Science.gov

Sample records for siox thin film

  1. A cost-effective growth of SiO(x) thin films by reactive sputtering: photoluminescence tuning.

    PubMed

    Pappas, S D; Grammatikopoulos, S; Poulopoulos, P; Kapaklis, V; Delimitis, A; Trachylis, D; Politis, C

    2011-04-01

    We present a new cost-effective method to produce substoichiometric SiO2 thin films by means of a simple sputter-coater operated at a base pressure of 1 x 10(-3) mbar. During sputtering air is introduced through a fine valve so that the sputtering gas is a mixture of air/Ar. High-resolution electron microscopy shows the formation of amorphous SiO(x) thin films for the as-deposited samples. The index x approaches 1 when the ratio of the partial pressure of air/Ar tends to 0.1. On the other hand, pure silica is formed when the ratio of the partial pressure of air/Ar approaches 0.5. The films in the as-deposited state show intense green-yellow photoluminescence. This fades away with short annealing under air at 950 degrees C. If on the other hand, prolonged annealing is performed under Argon atmosphere at 1000 degrees C, red-infrared photoluminescence is recorded due to the formation of Si nanocrystals embedded in SiO2. This simple method could be suitable for the production of thin SiO(x) films with embedded nanocrystals for optoelectronic or photovoltaic applications. PMID:21776754

  2. Influence of laser annealing on SiOx films properties

    NASA Astrophysics Data System (ADS)

    Gavrylyuk, O. O.; Semchuk, O. Yu.; Steblova, O. V.; Evtukh, A. A.; Fedorenko, L. L.; Bratus, O. L.; Zlobin, S. O.; Karlsteen, M.

    2015-05-01

    The interaction of laser irradiation with SiOx films, and the process of decomposition of SiOx on SiO2 and Si nanocrystals under the influence of laser irradiation are investigated. The mathematical modeling of temperature distribution in a c-Si wafer as well as on its surface is carried out. It is shown that laser pulses can efficiently heat up the samples of crystalline silicon. Using multi-pulse procedure, the temperature necessary for annealing can be achieved with lower intensity of laser irradiation. Experimental investigations of laser-annealed SiOx films allowed determining their transformation with the formation of nanoislands. It was concluded that the surface topology, dielectric matrix structure, and electrical conductivity depend on laser beam intensity during the annealing process.

  3. The role of operations after the deposition on the performance of SiOx films in optoelectronics devices

    NASA Astrophysics Data System (ADS)

    Zarchi, Meysam; Ahangarani, Shahrokh

    2015-08-01

    In this study, we have investigated phase separation, silicon Nano crystal (Si-NC) formation and optoelectronics properties of Si oxide (SiOx, 0.7 < x < 1.3) films in high-vacuum annealing and ion bombardment conditions. The SiOx films were deposited by physical vapor deposition (PVD). The internal structure properties of these films were the main factor in applications of optoelectronic. Possible changes in the structure, composition and electro physical properties were investigated by FTIR and TEM spectroscopy. The measurements show that SiOx film is the dominant phase in the ultra-thin layer. Also, high-temperature annealing ion bombardment results in further increase of the phase separation of the whole layer.

  4. Granular L10 FePt:X (X = Ag, B, C, SiOx, TaOx) thin films for heat assisted magnetic recording

    NASA Astrophysics Data System (ADS)

    Granz, Steven D.; Barmak, Katayun; Kryder, Mark H.

    2013-03-01

    Ordered L10 FePt thin films are of interest as potential Heat Assisted Magnetic Recording media. In order to achieve the microstructure and magnetic properties to support recording at densities beyond 1 Tbit/in2, it is necessary to add segregants into the FePt films. In this work, the effects of a number of segregants, X, on the microstructure and magnetic properties of FePt:X (X = Ag, B, C, SiO x , TaO x ) thin films, deposited by RF sputtering with various volume content (0-50%), various in-situ heating temperatures (450-600 °C), various Ar pressures (10-40 mtorr) and various sputtering powers (25-200 W) onto 1'' Si substrates with a MgO texture (002) underlayer (20 nm), were investigated. It was observed that introducing segregants (B, C, SiO x , and TaO x ) into the FePt reduced ordering and grain size of the FePt:X thin films. Ag was found to offset the reduction of ordering in the FePt:X films. The B, SiO x and TaO x promoted columnar growth whereas C promoted a secondary nucleation layer but produced the least reduction of ordering. By varying the volume content of the segregants, the grain size of the FePt:X can be controllably reduced throughout the 2.5-10 nm range. It was found that TaO x produced the best exchange decoupling, thermal durability, grain isolation and hindered grain coalescence as compared with the films deposited with B, C or SiO x . With the FePt:C:Ag films sputtered at 450 °C, a perpendicular coercivity measured at room temperature as high as 25 kOe was achieved; whereas with B, SiO x , and TaO x , perpendicular coercivities as high as 11 kOe were obtained. These FePt:X thin films with small grain size, columnar microstructure and high coercivity are believed to be favorable for application in Heat Assisted Magnetic Recording. The role of surface energies of FePt and the segregant in columnar growth of FePt grains is discussed.

  5. Plasma-Enhanced Chemical Vapor Deposition (PE-CVD) yields better Hydrolytical Stability of Biocompatible SiOx Thin Films on Implant Alumina Ceramics compared to Rapid Thermal Evaporation Physical Vapor Deposition (PVD).

    PubMed

    Böke, Frederik; Giner, Ignacio; Keller, Adrian; Grundmeier, Guido; Fischer, Horst

    2016-07-20

    Densely sintered aluminum oxide (α-Al2O3) is chemically and biologically inert. To improve the interaction with biomolecules and cells, its surface has to be modified prior to use in biomedical applications. In this study, we compared two deposition techniques for adhesion promoting SiOx films to facilitate the coupling of stable organosilane monolayers on monolithic α-alumina; physical vapor deposition (PVD) by thermal evaporation and plasma enhanced chemical vapor deposition (PE-CVD). We also investigated the influence of etching on the formation of silanol surface groups using hydrogen peroxide and sulfuric acid solutions. The film characteristics, that is, surface morphology and surface chemistry, as well as the film stability and its adhesion properties under accelerated aging conditions were characterized by means of X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), inductively coupled plasma-optical emission spectroscopy (ICP-OES), and tensile strength tests. Differences in surface functionalization were investigated via two model organosilanes as well as the cell-cytotoxicity and viability on murine fibroblasts and human mesenchymal stromal cells (hMSC). We found that both SiOx interfaces did not affect the cell viability of both cell types. No significant differences between both films with regard to their interfacial tensile strength were detected, although failure mode analyses revealed a higher interfacial stability of the PE-CVD films compared to the PVD films. Twenty-eight day exposure to simulated body fluid (SBF) at 37 °C revealed a partial delamination of the thermally deposited PVD films whereas the PE-CVD films stayed largely intact. SiOx layers deposited by both PVD and PE-CVD may thus serve as viable adhesion-promoters for subsequent organosilane coupling agent binding to α-alumina. However, PE-CVD appears to be favorable for long-term direct film exposure to aqueous

  6. An alternative experimental approach to produce rare-earth-doped SiOx films

    NASA Astrophysics Data System (ADS)

    Zanatta, A. R.

    2016-04-01

    Rare-earth (RE) doped silicon-oxide (SiOx) films were prepared by sputtering a combined Si + RE2O3 target with argon ions. The study comprised the neodymium (Nd) and samarium (Sm) rare-earth species and the Si + RE2O3 targets were obtained by partially covering a solid disc of Si with area-defined thin layers of Nd2O3 or Sm2O3 powders. The films were investigated by energy-dispersive x-ray, Raman scattering, optical transmission, and photo-luminescence measurements. According to the experimental results, in the as-deposited form, the films were amorphous and presented RE and oxygen concentrations that scaled with the RE2O3 target area. Additional compositional-structural changes were obtained by thermal annealing the films under a flow of oxygen. Within these changes, one can mention: increase of oxygen concentration, optical bandgap widening, partial Si crystallization, and the development of RE-related light emission. The main aspects associated to the production and structural-optical properties of the films, as determined either by the deposition conditions or by the annealing treatments, are presented and discussed in detail.

  7. Ultrathin magnetic oxide EuO films on Si(001) using SiOx passivation—Controlled by hard x-ray photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Caspers, C.; Flade, S.; Gorgoi, M.; Gloskovskii, A.; Drube, W.; Schneider, C. M.; Müller, M.

    2013-05-01

    We present the chemical and structural optimization of ultrathin magnetic oxide EuO films on silicon. By applying a controlled in situ passivation of the Si(001) surface with SiOx in the monolayer regime, metallic silicide contaminations at the interface can be effectively reduced down to a sub-monolayer coverage, as was carefully quantified by interface-sensitive hard x-ray photoemission spectroscopy. Heteroepitaxial growth of EuO on Si(001) is sustained for this ultrathin SiOx-passivation, and bulk-near magnetic properties are observed for the 4 nm-thin EuO films. Our successful combination of chemically and structurally optimized EuO/Si(001) heterostructures by ultrathin in situ SiOx passivation makes this system promising for an application as alternative spin functional tunnel contacts in spin-FETs.

  8. Thin Film?

    NASA Astrophysics Data System (ADS)

    Kariper, İ. Afşin

    2014-09-01

    This study focuses on the critical surface tension of lead sulfite (PbSO3) crystalline thin film produced with chemical bath deposition on substrates (commercial glass).The PbSO3 thin films were deposited at room temperature at different deposition times. The structural properties of the films were defined and examined according to X-ray diffraction (XRD) and the XRD results such as dislocation density, average grain size, and no. of crystallites per unit area. Atomic force microscopy was used to measure the film thickness and the surface properties. The critical surface tension of the PbSO3 thin films was measured with an optical tensiometer instrument and calculated using the Zisman method. The results indicated that the critical surface tension of films changed in accordance with the average grain size and film thickness. The film thickness increased with deposition time and was inversely correlated with surface tension. The average grain size increased according to deposition time and was inversely correlated with surface tension.

  9. Thin Films

    NASA Astrophysics Data System (ADS)

    Khorshidi, Zahra; Bahari, Ali; Gholipur, Reza

    2014-11-01

    Effect of annealing temperature on the characteristics of sol-gel-driven Ta ax La(1- a) x O y thin film spin-coated on Si substrate as a high- k gate dielectric was studied. Ta ax La(1- a) x O y thin films with different amounts of a were prepared (as-prepared samples). X-ray diffraction measurements of the as-prepared samples indicated that Ta0.3 x La0.7 x Oy film had an amorphous structure. Therefore, Ta0.3 x La0.7 x O y film was chosen to continue the present studies. The morphology of Ta0.3 x La0.7 x O y films was studied using scanning electron microscopy and atomic force microscopy techniques. The obtained results showed that the size of grain boundaries on Ta0.3 x La0.7 x O y film surfaces was increased with increasing annealing temperature. Electrical and optical characterizations of the as-prepared and annealed films were investigated as a function of annealing temperature using capacitance-voltage ( C- V) and current density-voltage ( J- V) measurements and the Tauc method. The obtained results demonstrated that Ta0.3 x La0.7 x O y films had high dielectric constant (≈27), wide band gap (≈4.5 eV), and low leakage current density (≈10-6 A/cm2 at 1 V).

  10. Local deposition of SiOx plasma polymer films by a miniaturized atmospheric pressure plasma jet (APPJ)

    NASA Astrophysics Data System (ADS)

    Schäfer, J.; Foest, R.; Quade, A.; Ohl, A.; Weltmann, K.-D.

    2008-10-01

    An atmospheric plasma jet (APPJ, 27.17 MHz, Ar with 1% HMDSO) has been studied for the deposition of thin silicon-organic films. Jet geometries are attractive for local surface treatment or for conformal covering of 3D forms, e.g. inner walls of wells, trenches or cavities, because they are not confined by electrodes and their dimensions can be varied from several centimetres down to the sub-millimetre region. Deposition experiments have been performed on flat polymer and glass samples with a deposition rate of 0.25-23 nm s-1. The knowledge of the static deposition profile of the plasma source (footprint) is essential to allow for a controlled deposition with the source moving relative to the substrate. By adjusting the plasma parameters (RF power and gas flow) to the geometry (i.e. electrode configuration, tube diameter, relative tube position, substrate distance) the footprint can be shaped from a ring form reflecting the tube dimension to a parabolic profile. Next to the conventional stochastic mode of operation we observe a characteristic locked mode—reported here for the first time for an RF-APPJ which can improve the film deposition process distinctively. The experimental results of the local film distribution agree well with an analytical model of the deposition kinetics. The film properties have been evaluated (profilometry, XPS, FT-IR spectroscopy and SEM) for different deposition conditions and substrate distance. The FT-IR spectra demonstrate dominating SiO absorption bands, thus providing an indication for the prevailing (inorganic) SiOx character of the films. HMDSO molecules disintegrate to a sufficient degree as proved by the absence of CH2 absorption in the spectra. XPS measurements confirm the local dependence with a slightly increased organic character a few millimetres away from the maximum in the deposition profile. The substrate distance and the source direction both seem relevant and require consideration during coating of 3D objects.

  11. Generation of silicon nanocrystals by damage free continuous wave laser annealing of substrate-bound SiOx films

    NASA Astrophysics Data System (ADS)

    Fricke-Begemann, T.; Wang, N.; Peretzki, P.; Seibt, M.; Ihlemann, J.

    2015-09-01

    Silicon nanocrystals have been generated by laser induced phase separation in SiOx films. A continuous wave laser emitting at 405 nm is focused to a 6 μm diameter spot on 530 nm thick SiOx films deposited on fused silica substrates. Irradiation of lines is accomplished by focus scanning. The samples are investigated by atomic force microscopy, TEM, Raman spectroscopy, and photoluminescence measurements. At a laser power of 35 mW corresponding to an irradiance of about 1.2 × 105 W/cm2, the formation of Si-nanocrystals in the film without any deterioration of the surface is observed. At higher laser power, the central irradiated region is oxidized to SiO2 and exhibits some porous character, while the surface remains optically smooth, and nanocrystals are observed beside and beneath this oxidized region. Amorphous Si-nanoclusters are formed at lower laser power and around the lines written at high power.

  12. Thin Films

    NASA Astrophysics Data System (ADS)

    Naffouti, Wafa; Nasr, Tarek Ben; Mehdi, Ahmed; Kamoun-Turki, Najoua

    2014-11-01

    Titanium dioxide (TiO2) thin films were synthesized on glass substrates by spray pyrolysis. The effect of solution flow rate on the physical properties of the films was investigated by use of x-ray diffraction (XRD), scanning electron microscopy, atomic force microscopy (AFM), and spectrophotometry techniques. XRD analysis revealed the tetragonal anatase phase of TiO2 with highly preferred (101) orientation. AFM images showed that grain size on top of TiO2 thin films depended on solution flow rate. An indirect band gap energy of 3.46 eV was determined by means of transmission and reflection measurements. The envelope method, based on the optical transmission spectrum, was used to determine film thickness and optical constants, for example real and imaginary parts of the dielectric constant, refractive index, and extinction coefficient. Ultraviolet and visible photoluminescence emission peaks were observed at room temperature. These peaks were attributed to the intrinsic emission and to the surface defect states, respectively.

  13. Determination of permeation parameters of experimental PET films coated with SiOx to ethyl acetate, oxygen and water vapour.

    PubMed

    Adamantiadi, A; Badeka, A; Kontominas, M G

    2001-11-01

    The permeation parameters of conventional PET films, films coated with SiOx and SiOx-coated films laminated to LDPE were determined for ethyl acetate using the permeation cell/gas chromatography method. Permeation to O2 and water vapour was also determined to monitor overall changes in the barrier properties of the experimental films. Coating of the PET film was achieved by a 'directed evaporation' method that increased the yield of the coating process from 30-35 to > 70%. It was shown that the SiOx coating increased the film barrier to ethyl acetate by approximately 20-30 times. Permeation values showed low reproducibility, indicating the need for further development and standardization of the 'directed evaporation' web-coating process. The barrier to oxygen and water vapour increased by 20-25 and 12-14 times respectively after coating. The web-coating speed did not seem to influence the barrier properties of the films. Permeation coefficients, diffusion coefficients and solubility coefficients were calculated for all samples. PMID:11665733

  14. Effect of N2O Flow Rate on Reliability of SiOx Films Deposited by SiH4-N2O Gas Mixture Plasma

    NASA Astrophysics Data System (ADS)

    Nam, Nguyen Dang; Kim, Jung-Gu; Kim, Duck Jin; Lee, Nae Eung

    2009-08-01

    SiOx films have several advantages as an interlayer dielectric in electronic devices owing to the strong adhesion between SiOx and the substrate. In this study, the coating performance as a function of the N2O flow rate was evaluated by electrochemical impedance spectroscopy and potentiodynamic polarization tests in an undisturbed environment. In addition, the coatings were examined by atomic force microscopy and Fourier transform infrared reflection spectroscopy. The SiOx films on a stainless-steel substrate showed the highest coating performance at a N2O flow rate of 120 sccm. This was attributed to the films having the lowest porosity value among those examined as a result of the fragmentation of SiO and SiO2 bonds and the improved surface roughness.

  15. Structural stabilization on SiOx film anode with large areal capacity for enhanced cyclability in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Takezawa, Hideharu; Ito, Shuji; Yoshizawa, Hiroshi; Abe, Takeshi

    2016-08-01

    We investigated a structural stabilizing effect of large x values on enhancing cyclability for the SiOx electrode with large areal capacity. Electrodes composed of a-SiOx film on roughened Cu substrate with the same areal capacity (2 mAh cm-2) were prepared, so that changes in volume of the lithiated SiOx per unit electrode area were equal. Cycle tests were performed for three x values (0.17, 0.68, 1.02) using half-cell and the morphology of electrodes were analyzed by SEM. Higher x values were found to result in larger inactive phase contents and demonstrated superior cyclability. The SiO1.02 electrode contained 11 times more inactive phase than the SiO0.17 and showed a capacity retention of 98% after 30 cycles. For the SiO0.17 electrode, structural changes such as the pulverization of the particles, fracturing of the electrodeposited Cu tips caused electrical isolation of Li-Si. For the SiO1.02 electrode, the structure was extremely stable. These results reveal that even in electrodes with large areal capacity, the inactive phase exhibited the great buffering effect of the change in volume of Li-Si.

  16. Pyrolyzed thin film carbon

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor); Harder, Theodore (Inventor); Konishi, Satoshi (Inventor); Miserendino, Scott (Inventor)

    2010-01-01

    A method of making carbon thin films comprises depositing a catalyst on a substrate, depositing a hydrocarbon in contact with the catalyst and pyrolyzing the hydrocarbon. A method of controlling a carbon thin film density comprises etching a cavity into a substrate, depositing a hydrocarbon into the cavity, and pyrolyzing the hydrocarbon while in the cavity to form a carbon thin film. Controlling a carbon thin film density is achieved by changing the volume of the cavity. Methods of making carbon containing patterned structures are also provided. Carbon thin films and carbon containing patterned structures can be used in NEMS, MEMS, liquid chromatography, and sensor devices.

  17. Electrical parameters of thin nanoscale SiOx layers grown on plasma hydrogenated silicon

    NASA Astrophysics Data System (ADS)

    Alexandrova, S.; Szekeres, A.; Halova, E.; Kojuharova, N.

    2014-12-01

    In the present paper results are presented on electrical characterization of the interface Si/SiOx, formed by oxidation on Si wafers, previously exposed to rf hydrogen plasma. As a tool of investigations multiple frequency C-V and G-V measurements are applied. The data analysis was performed using two-frequency method to extract generalized frequency independent C-V characteristic. Interface trap densities were evaluated from the generalized C-V data by comparison with theoretical data for an ideal interface. A set of localized states, acting as interface traps, was found that characterize the interface of Si to substoichiometric SiOx, layer with x < 2. The dielectric constant of the oxides was calculated from the capacitance in accumulation of the generalized C-V curves. The thickness and the refractive index of the oxide layers were obtained from ellipsometric data analysis assuming the oxide-Si substrate as single layer system. From the data for the dielectric constant and refractive index suggestion is made that the grown oxides on hydrogenated Si contain voids thus reducing the dielectric constant. Correlation with oxide mechanical stress is found.

  18. Evidence of two sensitization processes of Nd3+ ions in Nd-doped SiOx films

    NASA Astrophysics Data System (ADS)

    Liang, C.-H.; Cardin, J.; Labbé, C.; Gourbilleau, F.

    2013-07-01

    This paper aims to study the excitation mechanism of Nd3+ ions in Nd-SiOx (x < 2) films. The films were deposited by magnetron co-sputtering followed by a rapid thermal annealing at temperature TA ranging from 600 to 1200 °C. Two different photoluminescence (PL) behaviors have been evidenced in SiOx layers depending on the annealing temperature. For low TA (TA < 1000 °C), the recorded visible PL originates from defects energy levels while for high TA (TA > 1000 °C), the visible emission emanates from recombination of excitons in Si nanoclusters. When doped with Nd3+ ions, the visible PL behaviors of Nd-SiOx films follow the same trends. Nd3+ PL was investigated and its decay rate was analyzed in detail. Depending on the annealing conditions, two types of sensitizers have been evidenced. Finally, maximum Nd3+ PL emission has been achieved at around 750 °C when the number of Nd3+ ions excited by the two types of sensitizers reaches a maximum.

  19. Thin film metrology.

    PubMed

    Nitsch, Gerald; Flinn, Gregory

    2007-10-01

    Thin film metrology is suitable for characterising and performing quality control of a variety of coatings and films used in medical applications. The capabilities of today's systems are described. PMID:18078184

  20. Ceramic Composite Thin Films

    NASA Technical Reports Server (NTRS)

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  1. Carbon thin film thermometry

    NASA Technical Reports Server (NTRS)

    Collier, R. S.; Sparks, L. L.; Strobridge, T. R.

    1973-01-01

    The work concerning carbon thin film thermometry is reported. Optimum film deposition parameters were sought on an empirical basis for maximum stability of the films. One hundred films were fabricated for use at the Marshall Space Flight Center; 10 of these films were given a precise quasi-continuous calibration of temperature vs. resistance with 22 intervals between 5 and 80 K using primary platinum and germanium thermometers. Sensitivity curves were established and the remaining 90 films were given a three point calibration and fitted to the established sensitivity curves. Hydrogen gas-liquid discrimination set points are given for each film.

  2. Two-dimensional ultra-thin SiOx (0 < x < 2) nanosheets with long-term cycling stability as lithium ion battery anodes.

    PubMed

    Sun, Lin; Su, Tingting; Xu, Lei; Liu, Meipin; Du, Hong-Bin

    2016-03-10

    Ultra-thin SiOx (0 < x < 2) nanosheets were obtained via a convenient solvothermal route from a Zintl compound CaSi2. After carbon coating, the SiOx@C nanosheet anodes exhibit high capacity, good rate and superior cycling performance for high-capacity lithium ion battery applications. The specific capacity can be maintained as high as 760 mA h g(-1) with almost no capacity decay after 400 cycles at a current density of 0.5 A g(-1). PMID:26924023

  3. Biomimetic thin film synthesis

    SciTech Connect

    Graff, G.L.; Campbell, A.A.; Gordon, N.R.

    1995-05-01

    The purpose of this program is to develop a new process for forming thin film coatings and to demonstrate that the biomimetic thin film technology developed at PNL is useful for industrial applications. In the biomimetic process, mineral deposition from aqueous solution is controlled by organic functional groups attached to the underlying substrate surface. The coatings process is simple, benign, inexpensive, energy efficient, and particularly suited for temperature sensitive substrate materials (such as polymers). In addition, biomimetic thin films can be deposited uniformly on complex shaped and porous substrates providing a unique capability over more traditional line-of-sight methods.

  4. Thin film hydrogen sensor

    DOEpatents

    Cheng, Y.T.; Poli, A.A.; Meltser, M.A.

    1999-03-23

    A thin film hydrogen sensor includes a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end. 5 figs.

  5. Thin film hydrogen sensor

    DOEpatents

    Cheng, Yang-Tse; Poli, Andrea A.; Meltser, Mark Alexander

    1999-01-01

    A thin film hydrogen sensor, includes: a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end.

  6. Multifunctional thin film surface

    SciTech Connect

    Brozik, Susan M.; Harper, Jason C.; Polsky, Ronen; Wheeler, David R.; Arango, Dulce C.; Dirk, Shawn M.

    2015-10-13

    A thin film with multiple binding functionality can be prepared on an electrode surface via consecutive electroreduction of two or more aryl-onium salts with different functional groups. This versatile and simple method for forming multifunctional surfaces provides an effective means for immobilization of diverse molecules at close proximities. The multifunctional thin film has applications in bioelectronics, molecular electronics, clinical diagnostics, and chemical and biological sensing.

  7. Thin film tritium dosimetry

    DOEpatents

    Moran, Paul R.

    1976-01-01

    The present invention provides a method for tritium dosimetry. A dosimeter comprising a thin film of a material having relatively sensitive RITAC-RITAP dosimetry properties is exposed to radiation from tritium, and after the dosimeter has been removed from the source of the radiation, the low energy electron dose deposited in the thin film is determined by radiation-induced, thermally-activated polarization dosimetry techniques.

  8. Evaporated VOx Thin Films

    NASA Astrophysics Data System (ADS)

    Stapinski, Tomasz; Leja, E.

    1989-03-01

    VOx thin films on glass were obtained by thermal evaporation of V205, powder. The structural investigations were carried out with the use of X-ray diffractometer. The electrical properties of the film were examined by means of temperature measurements of resistivity for the samples heat-treated in various conditions. Optical transmission and reflection spectra of VOX films of various composition showed the influence of the heat treatment.

  9. Thin film photovoltaics

    SciTech Connect

    Zweibel, K; Ullal, H S

    1989-05-01

    Thin films are considered a potentially attractive technological approach to making cost-effective electricity by photovoltaics. Over the last twenty years, many have been investigated and some (cadmium telluride, copper indium diselenide, amorphous silicon) have become leading candidates for future large-scale commercialization. This paper surveys the past development of these key thin films and gives their status and future prospects. In all cases, significant progress toward cost-effective PV electricity has been made. If this progress continues, it appears that thin film PV could provide electricity that is competitive for summer daytime peaking power requirements by the middle of the 1990s; and electricity in a range that is competitive with fossil fuel costs (i.e., 6 cents/kilowatt-hour) should be available from PV around the turn of the century. 22 refs., 9 figs.

