Science.gov

Sample records for situ high-temperature x-ray

  1. An experimental system for high temperature X-ray diffraction studies with in situ mechanical loading

    PubMed Central

    Oswald, Benjamin B.; Schuren, Jay C.; Pagan, Darren C.; Miller, Matthew P.

    2013-01-01

    An experimental system with in situ thermomechanical loading has been developed to enable high energy synchrotron x-ray diffraction studies of crystalline materials. The system applies and maintains loads of up to 2250 N in uniaxial tension or compression at a frequency of up to 100 Hz. The furnace heats the specimen uniformly up to a maximum temperature of 1200 °C in a variety of atmospheres (oxidizing, inert, reducing) that, combined with in situ mechanical loading, can be used to mimic processing and operating conditions of engineering components. The loaded specimen is reoriented with respect to the incident beam of x-rays using two rotational axes to increase the number of crystal orientations interrogated. The system was used at the Cornell High Energy Synchrotron Source to conduct experiments on single crystal silicon and polycrystalline Low Solvus High Refractory nickel-based superalloy. The data from these experiments provide new insights into how stresses evolve at the crystal scale during thermomechanical loading and complement the development of high-fidelity material models. PMID:23556825

  2. In situ high-temperature X-ray diffraction characterization of yttrium-implanted extra low-carbon steel

    SciTech Connect

    Caudron, E.; Buscail, H.; Perrier, S.

    1999-11-01

    Yttrium-implanted and unimplanted extra low-carbon steel samples were analyzed at T = 700 C and under an oxygen partial pressure P{sub O2} = 0.041Pa for 24 h to show the yttrium implantation effect on extra low-carbon steel high-temperature corrosion resistance. Sample oxidation weight gains were studied by thermogravimetry, and structural analyses were performed using in situ high-temperature X-ray diffraction with the same experimental conditions. The aim of this paper is to show the initial nucleation stage of the main compounds induced by oxidation at high temperatures according to the initial sample treatment (yttrium-implanted or unimplanted). The results obtained by in situ high-temperature X-ray diffraction will be compared to those by thermogravimetry to show the existing correlation between weight gain curves and structural studies. Results allow one to understand the improved corrosion resistance of yttrium-implanted extra low-carbon steel at high temperatures.

  3. In situ X-ray ptychography imaging of high-temperature CO{sub 2} acceptor particle agglomerates

    SciTech Connect

    Høydalsvik, Kristin; Bø Fløystad, Jostein; Esmaeili, Morteza; Mathiesen, Ragnvald H.; Breiby, Dag W.; Zhao, Tiejun; Rønning, Magnus; Diaz, Ana; Andreasen, Jens W.

    2014-06-16

    Imaging nanoparticles under relevant reaction conditions of high temperature and gas pressure is difficult because conventional imaging techniques, like transmission electron microscopy, cannot be used. Here we demonstrate that the coherent diffractive imaging technique of X-ray ptychography can be used for in situ phase contrast imaging in structure studies at atmospheric pressure and elevated temperatures. Lithium zirconate, a candidate CO{sub 2} capture material, was studied at a pressure of one atmosphere in air and in CO{sub 2}, at temperatures exceeding 600 °C. Images with a spatial resolution better than 200 nm were retrieved, and possibilities for improving the experiment are described.

  4. High pressure and high temperature in situ X-ray diffraction studies in the Paris-Edinburgh cell using a laboratory X-ray source†

    NASA Astrophysics Data System (ADS)

    Toulemonde, Pierre; Goujon, Céline; Laversenne, Laetitia; Bordet, Pierre; Bruyère, Rémy; Legendre, Murielle; Leynaud, Olivier; Prat, Alain; Mezouar, Mohamed

    2014-04-01

    We have developed a new laboratory experimental set-up to study in situ the pressure-temperature phase diagram of a given pure element or compound, its associated phase transitions, or the chemical reactions involved at high pressure and high temperature (HP-HT) between different solids and liquids. This new tool allows laboratory studies before conducting further detailed experiments using more brilliant synchrotron X-ray sources or before kinetic studies. This device uses the diffraction of X-rays produced by a quasi-monochromatic micro-beam source operating at the silver radiation (λ(Ag)Kα 1, 2≈0.56 Å). The experimental set-up is based on a VX Paris-Edinburgh cell equipped with tungsten carbide or sintered diamond anvils and uses standard B-epoxy 5 or 7 mm gaskets. The diffracted signal coming from the compressed (and heated) sample is collected on an image plate. The pressure and temperature calibrations were performed by diffraction, using conventional calibrants (BN, NaCl and MgO) for determination of the pressure, and by crossing isochores of BN, NaCl, Cu or Au for the determination of the temperature. The first examples of studies performed with this new laboratory set-up are presented in the article: determination of the melting point of germanium and magnesium under HP-HT, synthesis of MgB2 or C-diamond and partial study of the P, T phase diagram of MgH2.

  5. High-temperature dehydration of talc: a kinetics study using in situ X-ray powder diffraction

    NASA Astrophysics Data System (ADS)

    Wang, Duojun; Yi, Li; Huang, Bojin; Liu, Chuanjiang

    2015-06-01

    High-temperature in situ X-ray powder diffraction patterns were used to study the dehydration kinetics of natural talc with a size of 10-15 µm. The talc was annealed from 1073 to 1223 K, and the variations in the characteristic peaks corresponding to talc with the time were recorded to determine the reaction progress. The decomposition of talc occurred, and peaks corresponding to talc and peaks corresponding to enstatite and quartz were observed. The enstatite and talc exhibited a topotactic relationship. The dehydration kinetics of talc was studied as a function of temperature between 1073 and 1223 K. The kinetics data could be modeled using an Avrami equation that considers nucleation and growth processes ? where n varies from 0.4 to 0.8. The rate constant (k) equation for the natural talc is ? The reaction mechanism for the dehydration of talc is a heterogeneous nucleation and growth mechanism.

  6. In-situ X-ray structure measurements on aerodynamically levitated high temperature liquids

    SciTech Connect

    Weber, Richard; Benmore, Christopher; Mei Qiang; Wilding, Martin

    2009-01-29

    High energy, high flux X-ray sources enable new measurements of liquid and amorphous materials in extreme conditions. Aerodynamic levitation in combination with laser beam heating can be used to access high purity and non-equilibrium liquids at temperatures up to 3000 K. In this work, a small aerodynamic levitator was integrated with high energy beamline 11 ID-C at the Advanced Photon Source. Scattered X-rays were detected with a Mar345 image plate. The experiments investigated a series of binary in the CaO-Al{sub 2}O{sub 3}, MgO-SiO{sub 2}, SiO{sub 2}-Al{sub 2}O{sub 3} metal oxide compositions and pure SiO{sub 2}. The results show that the liquids exhibit large changes in structure when the predominant network former is diluted. Measurements on glasses with the same compositions as the liquids suggest that significant structural rearrangement consistent with a fragile-strong transition occurs in these reluctant glass forming liquids as they vitrify.

  7. Development of a new micro-furnace for "in situ" high-temperature single crystal X-ray diffraction measurements

    NASA Astrophysics Data System (ADS)

    Alvaro, Matteo; Angel, Ross J.; Marciano, Claudio; Zaffiro, Gabriele; Scandolo, Lorenzo; Mazzucchelli, Mattia L.; Milani, Sula; Rustioni, Greta; Domeneghetti, Chiara M.; Nestola, Fabrizio

    2015-04-01

    Several experimental methods to reliably determine elastic properties of minerals at non-ambient conditions have been developed. In particular, different techniques for generating high-pressure and high-temperature have been successfully adopted for single-crystal and powder X-ray diffraction measurements. High temperature devices for "in-situ" measurements should provide the most controlled isothermal environment as possible across the entire sample. It is intuitive that in general, thermal gradients across the sample increase as the temperature increases. Even if the small isothermal volume required for single-crystal X-ray diffraction experiments makes such phenomena almost negligible, the design of a furnace should also aim to reduce thermal gradients by including a large thermal mass that encloses the sample. However this solution often leads to complex design that results in a restricted access to reciprocal space or attenuation of the incident or diffracted intensity (with consequent reduction of the accuracy and/or precision in lattice parameter determination). Here we present a newly-developed H-shaped Pt-Pt/Rh resistance microfurnace for in-situ high-temperature single-crystal X-ray diffraction measurements. The compact design of the furnace together with the long collimator-sample-detector distance allows us to perform measurements up to 2θ = 70° with no further restrictions on any other angular movement. The microfurnace is equipped with a water cooling system that allows a constant thermal gradient to be maintained that in turn guarantees thermal stability with oscillations smaller than 5°C in the whole range of operating T of room-T to 1200°C. The furnace has been built for use with a conventional 4-circle Eulerian geometry equipped with point detector and automated with the SINGLE software (Angel and Finger 2011) that allows the effects of crystal offsets and diffractometer aberrations to be eliminated from the refined peak positions by the 8

  8. Crystal structure of a high-pressure/high-temperature phase of alumina by in situ X-ray diffraction.

    PubMed

    Lin, Jung-Fu; Degtyareva, Olga; Prewitt, Charles T; Dera, Przemyslaw; Sata, Nagayoshi; Gregoryanz, Eugene; Mao, Ho-Kwang; Hemley, Russell J

    2004-06-01

    Alumina (alpha-Al(2)O(3)) has been widely used as a pressure calibrant in static high-pressure experiments and as a window material in dynamic shock-wave experiments; it is also a model material in ceramic science. So understanding its high-pressure stability and physical properties is crucial for interpreting such experimental data, and for testing theoretical calculations. Here we report an in situ X-ray diffraction study of alumina (doped with Cr(3+)) up to 136 GPa and 2,350 K. We observe a phase transformation that occurs above 96 GPa and at high temperatures. Rietveld full-profile refinements show that the high-pressure phase has the Rh(2)O(3) (II) (Pbcn) structure, consistent with theoretical predictions. This phase is structurally related to corundum, but the AlO(6) polyhedra are highly distorted, with the interatomic bond lengths ranging from 1.690 to 1.847 A at 113 GPa. Ruby luminescence spectra from Cr(3+) impurities within the quenched samples under ambient conditions show significant red shifts and broadening, consistent with the different local environments of chromium atoms in the high-pressure structure inferred from diffraction. Our results suggest that the ruby pressure scale needs to be re-examined in the high-pressure phase, and that shock-wave experiments using sapphire windows need to be re-evaluated. PMID:15146173

  9. In-situ X-ray diffraction analysis of zirconia layer formed on zirconium alloys oxidized at high temperature

    NASA Astrophysics Data System (ADS)

    Gosset, D.; Le Saux, M.

    2015-03-01

    In the case of a hypothetical loss of primary coolant accident (LOCA) in a light water reactor, the zirconium alloys fuel cladding would be oxidized in steam at high temperature, typically in the range 800-1200 °C. The monoclinic to tetragonal phase martensitic transition of zirconia occurs within this temperature range and complex phenomena possibly having an impact on the oxidation kinetics are then to be expected. In order to provide an accurate description of the structure and microstructure of the oxide layers, systematic X-ray diffraction analyses have been performed in-situ under oxidizing atmosphere at high temperature (between 800 and 1100 °C) on Zircaloy-4 and M5™ sheet samples. It was confirmed that the volume fraction of the tetragonal and monoclinic zirconia phases formed during oxide growth drastically depends on the oxidation temperature. For example, the few outer microns of the oxide are fully tetragonal above 1050 °C and contain only 20% of tetragonal phase at 800 °C. It was also shown that cooling after oxidation induces irreversible phase transitions within the oxide. As a consequence, both the structure and the microstructure of the growing oxide cannot be observed post-facto, neither at room temperature nor after reheating at the prior oxidation temperature. It has been deduced from microstructural analyses that the grain size of the tetragonal zirconia phase is nanometric, about 100 nm during oxidation at 1100 °C down to 20 nm after cooling down to room temperature. This small grain size allows the stabilization of the tetragonal phase. The lattice parameters of the monoclinic and tetragonal zirconia phases have been analyzed, during both high temperature oxidation and cooling. In both cases, it appears the 'a' and 'b' cell parameters of the monoclinic phase are strongly constrained by the tetragonal 'a' one. The structural characteristics of the oxide formed at high temperature on Zircaloy-4 and M5™ are quite similar. All those

  10. Phase transition in Ba{sub 2}In{sub 2}O{sub 5} studied by in situ high temperature X-ray diffraction using synchrotron radiation

    SciTech Connect

    Rey, J. F. Q.; Ferreira, F. F.; Muccillo, E. N. S.

    2009-01-29

    The order-disorder phase transition in Ba{sub 2}In{sub 2}O{sub 5} high-temperature ionic conductor was systematically studied by in situ high-temperature X-ray diffraction using synchrotron radiation and electrical conductivity. Pure barium indate was prepared by solid state reactions at 1300 deg. C. The room-temperature structural characterization showed a high degree of phase homogeneity in the prepared material. The reduction of the order-disorder phase transition temperature was verified by electrical conductivity and high-temperature X-ray diffraction. The observed features were explained based on Fourier-transform infrared spectroscopy results that revealed the presence of hydroxyl species in the crystal lattice. The increase of the intensity of few diffraction peaks near the phase transition temperature suggests the formation of a superstructure before the orthorhombic-to-tetragonal phase transition.

  11. X ray attenuation measurements for high-temperature materials characterization and in-situ monitoring of damage accumulation. Ph.D. Thesis - Cleveland State Univ., 1991

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.

    1992-01-01

    The scope of this dissertation is to develop and apply x ray attenuation measurement systems that are capable of: (1) characterizing density variations in high-temperature materials, e.g., monolithic ceramics, ceramic and intermetallic matrix composites, and (2) noninvasively monitoring damage accumulation and failure sequences in ceramic matrix composites under room temperature tensile testing. This dissertation results in the development of: (1) a point scan digital radiography system, and (2) an in-situ x ray material testing system. Radiographic evaluation before, during, and after loading shows the effect of preexisting volume flaws on the fracture behavior of composites. Results show that x ray film radiography can monitor damage accumulation during tensile loading. Matrix cracking, fiber matrix debonding, fiber bridging, and fiber pullout are imaged throughout the tensile loading of the specimens. Further in-situ radiography is found to be a practical technique for estimating interfacial shear strength between the silicon carbide fibers and the reaction bonded silicon nitride matrix. It is concluded that pretest, in-situ, and post test x ray imaging can provide for greater understanding of ceramic matrix composite mechanical behavior.

  12. Aerodynamic levitator for in situ x-ray structure measurements on high temperature and molten nuclear fuel materials.

    PubMed

    Weber, J K R; Tamalonis, A; Benmore, C J; Alderman, O L G; Sendelbach, S; Hebden, A; Williamson, M A

    2016-07-01

    An aerodynamic levitator with carbon dioxide laser beam heating was integrated with a hermetically sealed controlled atmosphere chamber and sample handling mechanism. The system enabled containment of radioactive samples and control of the process atmosphere chemistry. The chamber was typically operated at a pressure of approximately 0.9 bars to ensure containment of the materials being processed. Samples 2.5-3 mm in diameter were levitated in flowing gas to achieve containerless conditions. Levitated samples were heated to temperatures of up to 3500 °C with a partially focused carbon dioxide laser beam. Sample temperature was measured using an optical pyrometer. The sample environment was integrated with a high energy (100 keV) x-ray synchrotron beamline to enable in situ structure measurements to be made on levitated samples as they were heated, melted, and supercooled. The system was controlled from outside the x-ray beamline hutch by using a LabVIEW program. Measurements have been made on hot solid and molten uranium dioxide and binary uranium dioxide-zirconium dioxide compositions. PMID:27475566

  13. Aerodynamic levitator for in situ x-ray structure measurements on high temperature and molten nuclear fuel materials

    NASA Astrophysics Data System (ADS)

    Weber, J. K. R.; Tamalonis, A.; Benmore, C. J.; Alderman, O. L. G.; Sendelbach, S.; Hebden, A.; Williamson, M. A.

    2016-07-01

    An aerodynamic levitator with carbon dioxide laser beam heating was integrated with a hermetically sealed controlled atmosphere chamber and sample handling mechanism. The system enabled containment of radioactive samples and control of the process atmosphere chemistry. The chamber was typically operated at a pressure of approximately 0.9 bars to ensure containment of the materials being processed. Samples 2.5-3 mm in diameter were levitated in flowing gas to achieve containerless conditions. Levitated samples were heated to temperatures of up to 3500 °C with a partially focused carbon dioxide laser beam. Sample temperature was measured using an optical pyrometer. The sample environment was integrated with a high energy (100 keV) x-ray synchrotron beamline to enable in situ structure measurements to be made on levitated samples as they were heated, melted, and supercooled. The system was controlled from outside the x-ray beamline hutch by using a LabVIEW program. Measurements have been made on hot solid and molten uranium dioxide and binary uranium dioxide-zirconium dioxide compositions.

  14. In Situ Neutron and Synchrotron X-ray Diffraction Studies of Jarosite at High-Temperature High-Pressure Conditions

    NASA Astrophysics Data System (ADS)

    Xu, H.; Zhao, Y.; Hickmott, D.; Zhang, J.; Vogel, S.; Daemen, L.; Hartl, M.

    2011-03-01

    Jarosite (KFe 3 (SO4)2 (OH)6) occurs in acid mine drainage and epithermal environments and hot springs associated with volcanic activity. Jarosite is also of industrial interest as an iron-impurity extractor from zinc sulfide ores. In 2004, jarosite was detected by the Mars Exploration Rover Mössbauer spectrometer, which has been interpreted as a strong evidence for the existence of water (and possibly life) on ancient Mars. This discovery has spurred considerable interests in stability and structural behavior of jarosite and related phases at various temperature, pressure, and aqueous conditions. In this work, we have investigated the crystal structure and phase stability of jarosite at temperatures up to 900 K and/or pressures up to 9 GPa using in situ neutron and synchrotron X-ray diffraction. To avoid the large incoherent scattering of neutrons by hydrogen, a deuterated sample was synthesized and characterized. Rietveld analysis of the obtained diffraction data allowed determination of unit-cell parameters, atomic positions and atomic displacement parameters as a function of temperature and pressure. In addition, the coefficients of thermal expansion, bulk moduli and pressure-temperature stability regions of jarosite were determined.

  15. Design and application of a high-temperature microfurnace for an in situ X-ray diffraction study of phase transformation.

    PubMed

    Eu, W S; Cheung, W H; Valix, M

    2009-11-01

    Thermal treatment of mineral ores such as ilmenite can initiate phase transformations that could affect their activation or deactivation, subsequently influencing their ability to dissolve in a leaching agent. Most laboratory-based X-ray diffraction (XRD) studies were carried out ex situ in which realistic diffraction patterns could not be obtained simultaneously with occurring reactions and were time-consuming. The availability of synchrotron-radiation-based XRD not only allows in situ analysis, but significantly shortens the data recording time. The present study details the design of a robust high-temperature microfurnace which allows thermal processing of mineral ore samples and the simultaneous collection of high-resolution synchrotron XRD data. In addition, the application of the manufactured microfurnace for in situ study of phase transformations of ilmenite ore under reducing conditions is demonstrated. PMID:19844022

  16. A high-temperature in situ cell with a large solid angle for fluorescence X-ray absorption fine structure measurement.

    PubMed

    Murata, Naoyoshi; Kobayashi, Makoto; Okada, Yukari; Suzuki, Takuya; Nitani, Hiroaki; Niwa, Yasuhiro; Abe, Hitoshi; Wada, Takahiro; Mukai, Shingo; Uehara, Hiromitsu; Ariga, Hiroko; Takakusagi, Satoru; Asakura, Kiyotaka

    2015-03-01

    We present the design and performance of a high-temperature in situ cell with a large solid angle for fluorescence X-ray absorption fine structure (XAFS) spectra. The cell has a large fluorescence XAFS window (116 mm(ϕ)) near the sample in the cell, realizing a large half-cone angle of 56°. We use a small heater (25 × 35 mm(2)) to heat the sample locally to 873 K. We measured a Pt-SnO2 thin layer on a Si substrate at reaction conditions having a high activity. In situ measurement enables the analysis of the difference XAFS spectra between before and during the reaction to reveal the structure change during the operation. PMID:25832248

  17. In situ high-temperature X-ray diffraction and spectroscopic study of fibroferrite, FeOH(SO4)·5H2O

    NASA Astrophysics Data System (ADS)

    Ventruti, Gennaro; Ventura, Giancarlo Della; Corriero, Nicola; Malferrari, Daniele; Gualtieri, Alessandro F.; Susta, Umberto; Lacalamita, Maria; Schingaro, Emanuela

    2016-05-01

    The thermal dehydration process of fibroferrite, FeOH(SO4)·5H2O, a secondary iron-bearing hydrous sulfate, was investigated by in situ high-temperature synchrotron X-ray powder diffraction (HT-XRPD), in situ high-temperature Fourier transform infrared spectroscopy (HT-FTIR) and thermal analysis (TGA-DTA) combined with evolved gas mass spectrometry. The data analysis allowed the determination of the stability fields and the reaction paths for this mineral as well as characterization of its high-temperature products. Five main endothermic peaks are observed in the DTA curve collected from room T up to 800 °C. Mass spectrometry of gases evolved during thermogravimetric analysis confirms that the first four mass loss steps are due to water emission, while the fifth is due to a dehydroxylation process; the final step is due to the decomposition of the remaining sulfate ion. The temperature behavior of the different phases occurring during the heating process was analyzed, and the induced structural changes are discussed. In particular, the crystal structure of a new phase, FeOH(SO4)·4H2O, appearing at about 80 °C due to release of one interstitial H2O molecule, was solved by ab initio real-space and reciprocal-space methods. This study contributes to further understanding of the dehydration mechanism and thermal stability of secondary sulfate minerals.

  18. In-Situ X-Ray Diffraction Observations of Low Temperature Ag-Nanoink Sintering and High Temperature Eutectic Reaction with Copper

    SciTech Connect

    Elmer, J. W.; Specht, Eliot D

    2012-01-01

    Nanoinks, which contain nm sized metallic particles suspended in an organic dispersant fluid, are finding numerous microelectronic applications. Nanoinks sinter at much lower temperatures than bulk metals due to their high surface area to volume ratio and small radius of curvature, which reduces their melting points significantly below their bulk values. The unusually low melting and sintering temperatures have unique potential for materials joining since their melting points increase dramatically after initial sintering. In this paper Ag nanoink is studied using in-situ synchrotron based x-ray diffraction to follow the kinetics of the initial sintering step by analysis of diffraction patterns, and to directly observe the high remelt temperature of sintered nanoinks. Ag nanoink is further explored as a possible eutectic bonding medium with copper by tracking phase transformations to high temperatures where melting occurs at the Ag-Cu eutectic temperature, demonstrating nanoinks as a viable eutectic bonding medium.

  19. Rapid, dynamic segregation of core forming melts: Results from in-situ High Pressure- High Temperature X-ray Tomography

    NASA Astrophysics Data System (ADS)

    Watson, H. C.; Yu, T.; Wang, Y.

    2011-12-01

    The timing and mechanisms of core formation in the Earth, as well as in Earth-forming planetesimals is a problem of significant importance in our understanding of the early evolution of terrestrial planets . W-Hf isotopic signatures in meteorites indicate that core formation in small pre-differentiated planetesimals was relatively rapid, and occurred over the span of a few million years. This time scale is difficult to achieve by percolative flow of the metallic phase through a silicate matrix in textural equilibrium. It has been suggested that during this active time in the early solar system, dynamic processes such as impacts may have caused significant deformation in the differentiating planetesimals, which could lead to much higher permeability of the core forming melts. Here, we have measured the change in permeability of core forming melts in a silicate matrix due to deformation. Mixtures of San Carlos olivine and FeS close to the equilibrium percolation threshold (~5 vol%FeS) were pre-synthesized to achieve an equilibrium microstructure, and then loaded into the rotational Drickamer apparatus at GSE-CARS, sector 13-BMD, at the Advanced Photon Source (Argonne National Laboratory). The samples were subsequently pressed to ~2GPa, and heated to 1100°C. Alternating cycles of rotation to collect X-ray tomography images, and twisting to deform the sample were conducted until the sample had been twisted by 1080°. Qualitative and quantitative analyses were performed on the resulting 3-dimensional x-ray tomographic images to evaluate the effect of shear deformation on permeability and migration velocity. Lattice-Boltzmann simulations were conducted, and show a marked increase in the permeability with increasing deformation, which would allow for much more rapid core formation in planetesimals.

  20. Dislocation generation related to micro-cracks in Si wafers: High temperature in situ study with white beam X-ray topography

    NASA Astrophysics Data System (ADS)

    Danilewsky, A.; Wittge, J.; Hess, A.; Cröll, A.; Allen, D.; McNally, P.; Vagovič, P.; Cecilia, A.; Li, Z.; Baumbach, T.; Gorostegui-Colinas, E.; Elizalde, M. R.

    2010-02-01

    The generation and propagation of dislocations in Si at high temperature is observed in situ with white beam X-ray topography. For the heating experiments a double ellipsoidal mirror furnace was installed at the Topo-Tomo beamline of the ANKA synchrotron light source, Research Centre Karlsruhe, Germany. Details of the experimental set-up and the first results on the occurrence of dislocations are presented. Artificial damage was generated in commercial (1 0 0) Si wafers using a nanoindenter with various loads. The applied forces for each set of indents were varied from 100 to 500 mN, respectively. After heating to approx. 790 °C large area transmission topographs were taken every 30 min which were then compared to room temperature topographs before and after heating. At the outset straight 60°-dislocations with b = a/2<1 1 0> originate from the 500 mN indents into the direction of the strongest temperature gradient. After 60 min at constant temperature an increase in the length and number of the dislocations in other directions is also observed. As a result of the continual thermal stressing dislocations develop from the 100 mN indents too.

  1. In situ high temperature X-Ray diffraction study of the phase equilibria in the UO2-PuO2-Pu2O3 system

    NASA Astrophysics Data System (ADS)

    Belin, Renaud C.; Strach, Michal; Truphémus, Thibaut; Guéneau, Christine; Richaud, Jean-Christophe; Rogez, Jacques

    2015-10-01

    The region of the U-Pu-O phase diagram delimited by the compounds UO2-PuO2-Pu2O3 is known to exhibit a miscibility gap at low temperature. Consequently, MOX fuels with a composition entering this region could decompose into two fluorite phases and thus exhibit chemical heterogeneities. The experimental data on this domain found in the literature are scarce and usually provided using DTA that is not suitable for the investigation of such decomposition phenomena. In the present work, new experimental data, i.e. crystallographic phases, lattice parameters, phase fractions and temperature of phase separation, were measured in the composition range 0.14 < Pu/(U + Pu) < 0.62 and 1.85 < O/(U + Pu) < 2 from 298 to 1750 K using a novel in situ high temperature X-ray diffraction apparatus. A very good agreement is found between the temperature of phase separation determined from our results and using the thermodynamic model of the U-Pu-O system based on the CALPHAD method. Also, the combined use of thermodynamic calculations and XRD results refinement proved helpful in the determination of the O/M ratio of the samples during cooling. The methodology used in the current work might be useful to investigate other oxides systems exhibiting a miscibility gap.

  2. Isothermal nucleation and growth kinetics of Pd/Ag alloy phase via in-situ time-resolved high-temperature x-ray diffraction (HTXRD) analysis

    SciTech Connect

    Ayturk, Mahmut Engin; Payzant, E Andrew; Speakman, Scott A; Ma, Yi Hua

    2008-01-01

    Among several different approaches to form Pd/Ag alloys for hydrogen separation applications, ex-situ studies carried by conventional X-ray point scanning detectors might fail to reveal the key aspects of the phase transformation between Pd and Ag metals. In this respect, in-situ time-resolved high temperature X-ray diffraction (HTXRD) was employed to study the Pd/Ag alloy phase nucleation and growth kinetics. By the use of linear position sensitive detectors, advanced optics and profile fitting with the use of JADE-6.5 software, isothermal phase evolution of the Pd/Ag alloy at 500 C, 550 C and 600 C under hydrogen atmosphere were quantified to elucidate the mechanistic details of the Pd/Ag alloy phase nucleation and growth pattern. Analysis of the HTXRD data by the Avrami model indicated that the nucleation of the Pd/Ag alloy phase was instantaneous where the growth mechanism was through diffusion-controlled one-dimensional thickening of the Pd/Ag alloy layer. The value of the Avrami exponent, n, was found to increase with temperature with the values of 0.34, 0.39 and 0.67 at 500oC, 550oC and 600oC, respectively. In addition, parabolic rate law analysis suggested that the nucleation of the Pd/Ag alloy phase was through a heterogeneous nucleation mode, in which the nucleation sites were defined as the non-equilibrium defects. The cross-sectional SEI micrographs indicated that the Pd/Ag alloy phase growth was strongly dependent upon the deposition morphology of the as-synthesized Pd and Ag layers formed by the electroless plating. Based on the Avrami model and the parabolic rate law, the estimated activation energies for the phase transformation were 236.5 and 185.6 kJ/mol and in excellent agreement with the literature values (183-239.5 kJ/mol).

  3. In situ X-ray observations of the melting relations in the Fe-S-H system under high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Shibazaki, Y.; Stagno, V.; Higo, Y.; Fei, Y.

    2013-12-01

    Sulfur and hydrogen are two of the most plausible light elements in the planetary cores. Particularly the cores of icy satellites, such as Ganymede, are considered to contain a significant amount of those elements based on studies of meteorites. Therefore, it is essential to investigate the properties of iron alloyed with those light elements at high pressure and high temperature, in order to shed light on the composition and structure of the cores. To date, the Fe-FeS system has been extensively investigated at high pressure and temperature. Hydrogen is known to dissolve in interstitial sites of Fe and FeS lattices and strongly depresses the melting temperatures. However, it is still not clear how hydrogen affects the eutectic point (temperature and composition) of the Fe-FeS system. In order to understand the melting relations in the Fe-S-H system, we have performed in situ X-ray diffraction experiments at high pressure and high temperature. The experiments were carried out using the multi-anvil apparatus at the BL04B1 beamline of SPring-8, Japan, up to 10 GPa and 1700 K. Fe-FeS powder mixtures (15.5 wt% S and 30 wt %S) were packed into a NaCl capsule along with LiAlH4. Hydrogen was supplied to the Fe-FeS sample by a thermal decomposition of LiAlH4. The Fe-FeS sample was separated from LiAlH4 using a thin MgO disk to avoid the direct chemical reaction between the sample and LiAlH4. The NaCl capsule is able to seal hydrogen effectively at high pressure and high temperature. The diffraction patterns were collected for a period of 300 s at a temperature interval of 50-100 K. The collected diffraction data show that FeHx and FeSHx were synthesized at high temperature and then the sample was totally molten via a partial melting with increasing temperature. Since the atomic volumes of Fe and FeS expand due to the hydrogen dissolution (hydrogenation), the hydrogen concentrations in FeHx and FeSHx were estimated by comparing the volumes of between Fe and FeHx or between

  4. A novel high-temperature furnace for combined in situ synchrotron X-ray diffraction and infrared thermal imaging to investigate the effects of thermal gradients upon the structure of ceramic materials

    PubMed Central

    Robinson, James B.; Brown, Leon D.; Jervis, Rhodri; Taiwo, Oluwadamilola O.; Millichamp, Jason; Mason, Thomas J.; Neville, Tobias P.; Eastwood, David S.; Reinhard, Christina; Lee, Peter D.; Brett, Daniel J. L.; Shearing, Paul R.

