlt">radar</span> can be viewed as a type of multistatic <span class="hlt">radar</span>, the separate nomenclature suggests unique features that set MIMO <span class="hlt">radar</span> apart from the multistatic <span class="hlt">radar</span> literature and that have a close relation to MIMO communications. This article reviews</p> <div class="credits"> <p class="dwt_author">Alexander Haimovich; Rick Blum; Leonard Cimini</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">273</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://weather.ou.edu/content/syllabi/SP2014/metr4624.001.SP2014.pdf"> <span id="translatedtitle">METR 4624--<span class="hlt">Radar</span> Meteorology SPRING 2014</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/eprints/">E-print Network</a></p> <p class="result-summary">METR 4624--<span class="hlt">Radar</span> Meteorology SPRING 2014 Dr. Michael I. Biggerstaff; drdoppler@ou.edu (best method Principles of weather <span class="hlt">radar</span> and storm observations including: <span class="hlt">radar</span> system design, em wave propagation, <span class="hlt">radar</span>&Q, moments of the power spectrum, ground clutter, attenuation, rainfall measurements using <span class="hlt">radar</span> reflectivity</p> <div class="credits"> <p class="dwt_author">Droegemeier, Kelvin K.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">274</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://weather.ou.edu/content/syllabi/SP2012/metr4624.001.SP2012.pdf"> <span id="translatedtitle">METR 4624--<span class="hlt">Radar</span> Meteorology SPRING 2012</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/eprints/">E-print Network</a></p> <p class="result-summary">METR 4624--<span class="hlt">Radar</span> Meteorology SPRING 2012 Dr. Michael I. Biggerstaff; drdoppler@ou.edu (best method Principles of weather <span class="hlt">radar</span> and storm observations including: <span class="hlt">radar</span> system design, em wave propagation, <span class="hlt">radar</span>&Q, moments of the power spectrum, ground clutter, attenuation, rainfall measurements using <span class="hlt">radar</span> reflectivity</p> <div class="credits"> <p class="dwt_author">Droegemeier, Kelvin K.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">275</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20120011910&hterms=radar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dradar"> <span id="translatedtitle">An MSK <span class="hlt">Radar</span> Waveform</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The minimum-shift-keying (MSK) <span class="hlt">radar</span> waveform is formed by periodically extending a waveform that separately modulates the in-phase and quadrature- phase components of the carrier with offset pulse-shaped pseudo noise (PN) sequences. To generate this waveform, a pair of periodic PN sequences is each passed through a pulse-shaping filter with a half sinusoid impulse response. These shaped PN waveforms are then offset by half a chip time and are separately modulated on the in-phase and quadrature phase components of an RF carrier. This new <span class="hlt">radar</span> waveform allows an increase in <span class="hlt">radar</span> resolution without the need for additional spectrum. In addition, it provides self-interference suppression and configurable peak sidelobes. Compared strictly on the basis of the expressions for delay resolution, main-lobe bandwidth, effective Doppler bandwidth, and peak ambiguity sidelobe, it appears that bi-phase coded (BPC) outperforms the new MSK waveform. However, a <span class="hlt">radar</span> waveform must meet certain constraints imposed by the transmission and reception of the modulation, as well as criteria dictated by the observation. In particular, the phase discontinuity of the BPC waveform presents a significant impediment to the achievement of finer resolutions in <span class="hlt">radar</span> measurements a limitation that is overcome by using the continuous phase MSK waveform. The phase continuity, and the lower fractional out-of-band power of MSK, increases the allowable bandwidth compared with BPC, resulting in a factor of two increase in the range resolution of the <span class="hlt">radar</span>. The MSK waveform also has been demonstrated to have an ambiguity sidelobe structure very similar to BPC, where the sidelobe levels can be decreased by increasing the length of the m-sequence used in its generation. This ability to set the peak sidelobe level is advantageous as it allows the system to be configured to a variety of targets, including those with a larger dynamic range. Other conventionally used waveforms that possess an even greater spectral efficiency than the MSK waveform, such as linear frequency modulation (LFM) and Costas frequency hopping, have a fixed peak sidelobe level that is therefore not configurable, and can be exceeded by high contrast targets. Furthermore, in the case of a multistatic experiment observing a target in motion, self-interference from the transmitter to the receiver is mitigated by the MSK waveform. Waveforms that have delay Doppler coupling, such as LFM, provide no such protection.</p> <div class="credits"> <p class="dwt_author">Quirk, Kevin J.; Srinivasan, Meera</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">276</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2005SPIE.5978...96H"> <span id="translatedtitle">Remote sensing of sea ice thickness by a combined spatial and frequency domain <span class="hlt">interferometer</span>: formulations, instrument design, and development</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The thickness of Arctic sea ice plays a critical role in Earth's climate and ocean circulation. An accurate measurement of this parameter on synoptic scales at regular intervals would enable characterization of this important component for the understanding of ocean circulation and the global heat balance. Presented in this paper is a low frequency VHF <span class="hlt">interferometer</span> technique and associated <span class="hlt">radar</span> instrument design to measure sea ice thickness based on the use of backscatter correlation functions. The sea ice medium is represented as a multi-layered medium consisting of snow, sea-ice and sea water, with the interfaces between layers characterized as rough surfaces. This technique utilizes the correlation of two <span class="hlt">radar</span> waves of different frequencies and incident and observation angles, scattered from the sea ice medium. The correlation functions relate information about the sea ice thickness. Inversion techniques such as the genetic algorithm, gradient descent, and least square methods, are used to derive sea ice thickness from the phase information related by the correlation functions. The <span class="hlt">radar</span> instrument is designed to be implemented on a spacecraft and the initial test-bed will be on a Twin Otter aircraft. <span class="hlt">Radar</span> system and instrument design and development parameters as well as some measurement requirements are reviewed. The ability to obtain reliable phase information for successful ice thickness retrieval for various thickness and surface interface geometries is examined.</p> <div class="credits"> <p class="dwt_author">Hussein, Ziad A.; Holt, Benjamin; McDonald, Kyle C.; Jordan, Rolando; Huang, John; Kuga, Yasuo; Ishimaru, Akira; Jaruwatanadilok, Sermsak; Gogineni, Prasad; Akins, Torry; Heavey, Brandon; Perovich, Don; Sturm, Matthew</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">277</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20090020381&hterms=API&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DAPI"> <span id="translatedtitle">Data Processing for Atmospheric Phase <span class="hlt">Interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">This paper presents a detailed discussion of calibration procedures used to analyze data recorded from a two-element atmospheric phase <span class="hlt">interferometer</span> (API) deployed at Goldstone, California. In addition, we describe the data products derived from those measurements that can be used for site intercomparison and atmospheric modeling. Simulated data is used to demonstrate the effectiveness of the proposed algorithm and as a means for validating our procedure. A study of the effect of block size filtering is presented to justify our process for isolating atmospheric fluctuation phenomena from other system-induced effects (e.g., satellite motion, thermal drift). A simulated 24 hr <span class="hlt">interferometer</span> phase data time series is analyzed to illustrate the step-by-step calibration procedure and desired data products.</p> <div class="credits"> <p class="dwt_author">Acosta, Roberto J.; Nessel, James A.; Morabito, David D.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">278</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/871971"> <span id="translatedtitle">Phase-shifting point diffraction <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">Disclosed is a point diffraction <span class="hlt">interferometer</span> for evaluating the quality of a test optic. In operation, the point diffraction <span class="hlt">interferometer</span> includes a source of radiation, the test optic, a beam divider, a reference wave pinhole located at an image plane downstream from the test optic, and a detector for detecting an interference pattern produced between a reference wave emitted by the pinhole and a test wave emitted from the test optic. The beam divider produces separate reference and test beams which focus at different laterally separated positions on the image plane. The reference wave pinhole is placed at a region of high intensity (e.g., the focal point) for the reference beam. This allows reference wave to be produced at a relatively high intensity. Also, the beam divider may include elements for phase shifting one or both of the reference and test beams.</p> <div class="credits"> <p class="dwt_author">Medecki, Hector (Berkeley, CA)</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">279</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/675841"> <span id="translatedtitle">Phase-shifting point diffraction <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">Disclosed is a point diffraction <span class="hlt">interferometer</span> for evaluating the quality of a test optic. In operation, the point diffraction <span class="hlt">interferometer</span> includes a source of radiation, the test optic, a beam divider, a reference wave pinhole located at an image plane downstream from the test optic, and a detector for detecting an interference pattern produced between a reference wave emitted by the pinhole and a test wave emitted from the test optic. The beam divider produces separate reference and test beams which focus at different laterally separated positions on the image plane. The reference wave pinhole is placed at a region of high intensity (e.g., the focal point) for the reference beam. This allows reference wave to be produced at a relatively high intensity. Also, the beam divider may include elements for phase shifting one or both of the reference and test beams. 8 figs.</p> <div class="credits"> <p class="dwt_author">Medecki, H.</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-11-10</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">280</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://arxiv.org/pdf/gr-qc/9909080v2"> <span id="translatedtitle">Sensitivity curves for spaceborne gravitational wave <span class="hlt">interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/eprints/">E-print Network</a></p> <p class="result-summary">To determine whether particular sources of gravitational radiation will be detectable by a specific gravitational wave detector, it is necessary to know the sensitivity limits of the instrument. These instrumental sensitivities are often depicted (after averaging over source position and polarization) by graphing the minimal values of the gravitational wave amplitude detectable by the instrument versus the frequency of the gravitational wave. This paper describes in detail how to compute such a sensitivity curve given a set of specifications for a spaceborne laser <span class="hlt">interferometer</span> gravitational wave observatory. Minor errors in the prior literature are corrected, and the first (mostly) analytic calculation of the gravitational wave transfer function is presented. Example sensitivity curve calculations are presented for the proposed LISA <span class="hlt">interferometer</span>. We find that previous treatments of LISA have underestimated its sensitivity by a factor of $\\sqrt{3}$.</p> <div class="credits"> <p class="dwt_author">Shane L. Larson; William A. Hiscock; Ronald W. Hellings</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-10</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_13");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a style="font-weight: bold;">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_15");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_14 div --> <div id="page_15" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_14");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a style="font-weight: bold;">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_16");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">281</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20040086908&hterms=Pedretti&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DPedretti"> <span id="translatedtitle">Adaptive DFT-based <span class="hlt">Interferometer</span> Fringe Tracking</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">An automatic <span class="hlt">interferometer</span> fringe tracking system has been developed, implemented, and tested at the Infrared Optical Telescope Array (IOTA) observatory at Mt. Hopkins, Arizona. The system can minimize the optical path differences (OPDs) for all three baselines of the Michelson stellar <span class="hlt">interferometer</span> at IOTA. Based on sliding window discrete Fourier transform (DFT) calculations that were optimized for computational efficiency and robustness to atmospheric disturbances, the algorithm has also been tested extensively on off-line data. Implemented in ANSI C on the 266 MHz PowerPC processor running the VxWorks real-time operating system, the algorithm runs in approximately 2.0 milliseconds per scan (including all three interferograms), using the science camera and piezo scanners to measure and correct the OPDs. The adaptive DFT-based tracking algorithm should be applicable to other systems where there is a need to detect or track a signal with an approximately constant-frequency carrier pulse.</p> <div class="credits"> <p class="dwt_author">Wilson, Edward; Pedretti, Ettore; Bregman, Jesse; Mah, Robert W.; Traub, Wesley A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">282</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/18273253"> <span id="translatedtitle">Forward calculation for <span class="hlt">interferometers</span>: method and validation.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">An approach to approximating the instrument response for an unapodized <span class="hlt">interferometer</span> is presented. The approach comprises functions that are local enough in frequency space (no more than five wave numbers) that one can use the Planck function at a single frequency to calculate the radiance at a given frequency and atmospheric pressure level, and it is well behaved (transmittances change monotonically from 1.0 to 0.0), so existing transmittance calculation procedures can be used. It is faster than calculating radiances at a high resolution, doing a Fourier transform, and then doing a second transform, and it produces brightness temperatures that agree with exact values to better than the 0.01 K that is due to errors in the approximation. The approach is accurate enough and fast enough to be used for calculating unapodized radiances from an <span class="hlt">interferometer</span>. It also can be used to calculate transmittances as well as radiances. PMID:18273253</p> <div class="credits"> <p class="dwt_author">McMillin, L M; Goldberg, M D; Ding, H; Susskind, J; Barnet, C D</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-05-10</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">283</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014SPIE.9146E..0HC"> <span id="translatedtitle">Magdalena Ridge Observatory <span class="hlt">interferometer</span>: 2014 status update</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The Magdalena Ridge Observatory <span class="hlt">Interferometer</span> has been designed to be a 10 × 1.4 m aperture long-baseline optical/near-infrared <span class="hlt">interferometer</span> in an equilateral "Y" configuration, and is being deployed west of Socorro, NM on the Magdalena Ridge. Unfortunately, first light for the facility has been delayed due to the current difficult funding regime, but during the past two years we have made substantial progress on many of the key subsystems for the array. The design of all these subsystems is largely complete, and laboratory assembly and testing, and the installation and site acceptance testing of key components on the Ridge are now underway. This paper serves as an overview and update on the facility's present status and changes since 2012, and the plans for future activities and eventual operations of the facilities.</p> <div class="credits"> <p class="dwt_author">Creech-Eakman, M. J.; Romero, V.; Payne, I.; Haniff, C. A.; Buscher, D. F.; Dahl, C.; Farris, A.; Fisher, M.; Jurgenson, C.; Klinglesmith, D.; McCracken, T.; Napolitano, M.; Olivares, A.; Riker, J.; Rochelle, S.; Salcido, C.; Santoro, F.; Schmidt, L.; Selina, R.; Seneta, E. B.; Shtromberg, A.; Sun, X.; Wilson, D. M. A.; Young, J. S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">284</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://arxiv.org/pdf/1402.6621.pdf"> <span id="translatedtitle">Analysis of atom-<span class="hlt">interferometer</span> clocks</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/eprints/">E-print Network</a></p> <p class="result-summary">We analyze the nature and performance of clocks formed by stabilizing an oscillator to the phase difference between two paths of an atom <span class="hlt">interferometer</span>. The phase evolution has been modeled as being driven by the proper-time difference between the two paths, although it has an ambiguous origin in the non-relativistic limit and it requires a full quantum-field-theory treatment in the general case. We present conditions for identifying deviations from the non-relativistic limit as a way of testing the proper-time driven phase evolution model. We show that the system performance belies the premise that an atom-<span class="hlt">interferometer</span> clock is referenced to a divided-down Compton oscillation, and we suggest that this implies there is no physical oscillation at the Compton frequency.</p> <div class="credits"> <p class="dwt_author">Peil, Steven</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">285</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1997PhDT.......128P"> <span id="translatedtitle">A stellar <span class="hlt">interferometer</span> on the Moon</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The work I present in this document has been divided into two main parts, the first one related to the IOTA project and the second one related to the study on the lunar <span class="hlt">interferometer</span>, and an introduction section. Each section can be read independently from the other, however they are presented following the logical order in which the research work has been developed. As a guide for the reader here I describe the content of each chapter, which represents the original contribution (except when it is specifically declared) to the research accomplished. This section consists in the Introduction itself, with a presentation of the motivations for this research work, and in the chapter Interferometry from the Earth and from the Moon. The first part of this chapter shows the performances which are expected to be reached by ground-based <span class="hlt">interferometers</span> (Colavita, 1992) by using adaptive optics systems (Beckers, 1993). The evaluation is made separately for the case of high resolution imaging and for high accuracy astrometric measurements. The most optimistic results expected for ground-based instruments determine the level of the performance that has to be required from a space <span class="hlt">interferometer</span> (both an orbiting and a lunar instrument). In the second part of the chapter I specifically deal with the case of a lunar <span class="hlt">interferometer</span>, which allows to put together the advantages o ered by a ground-based instrument (very long baseline, a stable platform) and those offered by the space environment (absence of atmospheric turbulence, long integration times, and wavelength range of observation from the ultraviolet to the far infrared). In order to evaluate the limits of the lunar <span class="hlt">interferometer</span>, I need to consider three subjects with which I did not explicitly dealt for the study on IOTA: the maximum length of the baseline (Tango and Twiss, 1974), the maximum integration time, and the performances obtainable at the minimum temperature of operation (Ridgway, 1990). The chapter ends with a list of the main reviews which deal with the scientific objectives of space and lunar interferometry. In Appendix A I present an introduction to the principles of optical stellar interferometry. This part is mainly derived by the study and re-elaboration of the contents of the following works: Armstrong et al. (1995), Shao and Colavita (1992), and Born and Wolf (1980). In this section I present the work I specifically developed within the IOTA project. This work allowed me to, directly or indirectly, acquire the theoretical and technical knowledge I then applied in the study on the lunar <span class="hlt">interferometer</span>. After having identified some of the main sources of systematic error for an <span class="hlt">interferometer</span>, I examined: the problem of the telescope alignment, the beamsplitter behaviour, the effects that thermal variations cause on the optics and their support structures. The results obtained in these analyses and the evaluations performed on the performances of other subsystems of the instrument, allowed me to proceed in the evaluation of the instrumental visibility loss for IOTA. In the first chapter (I) I present a general description of the IOTA instrument, avoiding a detailed description of each subsystem. When it is necessary, this is given in its appropriate context. The second chapter (II) is the result of the largest part of my work done on IOTA: the analisys of the alignment of each telescope of the <span class="hlt">interferometer</span>. A non-perfect alignment of the telescope optics causes a distortion of the wavefront coming from the observed object. The distortions affecting the wavefront are responsible for the corruption of the interference fringes produced by the instrument, and eventually of the astrophysics information derived from their analysis. In order to study the effect of the optics misalignment on the performances of IOTA, I wrote a program to simulate some misalignment conditions and to evaluate the wavefront aberration they cause. For each case considered, an interferogram is produced by simulating the interference of the distorted wavefront with a plane wavefront. Th</p> <div class="credits"> <p class="dwt_author">Porro, Irene</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">286</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2015JAP...117i4901X"> <span id="translatedtitle">A continuous cold atomic beam <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We demonstrate an atom <span class="hlt">interferometer</span> that uses a laser-cooled continuous beam of 87Rb atoms having velocities of 10-20 m/s. With spatially separated Raman beams to coherently manipulate the atomic wave packets, Mach-Zehnder interference fringes are observed at an interference distance of 2L = 19 mm. The apparatus operates within a small enclosed area of 0.07 mm2 at a bandwidth of 190 Hz with a deduced sensitivity of 7.8 × 10 - 5 rad / s / ?{ Hz } for rotations. Using a low-velocity continuous atomic source in an atom <span class="hlt">interferometer</span> enables high sampling rates and bandwidths without sacrificing sensitivity and compactness, which are important for applications in real dynamic environments.</p> <div class="credits"> <p class="dwt_author">Xue, Hongbo; Feng, Yanying; Chen, Shu; Wang, Xiaojia; Yan, Xueshu; Jiang, Zhikun; Zhou, Zhaoying</p> <p class="dwt_publisher"></p> <p class="publishDate">2015-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">287</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20100021285&hterms=metrology+net&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmetrology%2Bnet"> <span id="translatedtitle"><span class="hlt">Interferometer</span> for Low-Uncertainty Vector Metrology</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">A simplified schematic diagram of a tilt-sensing unequal-path <span class="hlt">interferometer</span> set up to measure the orientation of the normal vector of one surface of a cube mounted on a structure under test is described herein. This <span class="hlt">interferometer</span> has been named a "theoferometer" to express both its interferometric nature and the intention to use it instead of an autocollimating theodolite. The theoferometer optics are mounted on a plate, which is in turn mounted on orthogonal air bearings for near-360 rotation in azimuth and elevation. Rough alignment of the theoferometer to the test cube is done by hand, with fine position adjustment provided by a tangent arm drive using linear inchwormlike motors.</p> <div class="credits"> <p class="dwt_author">Toland, Ronald W.; Leviton, Douglas B.</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">288</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/22072165"> <span id="translatedtitle">Analysis of a free oscillation atom <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We analyze a Bose-Einstein condensate (BEC)-based free oscillation atom Michelson <span class="hlt">interferometer</span> in a weakly confining harmonic magnetic trap. A BEC at the center of the trap is split into two harmonics by a laser standing wave. The harmonics move in opposite directions with equal speeds and turn back under the influence of the trapping potential at their classical turning points. The harmonics are allowed to pass through each other and a recombination pulse is applied when they overlap at the end of a cycle after they return for the second time. We derive an expression for the contrast of the interferometric fringes and obtain the fundamental limit of performance of the <span class="hlt">interferometer</span> in the parameter space.</p> <div class="credits"> <p class="dwt_author">Kafle, Rudra P.; Zozulya, Alex A. [Department of Physics, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609 (United States); Anderson, Dana Z. [Department of Physics and JILA, University of Colorado and National Institute of Standards and Technology, Boulder, Colorado 80309-0440 (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-09-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">289</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.loc.gov/pictures/collection/hh/item/ak0486.photos.193536p/"> <span id="translatedtitle">51. View of upper <span class="hlt">radar</span> scanner switch in <span class="hlt">radar</span> scanner ...</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p class="result-summary">51. View of upper <span class="hlt">radar</span> scanner switch in <span class="hlt">radar</span> scanner building 105 from upper catwalk level showing emanating waveguides from upper switch (upper one-fourth of photograph) and emanating waveguides from lower <span class="hlt">radar</span> scanner switch in vertical runs. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">290</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.loc.gov/pictures/collection/hh/item/nd0078.photos.199433p/"> <span id="translatedtitle">41. Perimeter acquisition <span class="hlt">radar</span> building <span class="hlt">radar</span> element and coaxial display, ...</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p class="result-summary">41. Perimeter acquisition <span class="hlt">radar</span> building <span class="hlt">radar</span> element and coaxial display, with drawing of typical antenna section. Drawing, from left to right, shows element, aluminum ground plane, cable connectors and hardware, cable, and back-up ring. Grey area is the concrete wall - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition <span class="hlt">Radar</span> Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">291</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/73002"> <span id="translatedtitle">Advanced ground penetrating <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">An advanced Ground Penetrating <span class="hlt">Radar</span> (GPR) system has the potential for efficiently and reliably providing high resolution images for inspecting concrete civil structures for defects and damage assessment. To achieve the required performance, improvements in <span class="hlt">radar</span> hardware, and development and adaptation of advanced 2- and 3-dimensional synthetic aperture imaging techniques are needed. Recent and continuing advancement in computer and computer-related technology areas have made it possible to consider more complex and capable systems for a variety of imaging applications not previously conceived. The authors developed conceptual designs, analyzed system requirements, and performed experiments, modeling, and image reconstructions to study the feasibility of improving GPR technology for non-destructive evaluation of bridge decks and other high-value concrete structures. An overview and summary of practical system concepts and requirements, are presented.</p> <div class="credits"> <p class="dwt_author">Warhus, J.P.; Mast, J.E.; Johansson, E.M.; Nelson, S.D. [Lawrence Livermore National Lab., CA (United States). Electronics Engineering Dept.</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-07-26</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">292</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20010041231&hterms=optical+mapping+study&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Doptical%2Bmapping%2Bstudy"> <span id="translatedtitle">Kuiper Belt Mapping <span class="hlt">Radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Since their initial discovery in 1992, to date only a relatively small number of Kuiper Belt Objects (KBO's) have been discovered. Current detection techniques rely on frame-to-frame comparisons of images collected by optical telescopes such as Hubble, to detect KBO's as they move against the background stellar field. Another technique involving studies of KBO's through occultation of known stars has been proposed. Such techniques are serendipitous, not systematic, and may lead to an inadequate understanding of the size, range, and distribution of KBO's. In this paper, a future Kuiper Belt Mapping <span class="hlt">Radar</span> is proposed as a solution to the problem of mapping the size distribution, extent, and range of KBO's. This approach can also be used to recover <span class="hlt">radar</span> albedo and object rotation rates. Additional information is contained in the original extended abstract.</p> <div class="credits"> <p class="dwt_author">Freeman, A.; Nilsen, E.</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">293</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20050170605&hterms=essential+writing&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3D%2528essential%2Bwriting%2529"> <span id="translatedtitle"><span class="hlt">RADAR</span> Reveals Titan Topography</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The Cassini Titan <span class="hlt">RADAR</span> Mapper is a K(sub u)-band (13.78 GHz, lambda = 2.17 cm) linear polarized <span class="hlt">RADAR</span> instrument capable of operating in synthetic aperture (SAR), scatterometer, altimeter and radiometer modes. During the first targeted flyby of Titan on 26 October, 2004 (referred to as Ta) observations were made in all modes. Evidence for topographic relief based on the Ta altimetry and SAR data are presented here. Additional SAR and altimetry observations are planned for the T3 encounter on 15 February, 2005, but have not been carried out at this writing. Results from the T3 encounter relevant to topography will be included in our presentation. Data obtained in the Ta encounter include a SAR image swath</p> <div class="credits"> <p class="dwt_author">Kirk, R. L.; Callahan, P.; Seu, R.; Lorenz, R. D.; Paganelli, F.; Lopes, R.; Elachi, C.</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">294</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2000SPIE.4033..116F"> <span id="translatedtitle">Floor-plan <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Urban-warfare specialists, law-enforcement officers, counter-drug agents, and counter-terrorism experts encounter operational situations where they must assault a target building and capture or rescue its occupants. To minimize potential casualties, the assault team needs a picture of the building's interior and a copy of its floor plan. With this need in mind, we constructed a scale model of a single- story house and imaged its interior using synthetic-aperture techniques. The interior and exterior walls nearest the <span class="hlt">radar</span> set were imaged with good fidelity, but the distal ones appear poorly defined and surrounded by ghosts and artifacts. The latter defects are traceable to beam attenuation, wavefront distortion, multiple scattering, traveling waves, resonance phenomena, and other effects not accounted for in the traditional (noninteracting, isotropic point scatterer) model for <span class="hlt">radar</span> imaging.