  10. Thin film temperature sensor

    NASA Technical Reports Server (NTRS)

    Grant, H. P.; Przybyszewski, J. S.

    1980-01-01

    Thin film surface temperature sensors were developed. The sensors were made of platinum-platinum/10 percent rhodium thermocouples with associated thin film-to-lead wire connections and sputtered on aluminum oxide coated simulated turbine blades for testing. Tests included exposure to vibration, low velocity hydrocarbon hot gas flow to 1250 K, and furnace calibrations. Thermal electromotive force was typically two percent below standard type S thermocouples. Mean time to failure was 42 hours at a hot gas flow temperature of 1250 K and an average of 15 cycles to room temperature. Failures were mainly due to separation of the platinum thin film from the aluminum oxide surface. Several techniques to improve the adhesion of the platinum are discussed.

  11. Thin film photovoltaic device

    DOEpatents

    Catalano, A.W.; Bhushan, M.

    1982-08-03

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids. 5 figs.

  12. Thin film ceramic thermocouples

    NASA Technical Reports Server (NTRS)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)

    2011-01-01

    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  13. Thin film photovoltaic device

    DOEpatents

    Catalano, Anthony W.; Bhushan, Manjul

    1982-01-01

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids.

  14. Epitaxial thin films

    DOEpatents

    Hunt, Andrew Tye; Deshpande, Girish; Lin, Wen-Yi; Jan, Tzyy-Jiuan

    2006-04-25

    Epitatial thin films for use as buffer layers for high temperature superconductors, electrolytes in solid oxide fuel cells (SOFC), gas separation membranes or dielectric material in electronic devices, are disclosed. By using CCVD, CACVD or any other suitable deposition process, epitaxial films having pore-free, ideal grain boundaries, and dense structure can be formed. Several different types of materials are disclosed for use as buffer layers in high temperature superconductors. In addition, the use of epitaxial thin films for electrolytes and electrode formation in SOFCs results in densification for pore-free and ideal gain boundary/interface microstructure. Gas separation membranes for the production of oxygen and hydrogen are also disclosed. These semipermeable membranes are formed by high-quality, dense, gas-tight, pinhole free sub-micro scale layers of mixed-conducting oxides on porous ceramic substrates. Epitaxial thin films as dielectric material in capacitors are also taught herein. Capacitors are utilized according to their capacitance values which are dependent on their physical structure and dielectric permittivity. The epitaxial thin films of the current invention form low-loss dielectric layers with extremely high permittivity. This high permittivity allows for the formation of capacitors that can have their capacitance adjusted by applying a DC bias between their electrodes.

  15. Thin film solar cell workshop

    NASA Technical Reports Server (NTRS)

    Armstrong, Joe; Jeffrey, Frank

    1993-01-01

    A summation of responses to questions posed to the thin-film solar cell workshop and the ensuing discussion is provided. Participants in the workshop included photovoltaic manufacturers (both thin film and crystalline), cell performance investigators, and consumers.

  16. Thin films for material engineering

    NASA Astrophysics Data System (ADS)

    Wasa, Kiyotaka

    2016-07-01

    Thin films are defined as two-dimensional materials formed by condensing one by one atomic/molecular/ionic species of matter in contrast to bulk three-dimensional sintered ceramics. They are grown through atomic collisional chemical reaction on a substrate surface. Thin film growth processes are fascinating for developing innovative exotic materials. On the basis of my long research on sputtering deposition, this paper firstly describes the kinetic energy effect of sputtered adatoms on thin film growth and discusses on a possibility of room-temperature growth of cubic diamond crystallites and the perovskite thin films of binary compound PbTiO3. Secondly, high-performance sputtered ferroelectric thin films with extraordinary excellent crystallinity compatible with MBE deposited thin films are described in relation to a possible application for thin-film MEMS. Finally, the present thin-film technologies are discussed in terms of a future material science and engineering.

  17. Thin-film optical initiator

    DOEpatents

    Erickson, Kenneth L.

    2001-01-01

    A thin-film optical initiator having an inert, transparent substrate, a reactive thin film, which can be either an explosive or a pyrotechnic, and a reflective thin film. The resultant thin-film optical initiator system also comprises a fiber-optic cable connected to a low-energy laser source, an output charge, and an initiator housing. The reactive thin film, which may contain very thin embedded layers or be a co-deposit of a light-absorbing material such as carbon, absorbs the incident laser light, is volumetrically heated, and explodes against the output charge, imparting about 5 to 20 times more energy than in the incident laser pulse.

  18. Formation of Si nanocrystals in SiOx, SiOx:C:H films and Si/SiO2 multilayer nano-heterostructures by pulse laser treatments

    NASA Astrophysics Data System (ADS)

    Neizvestniy, I. G.; Volodin, V. A.; Gismatulin, A. A.; Kamaev, G. N.; Antonenko, A. H.; Cherkov, A. G.; Litovchenko, V. G.; Lisovsky, I. P.; Maidanchuk, I. Yu.

    2014-12-01

    Furnace annealing and pulse laser treatments, including nanosecond laser treatments (KrF laser 248 nm wavelength, 20 ns pulse duration and XeCl laser 308 nm wavelength, 10 ns pulse duration) and femtosecond laser treatments (Tisapphire laser, 800 nm wavelength, <30 fs pulse duration) were applied for crystallization of amorphous hydrogenated silicon films, SiOx films and multilayer nanostructures. The as-deposited and annealed structures were studied using optical methods and electron microscopy techniques. The influence of impurities on crystallization and formation of Si nanoclusters was studied. Regimes for pulse laser crystallization of amorphous Si nanoclusters and nanolayers were found. The developed approach can be used for the creation of dielectric films with semiconductor nanoclusters on nonrefractory substrates.

  19. NMR characterization of thin films

    DOEpatents

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  20. NMR characterization of thin films

    DOEpatents

    Gerald, II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2008-11-25

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  1. Selective inorganic thin films

    SciTech Connect

    Phillips, M.L.F.; Weisenbach, L.A.; Anderson, M.T.

    1995-05-01

    This project is developing inorganic thin films as membranes for gas separation applications, and as discriminating coatings for liquid-phase chemical sensors. Our goal is to synthesize these coatings with tailored porosity and surface chemistry on porous substrates and on acoustic and optical sensors. Molecular sieve films offer the possibility of performing separations involving hydrogen, air, and natural gas constituents at elevated temperatures with very high separation factors. We are focusing on improving permeability and molecular sieve properties of crystalline zeolitic membranes made by hydrothermally reacting layered multicomponent sol-gel films deposited on mesoporous substrates. We also used acoustic plate mode (APM) oscillator and surface plasmon resonance (SPR) sensor elements as substrates for sol-gel films, and have both used these modified sensors to determine physical properties of the films and have determined the sensitivity and selectivity of these sensors to aqueous chemical species.

  2. Thin film photovoltaic cell

    DOEpatents

    Meakin, John D.; Bragagnolo, Julio

    1982-01-01

    A thin film photovoltaic cell having a transparent electrical contact and an opaque electrical contact with a pair of semiconductors therebetween includes utilizing one of the electrical contacts as a substrate and wherein the inner surface thereof is modified by microroughening while being macro-planar.

  3. Thin film scintillators

    NASA Astrophysics Data System (ADS)

    McDonald, Warren; McKinney, George; Tzolov, Marian

    2015-03-01

    Scintillating materials convert energy flux (particles or electromagnetic waves) into light with spectral characteristic matching a subsequent light detector. Commercial scintillators such as yttrium aluminum garnet (YAG) and yttrium aluminum perovskite (YAP) are commonly used. These are inefficient at lower energies due to the conductive coating present on their top surface, which is needed to avoid charging. We hypothesize that nano-structured thin film scintillators will outperform the commercial scintillators at low electron energies. We have developed alternative thin film scintillators, zinc tungstate and zinc oxide, which show promise for higher sensitivity to lower energy electrons since they are inherently conductive. Zinc tungstate films exhibit photoluminescence quantum efficiency of 74%. Cathodoluminescence spectroscopy was applied in transmission and reflection geometries. The comparison between the thin films and the YAG and YAP commercial scintillators shows much higher light output from the zinc tungstate and zinc oxide at electron energies less than 5 keV. Our films were integrated in a backscattered electron detector. This detector delivers better images than an identical detector with commercial YAG scintillator at low electron energies. Dr. Nicholas Barbi from PulseTor LLC, Dr. Anura Goonewardene, NSF Grants: #0806660, #1058829, #0923047.

  4. Thin film superconductor magnetic bearings

    SciTech Connect

    Weinberger, B.R.

    1995-12-26

    A superconductor magnetic bearing includes a shaft that is subject to a load (L) and rotatable around an axis of rotation, a magnet mounted to the shaft, and a stator in proximity to the shaft. The stator has a superconductor thin film assembly positioned to interact with the magnet to produce a levitation force on the shaft that supports the load (L). The thin film assembly includes at least two superconductor thin films and at least one substrate. Each thin film is positioned on a substrate and all the thin films are positioned such that an applied magnetic field from the magnet passes through all the thin films. A similar bearing in which the thin film assembly is mounted on the shaft and the magnet is part of the stator also can be constructed. 8 figs.

  5. Thin film superconductor magnetic bearings

    DOEpatents

    Weinberger, Bernard R.

    1995-12-26

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  6. Chiral atomically thin films

    NASA Astrophysics Data System (ADS)

    Kim, Cheol-Joo; Sánchez-Castillo, A.; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong

    2016-06-01

    Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm–1) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra.

  7. Chiral atomically thin films.

    PubMed

    Kim, Cheol-Joo; Sánchez-Castillo, A; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong

    2016-06-01

    Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm(-1)) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra. PMID:26900756

  8. Biomimetic thin film deposition

    SciTech Connect

    Rieke, P.R.; Graff, G.E.; Campbell, A.A.; Bunker, B.C.; Baskaran, S.; Song, L.; Tarasevich, B.J.; Fryxell, G.E.

    1995-09-01

    Biological mineral deposition for the formation of bone, mollusk shell and other hard tissues provides materials scientists with illustrative materials processing strategies. This presentation will review the key features of biomineralization and how these features can be of technical importance. We have adapted existing knowledge of biomineralization to develop a unique method of depositing inorganic thin films and coating. Our approach to thin film deposition is to modify substrate surfaces to imitate the proteins found in nature that are responsible for controlling mineral deposition. These biomimetic surfaces control the nucleation and growth of the mineral from a supersaturated aqueous solution. This has many processing advantages including simple processing equipment, environmentally benign reagents, uniform coating of highly complex shapes, and enhanced adherence of coating. Many different types of metal oxide, hydroxide, sulfide and phosphate materials with useful mechanical, optical, electronic and biomedical properties can be deposited.

  9. Advanced thin film thermocouples

    NASA Astrophysics Data System (ADS)

    Kreider, K. G.; Semancik, S.; Olson, C.

    1984-10-01

    The fabrication, materials characterization, and performance of thin film platinum rhodium thermocouples on gas turbine alloys was investigated. The materials chosen for the study were the turbine blade alloy systems MAR M200+Hf with NiCoCrAlY and FeCrAlY coatings, and vane alloy systems MAR M509 with FeCrAlY. Research was focussed on making improvements in the problem areas of coating substrate stability, adhesion, and insulation reliability and durability. Diffusion profiles between the substrate and coating with and without barrier coatings of Al2O3 are reported. The relationships between fabrication parameters of thermal oxidation and sputtering of the insulator and its characterization and performance are described. The best thin film thermocouples were fabricated with the NiCoCrAlY coatings which were thermally oxidized and sputter coated with Al2O3.

  10. Advanced thin film thermocouples

    NASA Technical Reports Server (NTRS)

    Kreider, K. G.; Semancik, S.; Olson, C.

    1984-01-01

    The fabrication, materials characterization, and performance of thin film platinum rhodium thermocouples on gas turbine alloys was investigated. The materials chosen for the study were the turbine blade alloy systems MAR M200+Hf with NiCoCrAlY and FeCrAlY coatings, and vane alloy systems MAR M509 with FeCrAlY. Research was focussed on making improvements in the problem areas of coating substrate stability, adhesion, and insulation reliability and durability. Diffusion profiles between the substrate and coating with and without barrier coatings of Al2O3 are reported. The relationships between fabrication parameters of thermal oxidation and sputtering of the insulator and its characterization and performance are described. The best thin film thermocouples were fabricated with the NiCoCrAlY coatings which were thermally oxidized and sputter coated with Al2O3.

  11. thin films as absorber

    NASA Astrophysics Data System (ADS)

    González, J. O.; Shaji, S.; Avellaneda, D.; Castillo, G. A.; Das Roy, T. K.; Krishnan, B.

    2014-09-01

    Photovoltaic structures were prepared using AgSb(S x Se1- x )2 as absorber and CdS as window layer at various conditions via a hybrid technique of chemical bath deposition and thermal evaporation followed by heat treatments. Silver antimony sulfo selenide thin films [AgSb(S x Se1- x )2] were prepared by heating multilayers of sequentially deposited Sb2S3/Ag dipped in Na2SeSO3 solution, glass/Sb2S3/Ag/Se. For this, Sb2S3 thin films were deposited from a chemical bath containing SbCl3 and Na2S2O3. Then, Ag thin films were thermally evaporated on glass/Sb2S3, followed by selenization by dipping in an acidic solution of Na2SeSO3. The duration of dipping was varied as 3, 4 and 5 h. Two different heat treatments, one at 350 °C for 20 min in vacuum followed by a post-heat treatment at 325 °C for 2 h in Ar, and the other at 350 °C for 1 h in Ar, were applied to the multilayers of different configurations. X-ray diffraction results showed the formation of AgSb(S x Se1- x )2 thin films as the primary phase and AgSb(S,Se)2 and Sb2S3 as secondary phases. Morphology and elemental detection were done by scanning electron microscopy and energy dispersive X-ray analysis. X-ray photoelectron spectroscopic studies showed the depthwise composition of the films. Optical properties were determined by UV-vis-IR transmittance and reflection spectral analysis. AgSb(S x Se1- x )2 formed at different conditions was incorporated in PV structures glass/FTO/CdS/AgSb(S x Se1- x )2/C/Ag. Chemically deposited post-annealed CdS thin films of various thicknesses were used as window layer. J- V characteristics of the cells were measured under dark and AM1.5 illumination. Analysis of the J- V characteristics resulted in the best solar cell parameters of V oc = 520 mV, J sc = 9.70 mA cm-2, FF = 0.50 and η = 2.7 %.

  12. Polycrystalline thin film photovoltaics

    NASA Astrophysics Data System (ADS)

    Zweibel, K.; Ullal, H. S.; Mitchell, R. L.

    Significant progress has recently been made towards improving the efficiencies of polycrystalline thin-film solar cells and modules using CuInSe2 and CdTe. The history of using CuInSe2 and CdTe for solar cells is reviewed. Initial outdoor stability tests of modules are encouraging. Progress in semiconductor deposition techniques has also been substantial. Both CuInSe2 and CdTe are positioned for commercialization during the 1990s. The major participants in developing these materials are described. The US DOE/SERI (Solar Energy Research Institute) program recognizes the rapid progress and important potential of polycrystalline thin films to meet ambitious cost and performance goals. US DOE/SERI is in the process of funding an initiative in this area with the goal of ensuring US leadership in the development of these technologies. The polycrystalline thin-film module development initiative, the modeling and stability of the devices, and health and safety issues are discussed.

  13. Thin film mechanics

    NASA Astrophysics Data System (ADS)

    Cooper, Ryan C.

    This doctoral thesis details the methods of determining mechanical properties of two classes of novel thin films suspended two-dimensional crystals and electron beam irradiated microfilms of polydimethylsiloxane (PDMS). Thin films are used in a variety of surface coatings to alter the opto-electronic properties or increase the wear or corrosion resistance and are ideal for micro- and nanoelectromechanical system fabrication. One of the challenges in fabricating thin films is the introduction of strains which can arise due to application techniques, geometrical conformation, or other spurious conditions. Chapters 2-4 focus on two dimensional materials. This is the intrinsic limit of thin films-being constrained to one atomic or molecular unit of thickness. These materials have mechanical, electrical, and optical properties ideal for micro- and nanoelectromechanical systems with truly novel device functionality. As such, the breadth of applications that can benefit from a treatise on two dimensional film mechanics is reason enough for exploration. This study explores the anomylously high strength of two dimensional materials. Furthermore, this work also aims to bridge four main gaps in the understanding of material science: bridging the gap between ab initio calculations and finite element analysis, bridging the gap between ab initio calculations and experimental results, nanoscale to microscale, and microscale to mesoscale. A nonlinear elasticity model is used to determine the necessary elastic constants to define the strain-energy density function for finite strain. Then, ab initio calculations-density functional theory-is used to calculate the nonlinear elastic response. Chapter 2 focuses on validating this methodology with atomic force microscope nanoindentation on molybdenum disulfide. Chapter 3 explores the convergence criteria of three density functional theory solvers to further verify the numerical calculations. Chapter 4 then uses this model to investigate

  14. Polycrystalline thin film photovoltaic technology

    SciTech Connect

    Ullal, H.S.; Zweibel, K.; Mitchell, R.L.; Noufi, R.

    1991-03-01

    Low-cost, high-efficiency thin-film modules are an exciting photovoltaic technology option for generating cost-effective electricity in 1995 and beyond. In this paper we review the significant technical progress made in the following thin films: copper indium diselenide, cadmium telluride, and polycrystalline thin silicon films. Also, the recent US DOE/SERI initiative to commercialize these emerging technologies is discussed. 6 refs., 9 figs.

  15. Center for thin film studies

    NASA Astrophysics Data System (ADS)

    Shannon, Robert P.; Gibson, Ursula J.

    1987-11-01

    This report covers the first year of operation of the URI Thin Film Center (TFC), and describes a diverse array of studies on thin-film materials, substrates, and their processing and analysis. Individual efforts are highlighted in sections on nucleation studies, ion-assisted deposition, Rutherford backscattering spectrometry, Brillouin scattering, a continuum theory of the evolution of structure in thin films, a study of polishing parameters relevant to the preparation of substrates, and the setup of a characterization facility for the Center.

  16. Electron energy-loss spectroscopy study of thin film hafnium aluminates for novel gate dielectrics.

    PubMed

    Stemmer, S; Chen, Z Q; Zhu, W J; Ma, T P

    2003-04-01

    We have used conventional high-resolution transmission electron microscopy and electron energy-loss spectroscopy (EELS) in scanning transmission electron microscopy to investigate the microstructure and electronic structure of hafnia-based thin films doped with small amounts (6.8 at.%) of Al grown on (001) Si. The as-deposited film is amorphous with a very thin (approximately 0.5 nm) interfacial SiOx layer. The film partially crystallizes after annealing at 700 degrees C and the interfacial SiO2-like layer increases in thickness by oxygen diffusion through the Hf-aluminate layer and oxidation of the silicon substrate. Oxygen K-edge EELS fine-structures are analysed for both films and interpreted in the context of the films' microstructure. We also discuss valence electron energy-loss spectra of these ultrathin films. PMID:12694419

  17. Thin film hydrogen sensor

    DOEpatents

    Lauf, Robert J.; Hoffheins, Barbara S.; Fleming, Pamela H.

    1994-01-01

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

  18. Polycrystalline thin-films

    NASA Astrophysics Data System (ADS)

    Zweibel, K.; Mitchell, R.

    1986-02-01

    This annual report summarizes the status, accomplishments, and projected future research directions of the Polycrystalline Thin Film Task in the Photovoltaic Program Branch of the Solar Energy Research Institute's Solar Electric Research Division. Major subcontracted work in this area has concentrated on development of CuInSe2 and CdTe technologies. During FY 1985, major progress was achieved by subcontractors in: (1) developing a new, low-cost method of fabricating CuInSe2, and (2) improving the efficiency of CuInSe2 devices by about 10% (relative). The report also lists research planned to meet the Department of Energy's goals in these technologies.

  19. Nonlinear optical thin films

    NASA Technical Reports Server (NTRS)

    Leslie, Thomas M.

    1993-01-01

    A focused approach to development and evaluation of organic polymer films for use in optoelectronics is presented. The issues and challenges that are addressed include: (1) material synthesis, purification, and the tailoring of the material properties; (2) deposition of uniform thin films by a variety of methods; (3) characterization of material physical properties (thermal, electrical, optical, and electro-optical); and (4) device fabrication and testing. Photonic materials, devices, and systems were identified as critical technology areas by the Department of Commerce and the Department of Defense. This approach offers strong integration of basic material issues through engineering applications by the development of materials that can be exploited as the active unit in a variety of polymeric thin film devices. Improved materials were developed with unprecedented purity and stability. The absorptive properties can be tailored and controlled to provide significant improvement in propagation losses and nonlinear performance. Furthermore, the materials were incorporated into polymers that are highly compatible with fabrication and patterning processes for integrated optical devices and circuits. By simultaneously addressing the issues of materials development and characterization, keeping device design and fabrication in mind, many obstacles were overcome for implementation of these polymeric materials and devices into systems. We intend to considerably improve the upper use temperature, poling stability, and compatibility with silicon based devices. The principal device application that was targeted is a linear electro-optic modulation etalon. Organic polymers need to be properly designed and coupled with existing integrated circuit technology to create new photonic devices for optical communication, image processing, other laser applications such as harmonic generation, and eventually optical computing. The progression from microscopic sample to a suitable film

  20. Host thin films incorporating nanoparticles

    NASA Astrophysics Data System (ADS)

    Qureshi, Uzma

    The focus of this research project was the investigation of the functional properties of thin films that incorporate a secondary nanoparticulate phase. In particular to assess if the secondary nanoparticulate material enhanced a functional property of the coating on glass. In order to achieve this, new thin film deposition methods were developed, namely use of nanopowder precursors, an aerosol assisted transport technique and an aerosol into atmospheric pressure chemical vapour deposition system. Aerosol assisted chemical vapour deposition (AACVD) was used to deposit 8 series of thin films on glass. Five different nanoparticles silver, gold, ceria, tungsten oxide and zinc oxide were tested and shown to successfully deposit thin films incorporating nanoparticles within a host matrix. Silver nanoparticles were synthesised and doped within a titania film by AACVD. This improved solar control properties. A unique aerosol assisted chemical vapour deposition (AACVD) into atmospheric pressure chemical vapour deposition (APCVD) system was used to deposit films of Au nanoparticles and thin films of gold nanoparticles incorporated within a host titania matrix. Incorporation of high refractive index contrast metal oxide particles within a host film altered the film colour. The key goal was to test the potential of nanopowder forms and transfer the suspended nanopowder via an aerosol to a substrate in order to deposit a thin film. Discrete tungsten oxide nanoparticles or ceria nanoparticles within a titanium dioxide thin film enhanced the self-cleaning and photo-induced super-hydrophilicity. The nanopowder precursor study was extended by deposition of zinc oxide thin films incorporating Au nanoparticles and also ZnO films deposited from a ZnO nanopowder precursor. Incorporation of Au nanoparticles within a VO: host matrix improved the thermochromic response, optical and colour properties. Composite VC/TiC and Au nanoparticle/V02/Ti02 thin films displayed three useful

  1. Thin film atomic hydrogen detectors

    NASA Technical Reports Server (NTRS)

    Gruber, C. L.

    1977-01-01

    Thin film and bead thermistor atomic surface recombination hydrogen detectors were investigated both experimentally and theoretically. Devices were constructed on a thin Mylar film substrate. Using suitable Wheatstone bridge techniques sensitivities of 80 microvolts/2x10 to the 13th power atoms/sec are attainable with response time constants on the order of 5 seconds.

  2. Polysilicon thin films and interfaces

    SciTech Connect

    Kamins, T. ); Raicu, B. ); Thompson, C.V. )

    1990-01-01

    This volume contains the proceedings of a symposium on polysilicon thin films and interfaces, held as part of the 1990 Materials Research Society Spring Meeting. Topics covered include: crystal grown fo silicon and germanium wafers for photovoltaic devices, microanalysis of tungsten silicide interface, thermal processing of polysilicon thin films, and electrical and optical properties of polysilicon sheets for photovoltaic devices.

  3. Thin film ion conducting coating

    DOEpatents

    Goldner, Ronald B.; Haas, Terry; Wong, Kwok-Keung; Seward, George

    1989-01-01

    Durable thin film ion conducting coatings are formed on a transparent glass substrate by the controlled deposition of the mixed oxides of lithium:tantalum or lithium:niobium. The coatings provide durable ion transport sources for thin film solid state storage batteries and electrochromic energy conservation devices.

  4. Ferromagnetic thin films

    DOEpatents

    Krishnan, Kannan M.

    1994-01-01

    A ferromagnetic .delta.-Mn.sub.1-x Ga.sub.x thin film having perpendicular anisotropy is described which comprises: (a) a GaAs substrate, (b) a layer of undoped GaAs overlying said substrate and bonded thereto having a thickness ranging from about 50 to about 100 nanometers, (c) a layer of .delta.-Mn.sub.1-x Ga.sub.x overlying said layer of undoped GaAs and bonded thereto having a thickness ranging from about 20 to about 30 nanometers, and (d) a layer of GaAs overlying said layer of .delta.-Mn.sub.1-x Ga.sub.x and bonded thereto having a thickness ranging from about 2 to about 5 nanometers, wherein x is 0.4 .+-.0.05.

  5. Ferromagnetic thin films

    DOEpatents

    Krishnan, K.M.

    1994-12-20

    A ferromagnetic [delta]-Mn[sub 1[minus]x]Ga[sub x] thin film having perpendicular anisotropy is described which comprises: (a) a GaAs substrate, (b) a layer of undoped GaAs overlying said substrate and bonded thereto having a thickness ranging from about 50 to about 100 nanometers, (c) a layer of [delta]-Mn[sub 1[minus]x]Ga[sub x] overlying said layer of undoped GaAs and bonded thereto having a thickness ranging from about 20 to about 30 nanometers, and (d) a layer of GaAs overlying said layer of [delta]-Mn[sub 1[minus]x]Ga[sub x] and bonded thereto having a thickness ranging from about 2 to about 5 nanometers, wherein x is 0.4[+-]0.05. 7 figures.