    2014-01-01

    A new technique combining in situ X-ray diffraction using synchrotron radiation and infrared thermal imaging is reported. The technique enables the application, generation and measurement of significant thermal gradients, and furthermore allows the direct spatial correlation of thermal and crystallographic measurements. The design and implementation of a novel furnace enabling the simultaneous thermal and X-ray measurements is described. The technique is expected to have wide applicability in material science and engineering; here it has been applied to the study of solid oxide fuel cells at high temperature. PMID:25178003

  5. Tensile testing of materials at high temperatures above 1700 °C with in situ synchrotron X-ray micro-tomography

    SciTech Connect

    Haboub, Abdel; Nasiatka, James R.; MacDowell, Alastair A.; Bale, Hrishikesh A.; Cox, Brian N.; Marshall, David B.; Ritchie, Robert O.

    2014-08-15

    A compact ultrahigh temperature tensile testing instrument has been designed and fabricated for in situ x-ray micro-tomography using synchrotron radiation at the Advanced Light Source, Lawrence Berkeley National Laboratory. It allows for real time x-ray micro-tomographic imaging of test materials under mechanical load at temperatures up to 2300 °C in controlled environments (vacuum or controlled gas flow). Sample heating is by six infrared halogen lamps with ellipsoidal reflectors arranged in a confocal configuration, which generates an approximately spherical zone of high heat flux approximately 5 mm in diameter. Samples are held between grips connected to a motorized stage that loads the samples in tension or compression with forces up to 2.2 kN. The heating chamber and loading system are water-cooled for thermal stability. The entire instrument is mounted on a rotation stage that allows stepwise recording of radiographs over an angular range of 180°. A thin circumferential (360°) aluminum window in the wall of the heating chamber allows the x-rays to pass through the chamber and the sample over the full angular range. The performance of the instrument has been demonstrated by characterizing the evolution of 3D damage mechanisms in ceramic composite materials under tensile loading at 1750 °C.

  6. Tensile testing of materials at high temperatures above 1700 °C with in situ synchrotron X-ray micro-tomography.

    PubMed

    Haboub, Abdel; Bale, Hrishikesh A; Nasiatka, James R; Cox, Brian N; Marshall, David B; Ritchie, Robert O; MacDowell, Alastair A

    2014-08-01

    A compact ultrahigh temperature tensile testing instrument has been designed and fabricated for in situ x-ray micro-tomography using synchrotron radiation at the Advanced Light Source, Lawrence Berkeley National Laboratory. It allows for real time x-ray micro-tomographic imaging of test materials under mechanical load at temperatures up to 2300 °C in controlled environments (vacuum or controlled gas flow). Sample heating is by six infrared halogen lamps with ellipsoidal reflectors arranged in a confocal configuration, which generates an approximately spherical zone of high heat flux approximately 5 mm in diameter. Samples are held between grips connected to a motorized stage that loads the samples in tension or compression with forces up to 2.2 kN. The heating chamber and loading system are water-cooled for thermal stability. The entire instrument is mounted on a rotation stage that allows stepwise recording of radiographs over an angular range of 180°. A thin circumferential (360°) aluminum window in the wall of the heating chamber allows the x-rays to pass through the chamber and the sample over the full angular range. The performance of the instrument has been demonstrated by characterizing the evolution of 3D damage mechanisms in ceramic composite materials under tensile loading at 1750 °C. PMID:25173271

  7. Tensile testing of materials at high temperatures above 1700 °C with in situ synchrotron X-ray micro-tomography

    NASA Astrophysics Data System (ADS)

    Haboub, Abdel; Bale, Hrishikesh A.; Nasiatka, James R.; Cox, Brian N.; Marshall, David B.; Ritchie, Robert O.; MacDowell, Alastair A.

    2014-08-01

    A compact ultrahigh temperature tensile testing instrument has been designed and fabricated for in situ x-ray micro-tomography using synchrotron radiation at the Advanced Light Source, Lawrence Berkeley National Laboratory. It allows for real time x-ray micro-tomographic imaging of test materials under mechanical load at temperatures up to 2300 °C in controlled environments (vacuum or controlled gas flow). Sample heating is by six infrared halogen lamps with ellipsoidal reflectors arranged in a confocal configuration, which generates an approximately spherical zone of high heat flux approximately 5 mm in diameter. Samples are held between grips connected to a motorized stage that loads the samples in tension or compression with forces up to 2.2 kN. The heating chamber and loading system are water-cooled for thermal stability. The entire instrument is mounted on a rotation stage that allows stepwise recording of radiographs over an angular range of 180°. A thin circumferential (360°) aluminum window in the wall of the heating chamber allows the x-rays to pass through the chamber and the sample over the full angular range. The performance of the instrument has been demonstrated by characterizing the evolution of 3D damage mechanisms in ceramic composite materials under tensile loading at 1750 °C.

  8. X-ray emission from high temperature plasmas

    NASA Technical Reports Server (NTRS)

    Harries, W. L.

    1976-01-01

    The physical processes occurring in plasma focus devices were studied. These devices produce dense high temperature plasmas, which emit X rays of hundreds of KeV energy and one to ten billion neutrons per pulse. The processes in the devices seem related to solar flare phenomena, and would also be of interest for controlled thermonuclear fusion applications. The high intensity, short duration bursts of X rays and neutrons could also possibly be used for pumping nuclear lasers.

  9. Determination of the phase boundary of the omega to beta transition in Zr using in situ high-pressure and high-temperature X-ray diffraction

    SciTech Connect

    Ono, Shigeaki; Kikegawa, Takumi

    2015-05-15

    The high-pressure behavior of zirconium has been examined using the synchrotron X-ray diffraction technique to a pressure of 38 GPa and a temperature of 800 K employing a hydrothermal diamond anvil cell technique. The structural transition from the ω to the β phase was observed. This transition has a negative dP/dT gradient, which is in general agreement with those reported in previous studies. The transition boundary was determined to be, P (GPa)=41.2–0.025×T (K). The negative slope of the transition, dP/dT, determined in our study using the diamond anvil cell technique was less than half that estimated by the previous study using a large press apparatus. - Graphical abstract: Experimental results and phase boundary of the ω–β transition in Zr. - Highlights: • X-ray diffraction patterns of zirconium were measured by the synchrotron experiments. • High-pressure experiments were performed by an external-heated diamond anvil cell. • Phase diagram of zirconium was determined at high pressures and high temperatures. • Phase boundary between omega and beta transition has a negative dP/dT slope.

  10. A large-volume high-pressure and high-temperature apparatus for in situ X-ray observation, ' SPEED-Mk.II'

    NASA Astrophysics Data System (ADS)

    Katsura, Tomoo; Funakoshi, Ken-ichi; Kubo, Atsushi; Nishiyama, Norimasa; Tange, Yoshinori; Sueda, Yu-ichiro; Kubo, Tomoaki; Utsumi, Wataru

    2004-06-01

    SPEED-Mk.II, the second KAWAI-type high P- T apparatus for in situ X-ray observation that was installed at the bending magnet beam line at SPring-8, is described. The guide block system was designed so that the change of the relative dimension of the cubic compression space with press load can be minimized by repeated adjustments. The hydraulic system was designed so as to enable smooth compression and decompression. These precise controls should be advantageous for high-pressure generation, especially when sintered diamond (SD) anvils are used. An oscillation system was equipped for the first time in a large volume press, making it possible to obtain high-quality diffraction patterns even when the number of sample grains is limited. The use of the oscillation system also reduces errors in pressure determination that may be caused by insufficient averaging of diffraction angles over grains in a limited diffraction volume, because the oscillating grains should sweep through the 2 θ range that is allowed by the finite widths of the optical slits.

  11. Sound velocities measurement on MgSiO3 akimotoite at high pressures and high temperatures with simultaneous in situ X-ray diffraction and ultrasonic study

    NASA Astrophysics Data System (ADS)

    Zhou, Chunyin; Gréaux, Steeve; Nishiyama, Norimasa; Irifune, Tetsuo; Higo, Yuji

    2014-03-01

    Elastic wave velocities of MgSiO3 akimotoite polycrystalline samples have been measured at pressures up to 25.7 GPa and temperatures to 1500 K by a combination of in situ X-ray diffraction and ultrasonic interferometry techniques in a large volume Kawai-type multianvil apparatus (KMA). The elastic moduli of akimotoite and their pressure and temperature dependences are determined by a 2D linear fitting analysis of the present data, yielding: KS = 219.4(7) GPa, ∂KS/∂P = 4.62(3), ∂KS/∂T = -0.0228(4) GPa/K, G0 = 132.1(7) GPa, ∂G/∂P = 1.63(4), ∂G/∂T = -0.0225(4) GPa/K. The bulk and shear moduli at ambient conditions are generally consistent with the result of a previous Brillouin study. However, significant nonlinear behaviors of the elastic moduli were observed at higher temperatures, indicating that the velocities derived from the linear fitting analysis are overestimated for the actual mantle conditions. Using the present new experimental data, we compared the elastic velocities of various high-pressure forms of MgSiO3 under the mantle conditions. The results demonstrate a large velocity difference between akimotoite and perovskite, which may be relevant to the complex seismic structures near the bottom of the mantle transition zone.

  12. X-ray emission from high temperature plasmas

    NASA Technical Reports Server (NTRS)

    Harries, W. L.

    1974-01-01

    X-rays from a 25-hJ plasma focus apparatus were observed with pinhole cameras. The cameras consist of 0.4 mm diameter pinholes in 2 cm thick lead housing enclosing an X-ray intensifying screen at the image plane. Pictures recorded through thin aluminum foils or plastic sheets for X-ray energies sub gamma smaller than 15 keV show distributed X-ray emissions from the focussed plasma and from the anode surface. However, when thick absorbers are used, radial filamentary structure in the X-ray emission from the anode surface is revealed. Occasionally larger structures are observed in addition to the filaments. Possible mechanisms for the filamentary structure are discussed.

  13. X-ray emission from high temperature plasmas

    NASA Technical Reports Server (NTRS)

    Harries, W. L.

    1977-01-01

    The physical processes occurring in plasma focus devices were investigated with particular emphasis on X-ray emission. Topics discussed include: trajectories of high energy electrons; detection of ion trajectories; spatial distribution of neutron emission; space and time resolved emission of hard X-rays from a plasma focus; the staged plasma focus as a variation of the hypocloidal pinch; formation of current sheets in a staged plasma focus; and X-ray and neutron emission from a staged plasma focus. The possibility of operating dense plasma-focus type devices in multiple arrays beyond the scaling law for a single gun is discussed.

  14. X-ray emission from high temperature plasmas

    NASA Technical Reports Server (NTRS)

    Harries, W. L.

    1975-01-01

    The bremsstrahlung X-rays from a plasma focus device were investigated with emphasis on the emission versus position, time, energy, and angle of emission. It is shown that low energy X-rays come from the plasma focus region, but that the higher energy components come from the anode. The emission is anisotropic, the low energy polar diagram resembling a cardioid, while the high energy emission is a lobe into the anode. The plasma parameters were considered indicating that even in the dense focus, the plasma is collisionless near the axis. By considering the radiation patterns of relativistic electrons a qualitative picture is obtained, which explains the measured polar diagrams, assuming the electrons that produce the X-rays have velocity vectors lying roughly in a cone between the point of focus and the anode. The average electron energy is about 3keV at the focus and about 10 keV on the anode surface. Results are consistent with the converging beam model of neutron production.

  15. In situ X-ray diffraction study of structural evaluation in Fe73Cu1.5Nd3Si13.5B9 amorphous alloy at high temperature

    NASA Astrophysics Data System (ADS)

    Li, Gong; Xu, Tao; Gao, Yunpeng; Liu, Riping

    2008-04-01

    The thermodynamics structural relaxation of Fe73Cu1.5Nd3Si13.5B9 amorphous alloy from room temperature to 400°C has been investigated by measuring the structure factor with in situ X-ray diffraction. The structural information of the atomic configuration such as radial distribution function (RDF) and neighbor atomic distance was gained by Fourier transformation. The research result shows that the amorphous structure remains stable in the temperature range of 30 to 400°C but exhibits distinct changes in local atomic configuration with the increase of temperature. The quantitative determination of the neighbor atomic distance suggests that the degree of short-range order changes by the temperature altering the second nearest neighbor local atomic configuration of the amorphous when structural relaxation occurs.

  16. High-temperature X-ray diffraction study of uranium-neptunium mixed oxides.

    PubMed

    Chollet, Mélanie; Belin, Renaud C; Richaud, Jean-Christophe; Reynaud, Muriel; Adenot, Frédéric

    2013-03-01

    Incorporating minor actinides (MAs = Am, Np, Cm) in UO2 fertile blankets is a viable option to recycle them. Despite this applied interest, phase equilibria between uranium and MAs still need to be thoroughly investigated, especially at elevated temperatures. In particular, few reports on the U-Np-O system are available. In the present work, we provide for the first time in situ high-temperature X-ray diffraction results obtained during the oxidation of (U1-yNpy)O2 uranium-neptunium mixed oxides up to 1373 K and discuss subsequent phase transformations. We show that (i) neptunium stabilizes the UO2-type fluorite structure at high temperature and that (ii) the U3O8-type orthorhombic structure is observed in a wide range of compositions. We clearly demonstrate the incorporation of neptunium in this phase, which was a controversial question in previous studies up to now. We believe it is the particular stability of the tetravalent state of neptunium that is responsible for the observed phase relationships. PMID:23409700

  17. In-Situ X-ray Spectroscopic Studies of the Fundamental Chemistry of Pb and Pb-Bi Corrosion Processes at High Temperatures: Development and Assessment of Composite Corrosion Resistant Materials.

    SciTech Connect

    Carlo Segre

    2009-12-30

    Over the course of this project, we have a number of accomplishments. The following list is presented as a summary statement for the project. Specific details from previous Quarterly Reports are given. (1) We established that it is possible to use EXAFS to study the interface layer between a material and the liquid Pb overlayer. We have discovered that molybdenum grows a selflimiting oxide layer which does not spall even at the highest temperatures studied. There have been 2 publications resulting from these studies. (2) We have fabricated a high temperature environmental chamber capable of extending the Pb overlayer studies by varying the incident x-ray beam angle to perform depth profiling of the Pb layer. This chamber will continue to be available to nuclear materials program researchers who wish to use the MRCAT beam line. (3) We have developed a collaboration with researchers at the Paul Scherrer Institute to study corrosion layers on zircalloy. One publication has resulted from this collaboration and another is in progress. (4) We have developed a collaboration with Prof. G.R. Odette of UCSB in which we studied the local structure of Ti and Y in nanoclusters found in oxygen dispersion strengthened steels. There are two publications in progress form this collaboration and we have extended the project to anomalous small angle x-ray scattering as well as EXAFS. (5) We have promoted the use of EXAFS for the study of nuclear materials to the community over the past 4 years and we have begun to see an increase in demand for EXAFS from the community at the MRCAT beam line. (6) This grant was instrumental in nucleating interest in establishing a new Collaborative Access Team at the Advanced Photon Source, the Nuclear and Radiological Research CAT (NRR-CAT). The co-PI (Jeff Terry) is the lead investigator on this project and it has been approved by the APS Scientific Advisory Committee for further planning. The status of the NRR-CAT project is being discussed in a

  18. Integration of a broad beam ion source with a high-temperature x-ray diffraction vacuum chamber

    SciTech Connect

    Manova, D.; Bergmann, A.; Maendl, S.; Neumann, H.; Rauschenbach, B.

    2012-11-15

    Here, the integration of a low energy, linearly variable ion beam current density, mechanically in situ adjustable broad beam ion source with a high-temperature x-ray diffraction (XRD) vacuum chamber is reported. This allows in situ XRD investigation of phase formation and evolution processes induced by low energy ion implantation. Special care has been taken to an independent adjustment of the ion beam for geometrical directing towards the substrate, a 15 mm small ion source exit aperture to avoid a secondary sputter process of the chamber walls, linearly variable ion current density by using a pulse length modulation (PLM) for the accelerating voltages without changing the ion beam density profile, nearly homogeneous ion beam distribution over the x-ray footprint, together with easily replaceable Kapton{sup Registered-Sign} windows for x-rays entry and exit. By combining a position sensitive x-ray detector with this PLM-modulated ion beam, a fast and efficient time resolved investigation of low energy implantation processes is obtained in a compact experimental setup.

  19. Integration of a broad beam ion source with a high-temperature x-ray diffraction vacuum chamber

    NASA Astrophysics Data System (ADS)

    Manova, D.; Bergmann, A.; Mändl, S.; Neumann, H.; Rauschenbach, B.

    2012-11-01

    Here, the integration of a low energy, linearly variable ion beam current density, mechanically in situ adjustable broad beam ion source with a high-temperature x-ray diffraction (XRD) vacuum chamber is reported. This allows in situ XRD investigation of phase formation and evolution processes induced by low energy ion implantation. Special care has been taken to an independent adjustment of the ion beam for geometrical directing towards the substrate, a 15 mm small ion source exit aperture to avoid a secondary sputter process of the chamber walls, linearly variable ion current density by using a pulse length modulation (PLM) for the accelerating voltages without changing the ion beam density profile, nearly homogeneous ion beam distribution over the x-ray footprint, together with easily replaceable Kapton® windows for x-rays entry and exit. By combining a position sensitive x-ray detector with this PLM-modulated ion beam, a fast and efficient time resolved investigation of low energy implantation processes is obtained in a compact experimental setup.

  20. X-ray tube with a graphite field emitter inflamed at high temperature

    PubMed Central

    Iwai, Yusuke; Koike, Takayoshi; Hayama, Youhei; Jouzuka, Atsuo; Nakamura, Tomonori; Onizuka, Yoshihiro; Miyoshi, Motosuke; Mimura, Hidenori

    2013-01-01

    The authors developed a class of novel graphite-based field emitters, known as graphite field emitters inflamed at high temperature (GFEIHTs), which includes numerous edges and juts. The GFEIHT field emission characteristics are investigated in a vacuum tube (10−7 Pa), and an anode current exceeding 2 mA is obtained. The authors also fabricated tipped-off x-ray tubes using GFEIHTs. No degradation in the anode current is observed under the operating conditions of 16.6 kV anode voltage and 160 μA anode current. The current dispersion, defined as the standard deviation (σ)/mean over 24 h, is 2.8%. The authors successfully demonstrated radiography and x-ray fluorescence spectrometry using an x-ray tube with GFEIHT. PMID:23847750

  1. Soft X-ray flare spectra. [existence of high temperature plasmas in solar flares

    NASA Technical Reports Server (NTRS)

    Doschek, G. A.; Meekins, J. F.

    1973-01-01

    Large solar flares produce intense soft X-ray emission, indicating the existence of high temperature plasmas that coexist in time with the plasmas responsible for the normally observed brightenings in H-alpha. The time behavior of the X-ray flux, as revealed, for example, by ion chamber detectors on the series of Solrad monitoring satellites, appears to roughly mimic the intensity-time behavior of the H-alpha flare, insofar as start times, times of maximum flux, and approximate decay times are concerned. In recent years, soft X-ray spectra of both active regions and solar flares have been obtained by instruments flown on spacecraft such as the Orbiting Solar Observatory (OSO) series. The disbursing elements used were Bragg crystals, and in the 8 Angstrom region the resolution is typically approximately 1200. This paper discusses the observed characteristics of X-ray flare spectra and spectroscopic diagnostics for determining electron temperatures, electron densities, and departures from ionization equilibrium within the soft X-ray emitting plasma.

  2. In situ/operando soft x-ray spectroscopy characterization of ion solvation and catalysis

    NASA Astrophysics Data System (ADS)

    Liu, Yi-Sheng; Guo, Jinghua

    Many important systems especially in energy-related regime are based on the complexity of material architecture, chemistry and interactions among constituents within. To understand and thus ultimately control the varying applications calls for in-situ/operando characterization tools. We will present the recent development of the in-situ/operando soft X-ray spectroscopic in the studies of catalytic and alkali ion solvation under bias condition, and reveal how to overcome the challenge that soft X-rays cannot easily peek into the high-pressure catalytic cells or liquid electrochemical cells. Also the different feasible detection approaches can provide surface and bulk sensitivity experimentally from those in-situ cells. The unique design of in-situ/operando soft X-ray spectroscopy instrumentation and fabrication principle with examples in Ca, Na, Mg based solutions at ambient pressure/temperature and high temperature (~250°C) gas catalysis will be shown.

  3. Applying X-ray Imaging Crystal Spectroscopy for Use as a High Temperature Plasma Diagnostic.

    PubMed

    Cao, Norman M; Mier Valdivia, Andrés M; Rice, John E

    2016-01-01

    X-ray spectra provide a wealth of information on high temperature plasmas; for example electron temperature and density can be inferred from line intensity ratios. By using a Johann spectrometer viewing the plasma, it is possible to construct profiles of plasma parameters such as density, temperature, and velocity with good spatial and time resolution. However, benchmarking atomic code modeling of X-ray spectra obtained from well-diagnosed laboratory plasmas is important to justify use of such spectra to determine plasma parameters when other independent diagnostics are not available. This manuscript presents the operation of the High Resolution X-ray Crystal Imaging Spectrometer with Spatial Resolution (HIREXSR), a high wavelength resolution spatially imaging X-ray spectrometer used to view hydrogen- and helium-like ions of medium atomic number elements in a tokamak plasma. In addition, this manuscript covers a laser blow-off system that can introduce such ions to the plasma with precise timing to allow for perturbative studies of transport in the plasma. PMID:27585305

  4. In-situ mechanical testing during X-ray diffraction

    SciTech Connect

    Van Swygenhoven, Helena Van Petegem, Steven

    2013-04-15

    Deforming metals during recording X-ray diffraction patterns is a useful tool to get a deeper understanding of the coupling between microstructure and mechanical behaviour. With the advances in flux, detector speed and focussing techniques at synchrotron facilities, in-situ mechanical testing is now possible during powder diffraction and Laue diffraction. The basic principle is explained together with illustrative examples.

  5. High temperature monitoring of silicon carbide ceramics by confocal energy dispersive X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Li, Fangzuo; Liu, Zhiguo; Sun, Tianxi

    2016-04-01

    In the present work, we presented an alternative method for monitoring of the oxidation situation of silicon carbide (SiC) ceramics at various high temperatures in air by measuring the Compton-to-Rayleigh intensity ratios (ICo/IRa) and effective atomic numbers (Zeff) of SiC ceramics with the confocal energy dispersive X-ray fluorescence (EDXRF) spectrometer. A calibration curve of the relationship between ICo/IRa and Zeff was established by using a set of 8 SiC calibration samples. The sensitivity of this approach is so high that it can be easily distinguished samples of Zeff differing from each other by only 0.01. The linear relationship between the variation of Zeff and the variations of contents of C, Si and O of SiC ceramics were found, and the corresponding calculation model of the relationship between the ΔZ and the ΔCC, ΔCSi, and ΔCO were established. The variation of contents of components of the tested SiC ceramics after oxidation at high temperature was quantitatively calculated based on the model. It was shown that the results of contents of carbon, silicon and oxygen obtained by this method were in good agreement with the results obtained by XPS, giving values of relative deviation less than 1%. It was concluded that the practicality of this proposed method for monitoring of the oxidation situation of SiC ceramics at high temperatures was acceptable.

  6. Infrared Imaging of Temperature Distribution in a High Temperature X-Ray Diffraction Furnace

    SciTech Connect

    Payzant, E.A.; Wang, H.

    1999-04-05

    High Temperature X-ray Diffraction (HTXRD) is a very powerful tool for studies of reaction kinetics, phase transformations, and lattice thermal expansion of advanced materials. Accurate temperature measurement is a critical part of the technique. Traditionally, thermocouples, thermistors, and optical pyrometers have been used for temperature control and measurement and temperature could only be measured at a single point. Infrared imaging was utilized in this study to characterize the thermal gradients resulting from various sample and furnace configurations in a commercial strip heater furnace. Furnace configurations include a metallic strip heater, with and without a secondary surround heater, or a surround heater alone. Sample configurations include low and high thermal conductivity powders and solids. The IR imaging results have been used to calibrate sample temperatures in the HTXRD furnace.

  7. High temperature x-ray diffraction in transmission under controlled environment

    SciTech Connect

    Margulies, L.; Kramer, M.J.; Williams, J.J.; Deters, E.M.; McCallum, R.W.; Goldman, A.I.; Haeffner, D.R.; Lang, J.C.; Kycia, S.

    1998-12-31

    A compact tube furnace has been developed for high temperature X-ray diffraction studies using high energy synchrotron radiation. The furnace design has a low absorption path in transmission yet allows for a high degree of control of the sample atmosphere and a minimal temperature gradient across the sample. The design allows for a maximum temperature of 1,500 C with a variety of atmospheres including inert, reducing, and oxidizing. Preliminary results obtained at the SRI-CAT 1-ID undulator line (60 keV) at the APS facility and the A2 24 pole wiggler line (45 keV) at CHESS on the Ti{sub 5}Si{sub 3}Z{sub .5} (Z = C, N, O) system will be presented to demonstrate the feasibility of this approach.

  8. Polarized X-Ray Absorption Spectroscopy Studies of Copper in High Temperature Superconductors

    NASA Astrophysics Data System (ADS)

    Mini, Susan M.

    One can take advantage of the linearly polarized nature of the x-rays from a synchrotron to study the electronic and structural properties of single crystals or magnetically aligned powders. Since the advent of layered copper oxide compounds as high temperature superconductors (1) the structures of La_{rm 2-x}Sr _{rm x}CuO _4, Nd_{rm 2-x }Ce_{rm x}CuO _4 and YBa_2Cu _3O_{rm 7-y} have been of extreme interest. In this study, the powder samples of these compounds were magnetically aligned such that the electric vector was either perpendicular or parallel to the crystallographic c axis. The results of polarized XANES (X-ray Absorption Near Edge Spectroscopy) measurements at the copper K-edge (8979 eV) of all three structures will be presented. The EXAFS (Extended X-ray Absorption Fine Structure) of magnetically aligned YBa_2Cu _3O_{6.9} were used to characterize the local structure as well as study the structural changes of the Cu1-O4 and Cu2-O4 bonds in as a function of temperature (20 to 300 K). In this manner, the Cu1-O4 and Cu2-O4 bonds, which are thought to play a role in the superconductivity of the sample, are distinguishable. The complementary technique of XANES is used to study the electronic structure of the superconducting copper oxides as well as alkali cuprates M^{ rm I}CuO_2 (M = Na, K, Rb and Cs) and rare earth copper oxides RE _2CuO_4 (RE = Pr, Nd, Sm, Eu and Gd). A method (2) for determining the effective charge is described and applied to the copper oxides. ftn 1. J. G. Bednorz and K. A. Muller; Z Phys. B64, 189 (1986). 2. E. E. Alp, G L. Goodman, L. Soderholm, S.M. Mini, M. Ramanathan, G. K. Shenoy and A. S. Bommannavar, J.Phys. Condens, Matter 1, 6463 (1989).

  9. In situ x-ray, electrochemical, and modeling investigation of the oxygen electrode activation.

    SciTech Connect

    Yildiz, B.; Chang, K.-C.; Meyers, D.; Carter, J. D.; You, H.

    2006-01-01

    Oxygen electrodes of solid oxide electrochemical cells have been shown to improve under strong cathodic and anodic polarization. Our study investigates the mechanism causing such improvement, using in situ x-ray and electrochemical characterization and electrochemical impedance modeling of the oxygen electrodes. Several porous and dense thin-film model electrodes of La{sub 0.8}Sr{sub 0.2}MnO{sub 3} (LSM) and La{sub 0.8}Sr{sub 0.2}MnO{sub 3} (LCM) on single crystal yttria-stabilized zirconia (YSZ) electrolytes have been analyzed in situ at the Advanced Photon Source (APS) using x-ray reflectivity and x-ray absorption near edge spectroscopy (XANES) at the Mn K-edge and La LII-edge. In situ x-ray reflectivity analysis show that no clear correlation between the polarization of the electrode and any further changes in the roughness of the LSM/YSZ interface exist. XANES measurements illustrate that the cathodic or anodic dc polarization at high temperature induces no detectable changes in Mn chemical state either in the bulk or at the surface of the LCM and LSM electrodes on YSZ, while the La chemical state changes reversibly at the electrode surface. This field-induced chemical change of La at the surface of electrodes is assumed to be a cause of the electrochemical activation through enhanced surface exchange of oxygen on the doped lanthanum manganite electrodes.

  10. In-situ synchrotron x-ray transmission microscopy of the sintering of multilayers

    NASA Astrophysics Data System (ADS)

    Yan, Zilin; Guillon, Olivier; Martin, Christophe L.; Wang, Steve; Lee, Chul-Seung; Bouvard, Didier

    2013-06-01

    This letter reports on in-situ characterization of the high temperature sintering of multilayer ceramic capacitors by high-resolution synchrotron x-ray imaging. Microstructural evolution was obtained in real time by a continuous recording of 2-dimensional radiographs. Anisotropic strains were measured for different layers. Quantification of defects was conducted with 3-dimensional nano-computed tomography. These in-situ observations prove that electrode discontinuities occur at the early stage of sintering and originate from initial heterogeneities linked to the particulate nature of the starting powders.