</p> <div class="credits"> <p class="dwt_author">Falconer, David G.; Ueberschaer, Ronald M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">295</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014PhRvB..89d5308S"> <span id="translatedtitle">Tunneling current through fractional quantum Hall <span class="hlt">interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We calculate the tunneling current through a Fabry-Pérot <span class="hlt">interferometer</span> in the fractional quantum Hall regime. Within linear response theory (weak tunneling but arbitrary source-drain voltage), we find a general expression for the current due to tunneling of quasiparticles in terms of Carlson's R function. Our result is valid for fractional quantum Hall states with an edge theory consisting of a charged channel and any number of neutral channels, with possibly different edge velocities and different chiralities. We analyze the case with a single neutral channel in detail, which applies for instance to the edge of the Moore-Read state. In addition, we consider an asymmetric <span class="hlt">interferometer</span> with different edge lengths between the point contacts on opposite edges, and we study the behavior of the current as a function of varying edge length. Recent experiments attempted to measure the Aharanov-Bohm effect by changing the area inside the <span class="hlt">interferometer</span> using a plunger gate. Theoretical analyses of these experiments have so far not taken into account the accompanying change in the edge lengths. We show that the tunneling current exhibits multiple oscillations as a function of this edge length, with frequencies proportional to the injected edge current and inversely proportional to the edge velocities. In particular, the edge velocities can be measured by looking at the Fourier spectrum of the edge current. We provide a numerical scheme to calculate and plot the R function, and include sample plots for a variety of edge states with parameter values, which are experimentally relevant.</p> <div class="credits"> <p class="dwt_author">Smits, O.; Slingerland, J. K.; Simon, S. H.</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">296</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012SPIE.8370E..0SB"> <span id="translatedtitle">Fiber Fizeau <span class="hlt">interferometer</span> for remote passive sensing</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Fizeau sensors constitute a large proportion of the fiber optic interferometric type sensors in use today. These include EFPI, FFPI, certain MEMS devices and in-line fiber intrinsic dual-reflector type sensors. The vast majority of the published literature covering these sensor types models them with a "2-beam" <span class="hlt">interferometer</span> approximation, and implement interrogation approaches considering the same. Analysis performed and results presented show that the 2-beam model is not sufficient when reflection coefficients exceed 1% and traditional quadrature interrogation can result in linearity or distortion errors roughly in directly proportion to the reflectivity coefficients of the Fizeau sensor. A 4-beam multi-path <span class="hlt">interferometer</span> model is developed and exercised to demonstrate this problem. Further this model shows that the "errors" in comparison to an ideal 2-beam <span class="hlt">interferometer</span> model are symmetric across the unit circle and suggests that linear interrogation may be accomplished if orthonormal sample sets over the entire unit circle are used to replace the traditional (simple) quadrature sampling. This is shown to be true in both modeling and lab evaluations. The resulting approach has capabilities of remote, passive sensor operation, high frequency response, large, linear dynamic range and low noise. The interrogation technique demonstrated involves a phase generated carrier with full fringe sampling and quadrature determination which cancels the errors experienced from simple quadrature determination. Such an improvement enables higher reflectivity, higher SNR, high-fidelity fiber Fizeau sensor designs. Applications include embedded sensors, line sensors, or mechanically adapted for acoustic, pressure, vibration, acceleration or seismic sensing.</p> <div class="credits"> <p class="dwt_author">Bush, Jeff; Suh, Kwang</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-06-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">297</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012PhRvD..85f4007H"> <span id="translatedtitle"><span class="hlt">Interferometers</span> as probes of Planckian quantum geometry</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A theory of position of massive bodies is proposed that results in an observable quantum behavior of geometry at the Planck scale, tP. Departures from classical world lines in flat spacetime are described by Planckian noncommuting operators for position in different directions, as defined by interactions with null waves. The resulting evolution of position wave functions in two dimensions displays a new kind of directionally coherent quantum noise of transverse position. The amplitude of the effect in physical units is predicted with no parameters, by equating the number of degrees of freedom of position wave functions on a 2D space-like surface with the entropy density of a black hole event horizon of the same area. In a region of size L, the effect resembles spatially and directionally coherent random transverse shear deformations on time scale ?L/c with typical amplitude ?ctPL. This quantum-geometrical “holographic noise” in position is not describable as fluctuations of a quantized metric, or as any kind of fluctuation, dispersion or propagation effect in quantum fields. In a Michelson <span class="hlt">interferometer</span> the effect appears as noise that resembles a random Planckian walk of the beam splitter for durations up to the light-crossing time. Signal spectra and correlation functions in <span class="hlt">interferometers</span> are derived, and predicted to be comparable with the sensitivities of current and planned experiments. It is proposed that nearly colocated Michelson <span class="hlt">interferometers</span> of laboratory scale, cross-correlated at high frequency, can test the Planckian noise prediction with current technology.</p> <div class="credits"> <p class="dwt_author">Hogan, Craig J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">298</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010ogwc.book...55C"> <span id="translatedtitle">Planar-Waveguide <span class="hlt">Interferometers</span> for Chemical Sensing</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Interferometry is an optical technique that compares the differences experienced by two light beams traveling along similar paths. Planar waveguides have evanescent fields sensitive to changes in the index of refraction in the volume immediately above the waveguide surface. Placing a chemically sensitive film within this region provides the basis for chemical sensing. Film-analyte interactions change the index of refraction, causing the propagating light speed or phase to change in a direction of opposite sign to that of the index change. To measure this change, a reference propagating beam, which is adjacent to the sensing beam, is combined optically with the sensing beam, thus creating an interference pattern of alternating dark and light fringes. When chemical or physical changes occur in the sensing arm, the interference pattern shifts, producing a sinusoidal output. Waveguides and <span class="hlt">interferometers</span> come in a variety of designs, but all rely on the evanescent field interacting with a chemically selective film to produce a measured response. The sensing mechanism can be passive (a physical change) or active (reactive sites in the film). Through a judicious choice of sensing films, <span class="hlt">interferometers</span> can be designed to detect a wide variety of chemical and biological materials. Multi-<span class="hlt">interferometer</span> devices with several different sensing films can be used to detect and identify a variety of different chemical or biological analytes either through specific sensing chemistry or through analysis of patterned response from an array of different films.</p> <div class="credits"> <p class="dwt_author">Campbell, Daniel P.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">299</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1570052"> <span id="translatedtitle"><span class="hlt">Radar</span> response to vegetation</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Active microwave measurements of vegetation backscatter were conducted to determine the utility of <span class="hlt">radar</span> in 1) mapping soil moisture through vegetation and 2) mapping crop types. Using a truck-mounted boom, spectral response data were obtained for four crop types (corn, milo, soybeans, and alfalfa) over the 4-8 GHz frequency band, at incidence angles of0deg-70degin10degsteps, and for all four linear polarization</p> <div class="credits"> <p class="dwt_author">F. Ulaby</p> <p class="dwt_publisher"></p> <p class="publishDate">1975-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">300</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/870851"> <span id="translatedtitle">Imaging synthetic aperture <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">A linear-FM SAR imaging <span class="hlt">radar</span> method and apparatus to produce a real-time image by first arranging the returned signals into a plurality of subaperture arrays, the columns of each subaperture array having samples of dechirped baseband pulses, and further including a processing of each subaperture array to obtain coarse-resolution in azimuth, then fine-resolution in range, and lastly, to combine the processed subapertures to obtain the final fine-resolution in azimuth. Greater efficiency is achieved because both the transmitted signal and a local oscillator signal mixed with the returned signal can be varied on a pulse-to-pulse basis as a function of <span class="hlt">radar</span> motion. Moreover, a novel circuit can adjust the sampling location and the A/D sample rate of the combined dechirped baseband signal which greatly reduces processing time and hardware. The processing steps include implementing a window function, stabilizing either a central reference point and/or all other points of a subaperture with respect to doppler frequency and/or range as a function of <span class="hlt">radar</span> motion, sorting and compressing the signals using a standard fourier transforms. The stabilization of each processing part is accomplished with vector multiplication using waveforms generated as a function of <span class="hlt">radar</span> motion wherein these waveforms may be synthesized in integrated circuits. Stabilization of range migration as a function of doppler frequency by simple vector multiplication is a particularly useful feature of the invention; as is stabilization of azimuth migration by correcting for spatially varying phase errors prior to the application of an autofocus process.</p> <div class="credits"> <p class="dwt_author">Burns, Bryan L. (Tijeras, NM); Cordaro, J. Thomas (Albuquerque, NM)</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_14");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a style="font-weight: bold;">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_16");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_15 div --> <div id="page_16" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_15");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a style="font-weight: bold;">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_17");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">301</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/52774612"> <span id="translatedtitle">Dual scan rate <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A dual scan rate <span class="hlt">radar</span> system (DSR) includes a phased array antenna, a transmitter, a receiver and a control unit. Each rf pulse from the transmitter includes contiguous long-range and short-range pulses. The control unit adjusts the antenna so that the long-range pulse is transmitted into a slow beam at theta s and the short-range pulse is transmitted into a</p> <div class="credits"> <p class="dwt_author">W. M. Waters</p> <p class="dwt_publisher"></p> <p class="publishDate">1986-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">302</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5815277"> <span id="translatedtitle"><span class="hlt">Radar</span> gun hazards</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary"><span class="hlt">Radar</span> guns - hand-held units used by the law to nail speeders - have been in use since the early '60s. Now they've been accused of causing cancer. Police officers in several states have so far filed eight suits against the manufacturer, claiming that they have contracted rare forms of cancer, such as of the eyelid and the testicle, from frequent proximity to the devices. Spurred by concerns expressed by police groups, researchers at the Rochester Institute of Technology are conducting what they believe to be the first research of its kind in the nation. Last month psychologist John Violanti, an expert in policy psychology and health, sent out a one-page survey to 6,000 active and retired police officers in New York State, asking them about their health and their use of <span class="hlt">radar</span> guns. Violanti says melanoma, leukemia, and lymph node cancer may be linked to these as well as other electromagnetic devices. The Food and Drug Administration earlier this year issued a warning about <span class="hlt">radar</span> guns, telling users not to operate them closer than 6 inches from the body. But this may not be a sufficient safeguard since the instruments can give off crisscrossing wave emissions within a police vehicle. The survey will be used to help determine if it would be safer to mount the guns, which are currently either hand-held or mounted on dashboards, outside troopers' cars.</p> <div class="credits"> <p class="dwt_author">Not Available</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-12-20</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">303</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19870007710&hterms=LARO&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DLARO"> <span id="translatedtitle">Spaceborne Imaging <span class="hlt">Radar</span> Project</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">In June of 1985 the Project Initiation Agreement was signed by the Jet Propulsion Laboratory and the NASA Office of Space Science and Applications for the Spaceborne Imaging <span class="hlt">Radar</span> Project (SIR). The thrust of the Spaceborne Imaging <span class="hlt">Radar</span> Project is to continue the evolution of synthetic aperture <span class="hlt">radar</span> (SAR) science and technology developed during SEASAT, SIR-A and SIR-B missions to meet the needs of the Earth Observing System (EOS) in the mid 1990's. As originally formulated, the Project plans were for a reflight of the SIR-B in 1987, the development of a new SAR, SIR-C, for missions in mid 1989 and early 1990, and the upgrade of SIR-C to EOS configuration with a qualification flight aboard the shuttle in the 1993 time frame (SIR-D). However, the loss of the shuttle Challenger has delayed the first manifest for SIR to early 1990. This delay prompted the decision to drop SIR-B reflight plans and move ahead with SIR-C to more effectively utilize this first mission opportunity. The planning for this project is discussed.</p> <div class="credits"> <p class="dwt_author">Herman, Neil</p> <p class="dwt_publisher"></p> <p class="publishDate">1986-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">304</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19750004472&hterms=bird&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dbird"> <span id="translatedtitle"><span class="hlt">Radar</span> studies of bird migration</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Observations of bird migration with NASA <span class="hlt">radars</span> were made at Wallops Island, Va. Simultaneous observations were made at a number of <span class="hlt">radar</span> sites in the North Atlantic Ocean in an effort to discover what happened to those birds that were observed leaving the coast of North America headed toward Bermuda, the Caribbean and South America. Transatlantic migration, utilizing observations from a large number of <span class="hlt">radars</span> is discussed. Detailed studies of bird movements at Wallops Island are presented.</p> <div class="credits"> <p class="dwt_author">Williams, T. C.; Williams, J. M.</p> <p class="dwt_publisher"></p> <p class="publishDate">1974-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">305</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19910017742&hterms=CIRCULAR+SYNTHETIC+APERTURE+RADAR&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DCIRCULAR%2BSYNTHETIC%2BAPERTURE%2BRADAR"> <span id="translatedtitle"><span class="hlt">Radar</span>-aeolian roughness project</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The objective is to establish an empirical relationship between measurements of <span class="hlt">radar</span>, aeolian, and surface roughness on a variety of natural surfaces and to understand the underlying physical causes. This relationship will form the basis for developing a predictive equation to derive aeolian roughness from <span class="hlt">radar</span> backscatter. Results are given from investigations carried out in 1989 on the principal elements of the project, with separate sections on field studies, <span class="hlt">radar</span> data analysis, laboratory simulations, and development of theory for planetary applications.</p> <div class="credits"> <p class="dwt_author">Greeley, Ronald; Dobrovolskis, A.; Gaddis, L.; Iversen, J. D.; Lancaster, N.; Leach, Rodman N.; Rasnussen, K.; Saunders, S.; Vanzyl, J.; Wall, S.</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">306</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.gpo.gov:80/fdsys/pkg/CFR-2013-title47-vol5/pdf/CFR-2013-title47-vol5-sec80-273.pdf"> <span id="translatedtitle">47 CFR 80.273 - <span class="hlt">Radar</span> standards.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p class="result-summary">...Telecommunication 5 2013-10-01 2013-10-01 false <span class="hlt">Radar</span> standards. 80.273 Section 80.273 Telecommunication...Authorization for Compulsory Ships § 80.273 <span class="hlt">Radar</span> standards. (a) <span class="hlt">Radar</span> installations on board ships that are...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">2013-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">307</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://cimms.ou.edu/~lakshman/Papers/radarcompression.pdf"> <span id="translatedtitle">Overview of <span class="hlt">Radar</span> Data Compression Valliappa Lakshmanan</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/eprints/">E-print Network</a></p> <p class="result-summary">Overview of <span class="hlt">Radar</span> Data Compression Valliappa Lakshmanan Cooperative Institute of Mesoscale Meteorological Studies University of Oklahoma & National Severe Storms Laboratory Abstract <span class="hlt">Radar</span> data is routinely transmitted in real-time from the coterminous United States (CONUS) <span class="hlt">radar</span> sites and placed</p> <div class="credits"> <p class="dwt_author">Lakshmanan, Valliappa</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">308</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ittc.ku.edu/publications/documents/Allen1995_Allen1995GRSSNpp6.pdf"> <span id="translatedtitle">REVIEW ARTICLE Interferometric Synthetic Aperture <span class="hlt">Radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/eprints/">E-print Network</a></p> <p class="result-summary">REVIEW ARTICLE Interferometric Synthetic Aperture <span class="hlt">Radar</span> Christopher T. Allen Department of Electrical Engineering and Computer Science and <span class="hlt">Radar</span> Systems and Remote Sensing Laboratory University of Kansas Abstract. This paper provides a brief review of interferometric synthetic aperture <span class="hlt">radar</span> (In</p> <div class="credits"> <p class="dwt_author">Kansas, University of</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">309</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.gpo.gov:80/fdsys/pkg/CFR-2012-title47-vol5/pdf/CFR-2012-title47-vol5-sec80-273.pdf"> <span id="translatedtitle">47 CFR 80.273 - <span class="hlt">Radar</span> standards.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p class="result-summary">...Telecommunication 5 2012-10-01 2012-10-01 false <span class="hlt">Radar</span> standards. 80.273 Section 80.273 Telecommunication...Authorization for Compulsory Ships § 80.273 <span class="hlt">Radar</span> standards. (a) <span class="hlt">Radar</span> installations on board ships that are...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">2012-10-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">310</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.gpo.gov:80/fdsys/pkg/CFR-2014-title47-vol5/pdf/CFR-2014-title47-vol5-sec80-273.pdf"> <span id="translatedtitle">47 CFR 80.273 - <span class="hlt">Radar</span> standards.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p class="result-summary">...Telecommunication 5 2014-10-01 2014-10-01 false <span class="hlt">Radar</span> standards. 80.273 Section 80.273 Telecommunication...Authorization for Compulsory Ships § 80.273 <span class="hlt">Radar</span> standards. (a) <span class="hlt">Radar</span> installations on board ships that are...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">2014-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">311</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=PIA02751&hterms=CIRCULAR+SYNTHETIC+APERTURE+RADAR&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DCIRCULAR%2BSYNTHETIC%2BAPERTURE%2BRADAR"> <span id="translatedtitle"><span class="hlt">Radar</span> Image, Hokkaido, Japan</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary"><p/> The southeast part of the island of Hokkaido, Japan, is an area dominated by volcanoes and volcanic caldera. The active Usu Volcano is at the lower right edge of the circular Lake Toya-Ko and near the center of the image. The prominent cone above and to the left of the lake is Yotei Volcano with its summit crater. The city of Sapporo lies at the base of the mountains at the top of the image and the town of Yoichi -- the hometown of SRTM astronaut Mamoru Mohri -- is at the upper left edge. The bay of Uchiura-Wan takes up the lower center of the image. In this image, color represents elevation, from blue at the lowest elevations to white at the highest. The <span class="hlt">radar</span> image has been overlaid to provide more details of the terrain. Due to a processing problem, an island in the center of this crater lake is missing and will be properly placed when further SRTM swaths are processed. The horizontal banding in this image is a processing artifact that will be removed when the navigation information collected by SRTM is fully calibrated. This image was acquired by the Shuttle <span class="hlt">Radar</span> Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same <span class="hlt">radar</span> instrument that comprised the Spaceborne Imaging <span class="hlt">Radar</span>-C/X-Band Synthetic Aperture <span class="hlt">Radar</span> (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC. Size: 100 by 150 kilometers (62 by 93 miles) Location: 42.5 deg. North lat., 140.3 deg. East lon. Orientation: North towards upper left Image Data: SRTM Original Data Resolution: SRTM 30 meters (99 feet) Date Acquired: February 17, 2000</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">312</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19900012569&hterms=ananda&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dananda"> <span id="translatedtitle">Using connected-element <span class="hlt">interferometer</span> phase-delay data for Magellan navigation in Venus orbit</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The pointing accuracy needed to support Magellan's Synthetic Aperture <span class="hlt">Radar</span> mapping of Venus places stringent requirements on navigation accuracy. This need is met with a combination of two-way Doppler and narrowband delta Very Long Baseline <span class="hlt">Interferometer</span> (delta VLBI) data, which are capable of determining the spacecraft's orbit to the required level, typically about one-kilometer position uncertainty. Differenced Doppler (two-way Doppler minus three-way Doppler) is also capable of meeting mission navigation requirements, and serves as a backup to narrowband delta VLBI. The Magellan Project specifies that the turn-around time for processing narrowband delta VLBI data must be 12 hours or less, a very difficult requirement to meet operationally. The use of phase-delay data, taken from a Connected-Element <span class="hlt">Interferometer</span> (CEI) with a 21-km baseline, for Magellan orbit determination was investigated to determine if navigation performance comparable with narrowband delta VLBI and differenced Doppler could be achieved. CEI possesses an operational advantage over delta VLBI data in that the observables are constructed in near-real time, thus greatly reducing the turn-around time needed to process the data, relative to the off-line system used to generate delta VLBI observables. Unfortunately, the results indicate that CEI data are much less powerful than narrowband delta VLBI and differenced Doppler for orbiter navigation, although there was some marginal improvement over the navigation performance obtained when only two-way Doppler data were used.</p> <div class="credits"> <p class="dwt_author">Thurman, S. W.; Badilla, G.</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">313</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/948372"> <span id="translatedtitle">Millimeter Wave Cloud <span class="hlt">Radar</span> (MMCR) Handbook</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The millimeter cloud <span class="hlt">radar</span> (MMCR) systems probe the extent and composition of clouds at millimeter wavelengths. The MMCR is a zenith-pointing <span class="hlt">radar</span> that operates at a frequency of 35 GHz. The main purpose of this <span class="hlt">radar</span> is to determine cloud boundaries (e.g., cloud bottoms and tops). This <span class="hlt">radar</span> will also report <span class="hlt">radar</span> reflectivity (dBZ) of the atmosphere up to 20 km. The <span class="hlt">radar</span> possesses a doppler capability that will allow the measurement of cloud constituent vertical velocities.</p> <div class="credits"> <p class="dwt_author">KB Widener; K Johnson</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-30</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">314</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/25647739"> <span id="translatedtitle">Compensation for the variable cyclic error in homodyne laser <span class="hlt">interferometers</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">This paper presents a real-time method to compensate for the variable cyclic error in a homodyne laser <span class="hlt">interferometer</span>. The parameters describing the quadrature signals of the <span class="hlt">interferometer</span> are estimated using simple peak value detectors. The cyclic error in the homodyne laser <span class="hlt">interferometer</span> was then corrected through simple arithmetic calculations of the quadrature signals. A field programmable gate array was utilized for the real-time compensation of the cyclic error in a homodyne laser <span class="hlt">interferometer</span>. The simulation and experimental results indicated that the proposed method could provide a cyclic error that was fixed without compensation down to a value under 0.6 nm in a homodyne laser <span class="hlt">interferometer</span>. The proposed method could also reduce the time-varying cyclic error to a value under 0.6 nm in a homodyne laser <span class="hlt">interferometer</span>, in contrast to the equivalent value of 13.3 nm for a conventional elliptical fitting method. PMID:25647739</p> <div class="credits"> <p class="dwt_author">Hu, Pengcheng; Zhu, Jinghao; Guo, Xuanbiao; Tan, Jiubin</p> <p class="dwt_publisher"></p> <p class="publishDate">2015-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">315</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/21772398"> <span id="translatedtitle">Development of stable monolithic wide-field Michelson <span class="hlt">interferometers</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Bulk wide-field Michelson <span class="hlt">interferometers</span> are very useful for high precision applications in remote sensing and astronomy. A stable monolithic Michelson <span class="hlt">interferometer</span> is a key element in high precision radial velocity (RV) measurements for extrasolar planets searching and studies. Thermal stress analysis shows that matching coefficients of thermal expansion (CTEs) is a critical requirement for ensuring <span class="hlt">interferometer</span> stability. This requirement leads to a novel design using BK7 and LAK7 materials, such that the monolithic <span class="hlt">interferometer</span> is free from thermal distortion. The processes of design, fabrication, and testing of <span class="hlt">interferometers</span> are described in detail. In performance evaluations, the field angle is typically 23.8° and thermal sensitivity is typically -2.6×10(-6)/°C near 550 nm, which corresponds to ?800 m/s/°C in the RV scale. Low-cost <span class="hlt">interferometer</span> products have been commissioned in multiple RV instruments, and they are producing high stability performance over long term operations. PMID:21772398</p> <div class="credits"> <p class="dwt_author">Wan, Xiaoke; Ge, Jian; Chen, Zhiping</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-07-20</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">316</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/957002"> <span id="translatedtitle">Removing interfering clutter associated with <span class="hlt">radar</span> pulses that an airborne <span class="hlt">radar</span> receives from a <span class="hlt">radar</span> transponder</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">Interfering clutter in <span class="hlt">radar</span> pulses received by an airborne <span class="hlt">radar</span> system from a <span class="hlt">radar</span> transponder can be suppressed by developing a representation of the incoming echo-voltage time-series that permits the clutter associated with predetermined parts of the time-series to be estimated. These estimates can be used to estimate and suppress the clutter associated with other parts of the time-series.</p> <div class="credits"> <p class="dwt_author">Ormesher, Richard C. (Albuquerque, NM); Axline, Robert M. (Albuquerque, NM)</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-12-02</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">317</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19850020482&hterms=Entropie&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DEntropie"> <span id="translatedtitle">Special topics in infrared interferometry. [Michelson <span class="hlt">interferometer</span> development</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Topics in IR interferometry related to the development of a Michelson <span class="hlt">interferometer</span> are treated. The selection and reading of the signal from the detector to the analog to digital converter is explained. The requirements for the Michelson <span class="hlt">interferometer</span> advance speed are deduced. The effects of intensity modulation on the interferogram are discussed. Wavelength and intensity calibration of the <span class="hlt">interferometer</span> are explained. Noise sources (Nyquist or Johnson noise, phonon noise), definitions of measuring methods of noise, and noise measurements are presented.</p> <div class="credits"> <p class="dwt_author">Hanel, R. A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">318</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20110012245&hterms=atom&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Datom"> <span id="translatedtitle">Gravitational Wave Detection with Single-Laser Atom <span class="hlt">Interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">A new design for a broadband detector of gravitational radiation relies on two atom <span class="hlt">interferometers</span> separated by a distance L. In this scheme, only one arm and one laser are used for operating the two atom <span class="hlt">interferometers</span>. The innovation here involves the fact that the atoms in the atom <span class="hlt">interferometers</span> are not only considered as perfect test masses, but also as highly stable clocks. Atomic coherence is intrinsically stable, and can be many orders of magnitude more stable than a laser.