  6. Polyimide Aerogel Thin Films

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann; Guo, Haiquan

    2012-01-01

    Polyimide aerogels have been crosslinked through multifunctional amines. This invention builds on "Polyimide Aerogels With Three-Dimensional Cross-Linked Structure," and may be considered as a continuation of that invention, which results in a polyimide aerogel with a flexible, formable form. Gels formed from polyamic acid solutions, end-capped with anhydrides, and cross-linked with the multifunctional amines, are chemically imidized and dried using supercritical CO2 extraction to give aerogels having density around 0.1 to 0.3 g/cubic cm. The aerogels are 80 to 95% porous, and have high surface areas (200 to 600 sq m/g) and low thermal conductivity (as low as 14 mW/m-K at room temperature). Notably, the cross-linked polyimide aerogels have higher modulus than polymer-reinforced silica aerogels of similar density, and can be fabricated as both monoliths and thin films.

  7. Polycrystalline thin films

    NASA Astrophysics Data System (ADS)

    Zweibel, K.; Mitchell, R.; Ullal, H.

    1987-02-01

    This annual report for fiscal year 1986 summarizes the status, accomplishments, and projected future research directions of the Polycrystalline Thin Film Task in the Photovoltaic Program Branch of the Solar Energy Research Institute's Solar Electric Research Division. Subcontracted work in this area has concentrated on the development of CuInSe2 and CdTe technologies. During FY 1986, major progress was achieved by subcontractors in (1) achieving 10.5% (SERI-verified) efficiency with CdTe, (2) improving the efficiency of selenized CuInSe2 solar cells to nearly 8%, and (3) developing a transparent contact to CdTe cells for potential use in the top cells of tandem structures.

  8. Thin-film microextraction.

    PubMed

    Bruheim, Inge; Liu, Xiaochuan; Pawliszyn, Janusz

    2003-02-15

    The properties of a thin sheet of poly(dimethylsiloxane) (PDMS) membrane as an extraction phase were examined and compared to solid-phase microextraction (SPME) PDMS-coated fiber for application to semivolatile analytes in direct and headspace modes. This new PDMS extraction approach showed much higher extraction rates because of the larger surface area to extraction-phase volume ratio of the thin film. Unlike the coated rod formats of SPME using thick coatings, the high extraction rate of the membrane SPME technique allows larger amounts of analytes to be extracted within a short period of time. Therefore, higher extraction efficiency and sensitivity can be achieved without sacrificing analysis time. In direct membrane SPME extraction, a linear relationship was found between the initial rate of extraction and the surface area of the extraction phase. However, for headspace extraction, the rates were somewhat lower because of the resistance to analyte transport at the sample matrix/headspace barrier. It was found that the effect of this barrier could be reduced by increasing either agitation, temperature, or surface area of the sample matrix/headspace interface. A method for the determination of PAHs in spiked lake water samples was developed based on the membrane PDMS extraction coupled with GC/MS. A linearity of 0.9960 and detection limits in the low-ppt level were found. The reproducibility was found to vary from 2.8% to 10.7%. PMID:12622398

  9. Effects of temperature on intergranular exchange coupling in L10 FePt thin films

    NASA Astrophysics Data System (ADS)

    Huang, Efrem Y.; Kryder, Mark H.

    2014-06-01

    The effects of temperature on intergranular exchange coupling for FePt:X:FePt (X = TaOx, SiOx, Cr) sputtered thin film stacks were investigated. In-plane FePt layers separated by a thin layer of segregant were used as an experimental model for the intergranular region in perpendicular recording media. Magnetic hysteresis was measured for varying segregant thicknesses (0.5 nm-1.5 nm) at varying temperatures (300 K-700 K). Exchange coupling energies were calculated using the reversal field, saturation magnetization, and coercivity. The intergranular exchange coupling energy was observed to be well-behaved, decreasing linearly with increasing temperature to 600 K. TaOx resulted in the lowest exchange coupling energy at any given temperature, while SiOx and Cr showed similar decoupling capabilities. At 600 K and beyond, antiferromagnetic behavior was observed. Exchange coupling was found to be negligible at operating temperatures above 600 K even with as little as 0.5 nm of TaOx segregant or 1 nm of SiOx segregant.

  10. Interference Colors in Thin Films.

    ERIC Educational Resources Information Center

    Armstrong, H. L.

    1979-01-01

    Explains interference colors in thin films as being due to the removal, or considerable reduction, of a certain color by destructive inteference that results in the complementary color being seen. (GA)

  11. Effect of etching stop layer on characteristics of amorphous IGZO thin film transistor fabricated at low temperature

    NASA Astrophysics Data System (ADS)

    Li, Xifeng; Xin, Enlong; Chen, Longlong; Shi, Jifeng; Zhang, Jianhua

    2013-03-01

    Transparent bottom-gate amorphous Indium-Gallium-Zinc Oxide (a-IGZO) thin-film transistors (TFTs) had been successfully fabricated at relative low temperature. The influence of reaction gas ratio of N2O and SiH4 during the growth of etching stop layer (SiOx) on the characteristics of a-IGZO TFTs was investigated. The transfer characteristics of the TFTs were changed markedly because active layer of a-IGZO films was modified by plasma in the growth process of SiOx. By optimizing the deposition parameters of etching stop layer process, a-IGZO TFTs were manufactured and exhibited good performance with a field-effect mobility of 8.5 cm2V-1s-1, a threshold voltage of 1.3 V, and good stability under gate bias stress of 20 V for 10000 s.

  12. Thin film cell development workshop report

    NASA Technical Reports Server (NTRS)

    Woodyard, James R.

    1991-01-01

    The Thin Film Development Workshop provided an opportunity for those interested in space applications of thin film cells to debate several topics. The unique characteristics of thin film cells as well as a number of other issues were covered during the discussions. The potential of thin film cells, key research and development issues, manufacturing issues, radiation damage, substrates, and space qualification of thin film cells were discussed.

  13. Thin-Film Power Transformers

    NASA Technical Reports Server (NTRS)

    Katti, Romney R.

    1995-01-01

    Transformer core made of thin layers of insulating material interspersed with thin layers of ferromagnetic material. Flux-linking conductors made of thinner nonferromagnetic-conductor/insulator multilayers wrapped around core. Transformers have geometric features finer than those of transformers made in customary way by machining and mechanical pressing. In addition, some thin-film materials exhibit magnetic-flux-carrying capabilities superior to those of customary bulk transformer materials. Suitable for low-cost, high-yield mass production.

  14. Thin film deposition by means of atmospheric pressure microplasma jet

    NASA Astrophysics Data System (ADS)

    Benedikt, J.; Raballand, V.; Yanguas-Gil, A.; Focke, K.; von Keudell, A.

    2007-12-01

    An RF microplasma jet working at atmospheric pressure has been developed for thin film deposition application. It consists of a capillary coaxially inserted in the ceramic tube. The capillary is excited by an RF frequency of 13.56 MHz at rms voltages of around 200-250 V. The plasma is generated in a plasma forming gas (helium or argon) in the annular space between the capillary and the ceramic tube. By adjusting the flows, the flow pattern prevents the deposition inside the source and mixing of the reactive species with the ambient air in the discharge and deposition region, so that no traces of air are found even when the microplasma is operated in an air atmosphere. All these properties make our microplasma design of great interest for applications such as thin film growth or surface treatment. The discharge operates probably in a γ-mode as indicated by high electron densities of around 8 × 1020 m-3 measured using optical emission spectroscopy. The gas temperature stays below 400 K and is close to room temperature in the deposition region in the case of argon plasma. Deposition of hydrogenated amorphous carbon films and silicon oxide films has been tested using Ar/C2H2 and Ar/hexamethyldisiloxane/O2 mixtures, respectively. In the latter case, good control of the film properties by adjusting the source parameters has been achieved with the possibility of depositing carbon free SiOx films even without the addition of oxygen. Preliminary results regarding permeation barrier properties of deposited films are also given.

  15. Vapor deposition of thin films

    DOEpatents

    Smith, David C.; Pattillo, Stevan G.; Laia, Jr., Joseph R.; Sattelberger, Alfred P.

    1992-01-01

    A highly pure thin metal film having a nanocrystalline structure and a process of preparing such highly pure thin metal films of, e.g., rhodium, iridium, molybdenum, tungsten, rhenium, platinum, or palladium by plasma assisted chemical vapor deposition of, e.g., rhodium(allyl).sub.3, iridium(allyl).sub.3, molybdenum(allyl).sub.4, tungsten(allyl).sub.4, rhenium(allyl).sub.4, platinum(allyl).sub.2, or palladium(allyl).sub.2 are disclosed. Additionally, a general process of reducing the carbon content of a metallic film prepared from one or more organometallic precursor compounds by plasma assisted chemical vapor deposition is disclosed.

  16. Calorimetry of epitaxial thin films.

    PubMed

    Cooke, David W; Hellman, F; Groves, J R; Clemens, B M; Moyerman, S; Fullerton, E E

    2011-02-01

    Thin film growth allows for the manipulation of material on the nanoscale, making possible the creation of metastable phases not seen in the bulk. Heat capacity provides a direct way of measuring thermodynamic properties of these new materials, but traditional bulk calorimetric techniques are inappropriate for such a small amount of material. Microcalorimetry and nanocalorimetry techniques exist for the measurements of thin films but rely on an amorphous membrane platform, limiting the types of films which can be measured. In the current work, ion-beam-assisted deposition is used to provide a biaxially oriented MgO template on a suspended membrane microcalorimeter in order to measure the specific heat of epitaxial thin films. Synchrotron x-ray diffraction showed the biaxial order of the MgO template. X-ray diffraction was also used to prove the high quality of epitaxy of a film grown onto this MgO template. The contribution of the MgO layer to the total heat capacity was measured to be just 6.5% of the total addenda contribution. The heat capacity of a Fe(.49)Rh(.51) film grown epitaxially onto the device was measured, comparing favorably to literature data on bulk crystals. This shows the viability of the MgO∕SiN(x)-membrane-based microcalorimeter as a way of measuring the thermodynamic properties of epitaxial thin films. PMID:21361612

  17. The Thin Oil Film Equation

    NASA Technical Reports Server (NTRS)

    Brown, James L.; Naughton, Jonathan W.

    1999-01-01

    A thin film of oil on a surface responds primarily to the wall shear stress generated on that surface by a three-dimensional flow. The oil film is also subject to wall pressure gradients, surface tension effects and gravity. The partial differential equation governing the oil film flow is shown to be related to Burgers' equation. Analytical and numerical methods for solving the thin oil film equation are presented. A direct numerical solver is developed where the wall shear stress variation on the surface is known and which solves for the oil film thickness spatial and time variation on the surface. An inverse numerical solver is also developed where the oil film thickness spatial variation over the surface at two discrete times is known and which solves for the wall shear stress variation over the test surface. A One-Time-Level inverse solver is also demonstrated. The inverse numerical solver provides a mathematically rigorous basis for an improved form of a wall shear stress instrument suitable for application to complex three-dimensional flows. To demonstrate the complexity of flows for which these oil film methods are now suitable, extensive examination is accomplished for these analytical and numerical methods as applied to a thin oil film in the vicinity of a three-dimensional saddle of separation.

  18. Thin-film metal hydrides.

    PubMed

    Remhof, Arndt; Borgschulte, Andreas

    2008-12-01

    The goal of the medieval alchemist, the chemical transformation of common metals into nobel metals, will forever be a dream. However, key characteristics of metals, such as their electronic band structure and, consequently, their electric, magnetic and optical properties, can be tailored by controlled hydrogen doping. Due to their morphology and well-defined geometry with flat, coplanar surfaces/interfaces, novel phenomena may be observed in thin films. Prominent examples are the eye-catching hydrogen switchable mirror effect, the visualization of solid-state diffusion and the formation of complex surface morphologies. Thin films do not suffer as much from embrittlement and/or decrepitation as bulk materials, allowing the study of cyclic absorption and desorption. Therefore, thin-metal hydride films are used as model systems to study metal-insulator transitions, for high throughput combinatorial research or they may be used as indicator layers to study hydrogen diffusion. They can be found in technological applications as hydrogen sensors, in electrochromic and thermochromic devices. In this review, we discuss the effect of hydrogen loading of thin niobium and yttrium films as archetypical examples of a transition metal and a rare earth metal, respectively. Our focus thereby lies on the hydrogen induced changes of the electronic structure and the morphology of the thin films, their optical properties, the visualization and the control of hydrogen diffusion and on the study of surface phenomena and catalysis. PMID:18980236

  19. Low-temperature thermal reduction of graphene oxide nanobrick walls: unique combination of high gas barrier and low resistivity in fully organic polyelectrolyte multilayer thin films.

    PubMed

    Stevens, Bart; Dessiatova, Ekaterina; Hagen, David A; Todd, Alexander D; Bielawski, Christopher W; Grunlan, Jaime C

    2014-07-01

    Layer-by-layer assembly from aqueous solutions was used to construct multilayer thin films (<200 nm) comprising polyethylenimine and graphene oxide. Low-temperature (175 °C) thermal reduction of these films improved gas barrier properties (e.g., lower permeability than SiOx), even under high humidity conditions, and enhanced their electrical conductivity to 1750 S/m. The flexible nature of the aforementioned thin films, along with their excellent combination of transport properties, make them ideal candidates for use in a broad range of electronics and packaging applications. PMID:24949524

  20. Thin film of biocompatible polysaccharides

    NASA Astrophysics Data System (ADS)

    Richert, Ludovic; Lavalle, Philippe; Schaaf, Pierre; Voegel, Jean-Claude; Picart, Catherine

    2003-03-01

    The layer-by-layer deposition method proposed by Decher et al. (1991) is a very simple and versatile method used to build thin films. These films are of interest for bioengineering because of their unique properties and of the possible insertion of bioactive molecules. We present here the peculiar properties of a new kind of film formed with natural biopolymers, namely hyaluronan (HA)and chitosan (CHI). The films may be used as biomimetic substrates to control bacterial and cell adhesion. These polysaccharides are of particular interest because they are biodegradable, non toxic, and can be found in various tissues. Hyaluronan is also a natural ligand for a numerous type of cells through the CD44 receptor. Chitosan has already largely been used for its biological and anti-microbial properties. (CHI/HA) films were built in acidic pH at different ionic strength. The buildup was followed in situ by optical waveguide lightmode spectroscopy (OWLS), quartz crystal microbalance, streaming potential measurements and atomic force microscopy. The kinetics of adsorption and desorption of the polyelectrolytes depended on the ionic strength. Small islands were initially present on the surface which grew by mutual coalescence until becoming a flat film. The films were around 200 nm in thickness. These results suggest that different types of thin films constituted of polysaccharides can be built on any type of surface. These films are currently investigated toward their cell adhesion and bacterial adhesion properties.

  1. Super Gas Barrier Thin Films via Layer-by-Layer Assembly of Polyelectrolytes and Clay

    NASA Astrophysics Data System (ADS)

    Priolo, Morgan; Gamboa, Daniel; Grunlan, Jaime

    2010-03-01

    Thin composite films of branched polyethylenimine (PEI), polyacrylic acid (PAA) and sodium montmorillonite clay (MMT) platelets were prepared using layer-by-layer assembly. Film thickness, mass deposited per layer, and barrier were shown to increase exponentially with the number of deposition cycles. After 32 layers (i.e., eight PEI/PAA/PEI/MMT quadlayers) are deposited, the resulting transparent film exhibits an oxygen transmission rate below the detection limit of commercial instrumentation (< 0.005 cm^3/m^2 . day). This level of oxygen barrier is believed to be due to a nano-brick wall microstructure comprised of exfoliated clay bricks in polymeric mortar, where the enhanced spacing between MMT layers, provided by PEI and PAA, creates channels perpendicular concentration gradient that delay the permeating molecule. These films are good candidates for flexible electronics, food, and pharmaceutical packaging due to their transparency, super gas barrier (that rivals SiOx) and lack of metal.

  2. (Thin films under chemical stress)

    SciTech Connect

    Not Available

    1990-01-01

    As stated above the purpose of this research is to enable workers in a variety of fields to understand the chemical and physical changes which take place when thin films (primarily organic films) are placed under chemical stress. This stress may occur because the film is being swelled by penetrant entrained in solvent, because interfacial reactions are occurring at one or more boundaries within the film structure, or because some component of the film is responding to an external stimulus (e.g. pH, temperature, electric field, or radiation). These questions are important within the context of our long-term goal of understanding the behavior of composite structures, composed of thin organic polymer films interspersed with Langmuir-Blodgett (LB) and self-assembled monolayers, which might have unique functional properties. In the past year we have concentrated on the following objectives: (1) understanding how the two possible diffusion mechanisms contribute to the swelling of thin films of organic polymers place in solution, (2) identifying systems which are appropriate polymer media for the construction of composite membranes for use in aqueous environments, and (3) understanding the self-assembly process for long chain fatty acids at model surfaces. Progress in meeting each of these objectives will be described in this report. 4 figs.

  3. Thin-film forces in pseudoemulsion films

    SciTech Connect

    Bergeron, V.; Radke, C.J. |

    1991-06-01

    Use of foam for enhanced oil recovery (EOR) has shown recent success in steam-flooding field applications. Foam can also provide an effective barrier against gas coning in thin oil zones. Both of these applications stem from the unique mobility-control properties a stable foam possesses when it exists in porous media. Unfortunately, oil has a major destabilizing effect on foam. Therefore, it is important for EOR applications to understand how oil destroys foam. Studies all indicate that stabilization of the pseudoemulsion film is critical to maintain foam stability in the presence of oil. Hence, to aid in design of surfactant formulations for foam insensitivity to oil the authors pursue direct measurement of the thin-film or disjoining forces that stabilize pseudoemulsion films. Experimental procedures and preliminary results are described.

  4. Effects of Antimony Doping on Cu(In1-x,Gax)Se2 Thin Films and Solar Cells

    NASA Astrophysics Data System (ADS)

    Yatsushiro, Yuta; Nakakoba, Hiroya; Mise, Takahiro; Kobayashi, Taizo; Nakada, Tokio

    2012-10-01

    The effects of antimony (Sb) doping into Cu(In1-x,Gax)Se2 (CIGS) thin films and solar cells have been investigated. 10-50-nm-thick Sb thin layers were deposited onto Mo-coated sodalime glass (SLG) and SiOx-coated SLG substrates by vacuum evaporation. CIGS thin films were then deposited by a three-stage process at substrate temperatures of 450-550 °C. The grain growth of CIGS thin films was enhanced, and the open-circuit voltage and hence the conversion efficiency improved with the Sb doping when the SLG substrates were used. However, little or no effect was observed when the alkali barrier SiOx layer was deposited on SLG substrates. As a result, we found that Sb doping is beneficial for improving the cell performance when sodium exists simultaneously in CIGS layers.

  5. Effects of Bi Incorporation on Cu(In1-x,Gax)Se2 Thin Films and Solar Cells

    NASA Astrophysics Data System (ADS)

    Nakakoba, Hiroya; Yatsushiro, Yuta; Mise, Takahiro; Kobayashi, Taizo; Nakada, Tokio

    2012-10-01

    The effects of bismuth (Bi) incorporation into Cu(In1-x,Gax)Se2 (CIGS) thin films and solar cells have been investigated. 10-50-nm-thick Bi thin layers were deposited onto Mo-coated soda-lime glass (SLG) and SiOx-coated SLG substrates by vacuum evaporation. CIGS thin films were then deposited by a three-stage process at substrate temperatures of 450-550 °C. The grain growth of CIGS thin films was enhanced, and the open-circuit voltage and hence the conversion efficiency was improved by the Bi incorporation when the SLG substrates were used. However, little effect was observed when the alkali barrier SiOx layer was deposited on SLG substrates. As a result, we found that the Bi incorporation is beneficial for improving the cell performance when sodium exists simultaneously in CIGS layers.

  6. Cell proliferation on modified DLC thin films prepared by plasma enhanced chemical vapor deposition.

    PubMed

    Stoica, Adrian; Manakhov, Anton; Polčák, Josef; Ondračka, Pavel; Buršíková, Vilma; Zajíčková, Renata; Medalová, Jiřina; Zajíčková, Lenka

    2015-01-01

    Recently, diamondlike carbon (DLC) thin films have gained interest for biological applications, such as hip and dental prostheses or heart valves and coronary stents, thanks to their high strength and stability. However, the biocompatibility of the DLC is still questionable due to its low wettability and possible mechanical failure (delamination). In this work, DLC:N:O and DLC: SiOx thin films were comparatively investigated with respect to cell proliferation. Thin DLC films with an addition of N, O, and Si were prepared by plasma enhanced CVD from mixtures of methane, hydrogen, and hexamethyldisiloxane. The films were optically characterized by infrared spectroscopy and ellipsometry in UV-visible spectrum. The thickness and the optical properties were obtained from the ellipsometric measurements. Atomic composition of the films was determined by Rutherford backscattering spectroscopy combined with elastic recoil detection analysis and by x-ray photoelectron spectroscopy. The mechanical properties of the films were studied by depth sensing indentation technique. The number of cells that proliferate on the surface of the prepared DLC films and on control culture dishes were compared and correlated with the properties of as-deposited and aged films. The authors found that the level of cell proliferation on the coated dishes was high, comparable to the untreated (control) samples. The prepared DLC films were stable and no decrease of the biocompatibility was observed for the samples aged at ambient conditions. PMID:25967153

  7. Beryllium thin films for resistor applications

    NASA Technical Reports Server (NTRS)

    Fiet, O.

    1972-01-01

    Beryllium thin films have a protective oxidation resistant property at high temperature and high recrystallization temperature. However, the experimental film has very low temperature coefficient of resistance.

  8. Thin films under chemical stress

    SciTech Connect

    Not Available

    1991-01-01

    The goal of work on this project has been develop a set of experimental tools to allow investigators interested in transport, binding, and segregation phenomena in composite thin film structures to study these phenomena in situ. Work to-date has focuses on combining novel spatially-directed optical excitation phenomena, e.g. waveguide eigenmodes in thin dielectric slabs, surface plasmon excitations at metal-dielectric interfaces, with standard spectroscopies to understand dynamic processes in thin films and at interfaces. There have been two main scientific thrusts in the work and an additional technical project. In one thrust we have sought to develop experimental tools which will allow us to understand the chemical and physical changes which take place when thin polymer films are placed under chemical stress. In principle this stress may occur because the film is being swelled by a penetrant entrained in solvent, because interfacial reactions are occurring at one or more boundaries within the film structure, or because some component of the film is responding to an external stimulus (e.g. pH, temperature, electric field, or radiation). However all work to-date has focused on obtaining a clearer understanding penetrant transport phenomena. The other thrust has addressed the kinetics of adsorption of model n-alkanoic acids from organic solvents. Both of these thrusts are important within the context of our long-term goal of understanding the behavior of composite structures, composed of thin organic polymer films interspersed with Langmuir-Blodgett (LB) and self-assembled monolayers. In addition there has been a good deal of work to develop the local technical capability to fabricate grating couplers for optical waveguide excitation. This work, which is subsidiary to the main scientific goals of the project, has been successfully completed and will be detailed as well. 41 refs., 10 figs.

  9. Thin film-coated polymer webs

    DOEpatents

    Wenz, Robert P.; Weber, Michael F.; Arudi, Ravindra L.

    1992-02-04

    The present invention relates to thin film-coated polymer webs, and more particularly to thin film electronic devices supported upon a polymer web, wherein the polymer web is treated with a purifying amount of electron beam radiation.

  10. Semiconductor-nanocrystal/conjugated polymer thin films

    DOEpatents

    Alivisatos, A. Paul; Dittmer, Janke J.; Huynh, Wendy U.; Milliron, Delia

    2014-06-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  11. Semiconductor-nanocrystal/conjugated polymer thin films

    DOEpatents

    Alivisatos, A. Paul; Dittmer, Janke J.; Huynh, Wendy U.; Milliron, Delia

    2010-08-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  12. Low work function, stable thin films

    DOEpatents

    Dinh, Long N.; McLean, II, William; Balooch, Mehdi; Fehring, Jr., Edward J.; Schildbach, Marcus A.

    2000-01-01

    Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.

  13. Thin Film Solid Lubricant Development

    NASA Technical Reports Server (NTRS)

    Benoy, Patricia A.

    1997-01-01

    Tribological coatings for high temperature sliding applications are addressed. A sputter-deposited bilayer coating of gold and chromium is investigated as a potential solid lubricant for protection of alumina substrates during sliding at high temperature. Evaluation of the tribological properties of alumina pins sliding against thin sputtered gold films on alumina substrates is presented.

  14. Thin film polymeric gel electrolytes

    DOEpatents

    Derzon, D.K.; Arnold, C. Jr.; Delnick, F.M.

    1996-12-31

    Novel hybrid thin film electrolytes, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities {approx_equal}10{sup {minus}3}{Omega}{sup {minus}1} cm{sup {minus}1} are useful as electrolytes for rechargeable lithium batteries. 1 fig.

  15. Hybrid thin-film amplifier

    NASA Technical Reports Server (NTRS)

    Cleveland, G.

    1977-01-01

    Miniature amplifier for bioelectronic instrumentation consumes only about 100 mW and has frequency response flat to within 0.5 dB from 0.14 to 450 Hz. Device consists of five thin film substrates, which contain eight operational amplifiers and seven field-effect transistor dice.

  16. Thin film polymeric gel electrolytes

    DOEpatents

    Derzon, Dora K.; Arnold, Jr., Charles; Delnick, Frank M.

    1996-01-01

    Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

  17. Thin films and uses

    DOEpatents

    Baskaran, Suresh; Graff, Gordon L.; Song, Lin

    1998-01-01

    The invention provides a method for synthesizing a titanium oxide-containing film comprising the following steps: (a) preparing an aqueous solution of a titanium chelate with a titanium molarity in the range of 0.01M to 0.6M. (b) immersing a substrate in the prepared solution, (c) decomposing the titanium chelate to deposit a film on the substrate. The titanium chelate maybe decomposed acid, base, temperature or other means. A preferred method provides for the deposit of adherent titanium oxide films from C2 to C5 hydroxy carboxylic acids. In another aspect the invention is a novel article of manufacture having a titanium coating which protects the substrate against ultraviolet damage. In another aspect the invention provides novel semipermeable gas separation membranes, and a method for producing them.

  18. Polyimide thin-film dielectrics on ferroelectrics

    NASA Technical Reports Server (NTRS)

    Galiardi, R. V.

    1977-01-01

    Conducting layers of multi-layered thin-film ferroelectric device, such as is used in liquid crystal/ferroelectric display, can be electrically isolated using thin-film layer of polyimide. Ease of application and high electrical-breakdown strength allow dependable and economical means of providing dielectric for other thin-film microelectronic devices.

  19. Phase Coarsening in Thin Films

    NASA Astrophysics Data System (ADS)

    Wang, K. G.; Glicksman, M. E.