  11. X-ray imaging for studying behavior of liquids at high pressures and high temperatures using Paris-Edinburgh press

    SciTech Connect

    Kono, Yoshio; Kenney-Benson, Curtis; Park, Changyong; Shen, Guoyin; Shibazaki, Yuki; Wang, Yanbin

    2015-07-15

    Several X-ray techniques for studying structure, elastic properties, viscosity, and immiscibility of liquids at high pressures have been integrated using a Paris-Edinburgh press at the 16-BM-B beamline of the Advanced Photon Source. Here, we report the development of X-ray imaging techniques suitable for studying behavior of liquids at high pressures and high temperatures. White X-ray radiography allows for imaging phase separation and immiscibility of melts at high pressures, identified not only by density contrast but also by phase contrast imaging in particular for low density contrast liquids such as silicate and carbonate melts. In addition, ultrafast X-ray imaging, at frame rates up to ∼10{sup 5} frames/second (fps) in air and up to ∼10{sup 4} fps in Paris-Edinburgh press, enables us to investigate dynamics of liquids at high pressures. Very low viscosities of melts similar to that of water can be reliably measured. These high-pressure X-ray imaging techniques provide useful tools for understanding behavior of liquids or melts at high pressures and high temperatures.

  12. High-pressure and high-temperature x-ray diffraction cell for combined pressure, composition, and temperature measurements of hydrides

    SciTech Connect

    Mauron, Ph.; Bielmann, M.; Remhof, A.; Zuettel, A.

    2011-06-15

    We present the design and construction of a high-pressure (200 bars) and high-temperature (600 deg. C) x-ray diffraction (XRD) cell for the in situ investigation of the hydrogen sorption of hydrides. In combination with a pressure, composition, and temperature system, simultaneous XRD and volumetric measurements become accessible. The cell consists of an x-ray semi-transparent hemispherical beryllium (Be) dome covering a heatable sample stage, which simultaneously allows sample temperatures of up to 600 deg. C in an applied hydrogen atmosphere of up to 200 bars. The system volume is as low as possible to maximize the precision of the volumetric measurements. Due to the high thermal conductivity of hydrogen, and in order to preserve the mechanical stability of the beryllium, the cell is water cooled. Its operability was studied on the example of the hydrogen absorption of Mg{sub 2}Ni. The advantages and limitations of the proposed design are discussed.

  13. In situ x-ray reflectivity and grazing incidence x-ray diffraction study of L 1(0) ordering in (57)Fe/Pt multilayers.

    PubMed

    Raghavendra Reddy, V; Gupta, Ajay; Gome, Anil; Leitenberger, Wolfram; Pietsch, U

    2009-05-01

    In situ high temperature x-ray reflectivity and grazing incidence x-ray diffraction measurements in the energy dispersive mode are used to study the ordered face-centered tetragonal (fct) L 1(0) phase formation in [Fe(19 Å)/Pt(25 Å)]( × 10) multilayers prepared by ion beam sputtering. With the in situ x-ray measurements it is observed that (i) the multilayer structure first transforms to a disordered FePt and subsequently to an ordered fct L 1(0) phase, (ii) the ordered fct L 1(0) FePt peaks start to appear at 320 °C annealing, (iii) the activation energy of the interdiffusion is 0.8 eV and (iv) ordered fct FePt grains have preferential out-of-plane texture. The magneto-optical Kerr effect and conversion electron Mössbauer spectroscopies are used to study the magnetic properties of the as-deposited and 400 °C annealed multilayers. The magnetic data for the 400 °C annealed sample indicate that the magnetization is at an angle of ∼50° from the plane of the film. PMID:21825468

  14. Development of an Ultra-High Vacuum Oven for High Temperature X-Ray Studies

    SciTech Connect

    Nowak, D.E.; Baker, S.P.; Blank, B.; Deyhim, A.

    2004-05-12

    An ultra-high vacuum x-ray oven has been designed and built to make temperature dependent measurements on plate-like samples. The sample heater has a flat circular surface 3.18 cm in diameter and is capable of reaching temperatures in excess of 900 deg. C. Over this temperature range, thermal expansion of the heater assembly is expected to displace the sample away from the center of rotation of the diffractometer in a direction normal to the sample surface. The sample position can be adjusted to account for the thermal displacements with a motorized linear translation. The x-ray window in the oven takes the form of a beryllium dome so that all diffraction geometries above the sample horizon are accessible. The oven is designed to mount onto a Huber 410 rotation stage and can be used with a Huber 512 Eulerian cradle. In this paper, we present an analysis of the oven for use in strain measurements of thin metal films on Si substrates.

  15. Electro-deposition of Cu studied with in situ electrochemical scanning transmission x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Hitchcock, A. P.; Qin, Z.; Rosendahl, S. M.; Lee, V.; Reynolds, M.; Hosseinkhannazer, H.

    2016-01-01

    Soft X-ray scanning transmission X-ray microscopy (STXM) was used to investigate Cu deposition onto, and stripping from a Au surface. Cu 2p spectromicroscopy was used to analyze initial and final states (ex situ processing) and follow the processes in situ. The in situ experiments were carried out using a static electrochemical cell with an electrolyte layer thickness of ˜1 μm. A new apparatus for in situ electrochemical STXM is described.

  16. QUANTITATIVE HOMOGENEITY AND IN-CONTACT PARTICLES OF HIGH TEMPERATURE REACTORS (HTR) COMPACTS DETERMINATION VIA X-RAY TOMOGRAPHY

    SciTech Connect

    Lecomte, G.; Letang, J. M.; Tisseur, D.; Banchet, J.; Vitali, M. P.

    2008-02-28

    In AREVA Nuclear Power's High Temperature Reactor (HTR) design called ANTARES, fuel consists of compacts composed of few thousands millimetric quasi-spherical particles dispersed in a graphite matrix. Compact homogeneity, defined as the homogeneous particles spatial distribution in the matrix, as well as the possibility of obtaining particles in contact, need to be assessed since they condition the thermo-mechanical behavior of the nuclear fuel under irradiation. In this paper, image and data processing algorithms are developed to do so, based on X-Ray tomographic images.

  17. Quantitative Homogeneity and In-Contact Particles of High Temperature Reactors (htr) Compacts Determination via X-Ray Tomography

    NASA Astrophysics Data System (ADS)

    Lecomte, G.; Tisseur, D.; Létang, J. M.; Banchet, J.; Vitali, M. P.

    2008-02-01

    In AREVA Nuclear Power's High Temperature Reactor (HTR) design called ANTARES, fuel consists of compacts composed of few thousands millimetric quasi-spherical particles dispersed in a graphite matrix. Compact homogeneity, defined as the homogeneous particles spatial distribution in the matrix, as well as the possibility of obtaining particles in contact, need to be assessed since they condition the thermo-mechanical behavior of the nuclear fuel under irradiation. In this paper, image and data processing algorithms are developed to do so, based on X-Ray tomographic images.

  18. Note: High-pressure in situ x-ray laminography using diamond anvil cell

    NASA Astrophysics Data System (ADS)

    Nomura, Ryuichi; Uesugi, Kentaro

    2016-04-01

    A high-pressure in situ X-ray laminography technique was developed using a newly designed, laterally open diamond anvil cell. A low X-ray beam of 8 keV energy was used, aiming at future application to dual energy X-ray chemical imaging techniques. The effects of the inclination angle and the imaging angle range were evaluated at ambient pressure using the apparatus. Sectional images of ruby ball samples were successfully reconstructed at high pressures, up to approximately 50 GPa. The high-pressure in situ X-ray laminography technique is expected to provide new insights into the deep Earth sciences.

  19. Note: High-pressure in situ x-ray laminography using diamond anvil cell.

    PubMed

    Nomura, Ryuichi; Uesugi, Kentaro

    2016-04-01

    A high-pressure in situ X-ray laminography technique was developed using a newly designed, laterally open diamond anvil cell. A low X-ray beam of 8 keV energy was used, aiming at future application to dual energy X-ray chemical imaging techniques. The effects of the inclination angle and the imaging angle range were evaluated at ambient pressure using the apparatus. Sectional images of ruby ball samples were successfully reconstructed at high pressures, up to approximately 50 GPa. The high-pressure in situ X-ray laminography technique is expected to provide new insights into the deep Earth sciences. PMID:27131721

  20. X-ray Compton scattering experiments for fluid alkali metals at high temperatures and pressures

    SciTech Connect

    Matsuda, K. Fukumaru, T.; Kimura, K.; Yao, M.; Tamura, K.; Katoh, M.; Kajihara, Y.; Inui, M.; Itou, M.; Sakurai, Y.

    2015-08-17

    We have developed a high-pressure vessel and a cell for x-ray Compton scattering measurements of fluid alkali metals. Measurements have been successfully carried out for alkali metal rubidium at elevated temperatures and pressures using synchrotron radiation at SPring-8. The width of Compton profiles (CPs) of fluid rubidium becomes narrow with decreasing fluid density, which indicates that the CPs sensitively detect the effect of reduction in the valence electron density. At the request of all authors of the paper, and with the agreement of the Proceedings Editor, an updated version of this article was published on 10 September 2015. The original article supplied to AIP Publishing was not the final version and contained PDF conversion errors in Formulas (1) and (2). The errors have been corrected in the updated and re-published article.

  1. High temperature X-ray diffraction, Raman spectroscopy and dielectric studies on yttrium orthochromites

    NASA Astrophysics Data System (ADS)

    Mall, Ashish Kumar; Garg, Ashish; Gupta, Rajeev

    2016-05-01

    The structural, thermal and dielectric properties of YCrO3 ceramic prepared by solid state reaction method have been investigated by a combination of XRD, Raman spectroscopy and permittivity measurement. The X-ray diffraction spectra shows single phase orthorhombically distorted perovskite structure with Pnma symmetry over a wide range of temperature 300K to 1100K. Impedance spectroscopy study on the sample showed that the dielectric constant, tangent loss and ac conductivity with frequency increases on increasing the temperature. Dielectric measurement shows a relaxor like transition at about 460K. Non-Debye type relaxation is observed with activation energy of 0.25 eV extracted from ac conductivity at 11 kHz frequency. We believe that the oxygen ion vacancies play an important role in conduction processes in addition to polaron hopping at higher temperatures. Raman scattering measurements were performed over a wide temperature range from 300K to 600 K. The line width of the modes due to CrO6 bending and in-plane O2 stretching broadens with increasing temperature.

  2. Lead iodide X-ray and gamma-ray spectrometers for room and high temperature operation

    SciTech Connect

    Hermon, H.; James, R.B.; Cross, E.

    1997-02-01

    In this study, we report on the results of the investigation of lead iodide material properties. The effectiveness of zone refining purification methods on the material purity is determined by ICP-MS and ICP-OES and correlated to the electrical and physical material properties. We show that this zone refining method is very efficient in removing impurities from lead iodide and we also determine the segregation coefficient for some of these impurities. Triple axis x- ray diffraction (TAD) analysis has been used to determine the crystalline perfection of the lead iodide after applying various cutting, etching, and fabrication methods. The soft lead iodide crystal was found to be damaged when cleaved by a razor blade, but by using a diamond wheel saw, followed by etching, the crystallinity of the material was improved, as observed by TAD. Low temperature photoluminescence also indicates an improvement in the material properties of the purified lead iodide. Electrical properties of lead iodide such as carrier mobility, were calculated based on carrier- phonon scattering. The results for the electrical properties were in good agreement with the experimental data.

  3. Lead iodide X-ray and gamma-ray spectrometers for room and high temperature operation

    SciTech Connect

    Hermon, H.; James, R.B.; Lund, J.

    1998-12-31

    In this study the authors report on the results of the investigation of lead iodide material properties. The effectiveness of a zone refining purification method on the material purity is determined by ICP-MS and ICP-OES and correlated to the electrical and physical material properties. They show that this zone refining method is very efficient in removing impurities from lead iodide, and they also determine the segregation coefficient for some of these impurities. Triple axis X-ray diffraction (TAD) analysis has been used to determine the crystalline perfection of the lead iodide after applying various cutting, etching and fabrication methods. The soft lead iodide crystal was found to be damaged when cleaved by a razor blade, but by using a diamond wheel saw, followed by etching, the crystallinity of the material was much improved, as observed by TAD. Low temperature photoluminescence also indicates an improvement in the material properties of the purified lead iodide. Electrical properties of lead iodide such as carrier mobility, were calculated based on carrier-phonon scattering. The results for the electrical properties were in good agreement with the experimental data.

  4. Upgrades of imaging x-ray crystal spectrometers for high-resolution and high-temperature plasma diagnostics on EAST

    SciTech Connect

    Lyu, B. Wang, F. D.; Fu, J.; Li, Y. Y.; Pan, X. Y.; Chen, J.; Wan, B. N.; Bitter, M.; Hill, K. W.; Delgado-Aparicio, L. F.; Pablant, N.; Lee, S. G.; Shi, Y. J.; Ye, M. Y.

    2014-11-15

    Upgrade of the imaging X-ray crystal spectrometers continues in order to fulfill the high-performance diagnostics requirements on EAST. For the tangential spectrometer, a new large pixelated two-dimensional detector was deployed on tokamaks for time-resolved X-ray imaging. This vacuum-compatible detector has an area of 83.8 × 325.3 mm{sup 2}, a framing rate over 150 Hz, and water-cooling capability for long-pulse discharges. To effectively extend the temperature limit, a double-crystal assembly was designed to replace the previous single crystals for He-like argon line measurement. The tangential spectrometer employed two crystal slices attached to a common substrate and part of He- and H-like Ar spectra could be recorded on the same detector when crystals were chosen to have similar Bragg angles. This setup cannot only extend the measurable Te up to 10 keV in the core region, but also extend the spatial coverage since He-like argon ions will be present in the outer plasma region. Similarly, crystal slices for He-like iron and argon spectra were adopted on the poloidal spectrometer. Wavelength calibration for absolute rotation velocity measurement will be studied using cadmium characteristic L-shell X-ray lines excited by plasma radiation. A Cd foil is placed before the crystal and can be inserted and retracted for in situ wavelength calibration. The Geant4 code was used to estimate X-ray fluorescence yield and optimize the thickness of the foil.

  5. An in situ atomic force microscope for normal-incidence nanofocus X-ray experiments.

    PubMed

    Vitorino, M V; Fuchs, Y; Dane, T; Rodrigues, M S; Rosenthal, M; Panzarella, A; Bernard, P; Hignette, O; Dupuy, L; Burghammer, M; Costa, L

    2016-09-01

    A compact high-speed X-ray atomic force microscope has been developed for in situ use in normal-incidence X-ray experiments on synchrotron beamlines, allowing for simultaneous characterization of samples in direct space with nanometric lateral resolution while employing nanofocused X-ray beams. In the present work the instrument is used to observe radiation damage effects produced by an intense X-ray nanobeam on a semiconducting organic thin film. The formation of micrometric holes induced by the beam occurring on a timescale of seconds is characterized. PMID:27577764

  6. High-resolution spectroscopic diagnostics of very high-temperature plasmas in the hard x-ray regime

    SciTech Connect

    Widmann, K

    1999-12-06

    Motivated by the need for establishing a reliable database useful for the application of x-ray spectroscopic tools for the diagnostic of very high temperature plasmas, high-resolution crystal spectrometer measurements have been performed investigating the characteristic K-shell radiation of highly charged krypton and xenon. The measurements, which have been performed at the Electron-Beam-Ion-Trap (EBIT) facility of the Lawrence Livermore National Laboratory, include the investigation of the n = 2 {yields} 1 transitions in heliumlike krypton (Kr{sup 34+}) and innershell excited lithiumlike krypton (Kr{sup 33+}) utilizing a conventional reflection-type crystal spectrometer of von Hamos geometry. The electron-excitation-energy selective measurements map the contribution of the dielectronic recombination lines providing the means of accurate interpretation of the line profiles of the characteristic K{alpha} x-ray emission of plasmas. The high-resolution measurements of the n = 2 {yields} 1 transitions in heliumlike xenon (Xe{sup 52+}) and hydrogenlike xenon (Xe{sup 53+}) were based on a new transmission-type crystal spectrometer of DuMond geometry. The resolving power of the developed spectrometer was sufficient for charge state specific observation allowing the determination of the electron-impact excitation cross section for the hydrogen- and heliumlike K{alpha} transitions. The disagreement with theoretically predicted values is a measure of the magnitude of the Breit interaction for the highly charged high-Z ions.

  7. Electrochemical in-situ reaction cell for X-ray scattering, diffraction and spectroscopy

    SciTech Connect

    Braun, Artur; Granlund, Eric; Cairns, Elton J.

    2003-01-27

    An electrochemical in-situ reaction cell for hard X-ray experiments with battery electrodes is described. Applications include the small angle scattering, diffraction, and near-edge spectroscopy of lithium manganese oxide electrodes.

  8. Study of high-temperature oxidation of ultrathin fe films on Pt(100) by using X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Nahm, T.-U.

    2016-05-01

    High-temperature oxidation of iron thin films deposited on Pt(100) surfaces was studied by using X-ray photoelectron spectroscopy (XPS). Upon an oxygen exposure of 300 Langmuir onto a 7.5- monolayer (ML) Fe film at 830 K, about 2 monolayers of the Fe film were oxidized as Fe3O4 while the remaining Fe atoms diffused into the substrate. For 1.25-, 2.5-, and 3.75-monolayer Fe films, only about a monolayer of the Fe film was oxidized as FeO, regardless of the number of Fe atoms. The oxide layers on the 7.5-monolayer Fe film were observed to be stable upon post-annealing at 1030 K.

  9. The nondestructive evaluation of high temperature conditioned concrete in conjunction with acoustic emission and x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Su, Yu-Min; Hou, Tsung-Chin; Lin, Li-Chiang; Chen, Gwan-Ying; Pan, Huang-Hsing

    2016-04-01

    Portland Cement Concrete plays a vital part of protecting structural rebars or steels when high-temperature fire incidents occur, that induces loss of evaporate water, dehydration of CH, and deconstruction of C-S-H. The objective of the study was to assess fire-damaged concrete in conjunction with nondestructive evaluation methods of acoustic emission, visual inspections, and X-ray computed tomography. The experimental program was to mix an Ordinary Portland Cement concrete firstly. Concrete cylinders with twenty-day moisture cure were treated in a furnace with 400 and 600°C for one hour. After temperature is cooled down, the concrete cylinders were brought to air or moisture re-curing for ten days. Due to the incident of the furnace, acoustic emission associated with splitting tensile strength test was not able to continue. Future efforts are planned to resume this unfinished task. However, two proposed tasks were executed and completed, namely visual inspections and voids analysis on segments obtained from X-ray CT facility. Results of visual inspections on cross-sectional and cylindrical length of specimens showed that both aggregates and cement pastes turned to pink or red at 600°C. More surface cracks were generated at 600°C than that at 400°C. On the other hand, voids analysis indicated that not many cracks were generated and voids were remedied at 400°C. However, a clear tendency was found that remedy by moisture curing may heal up to 2% voids of the concrete cylinder that was previously subject to 600°C of high temperature conditioning.

  10. Determination of the solubility of tin indium oxide using in situ and ex x-ray diffraction

    SciTech Connect

    Gonzalez, G. B.; Mason, T. O.; Okasinski, J. S.; Buslaps, T.; Honkimaki, V.

    2012-02-01

    A novel approach to determine the thermodynamic solubility of tin in indium oxide via the exsolution from tin overdoped nano-ITO powders is presented. High-energy, in situ and ex situ synchrotron X-ray diffraction was utilized to study the solubility limit at temperatures ranging from 900 C to 1375 C. The tin exsolution from overdoped nanopowders and the formation of In{sub 4}Sn{sub 3}O{sub 12} were observed in situ during the first 4-48 h of high-temperature treatment. Samples annealed between 900 C and 1175 C were also studied ex situ with heat treatments for up to 2060 h. Structural results obtained from Rietveld analysis include compositional phase analysis, atomic positions, and lattice parameters. The tin solubility in In{sub 2}O{sub 3} was determined using the phase analysis compositions from X-ray diffraction and the elemental compositions obtained from X-ray fluorescence. Experimental complications that can lead to incorrect tin solubility values in the literature are discussed.

  11. In situ X-ray powder diffraction, synthesis, and magnetic properties of InVO{sub 3}

    SciTech Connect

    Lundgren, Rylan J.; Cranswick, Lachlan M.D.; Bieringer, Mario . E-mail: Mario_Bieringer@umanitoba.ca

    2006-12-15

    We report the first synthesis and high-temperature in situ X-ray diffraction study of InVO{sub 3}. Polycrystalline InVO{sub 3} has been prepared via reduction of InVO{sub 4} using a carbon monoxide/carbon dioxide buffer gas. InVO{sub 3} crystallizes in the bixbyite structure in space group Ia-3 (206) with a=9.80636(31) A with In{sup 3+}/V{sup 3+} disorder on the (8b) and (24d) cation sites. In situ powder X-ray diffraction experiments and thermal gravimetric analysis in a CO/CO{sub 2} buffer gas revealed the existence of the metastable phase InVO{sub 3}. Bulk samples with 98.5(2)% purity were prepared using low-temperature reduction methods. The preparative methods limited the crystallinity of this new phase to approximately 225(50) A. Magnetic susceptibility and neutron diffraction experiments suggest a spin-glass ground state for InVO{sub 3}. - Graphical abstract: In situ powder X-ray diffractograms for the reduction of InVO{sub 4} in CO/CO{sub 2}. The three temperature regions show the conversion of InVO{sub 4} to InVO{sub 3} and final decomposition into In{sub 2}O{sub 3} and V{sub 2}O{sub 3}.

  12. In-situ X-ray diffraction system using sources and detectors at fixed angular positions

    DOEpatents

    Gibson, David M.; Gibson, Walter M.; Huang, Huapeng

    2007-06-26

    An x-ray diffraction technique for measuring a known characteristic of a sample of a material in an in-situ state. The technique includes using an x-ray source for emitting substantially divergent x-ray radiation--with a collimating optic disposed with respect to the fixed source for producing a substantially parallel beam of x-ray radiation by receiving and redirecting the divergent paths of the divergent x-ray radiation. A first x-ray detector collects radiation diffracted from the sample; wherein the source and detector are fixed, during operation thereof, in position relative to each other and in at least one dimension relative to the sample according to a-priori knowledge about the known characteristic of the sample. A second x-ray detector may be fixed relative to the first x-ray detector according to the a-priori knowledge about the known characteristic of the sample, especially in a phase monitoring embodiment of the present invention.

  13. In Situ Density Measurement of Basaltic Melts at High Pressure by X-ray Absorption Method

    NASA Astrophysics Data System (ADS)

    Ando, R.; Ohtani, E.; Suzuki, A.; Urakawa, S.; Katayama, Y.

    2004-12-01

    Density of silicate melt at high pressure is one of the most important properties to understand magma migration in the planetary interior. However, because of experimental difficulties, the density of magma at high pressure is poorly known. Katayama et al. (1996) recently developed a new in situ density measurement method for metallic melts, based on the density dependency of X-ray absorption in the sample. In this study, we tried to measure the density of basaltic melt by this absorption method. When X-ray is transmitted to the sample, the intensity of the transmitted X-ray beam (I) is expressed as follows; I=I0exp(-μ ρ t), where I0 is the intensity of incident X-ray beam, μ is the mass absorption coefficient, ρ is the density of the sample, and t is the thickness of the sample. If t and μ are known, we can determine the density of the sample by measuring I and I0. This is the principle of the absorption method for density measurement. In this study, in order to determine t, we used a single crystalline diamond cylinder as a sample capsule, diamond is less compressive and less deformable so that even at high pressure t (thickness of the sample at the point x) is expressed as follows; t = 2*(R02-x2)1/2, R0 is the inner radius of cylinder at the ambient condition, and x is distance from a center of the capsule. And diamond also shows less absorption so that this make it possible to measure the density of silicate melt with smaller absorption coefficient than metallic melts. In order to know the μ of the sample, we measured both densities (ρ ) and absorptions (I/I0) for some glasses and crystals with same composition of the sample at the ambient condition, and calculated as fallows; μ =ln(I/I0)/ρ . Experiments were made at the beamline (BL22XU) of SPring-8. For generation of high pressure and high temperature, we used DIA-type cubic anvil apparatus (SMAP180) there. We used tungsten carbide anvils with the edge-length of 6 mm. The energy of monochromatic X-ray

  14. A portable X-ray diffraction apparatus for in situ analyses of masters' paintings

    NASA Astrophysics Data System (ADS)

    Eveno, Myriam; Duran, Adrian; Castaing, Jacques

    2010-09-01

    It is rare that the analyses of materials in paintings can be carried out by taking micro-samples. Valuable works of art are best studied in situ by non-invasive techniques. For that purpose, a portable X-ray diffraction and fluorescence apparatus has been designed and constructed at the C2RMF. This apparatus has been used for paintings of Rembrandt, Leonardo da Vinci, Van Gogh, Mantegna, etc. Results are given to illustrate the performance of X-ray diffraction, especially when X-ray fluorescence does not bring sufficient information to conclude.

  15. An atomic layer deposition chamber for in situ x-ray diffraction and scattering analysis

    SciTech Connect

    Geyer, Scott M.; Methaapanon, Rungthiwa; Kim, Woo-Hee; Bent, Stacey F.; Johnson, Richard W.; Van Campen, Douglas G.; Metha, Apurva

    2014-05-15

    The crystal structure of thin films grown by atomic layer deposition (ALD) will determine important performance properties such as conductivity, breakdown voltage, and catalytic activity. We report the design of an atomic layer deposition chamber for in situ x-ray analysis that can be used to monitor changes to the crystal structural during ALD. The application of the chamber is demonstrated for Pt ALD on amorphous SiO{sub 2} and SrTiO{sub 3} (001) using synchrotron-based high resolution x-ray diffraction, grazing incidence x-ray diffraction, and grazing incidence small angle scattering.

  16. Scanning force microscope for in situ nanofocused X-ray diffraction studies

    PubMed Central

    Ren, Zhe; Mastropietro, Francesca; Davydok, Anton; Langlais, Simon; Richard, Marie-Ingrid; Furter, Jean-Jacques; Thomas, Olivier; Dupraz, Maxime; Verdier, Marc; Beutier, Guillaume; Boesecke, Peter; Cornelius, Thomas W.

    2014-01-01

    A compact scanning force microscope has been developed for in situ combination with nanofocused X-ray diffraction techniques at third-generation synchrotron beamlines. Its capabilities are demonstrated on Au nano-islands grown on a sapphire substrate. The new in situ device allows for in situ imaging the sample topography and the crystallinity by recording simultaneously an atomic force microscope (AFM) image and a scanning X-ray diffraction map of the same area. Moreover, a selected Au island can be mechanically deformed using the AFM tip while monitoring the deformation of the atomic lattice by nanofocused X-ray diffraction. This in situ approach gives access to the mechanical behavior of nanomaterials. PMID:25178002

  17. In situ anodization of aluminum surfaces studied by x-ray reflectivity and electrochemical impedance spectroscopy

    SciTech Connect

    Bertram, F. Evertsson, J.; Messing, M. E.; Mikkelsen, A.; Lundgren, E.; Zhang, F.; Pan, J.; Carlà, F.; Nilsson, J.-O.

    2014-07-21

    We present results from the anodization of an aluminum single crystal [Al(111)] and an aluminum alloy [Al 6060] studied by in situ x-ray reflectivity, in situ electrochemical impedance spectroscopy and ex situ scanning electron microscopy. For both samples, a linear increase of oxide film thickness with increasing anodization voltage was found. However, the slope is much higher in the single crystal case, and the break-up of the oxide film grown on the alloy occurs at a lower anodization potential than on the single crystal. The reasons for these observations are discussed as are the measured differences observed for x-ray reflectivity and electrochemical impedance spectroscopy.

  18. In situ anodization of aluminum surfaces studied by x-ray reflectivity and electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Bertram, F.; Zhang, F.; Evertsson, J.; Carlà, F.; Pan, J.; Messing, M. E.; Mikkelsen, A.; Nilsson, J.-O.; Lundgren, E.

    2014-07-01

    We present results from the anodization of an aluminum single crystal [Al(111)] and an aluminum alloy [Al 6060] studied by in situ x-ray reflectivity, in situ electrochemical impedance spectroscopy and ex situ scanning electron microscopy. For both samples, a linear increase of oxide film thickness with increasing anodization voltage was found. However, the slope is much higher in the single crystal case, and the break-up of the oxide film grown on the alloy occurs at a lower anodization potential than on the single crystal. The reasons for these observations are discussed as are the measured differences observed for x-ray reflectivity and electrochemical impedance spectroscopy.

  19. In-situ non-ambient X-ray diffraction studies of indium tungstate

    SciTech Connect

    Baiz, Tamam I.; Heinrich, Christophe P.; Banek, Nathan A.; Vivekens, Boris L.; Lind, Cora

    2012-03-15

    In situ variable temperature and high pressure X-ray diffraction studies were carried out on indium tungstate (In{sub 2}W{sub 3}O{sub 12}). This material displays positive volume expansion in both its low temperature monoclinic and high temperature orthorhombic phases, with negative thermal expansion along the a axis and positive thermal expansion along the b and c axes. Upon hydrostatic compression in a diamond anvil cell, one crystalline to crystalline phase transition is observed in the range 1.9 to 2.7 GPa, and progressive irreversible amorphization occurs at pressures above 4.3 GPa. The crystalline high pressure phase appears to be isostructural to previously observed high pressure phases in other A{sub 2}M{sub 3}O{sub 12} compounds. - Graphical abstract: Variable pressure X-ray diffraction patterns of In{sub 2}W{sub 3}O{sub 12} collected in a diamond anvil cell. A phase transition is clearly observed between 2.2 and 2.7 GPa, followed by irreversible amorphization. Highlights: Black-Right-Pointing-Pointer The structure of In{sub 2}W{sub 3}O{sub 12} was studied as a function of temperature and pressure. Black-Right-Pointing-Pointer Uniaxial negative thermal expansion was observed above 250 Degree-Sign C. Black-Right-Pointing-Pointer A pressure-induced phase transition occurred between 2.2 and 2.7 GPa. Black-Right-Pointing-Pointer Pressure-induced irreversible amorphization was observed above 4.3 GPa.