</p> <div class="credits"> <p class="dwt_author">Yu, Nan; Tinto, Massimo</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">319</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/53401036"> <span id="translatedtitle">System identification of the JPL micro-precision <span class="hlt">interferometer</span> truss</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The JPL Micro-Precision <span class="hlt">Interferometer</span> (MPI) is a testbed for studying the use of control-structure interaction technology in the design of space-based <span class="hlt">interferometers</span>. A layered control architecture will be employed to regulate the <span class="hlt">interferometer</span> optical system to tolerances in the nanometer range. An important aspect of designing and implementing the control schemes for such a system is the need for high</p> <div class="credits"> <p class="dwt_author">J. R. Red-Horse; T. G. Carne; E. L. Marek; R. L. Mayes; G. W. Neat; L. F. Sword</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">320</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20090019733&hterms=terrestrial+planets&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dterrestrial%2Bplanets"> <span id="translatedtitle">Terrestrial Planet Finder <span class="hlt">Interferometer</span>: Architecture, Mission Design, and Technology Development</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">This slide presentation represents an overview progress report about the system design and technology development of two <span class="hlt">interferometer</span> concepts studied for the Terrestrial Planet Finder (TPF) project. The two concepts are a structurally-connected <span class="hlt">interferometer</span> (SCI) intended to fulfill minimum TPF science goals and a formation-flying <span class="hlt">interferometer</span> (FFI) intended to fulfill full science goals. Described are major trades, analyses, and technology experiments completed. Near term plans are also described. This paper covers progress since August 2003</p> <div class="credits"> <p class="dwt_author">Henry, Curt</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_15");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a style="font-weight: bold;">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_17");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_16 div --> <div id="page_17" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_16");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a style="font-weight: bold;">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_18");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">321</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19980027609&hterms=modal+verbs&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dmodal%2Bverbs"> <span id="translatedtitle">A Comparison of Structurally Connected and Multiple Spacecraft <span class="hlt">Interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Structurally connected and multiple spacecraft <span class="hlt">interferometers</span> are compared in an attempt to establish the maximum baseline (referred to as the "cross-over baseline") for which it is preferable to operate a single-structure <span class="hlt">interferometer</span> in space rather than an <span class="hlt">interferometer</span> composed of numerous, smaller spacecraft. This comparison is made using the total launched mass of each configuration as the comparison metric. A framework of study within which structurally connected and multiple spacecraft <span class="hlt">interferometers</span> can be compared is presented in block diagram form. This methodology is then applied to twenty-two different combinations of trade space parameters to investigate the effects of different orbits, orientations, truss materials, propellants, attitude control actuators, onboard disturbance sources, and performance requirements on the cross-over baseline. Rotating <span class="hlt">interferometers</span> and the potential advantages of adding active structural control to the connected truss of the structurally connected <span class="hlt">interferometer</span> are also examined. The minimum mass design of the structurally connected <span class="hlt">interferometer</span> that meets all performance-requirements and satisfies all imposed constraints is determined as a function of baseline. This minimum mass design is then compared to the design of the multiple spacecraft <span class="hlt">interferometer</span>. It is discovered that the design of the minimum mass structurally connected <span class="hlt">interferometer</span> that meets all performance requirements and constraints in solar orbit is limited by the minimum allowable aspect ratio, areal density, and gage of the struts. In the formulation of the problem used in this study, there is no advantage to adding active structural control to the truss for <span class="hlt">interferometers</span> in solar orbit. The cross-over baseline for missions of practical duration (ranging from one week to thirty years) in solar orbit is approximately 400 m for non-rotating <span class="hlt">interferometers</span> and 650 m for rotating <span class="hlt">interferometers</span>.</p> <div class="credits"> <p class="dwt_author">Surka, Derek M.; Crawley, Edward F.</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">322</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19820003100&hterms=dr+jean+blom&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Ddr.%2Bjean%2Bblom"> <span id="translatedtitle">Planetary <span class="hlt">radar</span> studies. [<span class="hlt">radar</span> mapping of the Moon and <span class="hlt">radar</span> signatures of lunar and Venus craters</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Progress made in studying the evolution of Venusian craters and the evolution of infrared and <span class="hlt">radar</span> signatures of lunar crater interiors is reported. Comparison of <span class="hlt">radar</span> images of craters on Venus and the Moon present evidence for a steady state Venus crater population. Successful observations at the Arecibo Observatory yielded good data on five nights when data for a mix of inner and limb areas were acquired. Lunar craters with <span class="hlt">radar</span> bright ejects are discussed. An overview of infrared <span class="hlt">radar</span> crater catalogs in the data base is included.</p> <div class="credits"> <p class="dwt_author">Thompson, T. W.; Cutts, J. A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">323</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014NJPh...16h3024C"> <span id="translatedtitle">Detecting Fulde-Ferrell superconductors by an Andreev <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We propose an Andreev <span class="hlt">interferometer</span>, based on a branched Y-junction, to detect the finite momentum pairing in Fulde-Ferrell (FF) superconductors. In this <span class="hlt">interferometer</span>, the oscillation of subgap conductance is a unique function of phase difference between the two channels of the Y-junction, which is determined by the phase modulation of the order parameter in the FF superconductors. This <span class="hlt">interferometer</span> has the potential not only to determine the magnitude but also the direction of the momentum of Cooper pairs in the FF superconductor. The possible applications of the <span class="hlt">interferometer</span> in the identification of the finite momentum pairing in non-centrosymmetric superconductors are also discussed.</p> <div class="credits"> <p class="dwt_author">Chen, Wei; Gong, Ming; Shen, R.; Xing, D. Y.</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-08-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">324</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://etd.lib.montana.edu/etd/2012/hoffman/HoffmanD1212.pdf"> <span id="translatedtitle">CONFOCAL FABRY-PEROT <span class="hlt">INTERFEROMETER</span> BASED HIGH SPECTRAL RESOLUTION LIDAR</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/eprints/">E-print Network</a></p> <p class="result-summary">CONFOCAL FABRY-PEROT <span class="hlt">INTERFEROMETER</span> BASED HIGH SPECTRAL RESOLUTION LIDAR by David Swick Hoffman....................................................................................3 Lidar............................................................................................................4 High Spectral Resolution Lidar</p> <div class="credits"> <p class="dwt_author">Lawrence, Rick L.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">325</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/19571974"> <span id="translatedtitle">Achromatic deep nulling with a three-dimensional Sagnac <span class="hlt">interferometer</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">A 3-D Sagnac <span class="hlt">interferometer</span> can null out light from an on-axis source achromatically. The 3-D Sagnac <span class="hlt">interferometer</span> can make stable and achromatic pi phase shifts, because it has a common path structure. The achromaticity of the <span class="hlt">interferometer</span> is theoretically proved by Jones calculus. The experimental setup is constructed, and its nulling characteristics are measured to be about 10(-6) at 5 lambda/d for green (lambda=532 nm) and red (lambda=633 nm) laser light simultaneously. This <span class="hlt">interferometer</span> would be very useful for the direct detection of faint extrasolar planets. PMID:19571974</p> <div class="credits"> <p class="dwt_author">Yokochi, Kaito; Tavrov, Alexander V; Nishikawa, Jun; Murakami, Naoshi; Abe, Lyu; Tamura, Motohide; Takeda, Mitsuo; Kurokawa, Takashi</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">326</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=PIA00205&hterms=traveling+through+the+dark&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3D%2528%2528%2528traveling%2Bthrough%2529%2Bthe%2529%2Bdark%2529"> <span id="translatedtitle">Venus - First <span class="hlt">Radar</span> Test</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">After traveling more than 1.5 billion kilometers (948 million miles), the Magellan spacecraft was inserted into orbit around Venus on Aug. 10, 1990. This mosaic consists of adjacent pieces of two Magellan image strips obtained on Aug. 16 in the first <span class="hlt">radar</span> test. The <span class="hlt">radar</span> test was part of a planned In Orbit Checkout sequence designed to prepare the Magellan spacecraft and <span class="hlt">radar</span> to begin mapping after Aug. 31. The strip on the left was returned to the Goldstone Deep Space Network station in California; the strip to the right was received at the DSN in Canberra, Australia. A third station that will be receiving Magellan data is located near Madrid, Spain. Each image strip is 20 km (12 miles) wide and 16,000 km (10,000 miles) long. This mosaic is a small portion 80 km (50 miles) long. This image is centered at 21 degrees north latitude and 286.8 degrees east longitude, southeast of a volcanic highland region called Beta Regio. The resolution of the image is about 120 meters (400 feet), 10 times better than previous images of the same area of Venus, revealing many new geologic features. The bright line trending northwest southeast across the center of the image is a fracture or fault zone cutting the volcanic plains. In the upper left corner of the image, a multiple ring circular feature of probable volcanic origin can be seen, approximately 4.27 km (2.65 miles) across. The bright and dark variations seen in the plains surrounding these features correspond to volcanic lava flows of varying ages. The volcanic lava flows in the southern half of the image have been cut by north south trending faults. This area is similar geologically to volcanic deposits seen on Earth at Hawaii and the Snake River Plains in Idaho.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">327</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/42748606"> <span id="translatedtitle">Microwave Emissions from Police <span class="hlt">Radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This study evaluated police officers' exposures to microwaves emitted by traffic <span class="hlt">radar</span> units. Exposure measurements were taken at approximated ocular and testicular levels of officers seated in patrol vehicles. Comparisons were made of the <span class="hlt">radar</span> manufacturers' published maximum power density specifications and actual measured power densities taken at the antenna faces of those units. Four speed-enforcement agencies and one transportation</p> <div class="credits"> <p class="dwt_author">J. M. Fink; J. P. Wagner; J. J. Congleton; J. C. Rock</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">328</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50570932"> <span id="translatedtitle">SHARAD <span class="hlt">radar</span> signal processing technique</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">SHARAD (SHAllow <span class="hlt">RADar</span>) is the sub-surface sounding <span class="hlt">radar</span> provided by the Italian Space Agency (ASI) as a facility instrument to NASA's 2005 Mars Reconnaissance Orbiter (MRO). SHARAD has been launched on August '05 and has started its nominal observation phase since November '06. Primary objective of its investigation is to map, in selected regions, dielectric interfaces to depths of up</p> <div class="credits"> <p class="dwt_author">G. Alberti; S. Dinardo; S. Mattei; C. Papa; M. R. Santovito</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">329</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.rrsg.uct.ac.za/members/rlord/papers/remsens_arabia05.pdf"> <span id="translatedtitle">CURRENT APPLICATIONS OF IMAGING <span class="hlt">RADAR</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper discusses the current status of imaging <span class="hlt">radar</span> systems deployed on spacecraft and airborne platforms, such as aircraft and unmanned airborne vehicles (UAVs). Imaging <span class="hlt">radar</span> technology has advanced considerably over the last twenty years, and the user can now be fairly certain of finding a sensor ideal for a specifi c application. The objective of the paper is to</p> <div class="credits"> <p class="dwt_author">M. R. Inggs; R. T. Lord; WG VII</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">330</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/160008"> <span id="translatedtitle">Decorrelation in interferometric <span class="hlt">radar</span> echoes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A <span class="hlt">radar</span> interferometric technique for topographic mapping of surfaces, implemented utilizing a single synthetic aperture <span class="hlt">radar</span> (SAR) system in a nearly repeating orbit, is discussed. The authors characterize the various sources contributing to the echo correlation statistics, and isolate the term which most closely describes surficial change. They then examine the application of this approach to topographic mapping of vegetated</p> <div class="credits"> <p class="dwt_author">Howard A. Zebker; John Villasensor</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">331</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.jpl.nasa.gov/radar/sircxsar/"> <span id="translatedtitle">Space <span class="hlt">Radar</span> Images of Earth</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">This collection of images was captured by the Spaceborne Imaging <span class="hlt">Radar</span>-C/X-Band Synthetic Aperture <span class="hlt">Radar</span>, which was flown on two flights of the space shuttle Endeavour in 1994. Images are classified into categories for ease in searching: archaeological sites, cities, ecology and agriculture, geology, interferometry, oceans, rivers, snow and ice, and volcanoes.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">332</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20100005262&hterms=hz+triangular+wave&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dhz%2Btriangular%2Bwave"> <span id="translatedtitle">Measuring Cyclic Error in Laser Heterodyne <span class="hlt">Interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">An improved method and apparatus have been devised for measuring cyclic errors in the readouts of laser heterodyne <span class="hlt">interferometers</span> that are configured and operated as displacement gauges. The cyclic errors arise as a consequence of mixing of spurious optical and electrical signals in beam launchers that are subsystems of such <span class="hlt">interferometers</span>. The conventional approach to measurement of cyclic error involves phase measurements and yields values precise to within about 10 pm over air optical paths at laser wavelengths in the visible and near infrared. The present approach, which involves amplitude measurements instead of phase measurements, yields values precise to about .0.1 microns . about 100 times the precision of the conventional approach. In a displacement gauge of the type of interest here, the laser heterodyne <span class="hlt">interferometer</span> is used to measure any change in distance along an optical axis between two corner-cube retroreflectors. One of the corner-cube retroreflectors is mounted on a piezoelectric transducer (see figure), which is used to introduce a low-frequency periodic displacement that can be measured by the gauges. The transducer is excited at a frequency of 9 Hz by a triangular waveform to generate a 9-Hz triangular-wave displacement having an amplitude of 25 microns. The displacement gives rise to both amplitude and phase modulation of the heterodyne signals in the gauges. The modulation includes cyclic error components, and the magnitude of the cyclic-error component of the phase modulation is what one needs to measure in order to determine the magnitude of the cyclic displacement error. The precision attainable in the conventional (phase measurement) approach to measuring cyclic error is limited because the phase measurements are af-</p> <div class="credits"> <p class="dwt_author">Ryan, Daniel; Abramovici, Alexander; Zhao, Feng; Dekens, Frank; An, Xin; Azizi, Alireza; Chapsky, Jacob; Halverson, Peter</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">333</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20100012802&hterms=Inquiry+Nature+Causes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DInquiry%2BNature%2BCauses"> <span id="translatedtitle">Modified Phasemeter for a Heterodyne Laser <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Modifications have been made in the design of instruments of the type described in "Digital Averaging Phasemeter for Heterodyne Interferometry". A phasemeter of this type measures the difference between the phases of the unknown and reference heterodyne signals in a heterodyne laser <span class="hlt">interferometer</span>. The phasemeter design lacked immunity to drift of the heterodyne frequency, was bandwidth-limited by computer bus architectures then in use, and was resolution-limited by the nature of field-programmable gate arrays (FPGAs) then available. The modifications have overcome these limitations and have afforded additional improvements in accuracy, speed, and modularity. The modifications are summarized.</p> <div class="credits"> <p class="dwt_author">Loya, Frank M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">334</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012SPIE.8370E..0RV"> <span id="translatedtitle">Mach-Zehnder <span class="hlt">interferometer</span> for movement monitoring</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Fiber optical <span class="hlt">interferometers</span> belong to highly sensitive equipments that are able to measure slight changes like distortion of shape, temperature and electric field variation and etc. Their great advantage is that they are insensitive on ageing component, from which they are composed of. It is in virtue of herewith, that there are evaluated no changes in optical signal intensity but number interference fringes. To monitor the movement of persons, eventually to analyze the changes in state of motion we developed method based on analysis the dynamic changes in interferometric pattern. We have used Mach- Zehnder <span class="hlt">interferometer</span> with conventional SM fibers excited with the DFB laser at wavelength of 1550 nm. It was terminated with optical receiver containing InGaAs PIN photodiode. Its output was brought into measuring card module that performs on FFT of the received <span class="hlt">interferometer</span> signal. The signal rises with the composition of two waves passing through single <span class="hlt">interferometer</span> arm. The optical fiber SMF 28e in one arm is referential; the second one is positioned on measuring slab at dimensions of 1x2m. A movement of persons around the slab was monitored, signal processed with FFT and frequency spectra were evaluated. They rose owing to dynamic changes of interferometric pattern. The results reflect that the individual subjects passing through slab embody characteristic frequency spectra, which are individual for particular persons. The scope of measuring frequencies proceeded from zero to 10 kHz. It was also displayed in experiments that the experimental subjects, who walked around the slab and at the same time they have had changed their state of motion (knee joint fixation), embodied characteristic changes in their frequency spectra. At experiments the stability of interferometric patterns was evaluated as from time aspects, so from the view of repeated identical experiments. Two kinds of balls (tennis and ping-pong) were used to plot the repeatability measurements and the gained spectra at repeated drops of balls were compared. Those stroked upon the same place and from the same elevation and dispersion of the obtained frequency spectra was evaluated. These experiments were performed on the series of 20 repeated drops from highs of 0,5 and 1m. The evaluation of experiments displayed that the dispersion of measured values is lower than 4%. Frequency response has been verified with the loudspeaker connected to signal generator and amplifier. Various slabs have been measured and frequency ranges were compared for particular slab designs.</p> <div class="credits"> <p class="dwt_author">Vasinek, Vladimir; Cubik, Jakub; Kepak, Stanislav; Doricak, Jan; Latal, Jan; Koudelka, Petr</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-06-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">335</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1989SPIE.1114..225D"> <span id="translatedtitle">ASSI - an optimized fringe tracking stellar <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The Active Stabilization in Stellar Interferometry (ASSI) experiment conducted with the CERGA two-telescope <span class="hlt">interferometer</span> is presently discussed with a view to the features and performance of its near-IR, cooled-silicon diode synchronous detection-based real-time and flux-optimized fringe-tracking system. Attention is given to ASSI's optical path delay correction, which is a function essential to the achievement of a cophased array suitable for optical imaging. Photometric rates as high as 1.2 million/sec have been achieved.</p> <div class="credits"> <p class="dwt_author">Dame, L.; Decaudin, M.; Faucherre, M.; Boutry, P.; Bourdet, G.</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">336</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1994A%26A...291..847G"> <span id="translatedtitle"><span class="hlt">Interferometer</span> observations of RS Canum Venaticorum binaries</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We present radio flux measurements at 5 GHz for a sample of RS CVn-type chromospherically active binary systems made from 1988 to 1992 using the Nuffield Radio Astronomy Laboratories (NRAL) broad-band <span class="hlt">interferometer</span> (BBI). The derived radio luminosities are consistent with previous observations but show that radio flaring is a common feature which will effect the results of rotation-activity studies. The mean brightness temperature for our sample, assuming a radio source size equal to twice the radius of the active stellar component, is consistent with a gyrosynchrotron emission process from mildly relativistic electrons.</p> <div class="credits"> <p class="dwt_author">Gunn, A. G.; Spencer, R. E.; Abdul Aziz, H.; Doyle, J. G.; Davis, R. J.; Pavelin, P. E.</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-11-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">337</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/1023252"> <span id="translatedtitle">SLC <span class="hlt">Interferometer</span> System and Phase Distribution Upgrades</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Many of the components used in the Stanford Linear Collider (SLC) phasing system date back 30 years to the construction of SLAC. At the start of SLC the phase reference system was upgraded with many of the original components remaining. The R.F. drive system phase stability requirements became tighter with operation and optimization of the SLC. This paper describes analysis done on the R.F. drive system and <span class="hlt">interferometer</span> system during the 1996 run and down time, modifications to the systems during the 1996-97 down time, and the improvements in stability from the modifications.</p> <div class="credits"> <p class="dwt_author">Akre, Ron; /SLAC</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-08-26</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">338</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19810061026&hterms=Image+Mining&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DImage%2BMining"> <span id="translatedtitle">A <span class="hlt">radar</span> image time series</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">A set of ten side-looking <span class="hlt">radar</span> images of a mining area in Arizona that were aquired over a period of 14 yr are studied to demonstrate the photogrammetric differential-rectification technique applied to <span class="hlt">radar</span> images and to examine changes that occurred in the area over time. Five of the images are rectified by using ground control points and a digital height model taken from a map. Residual coordinate errors in ground control are reduced from several hundred meters in all cases to + or - 19 to 70 m. The contents of the <span class="hlt">radar</span> images are compared with a Landsat image and with aerial photographs. Effects of <span class="hlt">radar</span> system parameters on <span class="hlt">radar</span> images are briefly reviewed.</p> <div class="credits"> <p class="dwt_author">Leberl, F.; Fuchs, H.; Ford, J. P.</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">339</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010AGUFMSA51B1629R"> <span id="translatedtitle">Coherent backscatter <span class="hlt">radar</span> imaging in Brazil: Bottomside <span class="hlt">radar</span> plumes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The 30 MHz coherent scatter backscatter <span class="hlt">radar</span> in Sao Luis, Brazil has been used for routine two-antenna observations of equatorial E and F region field aligned irregularities since 2002. In 2005, two antenna modules were added to the already existing two modules. These new modules would allow observations with 6 independent interferometric baselines, which then could be used for construction of in-beam <span class="hlt">radar</span> images similar to those produced at Jicamarca Radio Observatory [e.g. Hysell, 1996]. Despite the low transmitting power and reduced number of baselines, in-beam <span class="hlt">radar</span> images of F-region scattering structures were successfully constructed with the Sao Luis <span class="hlt">radar</span> observations. Initial imaging results were used to investigate the horizontal structure of a bottom-type scattering that preceded a fully developed <span class="hlt">radar</span> plume [Rodrigues et al., 2009]. Here, we examine Sao Luis observations of bottomside <span class="hlt">radar</span> plumes. Details of the observations and analysis will be presented and the characteristics of the scattering structures seen with this <span class="hlt">radar</span> will be discussed.</p> <div class="credits"> <p class="dwt_author">Rodrigues, F. S.; de Paula, E. R.; Hysell, D. L.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">340</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2002ASSL..278...23H"> <span id="translatedtitle">Mars <span class="hlt">Radar</span> Observations with the Goldstone Solar System <span class="hlt">Radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The Goldstone Solar System <span class="hlt">Radar</span> (GSSR) has successfully collected <span class="hlt">radar</span> echo data from Mars over the past 30 years. As such, the GSSR has played a role as a specific mission element within Mars exploration. The older data provided local elevation information for Mars, along with <span class="hlt">radar</span> scattering information with global resolution. Since the upgrade to the 70-m Deep Space Network (DSN) antenna at Goldstone completed in 1986, Mars data has been collected during all but the 1997 Mars opposition. <span class="hlt">Radar</span> data, and non-imaging delay-Doppler data in particular, requires significant data processing to extract elevation, reflectivity and roughness of the reflecting surface. The spatial resolution of these experiments is typically some 20 km in longitude by some 150 km in latitude. The interpretation of these parameters while limited by the complexities of electromagnetic scattering, do provide information directly relevant to geophysical and geomorphic analyses of Mars. The usefulness of <span class="hlt">radar</span> data for Mars exploration has been demonstrated in the past. <span class="hlt">Radar</span> data were critical in assessing the Viking Lander 1 site as well as, more recently, the Pathfinder landing site. In general, <span class="hlt">radar</span> data have not been available to the Mars exploration community at large. A project funded initially by the Mars Exploration Directorate Science Office at the Jet Propulsion Laboratory (JPL), and later funded by NASA's Mars Data Analysis Program has reprocessed to a common format a decade's worth of raw GSSR Mars delay-Doppler data in aid of landing site characterization for the Mars Program. These data will soon be submitted to the Planetary Data System (PDS). The <span class="hlt">radar</span> data used were obtained between 1988 and 1995 by the GSSR, and comprise some 63 delay-Doppler <span class="hlt">radar</span> tracks. Of these, 15 have yet to be recovered from old 9-track tapes, and some of the data may be permanently lost.</p> <div class="credits"> <p class="dwt_author">Haldemann, A. F. C.; Jurgens, R. F.; Larsen, K. W.; Arvidson, R. E.; Slade, M. A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_16");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a style="font-weight: bold;">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_18");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_17 div --> <div id="page_18" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_17");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a style="font-weight: bold;">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_19");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">341</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009AAS...21348003G"> <span id="translatedtitle">The Millimeter-wave Bolometric <span class="hlt">Interferometer</span> (MBI)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We report on the design and tests of a prototype of the Millimeter-wave Bolometric <span class="hlt">Interferometer</span> (MBI). MBI is designed to make sensitive measurements of the polarization of the cosmic microwave background (CMB). It combines the differencing capabilities of an <span class="hlt">interferometer</span> with the high sensitivity of bolometers at millimeter wavelengths. The prototype, which we call MBI-4, views the sky directly through four corrugated horn antennas. MBI ultimately will have 1000 antennas. These antennas have low sidelobes and nearly symmetric beam patterns, so spurious instrumental polarization from reflective optics is avoided. The MBI-4 optical band is defined by filters with a central frequency of 90 GHz. The set of baselines, determined by placement of the four antennas, results in sensitivity to CMB polarization fluctuations over the multipole range l = 150 - 270. The signals are combined with a Fizeau beam combiner and interference fringes are detected by an array of spiderweb bolometers. In order to separate the visibility signals from the total power detected by each bolometer, the phase of the signal from each antenna is modulated by a ferrite-based waveguide phase shifter. Initial tests and observations have been made at Pine Bluff Observatory (PBO) outside Madison, WI. This work was supported by NASA grants NAG5-12758, NNX07AG82G, the Rhode Island Space Grant and the Wisconsin Space Grant.</p> <div class="credits"> <p class="dwt_author">Gault, Amanda C.; Ade, P. A. R.; Bierman, E.; Bunn, E. F.; Hyland, P. O.; Keating, B. G.; Korotkov, A. L.; Malu, S. S.; O'Sullivan, C.; Piccirillo, L.; Timbie, P. T.; Tucker, G. S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">342</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2015PhRvA..91c3629B"> <span id="translatedtitle">Testing gravity with cold-atom <span class="hlt">interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We present a horizontal gravity gradiometer atom <span class="hlt">interferometer</span> for precision gravitational tests. The horizontal configuration is superior for maximizing the inertial signal in the atom <span class="hlt">interferometer</span> from a nearby proof mass. In our device, we have suppressed spurious noise associated with the horizonal configuration to achieve a differential acceleration sensitivity of 4.2 ×10-9g /?{Hz } over a 70-cm baseline or 3.0 ×10-9g /?{Hz } inferred per accelerometer. Using the performance of this instrument, we characterize the results of possible future gravitational tests. We demonstrate a statistical uncertainty of 3 ×10-4 for a proof-of-concept measurement of the gravitational constant that is competitive with the present limit of 1.2 ×10-4 using other techniques. From this measurement, we provide a statistical constraint on a Yukawa-type fifth force at 8 ×10-3 near the poorly known length scale of 10 cm. Limits approaching 10-5 appear feasible. We discuss improvements that can enable uncertainties falling well below 10-5 for both experiments.