    2015-08-01

    Phase coarsening (Ostwald ripening) phenomena are ubiquitous in materials growth processes such as thin film formation. The classical theory explaining late-stage phase coarsening phenomena was developed by Lifshitz and Slyozov, and by Wagner in the 1960s. Their theory is valid only for a vanishing volume fraction of the second phase in three dimensions. However, phase coarsening in two-dimensional systems is qualitatively different from that in three dimensions. In this paper, the many-body concept of screening length is reviewed, from which we derive the growth law for a `screened' phase island, and develop diffusion screening theory for phase coarsening in thin films. The coarsening rate constant, maximum size of phase islands in films, and their size distribution function will be derived from diffusion screening theory. A critical comparison will be provided of prior coarsening concepts and improvements derived from screening approaches.

  20. Effects of interface and bulk properties of gate-dielectric on the performance and stability of hydrogenated amorphous silicon thin-film transistors

    NASA Astrophysics Data System (ADS)

    Ando, M.; Wakagi, M.; Onisawa, K.

    2015-12-01

    In order to investigate the effects of interface and bulk properties of gate insulator on the threshold voltage (Vth) and the gate-bias induced instability of hydrogenated amorphous silicon thin-film transistors (a-Si:H TFTs), four kinds of TFT structures were fabricated with SiNx and SiOx insulators stacked to make different combinations of the bulk and interface in the gate-dielectric layers. It was found that the Vth and the stability are independently controlled by tuning stoichiometry and thickness of the SiOx insertion layer between a-Si:H and SiNx. In TFTs with SiOx insertion layer of 50 nm thickness, on increasing oxygen/silicon (O/Si = x) ratio from 1.7 to 1.9, Vth increased from 0 V to 9 V. In these TFTs with a relatively thick SiOx insertion layer, positive Vth shift with negative bias stress was observed, confirmed to be due to defect creation in a-Si:H with the thermalization barrier energy of 0.83 eV. On reducing the thickness of the SiOx insertion layer down to approximately 1 nm, thin enough for hole injection through SiOx by tunneling effect, stable operation was obtained while keeping the high Vth value under negative stress bias. These results are consistently explained as follows: (1) the high value for Vth is caused by the dipole generated at the interface between a-Si:H and SiOx; and (2) two causes for Vth shift, charge injection to the gate insulator and defect creation in a-Si:H, are mutually related to each other through the "effective bias stress," Vbseff = Vbs - ΔVfb (Vbs: applied bias stress and ΔVfb: flat band voltage shift due to the charge injection). It was experimentally confirmed that there should be an optimum thickness of SiOx insertion layer of approximately 1 nm with stable high Vth, where enhanced injection increases ΔVfb, reduces Vbseff to reduce defect creation, and totally minimizes Vth shift.

  1. Selective inorganic thin films

    SciTech Connect

    Phillips, M.L.F.; Pohl, P.I.; Brinker, C.J.

    1997-04-01

    Separating light gases using membranes is a technology area for which there exists opportunities for significant energy savings. Examples of industrial needs for gas separation include hydrogen recovery, natural gas purification, and dehydration. A membrane capable of separating H{sub 2} from other gases at high temperatures could recover hydrogen from refinery waste streams, and facilitate catalytic dehydrogenation and the water gas shift (CO + H{sub 2}O {yields} H{sub 2} + CO{sub 2}) reaction. Natural gas purification requires separating CH{sub 4} from mixtures with CO{sub 2}, H{sub 2}S, H{sub 2}O, and higher alkanes. A dehydrating membrane would remove water vapor from gas streams in which water is a byproduct or a contaminant, such as refrigeration systems. Molecular sieve films offer the possibility of performing separations involving hydrogen, natural gas constituents, and water vapor at elevated temperatures with very high separation factors. It is in applications such as these that the authors expect inorganic molecular sieve membranes to compete most effectively with current gas separation technologies. Cryogenic separations are very energy intensive. Polymer membranes do not have the thermal stability appropriate for high temperature hydrogen recovery, and tend to swell in the presence of hydrocarbon natural gas constituents. The authors goal is to develop a family of microporous oxide films that offer permeability and selectivity exceeding those of polymer membranes, allowing gas membranes to compete with cryogenic and adsorption technologies for large-scale gas separation applications.

  2. Thin film buried anode battery

    DOEpatents

    Lee, Se-Hee; Tracy, C. Edwin; Liu, Ping

    2009-12-15

    A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

  3. Formation of hydrated layers in PMMA thin films in aqueous solution

    NASA Astrophysics Data System (ADS)

    Akers, Peter W.; Nelson, Andrew R. J.; Williams, David E.; McGillivray, Duncan J.

    2015-10-01

    Neutron reflectometry (NR) measurements have been made on thin (70-150 Å) poly(methylmethacrylate) (PMMA) films on Si/SiOx substrates in aqueous conditions, and compared with parameters measured using ellipsometry and X-Ray reflectometry (XRR) on dry films. All techniques show that the thin films prepared using spin-coating techniques were uniform and had low roughness at both the silicon and subphase interfaces, and similar surface energetics to thicker PMMA films. In aqueous solution, NR measurements at 25 °C showed that PMMA forms a partially hydrated layer at the SiOx interface 10 Å under the film, while the bulk film remains intact and contains around 4% water. Both the PMMA film layer and the sublayer showed minimal swelling over a period of 24 h. At 50 °C, PMMA films in aqueous solution roughen and swell, without loss of PMMA material at the surface. After cooling back to 25 °C, swelling and roughening increases further, with loss of material from the PMMA layer.

  4. Thin film concentrator panel development

    NASA Astrophysics Data System (ADS)

    Zimmerman, D. K.

    1982-07-01

    The development and testing of a rigid panel concept that utilizes a thin film reflective surface for application to a low-cost point-focusing solar concentrator is discussed. It is shown that a thin film reflective surface is acceptable for use on solar concentrators, including 1500 F applications. Additionally, it is shown that a formed steel sheet substrate is a good choice for concentrator panels. The panel has good optical properties, acceptable forming tolerances, environmentally resistant substrate and stiffeners, and adaptability to low to mass production rates. Computer simulations of the concentrator optics were run using the selected reflector panel design. Experimentally determined values for reflector surface specularity and reflectivity along with dimensional data were used in the analysis. The simulations provided intercept factor and net energy into the aperture as a function of aperture size for different surface errors and pointing errors. Point source and Sun source optical tests were also performed.

  5. Superconducting UBe 13 thin films

    NASA Astrophysics Data System (ADS)

    Quateman, J. H.; Tedrow, P. M.

    1985-12-01

    Of the known heavy fermion superconductors only UBe 13 can have a low resistivity ratio and still go superconducting. In addition, it is a line compound with a melting temperature of nearly twice that of the constituents. These facts make UBe 13 a promising choice for fabrication in thin film form. We have successfully made 2000 Å UBe 13 films by coevaporation of uranium and beryllium on 700°C substrates which were then heated in situ to 1100°C. These films were polycrystalline as shown by X-ray diffraction and have Tc's of 0.85 K, that of the bulk. The resistivity rise at approximately 2 K and the strong negative magnetoresistance were also of the same magnitude as that of the bulk, as were both the perpendicular and parallel critical fields. Thin films of UBe 13 will make more accessible tunneling and proximity effect experiments which can help elucidate the nature of the superconductivity of this compound.

  6. The effect of salt on ion adsorption on a SiOx alignment film and reduced conductivity of a liquid crystal host

    NASA Astrophysics Data System (ADS)

    Huang, Yi; Bhowmik, Achintya; Bos, Philip J.

    2012-01-01

    It is shown that the addition of salt to liquid crystal cells, using a SiOx alignment layer, can actually reduce the ion concentration. This seeming contradiction may be explained by the ability of salt to complex with water and to aid the drying of the liquid crystal material. The results show a pathway to purifying liquid crystal devices to the extent needed for low-power low-refresh rate displays for e-book applications.

  7. Experimental modeling of intergranular exchange coupling for perpendicular thin film media

    NASA Astrophysics Data System (ADS)

    Sokalski, Vincent; Laughlin, David E.; Zhu, Jian-Gang

    2009-09-01

    We present an experimental model system that enables quantitative assessment of intergranular exchange coupling in CoCrPt-oxide perpendicular magnetic recording media. A thin film structure consisting of a high coercivity CoPt unicrystal layer and a lower coercivity CoPt layer separated by a thin oxide interlayer is used to model perpendicularly magnetized grains separated by oxide grain boundaries. Exchange coupling energy between the CoPt layers was obtained for SiOx, TiOx, and CrOx interlayers by measuring field shifts from the lower coercivity layer. Cr segregation in CoCrPt grains to grain boundaries is also modeled experimentally and found to significantly suppress exchange coupling.

  8. Multiple oxide content media for columnar grain growth in L10 FePt thin films

    NASA Astrophysics Data System (ADS)

    Ho, Hoan; Yang, En; Laughlin, David E.; Zhu, Jian-Gang

    2013-03-01

    An approach to enhance the height-to-diameter ratio of FePt grains in heat-assisted magnetic recording media is proposed. The FePt-SiOx thin films are deposited with a decrease of the SiOx percentage along the film growth direction. When bi-layer and tri-layer media are sputtered at 410 °C, we observe discontinuities in the FePt grains at interfaces between layers, which lead to poor epitaxial growth. Due to increased atomic diffusion, the bi-layer media sputtered at 450 °C is shown to (1) grow into continuous columnar grains with similar size as single-layer media but much higher aspect ratio, (2) have better L10 ordering and larger coercivity.

  9. PEDOT:PSS emitters on multicrystalline silicon thin-film absorbers for hybrid solar cells

    NASA Astrophysics Data System (ADS)

    Junghanns, Marcus; Plentz, Jonathan; Andrä, Gudrun; Gawlik, Annett; Höger, Ingmar; Falk, Fritz

    2015-02-01

    We fabricated an efficient hybrid solar cell by spin coating poly(3,4-ethylene-dioxythiophene):polystyrenesulfonate (PEDOT:PSS) on planar multicrystalline Si (mc-Si) thin films. The only 5 μm thin Si absorber layers were prepared by diode laser crystallization of amorphous Si deposited by electron beam evaporation on glass. On these absorber layers, we studied the effect of SiOx and Al2O3 terminated Si surfaces. The short circuit density and power conversion efficiency (PCE) of the mc-Si/Al2O3/PEDOT:PSS solar cell increase from 20.6 to 25.4 mA/cm2 and from 7.3% to 10.3%, respectively, as compared to the mc-Si/SiOx/PEDOT:PSS cell. Al2O3 lowers the interface recombination and improves the adhesion of the polymer film on the hydrophobic mc-Si thin film. Open circuit voltages up to 604 mV were reached. This study demonstrates the highest PCE so far of a hybrid solar cell with a planar thin film Si absorber.

  10. Zinc oxide thin film acoustic sensor

    NASA Astrophysics Data System (ADS)

    Mohammed, Ali Jasim; Salih, Wafaa Mahdi; Hassan, Marwa Abdul Muhsien; Mansour, Hazim Louis; Nusseif, Asmaa Deiaa; Kadhum, Haider Abdullah

    2013-12-01

    This paper reports the implementation of (750 nm) thickness of Zinc Oxide (ZnO) thin film for the piezoelectric pressure sensors. The film was prepared and deposited employing the spray pyrolysis technique. XRD results show that the growth preferred orientation is the (002) plane. A polycrystalline thin film (close to mono crystallite like) was obtained. Depending on the Scanning Electron Microscopy photogram, the film homogeneity and thickness were shown. The resonance frequency measured (about 19 kHz) and the damping coefficient was calculated and its value was found to be about (2.5538), the thin film be haves as homogeneous for under and over damped. The thin film pressure sensing was approximately exponentially related with frequency, the thin film was observed to has a good response for mechanical stresses also it is a good material for the piezoelectric properties.

  11. Zinc oxide thin film acoustic sensor

    SciTech Connect

    Mohammed, Ali Jasim; Salih, Wafaa Mahdi; Hassan, Marwa Abdul Muhsien; Nusseif, Asmaa Deiaa; Kadhum, Haider Abdullah; Mansour, Hazim Louis

    2013-12-16

    This paper reports the implementation of (750 nm) thickness of Zinc Oxide (ZnO) thin film for the piezoelectric pressure sensors. The film was prepared and deposited employing the spray pyrolysis technique. XRD results show that the growth preferred orientation is the (002) plane. A polycrystalline thin film (close to mono crystallite like) was obtained. Depending on the Scanning Electron Microscopy photogram, the film homogeneity and thickness were shown. The resonance frequency measured (about 19 kHz) and the damping coefficient was calculated and its value was found to be about (2.5538), the thin film be haves as homogeneous for under and over damped. The thin film pressure sensing was approximately exponentially related with frequency, the thin film was observed to has a good response for mechanical stresses also it is a good material for the piezoelectric properties.

  12. Design of SiOx slab optical waveguides

    NASA Astrophysics Data System (ADS)

    Lizarraga-Medina, E. G.; Oliver, A.; Vázquez, G. V.; Salas-Montiel, R.; Márquez, H.

    2015-08-01

    An analysis of the dispersion relation of SiOx submicron optical waveguides in the visible and IR spectral range is presented. Here is considered that the refractive index (n) of SiOx can be tuned in the range from n=1.457-2 for 2>x>1, and a film thickness from 50nm to 1000nm. Starting from the dispersion relation and the distribution of the electric field in the waveguide; cutoff wavelength, cutoff thickness, effective refractive index, effective guide thickness and confinement factor of a selected mode are calculated.

  13. SiOx Protective Coat For Polyimide Sheet

    NASA Technical Reports Server (NTRS)

    Banks, Bruce; Sovey, James; Mirtich, Michael

    1991-01-01

    Report and detailed appendix describe protective coat of SiOx (where x is 1.9 - 2.0) on Kapton H(R) polyimide sheet. Surface film protects substrate from bombardment by atomic oxygen. Intended for use as blanket substrate material of flexible array of solar photovoltaic cells on Space Station Freedom.

  14. Analysis of Hard Thin Film Coating

    NASA Technical Reports Server (NTRS)

    Shen, Dashen

    1998-01-01

    MSFC is interested in developing hard thin film coating for bearings. The wearing of the bearing is an important problem for space flight engine. Hard thin film coating can drastically improve the surface of the bearing and improve the wear-endurance of the bearing. However, many fundamental problems in surface physics, plasma deposition, etc, need further research. The approach is using electron cyclotron resonance chemical vapor deposition (ECRCVD) to deposit hard thin film an stainless steel bearing. The thin films in consideration include SiC, SiN and other materials. An ECRCVD deposition system is being assembled at MSFC.

  15. Analysis of Hard Thin Film Coating

    NASA Technical Reports Server (NTRS)

    Shen, Dashen

    1998-01-01

    Marshall Space Flight Center (MSFC) is interested in developing hard thin film coating for bearings. The wearing of the bearing is an important problem for space flight engine. Hard thin film coating can drastically improve the surface of the bearing and improve the wear-endurance of the bearing. However, many fundamental problems in surface physics, plasma deposition, etc, need further research. The approach is using Electron Cyclotron Resonance Chemical Vapor Deposition (ECRCVD) to deposit hard thin film on stainless steel bearing. The thin films in consideration include SiC, SiN and other materials. An ECRCVD deposition system is being assembled at MSFC.

  16. Thin film based plasmon nanorulers

    NASA Astrophysics Data System (ADS)

    Taylor, Alexander D.; Lu, Chang; Geyer, Scott; Carroll, D. L.

    2016-07-01

    In this work, isolated metal nanoparticles are supported on a dielectric thin film that is placed on a conducting plane. The optical scattering characteristics of these metal nanoparticles are directly correlated with the localized surface plasmon states of the nanoparticle—image particle dimer, formed in the conducting plane below. Quantification of plasmon resonance shifts can be directly correlated with the application of the plasmon nanoruler equation. This simple geometry shows that direct optical techniques can be used to resolve thickness variations in dielectrics of only a few nanometers.

  17. Thin film solar energy collector

    DOEpatents

    Aykan, Kamran; Farrauto, Robert J.; Jefferson, Clinton F.; Lanam, Richard D.

    1983-11-22

    A multi-layer solar energy collector of improved stability comprising: (1) a substrate of quartz, silicate glass, stainless steel or aluminum-containing ferritic alloy; (2) a solar absorptive layer comprising silver, copper oxide, rhodium/rhodium oxide and 0-15% by weight of platinum; (3) an interlayer comprising silver or silver/platinum; and (4) an optional external anti-reflective coating, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of silver or silver/platinum to obtain an improved conductor-dielectric tandem.

  18. New devices using ferroelectric thin films

    SciTech Connect

    Land, C.E.; Butler, M.A.; Martin, S.J.

    1989-01-01

    Recent developments in the fabrication technologies of ferroelectric thin films in general and of PZT (lead zirconate titanate) and PLZT (lead lanthanum zirconate titanate) thin films in particular have suggested the feasibility of several new devices. Integrated optical devices for information processing and high-speed switching, high-density optical information processing and storage devices and spatial light modulators are some of the applications currently being investigated for these films. Ongoing studies of the longitudinal electrooptic effects and the photosensitivities of PZT and PLZT thin films have established the feasibility of erasable/rewritable optical memories with fast switching and potentially long lifetimes compared to current magneto-optic thin film devices. Some properties of PZT thin films and of new devices based on those properties are described in this paper. 15 refs., 5 figs., 1 tab.

  19. Electrostatic thin film chemical and biological sensor

    DOEpatents

    Prelas, Mark A.; Ghosh, Tushar K.; Tompson, Jr., Robert V.; Viswanath, Dabir; Loyalka, Sudarshan K.

    2010-01-19

    A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includes providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.

  20. Thin films of mixed metal compounds

    DOEpatents

    Mickelsen, Reid A.; Chen, Wen S.

    1985-01-01

    A compositionally uniform thin film of a mixed metal compound is formed by simultaneously evaporating a first metal compound and a second metal compound from independent sources. The mean free path between the vapor particles is reduced by a gas and the mixed vapors are deposited uniformly. The invention finds particular utility in forming thin film heterojunction solar cells.

  1. Characteristics Of Vacuum Deposited Sucrose Thin Films

    NASA Astrophysics Data System (ADS)

    Ungureanu, F.; Predoi, D.; Ghita, R. V.; Vatasescu-Balcan, R. A.; Costache, M.

    Thin films of sucrose (C12H22O11) were deposited on thin cut glass substrates by thermal evaporation technique (p ~ 10-5 torr). The surface morphology was putted into evidence by FT-IR and SEM analysis. The experimental results confirm a uniform deposition of an adherent sucrose layer. The biological tests (e.g., cell morphology and cell viability evaluated by measuring mitochondrial dehydrogenise activity with MTT assay) confirm the properties of sucrose thin films as bioactive material. The human fetal osteoblast system grown on thin sucrose film was used for the determination of cell proliferation, cell viability and cell morphology studies.

  2. Cellulose triacetate, thin film dielectric capacitor

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Jow, T. Richard (Inventor)

    1995-01-01

    Very thin films of cellulose triacetate are cast from a solution containing a small amount of high boiling temperature, non-solvent which evaporates last and lifts the film from the casting surface. Stretched, oriented, crystallized films have high electrical breakdown properties. Metallized films less than about 2 microns in thickness form self-healing electrodes for high energy density, pulsed power capacitors. Thicker films can be utilized as a dielectric for a capacitor.

  3. Cellulose triacetate, thin film dielectric capacitor

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Jow, T. Richard (Inventor)

    1993-01-01

    Very thin films of cellulose triacetate are cast from a solution containing a small amount of high boiling temperature, non-solvent which evaporates last and lifts the film from the casting surface. Stretched, oriented, crystallized films have high electrical breakdown properties. Metallized films less than about 2 microns in thickness form self-healing electrodes for high energy density, pulsed power capacitors. Thicker films can be utilized as a dielectric for a capacitor.

  4. A monolithic thin film electrochromic window

    SciTech Connect

    Goldner, R.B.; Arntz, F.O.; Berera, G.; Haas, T.E.; Wong, K.K. . Electro-Optics Technology Center); Wei, G. ); Yu, P.C. )

    1991-01-01

    Three closely related thin film solid state ionic devices that are potentially important for applications are: electrochromic smart windows, high energy density thin film rechargeable batteries, and thin film electrochemical sensors. Each usually has at least on mixed ion/electron conductor, an electron-blocking ion conductor, and an ion-blocking electron conductor, and many of the technical issues associated with thin film solid state ionics are common to all three devices. Since the electrochromic window has the added technical requirement of electrically-controlled optical modulation, (over the solar spectrum), and since research at the authors' institution has focused primarily on the window structure, this paper will address the electrochromic window, and particularly a monolithic variable reflectivity electrochromic window, as an illustrative example of some of the challenges and opportunities that are confronting the thin film solid state ionics community. 33 refs.

  5. A monolithic thin film electrochromic window

    SciTech Connect

    Goldner, R.B.; Arntz, F.O.; Berera, G.; Haas, T.E.; Wong, K.K.; Wei, G.; Yu, P.C.

    1991-12-31

    Three closely related thin film solid state ionic devices that are potentially important for applications are: electrochromic smart windows, high energy density thin film rechargeable batteries, and thin film electrochemical sensors. Each usually has at least on mixed ion/electron conductor, an electron-blocking ion conductor, and an ion-blocking electron conductor, and many of the technical issues associated with thin film solid state ionics are common to all three devices. Since the electrochromic window has the added technical requirement of electrically-controlled optical modulation, (over the solar spectrum), and since research at the authors` institution has focused primarily on the window structure, this paper will address the electrochromic window, and particularly a monolithic variable reflectivity electrochromic window, as an illustrative example of some of the challenges and opportunities that are confronting the thin film solid state ionics community. 33 refs.

  6. Preparation and Characterization of PZT Thin Films

    SciTech Connect

    Bose, A.; Sreemany, M.; Bhattacharyya, D. K.; Sen, Suchitra; Halder, S. K.

    2008-07-29

    In analogy with Piezoelectric Wafer Active Sensors (PWAS), Lead Zirconate Titanate (PZT) thin films also seem to be promising for Structural Health Monitoring (SHM) due to a number of reasons. Firstly, PZT thin films with well oriented domains show enhanced piezoelectric response. Secondly, PWAS requires comparatively large voltage leading to a demand for thin PZT films (<< {mu}m in thickness) for low voltage operation at {<=}10 V. This work focuses on two different aspects: (a) growing oriented PZT thin films in ferroelectric perovskite phase in the range of (80-150) nm thickness on epitaxial Si/Pt without a seed layer and (b) synthesizing perovskite phase in PZT thin films on Corning glass 1737 using a seed layer of TiO{sub x} (TiO{sub x} thickness ranging between 30 nm to 500 nm)

  7. Thin film bioreactors in space

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.; Scheld, H. W.

    1989-01-01

    Studies from the Skylab, SL-3 and D-1 missions have demonstrated that biological organisms grown in microgravity have changes in basic cellular functions such as DNA, mRNA and protein synthesis, cytoskeleton synthesis, glucose utilization, and cellular differentiation. Since microgravity could affect prokaryotic and eukaryotic cells at a subcellular and molecular level, space offers an opportunity to learn more about basic biological systems with one inmportant variable removed. The thin film bioreactor will facilitate the handling of fluids in microgravity, under constant temperature and will allow multiple samples of cells to be grown with variable conditions. Studies on cell cultures grown in microgravity would make it possible to identify and quantify changes in basic biological function in microgravity which are needed to develop new applications of orbital research and future biotechnology.

  8. Thin-film optical shutter

    NASA Astrophysics Data System (ADS)

    Matlow, S. L.

    1981-02-01

    The ideal solution to the excessive solar gain problem is an optical shutter, a device which switches from being highly transmissive to solar radiation to being highly reflective to solar radiation when a critical temperature is reached in the enclosure. The switching occurs because one or more materials in the device undergo a phase transition at the critical temperature. A specific embodiment of macroconjugated macromolecules, the poly (p-phenylene)'s, was chosen as the one most likely to meet all of the requirements of the thin film optical shutter project (TFOS). The reason for this choice is explored. In order to be able to make meaningful calculations of the thermodynamic and optical properties of the poly (p-phenylene)'s a quantum mechanical method, the equilibrium bond length (EBL) theory, was developed. Some results of EBL theory are included.

  9. BDS thin film damage competition

    SciTech Connect

    Stolz, C J; Thomas, M D; Griffin, A J

    2008-10-24

    A laser damage competition was held at the 2008 Boulder Damage Symposium in order to determine the current status of thin film laser resistance within the private, academic, and government sectors. This damage competition allows a direct comparison of the current state-of-the-art of high laser resistance coatings since they are all tested using the same damage test setup and the same protocol. A normal incidence high reflector multilayer coating was selected at a wavelength of 1064 nm. The substrates were provided by the submitters. A double blind test assured sample and submitter anonymity so only a summary of the results are presented here. In addition to the laser resistance results, details of deposition processes, coating materials, and layer count will also be shared.

  10. Wrinkle motifs in thin films

    PubMed Central

    Budrikis, Zoe; Sellerio, Alessandro L.; Bertalan, Zsolt; Zapperi, Stefano

    2015-01-01

    On length scales from nanometres to metres, partial adhesion of thin films with substrates generates a fascinating variety of patterns, such as ‘telephone cord’ buckles, wrinkles, and labyrinth domains. Although these patterns are part of everyday experience and are important in industry, they are not completely understood. Here, we report simulation studies of a previously-overlooked phenomenon in which pairs of wrinkles form avoiding pairs, focusing on the case of graphene over patterned substrates. By nucleating and growing wrinkles in a controlled way, we characterize how their morphology is determined by stress fields in the sheet and friction with the substrate. Our simulations uncover the generic behaviour of avoiding wrinkle pairs that should be valid at all scales. PMID:25758174

  11. Dynamic delamination of patterned thin films

    NASA Astrophysics Data System (ADS)

    Kandula, Soma S. V.; Tran, Phuong; Geubelle, Philippe H.; Sottos, Nancy R.

    2008-12-01

    We investigate laser-induced dynamic delamination of a patterned thin film on a substrate. Controlled delamination results from our insertion of a weak adhesion region beneath the film. The inertial forces acting on the weakly bonded portion of the film lead to stable propagation of a crack along the film/substrate interface. Through a simple energy balance, we extract the critical energy for interfacial failure, a quantity that is difficult and sometimes impossible to characterize by more conventional methods for many thin film/substrate combinations.