  20. In-situ observations of catalytic surface reactions with soft x-rays under working conditions

    NASA Astrophysics Data System (ADS)

    Toyoshima, Ryo; Kondoh, Hiroshi

    2015-03-01

    Catalytic chemical reactions proceeding on solid surfaces are an important topic in fundamental science and industrial technologies such as energy conversion, pollution control and chemical synthesis. Complete understanding of the heterogeneous catalysis and improving its efficiency to an ultimate level are the eventual goals for many surface scientists. Soft x-ray is one of the prime probes to observe electronic and structural information of the target materials. Most studies in surface science using soft x-rays have been performed under ultra-high vacuum conditions due to the technical limitation, though the practical catalytic reactions proceed under ambient pressure conditions. However, recent developments of soft x-ray based techniques operating under ambient pressure conditions have opened a door to the in-situ observation of materials under realistic environments. The near-ambient-pressure x-ray photoelectron spectroscopy (NAP-XPS) using synchrotron radiation enables us to observe the chemical states of surfaces of condensed matters under the presence of gas(es) at elevated pressures, which has been hardly conducted with the conventional XPS technique. Furthermore, not only the NAP-XPS but also ambient-pressure compatible soft x-ray core-level spectroscopies, such as near-edge absorption fine structure (NEXAFS) and x-ray emission spectroscopy (XES), have been significantly contributing to the in-situ observations. In this review, first we introduce recent developments of in-situ observations using soft x-ray techniques and current status. Then we present recent new findings on catalytically active surfaces using soft x-ray techniques, particularly focusing on the NAP-XPS technique. Finally we give a perspective on the future direction of this emerging technique.

  1. Electrochemical cell for in-situ x-ray characterization

    SciTech Connect

    Doughty, D.H.; Ingersoll, D.; Rodriguez, M.A.

    1998-08-04

    An electrochemical cell suitable for in-situ XRD analysis is presented. Qualitative information such as phase formation and phase stability can be easily monitored using the in-situ cell design. Quantitative information such as lattice parameters and kinetic behavior is also straightforward. Analysis of the LiMn&sub2;O&sub4; spinel using this cell design shows that the lattice undergoes two major structural shrinkages at approx. 4.0 V and approx. 4.07 V during charging. These shrinkages correlate well with the two electrochemical waves observed and indicate the likelihood of two separate redox processes which charging and discharging.

  2. Probing electrode/electrolyte interfaces in situ by X-ray spectroscopies: old methods, new tricks.

    PubMed

    Wu, Cheng Hao; Weatherup, Robert S; Salmeron, Miquel B

    2015-11-11

    Electrode/electrolyte interfaces play a vital role in various electrochemical systems, but in situ characterization of such buried interfaces remains a major challenge. Several efforts to develop techniques or to modify existing techniques to study such interfaces are showing great promise to overcome this challenge. Successful examples include electrochemical scanning tunneling microscopy (EC-STM), surface-sensitive vibrational spectroscopies, environmental transmission electron microscopy (E-TEM), and surface X-ray scattering. Other techniques such as X-ray core-level spectroscopies are element-specific and chemical-state-specific, and are being widely applied in materials science research. Herein we showcase four types of newly developed strategies to probe electrode/electrolyte interfaces in situ with X-ray core-level spectroscopies. These include the standing wave approach, the meniscus approach, and two liquid cell approaches based on X-ray photoelectron spectroscopy and soft X-ray absorption spectroscopy. These examples demonstrate that with proper modifications, many ultra-high-vacuum based techniques can be adapted to study buried electrode/electrolyte interfaces and provide interface-sensitive, element- and chemical-state-specific information, such as solute distribution, hydrogen-bonding network, and molecular reorientation. At present, each method has its own specific limitations, but all of them enable in situ and operando characterization of electrode/electrolyte interfaces that can provide important insights into a variety of electrochemical systems. PMID:26514115

  3. Evolution of magma textures during deformation: Insights from in situ X-ray tomography experiments

    NASA Astrophysics Data System (ADS)

    Degruyter, W.; Cordonnier, B.; Manga, M.; Haboub, A.; Andrews, B. J.; Dennen, R. L.; MacDowell, A.; Parkinson, D. Y.

    2012-12-01

    Pyroclasts provide snapshots of the state of the magma at fragmentation or emplacement. Their textures record the deformation and degassing magma underwent prior to quenching. Understanding the link between the final texture and the processes that created them requires experimental reproduction of volcanic conditions under constrained parameters. Technological advances at the X-ray tomography beamline at the Advanced Light Source, Lawrence Berkeley National Laboratory have now made it possible to visualize magma in 3D as it is being deformed at high temperature, which allows us to visualize and quantify the processes that form pyroclasts. We use a fast readout camera that allows tomography on a few minutes timescale in combination with a high temperature uni-axial apparatus transparent to tomography. We heated obsidian samples from Big Glass Mountain, California and andesitic glass from Pahoa, California at various temperatures up to 1400 K. After an initial foaming stage, the samples were subjected to pure shear flow at strain-rates varying between 10-6 s-1 and 10-2 s-1. Magma rheology measurements in the past have typically been restricted to bulk measurements and visualization before and after the experiment. This limits the ability to interpret the measured relationship between stress and strain-rate and the evolution of texture. The in situ scanning allows us to track the deformation or relaxation of individual bubbles, development of strain localization, crack initiation and makes it possible to directly correlate these processes to the bulk measurements of stress and strain. These new measurements will improve the interpretation of the textures found within the products produced by volcanic eruptions.

  4. Gas cell for in situ soft X-ray transmission-absorption spectroscopy of materials

    SciTech Connect

    Drisdell, W. S.; Kortright, J. B.

    2014-07-15

    A simple gas cell design, constructed primarily from commercially available components, enables in situ soft X-ray transmission-absorption spectroscopy of materials in contact with gas at ambient temperature. The cell has a minimum X-ray path length of 1 mm and can hold gas pressures up to ∼300 Torr, and could support higher pressures with simple modifications. The design enables cycling between vacuum and gas environments without interrupting the X-ray beam, and can be fully sealed to allow for measurements of air-sensitive samples. The cell can attach to the downstream port of any appropriate synchrotron beamline, and offers a robust and versatile method for in situ measurements of certain materials. The construction and operation of the cell are discussed, as well as sample preparation and proper spectral analysis, illustrated by examples of spectral measurements. Potential areas for improvement and modification for specialized applications are also mentioned.

  5. Nitride-MBE system for in situ synchrotron X-ray measurements

    NASA Astrophysics Data System (ADS)

    Sasaki, Takuo; Ishikawa, Fumitaro; Yamaguchi, Tomohiro; Takahasi, Masamitu

    2016-05-01

    A molecular beam epitaxy (MBE) chamber dedicated to nitride growth was developed at the synchrotron radiation facility SPring-8. This chamber has two beryllium windows for incident and outgoing X-rays, and is directly connected to an X-ray diffractometer, enabling in situ synchrotron X-ray measurements during the nitride growth. Experimental results on initial growth dynamics in GaN/SiC, AlN/SiC, and InN/GaN heteroepitaxy were presented. We achieved high-speed and high-sensitivity reciprocal space mapping with a thickness resolution of atomic-layer scale. This in situ measurement using the high-brilliance synchrotron light source will be useful for evaluating structural variations in the initial growth stage of nitride semiconductors.

  6. In situ observation of cellular organelles with a contact x-ray microscope

    NASA Astrophysics Data System (ADS)

    Kado, M.; Kishimoto, M.; Tamotsu, S.; Yasuda, K.; Shinohara, K.

    2013-10-01

    A contact x-ray microscope coupled with a highly intense laser plasma soft x-ray source has been developed and in situ observations of cellular organelles have been conducted. The soft x-rays were generated by irradiating a high power laser pulse onto a thin-foiled gold target and about 1.3×1015 photons/sr were obtained, which allowed the inner structures of live wet biological cells to be imaged. Single shot flash imaging is a key technique to image cellular organelles of live biological cells avoiding degradation of the spatial resolution of the images resulting from motion blur and radiation damage. The use of a fluorescence microscope to identify cellular organelles in conjunction with the soft x-ray microscope has allowed several cellular organelles to be identified precisely in the soft x-ray images. Combining the fluorescence microscope with the soft x-ray microscope will be very useful and will establish the technique as a powerful tool to analyze living function of biological cells.

  7. In-situ Measurements of Colloid Transport and Retention Using Synchroton X-ray Fluorescence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The physics regarding the retention and mobilization of colloids in saturated and unsaturated conditions remains poorly understood, partially due to the inability to measure colloid concentrations in-situ. In this study, we attached Cd+2 ions to clay colloids, and used synchrotron x-rays to cause th...

  8. Setup for in situ x-ray diffraction study of swift heavy ion irradiated materials

    SciTech Connect

    Kulriya, P. K.; Singh, F.; Tripathi, A.; Ahuja, R.; Kothari, A.; Dutt, R. N.; Mishra, Y. K.; Kumar, Amit; Avasthi, D. K.

    2007-11-15

    An in situ x-ray diffraction (XRD) setup is designed and installed in the materials science beam line of the Pelletron accelerator at the Inter-University Accelerator Centre for in situ studies of phase change in swift heavy ion irradiated materials. A high vacuum chamber with suitable windows for incident and diffracted X-rays is integrated with the goniometer and the beamline. Indigenously made liquid nitrogen (LN{sub 2}) temperature sample cooling unit is installed. The snapshots of growth of particles with fluence of 90 MeV Ni ions were recorded using in situ XRD experiment, illustrating the potential of this in situ facility. A thin film of C{sub 60} was used to test the sample cooling unit. It shows that the phase of the C{sub 60} film transforms from a cubic lattice (at room temperature) to a fcc lattice at around T=255 K.

  9. High temperature X-ray diffraction study of the oxidation products and kinetics of uranium-plutonium mixed oxides.

    PubMed

    Strach, Michal; Belin, Renaud C; Richaud, Jean-Christophe; Rogez, Jacques

    2014-12-15

    The oxidation products and kinetics of two sets of mixed uranium-plutonium dioxides containing 14%, 24%, 35%, 46%, 54%, and 62% plutonium treated in air were studied by means of in situ X-ray diffraction (XRD) from 300 to 1773 K every 100 K. The first set consisted of samples annealed 2 weeks before performing the experiments. The second one consisted of powdered samples that sustained self-irradiation damage. Results were compared with chosen literature data and kinetic models established for UO2. The obtained diffraction patterns were used to determine the temperature of the hexagonal M3O8 (M for metal) phase formation, which was found to increase with Pu content. The maximum observed amount of the hexagonal phase in wt % was found to decrease with Pu addition. We conclude that plutonium stabilizes the cubic phases during oxidation, but the hexagonal phase was observed even for the compositions with 62 mol % Pu. The results indicate that self-irradiation defects have a slight impact on the kinetics of oxidation and the lattice parameter even after the phase transformation. It was concluded that the lattice constant of the high oxygen phase was unaffected by the changes in the overall O/M when it was in equilibrium with small quantities of M3O8. We propose that the observed changes in the high oxygen cubic phase lattice parameter are a result of either cation migration or an increase in the miscibility of oxygen in this phase. The solubility of Pu in the hexagonal phase was estimated to be below 14 mol % even at elevated temperatures. PMID:25412433

  10. Functional materials analysis using in situ and in operando X-ray and neutron scattering

    PubMed Central

    Peterson, Vanessa K.; Papadakis, Christine M.

    2015-01-01

    In situ and in operando studies are commonplace and necessary in functional materials research. This review highlights recent developments in the analysis of functional materials using state-of-the-art in situ and in operando X-ray and neutron scattering and analysis. Examples are given covering a number of important materials areas, alongside a description of the types of information that can be obtained and the experimental setups used to acquire them. PMID:25866665

  11. Functional materials analysis using in situ and in operando X-ray and neutron scattering.

    PubMed

    Peterson, Vanessa K; Papadakis, Christine M

    2015-03-01

    In situ and in operando studies are commonplace and necessary in functional materials research. This review highlights recent developments in the analysis of functional materials using state-of-the-art in situ and in operando X-ray and neutron scattering and analysis. Examples are given covering a number of important materials areas, alongside a description of the types of information that can be obtained and the experimental setups used to acquire them. PMID:25866665

  12. In Situ Synchrotron X-Ray Techniques for the Study of Lithium Battery Materials

    SciTech Connect

    McBreen, J.; Mukerjee, S.; Yang, X. Q.; Sun, X., Ein-Eli, Y.

    1998-11-01

    The combination of in situ X-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS) is a very powerful technique in the study of lithium battery cathode materials. XRD identifies the phase changes that occur during cycling and XAS gives information on the redox charge compensation processes that occur on the transition metal oxides. Because of its element specific nature XAS can identify the occurrence of redox processes on the various cations in doped oxide cathode materials. Since XAS probes short range order and is particularly useful in the study of amorphous tin based composite oxide anode materials.

  13. High-temperature in situ crystallographic observation of reversible gas sorption in impermeable organic cages.

    PubMed

    Baek, Seung Bin; Moon, Dohyun; Graf, Robert; Cho, Woo Jong; Park, Sung Woo; Yoon, Tae-Ung; Cho, Seung Joo; Hwang, In-Chul; Bae, Youn-Sang; Spiess, Hans W; Lee, Hee Cheon; Kim, Kwang S

    2015-11-17

    Crystallographic observation of adsorbed gas molecules is a highly difficult task due to their rapid motion. Here, we report the in situ single-crystal and synchrotron powder X-ray observations of reversible CO2 sorption processes in an apparently nonporous organic crystal under varying pressures at high temperatures. The host material is formed by hydrogen bond network between 1,3,5-tris-(4-carboxyphenyl)benzene (H3BTB) and N,N-dimethylformamide (DMF) and by π-π stacking between the H3BTB moieties. The material can be viewed as a well-ordered array of cages, which are tight packed with each other so that the cages are inaccessible from outside. Thus, the host is practically nonporous. Despite the absence of permanent pathways connecting the empty cages, they are permeable to CO2 at high temperatures due to thermally activated molecular gating, and the weakly confined CO2 molecules in the cages allow direct detection by in situ single-crystal X-ray diffraction at 323 K. Variable-temperature in situ synchrotron powder X-ray diffraction studies also show that the CO2 sorption is reversible and driven by temperature increase. Solid-state magic angle spinning NMR defines the interactions of CO2 with the organic framework and dynamic motion of CO2 in cages. The reversible sorption is attributed to the dynamic motion of the DMF molecules combined with the axial motions/angular fluctuations of CO2 (a series of transient opening/closing of compartments enabling CO2 molecule passage), as revealed from NMR and simulations. This temperature-driven transient molecular gating can store gaseous molecules in ordered arrays toward unique collective properties and release them for ready use. PMID:26578758

  14. High-temperature in situ crystallographic observation of reversible gas sorption in impermeable organic cages

    PubMed Central

    Baek, Seung Bin; Moon, Dohyun; Graf, Robert; Cho, Woo Jong; Park, Sung Woo; Yoon, Tae-Ung; Cho, Seung Joo; Hwang, In-Chul; Bae, Youn-Sang; Spiess, Hans W.; Lee, Hee Cheon; Kim, Kwang S.

    2015-01-01

    Crystallographic observation of adsorbed gas molecules is a highly difficult task due to their rapid motion. Here, we report the in situ single-crystal and synchrotron powder X-ray observations of reversible CO2 sorption processes in an apparently nonporous organic crystal under varying pressures at high temperatures. The host material is formed by hydrogen bond network between 1,3,5-tris-(4-carboxyphenyl)benzene (H3BTB) and N,N-dimethylformamide (DMF) and by π–π stacking between the H3BTB moieties. The material can be viewed as a well-ordered array of cages, which are tight packed with each other so that the cages are inaccessible from outside. Thus, the host is practically nonporous. Despite the absence of permanent pathways connecting the empty cages, they are permeable to CO2 at high temperatures due to thermally activated molecular gating, and the weakly confined CO2 molecules in the cages allow direct detection by in situ single-crystal X-ray diffraction at 323 K. Variable-temperature in situ synchrotron powder X-ray diffraction studies also show that the CO2 sorption is reversible and driven by temperature increase. Solid-state magic angle spinning NMR defines the interactions of CO2 with the organic framework and dynamic motion of CO2 in cages. The reversible sorption is attributed to the dynamic motion of the DMF molecules combined with the axial motions/angular fluctuations of CO2 (a series of transient opening/closing of compartments enabling CO2 molecule passage), as revealed from NMR and simulations. This temperature-driven transient molecular gating can store gaseous molecules in ordered arrays toward unique collective properties and release them for ready use. PMID:26578758

  15. In situ laser heating and radial synchrotron X-ray diffraction ina diamond anvil cell

    SciTech Connect

    Kunz, Martin; Caldwell, Wendel A.; Miyagi, Lowell; Wenk,Hans-Rudolf

    2007-06-29

    We report a first combination of diamond anvil cell radialx-ray diffraction with in situ laser heating. The laser-heating setup ofALS beamline 12.2.2 was modified to allow one-sided heating of a samplein a diamond anvil cell with an 80 W yttrium lithium fluoride laser whileprobing the sample with radial x-ray diffraction. The diamond anvil cellis placed with its compressional axis vertical, and perpendicular to thebeam. The laser beam is focused onto the sample from the top while thesample is probed with hard x-rays through an x-ray transparentboron-epoxy gasket. The temperature response of preferred orientation of(Fe,Mg)O is probed as a test experiment. Recrystallization was observedabove 1500 K, accompanied by a decrease in stress.

  16. In Situ X-Ray Probing Reveals Fingerprints of Surface Platinum Oxide

    SciTech Connect

    Friebel, Daniel

    2011-08-24

    In situ x-ray absorption spectroscopy (XAS) at the Pt L{sub 3} edge is a useful probe for Pt-O interactions at polymer electrolyte membrane fuel cell (PEMFC) cathodes. We show that XAS using the high energy resolution fluorescence detection (HERFD) mode, applied to a well-defined monolayer Pt/Rh(111) sample where the bulk penetrating hard x-rays probe only surface Pt atoms, provides a unique sensitivity to structure and chemical bonding at the Pt-electrolyte interface. Ab initio multiple-scattering calculations using the FEFF8 code and complementary extended x-ray absorption fine structure (EXAFS) results indicate that the commonly observed large increase of the white-line at high electrochemical potentials on PEMFC cathodes originates from platinum oxide formation, whereas previously proposed chemisorbed oxygen-containing species merely give rise to subtle spectral changes.

  17. In situ X-ray snapshot analysis of transient molecular adsorption in a crystalline channel

    NASA Astrophysics Data System (ADS)

    Kubota, Ryou; Tashiro, Shohei; Shiro, Motoo; Shionoya, Mitsuhiko

    2014-10-01

    Molecular adsorption is a fundamental phenomenon in porous materials and is usually characterized by the efficiency and selectivity of molecular separations and reactions. However, for functional porous materials, analysis of the dynamic behaviour of molecular adsorbents is a major challenge. Here, we use in situ single-crystal X-ray diffraction to analyse multi-step molecular adsorption in a crystalline nanochannel of a metal-macrocycle framework. The pore surface of the metal-macrocycle framework crystal contains five different enantiomerically paired binding pockets, to which the adsorption of a (1R)-1-(3-chlorophenyl)ethanol solution was monitored with time. The resulting X-ray snapshot analyses suggest that the guest adsorption process takes a two-step pathway before equilibrium, in which the guest molecule is temporarily trapped by a neighbouring binding site. This demonstrates the potential for using X-ray analyses to visualize a transient state during a non-covalent self-assembly process.

  18. Facility for combined in situ magnetron sputtering and soft x-ray magnetic circular dichroism

    SciTech Connect

    Telling, N. D.; Laan, G. van der; Georgieva, M. T.; Farley, N. R. S.

    2006-07-15

    An ultrahigh vacuum chamber that enables the in situ growth of thin films and multilayers by magnetron sputtering techniques is described. Following film preparation, x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) measurements are performed by utilizing an in vacuum electromagnet. XMCD measurements on sputtered thin films of Fe and Co yield spin and orbital moments that are consistent with those obtained previously on films measured in transmission geometry and grown in situ by evaporation methods. Thin films of FeN prepared by reactive sputtering are also examined and reveal an apparent enhancement in the orbital moment for low N content samples. The advantages of producing samples for in situ XAS and XMCD studies by magnetron sputtering are discussed.

  19. Note: Sample chamber for in situ x-ray absorption spectroscopy studies of battery materials

    SciTech Connect

    Pelliccione, CJ; Timofeeva, EV; Katsoudas, JP; Segre, CU

    2014-12-01

    In situ x-ray absorption spectroscopy (XAS) provides element-specific characterization of both crystalline and amorphous phases and enables direct correlations between electrochemical performance and structural characteristics of cathode and anode materials. In situ XAS measurements are very demanding to the design of the experimental setup. We have developed a sample chamber that provides electrical connectivity and inert atmosphere for operating electrochemical cells and also accounts for x-ray interactions with the chamber and cell materials. The design of the sample chamber for in situ measurements is presented along with example XAS spectra from anode materials in operating pouch cells at the Zn and Sn K-edges measured in fluorescence and transmission modes, respectively. (C) 2014 AIP Publishing LLC.

  20. In situ surface/interface x-ray diffractometer for oxide molecular beam epitaxy.

    PubMed

    Lee, J H; Tung, I C; Chang, S-H; Bhattacharya, A; Fong, D D; Freeland, J W; Hong, Hawoong

    2016-01-01

    In situ studies of oxide molecular beam epitaxy by synchrotron x-ray scattering has been made possible by upgrading an existing UHV/molecular beam epitaxy (MBE) six-circle diffractometer system. For oxide MBE growth, pure ozone delivery to the chamber has been made available, and several new deposition sources have been made available on a new 12 in. CF (ConFlat, a registered trademark of Varian, Inc.) flange. X-ray diffraction has been used as a major probe for film growth and structures for the system. In the original design, electron diffraction was intended for the secondary diagnostics available without the necessity of the x-ray and located at separate positions. Deposition of films was made possible at the two diagnostic positions. And, the aiming of the evaporation sources is fixed to the point between two locations. Ozone can be supplied through two separate nozzles for each location. Also two separate thickness monitors are installed. Additional features of the equipment are also presented together with the data taken during typical oxide film growth to illustrate the depth of information available via in situ x-ray techniques. PMID:26827327

  1. In situ surface/interface x-ray diffractometer for oxide molecular beam epitaxy

    SciTech Connect

    Lee, J. H.; Tung, I. C.; Chang, S. -H.; Bhattacharya, A.; Fong, D. D.; Freeland, J. W.; Hong, Hawoong

    2016-01-01

    In situ studies of oxide molecular beam epitaxy by synchrotron x-ray scattering has been made possible by upgrading an existing UHV/molecular beam epitaxy (MBE) six-circle diffractometer system. For oxide MBE growth, pure ozone delivery to the chamber has been made available, and several new deposition sources have been made available on a new 12 in. CF (ConFlat, a registered trademark of Varian, Inc.) flange. X-ray diffraction has been used as a major probe for film growth and structures for the system. In the original design, electron diffraction was intended for the secondary diagnostics available without the necessity of the x-ray and located at separate positions. Deposition of films was made possible at the two diagnostic positions. And, the aiming of the evaporation sources is fixed to the point between two locations. Ozone can be supplied through two separate nozzles for each location. Also two separate thickness monitors are installed. Additional features of the equipment are also presented together with the data taken during typical oxide film growth to illustrate the depth of information available via in situ x-ray techniques.

  2. Cyclic olefin homopolymer-based microfluidics for protein crystallization and in situ X-ray diffraction

    SciTech Connect

    Emamzadah, Soheila; Petty, Tom J.; De Almeida, Victor; Nishimura, Taisuke; Joly, Jacques; Ferrer, Jean-Luc; Halazonetis, Thanos D.

    2009-09-01

    A cyclic olefin homopolymer-based microfluidics system has been established for protein crystallization and in situ X-ray diffraction. Microfluidics is a promising technology for the rapid identification of protein crystallization conditions. However, most of the existing systems utilize silicone elastomers as the chip material which, despite its many benefits, is highly permeable to water vapour. This limits the time available for protein crystallization to less than a week. Here, the use of a cyclic olefin homopolymer-based microfluidics system for protein crystallization and in situ X-ray diffraction is described. Liquid handling in this system is performed in 2 mm thin transparent cards which contain 500 chambers, each with a volume of 320 nl. Microbatch, vapour-diffusion and free-interface diffusion protocols for protein crystallization were implemented and crystals were obtained of a number of proteins, including chicken lysozyme, bovine trypsin, a human p53 protein containing both the DNA-binding and oligomerization domains bound to DNA and a functionally important domain of Arabidopsis Morpheus’ molecule 1 (MOM1). The latter two polypeptides have not been crystallized previously. For X-ray diffraction analysis, either the cards were opened to allow mounting of the crystals on loops or the crystals were exposed to X-rays in situ. For lysozyme, an entire X-ray diffraction data set at 1.5 Å resolution was collected without removing the crystal from the card. Thus, cyclic olefin homopolymer-based microfluidics systems have the potential to further automate protein crystallization and structural genomics efforts.

  3. Ablation of NIF Targets and Diagnostic Components by High Power Lasers and X-Rays from High Temperature Plasmas

    SciTech Connect

    Eder, D.C; Anderson, A.T.; Braun, D.G; Tobin, M.T.

    2000-04-19

    The National Ignition Facility (NIF) will consist of 192 laser beams that have a total energy of up to 1.8 MJ in the 3rd harmonic ({lambda} = 0.35 {micro}m) with the amount of 2nd harmonic and fundamental light depending on the pulse shape. Material near best focus of the 3rd harmonic light will be vaporized/ablated very rapidly, with a significant fraction of the laser energy converted into plasma x rays. Additional plasma x rays can come from imploding/igniting capsule inside Inertial Confinement Fusion (ICF) hohlraums. Material from outer portions of the target, diagnostic components, first-wall material, and optical components, are ablated by the plasma x rays. Material out to a radius of order 3 cm from target center is also exposed to a significant flux of 2nd harmonic and fundamental laser light. Ablation can accelerate the remaining material to high velocities if it has been fragmented or melted. In addition, the high velocity debris wind of the initially vaporized material pushes on the fragments/droplets and increases their velocity. The high velocity shrapnel fragments/droplets can damage the fused silica shields protecting the final optics in NIF. We discuss modeling efforts to calculate vaporization/ablation, x-ray generation, shrapnel production, and ways to mitigate damage to the shields.

  4. Two-dimensional in situ metrology of X-ray mirrors using the speckle scanning technique.

    PubMed

    Wang, Hongchang; Kashyap, Yogesh; Laundy, David; Sawhney, Kawal

    2015-07-01

    In situ metrology overcomes many of the limitations of existing metrology techniques and is capable of exceeding the performance of present-day optics. A novel technique for precisely characterizing an X-ray bimorph mirror and deducing its two-dimensional (2D) slope error map is presented. This technique has also been used to perform fast optimization of a bimorph mirror using the derived 2D piezo response functions. The measured focused beam size was significantly reduced after the optimization, and the slope error map was then verified by using geometrical optics to simulate the focused beam profile. This proposed technique is expected to be valuable for in situ metrology of X-ray mirrors at synchrotron radiation facilities and in astronomical telescopes. PMID:26134795

  5. Electrochemical flowcell for in-situ investigations by soft x-ray absorption and emission spectroscopy

    SciTech Connect

    Schwanke, C.; Lange, K. M.; Golnak, R.; Xiao, J.

    2014-10-15

    A new liquid flow-cell designed for electronic structure investigations at the liquid-solid interface by soft X-ray absorption and emission spectroscopy is presented. A thin membrane serves simultaneously as a substrate for the working electrode and solid state samples as well as for separating the liquid from the surrounding vacuum conditions. In combination with counter and reference electrodes this approach allows in-situ studies of electrochemical deposition processes and catalytic reactions at the liquid-solid interface in combination with potentiostatic measurements. As model system in-situ monitoring of the deposition process of Co metal from a 10 mM CoCl{sub 2} aqueous solution by X-ray absorption and emission spectroscopy is presented.

  6. In situ x-ray investigation of freestanding nanoscale Cu-Nb multilayers under tensile load.

    SciTech Connect

    Aydiner, C. C.; Misra, A.; Brown, D. W.; Mara, N. A.; Almer, J. D

    2009-01-01

    The yield behavior in a freestanding sputter-deposited Cu/Nb multilayer with 30 nm nominal individual layer thickness has been investigated with in situ synchrotron x-ray diffraction during tensile loading. A pronounced elastic-plastic transition is observed with the fraction of plastically yielded grains increasing gradually with strain. Near synchronous yielding is observed in the Cu and Nb grains. The gradual progression in yield behavior is interpreted in terms of residual stresses, and elastic and plastic anisotropy.

  7. Development of in situ, at-wavelength metrology for soft x-ray nano-focusing

    SciTech Connect

    Yuan, Sheng Sam; Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Celestre, Richard; McKinney, Wayne R.; Morrison, Gregory Y.; Warwick, Tony; Padmore, Howard A.

    2010-09-19

    At the Advanced Light Source (ALS), we are developing broadly applicable, high-accuracy, in situ, at-wavelength wavefront slope measurement techniques for Kirkpatrick-Baez (KB) mirror nano-focusing. We describe here details of the metrology beamline endstation, the at-wavelength tests, and an original alignment method that have already allowed us to precisely set a bendable KB mirror to achieve a FWHM focused spot size of ~;;120 nm, at 1-nm soft x-ray wavelength.

  8. High-temperature differential emission measure and altitude variations in the temperature and density of solar flare coronal X-ray sources

    NASA Astrophysics Data System (ADS)

    Jeffrey, Natasha L. S.; Kontar, Eduard P.; Dennis, Brian R.

    2015-12-01

    The detailed knowledge of plasma heating and acceleration region properties presents a major observational challenge in solar flare physics. Using the Ramaty High Energy Solar Spectroscopic Imager (RHESSI), the high temperature differential emission measure, DEM(T), and the energy-dependent spatial structure of solar flare coronal sources were studied quantitatively. The altitude of the coronal X-ray source was observed to increase with energy by ~+0.2 arcsec/keV between 10 and 25 keV. Although an isothermal model can fit the thermal X-ray spectrum observed by RHESSI, such a model cannot account for the changes in altitude, and multi-thermal coronal sources are required where the temperature increases with altitude. For the first time, we show how RHESSI imaging information can be used to constrain the DEM(T) of a flaring plasma. We developed a thermal bremsstrahlung X-ray emission model with inhomogeneous temperature and density distributions to simultaneously reproduce i) DEM(T); ii) altitude as a function of energy; and iii) vertical extent of the flaring coronal source versus energy. We find that the temperature-altitude gradient in the region is ~+0.08 keV/arcsec (~1.3 MK/Mm). Similar altitude-energy trends in other flares suggest that the majority of coronal X-ray sources are multi-thermal and have strong vertical temperature and density gradients with a broad DEM(T).