</p> <div class="credits"> <p class="dwt_author">Biedermann, G. W.; Wu, X.; Deslauriers, L.; Roy, S.; Mahadeswaraswamy, C.; Kasevich, M. A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2015-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">343</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/542034"> <span id="translatedtitle">Advanced lightning location <span class="hlt">interferometer</span>. Final report</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">In January, 1994, New Mexico Institute for Mining and Technology (NM Tech) was commissioned by Los Alamos National Laboratories (LANL) to develop a three-axis interferometric lightning mapping system to be used in determining the source of certain frequency-dispersed pulse pairs which had been detected by spaceborne sensors. The existing NM Tech VHF Lightning <span class="hlt">Interferometer</span> was a two axis system operating at 274 MHz with 6 MHz bandwidth. The third axis was to be added to refine estimates of the elevation angle to distant RF sources in that band. The system was to be initially deployed in support of an Air Force Technical Applications Center (AFTAC) effort planned for the Kennedy Space Center/Cape Canaveral AFS area in June-July of 1994. The project was, however, postponed until September of 1994. The <span class="hlt">interferometer</span> was set up and operated at KSC near the Lightning Detection and Ranging (LDAR) central station. The initial setup was in two-axis configuration, and the third (vertical) axis was added at about mid-project. Though the storms were reduced in frequency and severity over what one would expect in mid-summer, several good data sets were obtained and delivered to AFTAC.</p> <div class="credits"> <p class="dwt_author">NONE</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-05-25</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">344</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/1174776"> <span id="translatedtitle">Dual-domain lateral shearing <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">The phase-shifting point diffraction <span class="hlt">interferometer</span> (PS/PDI) was developed to address the problem of at-wavelength metrology of extreme ultraviolet (EUV) optical systems. Although extremely accurate, the fact that the PS/PDI is limited to use with coherent EUV sources, such as undulator radiation, is a drawback for its widespread use. An alternative to the PS/PDI, with relaxed coherence requirements, is lateral shearing interferometry (LSI). The use of a cross-grating, carrier-frequency configuration to characterize a large-field 4.times.-reduction EUV lithography optic is demonstrated. The results obtained are directly compared with PS/PDI measurements. A defocused implementation of the lateral shearing <span class="hlt">interferometer</span> in which an image-plane filter allows both phase-shifting and Fourier wavefront recovery. The two wavefront recovery methods can be combined in a dual-domain technique providing suppression of noise added by self-interference of high-frequency components in the test-optic wavefront.</p> <div class="credits"> <p class="dwt_author">Naulleau, Patrick P.; Goldberg, Kenneth Alan</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-03-16</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">345</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007ApJ...657.1178E"> <span id="translatedtitle">The Mathematics of Double-Fourier <span class="hlt">Interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Recent studies, which are the impetus for this paper, have investigated the possibility of astronomical wide-field double-Fourier interferometry at submillimeter and midinfrared wavelengths. Double-Fourier interferometry combines Michelson interferometry and Fourier transform spectroscopy. At the present time, it is the only technique that promises simultaneous high spatial and spectral resolution. First, we derive the near-general output response for wide-field double-Fourier <span class="hlt">interferometers</span> using the Jones and Mueller calculi. We employ a ``systems'' approach, expressing the instrument behavior in terms of matrix electric field and intensity impulse responses (point-spread functions) between the sky and the focal plane. This approach is helpful for integrated modeling, Monte Carlo simulations, and developing instrument requirements from science goals. Second, we furnish three wavenumber-dependent observables-visibilities, squared visibility magnitudes, and dirty/processed images-plus their (co)variances in the photon-rich regime. Third, to obtain a basic understanding of the mathematics in this paper, the output responses for perfect, phase-aberrated, and polarization-mismatched optics are produced. Last, we present ideas for future research in wide-field double-Fourier <span class="hlt">interferometers</span>, such as SPIRIT and SPECS.</p> <div class="credits"> <p class="dwt_author">Elias, Nicholas M., II; Harwit, Martin; Leisawitz, David; Rinehart, Stephen A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">346</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19790011421&hterms=quantify+bird+movements&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dquantify%2Bbird%2Bmovements"> <span id="translatedtitle"><span class="hlt">Radar</span>, Insect Population Ecology, and Pest Management</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Discussions included: (1) the potential role of <span class="hlt">radar</span> in insect ecology studies and pest management; (2) the potential role of <span class="hlt">radar</span> in correlating atmospheric phenomena with insect movement; (3) the present and future <span class="hlt">radar</span> systems; (4) program objectives required to adapt <span class="hlt">radar</span> to insect ecology studies and pest management; and (5) the specific action items to achieve the objectives.</p> <div class="credits"> <p class="dwt_author">Vaughn, C. R. (editor); Wolf, W. (editor); Klassen, W. (editor)</p> <p class="dwt_publisher"></p> <p class="publishDate">1979-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">347</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19840019219&hterms=EVALUATION+STORM&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DEVALUATION%2BSTORM"> <span id="translatedtitle">Evaluation of meteorological airborne Doppler <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">This paper will discuss the capabilities of airborne Doppler <span class="hlt">radar</span> for atmospheric sciences research. The evaluation is based on airborne and ground based Doppler <span class="hlt">radar</span> observations of convective storms. The capability of airborne Doppler <span class="hlt">radar</span> to measure horizontal and vertical air motions is evaluated. Airborne Doppler <span class="hlt">radar</span> is shown to be a viable tool for atmospheric sciences research.</p> <div class="credits"> <p class="dwt_author">Hildebrand, P. H.; Mueller, C. K.</p> <p class="dwt_publisher"></p> <p class="publishDate">1984-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">348</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/53851681"> <span id="translatedtitle">Asteroid and comet orbits using <span class="hlt">radar</span> data</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">For the 30 asteroids and 4 comets for which <span class="hlt">radar</span> astrometric data were given by Ostro (1991), orbits have been computed using both the <span class="hlt">radar</span> and the existing optical measurements. The techniques required to process <span class="hlt">radar</span> data in orbit determination solutions are outlined, and future <span class="hlt">radar</span> observation opportunities for asteroids and comets are identified. For asteroids and comets that have</p> <div class="credits"> <p class="dwt_author">D. K. Yeomans; P. W. Chodas; M. S. Keesey; S. J. Ostro; J. F. Chandler; I. I. Shapiro</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">349</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=https://eosweb.larc.nasa.gov/project/fire/fire_ci2_etl_radar_table"> <span id="translatedtitle">FIRE_CI2_ETL_<span class="hlt">RADAR</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://eosweb.larc.nasa.gov/">Atmospheric Science Data Center </a></p> <p class="result-summary">FIRE_CI2_ETL_<span class="hlt">RADAR</span> Project Title:  FIRE II CIRRUS Discipline:  ... Platform:  Ground Station Instrument:  <span class="hlt">Radar</span> Spatial Coverage:  (37.06, -95.34) Spatial ... Order Data Guide Documents:  ETL_<span class="hlt">RADAR</span> Guide Readme Files:  Readme ETL_<span class="hlt">RADAR</span> (PS) ...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">2014-05-06</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">350</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://twister.ou.edu/papers/BoldineEtal_JTech2011.pdf"> <span id="translatedtitle">Understanding <span class="hlt">Radar</span> Refractivity: Sources of Uncertainty</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/eprints/">E-print Network</a></p> <p class="result-summary">Understanding <span class="hlt">Radar</span> Refractivity: Sources of Uncertainty David Bodine1,2 , Dan Michaud1,2 , Robert <span class="hlt">Radar</span> Research Center, University of Oklahoma, Norman, OK, USA 3 NOAA/OAR National Severe Storms validation of WSR-88D <span class="hlt">radar</span> refractiv- ity retrievals, and discusses some challenges to implementing <span class="hlt">radar</span></p> <div class="credits"> <p class="dwt_author">Droegemeier, Kelvin K.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">351</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1984PhRvL..52.1673A"> <span id="translatedtitle">Neutron Phase Shift in a Rotating Two-Crystal <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The phase shift introduced by rotational motion of a two-crystal neutron <span class="hlt">interferometer</span> has been measured and found to agree with prediction within 0.4%. This agreement is obtained without making the in-crystal phase corrections employed in a recent study of a linearly accelerated three-crystal <span class="hlt">interferometer</span>.</p> <div class="credits"> <p class="dwt_author">Atwood, D. K.; Horne, M. A.; Shull, C. G.; Arthur, J.</p> <p class="dwt_publisher"></p> <p class="publishDate">1984-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">352</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/3406801"> <span id="translatedtitle">Modes in a maser <span class="hlt">interferometer</span> with curved and tilted mirrors</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Fabry-Perot <span class="hlt">interferometers</span> have played an important role in the conception and realization of optical masers. The authors have previously made a study of the idealized <span class="hlt">interferometer</span>. In this paper they present some results of a continued study of the effects of certain simple forms of aberration. The first is represented by tilted plane mirrors and the second by curved mirrors.</p> <div class="credits"> <p class="dwt_author">A. G. Fox; Tingye Li</p> <p class="dwt_publisher"></p> <p class="publishDate">1963-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">353</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20060030256&hterms=DARPA&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DDARPA"> <span id="translatedtitle">Imaging <span class="hlt">interferometer</span> using dual broadband quantum well infrared photodetectors</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The Jet Propulsion Laboratory is developing a new imaging <span class="hlt">interferometer</span> that has double the efficiency of conventional <span class="hlt">interferometers</span> and only a fraction of the mass and volume. The project is being funded as part of the Defense Advanced Research Projects Agency (DARPA) Photonic Wavelength And Spatial Signal Processing program (PWASSSP).</p> <div class="credits"> <p class="dwt_author">Reininger, F.; Gunapala, S.; Bandara, S.; Grimm, M.; Johnson, D.; Peters, D.; Leland, S.; Liu, J.; Mumolo, J.; Rafol, D.; Thomas, I.; Ting, D.; Wilson, D.</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">354</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/19285077"> <span id="translatedtitle">Phase alignment of segmented mirrors using a digital wavefront <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">It is well known that phase alignment of segmented mirrors can be realized with the help of the <span class="hlt">interferometer</span>. The purpose is to achieve an interferogram whose fringe patterns of each segmented mirror are connected with each other. This can only be done by experience with very low accuracy. However, a digital wavefront <span class="hlt">interferometer</span> can be developed as a sensor</p> <div class="credits"> <p class="dwt_author">Jian Bai; Shangyi Cheng; Guoguang Yang</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">355</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19870031912&hterms=fiber+laser&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dfiber%2Blaser"> <span id="translatedtitle">Fiber-optic <span class="hlt">interferometer</span> using frequency-modulated laser diodes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">This paper describes an electrically passive fiber-optic <span class="hlt">interferometer</span> which uses dual frequency-modulated laser diodes. Experimental results show that this type of <span class="hlt">interferometer</span> can attain a displacement range of 100 micron with subnanometer resolution. This technique can serve as the basis for a number of high-precision fiber-optic sensors.</p> <div class="credits"> <p class="dwt_author">Beheim, G.</p> <p class="dwt_publisher"></p> <p class="publishDate">1986-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">356</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55133895"> <span id="translatedtitle">ALMA test <span class="hlt">interferometer</span> control system: past experiences and future developments</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The Atacama Large Millimeter Array (ALMA) will, when it is completed in 2012, be the world's largest millimeter & sub-millimeter radio telescope. It will consist of 64 antennas, each one 12 meters in diameter, connected as an <span class="hlt">interferometer</span>. The ALMA Test <span class="hlt">Interferometer</span> Control System (TICS) was developed as a prototype for the ALMA control system. Its initial task was to</p> <div class="credits"> <p class="dwt_author">Ralph G. Marson; Martin Pokorny; Jeff Kern; Fritz Stauffer; Alain Perrigouard; Birger Gustafsson; Ken Ramey</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">357</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/19140783"> <span id="translatedtitle">Scheme for measuring a Berry phase in an atom <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We present a concept for measuring a Berry phase using an atom <span class="hlt">interferometer</span> in an optical Ramsey arrangement. The adiabatic cyclic process needed for the appearance of a Berry phase consists of the adiabatic change of population in one of the <span class="hlt">interferometer</span> arms. A closed circuit in parameter space is realized by the time-dependent Doppler detuning of two additional strongly</p> <div class="credits"> <p class="dwt_author">M. Reich; U. Sterr; W. Ertmer</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">358</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20120000423&hterms=silicon&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dsilicon"> <span id="translatedtitle">Silicon Carbide Mounts for Fabry-Perot <span class="hlt">Interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Etalon mounts for tunable Fabry- Perot <span class="hlt">interferometers</span> can now be fabricated from reaction-bonded silicon carbide structural components. These mounts are rigid, lightweight, and thermally stable. The fabrication of these mounts involves the exploitation of post-casting capabilities that (1) enable creation of monolithic structures having reduced (in comparison with prior such structures) degrees of material inhomogeneity and (2) reduce the need for fastening hardware and accommodations. Such silicon carbide mounts could be used to make lightweight Fabry-Perot <span class="hlt">interferometers</span> or could be modified for use as general lightweight optical mounts. Heretofore, tunable Fabry-Perot <span class="hlt">interferometer</span> structures, including mounting hardware, have been made from the low-thermal-expansion material Invar (a nickel/iron alloy) in order to obtain the thermal stability required for spectroscopic applications for which such <span class="hlt">interferometers</span> are typically designed. However, the high mass density of Invar structures is disadvantageous in applications in which there are requirements to minimize mass. Silicon carbide etalon mounts have been incorporated into a tunable Fabry-Perot <span class="hlt">interferometer</span> of a prior design that originally called for Invar structural components. The strength, thermal stability, and survivability of the <span class="hlt">interferometer</span> as thus modified are similar to those of the <span class="hlt">interferometer</span> as originally designed, but the mass of the modified <span class="hlt">interferometer</span> is significantly less than the mass of the original version.</p> <div class="credits"> <p class="dwt_author">Lindemann, Scott</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">359</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5169247"> <span id="translatedtitle">Laser diode <span class="hlt">interferometer</span> for vibration and sound pressure measurements</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The authors describe a laser diode <span class="hlt">interferometer</span> for vibration measurement constructed using two acousto-optic tunable filters with slightly different frequencies. A sound pressure measurement of a condenser microphone using a combination of a polarization maintaining fiber and the laser diode <span class="hlt">interferometer</span> is demonstrated.</p> <div class="credits"> <p class="dwt_author">Takahashi, H.; Masuda, C.; Gotoh, Y.; Koyama, J. (Dept. of Electronics, Shibaura Institute of Technology, Tokyo 108 (JP))</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">360</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ulu.submm.caltech.edu/outreach/kiosk/technicalmemo/gene_holography_cso.pdf"> <span id="translatedtitle">Surface figure measurements of radio telescopes with a shearing <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A new technique for determining the surface figure of large submillimeter wavelength telescopes is presented, which is based on measuring the telescope's focal plane diffraction pattern with a shearing <span class="hlt">interferometer</span>. In addition to the instrumental theory, results obtained using such an <span class="hlt">interferometer</span> on the 10.4-m diam telescope of the Caltech Submillimeter Observatory are discussed. Using wavelengths near 1 mm, a</p> <div class="credits"> <p class="dwt_author">E. Serabyn; T. G. Phillips; C. R. Masson</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_17");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a style="font-weight: bold;">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_19");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_18 div --> <div id="page_19" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_18");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a style="font-weight: bold;">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_20");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">361</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ssl.mit.edu/publications/theses/SM-2002-MakinsBrian.pdf"> <span id="translatedtitle"><span class="hlt">Interferometer</span> Architecture Trade Studies for the Terrestrial Planet Finder Mission</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/eprints/">E-print Network</a></p> <p class="result-summary"><span class="hlt">Interferometer</span> Architecture Trade Studies for the Terrestrial Planet Finder Mission by Brian J #12;2 #12;<span class="hlt">Interferometer</span> Architecture Trade Studies for the Terrestrial Planet Finder Mission by Brian and then used to conduct trade studies for NASA's Terrestrial Planet Finder (TPF) Mission. A software tool</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">362</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1991STIN...9232535L"> <span id="translatedtitle">Interception of LPI <span class="hlt">radar</span> signals</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Most current <span class="hlt">radars</span> are designed to transmit short duration pulses with relatively high peak power. These <span class="hlt">radars</span> can be detected easily by the use of relatively modest EW intercept receivers. Three <span class="hlt">radar</span> functions (search, anti-ship missile (ASM) seeker, and navigation) are examined to evaluate the effectiveness of potential low probability of intercept (LPI) techniques, such as waveform coding, antenna profile control, and power management that a <span class="hlt">radar</span> may employ against current Electronic Warfare (EW) receivers. The general conclusion is that it is possible to design a LPI <span class="hlt">radar</span> which is effective against current intercept EW receivers. LPI operation is most easily achieved at close ranges and against a target with a large <span class="hlt">radar</span> cross section. The general system sensitivity requirement for the detection of current and projected LPI <span class="hlt">radars</span> is found to be on the order of -100 dBmi which cannot be met by current EW receivers. Finally, three potential LPI receiver architectures, using channelized, superhet, and acousto-optic receivers with narrow RF and video bandwidths are discussed. They have shown some potential in terms of providing the sensitivity and capability in an environment where both conventional and LPI signals are present.</p> <div class="credits"> <p class="dwt_author">Lee, Jim P.</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-11-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">363</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6362720"> <span id="translatedtitle">Large phased-array <span class="hlt">radars</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Large phased-array <span class="hlt">radars</span> can play a very important part in arms control. They can be used to determine the number of RVs being deployed, the type of targeting of the RVs (the same or different targets), the shape of the deployed objects, and possibly the weight and yields of the deployed RVs. They can provide this information at night as well as during the day and during rain and cloud covered conditions. The <span class="hlt">radar</span> can be on the ground, on a ship, in an airplane, or space-borne. Airborne and space-borne <span class="hlt">radars</span> can provide high resolution map images of the ground for reconnaissance, of anti-ballistic missile (ABM) ground <span class="hlt">radar</span> installations, missile launch sites, and tactical targets such as trucks and tanks. The large ground based <span class="hlt">radars</span> can have microwave carrier frequencies or be at HF (high frequency). For a ground-based HF <span class="hlt">radar</span> the signal is reflected off the ionosphere so as to provide over-the-horizon (OTH) viewing of targets. OTH <span class="hlt">radars</span> can potentially be used to monitor stealth targets and missile traffic.</p> <div class="credits"> <p class="dwt_author">Brookner, D.E.</p> <p class="dwt_publisher"></p> <p class="publishDate">1988-12-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">364</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/22303823"> <span id="translatedtitle">Dispersion <span class="hlt">interferometer</span> using modulation amplitudes on LHD (invited)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Since a dispersion <span class="hlt">interferometer</span> is insensitive to mechanical vibrations, a vibration compensation system is not necessary. The CO{sub 2} laser dispersion <span class="hlt">interferometer</span> with phase modulations on the Large Helical Device utilizes the new phase extraction method which uses modulation amplitudes and can improve a disadvantage of the original dispersion <span class="hlt">interferometer</span>: measurement errors caused by variations of detected intensities. The phase variation within ±2 × 10{sup 17} m{sup ?3} is obtained without vibration compensation system. The measured line averaged electron density with the dispersion <span class="hlt">interferometer</span> shows good agreement with that with the existing far infrared laser <span class="hlt">interferometer</span>. Fringe jump errors in high density ranging up to 1.5 × 10{sup 20} m{sup ?3} can be overcome by a sufficient sampling rate of about 100 kHz.</p> <div class="credits"> <p class="dwt_author">Akiyama, T., E-mail: takiyama@lhd.nifs.ac.jp; Yasuhara, R.; Kawahata, K. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki-shi, Gifu 509-5292 (Japan); Okajima, S.; Nakayama, K. [Chubu University, Matsumoto-cho, Kasugai-shi, Aichi 487-8501 (Japan)</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-11-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">365</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014AIPC.1600..171L"> <span id="translatedtitle">Monitoring a tall tower through <span class="hlt">radar</span> interferometry: The case of the Collserola tower in Barcelona</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Data acquired through a Real Aperture <span class="hlt">Radar</span> <span class="hlt">interferometer</span> aimed at monitoring a tall tower and its guys are here analysed. The acquisition of temporal samples of interferometric phase, corresponding to different parts of the tower, are used to estimate main vibration frequencies and modal shapes of the tower. Guys have been also monitored to verify the possibility to retrieve their tension force using the taut string approximation. The study confirmed the potential of this technique considering also that an analogous monitoring carried out with conventional contact sensors would be unadvisable due to its high costs and the strong electromagnetic noise of this environment.</p> <div class="credits"> <p class="dwt_author">Luzi, Guido; Crosetto, Michele; Monserrat, Oriol</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">366</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20070018817&hterms=bear+solar+observatory&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dbear%2Bsolar%2Bobservatory"> <span id="translatedtitle">Solar Confocal <span class="hlt">interferometers</span> for Sub-Picometer-Resolution Spectral Filters</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The confocal Fabry-Perot <span class="hlt">interferometer</span> allows sub-picometer spectral resolution of Fraunhofer line profiles. Such high spectral resolution is needed to keep pace with the higher spatial resolution of the new set of large-aperture solar telescopes. The line-of-sight spatial resolution derived for line profile inversions would then track the improvements of the transverse spatial scale provided by the larger apertures. In particular, profile inversion allows improved velocity and magnetic field gradients to be determined independent of multiple line analysis using different energy levels and ions. The confocal <span class="hlt">interferometer</span>'s unique properties allow a simultaneous increase in both etendue and spectral power. The higher throughput for the <span class="hlt">interferometer</span> provides significant decrease in the aperture, which is important in spaceflight considerations. We have constructed and tested two confocal <span class="hlt">interferometers</span>. A slow-response thermal-controlled <span class="hlt">interferometer</span> provides a stable system for laboratory investigation, while a piezoelectric <span class="hlt">interferometer</span> provides a rapid response for solar observations. In this paper we provide design parameters, show construction details, and report on the laboratory test for these <span class="hlt">interferometers</span>. The field of view versus aperture for confocal <span class="hlt">interferometers</span> is compared with other types of spectral imaging filters. We propose a multiple etalon system for observing with these units using existing planar <span class="hlt">interferometers</span> as pre-filters. The radiometry for these tests established that high spectral resolution profiles can be obtained with imaging confocal <span class="hlt">interferometers</span>. These sub-picometer spectral data of the photosphere in both the visible and near-infrared can provide important height variation information. However, at the diffraction-limited spatial resolution of the telescope, the spectral data is photon starved due to the decreased spectral passband.</p> <div class="credits"> <p class="dwt_author">Gary, G. Allen; Pietraszewski, Chris; West, Edward A.; Dines. Terence C.</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">367</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.jpl.nasa.gov/radar/sircxsar/index.html"> <span id="translatedtitle">Space <span class="hlt">Radar</span> Images of Earth</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">Spaceborne Imaging <span class="hlt">Radar</span>-C/X-Band Synthetic Aperture <span class="hlt">Radar</span> (SIR-C/X-SAR), part of NASA's Mission to Planet Earth, is studying how our global environment is changing. From the unique vantage point of space, the <span class="hlt">radar</span> system observes, monitors and assesses large-scale environmental processes with a focus on climate change. The spaceborne data, complemented by aircraft and ground studies, gives scientists highly detailed information that will help them distinguish natural environmental changes from those that are the result of human activity. The images are divided into nine categories for easier viewing.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">368</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19970023672&hterms=CIRCULAR+SYNTHETIC+APERTURE+RADAR&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DCIRCULAR%2BSYNTHETIC%2BAPERTURE%2BRADAR"> <span id="translatedtitle">The Clementine Bistatic <span class="hlt">Radar</span> Experiment</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">During the Clementine 1 mission, a bistatic <span class="hlt">radar</span> experiment measured the magnitude and polarization of the <span class="hlt">radar</span> echo versus bistatic angle, beta, for selected lunar areas. Observations of the lunar south pole yield a same-sense polarization enhancement around beta = 0. Analysis shows that the observed enhancement is localized to the permanently shadowed regions of the lunar south pole. <span class="hlt">Radar</span> observations of periodically solar-illuminated lunar surfaces, including the north pole, yielded no such enhancement. A probable explanation for these differences is the presence of low-loss volume scatterers, such as water ice, in the permanently shadowed region at the south pole.</p> <div class="credits"> <p class="dwt_author">Nozette, S.; Lichtenberg, C. L.; Spudis, P.; Bonner, R.; Ort, W.; Malaret, E.; Robinson, M.; Shoemaker, E. M.</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">369</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/17818164"> <span id="translatedtitle">Ganymede: observations by <span class="hlt">radar</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary"><span class="hlt">Radar</span> cross-section measurements indicate that Ganymede scatters to Earth 12 percent of the power expected from a conducting sphere of the same size and distance. This compares with 8 percent for Mars, 12 percent for Venus, 6 percent for Mercury, and about 8 percent for the asteroid Toro. Furthermore, Ganymede is considerably rougher (to the scale of the wavelength used, 12.6 centimeters) than Mars, Venus, or Mercury. Roughness is made evident in this experiment by the presence of echoes away from the center of the disk. A perfectly smooth target would reflect only a glint from the center, whereas a very rough target would reflect power from over the entire disk. PMID:17818164</p> <div class="credits"> <p class="dwt_author">Goldstein, R M; Morris, G A</p> <p class="dwt_publisher"></p> <p class="publishDate">1975-06-20</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">370</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014SPIE.9074E..05M"> <span id="translatedtitle">Fly eye <span class="hlt">radar</span> or micro-<span class="hlt">radar</span> sensor technology</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">To compensate for its eye's inability to point its eye at a target, the fly's eye consists of multiple angularly spaced sensors giving the fly the wide-area visual coverage it needs to detect and avoid the threats around him. Based on a similar concept a revolutionary new micro-<span class="hlt">radar</span> sensor technology is proposed for detecting and tracking ground and/or airborne low profile low altitude targets in harsh urban environments. Distributed along a border or around a protected object (military facility and buildings, camp, stadium) small size, low power unattended <span class="hlt">radar</span> sensors can be used for target detection and tracking, threat warning, pre-shot sniper protection and provides effective support for homeland security. In addition it can provide 3D recognition and targets classification due to its use of five orders more pulses than any scanning <span class="hlt">radar</span> to each space point, by using few points of view, diversity signals and intelligent processing. The application of an array of directional antennas eliminates the need for a mechanical scanning antenna or phase processor. It radically decreases <span class="hlt">radar</span> size and increases bearing accuracy several folds. The proposed micro-<span class="hlt">radar</span> sensors can be easy connected to one or several operators by point-to-point invisible protected communication. The directional antennas have higher gain, can be multi-frequency and connected to a multi-functional network. Fly eye micro-<span class="hlt">radars</span> are inexpensive, can be expendable and will reduce cost of defense.