  12. Infrared radiation of thin plastic films.

    NASA Technical Reports Server (NTRS)

    Tien, C. L.; Chan, C. K.; Cunnington, G. R.

    1972-01-01

    A combined analytical and experimental study is presented for infrared radiation characteristics of thin plastic films with and without a metal substrate. On the basis of the thin-film analysis, a simple analytical technique is developed for determining band-averaged optical constants of thin plastic films from spectral normal transmittance data for two different film thicknesses. Specifically, the band-averaged optical constants of polyethylene terephthalate and polyimide were obtained from transmittance measurements of films with thicknesses in the range of 0.25 to 3 mil. The spectral normal reflectance and total normal emittance of the film side of singly aluminized films are calculated by use of optical constants; the results compare favorably with measured values.

  13. AES analysis of barium fluoride thin films

    NASA Astrophysics Data System (ADS)

    Kashin, G. N.; Makhnjuk, V. I.; Rumjantseva, S. M.; Shchekochihin, Ju. M.

    1993-06-01

    AES analysis of thin films of metal fluorides is a difficult problem due to charging and decomposition of such films under electron bombardment. We have developed a simple algorithm for a reliable quantitative AES analysis of metal fluoride thin films (BaF 2 in our work). The relative AES sensitivity factors for barium and fluorine were determined from BaF 2 single-crystal samples. We have investigated the dependence of composition and stability of barium fluoride films on the substrate temperature during film growth. We found that the instability of BaF 2 films grown on GaAs substrates at high temperatures (> 525°C) is due to a loss of fluorine. Our results show that, under the optimal electron exposure conditions, AES can be used for a quantitative analysis of metal fluoride thin films.

  14. Thin film nitinol microstent for aneurysm occlusion.

    PubMed

    Chun, Youngjae; Levi, Daniel S; Mohanchandra, K P; Vinuela, Fernando; Vinuela, Fernando; Carman, Gregory P

    2009-05-01

    Thin film nitinol produced by sputter deposition was used in the design of microstents intended to treat small vessel aneurysms. Thin film microstents were fabricated by "hot-target" dc sputter deposition. Both stress-strain curves and differential scanning calorimetry curves were generated for the film used to fabricate stents. The films used for stents had an A(f) temperature of approximately 36 degrees C allowing for body activated response from a microcatheter. The 10 microm film was only slightly radio-opaque; thus, a Td marker was attached to the stents to guide fluoroscopic delivery. Thin film microstents were tested in a flow loop with and without nitinol support skeletons to give additional radial support. Stents could be compressed into and easily delivered with <3 Fr catheters. Theoretical frictional and wall drag forces on a thin film nitinol small vessel vascular stent were calculated, and the radial force exerted by thin film stents was evaluated theoretically and experimentally. In vivo studies in swine confirmed that thin film nitinol microstents could be deployed accurately and consistently in the swine cranial vasculature. PMID:19388784

  15. Method of producing thin cellulose nitrate film

    DOEpatents

    Lupica, S.B.

    1975-12-23

    An improved method for forming a thin nitrocellulose film of reproducible thickness is described. The film is a cellulose nitrate film, 10 to 20 microns in thickness, cast from a solution of cellulose nitrate in tetrahydrofuran, said solution containing from 7 to 15 percent, by weight, of dioctyl phthalate, said cellulose nitrate having a nitrogen content of from 10 to 13 percent.

  16. Optical information storage in PLZT thin films

    SciTech Connect

    Land, C.E.

    1989-01-01

    The feasibility of storing and reading high density optical information in lead zirconate titanate (PZT) and in lead lanthanum zirconate titanate (PLZT) thin films depends on both the longitudinal electrooptic coefficients and the photosensitivities of the films. This paper describes the methods used to measure both the longitudinal electrooptic effects and the photosensitivities of the thin films. The results of these measurements were used to evaluate a longitudinal quadratic electrooptic R coefficient, a linear electrooptic r/sub c/ coefficient and the wavelength dependence of the photosensitivity of a composition of PZT polycrystalline thin film. The longitudinal electrooptic R and r/sub c/ coefficients are about an order of magnitude less than the transverse R and R/sub c/ coefficients of the bulk ceramics of similar compositions. This is attributed to clamping of the film by the rigid substrate. The large birefringence after poling (>10/sup /minus/2/) suggests that the optic axes of the films are preferentially oriented normal to the film surface. The techniques used for evaluating the photosensitivities of the thin films are based on measuring the photocurrent generated rather than the reduction in coercive voltage (used previously for bulk ceramics) when the film is exposed to light. The thin film photosensitivities appear to be about three orders of magnitude higher than those of bulk ceramics of similar compositions. 14 refs., 12 figs., 1 tab.

  17. Thin film solar cell module

    SciTech Connect

    Gay, R.R.

    1987-01-20

    A thin film solar cell module is described comprising a first solar cell panel containing an array of solar cells consisting of a TFS semiconductor sandwiched between a transparent conductive zinc oxide layer and a transparent conductive layer selected from the group consisting of tin oxide, indium tin oxide, and zinc oxide deposited upon a transparent superstrate, and a second solar cell panel containing an array of solar cells consisting of a CIS semiconductor layer sandwiched between a zinc oxide semiconductor layer and a conductive metal layer deposited upon an insulating substrate. The zinc oxide semiconductor layer contains a first relatively thin layer of high resistivity zinc oxide adjacent the CIS semiconductor and a second relatively thick layer of low resistivity zinc oxide overlying the high resistivity zinc oxide layer. The transparent conductive zinc oxide layer of the first panel faces the low resistivity zinc oxide layer of the second panel, the first and second panels being positioned optically in series and separated by a transparent insulating layer.

  18. VUV thin films, chapter 7

    NASA Technical Reports Server (NTRS)

    Zukic, Muamer; Torr, Douglas G.

    1993-01-01

    The application of thin film technology to the vacuum ultraviolet (VUV) wavelength region from 120 nm to 230 nm has not been fully exploited in the past because of absorption effects which complicate the accurate determination of the optical functions of dielectric materials. The problem therefore reduces to that of determining the real and imaginary parts of a complex optical function, namely the frequency dependent refractive index n and extinction coefficient k. We discuss techniques for the inverse retrieval of n and k for dielectric materials at VUV wavelengths from measurements of their reflectance and transmittance. Suitable substrate and film materials are identified for application in the VUV. Such applications include coatings for the fabrication of narrow and broadband filters and beamsplitters. The availability of such devices open the VUV regime to high resolution photometry, interferometry and polarimetry both for space based and laboratory applications. This chapter deals with the optics of absorbing multilayers, the determination of the optical functions for several useful materials, and the design of VUV multilayer stacks as applied to the design of narrow and broadband reflection and transmission filters and beamsplitters. Experimental techniques are discussed briefly, and several examples of the optical functions derived for selected materials are presented.

  19. Chemical bath deposition of textured and compact zinc oxide thin films on vinyl-terminated polystyrene brushes

    PubMed Central

    Blumenstein, Nina J; Hofmeister, Caroline G; Lindemann, Peter; Huang, Cheng; Baier, Johannes; Leineweber, Andreas; Wöll, Christof; Schimmel, Thomas

    2016-01-01

    Summary In this study we investigated the influence of an organic polystyrene brush on the deposition of ZnO thin films under moderate conditions. On a non-modified SiOx surface, island growth is observed, whereas the polymer brush induces homogeneous film growth. A chemical modification of the polystyrene brushes during the mineralization process occurs, which enables stronger interaction between the then polar template and polar ZnO crystallites in solution. This may lead to oriented attachment of the crystallites so that the observed (002) texture arises. Characterization of the templates and the resulting ZnO films were performed with ζ-potential and contact angle measurements as well as scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD). Infrared spectroscopy (IR) measurements were used to investigate the polystyrene brushes before and after modification. PMID:26925358

  20. Synthesis of periodic mesoporous silica thin films

    SciTech Connect

    Anderson, M.T.; Martin, J.E.; Odinek, J.G.; Newcomer, P.

    1996-06-01

    We have synthesized periodic mesoporous silica thin films from homogeneous solutions. To synthesize the films, a thin layer of a pH 7 micellar coating solution that contains TMOS (tetramethoxysilane) is dip or spin-coated onto Si wafers, borosilicate glass, or quartz substrates. NH3 gas is diffused into the solution and causes rapid hydrolysis and condensation of the TMOS and the formation of periodic mesoporous thin films within 10 seconds. Combination of homogenous solutions and rapid product formation maximizes the concentration of the desired product and provides a controlled, predictable microstructure. The films have been made continuous and crack-free by optimizing initial silica concentration and film thickness. The films are being evaluated as high surface area, size-selective coatings for surface acoustic wave (SAW) sensors.

  1. Flexible thin metal film thermal sensing system

    NASA Technical Reports Server (NTRS)

    Thomsen, Donald L. (Inventor)

    2010-01-01

    A flexible thin metal film thermal sensing system is provided. A self-metallized polymeric film has a polymeric film region and a metal surface disposed thereon. A layer of electrically-conductive metal is deposited directly onto the self-metallized polymeric film's metal surface. Coupled to at least one of the metal surface and the layer of electrically-conductive metal is a device/system for measuring an electrical characteristic associated therewith as an indication of temperature.

  2. Macro stress mapping on thin film buckling

    SciTech Connect

    Goudeau, P.; Villain, P.; Renault, P.-O.; Tamura, N.; Celestre, R.S.; Padmore, H.A.

    2002-11-06

    Thin films deposited by Physical Vapour Deposition techniques on substrates generally exhibit large residual stresses which may be responsible of thin film buckling in the case of compressive stresses. Since the 80's, a lot of theoretical work has been done to develop mechanical models but only a few experimental work has been done on this subject to support these theoretical approaches and nothing concerning local stress measurement mainly because of the small dimension of the buckling (few 10th mm). This paper deals with the application of micro beam X-ray diffraction available on synchrotron radiation sources for stress mapping analysis of gold thin film buckling.

  3. Surface roughness evolution of nanocomposite thin films

    SciTech Connect

    Turkin, A. A.; Pei, Y. T.; Shaha, K. P.; Chen, C. Q.; Vainshtein, D. I.; Hosson, J. Th. M. de

    2009-01-01

    An analysis of dynamic roughening and smoothening mechanisms of thin films grown with pulsed-dc magnetron sputtering is presented. The roughness evolution has been described by a linear stochastic equation, which contains the second- and fourth-order gradient terms. Dynamic smoothening of the growing interface is explained by ballistic effects resulting from impingements of ions to the growing thin film. These ballistic effects are sensitive to the flux and energy of impinging ions. The predictions of the model are compared with experimental data, and it is concluded that the thin film roughness can be further controlled by adjusting waveform, frequency, and width of dc pulses.

  4. Photonics applications of nanostructured thin films

    NASA Astrophysics Data System (ADS)

    Kennedy, Scott Ronald

    Using an advanced thin film fabrication technique known as Glancing Angle Deposition (GLAD), it is possible to fabricate unique thin film nanostructures with characteristic dimensions on the order of a wavelength of light. By tailoring the morphologies of the films, they can be designed to exhibit particular optical properties that can be customized through advanced substrate motion and highly oblique flux incidence angles. In applications to photonics, controlling the flow of light for a specified task, GLAD thin films can be fabricated to provide the ability to manipulate incident light through controlled interactions of optical frequency electromagnetic radiation with the thin film nanostructures. Tetragonal square spiral photonic band gap crystals, a new class of periodic dielectric material that is characterized by the elimination of the density of states for frequencies lying in the stop gap of the crystal, can be fabricated using GLAD in a virtual single step process. The design and fabrication of these unique devices has been performed and the resultant crystals characterized in terms of optical response with respect to forbidden propagation modes, material properties, and advanced deposition techniques used to improve the overall structure. Chiral or helical thin films deposited using GLAD were also investigated, and have been shown to exhibit optical activity and circular birefringence due to their inherent structural anisotropy. It has been shown that the addition of nematic liquid crystals (LCs) to chiral thin films enhances the overall device performance due to order induced in the LCs by the film structure. This effect was investigated for a variety of materials and film structures. Finally, by developing a modified GLAD technique whereby the deposited film porosity is controlled through the angle of flux incidence, porous broadband antireflection coatings were produced. Using an appropriate effective medium theory to describe the index of refraction

  5. Passivation Effects in Copper Thin Films

    SciTech Connect

    Wiederhirn, G.; Nucci, J.; Richter, G.; Arzt, E.; Balk, T. J.; Dehm, G.

    2006-02-07

    We studied the influence of a 10 nm AlxOy passivation on the stress-temperature behavior of 100 nm and 1 {mu}m thick Cu films. At low temperatures, the passivation induces a large tensile stress increase in the 100 nm film; however, its effect on the 1 {mu}m film is negligible. At high temperatures, the opposite behavior is observed; while the passivation does not change the 100 nm film behavior, it strengthens the 1 {mu}m film by driving it deeper into compression. These observations are explained in light of a combination of constrained diffusional creep and dislocation dynamics unique to ultra-thin films.

  6. Research on Advanced Thin Film Batteries

    SciTech Connect

    Goldner, Ronald B.

    2003-11-24

    During the past 7 years, the Tufts group has been carrying out research on advanced thin film batteries composed of a thin film LiCo02 cathode (positive electrode), a thin film LiPON (lithium phosphorous oxynitride) solid electrolyte, and a thin film graphitic carbon anode (negative electrode), under grant DE FG02-95ER14578. Prior to 1997, the research had been using an rfsputter deposition process for LiCoOi and LiPON and an electron beam evaporation or a controlled anode arc evaporation method for depositing the carbon layer. The pre-1997 work led to the deposition of a single layer cell that was successfully cycled for more than 400 times [1,2] and the research also led to the deposition of a monolithic double-cell 7 volt battery that was cycled for more than 15 times [3]. Since 1997, the research has been concerned primarily with developing a research-worthy and, possibly, a production-worthy, thin film deposition process, termed IBAD (ion beam assisted deposition) for depositing each ofthe electrodes and the electrolyte of a completely inorganic solid thin film battery. The main focus has been on depositing three materials - graphitic carbon as the negative electrode (anode), lithium cobalt oxide (nominally LiCoCb) as the positive electrode (cathode), and lithium phosphorus oxynitride (LiPON) as the electrolyte. Since 1998, carbon, LiCoOa, and LiPON films have been deposited using the IBAD process with the following results.

  7. Performance Characterization of Monolithic Thin Film Resistors

    NASA Astrophysics Data System (ADS)

    Yin, Rong

    Thin film resistors have a large resistance range and stable performance under high temperature operating condition. Thin film resistors trimmed by laser beam are able to achieve very high precision on resistance value. As a result, thin film resistors have been widely used to improve the performance of integrated circuits such as operational amplifier, analog-to-digital (A/D) and digital -to-analog (D/A) converters, etc. In this dissertation, a new class of thin film resistors, silicon chrome (SiCr) thin film resistors, has been investigated at length. From thin film characterization to aging behavior modelling, we have carried out a series of engineering activities. The characteristics of the SiCr thin film incorporated into three bipolar processes were first determined. After laser trimming, we have measured a couple of physical parameters of the SiCr film in the heat affected zone (HAZ). This is the first time the sheet resistance and the temperature coefficient of resistance (TCR) of thin film in the HAZ have been characterized. Both thermal and d.c. load accelerated aging tests were performed. The test structures were subjected to the aging for 1000 hours. Based on the test data, we not only evaluated the classical thermal aging model for untrimmed thin film resistors, but also established several empirical thermal aging models for trimmed resistors and d.c. load aging models for both trimmed and untrimmed thin film resistors. All the experiments were carried out for both conventional bar resistors and our new Swiss Cheese (SC) resistors. For the first time, the performance of laser trimmed SC resistors, which was experimentally evaluated, shown a clear superiority over that of trimmed bar resistors. Besides these experiments, we have examined different die attach techniques and their effects on thin film resistors. Also, we have developed a number of hardware systems and software tools, such as a temperature controller, d.c. current source, temperature

  8. Permanent laser conditioning of thin film optical materials

    DOEpatents

    Wolfe, C. Robert; Kozlowski, Mark R.; Campbell, John H.; Staggs, Michael; Rainer, Frank

    1995-01-01

    The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold.

  9. Permanent laser conditioning of thin film optical materials

    DOEpatents

    Wolfe, C.R.; Kozlowski, M.R.; Campbell, J.H.; Staggs, M.; Rainer, F.

    1995-12-05

    The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold. 9 figs.

  10. Ferromagnetic properties of fcc Gd thin films

    SciTech Connect

    Bertelli, T. P. Passamani, E. C.; Larica, C.; Nascimento, V. P.; Takeuchi, A. Y.

    2015-05-28

    Magnetic properties of sputtered Gd thin films grown on Si (100) substrates kept at two different temperatures were investigated using X-ray diffraction, ac magnetic susceptibility, and dc magnetization measurements. The obtained Gd thin films have a mixture of hcp and fcc structures, but with their fractions depending on the substrate temperature T{sub S} and film thickness x. Gd fcc samples were obtained when T{sub S} = 763 K and x = 10 nm, while the hcp structure was stabilized for lower T{sub S} (300 K) and thicker film (20 nm). The fcc structure is formed on the Ta buffer layer, while the hcp phase grows on the fcc Gd layer as a consequence of the lattice relaxation process. Spin reorientation phenomenon, commonly found in bulk Gd species, was also observed in the hcp Gd thin film. This phenomenon is assumed to cause the magnetization anomalous increase observed below 50 K in stressed Gd films. Magnetic properties of fcc Gd thin films are: Curie temperature above 300 K, saturation magnetization value of about 175 emu/cm{sup 3}, and coercive field of about 100 Oe at 300 K; features that allow us to classify Gd thin films, with fcc structure, as a soft ferromagnetic material.

  11. Thin film production method and apparatus

    DOEpatents

    Loutfy, Raouf O.; Moravsky, Alexander P.; Hassen, Charles N.

    2010-08-10

    A method for forming a thin film material which comprises depositing solid particles from a flowing suspension or aerosol onto a filter and next adhering the solid particles to a second substrate using an adhesive.

  12. Thermally tunable ferroelectric thin film photonic crystals.

    SciTech Connect

    Lin, P. T.; Wessels, B. W.; Imre, A.; Ocola, L. E.; Northwestern Univ.

    2008-01-01

    Thermally tunable PhCs are fabricated from ferroelectric thin films. Photonic band structure and temperature dependent diffraction are calculated by FDTD. 50% intensity modulation is demonstrated experimentally. This device has potential in active ultra-compact optical circuits.

  13. Mechanical Properties of Silicon Carbonitride Thin Films

    NASA Astrophysics Data System (ADS)

    Peng, Xiaofeng; Hu, Xingfang; Wang, Wei; Song, Lixin

    2003-02-01

    Silicon carbonitride thin films were synthesized by reactive rf sputtering a silicon carbide target in nitrogen and argon atmosphere, or sputtering a silicon nitride target in methane and argon atmosphere, respectively. The Nanoindentation technique (Nanoindenter XP system with a continuous stiffness measurement technique) was employed to measure the hardness and elastic modulus of thin films. The effects of sputtering power on the mechanical properties are different for the two SiCN thin films. With increasing sputtering power, the hardness and the elastic modulus decrease for the former but increase for the latter. The tendency is similar to the evolution trend of Si-C bonds in SiCN materials. This reflects that Si-C bonds provide greater hardness for SiCN thin films than Si-N and C-N bonds.

  14. Highly stretchable wrinkled gold thin film wires

    NASA Astrophysics Data System (ADS)

    Kim, Joshua; Park, Sun-Jun; Nguyen, Thao; Chu, Michael; Pegan, Jonathan D.; Khine, Michelle

    2016-02-01

    With the growing prominence of wearable electronic technology, there is a need to improve the mechanical reliability of electronics for more demanding applications. Conductive wires represent a vital component present in all electronics. Unlike traditional planar and rigid electronics, these new wearable electrical components must conform to curvilinear surfaces, stretch with the body, and remain unobtrusive and low profile. In this paper, the piezoresistive response of shrink induced wrinkled gold thin films under strain demonstrates robust conductive performance in excess of 200% strain. Importantly, the wrinkled metallic thin films displayed negligible change in resistance of up to 100% strain. The wrinkled metallic wires exhibited consistent performance after repetitive strain. Importantly, these wrinkled thin films are inexpensive to fabricate and are compatible with roll to roll manufacturing processes. We propose that these wrinkled metal thin film wires are an attractive alternative to conventional wires for wearable applications.

  15. Recent developments in thin film solar cells

    NASA Astrophysics Data System (ADS)

    Dhere, Neelkanth G.

    The present status of the development of thin film solar cells is reviewed, with emphasis on important areas for further research. The following aperture-area efficiencies were measured for thin film modules: a-Si:H, 9.8 percent, 933 sq cm; CuIn(Ga)Se2, 11.1 percent, 938 sq cm; and CdTe, 7.3 percent, 838 sq cm. CuIn(Ga)Se2 cells and modules demonstrated excellent efficiencies and stability. The cost advantage of thin film modules and the higher efficiency and improved stability resulting from multijunctions are shown. Engineering solutions are found to minimize light-induced degradation of a-Si:H solar cells. CdTe cells and modules, and cleaved epitaxial thin film III-V compound cells showed remarkable efficiencies.

  16. Microstructure Related Properties of Optical Thin Films.

    NASA Astrophysics Data System (ADS)

    Wharton, John James, Jr.

    Both the optical and physical properties of thin film optical interference coatings depend upon the microstructure of the deposited films. This microstructure is strongly columnar with voids between the columns. Computer simulations of the film growth process indicate that the two most important factors responsible for this columnar growth are a limited mobility of the condensing molecules and self-shadowing by molecules already deposited. During the vacuum deposition of thin films, the microstructure can be influenced by many parameters, such as substrate temperature and vacuum pressure. By controlling these parameters and introducing additional ones, thin film coatings can be improved. In this research, ultraviolet irradiation and ion bombardment were examined as additional parameters. Past studies have shown that post-deposition ultraviolet irradiation can be used to relieve stress and reduce absorption in the far ultraviolet of silicon dioxide films. Ion bombardment has been used to reduce stress, improve packing density, and increase resistance to moisture penetration. Three refractory oxide materials commonly used in thin film coatings were studied; they are silicon dioxide, titanium dioxide, and zirconium dioxide. Both single-layer films and narrowband filters made of these materials were examined. A 1000-watt mercury-xenon lamp was used to provide ultraviolet irradiation. An inverted magnetron ion source was used to produce argon and oxygen ions. Ultraviolet irradiation was found to reduce the absorption and slightly increase the index of refraction in zirconium oxide films. X-ray diffraction analysis revealed that ultraviolet irradiation caused titanium oxide films to become more amorphous; their absorption in the ultraviolet was slightly reduced. No changes were noted in film durability. Ion bombardment enhanced the tetragonal (lll) peak of zirconium oxide but increased the absorption of both zirconium oxide and titanium oxide films. The titanium oxide

  17. Conducting-interlayer SiOx memory devices on rigid and flexible substrates.

    PubMed

    Wang, Gunuk; Raji, Abdul-Rahman O; Lee, Jae-Hwang; Tour, James M

    2014-02-25

    SiOx memory devices that offer significant improvement in switching performance were fabricated at room temperature with conducting interlayers such as Pd, Ti, carbon, or multilayer graphene. In particular, the Pd-interlayer SiOx memory devices exhibited improvements in lowering the electroforming voltages and threshold voltages as the number of inserted Pd layers was increased, as compared to a pure SiOx memory structure. In addition, we demonstrated that the Pd-interlayer SiOx junction fabricated on a flexible substrate maintained low electroforming voltage and mechanically stable switching properties. From these observations, a possible switching mechanism is discussed based on the formation of individual conducting paths at the weakest edge regions of each SiOx film, where the normalized bond-breaking probability of SiOx is influenced by the voltage and the thickness of SiOx. This fabrication approach offers a useful structural platform for next-generation memory applications for enhancement of the switching properties while maintaining a low-temperature fabrication method that is even amenable with flexible substrates. PMID:24446742

  18. Review of CdO thin films

    NASA Astrophysics Data System (ADS)

    Chandiramouli, R.; Jeyaprakash, B. G.

    2013-02-01

    Cadmium Oxide (CdO) thin film is one of the first transparent conducting oxide semiconductors. Its excellent optical and electronic properties have made CdO a promising material for flat panel displays. In this article, we provide a comprehensive review of the state-of-the-art research activities related to the 'preparation-property-application' triangle of CdO thin films.

  19. Thin-film reliability and engineering overview

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.

    1984-01-01

    The reliability and engineering technology base required for thin film solar energy conversions modules is discussed. The emphasis is on the integration of amorphous silicon cells into power modules. The effort is being coordinated with SERI's thin film cell research activities as part of DOE's Amorphous Silicon Program. Program concentration is on temperature humidity reliability research, glass breaking strength research, point defect system analysis, hot spot heating assessment, and electrical measurements technology.

  20. Epitaxial thin film growth in outer space

    NASA Technical Reports Server (NTRS)

    Ignatiev, Alex; Chu, C. W.

    1988-01-01

    A new concept for materials processing in space exploits the ultravacuum component of space for thin-film epitaxial growth. The unique LEO space environment is expected to yield 10-ftorr or better pressures, semiinfinite pumping speeds, and large ultravacuum volume (about 100 cu m) without walls. These space ultravacuum properties promise major improvement in the quality, unique nature, and throughput of epitaxially grown materials, including semiconductors, magnetic materials, and thin-film high-temperature superconductors.

  1. Advances in CZTS thin films and nanostructured

    NASA Astrophysics Data System (ADS)

    Ali, N.; Ahmed, R.; Bakhtiar-Ul-Haq; Shaari, A.

    2015-06-01

    Already published data for the optical band gap (Eg) of thin films and nanostructured copper zinc tin sulphide (CZTS) have been reviewed and combined. The vacuum (physical) and non-vacuum (chemical) processes are focused in the study for band gap comparison. The results are accumulated for thin films and nanostructured in different tables. It is inferred from the re- view that the nanostructured material has plenty of worth by engineering the band gap for capturing the maximum photons from solar spectrum.

  2. Thin wetting film lensless imaging

    NASA Astrophysics Data System (ADS)

    Allier, C. P.; Poher, V.; Coutard, J. G.; Hiernard, G.; Dinten, J. M.