  9. In Situ Soft X-ray Spectroscopy Characterization of Interfacial Phenomena in Energy Materials and Devices

    NASA Astrophysics Data System (ADS)

    Guo, Jinghua; Liu, Yi-Sheng; Kapilashrami, Mukes; Glans, Per-Anders; Bora, Debajeet; Braun, Artur; Velasco Vélez, Juan Jesús; Salmeron, Miquel; ALS/LBNL Team; EMPA, MSD/LBNL Collaboration

    2015-03-01

    Advanced energy technology arises from the understanding in basic science, thus rest in large on in-situ/operando characterization tools for observing the physical and chemical interfacial processes, which has been largely limited in a framework of thermodynamic and kinetic concepts or atomic and nanoscale. In many important energy systems such as energy conversion, energy storage and catalysis, advanced materials and functionality in devices are based on the complexity of material architecture, chemistry and interactions among constituents within. To understand and thus ultimately control the energy conversion and energy storage applications calls for in-situ/operando characterization tools. Soft X-ray spectroscopy offers a number of very unique features. We will present our development of the in-situ/operando soft X-ray spectroscopic tools of catalytic and electrochemical reactions in recent years, and reveal how to overcome the challenge that soft X-rays cannot easily peek into the high-pressure catalytic cells or liquid electrochemical cells. In this presentation a number of examples are given, including the nanocatalysts and the recent experiment performed for studying the hole generation in a specifically designed photoelectrochemical cell under operando conditions. The ALS is supported by the the U.S. Department of Energy.

  10. High-resolution hard x-ray spectroscopy of high-temperature plasmas using an array of quantum microcalorimeters.

    PubMed

    Thorn, Daniel B; Gu, Ming F; Brown, Greg V; Beiersdorfer, Peter; Porter, F Scott; Kilbourne, Caroline A; Kelley, Richard L

    2008-10-01

    Quantum microcalorimeters show promise in being able to fully resolve x-ray spectra from heavy highly charged ions, such as would be found in hot plasmas with temperatures in excess of 50 keV. Quantum microcalorimeter arrays are able to achieve this as they have a high-resolving power and good effective quantum efficiency for hard x-ray photons up to 60 keV. To demonstrate this, we present a measurement using an array of thin HgTe quantum microcalorimeters to measure the K-shell spectrum of hydrogenlike through carbonlike praseodymium (Z=57). With this device we are able to attain a resolving power, E/DeltaE, of 1000 at a photon energy of 37 keV. PMID:19044485

  11. High-temperature residual stresses in thin films characterized by x-ray diffraction substrate curvature method

    SciTech Connect

    Keckes, J.; Eiper, E.; Martinschitz, K. J.; Koestenbauer, H.; Daniel, R.; Mitterer, C.

    2007-03-15

    A new x-ray technique to determine temperature dependencies of macroscopic stresses in thin films by characterizing the substrate curvature is introduced. The technique is demonstrated on polycrystalline TiN and Al thin films deposited on Si(100) wafers. The structures are thermally cycled in the temperature range of 25-400 deg. C using a newly developed heating chamber attached to a commercial x-ray diffractometer. The curvature of the freestanding samples was determined by the rocking curve measurement of substrate Si 400 reflections at different lateral positions of the samples, and the stresses are calculated using Stoney's formula. The results show that the magnitude of the stress is in good agreement with the results obtained by other techniques. For the practical application of the technique, the sample mounting and the temperature control are of great importance.

  12. Portable apparatus for in situ x-ray diffraction and fluorescence analyses of artworks.

    PubMed

    Eveno, Myriam; Moignard, Brice; Castaing, Jacques

    2011-10-01

    A portable X-ray fluorescence/X-ray diffraction (XRF/XRD) system for artwork studies has been designed constructed and tested. It is based on Debye Scherrer XRD in reflection that takes advantage of many recent improvements in the handling of X-rays (polycapillary optics; advanced two-dimensional detection). The apparatus is based on a copper anode air cooled X-ray source, and the XRD analysis is performed on a 5-20 μm thick layer from the object surface. Energy dispersive XRF elemental analysis can be performed at the same point as XRD, giving elemental compositions that support the interpretation of XRD diagrams. XRF and XRD analyses were tested to explore the quality and the limits of the analytical technique. The XRD diagrams are comparable in quality with diagrams obtained with conventional laboratory equipment. The mineral identification of materials in artwork is routinely performed with the portable XRF-XRD system. Examples are given for ceramic glazes containing crystals and for paintings where the determination of pigments is still a challenge for nondestructive analysis. For instance, lead compounds that provide a variety of color pigments can be easily identified as well as a pigment such as lapis lazuli that is difficult to identify by XRF alone. More than 70 works of art have been studied in situ in museums, monuments, etc. In addition to ceramics and paintings, these works include bronzes, manuscripts, etc., which permit improvement in the comprehension of ancient artistic techniques. PMID:21615981

  13. Development of a speckle-based portable device for in situ metrology of synchrotron X-ray mirrors

    PubMed Central

    Kashyap, Yogesh; Wang, Hongchang; Sawhney, Kawal

    2016-01-01

    A portable device for in situ metrology of synchrotron X-ray mirrors based on the near-field speckle scanning technique has been developed. Ultra-high angular sensitivity is achieved by scanning a piece of abrasive paper or filter membrane in the X-ray beam. In addition to the compact setup and ease of implementation, a user-friendly graphical user interface has been developed to ensure that optimizing active X-ray mirrors is simple and fast. The functionality and feasibility of this device have been demonstrated by characterizing and optimizing X-ray mirrors. PMID:27577767

  14. Development of a speckle-based portable device for in situ metrology of synchrotron X-ray mirrors.

    PubMed

    Kashyap, Yogesh; Wang, Hongchang; Sawhney, Kawal

    2016-09-01

    A portable device for in situ metrology of synchrotron X-ray mirrors based on the near-field speckle scanning technique has been developed. Ultra-high angular sensitivity is achieved by scanning a piece of abrasive paper or filter membrane in the X-ray beam. In addition to the compact setup and ease of implementation, a user-friendly graphical user interface has been developed to ensure that optimizing active X-ray mirrors is simple and fast. The functionality and feasibility of this device have been demonstrated by characterizing and optimizing X-ray mirrors. PMID:27577767

  15. Beamline electrostatic levitator for in situ high energy x-ray diffraction studies of levitated solids and liquids

    SciTech Connect

    Gangopadhyay, A.K.; Lee, G.W.; Kelto, K.F.; Rogers, J.R.; Goldman, A.I.; Robinson, D.S.; Rathz, T.J.; Hyers, R.W.

    2010-07-19

    Determinations of the phase formation sequence, crystal structures and the thermo-physical properties of materials at high temperatures are hampered by contamination from the sample container and environment. Containerless processing techniques, such as electrostatic (ESL), electromagnetic, aerodynamic, and acoustic levitation, are most suitable for these studies. An adaptation of ESL for in situ structural studies of a wide range of materials using high energy (30-130 keV) x rays at a synchrotron source is described here. This beamline ESL (BESL) allows the in situ determination of the atomic structures of equilibrium solid and liquid phases, undercooled liquids and time-resolved studies of solid-solid and liquid-solid phase transformations. The use of area detectors enables the rapid acquisition of complete diffraction patterns over a wide range (0.5-14 {angstrom}{sup -1}) of reciprocal space. The wide temperature range (300-2500 K), containerless processing environment under high vacuum (10{sup -7}-10{sup -8} Torr), and fast data acquisition capability, make BESL particularly well suited for phase stability studies of high temperature solids and liquids. An additional, but important, feature of BESL is the capability for simultaneous measurements of a host of thermo-physical properties including the specific heat, enthalpy of transformation, solidus and liquidus temperatures, density, viscosity, and surface tension, all on the same sample during the structural measurements.

  16. A sample chamber for in situ high-energy X-ray studies of crystal growth at deeply buried interfaces in harsh environments

    NASA Astrophysics Data System (ADS)

    de Jong, A. E. F.; Vonk, V.; Honkimäki, V.; Gorges, B.; Vitoux, H.; Vlieg, E.

    2015-06-01

    We introduce a high pressure high temperature chamber for in situ synchrotron X-ray studies. The chamber design allows for in situ studies of thin film growth from solution at deeply buried interfaces in harsh environments. The temperature can be controlled between room temperature and 1073 K while the pressure can be set as high as 50 bar using a variety of gases including N2 and NH3. The formation of GaN on the surface of a Ga13Na7 melt at 1073 K and 50 bar of N2 is presented as a performance test.

  17. Analysis of heat-affected zone phase transformations using in situ spatially resolved x-ray diffraction with synchrotron radiation

    SciTech Connect

    Elmer, J.W.; Wong, J.; Froeba, M.; Waide, P.A.; Larson, E.M.

    1996-03-01

    Spatially resolved X-ray diffraction (SRXRD) consists of producing a submillimeter size X-ray beam from an intense synchrotron radiation source to perform real-time diffraction measurements on solid materials. This technique was used int his study to investigate the crystal phases surrounding a liquid weld pool in commercial purity titanium and to determine the location of the phase boundary separating the high-temperature body-centered-cubic (bcc) {beta} phase from the low-temperature hexagonal-close-packed (hcp) {alpha} phase. The experiments were carried out at the Stanford Synchrotron Radiation Laboratory (SSRL) using a 0.25 x 0.50 mm X-ray probe that could be positioned with 10-{micro}m precision on the surface of a quasistationary gas tungsten arc weld (GTAW). The SRXRD results showed characteristic hcp, bcc, and liquid diffraction patterns at various points along the sample, starting from the base metal through the heat-affected zone (HAZ) and into the weld pool, respectively. Analyses of the SRXRD data show the coexistence of bcc and hcp phases in the partially transformed (outer) region of the HAZ and single-phase bcc in the fully transformed (inner) region of the HAZ. Postweld metallographic examinations of the HAZ, combined with a conduction-based thermal model of the weld, were correlated with the SRXRD results. Finally, analysis of the diffraction intensities of the hcp and bcc phases was performed on the SRXRD data to provide additional information about the microstructural conditions that may exist in the HAZ at temperature during welding. This work represents the first direct in situ mapping of phase boundaries in fusion welds.

  18. A furnace and environmental cell for the in situ investigation of molten salt electrolysis using high-energy X-ray diffraction.

    PubMed

    Styles, Mark J; Rowles, Matthew R; Madsen, Ian C; McGregor, Katherine; Urban, Andrew J; Snook, Graeme A; Scarlett, Nicola V Y; Riley, Daniel P

    2012-01-01

    This paper describes the design, construction and implementation of a relatively large controlled-atmosphere cell and furnace arrangement. The purpose of this equipment is to facilitate the in situ characterization of materials used in molten salt electrowinning cells, using high-energy X-ray scattering techniques such as synchrotron-based energy-dispersive X-ray diffraction. The applicability of this equipment is demonstrated by quantitative measurements of the phase composition of a model inert anode material, which were taken during an in situ study of an operational Fray-Farthing-Chen Cambridge electrowinning cell, featuring molten CaCl(2) as the electrolyte. The feasibility of adapting the cell design to investigate materials in other high-temperature environments is also discussed. PMID:22186642

  19. Instrument for x-ray absorption spectroscopy with in situ electrical control characterizations

    SciTech Connect

    Huang, Chun-Chao; Chang, Shu-Jui; Yang, Chao-Yao; Tseng, Yuan-Chieh; Chou, Hsiung

    2013-12-15

    We report a synchrotron-based setup capable of performing x-ray absorption spectroscopy and x-ray magnetic circular dichroism with simultaneous electrical control characterizations. The setup can enable research concerning electrical transport, element- and orbital-selective magnetization with an in situ fashion. It is a unique approach to the real-time change of spin-polarized electronic state of a material/device exhibiting magneto-electric responses. The performance of the setup was tested by probing the spin-polarized states of cobalt and oxygen of Zn{sub 1-x}Co{sub x}O dilute magnetic semiconductor under applied voltages, both at low (∼20 K) and room temperatures, and signal variations upon the change of applied voltage were clearly detected.

  20. In situ compressive damage of cement paste characterized by lab source X-ray computer tomography

    SciTech Connect

    Wan, Keshu; Xue, Xiaobo

    2013-08-15

    This paper aims at illustrating the potential of lab source X-ray CT for studying the damage behavior of cement based materials through in situ load experiments. This approach permits quantifying the microstructure prior and during loading. The load damage is separated from the specimen deformation using an image interpolation method. A quantitative relationship between external load and internal specimen damage is analyzed using the statistical information of gray scale values of the CT data. Local damage degrees are defined on 3D subset, and the 3D spatial distribution of damage information is clarified in this research. - Highlights: • On line damage is characterized by lab source X-ray CT. • Loading damage is separated with the specimen deformation. • Local damage is analyzed using gray scale values of the CT data. • 3D spatial distribution of the local damage information is clarified.

  1. Rapid in situ X-ray position stabilization via extremum seeking feedback.

    PubMed

    Zohar, S; Venugopalan, N; Kissick, D; Becker, M; Xu, S; Makarov, O; Stepanov, S; Ogata, C; Sanishvili, R; Fischetti, R F

    2016-03-01

    X-ray beam stability is crucial for acquiring high-quality data at synchrotron beamline facilities. When the X-ray beam and defining apertures are of similar dimensions, small misalignments driven by position instabilities give rise to large intensity fluctuations. This problem is solved using extremum seeking feedback control (ESFC) for in situ vertical beam position stabilization. In this setup, the intensity spatial gradient required for ESFC is determined by phase comparison of intensity oscillations downstream from the sample with pre-existing vertical beam oscillations. This approach compensates for vertical position drift from all sources with position recovery times <6 s and intensity stability through a 5 µm aperture measured at 1.5% FWHM over a period of 8 hours. PMID:26917131

  2. In situ x-ray diffraction measurements of the capillary fountain jet produced via ultrasonic atomization

    NASA Astrophysics Data System (ADS)

    Yano, Yohko F.; Douguchi, Junya; Kumagai, Atsushi; Iijima, Takao; Tomida, Yukinobu; Miyamoto, Toshiaki; Matsuura, Kazuo

    2006-11-01

    In situ x-ray diffraction measurements were carried out for investigating the liquid structure in the ultrasonic fountain jet to consider the mechanism of the "ultrasonic ethanol separation" reported by Sato et al. [J. Chem. Phys. 114, 2382 (2001)]. For pure liquids (water and ethanol), it was found that the high frequency ultrasound does not affect the liquid structure microscopically. For the 20mol% ethanol-water mixture, the estimated ethanol mole fraction in the ultrasonic fountain jet by using the position of the main maximum in the x-ray diffraction profile coincided with that in the reservoir. This result suggests that the ethanol separation is not caused by any distorted liquid structure under the ultrasound irradiation and occurs when or after the generation of the liquid droplet mist.

  3. In situ x-ray diffraction measurements of the capillary fountain jet produced via ultrasonic atomization.

    PubMed

    Yano, Yohko F; Douguchi, Junya; Kumagai, Atsushi; Iijima, Takao; Tomida, Yukinobu; Miyamoto, Toshiaki; Matsuura, Kazuo

    2006-11-01

    In situ x-ray diffraction measurements were carried out for investigating the liquid structure in the ultrasonic fountain jet to consider the mechanism of the "ultrasonic ethanol separation" reported by Sato et al. [J. Chem. Phys. 114, 2382 (2001)]. For pure liquids (water and ethanol), it was found that the high frequency ultrasound does not affect the liquid structure microscopically. For the 20 mol % ethanol-water mixture, the estimated ethanol mole fraction in the ultrasonic fountain jet by using the position of the main maximum in the x-ray diffraction profile coincided with that in the reservoir. This result suggests that the ethanol separation is not caused by any distorted liquid structure under the ultrasound irradiation and occurs when or after the generation of the liquid droplet mist. PMID:17100459

  4. In situ x-ray photoelectron spectroscopy for electrochemical reactions in ordinary solvents

    SciTech Connect

    Masuda, Takuya; Yoshikawa, Hideki; Kobata, Masaaki; Kobayashi, Keisuke; Noguchi, Hidenori; Kawasaki, Tadahiro; Uosaki, Kohei

    2013-09-09

    In situ electrochemical X-ray photoelectron spectroscopy (XPS) apparatus, which allows XPS at solid/liquid interfaces under potential control, was constructed utilizing a microcell with an ultra-thin Si membrane, which separates vacuum and a solution. Hard X-rays from a synchrotron source penetrate into the Si membrane surface exposed to the solution. Electrons emitted at the Si/solution interface can pass through the membrane and be analyzed by an analyzer placed in vacuum. Its operation was demonstrated for potential-induced Si oxide growth in water. Effect of potential and time on the thickness of Si and Si oxide layers was quantitatively determined at sub-nanometer resolution.

  5. Solution spectroelectrochemical cell for in situ X-ray absorption fine structure

    SciTech Connect

    Antonio, M.R.; Soderholm, L.; Song, I.

    1995-06-12

    A purpose-built spectroelectrochemical cell for in situ fluorescence XAFS (X-ray Absorption Fine Structure) measurements of bulk solution species during constant-potential electrolysis is described. The cell performance was demonstrated by the collection of europium L{sub 3}-edge XANES (X-ray Absorption Near Edge Structure) throughout the course of electrolysis of an aqueous solution of EuCl{sub 3}{center_dot}6H{sub 2}O in 1 M H{sub 2}SO{sub 4}. The europium L{sub 3}-edge resonances reported here for the Eu{sup III} and Eu{sup II} ions demonstrate that their 2p{sub 3/2} {yields} 5d electronic transition probabilities are not the same.

  6. In situ characterization of Grade 92 steel during tensile deformation using concurrent high energy X-ray diffraction and small angle X-ray scattering

    NASA Astrophysics Data System (ADS)

    Wang, Leyun; Li, Meimei; Almer, Jonathan

    2013-09-01

    The tensile deformation in Grade 92 steel was studied in situ using simultaneous high energy X-ray diffraction (HE-XRD), radiography, and small angle X-ray scattering (SAXS) at room temperature (RT), 400, and 650 °C. Temperature-dependent elastic properties, i.e. Young's modulus and Poisson's ratio, were measured for α-Fe matrix, M23C6 and Nb(C,N) phases in various crystallographic orientation. Significant differences in the evolution of lattice strain, peak broadening/sharpening, and void development in the α-Fe matrix, M23C6 and Nb(C,N) precipitates revealed markedly different deformation and damage mechanisms at low and high temperature in the alloy. The strengthening effect of each type of precipitates measured by lattice strain agrees with the dislocation pile-up model at room temperature, while a different dislocation behavior was observed at 650 °C. Void volume fraction as a function of strain measured by SAXS can be described by a classic void nucleation and growth model at room temperature but not at 650 °C, implying a different damage process at high temperature. The ultimate tensile strength is ordered as RT > 400 °C > 650 °C; strain to failure is ordered as 650 °C > RT > 400 °C. For the 650 °C test, there was a long softening stage between the UTS and specimen necking. M23C6 and Nb(C,N) precipitates were identified in the Fe matrix. At RT and 400 °C, apparent load transfer from the matrix to the precipitates took place after the matrix's early yielding. Measured von Mises stresses in the precipitates can be quantitatively explained using the established models of precipitate strengthening. Increase of dislocation density with deformation caused peak broadening in both matrix and precipitates. At 650 °C, load transfer was much less, and peak broadening was also largely subdued at 650 °C. Anisotropy of lattice strains was observed both in the matrix and precipitates. The elastic modulus of Fe (2 0 0) is lower than Fe (2 1 1) and Fe (2 2 0

  7. Early stages in the high temperature cyclic oxidation of {beta}-NiAl: An x-ray reflectivity study

    SciTech Connect

    Muralidharan, G.; You, Hoydoo; Paulikas, A.P.; Veal, B.W.

    1996-12-31

    Early stages in the cyclic oxidation of {beta}-NiAl at 500{degrees}C, 600{degrees}C, 700{degrees}C and 800{degrees}C were investigated using the technique of x-ray reflectivity. By fitting the data to a model function, oxide layer thickness, roughness of the oxide-vapor interface, and the roughness of the oxide-substrate interface were obtained as a function of oxidation time and temperature of oxidation. The time dependence of the oxide thickness was observed to be logarithmic at lower temperatures (500{degrees}C and 600{degrees}C) while a conventional t{sup 0.5} kinetics was observed at the higher temperatures. Comparison of the roughness of the oxide-substrate interface with that of the oxide-vapor interface shows that for comparable oxide thicknesses and identical substrate conditions, the oxide-vapor interface was rougher than the oxide-substrate interface at all temperatures. This is consistent with the previously postulated growth mechanism (outward diffusion of cations) for oxide growth during the early stages of oxidation at these temperatures. Thus, x-ray reflectivity offers a convenient way of determining the oxide growth rates, and the roughness of the interfaces when the oxide layer is thin; this regime cannot be easily studied with the techniques that are currently used for oxidation studies.

  8. Study of calcium-containing orthophosphates of NaZr{sub 2}(PO{sub 4}){sub 3} structural type by high-temperature X-ray diffraction

    SciTech Connect

    Orlova, A. I.; Kanunov, A. E.; Samoilov, S. G.; Kazakova, A. Yu.; Kazantsev, G. N.

    2013-03-15

    Orthophosphates Ca{sub 0.5}Ti{sub 2}(PO{sub 4}){sub 3}, Ca{sub 0.5}Zr{sub 2}(PO{sub 4}){sub 3}, Ca{sub 0.75}Zr{sub 2}(SiO{sub 4}){sub 0.5}(PO{sub 4}){sub 2.5}, and CaMg{sub 0.5}Zr{sub 1.5}(PO{sub 4}){sub 3} (structural type NaZr{sub 2}(PO{sub 4}){sub 3}), having different occupancies of interframework positions by calcium, have been prepared by the sol-gel method with the subsequent thermal treatment of dried gels and investigated by IR spectroscopy and X-ray diffraction. The analytical indexing of X-ray diffraction patterns is performed within the sp. gr. R3{sup -}. High-temperature X-ray diffraction was used to investigate the behavior of the orthophosphates upon heating: thermal expansion in the temperature range of 20-610 Degree-Sign C (up to 500 Degree-Sign C for Ca{sub 0.5}Zr{sub 2}(PO{sub 4}){sub 3}). The coefficients of thermal expansion are calculated from the shift of diffraction peaks. The unit-cell parameters of crystals at different temperatures are determined. The dependences of thermal expansion and its anisotropy on the occupancy of cation M positions by calcium are revealed.

  9. Soil characterization by energy dispersive X-ray fluorescence: sampling strategy for in situ analysis.

    PubMed

    Custo, Graciela; Boeykens, Susana; Dawidowski, L; Fox, L; Gómez, D; Luna, F; Vázquez, Cristina

    2005-07-01

    This work describes a sampling strategy that will allow the use of portable EDXRF (energy dispersive X-ray fluorescence) instruments for "in situ" soil analysis. The methodology covers a general approach to planning field investigations for any type of environmental studies and it was applied for a soil characterization study in the zone of Campana, Argentina, by evaluating data coming from an EDXRF spectrometer with a radioisotope excitation source. Simulating non-treated sampled as "in situ" samples and a soil characterization for Campana area was intended. "In situ" EDXRF methodology is a powerful analytical modality with the advantage of providing data immediately, allowing a fast general screening of the soil composition. PMID:16038489

  10. Setup for in situ X-ray diffraction studies of thin film growth by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ellmer, K.; Mientus, R.; Weiß, V.; Rossner, H.

    2001-07-01

    A novel method is described for the in situ-investigation of nucleation and growth of thin films during magnetron sputtering. Energy dispersive X-ray diffraction with synchrotron light is used for the structural analysis during film growth. An in situ-magnetron sputtering chamber was constructed and installed at a synchrotron radiation beam line with a bending magnet. The white synchrotron light (1-70 keV) passes the sputtering chamber through Kapton windows and hits one of the substrates on a four-fold sample holder. The diffracted beam, observed under a fixed diffraction angle between 3° and 10°, is energy analyzed by a high purity Ge-detector. The in situ-EDXRD setup is demonstrated for the growth of tin-doped indium oxide (ITO) films prepared by reactive magnetron sputtering from a metallic target.

  11. In situ X-ray pair distribution function analysis of geopolymer gel nanostructure formation kinetics.

    PubMed

    White, Claire E; Provis, John L; Bloomer, Breaunnah; Henson, Neil J; Page, Katharine

    2013-06-14

    With the ever-increasing environmentally-driven demand for technologically advanced structural materials, geopolymer cement is fast becoming a viable alternative to traditional cements due to its proven engineering characteristics and the reduction in CO2 emitted during manufacturing (as much as 80% less CO2 emitted in manufacture, compared to ordinary Portland cement). Nevertheless, much remains unknown regarding the kinetics of reaction responsible for nanostructural evolution during the geopolymerisation process. Here, in situ X-ray total scattering measurements and pair distribution function (PDF) analysis are used to quantify the extent of reaction as a function of time for alkali-activated metakaolin/slag geopolymer binders, including the impact of various activators (alkali hydroxide/silicate) on the kinetics of the geopolymerisation reaction. Quantifying the reaction process in situ from X-ray PDF data collected during the initial ten hours can provide an estimate of the total reaction extent, but when combined with data obtained at longer times (128 days here) enables more accurate determination of the overall rate of reaction. To further assess the initial stages of the geopolymerisation reaction process, a pseudo-single step first order rate equation is fitted to the extent of reaction data, which reveals important mechanistic information regarding the role of free silica in the activators in the evolution of the binder systems. Hence, it is shown that in situ X-ray PDF analysis is an ideal experimental local structure tool to probe the reaction kinetics of complex reacting systems involving transitions between disordered/amorphous phases, of which geopolymerisation is an important example. PMID:23450172

  12. X-ray microscopy for in situ characterization of 3D nanostructural evolution in the laboratory

    NASA Astrophysics Data System (ADS)

    Hornberger, Benjamin; Bale, Hrishikesh; Merkle, Arno; Feser, Michael; Harris, William; Etchin, Sergey; Leibowitz, Marty; Qiu, Wei; Tkachuk, Andrei; Gu, Allen; Bradley, Robert S.; Lu, Xuekun; Withers, Philip J.; Clarke, Amy; Henderson, Kevin; Cordes, Nikolaus; Patterson, Brian M.

    2015-09-01

    X-ray microscopy (XRM) has emerged as a powerful technique that reveals 3D images and quantitative information of interior structures. XRM executed both in the laboratory and at the synchrotron have demonstrated critical analysis and materials characterization on meso-, micro-, and nanoscales, with spatial resolution down to 50 nm in laboratory systems. The non-destructive nature of X-rays has made the technique widely appealing, with potential for "4D" characterization, delivering 3D micro- and nanostructural information on the same sample as a function of sequential processing or experimental conditions. Understanding volumetric and nanostructural changes, such as solid deformation, pore evolution, and crack propagation are fundamental to understanding how materials form, deform, and perform. We will present recent instrumentation developments in laboratory based XRM including a novel in situ nanomechanical testing stage. These developments bridge the gap between existing in situ stages for micro scale XRM, and SEM/TEM techniques that offer nanometer resolution but are limited to analysis of surfaces or extremely thin samples whose behavior is strongly influenced by surface effects. Several applications will be presented including 3D-characterization and in situ mechanical testing of polymers, metal alloys, composites and biomaterials. They span multiple length scales from the micro- to the nanoscale and different mechanical testing modes such as compression, indentation and tension.

  13. In situ X-ray monitoring of damage accumulation in SiC/RBSN tensile specimens

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Bhatt, Ramkrishna T.

    1991-01-01

    The room-temperature tensile testing of silicon carbide fiber reinforced reaction-bonded silicon nitride (SiC/RBSN) composite specimens was monitored by using in-situ X-ray film radiography. Radiographic evaluation before, during, and after loading provided data on the effect of preexisting volume flaws (high density impurities, and local density variations) on the fracture behavior of composites. Results from (O)1, (O)3, (O)5, and (O)8 composite specimens showed that X-ray film radiography can monitor damage accumulations during tensile loading. Matrix cracking, fiber-matrix debonding, and fiber pullout were imaged throughout the tensile loading history of the specimens. Further, in-situ film radiography was found to be a helpful and practical technique for estimating interfacial shear strength between the SiC fiber and the RBSN matrix by the matrix crack spacing method. It is concluded that pretest, in-situ, and post-test radiography can provide for a greater understanding of ceramic matrix composite mechanical behavior, a verification of related experimental procedures, and a validation and development of related analytical models.

  14. In situ x-ray photoemission studies of the oxidation of Y-Ba-Cu films

    SciTech Connect

    Price, R.J.; Jackman, R.B.; Foord, J.S.

    1988-12-15

    X-ray photoemission has been used to investigate the formation of Y-Ba-Cu films on Si(100) and as an in situ probe of their subsequent oxidation to yield the associated oxide ceramic. The layers are prepared by coevaporation of the metallic components under ultrahigh vacuum, and pure alloy phases can be deposited at 300 K; reaction with the underlying substrate resulting in loss of Cu and incorporation by Si in the film takes place, however, at higher temperatures. Room-temperature oxidation stabilizes the film against this interaction and results in the preferential oxidation and surface segregation of barium at the expense of Cu. This segregation process becomes even more apparent during higher temperature (approx.600 K) oxidation reactions. Chemical shifts and associated effects in x-ray photoelectron spectra are used to infer information on the chemical changes that occur in the film as oxidation proceeds. The thin-film phases prepared in situ in this work reveal a very similar surface composition to bulk superconducting samples prepared ex situ. This suggests that the surface segregation in bulk samples does not simply result from reaction with species such as water vapor, but instead may represent an equilibrium state of the oxide-oxygen interface.

  15. In situ X-ray monitoring of damage accumulation in SiC/RBSN tensile specimens

    SciTech Connect

    Baaklini, G.Y.; Bhatt, R.T.

    1991-08-01

    The room-temperature tensile testing of silicon carbide fiber reinforced reaction-bonded silicon nitride (SiC/RBSN) composite specimens was monitored by using in-situ X-ray film radiography. Radiographic evaluation before, during, and after loading provided data on the effect of preexisting volume flaws (high density impurities, and local density variations) on the fracture behavior of composites. Results from (O)1, (O)3, (O)5, and (O)8 composite specimens showed that X-ray film radiography can monitor damage accumulations during tensile loading. Matrix cracking, fiber-matrix debonding, and fiber pullout were imaged throughout the tensile loading history of the specimens. Further, in-situ film radiography was found to be a helpful and practical technique for estimating interfacial shear strength between the SiC fiber and the RBSN matrix by the matrix crack spacing method. It is concluded that pretest, in-situ, and post-test radiography can provide for a greater understanding of ceramic matrix composite mechanical behavior, a verification of related experimental procedures, and a validation and development of related analytical models. 14 refs.