</p> <div class="credits"> <p class="dwt_author">Molchanov, Pavlo; Asmolova, Olga</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">371</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010JPhCS.228a2027D"> <span id="translatedtitle">Towards a Suspension Platform <span class="hlt">Interferometer</span> for the AEI 10 m Prototype <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Currently, the AEI 10 m Prototype is being set up at the Albert Einstein Institute in Hannover, Germany. The Suspension Platform <span class="hlt">Interferometer</span> (SPI) will be an additional <span class="hlt">interferometer</span> set up inside the vacuum envelope of the AEI 10 m Prototype. It will interferometrically link the three suspended in-vacuum tables. The inter-table distance will be 11.65 m. The SPI will measure and stabilise the relative motions between these tables for all degrees of freedom, except roll around the optical axis. In this way, all tables can be regarded as one large platform. The design goal is 100 pm/ differential distance stability between 10mHz and 100Hz.</p> <div class="credits"> <p class="dwt_author">Dahl, K.; Bertolini, A.; Born, M.; Chen, Y.; Gering, D.; Goßler, S.; Gräf, C.; Heinzel, G.; Hild, S.; Kawazoe, F.; Kranz, O.; Kühn, G.; Lück, H.; Mossavi, K.; Schnabel, R.; Somiya, K.; Strain, K. A.; Taylor, J. R.; Wanner, A.; Westphal, T.; Willke, B.; Danzmann, K.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">372</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://arxiv.org/pdf/1309.1469.pdf"> <span id="translatedtitle">Probabilistic image reconstruction for radio <span class="hlt">interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/eprints/">E-print Network</a></p> <p class="result-summary">We present a novel, general-purpose method for deconvolving and denoising images from gridded radio interferometric visibilities using Bayesian inference based on a Gaussian process model. The method automatically takes into account incomplete coverage of the uv-plane and mode coupling due to the beam. Our method uses Gibbs sampling to efficiently explore the full posterior distribution of the underlying signal image given the data. We use a set of widely diverse mock images with a realistic <span class="hlt">interferometer</span> setup and level of noise to assess the method. Compared to results from a proxy for the CLEAN method we find that in terms of RMS error and signal-to-noise ratio our approach performs better than traditional deconvolution techniques, regardless of the structure of the source image in our test suite. Our implementation scales as O(np log np), provides full statistical and uncertainty information of the reconstructed image, requires no supervision, and provides a robust, consistent framework for incorporating...</p> <div class="credits"> <p class="dwt_author">Sutter, P M; McEwen, Jason D; Bunn, Emory F; Karakci, Ata; Korotkov, Andrei; Timbie, Peter; Tucker, Gregory S; Zhang, Le</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">373</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2004APS..APR.L9001S"> <span id="translatedtitle">The Laser <span class="hlt">Interferometer</span> Space Antenna: An Overview</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The Laser <span class="hlt">Interferometer</span> Space Antenna (LISA) is a joint ESA-NASA mission that will explore the Universe for gravitational wave sources between 0.1 mHz and 1 Hz. Anticipated sources of gravitational waves include: the inspiral of supermassive black holes resulting from galactic mergers; the inspiral of intermediate mass black holes; the inspiral of compact objects into supermassive black holes; thousands of close, compact binaries in our own Galaxy; and, possibly, density fluctuations in the early universe if their (much more uncertain) amplitude permits. LISA consists of three spacecraft orbiting the Sun in a triangular formation. Gravitational waves are detected by interferometrically monitoring the 5 million kilometer separations between free-falling reference masses within the spacecraft. LISA employs technology from Â"drag-freeÂ" control systems, spaceborne accelerometers, microthrusters, interferometric distance-ranging and precision measurements to measure strains of 10-23 over very long baselines.</p> <div class="credits"> <p class="dwt_author">Stebbins, Robin</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">374</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010CQGra..27h4021L"> <span id="translatedtitle">The monolithic suspension for the Virgo <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Monolithic fused silica suspensions are needed to reduce the suspension thermal noise level in future, ground-based gravitational wave interferometric detectors. We present the status of the monolithic suspension system which will be employed for the test masses of the Virgo+ detector. Two fully monolithic suspensions have been realized using a spare Virgo mirror, so the assembling pipeline was checked; moreover, a very reliable recovery procedure was developed to allow an efficient and fast (about a week) suspension repairing in case of wires' failure. The performances of a full scale prototype of the last suspension stage, suspending an aluminum dummy mass, were tested and the mechanical behavior of the suspension is currently studied in vacuum. The obtained results, crucial to finalize the design of the silica suspension elements for the advanced version of the <span class="hlt">interferometer</span>, are reported.</p> <div class="credits"> <p class="dwt_author">Lorenzini, M.; Virgo Collaboration</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-04-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">375</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19870041421&hterms=gays&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dgays"> <span id="translatedtitle">An 'X-banded' Tidbinbilla <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The recent upgrading of the Tidbinbilla two-element <span class="hlt">interferometer</span> to simultaneous S-band (2.3 GHz) and X-band (8.4 GHz) operation has provided a powerful new astronomical facility for weak radio source measurement in the Southern Hemisphere. The new X-band system has a minimum fringe spacing of 38 arcsec, and about the same positional measurement capability (approximately 2 arcsec) and sensitivity (1 s rms noise of 10 mJy) as the previous S-band system. However, the far lower confusion limit will allow detection and accurate positional measurements for sources as weak as a few millijanskys. This capability will be invaluable for observations of radio stars, X-ray sources and other weak, compact radio sources.</p> <div class="credits"> <p class="dwt_author">Batty, Michael J.; Gardyne, R. G.; Gay, G. J.; Jauncy, David L.; Gulkis, S.; Kirk, A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1986-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">376</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/49992892"> <span id="translatedtitle">A plea for <span class="hlt">radar</span> brightness</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The <span class="hlt">radar</span> reflectivity coefficient of a distributed scatterer, expressed either as ?0 or ?, depends on local incidence angle. Prior to incidence angle projection, the reflectivity coefficient may be called \\</p> <div class="credits"> <p class="dwt_author">R. K. Raney; T. Freeman; R. W. Hawkins; R. Bamler</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">377</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/dataexplorer/biblio/1171723"> <span id="translatedtitle">Ground Penetrating <span class="hlt">Radar</span>, Barrow, Alaska</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p class="result-summary">This is 500 MHz Ground Penetrating <span class="hlt">Radar</span> collected along the AB Line in Intensive Site 1 beginning in October 2012 and collected along L2 in Intensive Site 0 beginning in September 2011. Both continue to the present.</p> <div class="credits"> <p class="dwt_author">John Peterson</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">378</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008PhDT........13H"> <span id="translatedtitle">The Millimeter-wave Bolometric <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The Millimeter-wave Bolometeric <span class="hlt">Interferometer</span> (MBI) is a novel instrument for measuring signals from the cosmic microwave background (CMB) radiation. MBI is a proof-of-concept designed to control systematic effects with the use of bolometers and interferometry. This scheme extends radio astronomy techniques of spatial interferometry, which rely on coherent receivers, to a system using incoherent detectors. In this thesis we outline the principles upon which MBI works and provide the reader with an understanding of both the particulars involved in the design and operation of MBI as well as the analysis of the resulting data. MBI observes the sky directly with 4 corrugated horn antennas in a band centered on l = 3 mm . A quasi-optical beam combiner forms interference fringes on an array of bolometers cooled to 300 mK. Phase modulation of the signals modulates the fringe patterns on the array and allows decoding of the visibilities formed by each pair of antennas. An altitude-azimuth mounting structure allows the horns to observe any point on the sky; rotation about the boresite extends the u - v coverage of the <span class="hlt">interferometer</span> and allows for systematics checks and measurements of the Stokes parameters. MBI was deployed at the Pine Bluff Observatory near UW - Madison in winter 2008 for its first test observations of astronomical and artificial sources. Interference fringes were seen from a microwave generator located in the far- field, verifying our basic model of bolometric interferometry. Further analysis is needed to measure the scattering matrix of the instrument and to compare it against simulations.</p> <div class="credits"> <p class="dwt_author">Hyland, Peter Owen</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">379</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20130009019&hterms=performance+marketing&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dperformance%2Bmarketing"> <span id="translatedtitle"><span class="hlt">Interferometers</span> Sharpen Measurements for Better Telescopes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Over the last decade, there have been a number of innovations that have made possible the largest and most powerful telescope of its time: the James Webb Space Telescope (JWST). Scheduled to launch in 2018, JWST will provide insight into what the oldest, most distant galaxies look like. When engineers build a first-of-its-kind instrument like the JWST, they often must make new tools to construct the new technology. Throughout the decades of planning, development, and construction of the JWST, NASA has worked with numerous partners to spur innovations that have enabled the telescope s creation. Though the JWST s launch date is still several years away, a number of these innovations are spinning off to provide benefits here on Earth. One of these spinoffs has emerged from the extensive testing the JWST must undergo to ensure it will function in the extreme environment of space. In order to test the JWST instruments in conditions that closely resemble those in space, NASA uses a cryogenic vacuum chamber. By dropping the temperatures down to -400 F and employing powerful pumps to remove air from the chamber, engineers can test whether the JWST instruments will function once the spacecraft leaves Earth. Traditionally, a phase-shifting <span class="hlt">interferometer</span> is used to measure optics like the JWST s mirrors to verify their precise shape, down to tens of nanometers, during manufacturing. However, the large size of the mirrors, coupled with vibration induced by the cryo-pumps, prohibits the use of traditional phase-shifting <span class="hlt">interferometers</span> to measure the mirrors within the chamber environment. Because the JWST will be located in deep space, far from any possible manned service mission, it was essential to find a robust solution to guarantee the performance of the mirrors.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">2013-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">380</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://authors.library.caltech.edu/9086/1/DANjaot07.pdf"> <span id="translatedtitle">A Marine <span class="hlt">Radar</span> Wind Sensor</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A new method for retrieving the wind vector from <span class="hlt">radar</span>-image sequences is presented. This method, called WiRAR, uses a marine X-band <span class="hlt">radar</span> to analyze the backscatter of the ocean surface in space and time with respect to surface winds. Wind direction is found using wind-induced streaks, which are very well aligned with the mean surface wind direction and have a</p> <div class="credits"> <p class="dwt_author">Heiko Dankert; Jochen Horstmann</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_18");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a style="font-weight: bold;">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_20");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_19 div --> <div id="page_20" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_19");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a style="font-weight: bold;">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_21");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">381</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50714485"> <span id="translatedtitle">New directions in bistatic <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">It has been remarked that interest in the subject of bistatic <span class="hlt">radar</span> has varied cyclically, with a period of about fifteen years. The very first <span class="hlt">radars</span> were bistatic, until T\\/R switches were invented. Interest was revived in the 1950s\\/1960s, with semi-active homing missiles and the SPASUR system, then died away. The second resurgence was in the mid-1970s to mid-1980s, with</p> <div class="credits"> <p class="dwt_author">Hugh Griffiths</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">382</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20140010713&hterms=radar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dradar"> <span id="translatedtitle">The NASA Polarimetric <span class="hlt">Radar</span> (NPOL)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Characteristics of the NASA NPOL S-band dual-polarimetric <span class="hlt">radar</span> are presented including its operating characteristics, field configuration, scanning capabilities and calibration approaches. Examples of precipitation science data collections conducted using various scan types, and associated products, are presented for different convective system types and previous field campaign deployments. Finally, the NASA NPOL <span class="hlt">radar</span> location is depicted in its home base configuration within the greater Wallops Flight Facility precipitation research array supporting NASA Global Precipitation Measurement Mission ground validation.</p> <div class="credits"> <p class="dwt_author">Petersen, Walter A.; Wolff, David B.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">383</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009pcms.confE.203S"> <span id="translatedtitle">Representing <span class="hlt">radar</span> QPE and QPF uncertainties using <span class="hlt">radar</span> ensembles</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In the last years, new comprehension of the physics underlying the <span class="hlt">radar</span> measurements as well as new technological advancements have allowed <span class="hlt">radar</span> community to propose better algorithms and methodologies and significant advancements have been achieved in improving Quantitative Precipitation Estimates (QPE) and Quantitative Precipitation forecasting (QPF) by <span class="hlt">radar</span>. Thus the study of the 2D uncertainties field associated to these estimates has become an important subject, specially to enhance the use of <span class="hlt">radar</span> QPE and QPF in hydrological studies, as well as in providing a reference for satellite precipitations measurements. In this context the use of <span class="hlt">radar</span>-based rainfall ensembles (i.e. equiprobable rainfall field scenarios generated to be compatible with the observations/forecasts and with the inferred structure of the uncertainties) has been seen as an extremely interesting tool to represent their associated uncertainties. The generation of such <span class="hlt">radar</span> ensembles requires first the full characterization of the 3D field of associated uncertainties (2D spatial plus temporal), since rainfall estimates show an error structure highly correlated in space and time. A full methodology to deal with this kind of <span class="hlt">radar</span>-based rainfall ensembles is presented. Given a rainfall event, the 2D uncertainty fields associated to the <span class="hlt">radar</span> estimates are defined for every time step using a benchmark, or reference field, based on the best available estimate of the rainfall field. This benchmark is built using an advanced non parametric interpolation of a dense raingauge network able to use the spatial structure provided by the <span class="hlt">radar</span> observations, and is confined to the region in which this combination could be taken as a reference measurement (Velasco-Forero et al. 2008, doi:10.1016/j.advwatres.2008.10.004). Then the spatial and temporal structures of these uncertainty fields are characterized and a methodology to generate consistent multiple realisations of them is used to generate the <span class="hlt">radar</span>-based rainfall ensembles scenarios. This methodology, based on the improvement of the "String of Beads" model (Pegram and Clothier, 2001, doi:10.1016/S0022-1694(00)00373-5), is designed to preserve their main characteristics, such as anisotropy and the temporal variations of their spatial correlation. The discussion of the results on an illustrative case study and their potential interest in hydrological applications is also discussed.</p> <div class="credits"> <p class="dwt_author">Sempere-Torres, D.; Llort, X.; Roca, J.; Pegram, G.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">384</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012SPIE.8345E..21S"> <span id="translatedtitle">An interferometric <span class="hlt">radar</span> for displacement measurement and its application in civil engineering structures</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Recent progress in <span class="hlt">radar</span> techniques and systems has led to the development of a microwave <span class="hlt">interferometer</span>, potentially suitable for non-contact displacement monitoring of civil engineering structures. This paper describes a new interferometric <span class="hlt">radar</span> system, named IBIS-S, which is possible to measure the static or dynamic displacement at multiple points of structures simultaneously with high accuracy. In this paper, the technical characteristics and specification of the <span class="hlt">radar</span> system is described. Subsequently, the actual displacement sensitivity of the equipment is illustrated using the laboratory tests with random motion upon a shake table. Finally the applications of the <span class="hlt">radar</span> system to the measurement on a cable-stayed bridge and a prestressed concrete bridge are presented and discussed. Results show that the new system is an accurate and effective method to measure displacements of multiple targets of structures. It should be noted that the current system can only measure the vibration of the target position along the sensor's line of sight. Hence, proper caution should be taken when designing the sensor posture and prior knowledge of the direction of motion is necessary.</p> <div class="credits"> <p class="dwt_author">Su, D.; Nagayama, T.; Sun, Z.; Fujino, Y.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-04-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">385</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012AGUFMSA43B2091U"> <span id="translatedtitle">Analysis of Coherent Scatter Observations collected with the new Penn State VHF Meteor <span class="hlt">Radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The Penn State University 50 MHz <span class="hlt">radar</span> <span class="hlt">interferometer</span> has been installed near Penn State campus, University Park, Pennsylvania (77.97°W, 40.70°N), to make continuous meteor observations since July 5, 2012. The antenna beam is pointed to the north in the magnetic meridian plane. In azimuth the half-power beam-width is about 3.4o, while in elevation the gain pattern peaked in the direction perpendicular to the geomagnetic field at E-region heights at about 18o elevation angle. The system uses two phased sub-arrays of four 24-element COCO strings with an east-west separation of 50 m. On transmission both sub-arrays are excited simultaneously and oriented perpendicular to the Earth's geomagnetic field lines at E- region heights. On reception each sub-array is sampled independently for interferometric detection of the scattering regions. The new <span class="hlt">radar</span> operates at a peak power of about 30 kW and can detect all three types of meteor reflections: 1) the commonly used specular meteor trails; 2) non-specular trails, which result from plasma instability and turbulence generated field aligned irregularities (FAI); and 3) meteor head-echoes, which are a <span class="hlt">radar</span> target moving at the speed of the meteoroid. In this paper, we present first observational trends of specular, non- specular, and head-echoes collected with the new system and discuss sampling biases of each meteor observation technique. We also present the general characteristics of continuous measurements of E-region and F-region coherent echoes using this modern <span class="hlt">radar</span> system and compare them with coherent <span class="hlt">radar</span> events observed at other geographic mid-latitude <span class="hlt">radar</span> stations.</p> <div class="credits"> <p class="dwt_author">Urbina, J. V.; Hackett, A. L.; Dyrud, L. P.; Fentzke, J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">386</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21612456"> <span id="translatedtitle">EIT Based Gas Detector Design by Using Michelson <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Electromagnetically induced transparency (EIT) is one of the interesting phenomena of light-matter interaction which modifies matter properties for propagation of light. In other words, we can change the absorption and refractive index (RI) in neighborhood of the resonant frequency using EIT. In this paper, we have doped 3-level quantum dots in one of the Michelson <span class="hlt">Interferometer</span>'s mirror and used EIT to change its RI. So, a controllable phase difference between lights in two arms of <span class="hlt">interferometer</span> is created. Long response time is the main drawback of Michelson <span class="hlt">interferometer</span> based sensor, which is resolved by this technique.</p> <div class="credits"> <p class="dwt_author">Abbasian, K.; Rostami, A. [School of Engineering Emerging-Technologies, University of Tabriz, Tabriz 51666 (Iran, Islamic Republic of); Abdollahi, M. H. [Tabriz Oil Refining Company, Tabriz-Azarshahr freeway, Sardorud forked road, Tabriz (Iran, Islamic Republic of)</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-12-26</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">387</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008SPIE.7013E..0XC"> <span id="translatedtitle">Magdalena Ridge Observatory <span class="hlt">Interferometer</span>: progress toward first light</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The Magdalena Ridge Observatory <span class="hlt">Interferometer</span> is a 10-element 1.4 meter aperture optical and near-infrared <span class="hlt">interferometer</span> being built at 3,200 meters altitude on Magdalena Ridge, west of Socorro, NM. The <span class="hlt">interferometer</span> layout is an equilateral "Y" configuration to complement our key science mission, which is centered around imaging faint and complex astrophysical targets. This paper serves as an overview and update on the status of the observatory and our progress towards first light and first fringes in the next few years.</p> <div class="credits"> <p class="dwt_author">Creech-Eakman, M. J.; Romero, V.; Westpfahl, D.; Cormier, C.; Haniff, C.; Buscher, D.; Bakker, E.; Berger, L.; Block, E.; Coleman, T.; Festler, P.; Jurgenson, C.; King, R.; Klinglesmith, D.; McCord, K.; Olivares, A.; Parameswariah, C.; Payne, I.; Paz, T.; Ryan, E.; Salcido, C.; Santoro, F.; Selina, R.; Shtromberg, A.; Steenson, J.; Baron, F.; Boysen, R.; Coyne, J.; Fisher, M.; Seneta, E.; Sun, X.; Thureau, N.; Wilson, D.; Young, J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">388</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20080004623&hterms=systematic+review&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dsystematic%2Breview"> <span id="translatedtitle">Method of calibrating an <span class="hlt">interferometer</span> and reducing its systematic noise</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Methods of operation and data analysis for an <span class="hlt">interferometer</span> so as to eliminate the errors contributed by non-responsive or unstable pixels, interpixel gain variations that drift over time, and spurious noise that would otherwise degrade the operation of the <span class="hlt">interferometer</span> are disclosed. The methods provide for either online or post-processing calibration. The methods apply prescribed reversible transformations that exploit the physical properties of interferograms obtained from said <span class="hlt">interferometer</span> to derive a calibration reference signal for subsequent treatment of said interferograms for interpixel gain variations. A self-consistent approach for treating bad pixels is incorporated into the methods.</p> <div class="credits"> <p class="dwt_author">Hammer, Philip D. (Inventor)</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">389</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/873765"> <span id="translatedtitle">Fourier-transform and global contrast <span class="hlt">interferometer</span> alignment methods</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">Interferometric methods are presented to facilitate alignment of image-plane components within an <span class="hlt">interferometer</span> and for the magnified viewing of <span class="hlt">interferometer</span> masks in situ. Fourier-transforms are performed on intensity patterns that are detected with the <span class="hlt">interferometer</span> and are used to calculate pseudo-images of the electric field in the image plane of the test optic where the critical alignment of various components is being performed. Fine alignment is aided by the introduction and optimization of a global contrast parameter that is easily calculated from the Fourier-transform.</p> <div class="credits"> <p class="dwt_author">Goldberg, Kenneth A. (Berkeley, CA)</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">390</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012OptEn..51k1706B"> <span id="translatedtitle">Developing a new hyperspectral imaging <span class="hlt">interferometer</span> for earth observation</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The Aerospace Leap-frog Imaging Stationary <span class="hlt">interferometer</span> for Earth Observation (ALISEO) is a hyperspectral imaging <span class="hlt">interferometer</span> for Earth remote sensing. The instrument belongs to the class of Sagnac stationary <span class="hlt">interferometers</span> and acquires the image of the target superimposed to the pattern of autocorrelation functions of the electromagnetic field coming from each pixel. The ALISEO sensor together with the data processing algorithms that retrieve the at-sensor spectral radiance are discussed. A model describing the instrument OPD and interferogram center is also discussed, improving the procedures for phase retrieval and spectral estimation. Images acquired by ALISEO are shown, and examples of retrieved reflectance spectra are presented.</p> <div class="credits"> <p class="dwt_author">Barducci, Alessandro; Castagnoli, Francesco; Castellini, Guido; Guzzi, Donatella; Lastri, Cinzia; Marcoionni, Paolo; Nardino, Vanni; Pippi, Ivan</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-11-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">391</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/20779262"> <span id="translatedtitle">Method for calibrating system parameters of a multidirectional <span class="hlt">interferometers</span> system</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A multidirectional <span class="hlt">interferometer</span> system has been proposed and developed to measure the position and orientation of a positioning stage. In this method the system parameters, such as positions of the corner-cube reflectors and directions of the rays in the <span class="hlt">interferometers</span>, must be determined beforehand. However, it is difficult to find ways to determine the system parameters for each different system with necessary accuracy. This paper proposes a systematic method for calibrating the system parameters when the number of the <span class="hlt">interferometers</span> is larger than the degrees of freedom of the stage. The method is verified for a two-dimensional stage by both simulation and experiment.</p> <div class="credits"> <p class="dwt_author">Zhang Jie; Iwata, Koichi; Shibuya, Atsushi; Kikuta, Hisao; Park, Choong Sik</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-02-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">392</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20080018559&hterms=terrestrial+planets&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dterrestrial%2Bplanets"> <span id="translatedtitle">Terrestrial Planet Finder <span class="hlt">Interferometer</span>: Architecture, Mission Design and Technology Development</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">This overview paper is a progress report about the system design and technology development of two <span class="hlt">interferometer</span> concepts studied for the Terrestrial Planet Finder (TPF) project. The two concepts are a structurally-connected <span class="hlt">interferometer</span> (SCI) intended to fulfill minimum TPF science goals and a formation-flying <span class="hlt">interferometer</span> (FFI) intended to fulfill full science goals. Described are major trades, analyses, and technology experiments completed. Near term plans are also described. This paper covers progress since August 2003 and serves as an update to a paper presented at that month's SPIE conference, 'Techniques and Instrumentation for Detection of Exoplanets.</p> <div class="credits"> <p class="dwt_author">Henry, Curt; Lay, Oliver; Aung, MiMi; Gunter, Steven M.; Dubovitsky, Serge; Blackwood, Gary</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">393</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://arxiv.org/pdf/gr-qc/0609075v1"> <span id="translatedtitle">A comparison between matter wave and light wave <span class="hlt">interferometers</span> for the detection of gravitational waves</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/eprints/">E-print Network</a></p> <p class="result-summary">We calculate and compare the response of light wave <span class="hlt">interferometers</span> and matter wave <span class="hlt">interferometers</span> to gravitational waves. We find that metric matter wave <span class="hlt">interferometers</span> will not challenge kilometric light wave <span class="hlt">interferometers</span> such as Virgo or LIGO, but could be a good candidate for the detection of very low frequency gravitational waves.