    2011-03-01

    Lensless imaging has recently attracted a lot of attention as a compact, easy-to-use method to image or detect biological objects like cells, but failed at detecting micron size objects like bacteria that often do not scatter enough light. In order to detect single bacterium, we have developed a method based on a thin wetting film that produces a micro-lens effect. Compared with previously reported results, a large improvement in signal to noise ratio is obtained due to the presence of a micro-lens on top of each bacterium. In these conditions, standard CMOS sensors are able to detect single bacterium, e.g. E.coli, Bacillus subtilis and Bacillus thuringiensis, with a large signal to noise ratio. This paper presents our sensor optimization to enhance the SNR; improve the detection of sub-micron objects; and increase the imaging FOV, from 4.3 mm2 to 12 mm2 to 24 mm2, which allows the detection of bacteria contained in 0.5μl to 4μl to 10μl, respectively.

  3. Microstructural evolution of tungsten oxide thin films

    NASA Astrophysics Data System (ADS)

    Hembram, K. P. S. S.; Thomas, Rajesh; Rao, G. Mohan

    2009-10-01

    Tungsten oxide thin films are of great interest due to their promising applications in various optoelectronic thin film devices. We have investigated the microstructural evolution of tungsten oxide thin films grown by DC magnetron sputtering on silicon substrate. The structural characterization and surface morphology were carried out using X-ray diffraction and Scanning Electron Microscopy (SEM). The as deposited films were amorphous, where as, the films annealed above 400 °C were crystalline. In order to explain the microstructural changes due to annealing, we have proposed a "instability wheel" model for the evolution of the microstructure. This model explains the transformation of mater into various geometries within them selves, followed by external perturbation.

  4. Printable CIGS thin film solar cells

    NASA Astrophysics Data System (ADS)

    Fan, Xiaojuan

    2014-03-01

    Among the various thin film solar cells in the market, CuInGaSe thin film cells have been considered as the most promising alternatives to silicon solar cells because of their high photo-electricity efficiency, reliability, and stability. However, many fabrication of CIGS thin film are based on vacuum processes such as evaporation sputtering techniques which are not cost efficient. This work develops a method using paste or ink liquid spin-coated on glass that would be to conventional ways in terms of cost effective, non-vacuum needed, quick processing. A mixture precursor was prepared by dissolving appropriate amounts of chemicals. After the mixture solution was cooled, a viscous paste prepared and ready for spin-coating process. A slight bluish CIG thin film substrate was then put in a tube furnace with evaporation of metal Se by depositing CdS layer and ZnO nanoparticle thin film coating to a solar cell fabrication. Structure, absorption spectrum, and photo-conversion efficiency for the as-grown CIGS thin film solar cell under study.

  5. Printable CIGS thin film solar cells

    NASA Astrophysics Data System (ADS)

    Fan, Xiaojuan

    2013-03-01

    Among the various thin film solar cells in the market, CuInGaSe thin film solar cells have been considered as the most promising alternatives to crystalline silicon solar cells because of their high photo-electricity conversion efficiency, reliability, and stability. However, many fabrication methods of CIGS thin film are based on vacuum processes such as evaporation and sputtering techniques which are not cost efficient. This work develops a solution method using paste or ink liquid spin-coated on glass that would be competitive to conventional ways in terms of cost effective, non-vacuum needed, and quick processing. A mixture precursor was prepared by dissolving appropriate amounts of composition chemicals. After the mixture solution was cooled, a viscous paste was prepared and ready for spin-coating process. A slight bluish CIG thin film on substrate was then put in a tube furnace with evaporation of metal Se followed by depositing CdS layer and ZnO nanoparticle thin film coating to complete a solar cell fabrication. Structure, absorption spectrum, and photo-electricity conversion efficiency for the as-grown CIGS thin film solar cell are under study.

  6. Laser processing for thin-film photovoltaics

    NASA Astrophysics Data System (ADS)

    Compaan, Alvin D.

    1995-04-01

    Over the past decade major advances have occurred in the field of thin- film photovoltaics (PV) with many of them a direct consequence of the application of laser processing. Improved cell efficiencies have been achieved in crystalline and polycrystalline Si, in hydrogenated amorphous silicon, and in two polycrystalline thin-film materials. The use of lasers in photovoltaics includes laser hole drilling for emitter wrap-through, laser trenching for buried bus lines, and laser texturing of crystalline and polycrystalline Si cells. In thin-film devices, laser scribing is gaining increased importance for module interconnects. Pulsed laser recrystallization of boron-doped hydrogenated amorphous silicon is used to form highly conductive p-layers in p-i-n amorphous silicon cells and in thin-film transistors. Optical beam melting appears to be an attractive method for forming metal semiconductor alloys for contact formation. Finally, pulsed lasers are used for deposition of the entire semiconductor absorber layer in two types of polycrystalline thin-film cells-those based on copper indium diselenide and those based on cadmium telluride. In our lab we have prepared and studied heavily doped polycrystalline silicon thin films and also have used laser physical vapor deposition (LPVD) to prepare 'all-LPVD' CdS/CdTe solar cells on glass with efficiencies tested at NREL at 10.5%. LPVD is highly flexible and ideally suited for prototyping PV cells using ternary or quaternary alloys and for exploring new dopant combinations.

  7. Carbon Nanotube Thin-Film Antennas.

    PubMed

    Puchades, Ivan; Rossi, Jamie E; Cress, Cory D; Naglich, Eric; Landi, Brian J

    2016-08-17

    Multiwalled carbon nanotube (MWCNT) and single-walled carbon nanotube (SWCNT) dipole antennas have been successfully designed, fabricated, and tested. Antennas of varying lengths were fabricated using flexible bulk MWCNT sheet material and evaluated to confirm the validity of a full-wave antenna design equation. The ∼20× improvement in electrical conductivity provided by chemically doped SWCNT thin films over MWCNT sheets presents an opportunity for the fabrication of thin-film antennas, leading to potentially simplified system integration and optical transparency. The resonance characteristics of a fabricated chlorosulfonic acid-doped SWCNT thin-film antenna demonstrate the feasibility of the technology and indicate that when the sheet resistance of the thin film is >40 ohm/sq no power is absorbed by the antenna and that a sheet resistance of <10 ohm/sq is needed to achieve a 10 dB return loss in the unbalanced antenna. The dependence of the return loss performance on the SWCNT sheet resistance is consistent with unbalanced metal, metal oxide, and other CNT-based thin-film antennas, and it provides a framework for which other thin-film antennas can be designed. PMID:27454334

  8. Thin-Film Nanocapacitor and Its Characterization

    ERIC Educational Resources Information Center

    Hunter, David N.; Pickering, Shawn L.; Jia, Dongdong

    2007-01-01

    An undergraduate thin-film nanotechnology laboratory was designed. Nanocapacitors were fabricated on silicon substrates by sputter deposition. A mask was designed to form the shape of the capacitor and its electrodes. Thin metal layers of Au with a 80 nm thickness were deposited and used as two infinitely large parallel plates for a capacitor.…

  9. The effects of buffer layers on the performance and stability of flexible InGaZnO thin film transistors on polyimide substrates

    NASA Astrophysics Data System (ADS)

    Ok, Kyung-Chul; Ko Park, Sang-Hee; Hwang, Chi-Sun; Kim, H.; Soo Shin, Hyun; Bae, Jonguk; Park, Jin-Seong

    2014-02-01

    We demonstrated the fabrication of flexible amorphous indium gallium zinc oxide thin-film transistors (TFTs) on high-temperature polyimide (PI) substrates, which were debonded from the carrier glass after TFT fabrication. The application of appropriate buffer layers on the PI substrates affected the TFT performance and stability. The adoption of the SiNx/AlOx buffer layers as water and hydrogen diffusion barriers significantly improved the device performance and stability against the thermal annealing and negative bias stress, compared to single SiNx or SiOx buffer layers. The substrates could be bent down to a radius of curvature of 15 mm and the devices remained normally functional.

  10. Thin transparent films formed from powdered glass

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Glass film less than five mils thick is formed from powdered glass dispersed in an organic liquid, deposited on a substrate, and fused into place. The thin films can be cut and shaped for contact lenses, optical filters and insulating layers.

  11. An Extension of Thin Film Optics

    NASA Astrophysics Data System (ADS)

    Apell, P.

    1985-10-01

    The classical McIntyre formula for p-polarized light incident on a thin film on a substrate is extended in general terms to include a realistic description of the interfaces and the possible excitation of plasma waves in the film. An earlier extension is critized and criteria are given for when the classical result is applicable.

  12. Thin films, asphaltenes, and reservoir wettability

    SciTech Connect

    Kaminsky, R.; Bergeron, V.; Radke, C.J. |

    1993-04-01

    Reservoir wettability impacts the success of oil recovery by waterflooding and other methods. To understand wettability and its alteration, thin-film forces in solid-aqueous-oil systems must be elucidated. Upon rupture of thick aqueous films separating the oil and rock phases, asphaltene components in the crude oil adsorb irreversibly on the solid surface, changing it from water-wet to oil-wet. Conditions of wettability alteration can be found by performing adhesion tests, in which an oil droplet is brought into contact with a solid surface. Exceeding a critical capillary pressure destabilizes the film, causing spontaneous film rupture to a molecularly adsorbed layer and oil adhesion accompanied by pinning at the three-phase contact line. The authors conduct adhesion experiments similar to those of Buckley and Morrow and simultaneously examine the state of the underlying thin film using optical microscopy and microinterferometry. Aqueous thin films between an asphaltic Orcutt crude oil and glass surfaces are studied as a function of aqueous pH and salinity. For the first time, they prove experimentally that strongly water-wet to strongly oil-wet wettability alteration and contact-angle pinning occur when thick aqueous films thin to molecularly adsorbed films and when the oil phase contains asphaltene molecules.

  13. Liquid phase deposition of electrochromic thin films

    SciTech Connect

    Richardson, Thomas J.; Rubin, Michael D.

    2000-08-18

    Thin films of titanium, zirconium and nickel oxides were deposited on conductive SnO2:F glass substrates by immersion in aqueous solutions. The films are transparent, conformal, of uniform thickness and appearance, and adhere strongly to the substrates. On electrochemical cycling, TiO2, mixed TiO2-ZrO2, and NiOx films exhibited stable electrochromism with high coloration efficiencies. These nickel oxide films were particularly stable compared with films prepared by other non-vacuum techniques. The method is simple, inexpensive, energy efficient, and readily scalable to larger substrates.

  14. Induced electronic anisotropy in bismuth thin films

    SciTech Connect

    Liao, Albert D.; Yao, Mengliang; Opeil, Cyril; Katmis, Ferhat; Moodera, Jagadeesh S.; Li, Mingda; Tang, Shuang; Dresselhaus, Mildred S.

    2014-08-11

    We use magneto-resistance measurements to investigate the effect of texturing in polycrystalline bismuth thin films. Electrical current in bismuth films with texturing such that all grains are oriented with the trigonal axis normal to the film plane is found to flow in an isotropic manner. By contrast, bismuth films with no texture such that not all grains have the same crystallographic orientation exhibit anisotropic current flow, giving rise to preferential current flow pathways in each grain depending on its orientation. Extraction of the mobility and the phase coherence length in both types of films indicates that carrier scattering is not responsible for the observed anisotropic conduction. Evidence from control experiments on antimony thin films suggests that the anisotropy is a result of bismuth's large electron effective mass anisotropy.

  15. Adhesion and friction of thin metal films

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1976-01-01

    Sliding friction experiments were conducted in vacuum with thin films of titanium, chromium, iron, and platinum sputter deposited on quartz or mica substrates. A single crystal hemispherically tipped gold slider was used in contact with the films at loads of 1.0 to 30.0 and at a sliding velocity of 0.7 mm/min at 23 C. Test results indicate that the friction coefficient is dependent on the adhesion of two interfaces, that between the film and its substrate and the slider and the film. There exists a relationship between the percent d bond character of metals in bulk and in thin film form and the friction coefficient. Oxygen can increase adhesive bonding of a metal film (platinum) to a substrate.

  16. Flexible Thin Metal Film Thermal Sensing System

    NASA Technical Reports Server (NTRS)

    Thomsen, Donald Laurence (Inventor)

    2012-01-01

    A flexible thin metal film thermal sensing system is provided. A thermally-conductive film made from a thermally-insulating material is doped with thermally-conductive material. At least one layer of electrically-conductive metal is deposited directly onto a surface of the thermally-conductive film. One or more devices are coupled to the layer(s) to measure an electrical characteristic associated therewith as an indication of temperature.

  17. Microcrystalline organic thin-film solar cells.

    PubMed

    Verreet, Bregt; Heremans, Paul; Stesmans, Andre; Rand, Barry P

    2013-10-11

    Microcrystalline organic films with tunable thickness are produced directly on an indium-tin-oxide substrate, by crystallizing a thin amorphous rubrene film followed by its use as a template for subsequent homoepitaxial growth. These films, with exciton diffusion lengths exceeding 200 nm, produce solar cells with increasing photocurrents at thicknesses up to 400 nm with a fill factor >65%, demonstrating significant potential for microcrystalline organic electronic devices. PMID:23939936

  18. Process for making thin film solar cell

    SciTech Connect

    Eberspacher, C.; Ermer, J.H.; Mitchell, K.W.

    1991-09-03

    This paper describes a semiconducting thin film forced on a substrate by the method. It comprises: depositing a composite film of copper and indium on a substrate, the film having an atomic copper to indium ratio of about one, depositing a film of selenium on the composite copper indium film, the selenium film thickness selected to provide an atomic ratio of selenium to copper and indium of less than one, and heating the substrate with the composite copper indium film and the selenium film in the presence of H{sub 2}S gas for a time and at a temperature sufficient to cause interdiffusion of copper, indium, selenium and sulfur to form a semiconductor of the class CuInSe{sub 2{minus}x}S{sub x} where x is less than two.

  19. Thin-film Rechargeable Lithium Batteries

    DOE R&D Accomplishments Database

    Dudney, N. J.; Bates, J. B.; Lubben, D.

    1995-06-01

    Thin film rechargeable lithium batteries using ceramic electrolyte and cathode materials have been fabricated by physical deposition techniques. The lithium phosphorous oxynitride electrolyte has exceptional electrochemical stability and a good lithium conductivity. The lithium insertion reaction of several different intercalation materials, amorphous V{sub 2}O{sub 5}, amorphous LiMn{sub 2}O{sub 4}, and crystalline LiMn{sub 2}O{sub 4} films, have been investigated using the completed cathode/electrolyte/lithium thin film battery.

  20. Thin-film rechargeable lithium batteries

    SciTech Connect

    Dudney, N.J.; Bates, J.B.; Lubben, D.

    1995-06-01

    Thin-film rechargeable lithium batteries using ceramic electrolyte and cathode materials have been fabricated by physical deposition techniques. The lithium phosphorous oxynitride electrolyte has exceptional electrochemical stability and a good lithium conductivity. The lithium insertion reaction of several different intercalation materials, amorphous V{sub 2}O{sub 5}, amorphous LiMn{sub 2}O{sub 4}, and crystalline LiMn{sub 2}O{sub 4} films, have been investigated using the completed cathode/electrolyte/lithium thin-film battery.

  1. Thin Ice Films at Mineral Surfaces.

    PubMed

    Yeşilbaş, Merve; Boily, Jean-François

    2016-07-21

    Ice films formed at mineral surfaces are of widespread occurrence in nature and are involved in numerous atmospheric and terrestrial processes. In this study, we studied thin ice films at surfaces of 19 synthetic and natural mineral samples of varied structure and composition. These thin films were formed by sublimation of thicker hexagonal ice overlayers mostly produced by freezing wet pastes of mineral particles at -10 and -50 °C. Vibration spectroscopy revealed that thin ice films contained smaller populations of strongly hydrogen-bonded water molecules than in hexagonal ice and liquid water. Thin ice films at the surfaces of the majority of minerals considered in this work [i.e., metal (oxy)(hydr)oxides, phyllosilicates, silicates, volcanic ash, Arizona Test Dust] produced intense O-H stretching bands at ∼3400 cm(-1), attenuated bands at ∼3200 cm(-1), and liquid-water-like bending band at ∼1640 cm(-1) irrespective of structure and composition. Illite, a nonexpandable phyllosilicate, is the only mineral that stabilized a form of ice that was strongly resilient to sublimation in temperatures as low as -50 °C. As mineral-bound thin ice films are the substrates upon which ice grows from water vapor or aqueous solutions, this study provides new constraints from which their natural occurrences can be understood. PMID:27377606

  2. The preparation of ACEL thin films

    NASA Astrophysics Data System (ADS)

    Vecht, Aron

    1990-05-01

    Although thin film ACEL devices have become commercially available, the number of companies producing these displays has continued to diminish. The cause of their demise was not display performance, as both sufficient brightness and efficiency has been achieved, but the low return on the heavy capital investment due to the poor yields obtained in production. In order to make ACEL thin film devices more viable, the capital investment needs to be low and/or the production yields high. Opting for relatively expensive sputtering or ALE techniques as the sole methods of fabricating EL structures, is both commercially and scientifically ill-advised. Considerable effort was spent in developing cheaper alternative techniques for thin film deposition. The main objectives of the contract can be summarized as follows: (1) to deposit high quality ZnS thin films by MOCVD, (2) to dope the ZnS thin film with Mn, (3) to deposit high quality dielectric films using a novel spray pyrolysis process, (4) to evaluate optimized insulator/ZnS-Mn/insulator structures, and (5) the fabrication of large area XY matrix ACEL structures.

  3. Thin film absorber for a solar collector

    DOEpatents

    Wilhelm, William G.

    1985-01-01

    This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  4. Carrier lifetimes in thin-film photovoltaics

    NASA Astrophysics Data System (ADS)

    Baek, Dohyun

    2015-09-01

    The carrier lifetimes in thin-film solar cells are reviewed and discussed. Shockley-Read-Hall recombination is dominant at low carrier density, Auger recombination is dominant under a high injection condition and high carrier density, and surface recombination is dominant under any conditions. Because the surface photovoltage technique is insensitive to the surface condition, it is useful for bulk lifetime measurements. The photoconductance decay technique measures the effective recombination lifetime. The time-resolved photoluminescence technique is very useful for measuring thin-film semiconductor or solar-cell materials lifetime, because the sample is thin, other techniques are not suitable for measuring the lifetime. Many papers have provided time-resolved photoluminescence (TRPL) lifetimes for copper-indium-gallium-selenide (CIGS) and CdTe thin-film solar cell. The TRPL lifetime strongly depends on open-circuit voltage and conversion efficiency; however, the TRPL life time is insensitive to the short-circuit current.

  5. Adhesive transfer of thin viscoelastic films.

    PubMed

    Shull, Kenneth R; Martin, Elizabeth F; Drzal, Peter L; Hersam, Mark C; Markowitz, Alison R; McSwain, Rachel L

    2005-01-01

    Micellar suspensions of acrylic diblock copolymers are excellent model materials for studying the adhesive transfer of viscoelastic solids. The micellar structure is maintained in films with a variety of thicknesses, giving films with a well-defined structure and viscoelastic character. Thin films were cast onto elastomeric silicone substrates from micellar suspensions in butanol, and the adhesive interactions between these coated elastomeric substrates and a rigid indenter were quantified. By controlling the adhesive properties of the film/indenter and film/substrate interfaces we were able to obtain very clean transfer of the film from the substrate to the portion of the glass indenter with which the film was in contact. Adhesive failure at the film/substrate interface occurs when the film/indenter interface is able to support an applied energy release rate that is sufficient to result in cavity nucleation at the film/substrate interface. Cavity formation is rapidly followed by delamination of the entire region under the indenter. The final stage in the transfer process involves the failure of the film that bridges the indenter and the elastomeric substrate. This film is remarkably robust and is extended to three times its original width prior to failure. Failure of this film occurs at the periphery of the indenter, giving a transferred film that conforms to the original contact area between the indenter and the coated substrate. PMID:15620300

  6. Simulated Thin-Film Growth and Imaging

    NASA Astrophysics Data System (ADS)

    Schillaci, Michael

    2001-06-01

    Thin-films have become the cornerstone of the electronics, telecommunications, and broadband markets. A list of potential products includes: computer boards and chips, satellites, cell phones, fuel cells, superconductors, flat panel displays, optical waveguides, building and automotive windows, food and beverage plastic containers, metal foils, pipe plating, vision ware, manufacturing equipment and turbine engines. For all of these reasons a basic understanding of the physical processes involved in both growing and imaging thin-films can provide a wonderful research project for advanced undergraduate and first-year graduate students. After producing rudimentary two- and three-dimensional thin-film models incorporating ballsitic deposition and nearest neighbor Coulomb-type interactions, the QM tunneling equations are used to produce simulated scanning tunneling microscope (SSTM) images of the films. A discussion of computational platforms, languages, and software packages that may be used to accomplish similar results is also given.

  7. Coalescence and percolation in thin metal films

    SciTech Connect

    Yu, X.; Duxbury, P.M.; Jeffers, G.; Dubson, M.A. Center for Fundamental Materials Research, Michigan State University, East Lansing, Michigan 48824-1116 )

    1991-12-15

    Metals thermally evaporated onto warm insulating substrates evolve to the thin-film state via the morphological sequence: compact islands, elongated islands, percolation, hole filling, and finally the thin-film state. The coverage at which the metal percolates ({ital p}{sub {ital c}}) is often considerably higher than that predicted by percolation models, such as inverse swiss cheese or lattice percolation. Using a simple continuum model, we show that high-{ital p}{sub {ital c}}'s arise naturally in thin films that exhibit a crossover from full coalescence of islands at early stages of growth to partial coalescence at later stages. In this interrupted-coalescence model, full coalescence of islands occurs up to a critical island radius {ital R}{sub {ital c}}, after which islands overlap, but do not fully coalesce. We present the morphology of films and the critical area coverages generated by this model.

  8. Method for making thin polypropylene film

    DOEpatents

    Behymer, R.D.; Scholten, J.A.

    1985-11-21

    An economical method is provided for making uniform thickness polypropylene film as thin as 100 Angstroms. A solution of polypropylene dissolved in xylene is formed by mixing granular polypropylene and xylene together in a flask at an elevated temperature. A substrate, such as a glass plate or microscope slide is immersed in the solution. When the glass plate is withdrawn from the solution at a uniform rate, a thin polypropylene film forms on a flat surface area of the glass plate as the result of xylene evaporation. The actual thickness of the polypropylene film is functional of the polypropylene in xylene solution concentration, and the particular withdrawal rate of the glass plate from the solution. After formation, the thin polypropylene film is floated from the glass plate onto the surface of water, from which it is picked up with a wire hoop.

  9. Tungsten-doped thin film materials

    DOEpatents

    Xiang, Xiao-Dong; Chang, Hauyee; Gao, Chen; Takeuchi, Ichiro; Schultz, Peter G.

    2003-12-09

    A dielectric thin film material for high frequency use, including use as a capacitor, and having a low dielectric loss factor is provided, the film comprising a composition of tungsten-doped barium strontium titanate of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3, where X is between about 0.5 and about 1.0. Also provided is a method for making a dielectric thin film of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3 and doped with W, where X is between about 0.5 and about 1.0, a substrate is provided, TiO.sub.2, the W dopant, Ba, and optionally Sr are deposited on the substrate, and the substrate containing TiO.sub.2, the W dopant, Ba, and optionally Sr is heated to form a low loss dielectric thin film.

  10. Ambient pressure process for preparing aerogel thin films reliquified sols useful in preparing aerogel thin films

    DOEpatents

    Brinker, Charles Jeffrey; Prakash, Sai Sivasankaran

    1999-01-01

    A method for preparing aerogel thin films by an ambient-pressure, continuous process. The method of this invention obviates the use of an autoclave and is amenable to the formation of thin films by operations such as dip coating. The method is less energy intensive and less dangerous than conventional supercritical aerogel processing techniques.

  11. Niobium Thin Film Characterization for Thin Film Technology Used in Superconducting Radiofrequency Cavities

    NASA Astrophysics Data System (ADS)

    Dai, Yishu; Valente-Feliciano, Anne-Marie

    2015-10-01

    Superconducting RadioFrequency (SRF) penetrates about 40-100 nm of the top surface, making thin film technology possible in producing superconducting cavities. Thin film is based on the deposition of a thin Nb layer on top of a good thermal conducting material such as Al or Cu. Thin film allows for better control of the surface and has negligible response to the Earth's magnetic field, eliminating the need for magnetic shielding of the cavities. Thin film superconductivity depends heavily on coating process conditions, involving controllable parameters such as crystal plane orientation, coating temperature, and ion energy. MgO and Al2O3 substrates are used because they offer very smooth surfaces, ideal for studying film growth. Atomic Force Microscopy is used to characterize surface's morphology. It is evident that a lower nucleation energy and a long coating time increases the film quality in the r-plane sapphire crystal orientation. The quality of the film increases with thickness. Nb films coated on r-plane, grow along the (001) plane and yield a much higher RRR compared to the films grown on a- and c-planes. This information allows for further improvement on the research process for thin film technology used in superconducting cavities for the particle accelerators. National Science Foundation, Department of Energy, Jefferson Lab, Old Dominion University.

  12. Corrosion Behaviour of Sputtered Alumina Thin Films

    NASA Astrophysics Data System (ADS)

    Reddy, I. Neelakanta; Dey, Arjun; Sridhara, N.; Anoop, S.; Bera, Parthasarathi; Rani, R. Uma; Anandan, Chinnasamy; Sharma, Anand Kumar

    2015-10-01

    Corrosion studies of sputtered alumina thin films grown on stainless steel (SS) 304 were carried out by linear polarization and electrochemical impedance spectroscopy. Noticeable changes were not observed in morphology and surface roughness of films after carrying out the corrosion test. Corrosion current density (icorr) of alumina coated SS decreased up to 10-10 A cm-2 while icorr value in the range of 10-5-10-6 A cm-2 was observed for bare SS. The direct sputtered film showed superior corrosion resistance behaviour than the reactive sputtered film. This might be attributed to the difference in thickness of the films sputtered by direct and reactive methods. The electronic structure of deposited alumina films was studied both before and after corrosion test by X-ray photoelectron spectroscopy technique which also confirmed no structural changes of alumina film after exposing it to corrosive environment.

  13. Mirrorlike pulsed laser deposited tungsten thin film

    SciTech Connect

    Mostako, A. T. T.; Khare, Alika; Rao, C. V. S.