  16. In-situ X-ray characterization of the reaction of lithium with InSe

    SciTech Connect

    Levy-Clement, C.; Dahn, J.R.; McKinnon, W.R.; Rioux, J.

    1984-12-01

    The reaction at room temperature of Li with InSe in Li/InSe electrochemical cells was studied using in-situ X-ray diffraction. Li reacts with InSe first to form Li/sub 2/Se and In, then reacts with the In to form InLi. An intermediate phase appears in each of these two steps. The first intermediate phase may be an intercalation compound Li /SUB x/ InSe, the second some In-Li alloy.

  17. In-Situ Silver Acetylide Silver Nitrate Explosive Deposition Measurements Using X-Ray Fluorescence.

    SciTech Connect

    Covert, Timothy Todd

    2014-09-01

    The Light Initiated High Explosive facility utilized a spray deposited coating of silver acetylide - silver nitrate explosive to impart a mechanical shock into targets of interest. A diagnostic was required to measure the explosive deposition in - situ. An X - ray fluorescence spectrometer was deployed at the facility. A measurement methodology was developed to measure the explosive quantity with sufficient accuracy. Through the use of a tin reference material under the silver based explosive, a field calibration relationship has been developed with a standard deviation of 3.2 % . The effect of the inserted tin material into the experiment configuration has been explored.

  18. In situ x-ray diffraction of shock-driven deformation and phase transformation in titanium

    NASA Astrophysics Data System (ADS)

    Bolme, Cynthia; Lazicki, Amy; Brown, Don; Gleason, Arianna; Cerreta, Ellen; Morrow, Ben; Ali, Suzanne; Swift, Damian; Nagler, Bob; Galtier, Eric; Granados, Eduardo; Milathianaki, Despina; Heimann, Phil

    2015-06-01

    Titanium alloys are employed in demanding engineering applications due to their high strength-to-weight ratio and their resistance to corrosion. Pure titanium and titanium with high levels of oxygen impurities were studied under laser-driven shock compression at the Matter in Extreme Conditions endstation at the Linac Coherent Light Source. In situ x-ray diffraction data were acquired during compression, showing the lattice-level response of titanium as it underwent plastic deformation and phase transformation. The kinetics of these processes and the influence of oxygen impurities on the deformation behavior will be presented.

  19. In-situ x-ray absorption study of copper films in ground watersolutions

    SciTech Connect

    Kvashnina, K.O.; Butorin, S.M.; Modin, A.; Soroka, I.; Marcellini, M.; Nordgren, J.; Guo, J.-H.; Werme, L.

    2007-10-29

    This study illustrates how the damage from copper corrosion can be reduced by modifying the chemistry of the copper surface environment. The surface modification of oxidized copper films induced by chemical reaction with Cl{sup -} and HCO{sub 3}{sup -} in aqueous solutions was monitored by in situ X-ray absorption spectroscopy. The results show that corrosion of copper can be significantly reduced by adding even a small amount of sodium bicarbonate. The studied copper films corroded quickly in chloride solutions, whereas the same solution containing 1.1 mM HCO{sub 3}{sup -} prevented or slowed down the corrosion processes.

  20. In situ X-ray absorption study of copper films in ground water solutions

    NASA Astrophysics Data System (ADS)

    Kvashnina, K. O.; Butorin, S. M.; Modin, A.; Soroka, I.; Marcellini, M.; Nordgren, J.; Guo, J.-H.; Werme, L.

    2007-10-01

    This study illustrates how the damage from copper corrosion can be reduced by modifying the chemistry of the copper surface environment. The surface modification of oxidized copper films induced by chemical reaction with Cl - and HCO3- in aqueous solutions was monitored by in situ X-ray absorption spectroscopy. The results show that corrosion of copper can be significantly reduced by adding even a small amount of sodium bicarbonate. The studied copper films corroded quickly in chloride solutions, whereas the same solution containing 1.1 mM HCO3- prevented or slowed down the corrosion processes.

  1. Simulations of in situ x-ray diffraction from uniaxially compressed highly textured polycrystalline targets

    SciTech Connect

    McGonegle, David Wark, Justin S.; Higginbotham, Andrew; Milathianaki, Despina; Remington, Bruce A.

    2015-08-14

    A growing number of shock compression experiments, especially those involving laser compression, are taking advantage of in situ x-ray diffraction as a tool to interrogate structure and microstructure evolution. Although these experiments are becoming increasingly sophisticated, there has been little work on exploiting the textured nature of polycrystalline targets to gain information on sample response. Here, we describe how to generate simulated x-ray diffraction patterns from materials with an arbitrary texture function subject to a general deformation gradient. We will present simulations of Debye-Scherrer x-ray diffraction from highly textured polycrystalline targets that have been subjected to uniaxial compression, as may occur under planar shock conditions. In particular, we study samples with a fibre texture, and find that the azimuthal dependence of the diffraction patterns contains information that, in principle, affords discrimination between a number of similar shock-deformation mechanisms. For certain cases, we compare our method with results obtained by taking the Fourier transform of the atomic positions calculated by classical molecular dynamics simulations. Illustrative results are presented for the shock-induced α–ϵ phase transition in iron, the α–ω transition in titanium and deformation due to twinning in tantalum that is initially preferentially textured along [001] and [011]. The simulations are relevant to experiments that can now be performed using 4th generation light sources, where single-shot x-ray diffraction patterns from crystals compressed via laser-ablation can be obtained on timescales shorter than a phonon period.

  2. Resonant Soft X-ray Scattering studies of charge orders in high-temperature cuperates with Transition Edge Sensors

    NASA Astrophysics Data System (ADS)

    Fang, Yizhi; Abbamonte, Peter; Rodolakis, Fanny; McChesney, Jessica; Tatsuno, Hideyuki; Joe, Young Il; Fowler, Joe; Morgan, Kelsey; Doriese, William; Swetz, Daniel; Ullom, Joel

    Resonant Soft X-ray studies of high Tc cuperates have implied a complex yet unresolved relationship between charge orders, anitferromagnetism and superconductivity. Unfortunately, at resonance the inelastic florescence background makes it hard to distinguish weak charge orders. To eliminate this issue, we have developed an energy-resolving detector comprised of 240-pixels superconducting Transition-Edge Sensor microcalorimeters. These superconducting sensors obtain exquisite resolution by exploiting the superconducting-to-normal transition to transduce photon energy to temperature and by operating at cryogenic temperatures (~ 100 mK) where thermal noise is minimal. Initial commissioning was accomplished at Advanced Photon Source Sector 29 in August 2015 and have demonstrated 1.0 eV resolution below 1 keV with efficiency (solid angle × quantum efficiency) ~ 50 times than that of grating spectrometers. An experiment to study charge orders in LBCO, LESCO and YBCO as a function of doping will take place in November 2015. This work was supported by the U.S. Department of Energy under Grant No. DE-FG02-06ER46285.

  3. In situ high-resolution X-ray photoelectron spectroscopy - Fundamental insights in surface reactions

    NASA Astrophysics Data System (ADS)

    Papp, Christian; Steinrück, Hans-Peter

    2013-11-01

    Since the advent of third generation synchrotron light sources optimized for providing soft X-rays up to 2 keV, X-ray photoelectron spectroscopy (XPS) has been developed to be an outstanding tool to study surface properties and surface reactions at an unprecedented level. The high resolution allows identifying various surface species, and for small molecules even the vibrational fine structure can be resolved in the XP spectra. The high photon flux reduces the required measuring time per spectrum to the domain of a few seconds or even less, which enables to follow surface processes in situ. Moreover, it also provides access to very small coverages down to below 0.1% of a monolayer, enabling the investigation of minority species or processes at defect sites. The photon energy can be adjusted according to the requirement of a particular experiment, i.e., to maximize or minimize the surface sensitivity or the photoionization cross-section of the substrate or the adsorbate. For a few instruments worldwide, a next step forward was taken by combining in situ high-resolution spectrometers with supersonic molecular beams. These beams allow to control and vary the kinetic and internal energies of the incident molecules and provide a local pressure of up to ~10-5 mbar, which can be switched on and off in a controllable way, thus offering a well-defined time structure to study adsorption or reaction processes.

  4. In Situ X-ray Reflectivity Studies of Protein Adsorption onto Functionalized Surfaces

    NASA Astrophysics Data System (ADS)

    Richter, Andrew

    2007-03-01

    The adsorption of protein films onto solid surfaces, both artificial and naturally occurring, have been widely studied using a variety of techniques due to their importance in medicine, biomedical applications, and the general understanding of protein structure and function. What have yet to be performed are in situ, time-resolved, high-resolution structural studies of these systems. We have begun a project that uses the technique of in situ x-ray reflectivity to obtain highly resolved structural information with time resolution on the order of minutes. This talk will present our first findings of serum albumin and immunoglobulin G films on hydrophobic self-assembled monolayers. The protein films are readily observable, showing extensive denaturing after adsorption with a slow decay of density into the aqueous solution. Additionally, a thin low-density region that occurs between the hydrophobic film and the solution persists after protein deposition. Comparisons to films that are removed from solution, the influence of solution concentration, the effects of x-ray damage, and the time scales for protein film formation and evolution will also be discussed.

  5. Experimental novaculite deformation: interpretation of in-situ X-ray diffraction data using EPSC models

    NASA Astrophysics Data System (ADS)

    Thomas, S.; Willenweber, A.; Cline, C. J.; Sas, M.; Pape, D.; Erickson, B.; Bright, T.; Burnley, P. C.

    2012-12-01

    The deformation behavior of fine-grained polycrystalline quartz (novaculite) was studied experimentally using in-situ X-ray diffraction and theoretically by elastic plastic self consistent modeling (EPSC). Previous experimental work has shown that different subpopulations of crystals experience different stress levels during high pressure deformation and reflection stresses may lead to poor approximations of macroscopic sample stresses, since in-situ diffraction data originates from grain scale phenomena rather than macroscopic sample properties [1]. In this context EPSC models have been utilized to interpret diffraction data, i.e., to independently derive the macroscopic sample load and to directly compare results with diffraction data. In our study a series of novaculite samples with 645 ± 50 wt ppm H2O was deformed in different regimes of disclocation-creep, at 2.5 GPa and up to ~1000 °C, in the D-DIA apparatus at the NSLS X17B2 beamline. In-situ synchrotron X-ray diffraction was used to monitor the sample stress state during controlled deformation and to observe the strain behavior of the individual lattice reflections of novaculite. Lattice strains were calculated from measured lattice spacings. The macroscopic sample strain was determined by sample radiographs. The strains provide information about how individual grains or grain populations react to stress depending on their orientation within the aggregate. We observe a reproducible elastic slope across the series of experiments and a temperature dependence of individual lattice strains and yield strength. In addition, EPSC models were calculated to theoretically determine macroscopic sample stresses and to match measured rheological sample properties with simulations. Depending on deformation conditions measured elastic lattice strains could be matched by activating basal and/or prism and/or pyramidal slip systems of the crystal structure. Here, we present EPSC models, compare macroscopic stresses

  6. In meso in situ serial X-ray crystallography of soluble and membrane proteins

    SciTech Connect

    Huang, Chia-Ying; Olieric, Vincent; Ma, Pikyee; Panepucci, Ezequiel; Diederichs, Kay; Wang, Meitian; Caffrey, Martin

    2015-05-14

    A method for performing high-throughput in situ serial X-ray crystallography with soluble and membrane proteins in the lipid cubic phase is described. It works with microgram quantities of protein and lipid (and ligand when present) and is compatible with the most demanding sulfur SAD phasing. The lipid cubic phase (LCP) continues to grow in popularity as a medium in which to generate crystals of membrane (and soluble) proteins for high-resolution X-ray crystallographic structure determination. To date, the PDB includes 227 records attributed to the LCP or in meso method. Among the listings are some of the highest profile membrane proteins, including the β{sub 2}-adrenoreceptor–G{sub s} protein complex that figured in the award of the 2012 Nobel Prize in Chemistry to Lefkowitz and Kobilka. The most successful in meso protocol to date uses glass sandwich crystallization plates. Despite their many advantages, glass plates are challenging to harvest crystals from. However, performing in situ X-ray diffraction measurements with these plates is not practical. Here, an alternative approach is described that provides many of the advantages of glass plates and is compatible with high-throughput in situ measurements. The novel in meso in situ serial crystallography (IMISX) method introduced here has been demonstrated with AlgE and PepT (alginate and peptide transporters, respectively) as model integral membrane proteins and with lysozyme as a test soluble protein. Structures were solved by molecular replacement and by experimental phasing using bromine SAD and native sulfur SAD methods to resolutions ranging from 1.8 to 2.8 Å using single-digit microgram quantities of protein. That sulfur SAD phasing worked is testament to the exceptional quality of the IMISX diffraction data. The IMISX method is compatible with readily available, inexpensive materials and equipment, is simple to implement and is compatible with high-throughput in situ serial data collection at

  7. In-situ reactive of x-ray optics by glow discharge

    SciTech Connect

    Johnson, E.D.; Garrett, R.F.

    1987-01-01

    We have developed a method of in-situ reactive glow discharge cleaning of x-ray optical surfaces which is capable of complete removal of carbon contamination. Our work is the first to successfully clean an entire optical system in-situ and characterize its performance at short wavelengths (as low as 10 /angstrom/). The apparatus required is quite simple and can easily be fitted to most existing UHV (ultra high vacuum) mirror boxes of monochromators. The advantages of this technique over previously available methods include dramatic improvements in instrument performance and reductions in down time since the whole process typically takes a few days. This paper will briefly describe our results and detail the experimental considerations for application of the technique on different monochromator geometries. Possible improvements and extensions of the technique are also discussed.

  8. In situ azimuthal rotation device for linear dichroism measurements in scanning transmission x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Hernández-Cruz, D.; Hitchcock, A. P.; Tyliszczak, T.; Rousseau, M.-E.; Pézolet, M.

    2007-03-01

    A novel miniature rotation device used in conjunction with a scanning transmission x-ray microscope is described. It provides convenient in situ sample rotation to enable measurements of linear dichroism at high spatial resolution. The design, fabrication, and mechanical characterization are presented. This device has been used to generate quantitative maps of the spatial distribution of the orientation of proteins in several different spider and silkworm silks. Specifically, quantitative maps of the dichroic signal at the C 1s→π*amide transition in longitudinal sections of the silk fibers give information about the spatial orientation, degree of alignment, and spatial distribution of protein peptide bonds. A new approach for analyzing the dichroic signal to extract orientation distributions, in addition to magnitudes of aligned components, is presented and illustrated with results from Nephila clavipes dragline spider silk measured using the in situ rotation device.

  9. Mass Spectrometry Guided In Situ Proteolysis to Obtain Crystals for X-ray Structure Determination

    SciTech Connect

    Gheyi, Tarun; Rodgers, Logan; Romero, Richard; Sauder, J. Michael; Burley, Stephen K.

    2012-04-30

    A strategy for increasing the efficiency of protein crystallization/structure determination with mass spectrometry has been developed. This approach combines insights from limited proteolysis/mass spectrometry and crystallization via in situ proteolysis. The procedure seeks to identify protease-resistant polypeptide chain segments from purified proteins on the time-scale of crystal formation, and subsequently crystallizing the target protein in the presence of the optimal protease at the right relative concentration. We report our experience with 10 proteins of unknown structure, two of which yielded high-resolution X-ray structures. The advantage of this approach comes from its ability to select only those structure determination candidates that are likely to benefit from application of in situ proteolysis, using conditions most likely to result in formation of a stable proteolytic digestion product suitable for crystallization.

  10. In meso in situ serial X-ray crystallography of soluble and membrane proteins

    PubMed Central

    Huang, Chia-Ying; Olieric, Vincent; Ma, Pikyee; Panepucci, Ezequiel; Diederichs, Kay; Wang, Meitian; Caffrey, Martin

    2015-01-01

    The lipid cubic phase (LCP) continues to grow in popularity as a medium in which to generate crystals of membrane (and soluble) proteins for high-resolution X-ray crystallographic structure determination. To date, the PDB includes 227 records attributed to the LCP or in meso method. Among the listings are some of the highest profile membrane proteins, including the β2-adrenoreceptor–Gs protein complex that figured in the award of the 2012 Nobel Prize in Chemistry to Lefkowitz and Kobilka. The most successful in meso protocol to date uses glass sandwich crystallization plates. Despite their many advantages, glass plates are challenging to harvest crystals from. However, performing in situ X-ray diffraction measurements with these plates is not practical. Here, an alternative approach is described that provides many of the advantages of glass plates and is compatible with high-throughput in situ measurements. The novel in meso in situ serial crystallography (IMISX) method introduced here has been demonstrated with AlgE and PepT (alginate and peptide transporters, respectively) as model integral membrane proteins and with lysozyme as a test soluble protein. Structures were solved by molecular replacement and by experimental phasing using bromine SAD and native sulfur SAD methods to resolutions ranging from 1.8 to 2.8 Å using single-digit microgram quantities of protein. That sulfur SAD phasing worked is testament to the exceptional quality of the IMISX diffraction data. The IMISX method is compatible with readily available, inexpensive materials and equipment, is simple to implement and is compatible with high-throughput in situ serial data collection at macromolecular crystallography synchrotron beamlines worldwide. Because of its simplicity and effectiveness, the IMISX approach is likely to supplant existing in meso crystallization protocols. It should prove particularly attractive in the area of ligand screening for drug discovery and development. PMID

  11. In meso in situ serial X-ray crystallography of soluble and membrane proteins.

    PubMed

    Huang, Chia Ying; Olieric, Vincent; Ma, Pikyee; Panepucci, Ezequiel; Diederichs, Kay; Wang, Meitian; Caffrey, Martin

    2015-06-01

    The lipid cubic phase (LCP) continues to grow in popularity as a medium in which to generate crystals of membrane (and soluble) proteins for high-resolution X-ray crystallographic structure determination. To date, the PDB includes 227 records attributed to the LCP or in meso method. Among the listings are some of the highest profile membrane proteins, including the β2-adrenoreceptor-Gs protein complex that figured in the award of the 2012 Nobel Prize in Chemistry to Lefkowitz and Kobilka. The most successful in meso protocol to date uses glass sandwich crystallization plates. Despite their many advantages, glass plates are challenging to harvest crystals from. However, performing in situ X-ray diffraction measurements with these plates is not practical. Here, an alternative approach is described that provides many of the advantages of glass plates and is compatible with high-throughput in situ measurements. The novel in meso in situ serial crystallography (IMISX) method introduced here has been demonstrated with AlgE and PepT (alginate and peptide transporters, respectively) as model integral membrane proteins and with lysozyme as a test soluble protein. Structures were solved by molecular replacement and by experimental phasing using bromine SAD and native sulfur SAD methods to resolutions ranging from 1.8 to 2.8 Å using single-digit microgram quantities of protein. That sulfur SAD phasing worked is testament to the exceptional quality of the IMISX diffraction data. The IMISX method is compatible with readily available, inexpensive materials and equipment, is simple to implement and is compatible with high-throughput in situ serial data collection at macromolecular crystallography synchrotron beamlines worldwide. Because of its simplicity and effectiveness, the IMISX approach is likely to supplant existing in meso crystallization protocols. It should prove particularly attractive in the area of ligand screening for drug discovery and development. PMID:26057665

  12. Development of an in situ temperature stage for synchrotron X-ray spectromicroscopy

    NASA Astrophysics Data System (ADS)

    Chakraborty, R.; Serdy, J.; West, B.; Stuckelberger, M.; Lai, B.; Maser, J.; Bertoni, M. I.; Culpepper, M. L.; Buonassisi, T.

    2015-11-01

    In situ characterization of micro- and nanoscale defects in polycrystalline thin-film materials is required to elucidate the physics governing defect formation and evolution during photovoltaic device fabrication and operation. X-ray fluorescence spectromicroscopy is particularly well-suited to study defects in compound semiconductors, as it has a large information depth appropriate to study thick and complex materials, is sensitive to trace amounts of atomic species, and provides quantitative elemental information, non-destructively. Current in situ methods using this technique typically require extensive sample preparation. In this work, we design and build an in situ temperature stage to study defect kinetics in thin-film solar cells under actual processing conditions, requiring minimal sample preparation. Careful selection of construction materials also enables controlled non-oxidizing atmospheres inside the sample chamber such as H2Se and H2S. Temperature ramp rates of up to 300 °C/min are achieved, with a maximum sample temperature of 600 °C. As a case study, we use the stage for synchrotron X-ray fluorescence spectromicroscopy of CuInxGa1-xSe2 (CIGS) thin-films and demonstrate predictable sample thermal drift for temperatures 25-400 °C, allowing features on the order of the resolution of the measurement technique (125 nm) to be tracked while heating. The stage enables previously unattainable in situ studies of nanoscale defect kinetics under industrially relevant processing conditions, allowing a deeper understanding of the relationship between material processing parameters, materials properties, and device performance.

  13. Development of an in situ temperature stage for synchrotron X-ray spectromicroscopy

    SciTech Connect

    Chakraborty, R. E-mail: buonassisi@mit.edu; Serdy, J.; Culpepper, M. L.; Buonassisi, T. E-mail: buonassisi@mit.edu; West, B.; Stuckelberger, M.; Bertoni, M. I.; Lai, B.; Maser, J.

    2015-11-15

    In situ characterization of micro- and nanoscale defects in polycrystalline thin-film materials is required to elucidate the physics governing defect formation and evolution during photovoltaic device fabrication and operation. X-ray fluorescence spectromicroscopy is particularly well-suited to study defects in compound semiconductors, as it has a large information depth appropriate to study thick and complex materials, is sensitive to trace amounts of atomic species, and provides quantitative elemental information, non-destructively. Current in situ methods using this technique typically require extensive sample preparation. In this work, we design and build an in situ temperature stage to study defect kinetics in thin-film solar cells under actual processing conditions, requiring minimal sample preparation. Careful selection of construction materials also enables controlled non-oxidizing atmospheres inside the sample chamber such as H{sub 2}Se and H{sub 2}S. Temperature ramp rates of up to 300 °C/min are achieved, with a maximum sample temperature of 600 °C. As a case study, we use the stage for synchrotron X-ray fluorescence spectromicroscopy of CuIn{sub x}Ga{sub 1−x}Se{sub 2} (CIGS) thin-films and demonstrate predictable sample thermal drift for temperatures 25–400 °C, allowing features on the order of the resolution of the measurement technique (125 nm) to be tracked while heating. The stage enables previously unattainable in situ studies of nanoscale defect kinetics under industrially relevant processing conditions, allowing a deeper understanding of the relationship between material processing parameters, materials properties, and device performance.

  14. Non-destructive in situ study of "Mad Meg" by Pieter Bruegel the Elder using mobile X-ray fluorescence, X-ray diffraction and Raman spectrometers

    NASA Astrophysics Data System (ADS)

    Van de Voorde, Lien; Van Pevenage, Jolien; De Langhe, Kaat; De Wolf, Robin; Vekemans, Bart; Vincze, Laszlo; Vandenabeele, Peter; Martens, Maximiliaan P. J.

    2014-07-01

    "Mad Meg", a figure of Flemish folklore, is the subject of a famous oil-on-panel painting by the Flemish renaissance artist Pieter Bruegel the Elder, exhibited in the Museum Mayer van den Bergh (Antwerp, Belgium). This article reports on the in situ chemical characterization of this masterpiece by using currently available state-of-the-art portable analytical instruments. The applied non-destructive analytical approach involved the use of a) handheld X-ray fluorescence instrumentation for retrieving elemental information and b) portable X-ray fluorescence/X-ray diffraction instrumentation and laser-based Raman spectrometers for obtaining structural/molecular information. Next to material characterization of the used pigments and of the different preparation layers of the painting, also the verification of two important historical iconographic hypotheses is performed concerning the economic way of painting by Brueghel, and whether or not he used blue smalt pigment for painting the boat that appears towards the top of the painting. The pigments identified are smalt pigment (65% SiO2 + 15% K2O + 10% CoO + 5% Al2O3) for the blue color present in all blue areas of the painting, probably copper resinate for the green colors, vermillion (HgS) as red pigment and lead white is used to form different colors. The comparison of blue pigments used on different areas of the painting gives no differences in the elemental fingerprint which confirms the existing hypothesis concerning the economic painting method by Bruegel.

  15. In situ synchrotron x-ray studies of LiMn{sub 2}O{sub 4} cathodes

    SciTech Connect

    McBreen, J.; Mukerjee, S.; Yang, X.Q.

    1997-05-01

    LiCoO{sub 2} cathodes are now used in most commercial lithium ion batteries. LiMn{sub 2}O{sub 4} is an attractive low cost alternative. However, it is difficult to make reproducibly. At Brookhaven National Laboratory two in situ synchrotron x-ray techniques, that are available at the National Synchrotron Light Source (NSLS), have been used to investigate LiMn{sub 2}O{sub 4}. The techniques are x-ray absorption and high resolution x-ray diffraction. With x-ray absorption it is possible to follow the changes in the Mn oxidation state and the changes in the Mn-O and Mn-Mn bond lengths on cycling. Also it is possible to detect amorphous phases. The high energy x-rays at the diffraction Beam Lines at the NSLS (up to 24 KeV) permit in situ x-ray diffraction, in the transmission mode, in thin lithium and lithium ion cells. The evolution of the structural chances that occur on cycling can be followed. These in situ measurements were done on Li/LiMn{sub 2}O{sub 4} cells with a liquid electrolyte (1 M LiPF{sub 6} in a 1:1:3 PC:EC:DMC solvent).

  16. High-pressure and high-temperature mineral-fluid interface cell for high-resolution x-ray reflectivity measurement

    NASA Astrophysics Data System (ADS)

    Park, Changyong; Kenney-Benson, Curtis

    2013-06-01

    Ordering of water at the mineral-fluid interface is a fundamental process governing mineral hydration, ion-adsorption, dissolution, growth, and charge transfers across the mineral surface. However, the influence of pressure and temperature on this fundamental process is still largely unknown. The experimental determination is limited due to the lack of a sample cell which can properly handle the pressure and temperature of the fluidic component and simultaneously allow measurement of the interfacial structure, e.g., by high-resolution x-ray reflectivity. We recently developed a new high-pressure and high-temperature mineral-fluid interface cell to achieve the high-resolution x-ray reflectivity measurement from single crystalline mineral surfaces under the PT conditions of fluid up to ~750 K and ~40 MPa. The interfacial structures at single crystal mineral surfaces interacting with various hydrothermal fluids will promote our understanding of the molecular aspects of hydrous alteration processes of rocks in deep Earth environments. The application can be extended to mineral surface sciences, geological carbon sequestration, and nuclear engineering. Instrumental development under auspices of Deep Carbon Observatory Deep Energy Directorate and HPCAT (CDAC, GL, LLNL, UNLV).

  17. Development of in-line furnace for in-situ nanoscale resolution x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Eng, Christopher; Chen-Wiegart, Yu-Chen K.; Wang, Jun

    2013-09-01

    Full field transmission x-ray microscopy (TXM) is a newly developed x-ray imaging technique to provide quantitative and non-destructive 3D characterization of the complex microstructure of materials at nanometer resolution. A key missing component is an in situ apparatus enabling the imaging of the complex structural evolution of the materials and to correlate the structural change with a material's functionality under real operating conditions. This work describes the design of an environmental cell which satisfies the requirements for in situ TXM studies. The limited space within the TXM presents a spatial constraint which prohibits the use of conventional heaters, as well as requiring consideration in designing for safe and controlled operation of the system and alignment of the cell with the beam. A gravity drip-fed water cooling jacket was installed in place around the heating module to maintain critical components of the microscope at safe operating temperatures. A motion control system consisting of pulse width modulated DC motor driven XYZ translation stages was developed to facilitate fine alignment of the cell. Temperature of the sample can be controlled remotely and accurately through a controller to temperatures as high as 1200 K. Heating zone measurement was carried out and shows a 500 x 500 x 500 μm3 homogeneous zone volume for sample area, which is a critical parameter to ensure accurate observation of structural evolution at nanometer scale with a sample in size of tens of microns. Application on Ni particles for in situ oxidation experiment and dehydrogenation of aluminum hydride is also discussed.

  18. Quadrupole lamp furnace for high temperature (up to 2050 K) synchrotron powder x-ray diffraction studies in air in reflection geometry

    SciTech Connect

    Sarin, P.; Yoon, W.; Jurkschat, K.; Zschack, P.; Kriven, W. M.

    2006-09-15

    A four-lamp thermal image furnace has been developed to conduct high temperature x-ray diffraction in reflection geometry on oxide ceramic powder samples in air at temperatures {<=}2050 K using synchrotron radiation. A refractory crucible made of Pt20%Rh alloy was used as a specimen holder. A material with well characterized lattice expansion properties was used as an internal crystallographic thermometer to determine the specimen temperature and displacement. The performance of the apparatus was verified by measurement of the thermal expansion properties of CeO{sub 2}, MgO, and Pt which were found to be within {+-}3% of the acceptable values. The advantages, limitations, and important considerations of the instrument developed are discussed.

  19. Quadrupole lamp furnace for high temperature (up to 2050 K) synchrotron powder x-ray diffraction studies in air in reflection geometry.

    SciTech Connect

    Sarin, P.; Yoon, W.; Jurkschat, K.; Zschack, P.; Kriven, W. M.; Univ. of Illinois; Frederick-Seitz Materials Research Lab.

    2006-09-01

    A four-lamp thermal image furnace has been developed to conduct high temperature x-ray diffraction in reflection geometry on oxide ceramic powder samples in air at temperatures {le} 2050 K using synchrotron radiation. A refractory crucible made of Pt20%Rh alloy was used as a specimen holder. A material with well characterized lattice expansion properties was used as an internal crystallographic thermometer to determine the specimen temperature and displacement. The performance of the apparatus was verified by measurement of the thermal expansion properties of CeO{sub 2}, MgO, and Pt which were found to be within {+-} 3% of the acceptable values. The advantages, limitations, and important considerations of the instrument developed are discussed.