</p> <div class="credits"> <p class="dwt_author">Pacôme Delva; Marie-Christine Angonin; Philippe Tourrenc</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-09-20</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">394</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.bom.gov.au/australia/radar/"> <span id="translatedtitle">Australian Weather Watch <span class="hlt">Radar</span> Home Page</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">The Commonwealth Bureau of Meteorology's Weather Watch <span class="hlt">Radar</span> website provides up-to-date <span class="hlt">radar</span> images of the locations of rain in Australia in relation to local features such as coast lines. The newly developed Loops provide four consecutive <span class="hlt">radar</span> images so that users can view how the weather has been changing in the last forty to fifty minutes. The website provides <span class="hlt">radar</span> images of past cyclone events as well as updates on severe weather throughout Australia. Those interested in <span class="hlt">radar</span> systems can discover how the weather <span class="hlt">radars</span> work and how to interpret the maps. [RME</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">395</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=PIA01785&hterms=visible+light+image&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dvisible%2Blight%2Bimage"> <span id="translatedtitle">Space <span class="hlt">Radar</span> Image of Long Island Optical/<span class="hlt">Radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">This pair of images of the Long Island, New York region is a comparison of an optical photograph (top) and a <span class="hlt">radar</span> image (bottom), both taken in darkness in April 1994. The photograph at the top was taken by the Endeavour astronauts at about 3 a.m. Eastern time on April 20, 1994. The image at the bottom was acquired at about the same time four days earlier on April 16,1994 by the Spaceborne Imaging <span class="hlt">Radar</span>-C/X-Band Synthetic Aperture <span class="hlt">Radar</span> (SIR-C/X-SAR) system aboard the space shuttle Endeavour. Both images show an area approximately 100 kilometers by 40 kilometers (62 miles by 25 miles) that is centered at 40.7 degrees North latitude and 73.5 degrees West longitude. North is toward the upper right. The optical image is dominated by city lights, which are particularly bright in the densely developed urban areas of New York City located on the left half of the photo. The brightest white zones appear on the island of Manhattan in the left center, and Central Park can be seen as a darker area in the middle of Manhattan. To the northeast (right) of the city, suburban Long Island appears as a less densely illuminated area, with the brightest zones occurring along major transportation and development corridors. Since <span class="hlt">radar</span> is an active sensing system that provides its own illumination, the <span class="hlt">radar</span> image shows a great amount of surface detail, despite the night-time acquisition. The colors in the <span class="hlt">radar</span> image were obtained using the following <span class="hlt">radar</span> channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). In this image, the water surface - the Atlantic Ocean along the bottom edge and Long Island Sound shown at the top edge - appears red because small waves at the surface strongly reflect the horizontally transmitted and received L-band <span class="hlt">radar</span> signal. Networks of highways and railroad lines are clearly visible in the <span class="hlt">radar</span> image; many of them can also be seen as bright lines i the optical image. The runways of John F. Kennedy International Airport appear as a dark rectangle in Jamaica Bay on the left side of the image. Developed areas appear generally as bright green and orange, while agricultural, protected and undeveloped areas appear darker blue or purple. This contrast can be seen on the barrier islands along the south coast of Long Island, which are heavily developed in the Rockaway and Long Beach areas south and east of Jamaica Bay, but further to the east, the islands are protected and undeveloped.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">1994-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">396</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014SPIE.9248E..0IM"> <span id="translatedtitle">All-digital <span class="hlt">radar</span> architecture</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">All digital <span class="hlt">radar</span> architecture requires exclude mechanical scan system. The phase antenna array is necessarily large because the array elements must be co-located with very precise dimensions and will need high accuracy phase processing system for aggregate and distribute T/R modules data to/from antenna elements. Even phase array cannot provide wide field of view. New nature inspired all digital <span class="hlt">radar</span> architecture proposed. The fly's eye consists of multiple angularly spaced sensors giving the fly simultaneously thee wide-area visual coverage it needs to detect and avoid the threats around him. Fly eye <span class="hlt">radar</span> antenna array consist multiple directional antennas loose distributed along perimeter of ground vehicle or aircraft and coupled with receiving/transmitting front end modules connected by digital interface to central processor. Non-steering antenna array allows creating all-digital <span class="hlt">radar</span> with extreme flexible architecture. Fly eye <span class="hlt">radar</span> architecture provides wide possibility of digital modulation and different waveform generation. Simultaneous correlation and integration of thousands signals per second from each point of surveillance area allows not only detecting of low level signals ((low profile targets), but help to recognize and classify signals (targets) by using diversity signals, polarization modulation and intelligent processing. Proposed all digital <span class="hlt">radar</span> architecture with distributed directional antenna array can provide a 3D space vector to the jammer by verification direction of arrival for signals sources and as result jam/spoof protection not only for <span class="hlt">radar</span> systems, but for communication systems and any navigation constellation system, for both encrypted or unencrypted signals, for not limited number or close positioned jammers.</p> <div class="credits"> <p class="dwt_author">Molchanov, Pavlo A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">397</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://dspace.mit.edu/handle/1721.1/28741"> <span id="translatedtitle">On the design of lithographic <span class="hlt">interferometers</span> and their application</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/eprints/">E-print Network</a></p> <p class="result-summary">Interference lithography is presented as an ideal technique for fabricating large-area periodic structures with sub-100nm dimensions. A variety of <span class="hlt">interferometer</span> designs are discussed and implemented, each of which emphasizes ...</p> <div class="credits"> <p class="dwt_author">Walsh, Michael E. (Michael Edward), 1975-</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">398</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012cosp...39.2137W"> <span id="translatedtitle">Wind observations with imaging field-widened Michelson <span class="hlt">interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Several applications of Doppler imaging of airglow using a field-widened Michelson <span class="hlt">interferometer</span> are being developed at the University of New Brunswick. Simultaneous multi-direction observation of winds has been implemented in an instrument termed the enhanced E-Region Wind <span class="hlt">Interferometer</span> (ERWIN-2). Another implementation, termed the Michelson <span class="hlt">Interferometer</span> for Airglow Dynamics Imaging (MIADI) is configured to image the Doppler shifts in a 30° square region of the sky. A third implementation, the Waves Michelson <span class="hlt">Interferometer</span> (WaMI) is configured to image Doppler shifts in multiple lines in a molecular band. This paper will present results from all three instruments and discuss the advantages of each in terms of observation cadence, wind resolution and phenomena of interest. Accuracies of 2 m/s have been achieved for 45 second measurements for normal airglow volume emission rates.</p> <div class="credits"> <p class="dwt_author">Ward, William E.; Langille, Jeffery; Kristoffersen, Samuel</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">399</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/16318186"> <span id="translatedtitle">Performance evaluation of a thermal Doppler Michelson <span class="hlt">interferometer</span> system.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The thermal Doppler Michelson <span class="hlt">interferometer</span> is the primary element of a proposed limb-viewing satellite instrument called SWIFT (Stratospheric Wind <span class="hlt">Interferometer</span> for Transport studies). SWIFT is intended to measure stratospheric wind velocities in the altitude range of 15-45 km. SWIFT also uses narrowband tandem etalon filters made of germanium to select a line out of the thermal spectrum. The instrument uses the same technique of phase-stepping interferometry employed by the Wind Imaging <span class="hlt">Interferometer</span> onboard the Upper Atmosphere Research Satellite. A thermal emission line of ozone near 9 microm is used to detect the Doppler shift due to winds. A test bed was set up for this instrument that included the Michelson <span class="hlt">interferometer</span> and the etalon filters. For the test bed work, we investigate the behavior of individual components and their combination and report the results. PMID:16318186</p> <div class="credits"> <p class="dwt_author">Mani, Reza; Dobbie, Steven; Scott, Alan; Shepherd, Gordon; Gault, William; Brown, Stephen</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-11-20</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">400</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://arxiv.org/pdf/1503.01062.pdf"> <span id="translatedtitle">Broadband detuned Sagnac <span class="hlt">interferometer</span> for future generation gravitational wave astronomy</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/eprints/">E-print Network</a></p> <p class="result-summary">Broadband suppression of quantum noise below the Standard Quantum Limit (SQL) becomes a top-priority problem for the future generation of large-scale terrestrial detectors of gravitational waves, as the <span class="hlt">interferometers</span> of the Advanced LIGO project, predesigned to be quantum-noise-limited in the almost entire detection band, are phased in. To this end, among various proposed methods of quantum noise suppression or signal amplification, the most elaborate approach implies a so-called *xylophone* configuration of two Michelson <span class="hlt">interferometers</span>, each optimised for its own frequency band, with a combined broadband sensitivity well below the SQL. Albeit ingenious, it is a rather costly solution. We demonstrate that changing the optical scheme to a Sagnac <span class="hlt">interferometer</span> with weak detuned signal recycling and frequency dependent input squeezing can do almost as good a job, as the xylophone for significantly lower spend. We also show that the Sagnac <span class="hlt">interferometer</span> is more robust to optical loss in filter cavity, used f...</p> <div class="credits"> <p class="dwt_author">Voronchev, N V; Danilishin, S L</p> <p class="dwt_publisher"></p> <p class="publishDate">2015-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_19");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a style="font-weight: bold;">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_21");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_20 div --> <div id="page_21" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_20");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a style="font-weight: bold;">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_22");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">401</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://arxiv.org/pdf/1407.5635v1"> <span id="translatedtitle">An Aharonov-Bohm <span class="hlt">interferometer</span> for determining Bloch band topology</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/eprints/">E-print Network</a></p> <p class="result-summary">The geometric structure of an energy band in a solid is fundamental for a wide range of many-body phenomena in condensed matter and is uniquely characterized by the distribution of Berry curvature over the Brillouin zone. In analogy to an Aharonov-Bohm <span class="hlt">interferometer</span> that measures the magnetic flux penetrating a given area in real space, we realize an atomic <span class="hlt">interferometer</span> to measure Berry flux in momentum space. We demonstrate the <span class="hlt">interferometer</span> for a graphene-type hexagonal lattice, where it has allowed us to directly detect the singular $\\pi$ Berry flux localized at each Dirac point. We show that the <span class="hlt">interferometer</span> enables one to determine the distribution of Berry curvature with high momentum resolution. Our work forms the basis for a general framework to fully characterize topological band structures and can also facilitate holonomic quantum computing through controlled exploitation of the geometry of Hilbert space.</p> <div class="credits"> <p class="dwt_author">Lucia Duca; Tracy Li; Martin Reitter; Immanuel Bloch; Monika Schleier-Smith; Ulrich Schneider</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-07-21</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">402</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013APh....48...50T"> <span id="translatedtitle">Searching for gravitational waves with a geostationary <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We analyze the sensitivities of a geostationary gravitational wave <span class="hlt">interferometer</span> mission operating in the sub-Hertz band. Because of its smaller armlength, in the lower part of its accessible frequency band (10-4-2×10-2 Hz) our proposed Earth-orbiting detector will be less sensitive, by a factor of about seventy, than the Laser <span class="hlt">Interferometer</span> Space Antenna (LISA) mission. In the higher part of its band instead (2×10-2-10 Hz), our proposed <span class="hlt">interferometer</span> will have the capability of observing super-massive black holes (SMBHs) with masses smaller than ˜106 M?. With good event rates for these systems, a geostationary <span class="hlt">interferometer</span> will be able to accurately probe the astrophysical scenarios that account for their formation.</p> <div class="credits"> <p class="dwt_author">Tinto, Massimo; de Araujo, Jose C. N.; Aguiar, Odylio D.; Alves, Márcio E. S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-08-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">403</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/16353815"> <span id="translatedtitle">Imaging through turbulence with a quadrature-phase optical <span class="hlt">interferometer</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">We present an improved technique for imaging through turbulence at visible wavelengths using a rotation shearing pupil-plane <span class="hlt">interferometer</span>, intended for astronomical and terrestrial imaging applications. While previous astronomical rotation shearing <span class="hlt">interferometers</span> have made only visibility modulus measurements, this <span class="hlt">interferometer</span> makes four simultaneous measurements on each interferometric baseline, with phase differences of pi/2 between each measurement, allowing complex visibility measurements (modulus and phase) across the entire input pupil in a single exposure. This technique offers excellent wavefront resolution, allowing operation at visible wavelengths on large apertures, is potentially immune to amplitude fluctuations (scintillation), and may offer superior calibration capabilities to other imaging techniques. The <span class="hlt">interferometer</span> has been tested in the laboratory under weakly aberrating conditions and at Palomar Observatory under ordinary astronomical observing conditions. This research is based partly on observations obtained at the Hale Telescope. PMID:16353815</p> <div class="credits"> <p class="dwt_author">Kern, Brian; Dimotakis, Paul E; Martin, Chris; Lang, Daniel B; Thessin, Rachel N</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">404</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=neon&id=EJ128376"> <span id="translatedtitle">Coupled-Cavity <span class="hlt">Interferometer</span> for the Optics Laboratory</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">Describes the construction of a flexible coupled-cavity <span class="hlt">interferometer</span> for student use. A helium-neon laser and phonograph turntable are the main components. Lists activities which may be performed with the apparatus. (Author/CP)</p> <div class="credits"> <p class="dwt_author">Peterson, R. W.</p> <p class="dwt_publisher"></p> <p class="publishDate">1975-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">405</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://dspace.mit.edu/handle/1721.1/88532"> <span id="translatedtitle">Precision calibration of radio <span class="hlt">interferometers</span> using redundant baselines</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/eprints/">E-print Network</a></p> <p class="result-summary">Growing interest in 21-cm tomography has led to the design and construction of broad-band radio <span class="hlt">interferometers</span> with low noise, moderate angular resolution, high spectral resolution and wide fields of view. With characteristics ...</p> <div class="credits"> <p class="dwt_author">Liu, Adrian</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">406</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2000SPIE.4223..127L"> <span id="translatedtitle">Novel pressure sensor with a Fabry-Perot <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A novel pressure sensor using a fiber Fabry-Perot <span class="hlt">interferometer</span> (FFPI) has been developed in this paper. We use the internal F-P cavity pressure sensor in our research. Micromachined Fabry-Perot microcavity structures have been investigated for use as a pressure sensor. The single-mode fiber containing the <span class="hlt">interferometer</span> is bonded at one end to the stainless-steel diaphragm and is also attached under longitudinal tension beyond the <span class="hlt">interferometer</span>. An analysis relating the expected <span class="hlt">interferometer</span> phase change to pressure is presented. And the dynamic response of FFPI sensor to pressure changes produced by an air pump is in good agreement with that measured with a conventional pressure sensor. The sensor is suitable for operation with other signal-processing and multiplexing schemes.</p> <div class="credits"> <p class="dwt_author">Li, Zhiquan; Fan, Lina; Qiang, Xifu</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">407</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20110013600&hterms=specialized+optics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dspecialized%2Boptics"> <span id="translatedtitle">Automatic Alignment of Displacement-Measuring <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">A control system strives to maintain the correct alignment of a laser beam in an <span class="hlt">interferometer</span> dedicated to measuring the displacement or distance between two fiducial corner-cube reflectors. The correct alignment of the laser beam is parallel to the line between the corner points of the corner-cube reflectors: Any deviation from parallelism changes the length of the optical path between the reflectors, thereby introducing a displacement or distance measurement error. On the basis of the geometrical optics of corner-cube reflectors, the length of the optical path can be shown to be L = L(sub 0)cos theta, where L(sub 0) is the distance between the corner points and theta is the misalignment angle. Therefore, the measurement error is given by DeltaL = L(sub 0)(cos theta - 1). In the usual case in which the misalignment is small, this error can be approximated as DeltaL approximately equal to -L(sub 0)theta sup 2/2. The control system (see figure) is implemented partly in hardware and partly in software. The control system includes three piezoelectric actuators for rapid, fine adjustment of the direction of the laser beam. The voltages applied to the piezoelectric actuators include components designed to scan the beam in a circular pattern so that the beam traces out a narrow cone (60 microradians wide in the initial application) about the direction in which it is nominally aimed. This scan is performed at a frequency (2.5 Hz in the initial application) well below the resonance frequency of any vibration of the <span class="hlt">interferometer</span>. The laser beam makes a round trip to both corner-cube reflectors and then interferes with the launched beam. The interference is detected on a photodiode. The length of the optical path is measured by a heterodyne technique: A 100- kHz frequency shift between the launched beam and a reference beam imposes, on the detected signal, an interferometric phase shift proportional to the length of the optical path. A phase meter comprising analog filters and specialized digital circuitry converts the phase shift to an indication of displacement, generating a digital signal proportional to the path length.</p> <div class="credits"> <p class="dwt_author">Halverson, Peter; Regehr, Martin; Spero, Robert; Alvarez-Salazar, Oscar; Loya, Frank; Logan, Jennifer</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">408</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/52882316"> <span id="translatedtitle">The spectro-<span class="hlt">interferometer</span> of the Arcetri Solar Tower</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The authors describe the spectro-<span class="hlt">interferometer</span> installed at the Arcetri Observatory Solar Tower. This instrument basically consists of a Fabry-Perot <span class="hlt">interferometer</span> mounted in tandem with a medium sized grating spectrograph, acting as order sorter. This mounting allows the measurement of solar absorption lines in the range 5500 - 6500 Å with high wavelength stability (0.08 mÅ rms in 12 h) and</p> <div class="credits"> <p class="dwt_author">F. Cavallini; G. Ceppatelli; M. Meco; S. Paloschi; A. Righini</p> <p class="dwt_publisher"></p> <p class="publishDate">1987-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">409</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010JPhCS.228a2026S"> <span id="translatedtitle">Noise cancellation properties of displacement noise free <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We have demonstrated the practical feasibility of a displacement- and frequency-noise-free laser <span class="hlt">interferometer</span> (DFI) by partially implementing a recently proposed optical configuration using bi-directional Mach-Zehnder <span class="hlt">interferometers</span> (MZIs). The noise cancellation efficiency was evaluated by comparing the displacement noise spectrum of the MZIs and the DFI, demonstrating up to 50 dB of noise cancellation. In addition, the possible extension of DFI as QND device is explored.</p> <div class="credits"> <p class="dwt_author">Sato, Shuichi; Kawamura, Seiji; Nishizawa, Atsushi; Chen, Yanbei</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">410</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/53372512"> <span id="translatedtitle">Recent progress at the Very Large Telescope <span class="hlt">Interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The ESO Very Large Telescope <span class="hlt">Interferometer</span> (VLTI) is the first general-user <span class="hlt">interferometer</span> that offers near- and mid-infrared long-baseline interferometric observations in service and visitor mode to the whole astronomical community. Over the last two years, the VLTI has moved into its regular science operation mode with the two science instruments, MIDI and AMBER, both on all four 8m Unit Telescopes</p> <div class="credits"> <p class="dwt_author">Markus Schöller; Javier Argomedo; Bertrand Bauvir; Leonardo Blanco-Lopez; Henri Bonnet; Stephane Brillant; Michael Cantzler; Johan Carstens; Fabio Caruso; Christian Choque-Cortez; Frederic Derie; Francoise Delplancke; Nicola Di Lieto; Martin Dimmler; Yves Durand; Mark Ferrari; Emmanuel Galliano; Philippe Gitton; Bruno Gilli; Andreas Glindemann; Serge Guniat; Stephane Guisard; Nicolas Haddad; Pierre Haguenauer; Nico Housen; Gerd Hudepohl; Christian Hummel; Andreas Kaufer; Mario Kiekebusch; Bertrand Koehler; Jean-Baptiste Le Bouquin; Samuel Leveque; Christopher Lidman; Pedro Mardones; Serge Menardi; Sebastien Morel; Manfred Mornhinweg; Jean-Luc Nicoud; Isabelle Percheron; Monika Petr-Gotzens; Than Phan Duc; Florence Puech; Andres Ramirez; Fredrik Rantakyrö; Andrea Richichi; Thomas Rivinius; Stefan Sandrock; Fabio Somboli; Jason Spyromilio; Stanislav Stefl; Vincent Suc; Roberto Tamai; Mario Tapia; Martin Vannier; Gautam Vasisht; Anders Wallander; Stefan Wehner; Markus Wittkowski; Juan Zagal</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">411</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.optisyn.com/research/papers/papers/2003/GNC2003-OSI-Interferometer.pdf"> <span id="translatedtitle">Investigation of Space <span class="hlt">Interferometer</span> Control Using Imaging Sensor Output Feedback</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Numerous space interferometry missions are planned for the next decade to verify different enabling technologies towards very-long-baseline interferometry to achieve high-resolution imaging and high-precision measurements. These objectives will require coordinated formations of spacecraft separately carrying optical elements comprising the <span class="hlt">interferometer</span>. High-precision sensing and control of the spacecraft and the <span class="hlt">interferometer</span>-component payloads are necessary to deliver sub-wavelength accuracy to achieve the</p> <div class="credits"> <p class="dwt_author">Victor H. L. Cheng; Jesse A. Leitner</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">412</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2015OptL...40..879A"> <span id="translatedtitle">Observation of a classical Cheshire cat in an optical <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A recent neutron interferometry experiment claims to demonstrate a paradoxical phenomena dubbed the "quantum Cheshire Cat" \\cite{Denkmayr2014}. We have reproduced and extended these results with an equivalent optical <span class="hlt">interferometer</span>. The results suggest that the photon travels through one arm of the <span class="hlt">interferometer</span>, while its polarization travels through the other. However, we show that these experimental results belong to the domain where quantum and classical wave theories coincide; there is nothing uniquely quantum about the illusion of this cheshire cat.</p> <div class="credits"> <p class="dwt_author">Atherton, David P.; Ranjit, Gambhir; Geraci, Andrew A.; Weinstein, Jonathan D.</p> <p class="dwt_publisher"></p> <p class="publishDate">2015-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">413</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/18259054"> <span id="translatedtitle">An automatic michelson <span class="hlt">interferometer</span> with frince dropout correction</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">An automatic Michelson-type fringe counting <span class="hlt">interferometer</span> (Lambda-meter) allowing for interpolation to 1\\/50 of a wavelength is described. The movable part of the <span class="hlt">interferometer</span> consists of a carriage which slides on two polished steel bars and transports two corner cube retroreflectors. A missing-fringe digital control logic identifies and instantaneously corrects for laser interference fringe dropouts, caused by short-time laser light instabilities.</p> <div class="credits"> <p class="dwt_author">J. Kowalski; R. Neumann; S. Noehte; R. Schwarzwald; H. Suhr; G. Zu Putlitz</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">414</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://repository.tamu.edu/handle/1969.1/ETD-TAMU-1992-THESIS-W249"> <span id="translatedtitle">Voltage sensor with fiber Fabry-Perot <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/eprints/">E-print Network</a></p> <p class="result-summary">An optical voltage sensor with a fiber Fabry-Perot <span class="hlt">interferometer</span> attached to a piezoelectric transducer of lead zicronium titanate (PZT) is investigated, Three kinds of plate type PZTs were selected for study. PZT-8 showed the least hysteresis for DC..., using a plate type piezoelectric transducer of lead zirconium titanate (PZT) attached to a fiber Fabry-Perot <span class="hlt">interferometer</span> (FFPI). In response to an applied voltage, a change in the dimension of the PZT along the fiber axis causes a length change...</p> <div class="credits"> <p class="dwt_author">Wann, Been-Huey</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">415</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/6801012"> <span id="translatedtitle">Simplified Velocity <span class="hlt">Interferometer</span> System for Any Reflector (VISAR) system</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A simplified, rugged VISAR (Velocity <span class="hlt">Interferometer</span> System for Any Reflector) system has been developed using a non-removable delay element and an essentially non-adjustable <span class="hlt">interferometer</span> cavity. In this system, the critical interference adjustments are performed during fabrication of the cavity, freeing the user from this task. Prototype systems are easy to use and give extremely high quality results. 6 refs., 7 figs.</p> <div class="credits"> <p class="dwt_author">Sweatt, W.C.; Stanton, P.L.; Crump, O.B. Jr.</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">416</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19850046669&hterms=schlieren&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dschlieren"> <span id="translatedtitle">Rainbow schlieren vs Mach-Zehnder <span class="hlt">interferometer</span> - A comparison</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The rainbow schlieren apparatus is simpler, cheaper, and more easily built to large scale than the <span class="hlt">interferometer</span>. The accuracies of the two instruments are similar but only if refraction is properly accounted for in interferometry. The measurement thresholds of both instruments are similar. The rainbow schlieren device provides more detailed information because the detection threshold of the rainbow schlieren is an order of magnitude better than that of the <span class="hlt">interferometer</span>.</p> <div class="credits"> <p class="dwt_author">Howes, W. L.</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">417</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://arxiv.org/pdf/1410.2267v2"> <span id="translatedtitle">Observation of a classical cheshire cat in an optical <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/eprints/">E-print Network</a></p> <p class="result-summary">A recent neutron interferometry experiment claims to demonstrate a paradoxical phenomena dubbed the "quantum Cheshire Cat" \\cite{Denkmayr2014}. We have reproduced and extended these results with an equivalent optical <span class="hlt">interferometer</span>. The results suggest that the photon travels through one arm of the <span class="hlt">interferometer</span>, while its polarization travels through the other. However, we show that these experimental results belong to the domain where quantum and classical wave theories coincide; there is nothing uniquely quantum about the illusion of this cheshire cat.</p> <div class="credits"> <p class="dwt_author">David P. Atherton; Gambhir Ranjit; Andrew A. Geraci; Jonathan D. Weinstein</p> <p class="dwt_publisher"></p> <p class="publishDate">2015-03-03</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">418</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/54645404"> <span id="translatedtitle">Status and progress on the upgraded infrared spatial <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The U.C. Berkeley Infrared Spatial <span class="hlt">Interferometer</span> is a two telescope stellar <span class="hlt">interferometer</span> operating in the 9-12 micron atmospheric window, utilizing heterodyne detection with CO2 laser local oscillators. Science with the ISI has been focused on the measurements of the spatial distribution of dust and molecules around mass-losing late type stars, and more recently precision measurements of stellar diameters in the</p> <div class="credits"> <p class="dwt_author">William C. Danchi; Charles H. Townes; Walter Fitelson; David D. S. Hale; John D. Monnier; Samuel Tevosjan; Jonathon Weiner</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">419</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19810042426&hterms=MAP+Station&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DMAP%2BStation"> <span id="translatedtitle">Images of Venus by three-station <span class="hlt">radar</span> interferometry - 1977 results</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">During the 1977 inferior conjunction of Venus, <span class="hlt">radar</span> observations were made using three receiving stations as a multiple <span class="hlt">interferometer</span>. Maps of surface reflectivity and altimetry were prepared from these observations. The new altimetry maps show considerable improvement in relation to many of the earlier maps made using the two-station <span class="hlt">interferometer</span>. In particular, there are consistent and explainable correlations between the altimetry and reflectivity maps that did not always exist in the past. The highest-resolution maps (about 8 km) show three isolated mountains having altitudes of approximately 2 km above their environs, a pair of ridges separated by approximately 100 km and extending 800 km, and a few anomalous reflectivity features for which little or no altitude change is observed. Other maps at slightly lower resolution show a bright irregular ringed crater, a few large low-reflectivity regions, a shallow crater 150 km in diameter, a gently sloping mountain, and a short ridge running north-south. Many of the later features have been seen in earlier <span class="hlt">radar</span> maps and should be useful in refining the spin axis and further characterizing the regolith of certain areas of Venus.</p> <div class="credits"> <p class="dwt_author">Jurgens, R. F.; Goldstein, R. M.; Rumsey, H. R.; Green, R. R.