    2011-01-15

    Mirrorlike tungsten thin films on stainless steel substrate deposited via pulsed laser deposition technique in vacuum (10{sup -5} Torr) is reported, which may find direct application as first mirror in fusion devices. The crystal structure of tungsten film is analyzed using x-ray diffraction pattern, surface morphology of the tungsten films is studied with scanning electron microscope and atomic force microscope. The film composition is identified using energy dispersive x-ray. The specular and diffuse reflectivities with respect to stainless steel substrate of the tungsten films are recorded with FTIR spectra. The thickness and the optical quality of pulsed laser deposition deposited films are tested via interferometric technique. The reflectivity is approaching about that of the bulk for the tungsten film of thickness {approx}782 nm.

  14. Mirrorlike pulsed laser deposited tungsten thin film.

    PubMed

    Mostako, A T T; Rao, C V S; Khare, Alika

    2011-01-01

    Mirrorlike tungsten thin films on stainless steel substrate deposited via pulsed laser deposition technique in vacuum (10(-5) Torr) is reported, which may find direct application as first mirror in fusion devices. The crystal structure of tungsten film is analyzed using x-ray diffraction pattern, surface morphology of the tungsten films is studied with scanning electron microscope and atomic force microscope. The film composition is identified using energy dispersive x-ray. The specular and diffuse reflectivities with respect to stainless steel substrate of the tungsten films are recorded with FTIR spectra. The thickness and the optical quality of pulsed laser deposition deposited films are tested via interferometric technique. The reflectivity is approaching about that of the bulk for the tungsten film of thickness ∼782 nm. PMID:21280810

  15. A high performance thin film thermoelectric cooler

    SciTech Connect

    Rowe, D.M.; Min, G.; Volklein, F.

    1998-07-01

    Thin film thermoelectric devices with small dimensions have been fabricated using microelectronics technology and operated successfully in the Seebeck mode as sensors or generators. However, they do not operate successfully in the Peltier mode as coolers, because of the thermal bypass provided by the relatively thick substrate upon which the thermoelectric device is fabricated. In this paper a processing sequence is described which dramatically reduces this thermal bypass and facilitates the fabrication of high performance integrated thin film thermoelectric coolers. In the processing sequence a very thin amorphous SiC (or SiO{sub 2}SiN{sub 4}) film is deposited on a silicon substrate using conventional thin film deposition and a membrane formed by removing the silicon substrate over a desired region using chemical etching or micro-machining. Thermoelements are deposited on the membrane using conventional thin film deposition and patterning techniques and configured so that the region which is to be cooled is abutted to the cold junctions of the Peltier thermoelements while the hot junctions are located at the outer peripheral area which rests on the silicon substrate rim. Heat is pumped laterally from the cooled region to the silicon substrate rim and then dissipated vertically through it to an external heat sink. Theoretical calculations of the performance of a cooler described above indicate that a maximum temperature difference of about 40--50K can be achieved with a maximum heat pumping capacity of around 10 milliwatts.

  16. Ion beam-based characterization of multicomponent oxide thin films and thin film layered structures

    SciTech Connect

    Krauss, A.R.; Rangaswamy, M.; Lin, Yuping; Gruen, D.M.; Schultz, J.A.; Schmidt, H.K.; Chang, R.P.H.

    1992-11-01

    Fabrication of thin film layered structures of multi-component materials such as high temperature superconductors, ferroelectric and electro-optic materials, and alloy semiconductors, and the development of hybrid materials requires understanding of film growth and interface properties. For High Temperature Superconductors, the superconducting coherence length is extremely short (5--15 {Angstrom}), and fabrication of reliable devices will require control of film properties at extremely sharp interfaces; it will be necessary to verify the integrity of thin layers and layered structure devices over thicknesses comparable to the atomic layer spacing. Analytical techniques which probe the first 1--2 atomic layers are therefore necessary for in-situ characterization of relevant thin film growth processes. However, most surface-analytical techniques are sensitive to a region within 10--40 {Angstrom} of the surface and are physically incompatible with thin film deposition and are typically restricted to ultra high vacuum conditions. A review of ion beam-based analytical methods for the characterization of thin film and multi-layered thin film structures incorporating layers of multicomponent oxides is presented. Particular attention will be paid to the use of time-of-flight techniques based on the use of 1- 15 key ion beams which show potential for use as nondestructive, real-time, in-situ surface diagnostics for the growth of multicomponent metal and metal oxide thin films.

  17. Thin film dielectric composite materials

    DOEpatents

    Jia, Quanxi; Gibbons, Brady J.; Findikoglu, Alp T.; Park, Bae Ho

    2002-01-01

    A dielectric composite material comprising at least two crystal phases of different components with TiO.sub.2 as a first component and a material selected from the group consisting of Ba.sub.1-x Sr.sub.x TiO.sub.3 where x is from 0.3 to 0.7, Pb.sub.1-x Ca.sub.x TiO.sub.3 where x is from 0.4 to 0.7, Sr.sub.1-x Pb.sub.x TiO.sub.3 where x is from 0.2 to 0.4, Ba.sub.1-x Cd.sub.x TiO.sub.3 where x is from 0.02 to 0.1, BaTi.sub.1-x Zr.sub.x O.sub.3 where x is from 0.2 to 0.3, BaTi.sub.1-x Sn.sub.x O.sub.3 where x is from 0.15 to 0.3, BaTi.sub.1-x Hf.sub.x O.sub.3 where x is from 0.24 to 0.3, Pb.sub.1-1.3x La.sub.x TiO.sub.3+0.2x where x is from 0.23 to 0.3, (BaTiO.sub.3).sub.x (PbFeo.sub.0.5 Nb.sub.0.5 O.sub.3).sub.1-x where x is from 0.75 to 0.9, (PbTiO.sub.3).sub.- (PbCo.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.1 to 0.45, (PbTiO.sub.3).sub.x (PbMg.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.2 to 0.4, and (PbTiO.sub.3).sub.x (PbFe.sub.0.5 Ta.sub.0.5 O.sub.3).sub.1-x where x is from 0 to 0.2, as the second component is described. The dielectric composite material can be formed as a thin film upon suitable substrates.

  18. Crystallization of zirconia based thin films.

    PubMed

    Stender, D; Frison, R; Conder, K; Rupp, J L M; Scherrer, B; Martynczuk, J M; Gauckler, L J; Schneider, C W; Lippert, T; Wokaun, A

    2015-07-28

    The crystallization kinetics of amorphous 3 and 8 mol% yttria stabilized zirconia (3YSZ and 8YSZ) thin films grown by pulsed laser deposition (PLD), spray pyrolysis and dc-magnetron sputtering are explored. The deposited films were heat treated up to 1000 °C ex situ and in situ in an X-ray diffractometer. A minimum temperature of 275 °C was determined at which as-deposited amorphous PLD grown 3YSZ films fully crystallize within five hours. Above 325 °C these films transform nearly instantaneously with a high degree of micro-strain when crystallized below 500 °C. In these films the t'' phase crystallizes which transforms at T > 600 °C to the t' phase upon relaxation of the micro-strain. Furthermore, the crystallization of 8YSZ thin films grown by PLD, spray pyrolysis and dc-sputtering are characterized by in situ XRD measurements. At a constant heating rate of 2.4 K min(-1) crystallization is accomplished after reaching 800 °C, while PLD grown thin films were completely crystallized already at ca. 300 °C. PMID:26119755

  19. Mesoscale morphologies in polymer thin films.

    SciTech Connect

    Ramanathan, M.; Darling, S. B.

    2011-06-01

    In the midst of an exciting era of polymer nanoscience, where the development of materials and understanding of properties at the nanoscale remain a major R&D endeavor, there are several exciting phenomena that have been reported at the mesoscale (approximately an order of magnitude larger than the nanoscale). In this review article, we focus on mesoscale morphologies in polymer thin films from the viewpoint of origination of structure formation, structure development and the interaction forces that govern these morphologies. Mesoscale morphologies, including dendrites, holes, spherulites, fractals and honeycomb structures have been observed in thin films of homopolymer, copolymer, blends and composites. Following a largely phenomenological level of description, we review the kinetic and thermodynamic aspects of mesostructure formation outlining some of the key mechanisms at play. We also discuss various strategies to direct, limit, or inhibit the appearance of mesostructures in polymer thin films as well as an outlook toward potential areas of growth in this field of research.

  20. Capillary stress in microporous thin films

    SciTech Connect

    Samuel, J.; Hurd, A.J.; Frink, L.J.D.; Swol, F. van; Brinker, C.J. |; Raman, N.K.

    1996-06-01

    Development of capillary stress in porous xerogels, although ubiquitous, has not been systematically studied. The authors have used the beam bending technique to measure stress isotherms of microporous thin films prepared by a sol-gel route. The thin films were prepared on deformable silicon substrates which were then placed in a vacuum system. The automated measurement was carried out by monitoring the deflection of a laser reflected off the substrate while changing the overlying relative pressure of various solvents. The magnitude of the macroscopic bending stress was found to reach a value of 180 MPa at a relative pressure of methanol, P/Po = 0.001. The observed stress is determined by the pore size distribution and is an order of magnitude smaller in mesoporous thin films. Density Functional Theory (DFT) indicates that for the microporous materials, the stress at saturation is compressive and drops as the relative pressure is reduced.

  1. Vibration welding system with thin film sensor

    DOEpatents

    Cai, Wayne W; Abell, Jeffrey A; Li, Xiaochun; Choi, Hongseok; Zhao, Jingzhou

    2014-03-18

    A vibration welding system includes an anvil, a welding horn, a thin film sensor, and a process controller. The anvil and horn include working surfaces that contact a work piece during the welding process. The sensor measures a control value at the working surface. The measured control value is transmitted to the controller, which controls the system in part using the measured control value. The thin film sensor may include a plurality of thermopiles and thermocouples which collectively measure temperature and heat flux at the working surface. A method includes providing a welder device with a slot adjacent to a working surface of the welder device, inserting the thin film sensor into the slot, and using the sensor to measure a control value at the working surface. A process controller then controls the vibration welding system in part using the measured control value.

  2. Thin film ferroelectric electro-optic memory

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita (Inventor); Thakoor, Anilkumar P. (Inventor)

    1993-01-01

    An electrically programmable, optically readable data or memory cell is configured from a thin film of ferroelectric material, such as PZT, sandwiched between a transparent top electrode and a bottom electrode. The output photoresponse, which may be a photocurrent or photo-emf, is a function of the product of the remanent polarization from a previously applied polarization voltage and the incident light intensity. The cell is useful for analog and digital data storage as well as opto-electric computing. The optical read operation is non-destructive of the remanent polarization. The cell provides a method for computing the product of stored data and incident optical data by applying an electrical signal to store data by polarizing the thin film ferroelectric material, and then applying an intensity modulated optical signal incident onto the thin film material to generate a photoresponse therein related to the product of the electrical and optical signals.

  3. Thin Film Transistors On Plastic Substrates

    DOEpatents

    Carey, Paul G.; Smith, Patrick M.; Sigmon, Thomas W.; Aceves, Randy C.

    2004-01-20

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The silicon based thin film transistor produced by the process includes a low temperature substrate incapable of withstanding sustained processing temperatures greater than about 250.degree. C., an insulating layer on the substrate, a layer of silicon on the insulating layer having sections of doped silicon, undoped silicon, and poly-silicon, a gate dielectric layer on the layer of silicon, a layer of gate metal on the dielectric layer, a layer of oxide on sections of the layer of silicon and the layer of gate metal, and metal contacts on sections of the layer of silicon and layer of gate metal defining source, gate, and drain contacts, and interconnects.

  4. Method for synthesizing thin film electrodes

    DOEpatents

    Boyle, Timothy J.

    2007-03-13

    A method for making a thin-film electrode, either an anode or a cathode, by preparing a precursor solution using an alkoxide reactant, depositing multiple thin film layers with each layer approximately 500 1000 .ANG. in thickness, and heating the layers to above 600.degree. C. to achieve a material with electrochemical properties suitable for use in a thin film battery. The preparation of the anode precursor solution uses Sn(OCH.sub.2C(CH.sub.3).sub.3).sub.2 dissolved in a solvent in the presence of HO.sub.2CCH.sub.3 and the cathode precursor solution is formed by dissolving a mixture of (Li(OCH.sub.2C(CH.sub.3).sub.3)).sub.8 and Co(O.sub.2CCH.sub.3).H.sub.2O in at least one polar solvent.

  5. Diode laser crystallization processes of Si thin-film solar cells on glass

    NASA Astrophysics Data System (ADS)

    Yun, Jae Sung; Ahn, Cha Ho; Jung, Miga; Huang, Jialiang; Kim, Kyung Hun; Varlamov, Sergey; Green, Martin A.

    2014-07-01

    The crystallization of Si thin-film on glass using continuous-wave diode laser is performed. The effect of various processing parameters including laser power density and scanning speed is investigated in respect to microstructure and crystallographic orientation. Optimal laser power as per scanning speed is required in order to completely melt the entire Si film. When scan speed of 15-100 cm/min is used, large linear grains are formed along the laser scan direction. Laser scan speed over 100 cm/min forms relatively smaller grains that are titled away from the scan direction. Two diode model fitting of Suns-Voc results have shown that solar cells crystallized with scan speed over 100 cm/min are limited by grain boundary recombination (n = 2). EBSD micrograph shows that the most dominant misorientation angle is 60°. Also, there were regions containing high density of twin boundaries up to ~1.2 × 10-8/cm2. SiOx capping layer is found to be effective for reducing the required laser power density, as well as changing preferred orientation of the film from ⟨ 110 ⟩ to ⟨ 100 ⟩ in surface normal direction. Cracks are always formed during the crystallization process and found to be reducing solar cell performance significantly.

  6. Optical and Structural Properties of Europium Oxide Thin Films on Silicon Substrates

    NASA Astrophysics Data System (ADS)

    Bellocchi, Gabriele; Franzò, G.; Iacona, F.; Boninelli, S.; Miritello, M.; Terrasi, A.; Spinella, C.; Priolo, F.

    Europium-based materials are known for their intense and stable emission in the visible region. Moreover Eu is stable in both its divalent and trivalent oxidation states. In particular, emission of Eu2+ is much stronger, being allowed for electric dipole transition rules and is characterized by a broad peak, centered in the wavelength range 400-600 nm, while that of Eu3+ presents several sharp lines at around 600 nm. These peculiar optical properties make Eu-based systems an interesting material for photonic applications. The optical and structural properties of Eu2O3 thin films grown by RF magnetron sputtering on Si substrates have been studied. PL emission has been observed at room temperature and it is strongly dependent on the thermal process. In particular, annealing in O2 atmosphere leads to an enhancement of the Eu3+ emission, while films annealed in N2 ambient exhibit a very intense PL signal due to Eu2+. The chemical and structural characterization of the films, performed by TEM and XPS, reveals that a massive mixing at the Eu2O3-Si interface occurs in N2-annealed samples, leading to the formation of Eu (II) silicates, while in the case of O2-annealed samples we observe the formation of a SiOx layer at the interface, that minimize the diffusion of Si into the Eu2O3 layer.

  7. Thin film oxygen partial pressure sensor

    NASA Technical Reports Server (NTRS)

    Wortman, J. J.; Harrison, J. W.; Honbarrier, H. L.; Yen, J.

    1972-01-01

    The development is described of a laboratory model oxygen partial pressure sensor using a sputtered zinc oxide thin film. The film is operated at about 400 C through the use of a miniature silicon bar. Because of the unique resistance versus temperature relation of the silicon bar, control of the operational temperature is achieved by controlling the resistance. A circuit for accomplishing this is described. The response of sputtered zinc oxide films of various thicknesses to oxygen, nitrogen, argon, carbon dioxide, and water vapor caused a change in the film resistance. Over a large range, film conductance varied approximately as the square root of the oxygen partial pressure. The presence of water vapor in the gas stream caused a shift in the film conductance at a given oxygen partial pressure. A theoretical model is presented to explain the characteristic features of the zinc oxide response to oxygen.

  8. Solid-state thin-film supercapacitor with ruthenium oxide and solid electrolyte thin films

    NASA Astrophysics Data System (ADS)

    Yoon, Y. S.; Cho, W. I.; Lim, J. H.; Choi, D. J.

    Direct current reactive sputtering deposition of ruthenium oxide thin films (bottom and top electrodes) at 400°C are performed to produce a solid-state thin-film supercapacitor (TFSC). The supercapacitor has a cell structure of RuO 2/Li 2.94PO 2.37N 0.75 (Lipon)/RuO 2/Pt. Radio frequency, reactive sputtering deposition of an Li 2.94PO 2.37N 0.75 electrolyte film is performed on the bottom RuO 2 film at room temperature to separate the bottom and top RuO 2 electrodes electrically. The stoichiometry of the RuO 2 thin film is investigated by Rutherford back-scattering spectrometry (RBS). X-ray diffraction (XRD) shows that the as-deposited RuO 2 thin film is an amorphous phase. Scanning electron microscopy (SEM) measurements reveal that the RuO 2/Lipon/RuO 2 hetero-interfaces have no inter-diffusion problems. Charge-discharge measurements with constant current at room temperature clearly reveal typical supercapacitor behaviour for a RuO 2/Lipon/RuO 2/Pt cell structure. Since the electrolyte thin film has low ionic mobility, the capacity and cycle performance are inferior to those of a bulk type of supercapacitor. These results indicate that a high performance, TFSC can be fabricated by a solid electrolyte thin film with high ionic conductivity.

  9. Borocarbide thin films and tunneling measurements.

    SciTech Connect

    Iavarone, M.; Andreone, A.; Cassinese, A.; Dicapual, R.; giannil, L.; Vagliol, R.; DeWilde, Y.; Crabtree, G. W.

    2000-06-15

    The results obtained by their group in thin film fabrication and STM tunneling on superconducting borocarbides YNi{sub 2}B{sub 2}C have been be briefly reviewed. Results concerning the microwave surface impedance and the S/N planar junctions on LuNi{sub 2}B{sub 2}C thin films have been also presented and analyzed. These new data unambiguously confirm the full BCS nature of the superconducting gap in borocarbides and the absence of significant pair-breaking effects in LuNi{sub 2}B{sub 2}C.

  10. Feasibility Study of Thin Film Thermocouple Piles

    NASA Technical Reports Server (NTRS)

    Sisk, R. C.

    2001-01-01

    Historically, thermopile detectors, generators, and refrigerators based on bulk materials have been used to measure temperature, generate power for spacecraft, and cool sensors for scientific investigations. New potential uses of small, low-power, thin film thermopiles are in the area of microelectromechanical systems since power requirements decrease as electrical and mechanical machines shrink in size. In this research activity, thin film thermopile devices are fabricated utilizing radio frequency sputter coating and photoresist lift-off techniques. Electrical characterizations are performed on two designs in order to investigate the feasibility of generating small amounts of power, utilizing any available waste heat as the energy source.

  11. Emittance Theory for Thin Film Selective Emitter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Lowe, Roland A.; Good, Brian S.

    1994-01-01

    Thin films of high temperature garnet materials such as yttrium aluminum garnet (YAG) doped with rare earths are currently being investigated as selective emitters. This paper presents a radiative transfer analysis of the thin film emitter. From this analysis the emitter efficiency and power density are calculated. Results based on measured extinction coefficients for erbium-YAG and holmium-YAG are presented. These results indicated that emitter efficiencies of 50 percent and power densities of several watts/sq cm are attainable at moderate temperatures (less than 1750 K).

  12. Annealed CVD molybdenum thin film surface

    DOEpatents

    Carver, Gary E.; Seraphin, Bernhard O.

    1984-01-01

    Molybdenum thin films deposited by pyrolytic decomposition of Mo(CO).sub.6 attain, after anneal in a reducing atmosphere at temperatures greater than 700.degree. C., infrared reflectance values greater than reflectance of supersmooth bulk molybdenum. Black molybdenum films deposited under oxidizing conditions and annealed, when covered with an anti-reflecting coating, approach the ideal solar collector characteristic of visible light absorber and infrared energy reflector.

  13. Dynamics of liquid films and thin jets

    NASA Technical Reports Server (NTRS)

    Zak, M.

    1979-01-01

    The theory of liquid films and thin jets as one- and two-dimensional continuums is examined. The equations of motion have led to solutions for the characteristic speeds of wave propagation for the parameters characterizing the shape. The formal analogy with a compressible fluid indicates the possibility of shock wave generation in films and jets and the formal analogy to the theory of threads and membranes leads to the discovery of some new dynamic effects. The theory is illustrated by examples.

  14. Superconducting thin films on potassium tantalate substrates

    DOEpatents

    Feenstra, Roeland; Boatner, Lynn A.

    1992-01-01

    A superconductive system for the lossless transmission of electrical current comprising a thin film of superconducting material Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-x epitaxially deposited upon a KTaO.sub.3 substrate. The KTaO.sub.3 is an improved substrate over those of the prior art since the it exhibits small lattice constant mismatch and does not chemically react with the superconducting film.

  15. Structure and interaction of polymer thin films with supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Sirard, Stephen Michael

    2003-06-01

    An understanding of colloid stability in CO2 as well as the interaction of CO2 with polymer thin films is necessary for the intelligent design of CO2-based processes for future materials applications. In-situ spectroscopic ellipsometry (SE) was used to measure the thickness and optical properties of nanoscale poly(dimethylsiloxane) (PDMS) and poly(methyl methacrylate) films exposed to compressed CO2 . Both the sorption and CO2-induced dilation of the thin films were measured simultaneously with SE and deviations between the thin films and the corresponding bulk films may be attributed to excess CO 2 at the free interface as well as the influence of film confinement and the compressible nature of CO2 on the orientation and mobility of the polymers. SE was also used to measure sorption equilibrium and kinetics and CO2-induced dilation of polyimide (6FDA-DAM:DABA 2:1) thin films to determine how a gas separation membrane's structure affects its susceptibility to CO2-induced plasticization. Both thermal annealing and chemical crosslinking reduced the polymer dilation to prevent large increases in the CO2 diffusion coefficient at high CO2 pressures. The CO2 permeability and polymer free volume strongly depend on the annealing temperature, and different effects are observed for the crosslinked and uncrosslinked membranes and for the thick and thin membranes. Neutron reflectivity (NR) and SE were used to characterize the structure of end-grafted d-PDMS brushes on SiOx wafers exposed to compressed CO2. NR revealed two distinct regions in the segment density profile as a function of distance from the surface. The thickness and volume fraction profiles for the brush change much more with solvent quality than has been seen in previous studies with incompressible solvents, due to the high asymmetry in the intermolecular interactions, as well as the large compressibility and free volume differences between the polymer segments and the solvent. Turbidity versus time measurements

  16. Hydrogenated nanocrystalline silicon germanium thin films

    NASA Astrophysics Data System (ADS)

    Yusoff, A. R. M.; Syahrul, M. N.; Henkel, K.

    2007-08-01

    Hydrogenated nanocrystalline silicon germanium thin films (nc-SiGe:H) is an interesting alternative material to replace hydrogenated nanocrystalline silicon (nc-Si:H) as the narrow bandgap absorber in an a-Si/a-SiGe/nc-SiGe(nc-Si) triple-junction solar cell due to its higher optical absorption in the wavelength range of interest. In this paper, we present results of optical, structural investigations and electrical characterization of nc-SiGe:H thin films made by hot-wire chemical vapor deposition (HWCVD) with a coil-shaped tungsten filament and with a disilane/germane/hydrogen gas mixture. The optical band gaps of a-SiGe:H and nc-SiGe:H thin-films, which are deposited with the same disilane/germane/hydrogen gas mixture ratio of 3.4:1.7:7, are about 1.58 eV and 2.1 eV, respectively. The nc-SiGe:H thin film exhibits a larger optical absorption coefficient of about 2-4 in the 600-900 nm range when compared to nc-Si:H thin film. Therefore, a thinner nc-SiGe:H layer of sim500 nm thickness may be sufficient for the narrow bandgap absorber in an a-Si based multiple-junction solar cell. We enhanced the transport properties as measured by the photoconductivity frequency mixing technique. These improved alloys do not necessarily show an improvement in the degree of structural heterogeneity on the nanometer scale as measured by small-angle X-ray scattering. Decreasing both the filament temperature and substrate temperature produced a film with relatively low structural heterogeneity while photoluminescence showed an order of magnitude increase in defect density for a similar change in the process.

  17. Oriented thin films of perylenetetracarboxylic diimide on frictiontransferred polymer films

    NASA Astrophysics Data System (ADS)

    Tanigaki, Nobutaka; Heck, Claire; Mizokuro, Toshiko

    Perylenetetracarboxylic diimide (PTCDI) is a promising material for application in organic electronics. In this study we report on the preparation of oriented thin films of PTCDI on the surface of oriented polymer substrates, which were prepared by friction transfer method. Two polymers, poly(tetrafluoroethylene) (PTFE) and poly(p-phenylene) (PPP) were used as the orienting substrate for PTCDI for comparison studies. Characterization by polarized UV-vis absorption shows that the orienting ability of PPP is larger than that of PTFE substrate. Furthermore, polarization-sensitive photoelectric conversion devices were fabricated by using the oriented PTCDI thin film on the PPP substrate.

  18. Effects of the interfacial layer on electrical characteristics of Al 2O 3/TiO 2/Al 2O 3 thin films for gate dielectrics

    NASA Astrophysics Data System (ADS)

    Kim, Chang Eun; Yun, Ilgu

    2012-01-01

    Effects of thermal annealing on the electrical properties of Al2O3/TiO2/Al2O3 (ATA) dielectric thin films prepared by atomic layer deposition are investigated. The structural properties and chemical states in the interfacial layer are analyzed with varying the annealing temperature. The dielectric constant and leakage current are affected by the formation of Al2O3-TiO2 composite and interfacial layer including SiOx in the interface by the annealing. The transformation of interfacial layer at the interface of the ATA/Si substrate due to the annealing is a critical point to apply ATA thin films as gate dielectric layers.

  19. Gas adsorption on microporous carbon thin films

    SciTech Connect

    O'Shea, S.; Pailthorpe, B.A.; Collins, R.E.; Furlong, D.N. )

    1992-05-01

    A gas adsorption study was performed on amorphous hydrogenated carbon thin films which are deposited by reactive magnetron sputtering using acetylene gas. It is found that the films are highly microporous. Annealing significantly increases the adsorption capacity of the films and decreases the effects of low-pressure hysteresis in the adsorption isotherms. The general gas adsorption behavior closely resembles that of powdered activated carbons. The Dubinin-Radushkevich equation can be used to model the submonolayer adsorption isotherm for a variety of gases. 38 refs., 9 figs., 3 tabs.