  20. Barium silicates as high thermal expansion seals for solid oxide fuel cells studied by high-temperature X-ray diffraction (HT-XRD)

    NASA Astrophysics Data System (ADS)

    Kerstan, Marita; Rüssel, Christian

    Gas-tight seals between metals and ceramics in solid-oxide fuel cells can be fabricated from glasses which enable the crystallization of phases with high thermal expansion coefficients (mostly barium silicates). This article mainly reports on high-temperature X-ray diffraction studies on these silicates. It is shown that all barium silicates exhibit thermal expansion coefficients in the range from 10.5 to 15.4 × 10 -6 K -1 (100-800 °C). The expansions are strongly dependent on the respective crystallographic axis. The ortho- and metasilicates exhibit the largest thermal expansion coefficients. The coefficient of thermal expansion of a sealing glass is attributed to the thermal expansion of the crystalline phases and the residual glassy phase. The phase formation should carefully be controlled also with respect to aging. Crystalline phases with high coefficients of thermal expansion, such as the barium silicates, are advantageous as components in such sealing glasses.

  1. High-Temperature Phase Transitions in CsH2PO4 Under Ambient and High-Pressure Conditions: A Synchrotron X-ray Diffraction Study

    SciTech Connect

    Botez,C.; Hermosillo, J.; Zhang, J.; Qian, J.; Zhao, Y.; Majzlan, J.; Chianelli, R.; Pantea, C.

    2007-01-01

    To clarify the microscopic origin of the temperature-induced three-order-of-magnitude jump in the proton conductivity of CsH2PO4 (superprotonic behavior), we have investigated its crystal structure modifications within the 25-300 C temperature range under both ambient- and high-pressure conditions using synchrotron x-ray diffraction. Our high-pressure data show no indication of the thermal decomposition/polymerization at the crystal surface recently proposed as the origin of the enhanced proton conductivity. Instead, we found direct evidence that the superprotonic behavior of the title material is associated with a polymorphic structural transition to a high-temperature cubic phase. Our results are in excellent agreement with previous high-pressure ac impedance measurements.

  2. Near-isothermal furnace for in situ and real time X-ray radiography solidification experiments.

    PubMed

    Becker, M; Dreißigacker, C; Klein, S; Kargl, F

    2015-06-01

    In this paper, we present a newly developed near-isothermal X-ray transparent furnace for in situ imaging of solidification processes in thin metallic samples. We show that the furnace is ideally suited to study equiaxed microstructure evolution and grain interaction. To observe the growth dynamics of equiaxed dendritic structures, a minimal temperature gradient across the sample is required. A uniform thermal profile inside a circular sample is achieved by positioning the sample in the center of a cylindrical furnace body surrounded by a circular heater arrangement. Performance tests with the hypo-eutectic Al-15wt.%Cu and the near-eutectic Al-33wt.%Cu alloys validate the near-isothermal character of the sample environment. Controlled cooling rates of less than 0.5 K min(-1) up to 10 K min(-1) can be achieved in a temperature range of 720 K-1220 K. Integrated in our rotatable laboratory X-ray facility, X-RISE, the furnace provides a large field of view of 10.5 mm in diameter and a high spatial resolution of ∼4 μm. With the here presented furnace, equiaxed dendrite growth models can be rigorously tested against experiments on metal alloys by, e.g., enabling dendrite growth velocities to be determined as a function of undercooling or solutal fields in front of the growing dendrite to be measured. PMID:26133847

  3. Near-isothermal furnace for in situ and real time X-ray radiography solidification experiments

    NASA Astrophysics Data System (ADS)

    Becker, M.; Dreißigacker, C.; Klein, S.; Kargl, F.

    2015-06-01

    In this paper, we present a newly developed near-isothermal X-ray transparent furnace for in situ imaging of solidification processes in thin metallic samples. We show that the furnace is ideally suited to study equiaxed microstructure evolution and grain interaction. To observe the growth dynamics of equiaxed dendritic structures, a minimal temperature gradient across the sample is required. A uniform thermal profile inside a circular sample is achieved by positioning the sample in the center of a cylindrical furnace body surrounded by a circular heater arrangement. Performance tests with the hypo-eutectic Al-15wt.%Cu and the near-eutectic Al-33wt.%Cu alloys validate the near-isothermal character of the sample environment. Controlled cooling rates of less than 0.5 K min-1 up to 10 K min-1 can be achieved in a temperature range of 720 K-1220 K. Integrated in our rotatable laboratory X-ray facility, X-RISE, the furnace provides a large field of view of 10.5 mm in diameter and a high spatial resolution of ˜4 μm. With the here presented furnace, equiaxed dendrite growth models can be rigorously tested against experiments on metal alloys by, e.g., enabling dendrite growth velocities to be determined as a function of undercooling or solutal fields in front of the growing dendrite to be measured.

  4. Near-isothermal furnace for in situ and real time X-ray radiography solidification experiments

    SciTech Connect

    Becker, M. Dreißigacker, C.; Klein, S.; Kargl, F.

    2015-06-15

    In this paper, we present a newly developed near-isothermal X-ray transparent furnace for in situ imaging of solidification processes in thin metallic samples. We show that the furnace is ideally suited to study equiaxed microstructure evolution and grain interaction. To observe the growth dynamics of equiaxed dendritic structures, a minimal temperature gradient across the sample is required. A uniform thermal profile inside a circular sample is achieved by positioning the sample in the center of a cylindrical furnace body surrounded by a circular heater arrangement. Performance tests with the hypo-eutectic Al-15wt.%Cu and the near-eutectic Al-33wt.%Cu alloys validate the near-isothermal character of the sample environment. Controlled cooling rates of less than 0.5 K min{sup −1} up to 10 K min{sup −1} can be achieved in a temperature range of 720 K–1220 K. Integrated in our rotatable laboratory X-ray facility, X-RISE, the furnace provides a large field of view of 10.5 mm in diameter and a high spatial resolution of ∼4 μm. With the here presented furnace, equiaxed dendrite growth models can be rigorously tested against experiments on metal alloys by, e.g., enabling dendrite growth velocities to be determined as a function of undercooling or solutal fields in front of the growing dendrite to be measured.

  5. An apparatus for in situ x-ray scattering measurements during polymer injection molding

    NASA Astrophysics Data System (ADS)

    Rendon, Stanley; Fang, Jun; Burghardt, Wesley R.; Bubeck, Robert A.

    2009-04-01

    We report a novel instrument for synchrotron-based in situ x-ray scattering measurements during injection molding processing. It allows direct, real-time monitoring of molecular-scale structural evolution in polymer materials undergoing a complex processing operation. The instrument is based on a laboratory-scale injection molding machine, and employs customized mold tools designed to allow x-ray access during mold filling and subsequent solidification, while providing sufficient robustness to withstand high injection pressures. The use of high energy, high flux synchrotron radiation, and a fast detector allows sufficiently rapid data acquisition to resolve time-dependent orientation dynamics in this transient process. Simultaneous monitoring of temperature and pressure signals allows transient scattering data to be referenced to various stages of the injection molding cycle. Representative data on a commercial liquid crystalline polymer, Vectra® B950, are presented to demonstrate the features of this apparatus; however, it may find application in a wide range of polymeric materials such as nanocomposites, semicrystalline polymers and fiber-reinforced thermoplastics.

  6. Use of x-ray fluorescence for in-situ detection of metals

    NASA Astrophysics Data System (ADS)

    Elam, W. T. E.; Whitlock, Robert R.; Gilfrich, John V.

    1995-01-01

    X-ray fluorescence (XRF) is a well-established, non-destructive method of determining elemental concentrations at ppm levels in complex samples. It can operate in atmosphere with no sample preparation, and provides accuracies of 1% or better under optimum conditions. This report addresses two sets of issues concerning the use of x-ray fluorescence as a sensor technology for the cone penetrometer, for shipboard waste disposal, or for other in-situ, real- time environmental applications. The first issue concerns the applicability of XRF to these applications, and includes investigation of detection limits and matrix effects. We have evaluated the detection limits and quantitative accuracy of a sensor mock-up for metals in soils under conditions expected in the field. In addition, several novel ways of improving the lower limits of detection to reach the drinking water regulatory limits have been explored. The second issue is the engineering involved with constructing a spectrometer within the 1.75 inch diameter of the penetrometer pipe, which is the most rigorous physical constraint. Only small improvements over current state-of-the-art are required. Additional advantages of XRF are that no radioactive sources or hazardous materials are used in the sensor design, and no reagents or any possible sources of ignition are involved.

  7. Atomic Structure of Pt3Ni Nanoframe Electrocatalysts by in Situ X-ray Absorption Spectroscopy.

    PubMed

    Becknell, Nigel; Kang, Yijin; Chen, Chen; Resasco, Joaquin; Kornienko, Nikolay; Guo, Jinghua; Markovic, Nenad M; Somorjai, Gabor A; Stamenkovic, Vojislav R; Yang, Peidong

    2015-12-23

    Understanding the atomic structure of a catalyst is crucial to exposing the source of its performance characteristics. It is highly unlikely that a catalyst remains the same under reaction conditions when compared to as-synthesized. Hence, the ideal experiment to study the catalyst structure should be performed in situ. Here, we use X-ray absorption spectroscopy (XAS) as an in situ technique to study Pt3Ni nanoframe particles which have been proven to be an excellent electrocatalyst for the oxygen reduction reaction (ORR). The surface characteristics of the nanoframes were probed through electrochemical hydrogen underpotential deposition and carbon monoxide electrooxidation, which showed that nanoframe surfaces with different structure exhibit varying levels of binding strength to adsorbate molecules. It is well-known that Pt-skin formation on Pt-Ni catalysts will enhance ORR activity by weakening the binding energy between the surface and adsorbates. Ex situ and in situ XAS results reveal that nanoframes which bind adsorbates more strongly have a rougher Pt surface caused by insufficient segregation of Pt to the surface and consequent Ni dissolution. In contrast, nanoframes which exhibit extremely high ORR activity simultaneously demonstrate more significant segregation of Pt over Ni-rich subsurface layers, allowing better formation of the critical Pt-skin. This work demonstrates that the high ORR activity of the Pt3Ni hollow nanoframes depends on successful formation of the Pt-skin surface structure. PMID:26652294

  8. In situ characterization of catalysts and membranes in a microchannel under high-temperature water gas shift reaction conditions

    NASA Astrophysics Data System (ADS)

    Cavusoglu, G.; Dallmann, F.; Lichtenberg, H.; Goldbach, A.; Dittmeyer, R.; Grunwaldt, J.-D.

    2016-05-01

    Microreactor technology with high heat transfer in combination with stable catalysts is a very attractive approach for reactions involving major heat effects such as methane steam reforming and to some extent, also the high temperature water gas shift (WGS) reaction. For this study Rh/ceria catalysts and an ultrathin hydrogen selective membrane were characterized in situ in a microreactor specially designed for x-ray absorption spectroscopic measurements under WGS conditions. The results of these experiments can serve as a basis for further development of the catalysts and membranes.

  9. Kinetics of Methane Hydrate Decomposition Studied via in Situ Low Temperature X-ray Powder Diffraction

    SciTech Connect

    Everett, Susan M; Rawn, Claudia J; Keffer, David J.; Mull, Derek L; Payzant, E Andrew; Phelps, Tommy Joe

    2013-01-01

    Gas hydrates are known to have a slowed decomposition rate at ambient pressure and temperatures below the melting point of ice termed self-preservation or anomalous preservation. As hydrate exothermically decomposes, gas is released and water of the clathrate cages transforms into ice. Two regions of slowed decomposition for methane hydrate, 180 200 K and 230 260 K, were observed, and the kinetics were studied by in situ low temperature x-ray powder diffraction. The kinetic constants for ice formation from methane hydrate were determined by the Avrami model within each region and activation energies, Ea, were determined by the Arrhenius plot. Ea determined from the data for 180 200 K was 42 kJ/mol and for 230 260 K was 22 kJ/mol. The higher Ea in the colder temperature range was attributed to a difference in the microstructure of ice between the two regions.

  10. In-situ x-ray characterization of wurtzite formation in GaAs nanowires

    SciTech Connect

    Krogstrup, Peter; Hannibal Madsen, Morten; Nygaard, Jesper; Feidenhans'l, Robert; Hu Wen; Kozu, Miwa; Nakata, Yuka; Takahasi, Masamitu

    2012-02-27

    In-situ monitoring of the crystal structure formation during Ga-assisted GaAs nanowire growth on Si(111) substrates has been performed in a combined molecular beam epitaxy growth and x-ray characterization experiment. Under Ga rich conditions, we show that an increase in the V/III ratio increases the formation rate of the wurtzite structure. Moreover, the response time for changes in the structural phase formation to changes in the beam fluxes is observed to be much longer than predicted time scales of adatom kinetics and liquid diffusion. This suggests that the morphology of the growth interface plays the key role for the relative growth structure formation rates.

  11. In situ energy dispersive x-ray reflectometry measurements on organic solar cells upon working

    NASA Astrophysics Data System (ADS)

    Paci, B.; Generosi, A.; Albertini, V. Rossi; Perfetti, P.; de Bettignies, R.; Firon, M.; Leroy, J.; Sentein, C.

    2005-11-01

    The change in the morphology of plastic solar cells was studied by means of time-resolved energy dispersive x-ray reflectivity (XRR). This unconventional application of the XRR technique allowed the follow up of in situ morphological evolution of an organic photovoltaic device upon working. The study consisted of three steps: A preliminary set of XRR measurements on various samples representing the intermediate stages of cell construction, which provided accurate data regarding the electronic densities of the different layers; the verification of the morphological stability of the device under ambient condition; a real-time collection of XRR patterns, both in the dark and during 15h in artificial light conditions which allowed the changes in the system morphology at the electrode-active layer interface to be monitored. In this way, a progressive thickening of this interface, responsible for a reduction in the performances of the device, was observed directly.

  12. Hydride reorientation in Zircaloy-4 examined by in situ synchrotron X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Weekes, H. E.; Jones, N. G.; Lindley, T. C.; Dye, D.

    2016-09-01

    The phenomenon of stress-reorientation has been investigated using in situ X-ray diffraction during the thermomechanical cycling of hydrided Zircaloy-4 tensile specimens. Results have shown that loading along a sample's transverse direction (TD) leads to a greater degree of hydride reorientation when compared to rolling direction (RD)-aligned samples. The elastic lattice micro-strains associated with radially oriented hydrides have been revealed to be greater than those oriented circumferentially, a consequence of strain accommodation. Evidence of hydride redistribution after cycling, to α-Zr grains oriented in a more favourable orientation when under an applied stress, has also been observed and its behaviour has been found to be highly dependent on the loading axis. Finally, thermomechanical loading across multiple cycles has been shown to reduce the difference in terminal solid solubility of hydrogen during dissolution (TSSD,H) and precipitation (TSSP,H).

  13. In situ surface X-ray scattering of stepped surface of platinum: Pt(311).

    PubMed

    Nakahara, Akira; Nakamura, Masashi; Sumitani, Kazushi; Sakata, Osami; Hoshi, Nagahiro

    2007-10-23

    Surface structure of a stepped surface of Pt, Pt(311) (=2(100)-(111)), has been determined under potential control in 0.1 M HClO4 with the use of in situ surface X-ray scattering (SXS). The crystal truncation rods (CTRs) are reproduced well with the (1x2) missing-row model. Relaxation of surface layers, which is observed on the low-index planes of Pt, is not found on Pt(311) in the "adsorbed hydrogen region". CTRs at 0.10 (RHE) have the same feature as those at 0.50 V, showing that the surface layers of Pt(311) have no potential dependence. Scanning tunneling microscopy (STM) also supports the (1x2) structure of Pt(311) in 0.1 M HClO4. PMID:17902717

  14. Tracking the catalyzed growth process of nanowires by in situ x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Kirkham, Melanie; Wang, Zhong Lin; Snyder, Robert L.

    2010-07-01

    Quasi-one-dimensional nanostructures of silicon, oxides, and other materials show great promise for a variety of applications. These nanostructures are commonly grown using metal catalyst nanoparticles. This paper investigates the growth mechanism of Au-catalyzed Si nanowires through in situ x-ray diffraction, and the results are compared to previously studied Au-catalyzed ZnO nanorods. The Si nanowires were found to grow from molten catalyst particles, however, the ZnO nanorods were found to grow from solid catalyst particles through a surface diffusion process. From this comparison, the relative bonding types of the catalyst and source material are determined to have a significant effect on the growth mechanism.

  15. In situ X-ray polymerization: from swollen lamellae to polymer-surfactant complexes.

    PubMed

    Agzenai, Yahya; Lindman, Björn; Alfredsson, Viveka; Topgaard, Daniel; Renamayor, Carmen S; Pacios, Isabel E

    2014-01-30

    The influence of the monomer diallyldimethylammonium chloride (D) on the lamellar liquid crystal formed by the anionic surfactant aerosol OT (AOT) and water is investigated, determining the lamellar spacings by SAXS and the quadrupolar splittings by deuterium NMR, as a function of the D or AOT concentrations. The cationic monomer D induces a destabilization of the AOT lamellar structure such that, at a critical concentration higher than 5 wt %, macroscopic phase separation takes place. When the monomer, which is dissolved in the AOT lamellae, is polymerized in situ by X-ray initiation, a new collapsed lamellar phase appears, corresponding to the complexation of the surfactant with the resulting polymer. A theoretical model is employed to analyze the variation of the interactions between the AOT bilayers and the stability of the lamellar structure. PMID:24410395

  16. Time-resolved and in-situ X-ray scattering methods beyond photoactivation: Utilizing high-flux X-ray sources for the study of ubiquitous non-photoactive proteins.

    PubMed

    Jain, Rohit; Techert, Simone

    2016-01-01

    X-ray scattering technique, comprising of small-angle/wide-angle X-ray scattering (SAXS/WAXS) techniques is increasingly used to characterize the structure and interactions of biological macromolecules and their complexes in solution. It is a method of choice to characterize the flexible, partially folded and unfolded protein systems. X-ray scattering is the last resort for proteins that cannot be investigated by crystallography or NMR and acts as a complementary technique with different biophysical techniques to answer challenging scientific questions. The marriage of the X-ray scattering technique with the fourth dimension "time" yields structural dynamics and kinetics information for protein motions in hierarchical timescales from picoseconds to days. The arrival of the high-flux X-ray beam at third generation synchrotron sources, exceptional X-ray optics, state-of-the-art detectors, upgradation of X-ray scattering beamlines with microfluidics devices and advanced X-ray scattering data analysis procedures are the important reasons behind the shining years of X-ray scattering technique. The best days of the X-ray scattering technique are on the horizon with the advent of the nanofocus X-ray scattering beamlines and fourth generation X-ray lightsources, i.e., free electron lasers (XFELs). Complementary to the photon-triggered time-resolved X-ray scattering techniques, we will present an overview of the time-resolved and in-situ X-ray scattering techniques for structural dynamics of ubiquitous non-photoactive proteins. PMID:26732244

  17. Additive Manufacturing of Reactive In Situ Zr Based Ultra-High Temperature Ceramic Composites

    NASA Astrophysics Data System (ADS)

    Sahasrabudhe, Himanshu; Bandyopadhyay, Amit

    2016-03-01

    Reactive in situ multi-material additive manufacturing of ZrB2-based ultra-high-temperature ceramics in a Zr metal matrix was demonstrated using LENS™. Sound metallurgical bonding was achieved between the Zr metal and Zr-BN composites with Ti6Al4V substrate. Though the feedstock Zr power had α phase, LENS™ processing of the Zr powder and Zr-BN premix powder mixture led to the formation of some β phase of Zr. Microstructure of the Zr-BN composite showed primary grains of zirconium diboride phase in zirconium metal matrix. The presence of ZrB2 ceramic phase was confirmed by X-ray diffraction (XRD) analysis. Hardness of pure Zr was measured as 280 ± 12 HV and, by increasing the BN content in the feedstock, the hardness was found to increase. In Zr-5%BN composite, the hardness was 421 ± 10 HV and the same for Zr-10%BN composite was 562 ± 10 HV. It is envisioned that such multi-materials additive manufacturing will enable products in the future that cannot be manufactured using traditional approaches particularly in the areas of high-temperature metal-ceramic composites with compositional and functional gradation.

  18. In situ spectroscopic investigation of hyperthermophilic metal-respiring archaea at high-temperature

    NASA Astrophysics Data System (ADS)

    Ménez, B.; Bureau, H.; Gouget, B.; Avoscan, L.; Simionovici, A.; Somogyi, A.

    2003-04-01

    The main issue of this study is developing methodologies that can improve abilities to characterize life in extreme habitats. In particular, it aims at evaluating the possibility of monitoring microorganisms mediated reactions involving metals by using non destructive X-ray microprobe combined with high pressure and temperature micro-reactors. The first step was dedicated to the study of metal-respiring organisms that achieve growth with oxyanions of arsenate and selenate as their electron acceptors for the oxidation of organic substrates or H2, forming elemental selenium or arsenite, respectively, as the reduction products. We focused on a strictly anaerobic hyperthermophilic archaea, Pyrobaculum arsenaticum, recently isolated and well adapted to high levels of arsenate and selenate (Huber et al., 2000, System. Appl. Microbiol., 23, 305). We report here the first in situ X-ray Absorption Near Edge Structure (XANES) spectroscopic characterization of the oxidation state of selenium following microbial respiration at high temperature. A Basset-modified Hydrothermal Diamond Anvil Cell (HDAC) acts as anaerobic micro-reactor to reproduce extreme temperature and pressure conditions for life and allows, together with the direct visual observation of the organisms, the microbeam characterization of the changes of metal concentration and speciation induced by microbial activity. The measurements were performed at the ESRF on undulator beamline ID22. P. arsenaticum together with its culture medium, doped with selenate (50 μM), were loaded under N_2 atmosphere in the HDAC. High-resolution X-ray fluorescence and selenium K-edge XANES spectra were collected alternatively and continuously at high temperature (up to 95^oC), allowing for the time-resolved monitoring of the chemical evolution of the culture medium. Data processing is still in progress. In the long-term, our aim is, on one hand, to shed light on the tolerance in terms of temperature, pressure and metal

  19. A study of the behavior of bromide in artificial pits using in situ X-ray microprobe analysis

    SciTech Connect

    Isaacs, H.S.; Kaneko, M.

    1997-12-31

    An in situ X-ray microprobe analysis of Type 316 stainless steel artificial pits has been carried out with a bromide/chloride solution. A high intensity 8 micron diameter polychromatic X-ray beam was scanned across the steel solution interface within the artificial pit. The resulting X-ray fluorescence was analyzed using an energy dispersive X-ray detector. In contrast to the light Cl atom, Br could be detected, making it possible to monitor the behavior of halides in the artificial pits and in the salt layer at the interface. It was found that Br was more active than Cl. At high potentials, elemental Br was produced as an oxidation product, whereas without added bromide, chloride only formed a salt layer. Br also concentrated at the salt steel interface at potentials below where it was oxidized.

  20. An in situ XAFS study--the formation mechanism of gold nanoparticles from X-ray-irradiated ionic liquid.

    PubMed

    Ma, Jingyuan; Zou, Yang; Jiang, Zheng; Huang, Wei; Li, Jiong; Wu, Guozhong; Huang, Yuying; Xu, Hongjie

    2013-07-28

    An in situ X-ray absorption fine structure (XAFS) experiment has been performed to observe the evolution of gold nanoparticles in the ionic liquid [BMIM][AuCl4], by hard X-ray irradiation. The ionic liquid acts as both a reducing agent and a protective ligand. A synchrotron-based X-ray plays the role of the irradiation source, which induces the reduction of the gold species, as well as being a real time probe for XAFS measurements. From the extended X-ray absorption fine structure (EXAFS) fitting results for a series of spectra of gold L3-edge, it can be seen clearly that there is a single Au-Cl bond breaking process before the formation of Au-Au bonds, which is different from previous reports on the formation of Au nanoparticles by several chemical methods. PMID:23765109

  1. Neighborite Under High Pressure: In Situ Angle Dispersive X-ray Diffraction Study Using Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Liu, H.; Chen, J.; Weidner, D.; Hu, J.; Meng, Y.; Mao, H.

    2003-12-01

    The neighborite (NaMgF3) is an ideal analogue model for silicate perovskite (MgSiO3) due to the similarities between their crystal and electronic structures. The advantage of the analogue study is that the weaker bonding feature of neighborite grants us the opportunity to simulate behavior of silicate perovskite at lower mantlei. e.high pressure and high temperature condition, at relatively lower P-T conditions. The previous high pressure studies for neighborite were reported by Zhao et al [1, 2]. Energy dispersive x-ray diffraction data were achieved within 10GPa and 1000oC, while angle dispersive x-ray diffraction data were obtained only at 4.9GPa and room temperature.More information of atomic position change is required to reveal the role of MgF6 octahedral framework tilting during its phase transition process responding to heating andcompressing. Thus the high-resolution monochromatic x-ray powder diffraction studies on NaMgF3 perovskite at high pressure were carried out using diamond anvil cell at X17C of National Synchrotron Light Source (Brookhaven) and HPCAT of Advance Photon Source (Argonne). The orthorhombic structure keeps stable under pressure up to 30 GPa, and the crystal structure is refined using Rietveld method. The result indicates that tilting angle of the MgF6 octahedral framework increases continually while the octahedral Mg-F bond length decreases slightly with increasing pressure.Difference between the tilting angles derived from macro-structure (lattice parameters) and from micro-structure (atomic positions), as well as the trend of change in the tilting angle with temperature and pressureare discussed. [1]. Zhao YS, Weidner DJ, Ko JD, Leinenweber K, Liu X, Li BS, Meng Y,Pacalo REG, Vaughan MT, Wang YB, Yeganehhaeri A,J.Geophys. Res. Solid Earth, 99 (1994) 2871. [2]. Zhao YS, Parise JB, Wang YB, Kusaba K, Vaughan MT, Weidner DJ, Kikegawa T, Chen J, Shimomura O,Am.Miner., 79 (1994) 615.

  2. Physical mechanisms of planetary core formation: Constraints from in-situ X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Watson, H. C.; Van Deusen, J.; Shi, K.; Yu, T.; Wang, Y.

    2014-12-01

    Segregation of the metallic core from a silicate mantle is a crucial aspect of early planetary evolution. Although a magma ocean scenario is often used to explain differentiation of large planets such as Earth, smaller planets and planetesimals likely never achieved the high temperatures necessary for wide scale melting. In these smaller bodies, silicates may have only partially melted, or not melted at all. Furthermore, isotopic signatures in meteorites suggest that some planetesimals differentiated within just a few million years. Achieving core segregation on this time scale whereby core material drains through a solid silicate mantle via an interconnected network of melt faces two major problems: (1) in a hydrostatic situation, the percolation threshold is above 5 vol% melt, so the process would lead to inefficient core formation, and (2) the permeability of fully connected melts at microstructural equilibrium is low enough that some planetesimals may still not be able to differentiate on this short time scale. It has been suggested that shear deformation can cause isolated melt pockets to become connected even at low melt fractions. Here, we have measured the change in permeability of core forming melts in solid silicate and partially molten silicate matrix due to deformation. Mixtures of olivine or KLB-1 peridotite and FeS close to the equilibrium percolation threshold (~5 vol% FeS) were pre-synthesized to achieve an equilibrium microstructure, and then loaded into the high pressure X-ray tomography apparatus at GSECARS, sector 13-BMD, at the Advanced Photon Source (Argonne National Laboratory). The samples were then pressed to ~2GPa, and heated to ~1100°C. Alternating cycles of rotation to collect X-ray tomography images, and twisting to deform the sample were conducted. Starting materials and run products have also been analysed at high resolution in three dimensions using FIB/SEM cross-beam tools. Quantitative analyses have been performed on the resulting

  3. Structure of jadeite-diopside melts at high pressure by in situ x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Sakamaki, T.; Wang, Y.; Yu, T.; Park, C.; Shen, G.

    2010-12-01

    O and boron-epoxy. The center of the pressure medium was boron-epoxy and MgO, because of their low absorption to X-rays. The incident X-ray was collimated by a vertical slit (0.5 mm) and a horizontal slit (0.1 mm) to irradiate the sample. The diffracted X-ray was detected by a Ge solid state detector with a 4000 multi-channel analyzer, through vertical (0.5 mm) and horizontal (0.1 mm) receiving slits as well as a collimator. The diffraction patterns were collected for 12 fixed diffraction angles (2theta=3, 4, 5, 7, 9, 11, 15, 20, 25, 30, 35, 39.5 degrees). The structure measurements of jadeite-diopside melt were carried out in the pressure range from 1 to 5 GPa and at 1600 to 2000 K. Results on structure factors S(Q) and radial distribution functions G(r) of these melts at high pressures and high temperatures will be discussed.

  4. High-temperature single-crystal X-ray diffraction study of tetragonal and cubic perovskite-type PbTiO3 phases.

    PubMed

    Yoshiasa, Akira; Nakatani, Tomotaka; Nakatsuka, Akihiko; Okube, Maki; Sugiyama, Kazumasa; Mashimo, Tsutomu

    2016-06-01

    A high-temperature single-crystal X-ray diffraction study of a synthetic PbTiO3 perovskite was carried out over the wide temperature range 298-928 K. A transition from a tetragonal (P4mm) to a cubic (Pm \\bar 3 m) phase has been revealed near 753 K. In the non-centrosymmetric P4mm symmetry group, the difference in relative displacement between Pb and O along the c-axis is much larger than that between Ti and O. The Pb and Ti cations contribute sufficiently to polarization being shifted in the opposite direction compared with the shift of O atoms. Deviation from the linear changes in Debye-Waller factors and bonding distances in the tetragonal phases can be interpreted as a precursor phenomenon before the phase transition. Disturbance of the temperature factor Ueq for O is observed in the vicinity of the transition point, while Ueq values for Pb and Ti are continuously changing with increasing temperature. The O site includes the clear configurational disorder in the cubic phase. The polar local positional distortions remain in the cubic phase and are regarded as the cause of the paraelectricity. Estimated values of the Debye temperature ΘD for Pb and Ti are 154 and 467 K in the tetragonal phase and decrease 22% in the high-temperature phase. Effective potentials for Pb and Ti change significantly and become soft after the phase transition. PMID:27240769

  5. In-situ X-ray diffraction study of phase transformations in the Am-O system

    SciTech Connect

    Lebreton, Florent; Belin, Renaud C.