</p> <p class="dwt_publisher"></p> <p class="publishDate">1980-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">420</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ssg.mit.edu/group/mcetin/publications/cetin_IEE_RSN05.pdf"> <span id="translatedtitle">SUBMITTED TO IEE PROCEEDINGS <span class="hlt">RADAR</span>, SONAR & NAVIGATION 1 Region-Enhanced Passive <span class="hlt">Radar</span> Imaging</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/eprints/">E-print Network</a></p> <p class="result-summary">SUBMITTED TO IEE PROCEEDINGS <span class="hlt">RADAR</span>, SONAR & NAVIGATION 1 Region-Enhanced Passive <span class="hlt">Radar</span> Imaging M;SUBMITTED TO IEE PROCEEDINGS <span class="hlt">RADAR</span>, SONAR & NAVIGATION 2 Abstract We adapt and apply a recently-developed region-enhanced synthetic aperture <span class="hlt">radar</span> (SAR) image reconstruction technique to the problem of passive</p> <div class="credits"> <p class="dwt_author">Willsky, Alan S.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_20");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a style="font-weight: bold;">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_22");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_21 div --> <div id="page_22" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_21");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a style="font-weight: bold;">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_23");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">421</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://hal.archives-ouvertes.fr/docs/00/31/67/97/PDF/angeo-18-1248-2000.pdf"> <span id="translatedtitle">Space Plasma Exploration by Active <span class="hlt">Radar</span> (SPEAR): an overview of a future <span class="hlt">radar</span> facility</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/eprints/">E-print Network</a></p> <p class="result-summary">Space Plasma Exploration by Active <span class="hlt">Radar</span> (SPEAR): an overview of a future <span class="hlt">radar</span> facility D. M is a new polar cap HF <span class="hlt">radar</span> facility which is to be deployed on Svalbard. The principal capabilities of SPEAR will include the generation of arti®cial plasma irregularities, operation as an `all-sky' HF <span class="hlt">radar</span></p> <div class="credits"> <p class="dwt_author">Paris-Sud XI, Université de</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">422</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ecd.bnl.gov/pubs/BNL-91137-2010-CP.pdf"> <span id="translatedtitle">VALIDATION OF A <span class="hlt">RADAR</span> DOPPLER SPECTRA SIMULATOR USING MEASUREMENTS FROM THE ARM CLOUD <span class="hlt">RADARS</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/eprints/">E-print Network</a></p> <p class="result-summary">VALIDATION OF A <span class="hlt">RADAR</span> DOPPLER SPECTRA SIMULATOR USING MEASUREMENTS FROM THE ARM CLOUD <span class="hlt">RADARS</span> to compare models with observations contains advantages and challenges. <span class="hlt">Radar</span> Doppler spectra simulators model output with the Doppler spectra recorded from the vertically pointing cloud <span class="hlt">radars</span> at the ARM</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">423</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://arxiv.org/pdf/1407.5207v2"> <span id="translatedtitle">Highly stable polarization independent Mach-Zehnder <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/eprints/">E-print Network</a></p> <p class="result-summary">We experimentally demonstrate optical Mach-Zehnder <span class="hlt">interferometer</span> utilizing displaced Sagnac configuration to enhance its phase stability. The <span class="hlt">interferometer</span> with footprint of 27x40 cm offers individually accessible paths and shows phase deviation less than 0.4 deg during a 250 s long measurement. The phase drift, evaluated by means of Allan deviation, stays below 3 deg or 7 nm for 1.5 hours without any active stabilization. The polarization insensitive design is verified by measuring interference visibility as a function of input polarization. For both <span class="hlt">interferometer</span>'s output ports and all tested polarization states the visibility stays above 93%. The discrepancy in visibility for horizontal and vertical polarization about 3.5% is caused mainly by undesired polarization dependence of splitting ratio of the beam splitter used. The presented <span class="hlt">interferometer</span> device is suitable for quantum-information and other sensitive applications where active stabilization is complicated and common-mode <span class="hlt">interferometer</span> is not an option as both the <span class="hlt">interferometer</span> arms have to be accessible individually.</p> <div class="credits"> <p class="dwt_author">Michal Micuda; Ester Dolakova; Ivo Straka; Martina Mikova; Miloslav Dusek; Jaromir Fiurasek; Miroslav Jezek</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-08-12</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">424</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/25173242"> <span id="translatedtitle">Highly stable polarization independent Mach-Zehnder <span class="hlt">interferometer</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">We experimentally demonstrate optical Mach-Zehnder <span class="hlt">interferometer</span> utilizing displaced Sagnac configuration to enhance its phase stability. The <span class="hlt">interferometer</span> with footprint of 27×40 cm offers individually accessible paths and shows phase deviation less than 0.4° during a 250 s long measurement. The phase drift, evaluated by means of Allan deviation, stays below 3° or 7 nm for 1.5 h without any active stabilization. The polarization insensitive design is verified by measuring interference visibility as a function of input polarization. For both <span class="hlt">interferometer</span>'s output ports and all tested polarization states the visibility stays above 93%. The discrepancy in visibility for horizontal and vertical polarization about 3.5% is caused mainly by undesired polarization dependence of splitting ratio of the beam splitter used. The presented <span class="hlt">interferometer</span> device is suitable for quantum-information and other sensitive applications where active stabilization is complicated and common-mode <span class="hlt">interferometer</span> is not an option as both the <span class="hlt">interferometer</span> arms have to be accessible individually. PMID:25173242</p> <div class="credits"> <p class="dwt_author">Mi?uda, Michal; Doláková, Ester; Straka, Ivo; Miková, Martina; Dušek, Miloslav; Fiurášek, Jaromír; Ježek, Miroslav</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-08-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">425</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://arxiv.org/pdf/astro-ph/0611564v10"> <span id="translatedtitle">Optimizing <span class="hlt">interferometer</span> experiments for CMB B mode measurement</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/eprints/">E-print Network</a></p> <p class="result-summary">The sensitivity of <span class="hlt">interferometers</span> with linear polarizers to the CMB E and B mode are variant under the rotation of the polarizer frame, while <span class="hlt">interferometer</span> with circular polarizers are equally sensitive to E and B mode. We present analytically and numerically that the diagonal elements of window functions for CMB E/B power spectra are maximized in interferometric measurement of linear polarization, when the polarizer frame is in certain rotation from the associated baseline. We also present the simulated observation to show that the 1-$\\sigma$ errors on E/B mode power spectrum estimation are variant under the polarizer frame rotation in the case of linear polarizers, while they are invariant in the case of circular polarizers. Simulation of the configuration similar to the DASI shows that minimum 1-$\\sigma$ error on B mode in <span class="hlt">interferometer</span> measurement with linear polarizers is 26% of that in interferometric measurement with circular polarizers. The simulation also shows that the E/B mixing in <span class="hlt">interferometer</span> measurement with linear polarizers can be as low as 23% of that in interferometric measurement with circular polarizers. It is not always possible to physically align the polarizer frame with all the associated baselines in the case of an <span class="hlt">interferometer</span> array (N$>$2). There exist certain linear combinations of visibilities, which are equivalent to visibilities of the optimal polarizer frame rotation. We present the linear combinations, which enables B mode optimization for an <span class="hlt">interferometer</span> array (N$>$2).</p> <div class="credits"> <p class="dwt_author">Jaiseung Kim</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-04-06</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">426</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19900017242&hterms=issr&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dissr"> <span id="translatedtitle"><span class="hlt">Single-pass</span> memory system evaluation for multiprogramming workloads</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Modern memory systems are composed of levels of cache memories, a virtual memory system, and a backing store. Varying more than a few design parameters and measuring the performance of such systems has traditionally be constrained by the high cost of simulation. Models of cache performance recently introduced reduce the cost simulation but at the expense of accuracy of performance prediction. Stack-based methods predict performance accurately using one pass over the trace for all cache sizes, but these techniques have been limited to fully-associative organizations. This paper presents a stack-based method of evaluating the performance of cache memories using a recurrence/conflict model for the miss ratio. Unlike previous work, the performance of realistic cache designs, such as direct-mapped caches, are predicted by the method. The method also includes a new approach to the problem of the effects of multiprogramming. This new technique separates the characteristics of the individual program from that of the workload. The recurrence/conflict method is shown to be practical, general, and powerful by comparing its performance to that of a popular traditional cache simulator. The authors expect that the availability of such a tool will have a large impact on future architectural studies of memory systems.</p> <div class="credits"> <p class="dwt_author">Conte, Thomas M.; Hwu, Wen-Mei W.</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">427</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/1024628"> <span id="translatedtitle">A Study of <span class="hlt">Single</span> <span class="hlt">Pass</span> Ion Effects at the ALS</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We report the results of experiments on a 'fast beam-ion instability' at the Advanced Light Source (ALS). This ion instability, which can arise even when the ions are not trapped over multiple beam passages, will likely be important for many future accelerators. In our experiments, we filled the ALS storage ring with helium gas, raising the pressure approximately two orders of magnitude above the nominal pressure. With gaps in the bunch train large enough to avoid conventional (multi-turn) ion trapping, we observed a factor of 2-3 increase in the vertical beam size along with coherent beam oscillations which increased along the bunch train. Ion trapping has long been recognized as a potential limitation in electron storage rings. The ions, generated by beam-gas collisions, become trapped in the negative potential of the beam and accumulate over multiple beam passages. The trapped ions are then observed to cause a number of deleterious effects such as an increasing beam phase space, a broadening and shifting of the beam transverse oscillation frequencies (tunes), collective beam instabilities, and beam lifetime reductions. All of these effects are of concern for the next generation of accelerators, such as the B-factories or damping rings for future linear colliders, which will store high beam currents with closely spaced bunches and ultra-low beam emittances. One of the standard solutions used to prevent ion trapping is to include a gap in the bunch train which is long compared to the bunch spacing. In this case, the ions are first strongly-focused by the passing electron bunches and then over-focused in the gap. With a sufficiently large gap, the ions can be driven to large amplitudes where they form a diffuse halo and do not affect the beam. In this paper, we describe experiments that study a new regime of transient ion instabilities predicted to arise in future electron storage rings, and linacs with bunch trains. These future rings and linacs, which will be operated with higher beam currents, small transverse beam emittances, and long bunch trains, will use ion clearing gaps to prevent conventional ion trapping. But, while the ion clearing gap may suppress the conventional ion instabilities, it will not suppress a transient beam-ion instability where ions generated and trapped during the passage of a single train lead to a fast instability. While both conventional and transient ion instabilities have the same origin, namely ions produced by the beam, they have different manifestations and, more importantly, the new transient instability can arise even after the conventional ion instability is cured. This new instability is called the 'Fast Beam-Ion Instability' (FBII). In many future rings, the FBII is predicted to have very fast growth rates, much faster than the damping rates of existing and proposed transverse feedback systems, and thus is a potential limitation. To study the FBII, we performed experiments at the ALS, a 1.5 GeV electron storage ring. At the nominal ALS pressure of about 0.24 nTorr, the FBII is not evident. To study the instability, we intentionally added helium gas to the storage-ring vacuum system until the residual gas pressure was increased about 80 nTorr. This brought the predicted growth rate of the instability at least an order of magnitude above the growth rate of conventional multibunch instabilities driven by the RF cavities and above the damping rate of the transverse feedback system (TFB) in the ALS and, thereby, established conditions very similar to those in a future storage ring. We then filled the ring with a relatively short train of bunches, suppressing conventional ion instabilities. In the following, we will first briefly describe This paper describes the experiment and results in more detail.</p> <div class="credits"> <p class="dwt_author">Byrd, J.M.; Thomson, J.; /LBL, Berkeley; Chao, A.W.; Heifets, S.; Minty, M.G.; Seeman, J.T.; Stupakov, G.V.; Zimmermann, F.; /SLAC; Raubenheimer, T.O.; /CERN</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-09-13</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">428</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19810049454&hterms=knife&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dknife"> <span id="translatedtitle"><span class="hlt">Single-pass</span> rub testing of abradable seal materials</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">A pendulum-type test device has been built for use in studying rubs between a turbine or compressor blade tip or labyrinth seal knife edge and specimens of abradable gas path seal materials. The device allows measurement of the rub energy dissipated in a single wear event, along with friction and normal forces and wear. Subsequent rubs over the same surface can also be monitored, with microscopic observation of the rub surface being possible after any of the passes. The device was used in tests of several potential abradable materials, ranging from porous to fully dense. It was shown that the rub energy dissipated in initial and subsequent passes is a fundamental parameter in the evaluation of material abradability. Rub energy was found to be influenced by such factors as: density and tensile (or yield) strength of the abradable material, prior densification or work hardening of the rub surface, and the sharpness of the leading edge of the blade tip.</p> <div class="credits"> <p class="dwt_author">Kennedy, F. E.; Hine, N. P.</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">429</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/12564339"> <span id="translatedtitle">Hanford <span class="hlt">single-pass</span> reactor fuel storage basin demolition.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The Environmental Restoration Contractor at the Hanford Site is tasked with removing auxiliary reactor structures and leaving the remaining concrete structure surrounding each reactor core. This is referred to as Interim Safe Storage. Part of placing the F Reactor into Interim Safe Storage is the demolition of the fuel storage basin, which was deactivated in 1970 by placing debris material into the basin prior to back filling with soil. Besides the debris material (wooden floor decking, handrails, and monorail pieces), the fuel storage basin contents included the possibility of spent nuclear fuel, fuel buckets, fuel spacers, process tubes, and tongs. Demolition of the fuel storage basin offered many unique radiological control challenges and innovative approaches to demolition. This paper describes how the total effective dose equivalent and contamination were controlled, how the use of a remote operated excavator was employed to remove high-dose-rate material, and how wireless technology was used to monitor changing radiological conditions. PMID:12564339</p> <div class="credits"> <p class="dwt_author">Armstrong, Jason A</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-02-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">430</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3231005"> <span id="translatedtitle">Extended Target Recognition in Cognitive <span class="hlt">Radar</span> Networks</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">We address the problem of adaptive waveform design for extended target recognition in cognitive <span class="hlt">radar</span> networks. A closed-loop active target recognition <span class="hlt">radar</span> system is extended to the case of a centralized cognitive <span class="hlt">radar</span> network, in which a generalized likelihood ratio (GLR) based sequential hypothesis testing (SHT) framework is employed. Using Doppler velocities measured by multiple <span class="hlt">radars</span>, the target aspect angle for each <span class="hlt">radar</span> is calculated. The joint probability of each target hypothesis is then updated using observations from different <span class="hlt">radar</span> line of sights (LOS). Based on these probabilities, a minimum correlation algorithm is proposed to adaptively design the transmit waveform for each <span class="hlt">radar</span> in an amplitude fluctuation situation. Simulation results demonstrate performance improvements due to the cognitive <span class="hlt">radar</span> network and adaptive waveform design. Our minimum correlation algorithm outperforms the eigen-waveform solution and other non-cognitive waveform design approaches. PMID:22163464</p> <div class="credits"> <p class="dwt_author">Wei, Yimin; Meng, Huadong; Liu, Yimin; Wang, Xiqin</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">431</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014Natur.507..310M"> <span id="translatedtitle">Technology: Photonics illuminates the future of <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The first implementation of a fully photonics-based coherent <span class="hlt">radar</span> system shows how photonic methods for radio-frequency signal generation and measurement may facilitate the development of software-defined <span class="hlt">radar</span> systems. See Letter p.341</p> <div class="credits"> <p class="dwt_author">McKinney, Jason D.</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">432</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19880005172&hterms=Scatter+Meteor+Trails&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DScatter%2BMeteor%2BTrails"> <span id="translatedtitle">Meteor detection on ST (MST) <span class="hlt">radars</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The ability to detect <span class="hlt">radar</span> echoes from backscatter due to turbulent irregularities of the radio refractive index in the clear atmosphere has lead to an increasing number of established mesosphere - stratosphere - troposphere (MST or ST) <span class="hlt">radars</span>. Humidity and temperature variations are responsible for the echo in the troposphere and stratosphere and turbulence acting on electron density gradients provides the echo in the mesosphere. The MST <span class="hlt">radar</span> and its smaller version, the ST <span class="hlt">radar</span>, are pulsed Doppler <span class="hlt">radars</span> operating in the VHF - UHF frequency range. These echoes can be used to determine upper atmosphere winds at little extra cost to the ST <span class="hlt">radar</span> configuration. In addition, the meteor echoes can supplement mesospheric data from an MST <span class="hlt">radar</span>. The detection techniques required on the ST <span class="hlt">radar</span> for delineating meteor echo returns are described.</p> <div class="credits"> <p class="dwt_author">Avery, S. K.</p> <p class="dwt_publisher"></p> <p class="publishDate">1987-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">433</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20130003266&hterms=radar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dradar"> <span id="translatedtitle">Levee Monitoring with <span class="hlt">Radar</span> Remote Sensing</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Topics in this presentation are: 1. Overview of <span class="hlt">radar</span> remote sensing 2. Surface change detection with Differential Interferometric <span class="hlt">Radar</span> Processing 3. Study of the Sacramento - San Joaquin levees 4. Mississippi River Levees during the Spring 2011 floods.</p> <div class="credits"> <p class="dwt_author">Jones, Cathleen E.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">434</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://dspace.mit.edu/handle/1721.1/71175"> <span id="translatedtitle">MIMO <span class="hlt">Radar</span> Waveform Constraints for GMTI</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/eprints/">E-print Network</a></p> <p class="result-summary">Ground moving-target indication (GMTI) provides both an opportunity and challenge for coherent multiple-input multiple-output (MIMO) <span class="hlt">radar</span>. MIMO techniques can improve a <span class="hlt">radar</span>'s angle estimation and the minimum detectable ...</p> <div class="credits"> <p class="dwt_author">Forsythe, Keith W.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">435</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.era.lib.ed.ac.uk/handle/1842/1370"> <span id="translatedtitle">Signal processing for airborne bistatic <span class="hlt">radar</span> </span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/eprints/">E-print Network</a></p> <p class="result-summary">The major problem encountered by an airborne bistatic <span class="hlt">radar</span> is the suppression of bistatic clutter. Unlike clutter echoes for a sidelooking airborne monostatic <span class="hlt">radar</span>, bistatic clutter echoes are range dependent. Using ...</p> <div class="credits"> <p class="dwt_author">Ong, Kian P</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">436</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19850008936&hterms=german&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dgerman"> <span id="translatedtitle">German <span class="hlt">Radar</span> Observation Shuttle Experiment (ROSE)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The success of <span class="hlt">radar</span> sensors in several different application areas of interest depends on the knowledge of the backscatter of <span class="hlt">radar</span> waves from the targets of interest, the variance of these interaction mechanisms with respect to changing measurement parameters, and the determination of the influence of he measuring systems on the results. The incidence-angle dependency of the <span class="hlt">radar</span> cross section of different natural targets is derived. Problems involved by the combination of data gained with different sensors, e.g., MSS-, TM-, SPOTand SAR-images are analyzed. <span class="hlt">Radar</span> cross-section values gained with ground-based <span class="hlt">radar</span> spectrometers and spaceborne <span class="hlt">radar</span> imaging, and non-imaging scatterometers and spaceborne <span class="hlt">radar</span> images from the same areal target are correlated. The penetration of L-band <span class="hlt">radar</span> waves into vegetated and nonvegetated surfaces is analyzed.</p> <div class="credits"> <p class="dwt_author">Sleber, A. J.; Hartl, P.; Haydn, R.; Hildebrandt, G.; Konecny, G.; Muehlfeld, R.</p> <p class="dwt_publisher"></p> <p class="publishDate">1984-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">437</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/907977"> <span id="translatedtitle">Obstacle penetrating dynamic <span class="hlt">radar</span> imaging system</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">An obstacle penetrating dynamic <span class="hlt">radar</span> imaging system for the detection, tracking, and imaging of an individual, animal, or object comprising a multiplicity of low power ultra wideband <span class="hlt">radar</span> units that produce a set of return <span class="hlt">radar</span> signals from the individual, animal, or object, and a processing system for said set of return <span class="hlt">radar</span> signals for detection, tracking, and imaging of the individual, animal, or object. The system provides a <span class="hlt">radar</span> video system for detecting and tracking an individual, animal, or object by producing a set of return <span class="hlt">radar</span> signals from the individual, animal, or object with a multiplicity of low power ultra wideband <span class="hlt">radar</span> units, and processing said set of return <span class="hlt">radar</span> signals for detecting and tracking of the individual, animal, or object.</p> <div class="credits"> <p class="dwt_author">Romero, Carlos E. (Livermore, CA); Zumstein, James E. (Livermore, CA); Chang, John T. (Danville, CA); Leach, Jr.. Richard R. (Castro Valley, CA)</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-12-12</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">438</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2006APS..APRP11005R"> <span id="translatedtitle">LISA <span class="hlt">Interferometer</span> Test Bench at UF</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">LISA, a joint NASA/ESA space mission to detect gravitational waves in the 10-4 to 10-1 Hz frequency band, is scheduled to launch in 2015. LISA will consist of three spacecraft in a heliocentric orbit forming a triangle with a 5 Gm baseline. In order to detect gravitational waves, LISA will use laser interferometry to measure changes in spacecraft separations with pm accuracy. The <span class="hlt">interferometer</span> signals will be dominated by laser frequency noise. The dominant laser frequency noise will be subtracted from the data stream by post-processing the data using time delay interferometry (TDI). This algorithm relies on a strong correlation between all LISA signals taken at different times and different spacecraft as well as on very low noise and large dynamic range phase meters and on accurate timing information. At the University of Florida, we are developing an experimental LISA simulator to test implementations of various aspects of LISA interferometry and TDI. Realistic light travel times between the spacecraft are simulated using an electronic phase delay technique. In this paper we will present preliminary results of an experimental implementation of TDI to test LISA-like signals in the laboratory. This work is supported by NASA grant BEFS04-0019-0019.</p> <div class="credits"> <p class="dwt_author">Reddy Guntaka, Sridhar; Cruz, Rachel J.; Ira Thorpe, J.; Hartman, Michael; Tanner, David B.; Mueller, Guido</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-04-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">439</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20050243457&hterms=Maxwell+James+Clerk&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3D%2528%2528Maxwell%2BJames%2529%2BClerk%2529"> <span id="translatedtitle">A Quasioptical Vector <span class="hlt">Interferometer</span> for Polarization Control</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">We present a mathematical description of a Quasioptical Vector <span class="hlt">Interferometer</span> (QVI), a device that maps an input polarization state to an output polarization state by introducing a phase delay between two linear orthogonal components of the input polarization. The advantages of such a device over a spinning wave-plate modulator for measuring astronomical polarization in the far-infrared through millimeter are: 1. The use of small, linear motions eliminates the need for cryogenic rotational bearings, 2. The phase flexibility allows measurement of Stokes V as well as Q and U, and 3. The QVI allows for both multi-wavelength and broadband modulation. We suggest two implementations of this device as an astronomical polarization modulator. The first involves two such modulators placed in series. By adjusting the two phase delays, it is possible to use such a modulator to measure Stokes Q, U, and V for passbands that are not too large. Conversely, a single QVI may be used to measure Q and V independent of frequency. In this implementation, Stokes U must be measured by rotating the instrument. We conclude this paper by presenting initial laboratory results.</p> <div class="credits"> <p class="dwt_author">Chuss, David T.; Wollack, Edward J.; Moseley, Harvey S.; Novak, Giles</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">440</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2000eso..pres...14."> <span id="translatedtitle">With the VLT <span class="hlt">Interferometer</span> towards Sharper Vision</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The Nova-ESO VLTI Expertise Centre Opens in Leiden (The Netherlands) European science and technology will gain further strength when the new, front-line Nova-ESO VLTI Expertise Centre (NEVEC) opens in Leiden (The Netherlands) this week. It is a joint venture of the Netherlands Research School for Astronomy (NOVA) (itself a collaboration between the Universities of Amsterdam, Groningen, Leiden, and Utrecht) and the European Southern Observatory (ESO). It is concerned with the Very Large Telescope <span class="hlt">Interferometer</span> (VLTI). The Inauguration of the new Centre will take place on Friday, May 26, 2000, at the Gorlaeus Laboratory (Lecture Hall no. 1), Einsteinweg 55 2333 CC Leiden; the programme is available on the web. Media representatives who would like to participate in this event and who want further details should contact the Nova Information Centre (e-mail: jacques@astro.uva.nl; Tel: +31-20-5257480 or +31-6-246 525 46). The inaugural ceremony is preceded by a scientific workshop on ground and space-based optical interferometry. NEVEC: A Technology Centre of Excellence As a joint project of NOVA and ESO, NEVEC will develop in the coming years the expertise to exploit the unique interferometric possibilities of the Very Large Telescope (VLT) - now being built on Paranal mountain in Chile. Its primary goals are the * development of instrument modeling, data reduction and calibration techniques for the VLTI; * accumulation of expertise relevant for second-generation VLTI instruments; and * education in the use of the VLTI and related matters. NEVEC will develop optical equipment, simulations and software to enable interferometry with VLT [1]. The new Center provides a strong impulse to Dutch participation in the VLTI. With direct involvement in this R&D work, the scientists at NOVA will be in the front row to do observations with this unique research facility, bound to produce top-level research and many exciting new discoveries. The ESO VLTI at Paranal ESO PR Photo 14a/00 ESO PR Photo 14a/00 [Preview - JPEG: 359 x 400 pix - 120k] [Normal - JPEG: 717 x 800 pix - 416k] [High-Res - JPEG: 2689 x 3000 pix - 6.7M] Caption : A view of the Paranal platform with the four 8.2-m VLT Unit Telescopes (UTs) and the foundations for the 1.8-m VLT Auxiliary Telescopes (ATs) that together will be used as the VLT <span class="hlt">Interferometer</span> (VLTI). The three ATs will move on rails (yet to be installed) between the thirty observing stations above the holes that provide access to the underlying tunnel system. The light beams from the individual telescopes will be guided towards the centrally located, partly underground Interferometry Laboratory in which the VLTI instruments will be set up. This photo was obtained in December 1999 at which time some construction materials were still present on the platform; they were electronically removed in this reproduction. The ESO VLT facility at Paranal (Chile) consists of four Unit Telescopes with 8.2-m mirrors and several 1.8-m auxiliary telescopes that move on rails, cf. PR Photo 14a/00 . While each of the large telescopes can be used individually for astronomical observations, a prime feature of the VLT is the possibility to combine all of these telescopes into the Very Large Telescope <span class="hlt">Interferometer</span> (VLTI) . In the interferometric mode, the light beams from the VLT telescopes are brought together at a common focal point in the Interferometry Laboratory that is placed at the centre of the observing platform on top of Paranal. In principle, this can be done in such a way that the resulting (reconstructed) image appears to come from a virtual telescope with a diameter that is equal to the largest distance between two of the individual telescopes, i.e., up to about 200 metres. The theoretically achievable image sharpness of an astronomical telescope is proportional to its diameter (or, for an <span class="hlt">interferometer</span>, the largest distance between two of its component telescopes). The interferometric observing technique will thus allow the VLTI to produce images as sharp as 0.001 arcsec (at wavelength 1 µm) - this corresponds t</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">2000-05-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_21");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a style="font-weight: bold;">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_23");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_22 div --> <div id="page_23" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_22");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a style="font-weight: bold;">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_24");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">441</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/1020273"> <span id="translatedtitle">Atmospheric Emitted Radiance <span class="hlt">Interferometer</span> (AERI) Handbook</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The atmospheric emitted radiance <span class="hlt">interferometer</span> (AERI) measures the absolute infrared (IR) spectral radiance (watts per square meter per steradian per wavenumber) of the sky directly above the instrument. The spectral measurement range of the instrument is 3300 to 520 wavenumbers (cm-1) or 3-19.2 microns for the normal-range instruments and 3300 to 400 cm-1 or 3-25 microns, for the extended-range polar instruments. Spectral resolution is 1.0 cm-1. Instrument field-of-view is 1.3 degrees. A calibrated sky radiance spectrum is produced every 8 minutes in normal mode and every minute in rapid sampling mode. The actual sample scan time is 20-30 sec in rapid sampling mode with periodic gaps when the instrument is looking at the blackbodies. Rapid sampling will become available in all AERIs. Rapid sampling time will eventually be reduced to data every 20 seconds. The AERI data can be used for 1) evaluating line-by-line radiative transport codes, 2) detecting/quantifying cloud effects on ground-based measurements of infrared spectral radiance (and hence is valuable for cloud property retrievals), and 3) calculating vertical atmospheric profiles of temperature and water vapor and the detection of trace gases.