  20. Study of iron mononitride thin films

    SciTech Connect

    Tayal, Akhil Gupta, Mukul Phase, D. M. Reddy, V. R. Gupta, Ajay

    2014-04-24

    In this work we have studied the crystal structural and local ordering of iron and nitrogen in iron mononitride thin films prepared using dc magnetron sputtering at sputtering power of 100W and 500W. The films were sputtered using pure nitrogen to enhance the reactivity of nitrogen with iron. The x-ray diffraction (XRD), conversion electron Mössbauer spectroscopy (CEMS) and soft x-ray absorption spectroscopy (SXAS) studies shows that the film crystallizes in ZnS-type crystal structure.

  1. Microbridge testing of plasma-enhanced chemical-vapor deposited silicon oxide films on silicon wafers

    NASA Astrophysics Data System (ADS)

    Cao, Zhiqiang; Zhang, Tong-Yi; Zhang, Xin

    2005-05-01

    Plasma-enhanced chemical-vapor deposited (PECVD) silane-based oxides (SiOx) have been widely used in both microelectronics and microelectromechanical systems (MEMS) to form electrical and/or mechanical components. In this paper, a nanoindentation-based microbridge testing method is developed to measure both the residual stresses and Young's modulus of PECVD SiOx films on silicon wafers. Theoretically, we considered both the substrate deformation and residual stress in the thin film and derived a closed formula of deflection versus load. The formula fitted the experimental curves almost perfectly, from which the residual stresses and Young's modulus of the film were determined. Experimentally, freestanding microbridges made of PECVD SiOx films were fabricated using the silicon undercut bulk micromachining technique. Some microbridges were subjected to rapid thermal annealing (RTA) at a temperature of 400 °C, 600 °C, or 800 °C to simulate the thermal process in the device fabrication. The results showed that the as-deposited PECVD SiOx films had a residual stress of -155±17MPa and a Young's modulus of 74.8±3.3GPa. After the RTA, Young's modulus remained relatively unchanged at around 75 GPa, however, significant residual stress hysteresis was found in all the films. A microstructure-based mechanism was then applied to explain the experimental results of the residual stress changes in the PECVD SiOx films after the thermal annealing.

  2. Growth Induced Magnetic Anisotropy in Crystalline and Amorphous Thin Films

    SciTech Connect

    Hellman, Frances

    1998-10-03

    OAK B204 Growth Induced Magnetic Anisotropy in Crystalline and Amorphous Thin Films. The work in the past 6 months has involved three areas of magnetic thin films: (1) amorphous rare earth-transition metal alloys, (2) epitaxial Co-Pt and hTi-Pt alloy thin films, and (3) collaborative work on heat capacity measurements of magnetic thin films, including nanoparticles and CMR materials.

  3. Microstructural characterization in nanocrystalline ceramic thin films

    NASA Astrophysics Data System (ADS)

    Kim, Hakkwan

    The primary objective of this research is to investigate the effects of process variables on microstructure in several fluoride and oxide thin films prepared by vapor deposition, in order to predict the properties and behaviors of nanocrystalline thin film materials. There are three distinct stages of this research. The first stage focuses on measuring of the porosity in polycrystalline thin films of a variety of fluorides as a function of the substrate temperature during deposition, and discussing the mechanism by which the porosity varies as a function of the process variables. We have measured the porosity in thin films of lithium fluoride (LiF), magnesium fluoride (MgF2), barium fluoride (BaF 2) and calcium fluoride (CaF2) using an atomic force microscope (AFM) and a quartz crystal thickness monitor. The porosity is very sensitive to the substrate temperature and decreases as the substrate temperature increases. Consistent behavior is observed among all of the materials in this study. The second stage is to understand the film microstructure including grain growth and texture development, because these factors are known to influence the behavior and stability of polycrystalline thin films. This study focuses on grain growth and texture development in polycrystalline lithium fluoride thin films using dark field (DF) transmission electron microscopy (TEM). It is demonstrated that we can isolate the size distribution of <111> surface normal grains from the overall size distribution, based on simple and plausible assumptions about the texture. The {111} texture formation and surface morphology were also observed by x-ray diffraction (XRD) and AFM, respectively. The grain size distributions become clearly bimodal as the annealing time increases, and we deduce that the short-time size distributions are also a sum of two overlapping peaks. The smaller grain-size peak in the distribution corresponds to the {111}-oriented grains which do not grow significantly, while

  4. Rim instability of bursting thin smectic films

    NASA Astrophysics Data System (ADS)

    Trittel, Torsten; John, Thomas; Tsuji, Kinko; Stannarius, Ralf

    2013-05-01

    The rupture of thin smectic bubbles is studied by means of high speed video imaging. Bubbles of centimeter diameter and film thicknesses in the nanometer range are pierced, and the instabilities of the moving rim around the opening hole are described. Scaling laws describe the relation between film thickness and features of the filamentation process of the rim. A flapping motion of the retracting smectic film is assumed as the origin of the observed filamentation instability. A comparison with similar phenomena in soap bubbles is made. The present experiments extend studies on soap films [H. Lhuissier and E. Villermaux, Phys. Rev. Lett. 103, 054501 (2009), 10.1103/PhysRevLett.103.054501] to much thinner, uniform films of thermotropic liquid crystals.

  5. Residual stress measurement in YBCO thin films.

    SciTech Connect

    Cheon, J. H.; Singh, J. P.

    2002-05-13

    Residual stress in YBCO films on Ag and Hastelloy C substrates was determined by using 3-D optical interferometry and laser scanning to measure the change in curvature radius before and after film deposition. The residual stress was obtained by appropriate analysis of curvature measurements. Consistent with residual thermal stress calculations based on the thermal expansion coefficient mismatch between the substrates and YBCO film, the measured residual stress in the YBCO film on Hastelloy C substrate was tensile, while it was compressive on the Ag substrate. The stress values measured by the two techniques were generally in good agreement, suggesting that optical interferometry and laser scanning have promise for measuring residual stresses in thin films.

  6. New techniques for producing thin boron films

    SciTech Connect

    Thomas, G.E.

    1988-01-01

    A review will be presented of methods for producing thin boron films using an electron gun. Previous papers have had the problem of spattering of the boron source during the evaporation. Methods for reducing this problem will also be presented. 12 refs., 4 figs.

  7. Microwave-enhanced thin-film deposition

    NASA Technical Reports Server (NTRS)

    Chitre, S.

    1984-01-01

    The deposition of semiconducting and insulating thin films at low temperatures using microwave technology was explored. The method of plasma formations, selection of a power source, the design of the microwave plasma cavity, the microwave circuitry, impedance matching, plasma diagnostics, the deposition chamber and the vacuum system were studied.

  8. Thin film thermocouples for high temperature measurement

    NASA Astrophysics Data System (ADS)

    Kreider, Kenneth G.

    1989-05-01

    Thin film thermocouples have unique capabilities for measuring surface temperatures at high temperatures (above 800 K) under harsh conditions. Their low mass, approximately 2 x 10(-5) g/mm permits very rapid response and very little disturbance of heat transfer to the surface being measured. This has led to applications inside gas turbine engines and diesel engines measuring the surface temperature of first stage turbine blades and vanes and ceramic liners in diesel cylinders. The most successful high temperature (up to 1300 K) thin film thermocouples are sputter deposited from platinum and platinum-10 percent rhodium targets although results using base metal alloys, gold, and platinel will also be presented. The fabrication techniques used to form the thermocouples, approaches used to solve the high temperature insulation and adherence problems, current applications, and test results using the thin film thermocouples are reviewed. In addition a discussion will be presented on the current problems and future trends related to applications of thin film thermocouples at higher temperatures up to 1900 K.

  9. US polycrystalline thin film solar cells program

    SciTech Connect

    Ullal, H.S.; Zweibel, K.; Mitchell, R.L. )

    1989-11-01

    The Polycrystalline Thin Film Solar Cells Program, part of the United States National Photovoltaic Program, performs R D on copper indium diselenide and cadmium telluride thin films. The objective of the Program is to support research to develop cells and modules that meet the US Department of Energy's long-term goals by achieving high efficiencies (15%-20%), low-cost ($50/m{sup 2}), and long-time reliability (30 years). The importance of work in this area is due to the fact that the polycrystalline thin-film CuInSe{sub 2} and CdTe solar cells and modules have made rapid advances. They have become the leading thin films for PV in terms of efficiency and stability. The US Department of Energy has increased its funding through an initiative through the Solar Energy Research Institute in CuInSe{sub 2} and CdTe with subcontracts to start in Spring 1990. 23 refs., 5 figs.

  10. Thin-Film Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Chen, Xin; Wu, Nai-Juan; Ignatiev, Alex

    2009-01-01

    The development of thin-film solid oxide fuel cells (TFSOFCs) and a method of fabricating them have progressed to the prototype stage. This can result in the reduction of mass, volume, and the cost of materials for a given power level.

  11. UV absorption control of thin film growth

    DOEpatents

    Biefeld, Robert M.; Hebner, Gregory A.; Killeen, Kevin P.; Zuhoski, Steven P.

    1991-01-01

    A system for monitoring and controlling the rate of growth of thin films in an atmosphere of reactant gases measures the UV absorbance of the atmosphere and calculates the partial pressure of the gases. The flow of reactant gases is controlled in response to the partial pressure.

  12. Rechargeable Thin-film Lithium Batteries

    DOE R&D Accomplishments Database

    Bates, J. B.; Gruzalski, G. R.; Dudney, N. J.; Luck, C. F.; Yu, Xiaohua

    1993-08-01

    Rechargeable thin film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have recently been developed. The batteries, which are typically less than 6 {mu}m thick, can be fabricated to any specified size, large or small, onto a variety of substrates including ceramics, semiconductors, and plastics. The cells that have been investigated include Li TiS{sub 2}, Li V{sub 2}O{sub 5}, and Li Li{sub x}Mn{sub 2}O{sub 4}, with open circuit voltages at full charge of about 2.5, 3.6, and 4.2, respectively. The development of these batteries would not have been possible without the discovery of a new thin film lithium electrolyte, lithium phosphorus oxynitride, that is stable in contact with metallic lithium at these potentials. Deposited by rf magnetron sputtering of Li{sub 3}PO{sub 4} in N{sub 2}, this material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25{degrees}C of 2 {mu}S/cm. The maximum practical current density obtained from the thin film cells is limited to about 100 {mu}A/cm{sup 2} due to a low diffusivity of Li{sup +} ions in the cathodes. In this work, the authors present a short review of their work on rechargeable thin film lithium batteries.

  13. Flexoelectricity in barium strontium titanate thin film

    SciTech Connect

    Kwon, Seol Ryung; Huang, Wenbin; Yuan, Fuh-Gwo; Jiang, Xiaoning; Shu, Longlong; Maria, Jon-Paul

    2014-10-06

    Flexoelectricity, the linear coupling between the strain gradient and the induced electric polarization, has been intensively studied as an alternative to piezoelectricity. Especially, it is of interest to develop flexoelectric devices on micro/nano scales due to the inherent scaling effect of flexoelectric effect. Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} thin film with a thickness of 130 nm was fabricated on a silicon wafer using a RF magnetron sputtering process. The flexoelectric coefficients of the prepared thin films were determined experimentally. It was revealed that the thin films possessed a transverse flexoelectric coefficient of 24.5 μC/m at Curie temperature (∼28 °C) and 17.44 μC/m at 41 °C. The measured flexoelectric coefficients are comparable to that of bulk BST ceramics, which are reported to be 10–100 μC/m. This result suggests that the flexoelectric thin film structures can be effectively used for micro/nano-sensing devices.

  14. Semiconductor cooling by thin-film thermocouples

    NASA Technical Reports Server (NTRS)

    Tick, P. A.; Vilcans, J.

    1970-01-01

    Thin-film, metal alloy thermocouple junctions do not rectify, change circuit impedance only slightly, and require very little increase in space. Although they are less efficient cooling devices than semiconductor junctions, they may be applied to assist conventional cooling techniques for electronic devices.

  15. Refracting boundaries in thin film glass lightguides

    NASA Astrophysics Data System (ADS)

    Turner, A. F.; Browning, S. D.

    1980-02-01

    The paper describes experimental studies of refraction at a straightline boundary between evaporated glass lightguides and evaporated thin film overlays of SbO3 with index 2.10. Attention is given to sample preparation, measurement procedures, and computations. It is noted that Snell's law gives the total change of mode indices on each side of the boundary are used.

  16. US Polycrystalline Thin Film Solar Cells Program

    NASA Astrophysics Data System (ADS)

    Ullal, Harin S.; Zweibel, Kenneth; Mitchell, Richard L.

    1989-11-01

    The Polycrystalline Thin Film Solar Cells Program, part of the United States National Photovoltaic Program, performs R and D on copper indium diselenide and cadmium telluride thin films. The objective of the program is to support research to develop cells and modules that meet the U.S. Department of Energy's long-term goals by achieving high efficiencies (15 to 20 percent), low-cost ($50/m(sup 2)), and long-time reliability (30 years). The importance of work in this area is due to the fact that the polycrystalline thin-film CuInSe2 and CdTe solar cells and modules have made rapid advances. They have become the leading thin films for PV in terms of efficiency and stability. The U.S. Department of Energy has increased its funding through an initiative through the Solar Energy Research Institute in CuInSe2 and CdTe with subcontracts to start in spring 1990.

  17. Thin film hydrous metal oxide catalysts

    DOEpatents

    Dosch, Robert G.; Stephens, Howard P.

    1995-01-01

    Thin film (<100 nm) hydrous metal oxide catalysts are prepared by 1) synthesis of a hydrous metal oxide, 2) deposition of the hydrous metal oxide upon an inert support surface, 3) ion exchange with catalytically active metals, and 4) activating the hydrous metal oxide catalysts.

  18. Growth induced magnetic anisotropy in crystalline and amorphous thin films

    SciTech Connect

    Hellman, F.

    1998-07-20

    The work in the past 6 months has involved three areas of magnetic thin films: (1) amorphous rare earth-transition metal alloys, (2) epitaxial Co-Pt and Ni-Pt alloy thin films, and (3) collaborative work on heat capacity measurements of magnetic thin films, including nanoparticles and CMR materials. A brief summary of work done in each area is given.

  19. Deuterium storage in nanocrystalline magnesium thin films

    NASA Astrophysics Data System (ADS)

    Checchetto, R.; Bazzanella, N.; Miotello, A.; Brusa, R. S.; Zecca, A.; Mengucci, A.

    2004-02-01

    Nanocrystalline magnesium deuteride thin films with the β-MgD2 structure were prepared by vacuum evaporation of hexagonal magnesium (h-Mg) samples and thermal annealing in 0.15 MPa D2 atmosphere at 373 K. Thermal desorption spectroscopy analysis indicated that the rate-limiting step in the deuterium desorption was given by the thermal decomposition of the deuteride phase. The activation energy Δg of the β-MgD2→h-Mg+D2 reaction scaled from 1.13±0.03 eV in 650-nm-thick films to 1.01±0.02 eV in 75-nm-thick films most likely as consequence of different stress and defect level. Positron annihilation spectroscopy analysis of the thin-film samples submitted to deuterium absorption and desorption cycles reveal the presence of a high concentration of void-like defects in the h-Mg layers after the very first decomposition of the β-MgD2 phase, the presence of these open volume defects reduces the D2 absorption capacity of the h-Mg thin film.

  20. Surface photovoltage spectroscopy of thin films

    NASA Astrophysics Data System (ADS)

    Leibovitch, M.; Kronik, L.; Fefer, E.; Burstein, L.; Korobov, V.; Shapira, Yoram

    1996-06-01

    The surface photovoltage (SPV) spectrum due to subband-gap illumination of thin films is theoretically studied. It is shown that this SPV is inherently sensitive to buried interfaces just as it is sensitive to the external semiconductor surface. The different contributions to the SPV from all the optically active gap states present within a sample, consisting of a bulk substrate covered by a thin film, are analyzed. Analytical expressions are obtained in the low illumination intensity and the depletion approximation regime. The evolution of the SPV spectrum with film thickness is examined and is found to depend on both site and population of the gap states. Three modes of evolution are found, according to the relative importance of gap state population changes with film thickness. These modes are confirmed by a numerical simulation of a thin film of pseudomorphic InAlAs on InP substrates and by experiments conducted on the same system. The approach is also applied to the InP/In2O3 system, revealing gap state formation, followed by filling with electrons, thereby explaining previous observations of nearly ideal I-V behavior at this junction.

  1. MISSE 5 Thin Films Space Exposure Experiment

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.; Kinard, William H.; Jones, James L.

    2007-01-01

    The Materials International Space Station Experiment (MISSE) is a set of space exposure experiments using the International Space Station (ISS) as the flight platform. MISSE 5 is a co-operative endeavor by NASA-LaRC, United Stated Naval Academy, Naval Center for Space Technology (NCST), NASA-GRC, NASA-MSFC, Boeing, AZ Technology, MURE, and Team Cooperative. The primary experiment is performance measurement and monitoring of high performance solar cells for U.S. Navy research and development. A secondary experiment is the telemetry of this data to ground stations. A third experiment is the measurement of low-Earth-orbit (LEO) low-Sun-exposure space effects on thin film materials. Thin films can provide extremely efficacious thermal control, designation, and propulsion functions in space to name a few applications. Solar ultraviolet radiation and atomic oxygen are major degradation mechanisms in LEO. This paper is an engineering report of the MISSE 5 thm films 13 months space exposure experiment.

  2. Hematite thin films: growth and characterization

    NASA Astrophysics Data System (ADS)

    Uribe, J. D.; Osorio, J.; Barrero, C. A.; Giratá, D.; Morales, A. L.; Devia, A.; Gómez, M. E.; Ramirez, J. G.; Gancedo, J. R.

    2006-04-01

    We have grown hematite (α Fe 2 O 3) thin films on stainless steel and (001)-silicon single-crystal substrates by RF magnetron sputtering process in argon atmosphere at substrate temperatures from 400 to 800°C. Conversion Electron Mössbauer (CEM) spectra of the sample grown on stainless steel at 400°C exhibit values for hyperfine parameter characteristic of bulk hematite phase in the weak ferromagnetic state. Also, the relative line intensity ratio suggests that the magnetization vector of the polycrystalline film is aligned preferentially parallel to the surface. The X-ray diffraction (XRD) pattern of the polycrystalline thin film grown on steel substrates also corresponds to α Fe 2 O 3. The samples were also analyzed by Atomic Force Microscopy (AFM), those grown on stainless steel reveal a morphology consisting of columnar grains with random orientation, given the inhomogeneity of the substrate surface.

  3. Hematite thin films: growth and characterization

    NASA Astrophysics Data System (ADS)

    Uribe, J. D.; Osorio, J.; Barrero, C. A.; Giratá, D.; Morales, A. L.; Devia, A.; Gómez, M. E.; Ramirez, J. G.; Gancedo, J. R.

    We have grown hematite (α - Fe 2 O 3) thin films on stainless steel and (001)-silicon single-crystal substrates by RF magnetron sputtering process in argon atmosphere at substrate temperatures from 400 to 800°C. Conversion Electron Mössbauer (CEM) spectra of the sample grown on stainless steel at 400°C exhibit values for hyperfine parameter characteristic of bulk hematite phase in the weak ferromagnetic state. Also, the relative line intensity ratio suggests that the magnetization vector of the polycrystalline film is aligned preferentially parallel to the surface. The X-ray diffraction (XRD) pattern of the polycrystalline thin film grown on steel substrates also corresponds to α - Fe 2O3. The samples were also analyzed by Atomic Force Microscopy (AFM), those grown on stainless steel reveal a morphology consisting of columnar grains with random orientation, given the inhomogeneity of the substrate surface.

  4. A magnetron sputtering system for the preparation of patterned thin films and in situ thin film electrical resistance measurements

    SciTech Connect

    Arnalds, U. B.; Agustsson, J. S.; Ingason, A. S.; Eriksson, A. K.; Gylfason, K. B.; Gudmundsson, J. T.; Olafsson, S.

    2007-10-15

    We describe a versatile three gun magnetron sputtering system with a custom made sample holder for in situ electrical resistance measurements, both during film growth and ambient changes on film electrical properties. The sample holder allows for the preparation of patterned thin film structures, using up to five different shadow masks without breaking vacuum. We show how the system is used to monitor the electrical resistance of thin metallic films during growth and to study the thermodynamics of hydrogen uptake in metallic thin films. Furthermore, we demonstrate the growth of thin film capacitors, where patterned films are created using shadow masks.

  5. A magnetron sputtering system for the preparation of patterned thin films and in situ thin film electrical resistance measurements.

    PubMed

    Arnalds, U B; Agustsson, J S; Ingason, A S; Eriksson, A K; Gylfason, K B; Gudmundsson, J T; Olafsson, S

    2007-10-01

    We describe a versatile three gun magnetron sputtering system with a custom made sample holder for in situ electrical resistance measurements, both during film growth and ambient changes on film electrical properties. The sample holder allows for the preparation of patterned thin film structures, using up to five different shadow masks without breaking vacuum. We show how the system is used to monitor the electrical resistance of thin metallic films during growth and to study the thermodynamics of hydrogen uptake in metallic thin films. Furthermore, we demonstrate the growth of thin film capacitors, where patterned films are created using shadow masks. PMID:17979429

  6. Thin blend films of cellulose and polyacrylonitrile

    NASA Astrophysics Data System (ADS)

    Lu, Rui; Zhang, Xin; Mao, Yimin; Briber, Robert; Wang, Howard

    Cellulose is the most abundant renewable, biocompatible and biodegradable natural polymer. Cellulose exhibits excellent chemical and mechanical stability, which makes it useful for applications such as construction, filtration, bio-scaffolding and packaging. To further expand the potential applications of cellulose materials, their alloying with synthetic polymers has been investigated. In this study, thin films of cotton linter cellulose (CLC) and polyacrylonitrile (PAN) blends with various compositions spanning the entire range from neat CLC to neat PAN were spun cast on silicon wafers from common solutions in dimethyl sulfoxide / ionic liquid mixtures. The morphologies of thin films were characterized using optical microscopy, atomic force microscopy, scanning electron microscopy and X-ray reflectivity. Morphologies of as-cast films are highly sensitive to the film preparation conditions; they vary from featureless smooth films to self-organized ordered nano-patterns to hierarchical structures spanning over multiple length scales from nanometers to tens of microns. By selectively removing the PAN-rich phase, the structures of blend films were studied to gain insights in their very high stability in hot water, acid and salt solutions.

  7. Water-soluble thin film transistors and circuits based on amorphous indium-gallium-zinc oxide.

    PubMed

    Jin, Sung Hun; Kang, Seung-Kyun; Cho, In-Tak; Han, Sang Youn; Chung, Ha Uk; Lee, Dong Joon; Shin, Jongmin; Baek, Geun Woo; Kim, Tae-il; Lee, Jong-Ho; Rogers, John A

    2015-04-22

    This paper presents device designs, circuit demonstrations, and dissolution kinetics for amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistors (TFTs) comprised completely of water-soluble materials, including SiNx, SiOx, molybdenum, and poly(vinyl alcohol) (PVA). Collections of these types of physically transient a-IGZO TFTs and 5-stage ring oscillators (ROs), constructed with them, show field effect mobilities (∼10 cm2/Vs), on/off ratios (∼2×10(6)), subthreshold slopes (∼220 mV/dec), Ohmic contact properties, and oscillation frequency of 5.67 kHz at supply voltages of 19 V, all comparable to otherwise similar devices constructed in conventional ways with standard, nontransient materials. Studies of dissolution kinetics for a-IGZO films in deionized water, bovine serum, and phosphate buffer saline solution provide data of relevance for the potential use of these materials and this technology in temporary biomedical implants. PMID:25805699

  8. Electrochromism in oxyfluoride thin films

    SciTech Connect

    Azens, A.; Gutarra, A.; Stjerna, B.; Granqvist, C.G.; Gabrusenoks, J.; Lusis, A.

    1994-12-31

    Oxyfluoride films based on W and Ti were prepared by reactive sputtering in plasmas containing O{sub 2} + CF{sub 4}. The deposition rate was large, particularly when chemical sputtering was promoted by heating the target. The films could show large charge insertion/extraction, high coloration efficiency, and good cycling durability. Electrochromic devices have several potential and practical applications in contemporary technology. Among the foremost of these one notes smart windows with variable throughput of radiant energy, anti-dazzling rear-view mirrors for cars and trucks, elements for non-emissive information display, and surfaces for variable thermal emittance. Smart windows technology, that is presently emerging, may have a pervasive and benign influence on building design and management.

  9. Borides in Thin Film Technology

    NASA Astrophysics Data System (ADS)

    Mitterer, Christian

    1997-10-01

    The borides of transition and rare-earth metals are considered for application as wear- and corrosion-resistant, decorative or thermionic coatings. After a review of physical vapor deposition (PVD) techniques used for the deposition of these coatings, a survey of investigations to apply these coatings is given. As a result of the strong directionality of covalent boron-boron bonds, boride coatings show an increasing tendency to amorphous film growth with increasing B/Meatomic ratio and, for rare-earth hexaborides, with decreasing metallic radius of the rare-earth metal. Mechanical and optical properties are strongly influenced by the crystallographic structure of the boride phase. Because of their high hardness combined with good adhesion, crystalline films based on the diborides of transition metals seem to be promising candidates for wear resistant coatings on cutting tools. Alloying of these films with nitrogen by reactive PVD processes results in the formation of extremely fine-grained multiphase hard coatings with excellent tribological and corrosion behavior, thus offering new applications in the coating of engineering components. Because of their distinct colorations, some of the hexaborides of rare-earth elements may be used as decorative coatings on consumer products like wristwatch casings or eyeglass frames. Another promising field is the development of thermionic coatings based on rare-earth hexaborides, which may offer the possibility of the production of inexpensive and simple high emission filaments.

  10. Thin film bismuth iron oxides useful for piezoelectric devices

    DOEpatents

    Zeches, Robert J.; Martin, Lane W.; Ramesh, Ramamoorthy

    2016-05-31

    The present invention provides for a composition comprising a thin film of BiFeO.sub.3 having a thickness ranging from 20 nm to 300 nm, a first electrode in contact with the BiFeO.sub.3 thin film, and a second electrode in contact with the BiFeO.sub.3 thin film; wherein the first and second electrodes are in electrical communication. The composition is free or essentially free of lead (Pb). The BFO thin film is has the piezoelectric property of changing its volume and/or shape when an electric field is applied to the BFO thin film.