</p> <div class="credits"> <p class="dwt_author">Demirgian, J; Dedecker, R</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">442</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008APS..MARY10010W"> <span id="translatedtitle">Macroscopic Resonant Tunneling through Andreev <span class="hlt">Interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We investigate the conductance through and the spectrum of ballistic Andreev <span class="hlt">interferometers</span>, chaotic quantum dots attached to two s-wave superconductors, as a function of the phase difference ? between the two order parameters. A combination of analytical techniques -- random matrix theory, Nazarov's circuit theory and the trajectory-based semiclassical theory -- allows us to explore the quantum-to-classical crossover in detail. When the superconductors are not phase-biased, ?=0, we recover known results that the spectrum of the quantum dot exhibits an excitation gap, while the conductance across two normal leads carrying NN channels and connected to the dot via tunnel contacts of transparency ?N is ?N^2 NN. In contrast, when ?=?, the excitation gap closes and the conductance becomes G ?NNN in the universal regime. In the tunneling regime, ?N1, resonant contributions induce an order-of-magnitude enhancement of the conductance towards G NN in the short-wavelength limit. We relate this to the emergence of a giant peak in the density of states at the Fermi level. Our predictions are corroborated by numerical simulations.</p> <div class="credits"> <p class="dwt_author">Weiss, Jeff; Goorden, Marlies; Jacquod, Philippe</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">443</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010SPIE.7734E..1PT"> <span id="translatedtitle">Photonic technologies for a pupil remapping <span class="hlt">interferometer</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Interest in pupil-remapping interferometry, in which a single telescope pupil is fragmented and recombined using fiber optic technologies, has been growing among a number of groups. As a logical extrapolation from several highly successful aperture masking programs underway worldwide, pupil remapping offers the advantage of spatial filtering (with single-mode fibers) and in principle can avoid the penalty of low throughput inherent to an aperture mask. However in practice, pupil remapping presents a number of difficult technological challenges including injection into the fibers, pathlength matching of the device, and stability and reproducibility of the results. Here we present new approaches based on recently-available photonic technologies in which coherent threedimensional waveguide structures can be sculpted into bulk substrate. These advances allow us to miniaturize the photonic processing into a single, robust, thermally stable element; ideal for demanding observatory or spacecraft environments. Ultimately, a wide range of optical functionality could be routinely fabricated into such structures, including beam combiners and dispersive or wavelength selective elements, bringing us closer to the vision of an <span class="hlt">interferometer</span> on a chip.</p> <div class="credits"> <p class="dwt_author">Tuthill, Peter; Jovanovic, Nemanja; Lacour, Sylvestre; Lehmann, Andrew; Ams, Martin; Marshall, Graham; Lawrence, Jon; Withford, Michael; Robertson, Gordon; Ireland, Michael; Pope, Benjamin; Stewart, Paul</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">444</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014MNRAS.438..768S"> <span id="translatedtitle">Probabilistic image reconstruction for radio <span class="hlt">interferometers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We present a novel, general-purpose method for deconvolving and denoizing images from gridded radio interferometric visibilities using Bayesian inference based on a Gaussian process model. The method automatically takes into account incomplete coverage of the uv-plane, signal mode coupling due to the primary beam and noise mode coupling due to uv sampling. Our method uses Gibbs sampling to efficiently explore the full posterior distribution of the underlying signal image given the data. We use a set of widely diverse mock images with a realistic <span class="hlt">interferometer</span> set-up and level of noise to assess the method. Compared to results from a proxy for point source-based CLEAN method we find that in terms of rms error and signal-to-noise ratio our approach performs better than traditional deconvolution techniques, regardless of the structure of the source image in our test suite. Our implementation scales as O(n_p log n_p) provides full statistical and uncertainty information of the reconstructed image, requires no supervision and provides a robust, consistent framework for incorporating noise and parameter marginalizations and foreground removal.</p> <div class="credits"> <p class="dwt_author">Sutter, P. M.; Wandelt, Benjamin D.; McEwen, Jason D.; Bunn, Emory F.; Karakci, Ata; Korotkov, Andrei; Timbie, Peter; Tucker, Gregory S.; Zhang, Le</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-02-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">445</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=PIA01348&hterms=tropical+river&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dtropical%2Briver"> <span id="translatedtitle"><span class="hlt">Radar</span> Mosaic of Africa</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">This is an image of equatorial Africa, centered on the equator at longitude 15degrees east. This image is a mosaic of almost 4,000 separate images obtained in 1996 by the L-band imaging <span class="hlt">radar</span> onboard the Japanese Earth Resources Satellite. Using <span class="hlt">radar</span> to penetrate the persistent clouds prevalent in tropical forests, the Japanese Earth Resources Satellite was able for the first time to image at high resolution this continental scale region during single flooding seasons. The area shown covers about 7.4 million square kilometers (2.8 million square miles) of land surface, spans more than 5,000 kilometers(3,100 miles) east and west and some 2,000 kilometers (1,240 miles) north and south. North is up in this image. At the full resolution of the mosaic (100 meters or 330 feet), this image is more than 500 megabytes in size, and was processed from imagery totaling more than 60 gigabytes.<p/>Central Africa was imaged twice in 1996, once between January and March, which is the major low-flood season in the Congo Basin, and once between October and November, which is the major high-flood season in the Congo Basin. The red color corresponds to the data from the low-flood season, the green to the high-flood season, and the blue to the 'texture' of the low-flood data. The forests appear green as a result, the flooded and palm forests, as well as urban areas, appear yellow, the ocean and lakes appear black, and savanna areas appear blue, black or green, depending on the savanna type, surface topography and other factors. The areas of the image that are black and white were mapped only between January and March 1996. In these areas, the black areas are savanna or open water, the gray are forests, and the white areas are flooded forests or urban areas. The Congo River dominates the middle of the image, where the nearby forests that are periodically flooded by the Congo and its tributaries stand out as yellow. The Nile River flows north from Lake Victoria in the middle right of the color portion of the mosaic.<p/>This image is one of the products resulting from the Global Rain Forest Mapping project, a joint project between the National Space Development Agency of Japan, the Space Applications Institute of the Joint Research Centre of the European Commission, NASA's Jet Propulsion Laboratory and an international team of scientists. The goal of the Global Rain Forest Mapping mission is to map with the Japanese Earth Resources Satellite the world's tropical rain forests. The Japanese satellite was launched in 1992 by the National Space Development Agency of Japan and the Japanese Ministry of International Trade and Industry, with support from the Remote Sensing Technology Center of Japan.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">446</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2005PhDT.......112Y"> <span id="translatedtitle">Bistatic synthetic aperture <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Synthetic aperture <span class="hlt">radar</span> (SAR) allows all-weather, day and night, surface surveillance and has the ability to detect, classify and geolocate objects at long stand-off ranges. Bistatic SAR, where the transmitter and the receiver are on separate platforms, is seen as a potential means of countering the vulnerability of conventional monostatic SAR to electronic countermeasures, particularly directional jamming, and avoiding physical attack of the imaging platform. As the receiving platform can be totally passive, it does not advertise its position by RF emissions. The transmitter is not susceptible to jamming and can, for example, operate at long stand-off ranges to reduce its vulnerability to physical attack. This thesis examines some of the complications involved in producing high-resolution bistatic SAR imagery. The effect of bistatic operation on resolution is examined from a theoretical viewpoint and analytical expressions for resolution are developed. These expressions are verified by simulation work using a simple 'point by point' processor. This work is extended to look at using modern practical processing engines for bistatic geometries. Adaptations of the polar format algorithm and range migration algorithm are considered. The principal achievement of this work is a fully airborne demonstration of bistatic SAR. The route taken in reaching this is given, along with some results. The bistatic SAR imagery is analysed and compared to the monostatic imagery collected at the same time. Demonstrating high-resolution bistatic SAR imagery using two airborne platforms represents what I believe to be a European first and is likely to be the first time that this has been achieved outside the US (the UK has very little insight into US work on this topic). Bistatic target characteristics are examined through the use of simulations. This also compares bistatic imagery with monostatic and gives further insight into the utility of bistatic SAR.</p> <div class="credits"> <p class="dwt_author">Yates, Gillian</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">447</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19800002036&hterms=back+azimuth+RF&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dback%2Bazimuth%2BRF"> <span id="translatedtitle">Shuttle orbiter <span class="hlt">radar</span> cross-sectional analysis</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Theoretical and model simulation studies on signal to noise levels and shuttle <span class="hlt">radar</span> cross section are described. Pre-mission system calibrations, system configuration, and postmission system calibration of the tracking <span class="hlt">radars</span> are described. Conversion of target range, azimuth, and elevation into <span class="hlt">radar</span> centered east north vertical position coordinates are evaluated. The location of the impinging rf energy with respect to the target vehicles body axis triad is calculated. Cross section correlation between the two <span class="hlt">radars</span> is presented.</p> <div class="credits"> <p class="dwt_author">Cooper, D. W.; James, R.</p> <p class="dwt_publisher"></p> <p class="publishDate">1979-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">448</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.jpl.nasa.gov/radar/sircxsar//volcanoes.html"> <span id="translatedtitle"><span class="hlt">Radar</span> Images of the Earth: Volcanoes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">This site features links to thirty-five NASA <span class="hlt">radar</span> images of the world's volcanoes, including brief descriptions of the respective processes and settings involved. The images were created with the Spaceborne Imaging <span class="hlt">Radar</span>-C and X-Band Synthetic Aperture <span class="hlt">Radar</span> (SIR-C/X-SAR) as part of NASA's Mission to Planet Earth. The <span class="hlt">radar</span> illuminates Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">449</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1996582"> <span id="translatedtitle">Spaceborne <span class="hlt">radar</span> remote sensing: Applications and techniques</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The operation and applications of spaceborne <span class="hlt">radars</span> for terrestrial and planetary remote sensing are described in an introduction for advanced students and practicing scientists. Chapters are devoted to imaging <span class="hlt">radars</span>, wave-surface interactions and geoscientific applications, real- and synthetic-aperture <span class="hlt">radars</span>, end-to-end system design, SAR data processing, altimeters, and scatterometers. Extensive diagrams, drawings, graphs, photographs, and sample <span class="hlt">radar</span> images are provided.</p> <div class="credits"> <p class="dwt_author">Charles Elachi</p> <p class="dwt_publisher"></p> <p class="publishDate">1988-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">450</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.jpl.nasa.gov/radar/sircxsar//archaeology.html"> <span id="translatedtitle">Space <span class="hlt">Radar</span> Images of the Earth: Archaeology</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">This site features links to twelve NASA <span class="hlt">radar</span> images of the world's famous archaeology sites, including brief descriptions of the respective processes and settings involved. The images were created with the Spaceborne Imaging <span class="hlt">Radar</span>-C and X-Band Synthetic Aperture <span class="hlt">Radar</span> (SIR-C/X-SAR) as part of NASA's Mission to Planet Earth. The <span class="hlt">radar</span> illuminates Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">451</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.jpl.nasa.gov/radar/sircxsar//interferometry.html"> <span id="translatedtitle"><span class="hlt">Radar</span> Images of the Earth: Interferometry</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">This site features links to nineteen NASA <span class="hlt">radar</span> images using interferometry to enhance details or measure changes in elevation. The image pages contain brief descriptions of the respective processes and settings. They were created with the Spaceborne Imaging <span class="hlt">Radar</span>-C and X-Band Synthetic Aperture <span class="hlt">Radar</span> (SIR-C/X-SAR) as part of NASA's Mission to Planet Earth. The <span class="hlt">radar</span> illuminates Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">452</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.jpl.nasa.gov/radar/sircxsar//cities.html"> <span id="translatedtitle"><span class="hlt">Radar</span> Images of the Earth: Cities</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">This site features links to more than fifty NASA <span class="hlt">radar</span> images of the world's cities, including brief descriptions of the respective processes and settings involved. The images were created with the Spaceborne Imaging <span class="hlt">Radar</span>-C and X-Band Synthetic Aperture <span class="hlt">Radar</span> (SIR-C/X-SAR) as part of NASA's Mission to Planet Earth. The <span class="hlt">radar</span> illuminates Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">453</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.jpl.nasa.gov/radar/sircxsar//oceans.html"> <span id="translatedtitle"><span class="hlt">Radar</span> Images of the Earth: Oceans</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">This site features links to seven NASA <span class="hlt">radar</span> images of the world's oceans, including brief descriptions of the respective processes and settings. The images were created with the Spaceborne Imaging <span class="hlt">Radar</span>-C and X-Band Synthetic Aperture <span class="hlt">Radar</span> (SIR-C/X-SAR) as part of NASA's Mission to Planet Earth. The <span class="hlt">radar</span> illuminates Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">454</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19900000497&hterms=synthetic+aperture+radar+data+compression&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dsynthetic%2Baperture%2Bradar%2Bdata%2Bcompression"> <span id="translatedtitle">Phase Calibration Of <span class="hlt">Radar</span> Polarimetric Data</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Technique for phase calibration of data acquired by airborne imaging <span class="hlt">radar</span> polarimeter based on extraction of calibration parameters from data themselves. Enables use of data-compression technique to reduce volume of data in synthetic-aperture-<span class="hlt">radar</span> correlator. Typical <span class="hlt">radar</span> polarimeter includes transmitting and receiving channels for horizontally and vertically polarized signals. Phase delay in each channel usually known only approximately if at all. Consequently, necessary to phase-calibrate <span class="hlt">radar</span> return signals.</p> <div class="credits"> <p class="dwt_author">Zebker, Howard A.; Lou, Yunling</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">455</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/27101044"> <span id="translatedtitle">Iterative Adaptive Approaches to MIMO <span class="hlt">Radar</span> Imaging</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Multiple-input multiple-output (MIMO) <span class="hlt">radar</span> can achieve superior performance through waveform diversity over conventional phased-array <span class="hlt">radar</span> systems. When a MIMO <span class="hlt">radar</span> transmits orthogonal waveforms, the reflected signals from scatterers are linearly independent of each other. Therefore, adaptive receive filters, such as Capon and amplitude and phase estimation (APES) filters, can be directly employed in MIMO <span class="hlt">radar</span> applications. High levels of noise</p> <div class="credits"> <p class="dwt_author">William Roberts; Petre Stoica; Jian Li; Tarik Yardibi; Firooz A. Sadjadi</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">456</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50959029"> <span id="translatedtitle">MIMO GMTI <span class="hlt">radar</span> with multipath clutter suppression</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper address ground-moving target indicator (GMTI) <span class="hlt">radar</span> operation in the presence of strong multipath spread-Doppler clutter (SDC). Spacetime adaptive processing (STAP) for single-input-single-output (SIMO) <span class="hlt">radar</span> is designed to mitigate direct-path SDC which leaks into the sidelobes of a moving <span class="hlt">radar</span> platform. However, multipath SDC often returns via the receiver mainlobe and cannot be suppressed in a SIMO <span class="hlt">radar</span> without</p> <div class="credits"> <p class="dwt_author">Granger Hickman; Jeffrey L. Krolik</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">457</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/1011708"> <span id="translatedtitle">GMTI <span class="hlt">radar</span> minimum detectable velocity.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Minimum detectable velocity (MDV) is a fundamental consideration for the design, implementation, and exploitation of ground moving-target indication (GMTI) <span class="hlt">radar</span> imaging modes. All single-phase-center air-to-ground <span class="hlt">radars</span> are characterized by an MDV, or a minimum radial velocity below which motion of a discrete nonstationary target is indistinguishable from the relative motion between the platform and the ground. Targets with radial velocities less than MDV are typically overwhelmed by endoclutter ground returns, and are thus not generally detectable. Targets with radial velocities greater than MDV typically produce distinct returns falling outside of the endoclutter ground returns, and are thus generally discernible using straightforward detection algorithms. This document provides a straightforward derivation of MDV for an air-to-ground single-phase-center GMTI <span class="hlt">radar</span> operating in an arbitrary geometry.</p> <div class="credits"> <p class="dwt_author">Richards, John Alfred</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">458</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013AGUFM.H33D1387W"> <span id="translatedtitle">SMAP <span class="hlt">RADAR</span> Processing and Calibration</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The Soil Moisture Active Passive (SMAP) mission uses L-band <span class="hlt">radar</span> and radiometer measurements to estimate soil moisture with 4% volumetric accuracy at a resolution of 10 km, and freeze-thaw state at a resolution of 1-3 km. Model sensitivities translate the soil moisture accuracy to a <span class="hlt">radar</span> backscatter accuracy of 1 dB at 3 km resolution and a brightness temperature accuracy of 1.3 K at 40 km resolution. This presentation will describe the level 1 <span class="hlt">radar</span> processing and calibration challenges and the choices made so far for the algorithms and software implementation. To obtain the desired high spatial resolution the level 1 <span class="hlt">radar</span> ground processor employs synthetic aperture <span class="hlt">radar</span> (SAR) imaging techniques. Part of the challenge of the SMAP data processing comes from doing SAR imaging on a conically scanned system with rapidly varying squint angles. The <span class="hlt">radar</span> echo energy will be divided into range/Doppler bins using time domain processing algorithms that can easily follow the varying squint angle. For SMAP, projected range resolution is about 250 meters, while azimuth resolution varies from 400 meters to 1.2 km. Radiometric calibration of the SMAP <span class="hlt">radar</span> means measuring, characterizing, and where necessary correcting the gain and noise contributions from every part of the system from the antenna radiation pattern all the way to the ground processing algorithms. The SMAP antenna pattern will be computed using an accurate antenna model, and then validated post-launch using homogeneous external targets such as the Amazon rain forest to look for uncorrected gain variation. Noise subtraction is applied after image processing using measurements from a noise only channel. Variations of the internal electronics are tracked by a loopback measurement which will capture most of the time and temperature variations of the transmit power and receiver gain. Long-term variations of system performance due to component aging will be tracked and corrected using stable external reference targets. Candidate targets include the Amazon rain forest and a model-corrected global ocean measurement. Radio frequency interference (RFI) signals are expected in the L-band frequency window used by the SMAP <span class="hlt">radar</span> because many other users also operate in this band. Based on results of prior studies at JPL, SMAP L1 <span class="hlt">radar</span> processing will use a "Slow-time thresholding" or STT algorithm to handle RFI contamination. The STT technique looks at the slow-time series associated with a given range sample, sets an appropriate threshold, and identifies any samples that rise above this threshold as RFI events. The RFI events are removed and the data are azimuth compressed without those samples. Faraday rotation affects L-band signals by rotating the polarization vector during propagation through the ionosphere. This mixes HH, VV, HV, and VH results with each other introducing another source of error. The SMAP <span class="hlt">radar</span> is not fully polarimetric so the <span class="hlt">radar</span> data do not provide a correction by themselves. Instead a correction must be derived from other sources. L1 <span class="hlt">radar</span> processing will use estimates of Faraday rotation derived from externally supplied GPS-based measurements of the ionosphere total electron content (TEC). This work is supported by the SMAP project at the Jet Propulsion Laboratory, California Institute of Technology.</p> <div class="credits"> <p class="dwt_author">West, R. D.; Jaruwatanadilok, S.; Kwoun, O.; Chaubell, M. J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">459</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/1043296"> <span id="translatedtitle">Scanning ARM Cloud <span class="hlt">Radar</span> Handbook</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The scanning ARM cloud <span class="hlt">radar</span> (SACR) is a polarimetric Doppler <span class="hlt">radar</span> consisting of three different <span class="hlt">radar</span> designs based on operating frequency. These are designated as follows: (1) X-band SACR (X-SACR); (2) Ka-band SACR (Ka-SACR); and (3) W-band SACR (W-SACR). There are two SACRs on a single pedestal at each site where SACRs are deployed. The selection of the operating frequencies at each deployed site is predominantly determined by atmospheric attenuation at the site. Because RF attenuation increases with atmospheric water vapor content, ARM's Tropical Western Pacific (TWP) sites use the X-/Ka-band frequency pair. The Southern Great Plains (SGP) and North Slope of Alaska (NSA) sites field the Ka-/W-band frequency pair. One ARM Mobile Facility (AMF1) has a Ka/W-SACR and the other (AMF2) has a X/Ka-SACR.</p> <div class="credits"> <p class="dwt_author">Widener, K; Bharadwaj, N; Johnson, K</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-06-18</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">460</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=weather&id=EJ975249"> <span id="translatedtitle">Efficient Ways to Learn Weather <span class="hlt">Radar</span> Polarimetry</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">The U.S. weather <span class="hlt">radar</span> network is currently being upgraded with dual-polarization capability. Weather <span class="hlt">radar</span> polarimetry is an interdisciplinary area of engineering and meteorology. This paper presents efficient ways to learn weather <span class="hlt">radar</span> polarimetry through several basic and practical topics. These topics include: 1) hydrometeor scattering model…</p> <div class="credits"> <p class="dwt_author">Cao, Qing; Yeary, M. B.; Zhang, Guifu</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_22");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a style="font-weight: bold;">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_24");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_23 div --> <div id="page_24" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_23");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a style="font-weight: bold;">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_25");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">461</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50959016"> <span id="translatedtitle">A Migrating Target Indicator for wideband <span class="hlt">radar</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The standard way to suppress clutter in narrowband <span class="hlt">radar</span> is to use Moving Target Indicator (MTI) cancellation techniques. High Range Resolution (HRR) <span class="hlt">radars</span> are becoming more and more important because they can detect and track targets more accurately. As for such <span class="hlt">radars</span> the bandwidth is increased, the resolution is decreased and leads to target range migration over the coherent pulse</p> <div class="credits"> <p class="dwt_author">Francois Deudon; F. Le Chevalier; S. Bidon; O. Besson; L. Savy</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">462</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19780051428&hterms=deep+ocean&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Ddeep%2Bocean"> <span id="translatedtitle"><span class="hlt">Radar</span> imaging of the ocean surface</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Techniques for obtaining <span class="hlt">radar</span> images of the ocean surface are briefly described, and examples of <span class="hlt">radar</span> images of a variety of ocean surface wave types obtained by synthetic-aperture <span class="hlt">radar</span> are presented and discussed. Observations described include deep-ocean waves, discrete wave trains, internal waves as surface manifestations, slicks, and eddies.</p> <div class="credits"> <p class="dwt_author">Elachi, C.</p> <p class="dwt_publisher"></p> <p class="publishDate">1978-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">463</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2015JPhCS.588a2046S"> <span id="translatedtitle">Microwave Doppler <span class="hlt">radar</span> in unobtrusive health monitoring</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This article frames the use of microwave Doppler <span class="hlt">radar</span> in the context of ubiquitous, non-obstructive health monitoring. The use of a 24GHz CW (continuous wave) Doppler <span class="hlt">radar</span> based on a commercial off-the-shelf transceiver for remote sensing of heart rate and respiration rate based on the acquisition and processing of the signals delivered by the <span class="hlt">radar</span> is briefly presented.</p> <div class="credits"> <p class="dwt_author">Silva Girão, P.; Postolache, O.; Postolache, G.; Ramos, P. M.; Dias Pereira, J. M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2015-02-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">464</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50354813"> <span id="translatedtitle">A pulse Doppler <span class="hlt">radar</span> using reconfigurable computing</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In a variety of signal processing applications, nowadays, the use of <span class="hlt">radar</span> for advanced control has become a necessity, e.g., navigational systems, aircraft, automobiles and other sensing devices. A normal microprocessor based <span class="hlt">radar</span> signal processor eats a lot of processing power and time so we have proposed the implementation of a dynamically reconfigurable pulsed Doppler <span class="hlt">radar</span> in a mixed system</p> <div class="credits"> <p class="dwt_author">S. Sumeen; M. Mobien; M. I. Siddiqi</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">465</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19720017419&hterms=migratory+birds&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dmigratory%2Bbirds"> <span id="translatedtitle">Tracking <span class="hlt">radar</span> studies of bird migration</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The application of tracking <span class="hlt">radar</span> for determining the flight paths of migratory birds is discussed. The effects produced by various meteorological parameters are described. Samples of <span class="hlt">radar</span> scope presentations obtained during tracking studies are presented. The characteristics of the <span class="hlt">radars</span> and their limitations are examined.</p> <div class="credits"> <p cl