    2012-12-15

    In the frame of minor actinides recycling, americium can be transmuted by adding it in UO{sub 2} or (U, Pu)O{sub 2} fuels. Americium oxides exhibiting a higher oxygen potential than U or Pu oxides, its addition alters the fuel properties. To comprehend its influence, a thorough knowledge of the Am-O phase equilibria diagram and of thermal expansion behavior is of main interest. Due to americium scarcity and high radiotoxicity, few experimental reports on this topic are available. Here we present in-situ high-temperature XRD results on the reduction from AmO{sub 2} to Am{sub 2}O{sub 3}. We show that fluorite (Fm-3m) AmO{sub 2} is reduced to cubic (Ia-3) C Prime -type Am{sub 2}O{sub 3+{delta}}, and then into hexagonal (P6{sub 3}/mmc) A-type Am{sub 2}O{sub 3}, which remains stable up to 1840 K. We also demonstrate the transitional existence of the monoclinic (C2/m) B-type Am{sub 2}O{sub 3}. At last, we describe, for the first time, the thermal expansion behavior of the hexagonal Am{sub 2}O{sub 3} between room temperature and 1840 K. - Graphical abstract: Americium dioxide was in situ studied by high-temperature X-ray diffraction. First, fluorite AmO{sub 2} is reduced to cubic C Prime -type Am{sub 2}O{sub 3+{delta}} and then transforms into hexagonal A-type Am{sub 2}O{sub 3}, which remains stable up to 1840 K. Then, we demonstrate the transitional existence of monoclinic B-type Am{sub 2}O{sub 3}. At last, we describe, for the first time, the thermal expansion of A-type Am{sub 2}O{sub 3} between room temperature and 1840 K. This work may contribute to a better understanding of Am oxide behavior. Highlights: Black-Right-Pointing-Pointer We realize an in-situ high-temperature X-ray diffraction study on an AmO{sub 2} sample. Black-Right-Pointing-Pointer Fluorite AmO{sub 2} transforms to cubic Am{sub 2}O{sub 3+{delta}} and then to hexagonal Am{sub 2}O{sub 3}. Black-Right-Pointing-Pointer Little-known monoclinic Am{sub 2}O{sub 3} is observed during the cubic

  6. Single-pulse x-ray diffraction using polycapillary optics for in situ dynamic diffraction.

    PubMed

    Maddox, B R; Akin, M C; Teruya, A; Hunt, D; Hahn, D; Cradick, J; Morgan, D V

    2016-08-01

    Diagnostic use of single-pulse x-ray diffraction (XRD) at pulsed power facilities can be challenging due to factors such as the high flux and brightness requirements for diffraction and the geometric constraints of experimental platforms. By necessity, the x-ray source is usually positioned very close, within a few inches of the sample. On dynamic compression platforms, this puts the x-ray source in the debris field. We coupled x-ray polycapillary optics to a single-shot needle-and-washer x-ray diode source using a laser-based alignment scheme to obtain high-quality x-ray diffraction using a single 16 ns x-ray pulse with the source >1 m from the sample. The system was tested on a Mo sample in reflection geometry using 17 keV x-rays from a Mo anode. We also identified an anode conditioning effect that increased the x-ray intensity by 180%. Quantitative measurements of the x-ray focal spot produced by the polycapillary yielded a total x-ray flux on the sample of 3.3 ± 0.5 × 10(7) molybdenum Kα photons. PMID:27587130

  7. In Situ X-ray Diffraction Studies of Li(sub x)Mn(sub 2)O(sub 4) Cathode Materials by Synchrotron X-ray Radiation

    SciTech Connect

    Yang, X. Q.; Sun, X.; Lee, S. J.; McBreen, J.; Mukerjee, S.; Daroux, M. L.; Xing, X. K.

    1998-11-01

    In Situ x-ray diffraction studies on Li{sub x}Mn{sub 2}O{sub 4} spinel cathode materials during charge-discharge cycles were carried out by using a synchrotron as x-ray source. Lithium rich (x = 1.03-1.06) spinel materials obtained from two different sources were studied. Three cubic phases with different lattice constants were observed during charge-discharge cycles in all the samples when a Sufficiently low charge-discharge rate (C/10) was used. There are two regions of two-phase coexistence between these three phases, indicating that both phase transitions are first order. The separation of the Bragg peaks representing these three phases varies from sample to sample and also depends on the charge-discharge rate. These results show that the de-intercalation of lithium in lithium-rich spinel cathode materials proceeds through a series of phase transitions from a lithium-rich phase to a lithium-poor phase and finally to a {lambda}-MnO{sub 2} like cubic phase, rather than through a continuous lattice constant contraction in a single phase.

  8. In situ ambient pressure X-ray photoelectron spectroscopy studies of lithium-oxygen redox reactions.

    PubMed

    Lu, Yi-Chun; Crumlin, Ethan J; Veith, Gabriel M; Harding, Jonathon R; Mutoro, Eva; Baggetto, Loïc; Dudney, Nancy J; Liu, Zhi; Shao-Horn, Yang

    2012-01-01

    The lack of fundamental understanding of the oxygen reduction and oxygen evolution in nonaqueous electrolytes significantly hinders the development of rechargeable lithium-air batteries. Here we employ a solid-state Li(4+x)Ti(5)O(12)/LiPON/Li(x)V(2)O(5) cell and examine in situ the chemistry of Li-O(2) reaction products on Li(x)V(2)O(5) as a function of applied voltage under ultra high vacuum (UHV) and at 500 mtorr of oxygen pressure using ambient pressure X-ray photoelectron spectroscopy (APXPS). Under UHV, lithium intercalated into Li(x)V(2)O(5) while molecular oxygen was reduced to form lithium peroxide on Li(x)V(2)O(5) in the presence of oxygen upon discharge. Interestingly, the oxidation of Li(2)O(2) began at much lower overpotentials (~240 mV) than the charge overpotentials of conventional Li-O(2) cells with aprotic electrolytes (~1000 mV). Our study provides the first evidence of reversible lithium peroxide formation and decomposition in situ on an oxide surface using a solid-state cell, and new insights into the reaction mechanism of Li-O(2) chemistry. PMID:23056907

  9. In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Lithium-Oxygen Redox Reactions

    PubMed Central

    Lu, Yi-Chun; Crumlin, Ethan J.; Veith, Gabriel M.; Harding, Jonathon R.; Mutoro, Eva; Baggetto, Loïc; Dudney, Nancy J.; Liu, Zhi; Shao-Horn, Yang

    2012-01-01

    The lack of fundamental understanding of the oxygen reduction and oxygen evolution in nonaqueous electrolytes significantly hinders the development of rechargeable lithium-air batteries. Here we employ a solid-state Li4+xTi5O12/LiPON/LixV2O5 cell and examine in situ the chemistry of Li-O2 reaction products on LixV2O5 as a function of applied voltage under ultra high vacuum (UHV) and at 500 mtorr of oxygen pressure using ambient pressure X-ray photoelectron spectroscopy (APXPS). Under UHV, lithium intercalated into LixV2O5 while molecular oxygen was reduced to form lithium peroxide on LixV2O5 in the presence of oxygen upon discharge. Interestingly, the oxidation of Li2O2 began at much lower overpotentials (~240 mV) than the charge overpotentials of conventional Li-O2 cells with aprotic electrolytes (~1000 mV). Our study provides the first evidence of reversible lithium peroxide formation and decomposition in situ on an oxide surface using a solid-state cell, and new insights into the reaction mechanism of Li-O2 chemistry. PMID:23056907

  10. Oxidation Induced Doping of Nanoparticles Revealed by in Situ X-ray Absorption Studies.

    PubMed

    Kwon, Soon Gu; Chattopadhyay, Soma; Koo, Bonil; Dos Santos Claro, Paula Cecilia; Shibata, Tomohiro; Requejo, Félix G; Giovanetti, Lisandro J; Liu, Yuzi; Johnson, Christopher; Prakapenka, Vitali; Lee, Byeongdu; Shevchenko, Elena V

    2016-06-01

    Doping is a well-known approach to modulate the electronic and optical properties of nanoparticles (NPs). However, doping at nanoscale is still very challenging, and the reasons for that are not well understood. We studied the formation and doping process of iron and iron oxide NPs in real time by in situ synchrotron X-ray absorption spectroscopy. Our study revealed that the mass flow of the iron triggered by oxidation is responsible for the internalization of the dopant (molybdenum) adsorbed at the surface of the host iron NPs. The oxidation induced doping allows controlling the doping levels by varying the amount of dopant precursor. Our in situ studies also revealed that the dopant precursor substantially changes the reaction kinetics of formation of iron and iron oxide NPs. Thus, in the presence of dopant precursor we observed significantly faster decomposition rate of iron precursors and substantially higher stability of iron NPs against oxidation. The same doping mechanism and higher stability of host metal NPs against oxidation was observed for cobalt-based systems. Since the internalization of the adsorbed dopant at the surface of the host NPs is driven by the mass transport of the host, this mechanism can be potentially applied to introduce dopants into different oxidized forms of metal and metal alloy NPs providing the extra degree of compositional control in material design. PMID:27152970

  11. Rapid thermal processing chamber for in-situ x-ray diffraction.

    PubMed

    Ahmad, Md Imteyaz; Van Campen, Douglas G; Fields, Jeremy D; Yu, Jiafan; Pool, Vanessa L; Parilla, Philip A; Ginley, David S; Van Hest, Maikel F A M; Toney, Michael F

    2015-01-01

    Rapid thermal processing (RTP) is widely used for processing a variety of materials, including electronics and photovoltaics. Presently, optimization of RTP is done primarily based on ex-situ studies. As a consequence, the precise reaction pathways and phase progression during the RTP remain unclear. More awareness of the reaction pathways would better enable process optimization and foster increased adoption of RTP, which offers numerous advantages for synthesis of a broad range of materials systems. To achieve this, we have designed and developed a RTP instrument that enables real-time collection of X-ray diffraction data with intervals as short as 100 ms, while heating with ramp rates up to 100 °Cs(-1), and with a maximum operating temperature of 1200 °C. The system is portable and can be installed on a synchrotron beamline. The unique capabilities of this instrument are demonstrated with in-situ characterization of a Bi2O3-SiO2 glass frit obtained during heating with ramp rates 5 °C s(-1) and 100 °C s(-1), revealing numerous phase changes. PMID:25638092

  12. Rapid thermal processing chamber for in-situ x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Ahmad, Md. Imteyaz; Van Campen, Douglas G.; Fields, Jeremy D.; Yu, Jiafan; Pool, Vanessa L.; Parilla, Philip A.; Ginley, David S.; Van Hest, Maikel F. A. M.; Toney, Michael F.

    2015-01-01

    Rapid thermal processing (RTP) is widely used for processing a variety of materials, including electronics and photovoltaics. Presently, optimization of RTP is done primarily based on ex-situ studies. As a consequence, the precise reaction pathways and phase progression during the RTP remain unclear. More awareness of the reaction pathways would better enable process optimization and foster increased adoption of RTP, which offers numerous advantages for synthesis of a broad range of materials systems. To achieve this, we have designed and developed a RTP instrument that enables real-time collection of X-ray diffraction data with intervals as short as 100 ms, while heating with ramp rates up to 100 °Cs-1, and with a maximum operating temperature of 1200 °C. The system is portable and can be installed on a synchrotron beamline. The unique capabilities of this instrument are demonstrated with in-situ characterization of a Bi2O3-SiO2 glass frit obtained during heating with ramp rates 5 °C s-1 and 100 °C s-1, revealing numerous phase changes.

  13. In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Lithium-Oxygen Redox Reactions

    NASA Astrophysics Data System (ADS)

    Lu, Yi-Chun; Crumlin, Ethan J.; Veith, Gabriel M.; Harding, Jonathon R.; Mutoro, Eva; Baggetto, Loïc; Dudney, Nancy J.; Liu, Zhi; Shao-Horn, Yang

    2012-10-01

    The lack of fundamental understanding of the oxygen reduction and oxygen evolution in nonaqueous electrolytes significantly hinders the development of rechargeable lithium-air batteries. Here we employ a solid-state Li4+xTi5O12/LiPON/LixV2O5 cell and examine in situ the chemistry of Li-O2 reaction products on LixV2O5 as a function of applied voltage under ultra high vacuum (UHV) and at 500 mtorr of oxygen pressure using ambient pressure X-ray photoelectron spectroscopy (APXPS). Under UHV, lithium intercalated into LixV2O5 while molecular oxygen was reduced to form lithium peroxide on LixV2O5 in the presence of oxygen upon discharge. Interestingly, the oxidation of Li2O2 began at much lower overpotentials (~240 mV) than the charge overpotentials of conventional Li-O2 cells with aprotic electrolytes (~1000 mV). Our study provides the first evidence of reversible lithium peroxide formation and decomposition in situ on an oxide surface using a solid-state cell, and new insights into the reaction mechanism of Li-O2 chemistry.

  14. Dynamics of barite growth in porous media quantified by in situ synchrotron X-ray tomography

    NASA Astrophysics Data System (ADS)

    Godinho, jose; Gerke, kirill

    2016-04-01

    Current models used to formulate mineral sequestration strategies of dissolved contaminants in the bedrock often neglect the effect of confinement and the variation of reactive surface area with time. In this work, in situ synchrotron X-ray micro-tomography is used to quantify barite growth rates in a micro-porous structure as a function of time during 13.5 hours with a resolution of 1 μm. Additionally, the 3D porous network at different time frames are used to simulate the flow velocities and calculate the permeability evolution during the experiment. The kinetics of barite growth under porous confinement is compared with the kinetics of barite growth on free surfaces in the same fluid composition. Results are discussed in terms of surface area normalization and the evolution of flow velocities as crystals fill the porous structure. During the initial hours the growth rate measured in porous media is similar to the growth rate on free surfaces. However, as the thinner flow paths clog the growth rate progressively decreases, which is correlated to a decrease of local flow velocity. The largest pores remain open, enabling growth to continue throughout the structure. Quantifying the dynamics of mineral precipitation kinetics in situ in 4D, has revealed the importance of using a time dependent reactive surface area and accounting for the local properties of the porous network, when formulating predictive models of mineral precipitation in porous media.

  15. Distinct charge dynamics in battery electrodes revealed by in situ and operando soft X-ray spectroscopy

    PubMed Central

    Liu, Xiaosong; Wang, Dongdong; Liu, Gao; Srinivasan, Venkat; Liu, Zhi; Hussain, Zahid; Yang, Wanli

    2013-01-01

    Developing high-performance batteries relies on material breakthroughs. During the past few years, various in situ characterization tools have been developed and have become indispensible in studying and the eventual optimization of battery materials. However, soft X-ray spectroscopy, one of the most sensitive probes of electronic states, has been mainly limited to ex situ experiments for battery research. Here we achieve in situ and operando soft X-ray absorption spectroscopy of lithium-ion battery cathodes. Taking advantage of the elemental, chemical and surface sensitivities of soft X-rays, we discover distinct lithium-ion and electron dynamics in Li(Co1/3Ni1/3Mn1/3)O2 and LiFePO4 cathodes in polymer electrolytes. The contrast between the two systems and the relaxation effect in LiFePO4 is attributed to a phase transformation mechanism, and the mesoscale morphology and charge conductivity of the electrodes. These discoveries demonstrate feasibility and power of in situ soft X-ray spectroscopy for studying integrated and dynamic effects in batteries. PMID:24100759

  16. Synchrotron X-Ray Microprobe In-Situ Analysis of Extraterrestrial Particles Collected in Aerogel on the MIR Space Station

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Sutton, S. R.; Horz, F.

    2000-01-01

    Using in-situ x-ray fluorescence, we determined the Cr/Fe, Mn/Fe and Ni/Fe of a particle captured in aerogel on MIR are approximately chondritic, indicating an extraterrestrial origin. Impurity of the aerogel precluded determining the Cu and Zn.

  17. Distinct charge dynamics in battery electrodes revealed by in situ and operando soft X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Xiaosong; Wang, Dongdong; Liu, Gao; Srinivasan, Venkat; Liu, Zhi; Hussain, Zahid; Yang, Wanli

    2013-10-01

    Developing high-performance batteries relies on material breakthroughs. During the past few years, various in situ characterization tools have been developed and have become indispensible in studying and the eventual optimization of battery materials. However, soft X-ray spectroscopy, one of the most sensitive probes of electronic states, has been mainly limited to ex situ experiments for battery research. Here we achieve in situ and operando soft X-ray absorption spectroscopy of lithium-ion battery cathodes. Taking advantage of the elemental, chemical and surface sensitivities of soft X-rays, we discover distinct lithium-ion and electron dynamics in Li(Co1/3Ni1/3Mn1/3)O2 and LiFePO4 cathodes in polymer electrolytes. The contrast between the two systems and the relaxation effect in LiFePO4 is attributed to a phase transformation mechanism, and the mesoscale morphology and charge conductivity of the electrodes. These discoveries demonstrate feasibility and power of in situ soft X-ray spectroscopy for studying integrated and dynamic effects in batteries.

  18. Density measurements and structural properties of liquid and amorphous metals under high pressure studied by in situ X-ray scattering (Invited)

    NASA Astrophysics Data System (ADS)

    Morard, G.; Garbarino, G.; Andrault, D.; Antonangeli, D.; Guignot, N.; Siebert, J.; Roberge, M.; Boulard, E.; Lincot, A.; Denoeud, A.; Petitgirard, S.

    2013-12-01

    Density determination for crystalline materials under high pressure and high temperature is straightforward using X-ray diffraction. For liquid and amorphous materials, it is more complicated due to the absence of long-range order. Different high pressure techniques have been developed: in-situ X-ray absorption 1-4 or ex-situ sink/float method 5-8. However, these techniques suffer several limitations, such as the limited pressure range or the long exposure time required. We have implemented an in situ X-ray diffraction analysis method suitable for the determination of Pressure-Volume-Temperature equations of state (P-V-T EoS) in the critical case of liquid and amorphous materials over an extended thermodynamic range (T>2000 K and P> 40 GPa). This method is versatile, it can be applied to data obtained using various angle-dispersive X-ray diffraction high-pressure apparatus and, contrary to in situ X-ray absorption techniques, is independent from the sample geometry. Further advantage is the fast data acquisition (between 10 to 300 seconds integration time). Information on macroscopic bulk properties (density) and local atomic arrangement (pair distribution function g(r)) can be gathered in parallel. To illustrate the method, we present studies on liquid Fe-S alloys in Paris Edinburgh press and in laser-heated diamond anvil cell, and measurements on Ce glass in diamond anvil cell at room temperature. References 1 G. Shen, N. Sata, M. Newville et al., App. Phys. Lett. 81 (8), 1411 (2002). 2 C. Sanloup, F. Guyot, P. Gillet et al., Geophys. Res. Lett. 27 (6), 811 (2000). 3 Y. Katayama, K. Tsuji, O. Shimomura et al., J. Synch. Rad. 5, 1023 (1998). 4 T. Sato and N. Funamori, Phys. Rev. Lett. 101, 255502 (2008). 5 R. Knoche and R. W. Luth, Chem. Geol. 128, 229 (1996). 6 P.S. Balog, R.A. Secco, D.C. Rubie et al., J. Geophys. Res. 108 (B2), 2124 (2003). 7 C. B. Agee and D. Walker, J. Geophys. Res. 93 (B4), 3437 (1988). 8 E. Ohtani, A. Suzuki, and T. Kato, Proc. Jpn. Acad

  19. Data of low-dose phase-based X-ray imaging for in situ soft tissue engineering assessments

    PubMed Central

    Izadifar, Zohreh; Honaramooz, Ali; Wiebe, Sheldon; Belev, George; Chen, Xiongbiao; Chapman, Dean

    2016-01-01

    This article presents the data of using three phase-based X-ray imaging techniques to characterize biomaterial scaffold and soft tissues in situ, as reported in our study “Low-dose phase-based X-ray imaging techniques for in situ soft tissue engineering assessments” [1]. The examined parameters include the radiation dose, scan time, and image quality, which are all critical to longitudinal in situ live animal assessments. The data presented were obtained from three dimensional imaging of scaffolds in situ cartilage by means of synchrotron-based computed tomography-diffraction enhanced imaging (CT-DEI), analyzer based imaging (CT-ABI), and in-line phase contrast imaging (CT-PCI) at standard and low dose imaging modalities. PMID:26909381

  20. Data of low-dose phase-based X-ray imaging for in situ soft tissue engineering assessments.

    PubMed

    Izadifar, Zohreh; Honaramooz, Ali; Wiebe, Sheldon; Belev, George; Chen, Xiongbiao; Chapman, Dean

    2016-03-01

    This article presents the data of using three phase-based X-ray imaging techniques to characterize biomaterial scaffold and soft tissues in situ, as reported in our study "Low-dose phase-based X-ray imaging techniques for in situ soft tissue engineering assessments" [1]. The examined parameters include the radiation dose, scan time, and image quality, which are all critical to longitudinal in situ live animal assessments. The data presented were obtained from three dimensional imaging of scaffolds in situ cartilage by means of synchrotron-based computed tomography-diffraction enhanced imaging (CT-DEI), analyzer based imaging (CT-ABI), and in-line phase contrast imaging (CT-PCI) at standard and low dose imaging modalities. PMID:26909381

  1. New developments in laser-heated diamond anvil cell with in situ synchrotron x-ray diffraction at High Pressure Collaborative Access Team

    SciTech Connect

    Meng, Yue; Hrubiak, Rostislav; Rod, Eric; Shen, Guoyin; Boehler, Reinhard

    2015-07-15

    An overview of the in situ laser heating system at the High Pressure Collaborative Access Team, with emphasis on newly developed capabilities, is presented. Since its establishment at the beamline 16-ID-B a decade ago, laser-heated diamond anvil cell coupled with in situ synchrotron x-ray diffraction has been widely used for studying the structural properties of materials under simultaneous high pressure and high temperature conditions. Recent developments in both continuous-wave and modulated heating techniques have been focusing on resolving technical issues of the most challenging research areas. The new capabilities have demonstrated clear benefits and provide new opportunities in research areas including high-pressure melting, pressure-temperature-volume equations of state, chemical reaction, and time resolved studies.

  2. In-Situ Ultrafast 3D Imaging of Magma Vesiculation at High Temperature

    NASA Astrophysics Data System (ADS)

    Ulmer, P.; Pistone, M.; Caricchi, L.; Fife, J.; Marone, F.; Benson, P. M.; Almqvist, B.; Reusser, E.; Rust, A.; Burlini, L.

    2011-12-01

    We present new experimental results on magma vesiculation at high temperature. We investigated the processes of volatile exsolution (nucleation, growth and coalescence of gas bubbles) in magmas by performing in-situ high-temperature and ambient pressure experiments. Samples were heated with a newly-commissioned class 4 laser system and manual control. Simultaneously, the evolving 3D structure was captured by ultrafast synchrotron based X-ray tomographic microscopy (pixel size of 2.9 microns; 1 complete tomographic dataset acquired in 1 s), performed at the TOMCAT beam-line at Swiss Light Source (PSI, Villigen, Switzerland). Hydrous crystal- and bubble-free magmatic glasses liable to vesiculate at high temperature (400-1100 °C) were employed for the experiments. The samples used were cylindrical cores (2 mm in diameter and 2 mm in length), drilled from natural samples of obsidian (from: Lipari Island, Italy; Mayor Island, New Zealand; Tenerife Island, Spain; Little Glass Mountain, USA), containing different amounts of water (less than 1 wt%). These were chosen to represent a range of different physical properties (i.e., viscosity) as function of increasing temperature, due to their specific chemical compositions and, in particular, water content in the starting glass (measured via Karl Fischer titration). We observed the development of four different kinds of 3D microstructures during in-situ high-temperature experiments, depending on the starting material employed: (1) low vesicularity (40 vol%) with a narrow range in size of bubbles, which are generally spherical; (2) high vesicularity (80 vol%), showing a range of bubble sizes, shapes and extent of coalescence; (3) high vesicularity (85 vol%) and a polyhedral cell network (similar to reticulites); (4) a single expanding bubble. No magma fragmentation occurred in any of the experiments performed; we noticed different degrees of vertical thermal expansion, mainly depending on the amount of bubbles generated during

  3. In-situ observation of nickel oxidation using synchrotron based full-field transmission X-ray microscopy

    NASA Astrophysics Data System (ADS)

    Kiss, Andrew M.; Harris, William M.; Wang, Steve; Vila-Comamala, Joan; Deriy, Alex; Chiu, Wilson K. S.

    2013-02-01

    An in situ imaging-based approach is reported to study chemical reactions using full-field transmission x-ray microscopy (TXM). Ni particles were oxidized at temperatures between 400 and 850 °C in the TXM to directly observe their morphology change while the chemical composition is monitored by x-ray absorption near edge spectroscopy. Reaction rates and activation energies are calculated from the image data. The goal of this effort is to better understand Ni oxidation in electrode materials. The approach developed will be an effective technique for directly studying chemical reactions of particles and their behavior at the nano-scale.

  4. Design and operation of an in situ high pressure reaction cell for x-ray absorption spectroscopy.

    SciTech Connect

    Bare, S. R.; Yang, N.; Kelly, S. D.; Mickelson, G. E.; Modica, F. S.; UOP LLC; EXAFS Analysis

    2007-01-01

    The design and initial operation of an in situ catalysis reaction cell for x-ray absorption spectroscopy measurements at high pressure is described. The design is based on an x-ray transparent tube fabricated from beryllium. This forms a true plug flow reactor for catalysis studies. The reactor is coupled to a portable microprocessor-controlled versatile feed system, and incorporates on-line analysis of reaction products. XAFS data recorded during the reduction of a NiRe/carbon catalyst at 4 bar are used to illustrate the performance of the reactor.

  5. In Situ X-ray Diffraction Studies of Cathode Materials in Lithium Batteries

    SciTech Connect

    Yang, X. Q.; Sun, X.; McBreen, J.; Mukerjee, S.; Gao, Yuan; Yakovleva, M. V.; Xing, X. K.; Daroux, M. L.

    1998-11-01

    There is an increasing interest in lithiated transition metal oxides because of their use as cathodes in lithium batteries. LiCoO{sub 2}, LiNiO{sub 2} and LiMn{sub 2}O{sub 4} are the three most widely used and studied materials, At present, although it is relative expensive and toxic, LiCoO{sub 2} is the material of choice in commercial lithium ion batteries because of its ease of manufacture, better thermal stability and cycle life. However, the potential use of lithium ion batteries with larger capacity for power tools and electric vehicles in the future will demand new cathode materials with higher energy density, lower cost and better thermal stability. LiNiO{sub 2} is isostructural with LiCoO{sub 2}. It offers lower cost and high energy density than LiCoO{sub 2}. However, it has much poorer thermal stability than LiCoO{sub 2}, in the charged (delithiated) state. Co, Al, and other elements have been used to partially replace Ni in LiNiO{sub 2} system in order to increase the thermal stability. LiMn{sub 2}O{sub 4} has the highest thermal stability and lowest cost and toxicity. However, the low energy density and poor cycle life at elevated temperature are the major obstacles for this material. In order to develop safer, cheaper, and better performance cathode materials, the in-depth understanding of the relationships between the thermal stability and structure, performance and structure are very important. The performance here includes energy density and cycle life of the cathode materials. X-ray diffraction (XRD) is one of the most powerful tools to study these relationships. The pioneer ex situ XRD work on cathode materials for lithium batteries was done by Ohzuku. His XRD studies on LiMn{sub 2}O{sub 4}, LiCoO{sub 2}, LiNiO{sub 2}, LiNi{sub 0.5}Co{sub 0.5}O{sub 2}, and LiAl{sub x}Ni{sub 1-x}O{sub 2} cathodes at different states of charge have provided important guidelines for the development of these new materials. However, the kinetic nature of the battery

  6. Recent progress on synchrotron-based in-situ soft X-ray spectroscopy for energy materials.

    PubMed

    Liu, Xiaosong; Yang, Wanli; Liu, Zhi

    2014-12-10

    Soft X-ray spectroscopy (SXS) techniques such as photoelectron spectroscopy, soft X-ray absorption spectroscopy and X-ray emission spectroscopy are efficient and direct tools to probe electronic structures of materials. Traditionally, these surface sensitive soft X-ray techniques that detect electrons or photons require high vacuum to operate. Many recent in situ instrument developments of these techniques have overcome this vacuum barrier. One can now study many materials and model devices under near ambient, semi-realistic, and operando conditions. Further developments of integrating the realistic sample environments with efficient and high resolution detection methods, particularly at the high brightness synchrotron light sources, are making SXS an important tool for the energy research community. In this progress report, we briefly describe the basic concept of several SXS techniques and discuss recent development of SXS instruments. We then present several recent studies, mostly in situ SXS experiments, on energy materials and devices. Using these studies, we would like to highlight that the integration of SXS and in situ environments can provide in-depth insight of material's functionality and help researchers in new energy material developments. The remaining challenges and critical research directions are discussed at the end. PMID:24799004

  7. A rotational and axial motion system load frame insert for in situ high energy x-ray studies.

    PubMed

    Shade, Paul A; Blank, Basil; Schuren, Jay C; Turner, Todd J; Kenesei, Peter; Goetze, Kurt; Suter, Robert M; Bernier, Joel V; Li, Shiu Fai; Lind, Jonathan; Lienert, Ulrich; Almer, Jonathan

    2015-09-01

    High energy x-ray characterization methods hold great potential for gaining insight into the behavior of materials and providing comparison datasets for the validation and development of mesoscale modeling tools. A suite of techniques have been developed by the x-ray community for characterizing the 3D structure and micromechanical state of polycrystalline materials; however, combining these techniques with in situ mechanical testing under well characterized and controlled boundary conditions has been challenging due to experimental design requirements, which demand new high-precision hardware as well as access to high-energy x-ray beamlines. We describe the design and performance of a load frame insert with a rotational and axial motion system that has been developed to meet these requirements. An example dataset from a deforming titanium alloy demonstrates the new capability. PMID:26429452

  8. A rotational and axial motion system load frame insert for in situ high energy x-ray studies

    SciTech Connect

    Shade, Paul A. Schuren, Jay C.; Turner, Todd J.; Blank, Basil; Kenesei, Peter; Goetze, Kurt; Lienert, Ulrich; Almer, Jonathan; Suter, Robert M.; Bernier, Joel V.; Li, Shiu Fai; Lind, Jonathan

    2015-09-15

    High energy x-ray characterization methods hold great potential for gaining insight into the behavior of materials and providing comparison datasets for the validation and development of mesoscale modeling tools. A suite of techniques have been developed by the x-ray community for characterizing the 3D structure and micromechanical state of polycrystalline materials; however, combining these techniques with in situ mechanical testing under well characterized and controlled boundary conditions has been challenging due to experimental design requirements, which demand new high-precision hardware as well as access to high-energy x-ray beamlines. We describe the design and performance of a load frame insert with a rotational and axial motion system that has been developed to meet these requirements. An example dataset from a deforming titanium alloy demonstrates the new capability.

  9. In situ alkali-silica reaction observed by x-ray microscopy

    SciTech Connect

    Kurtis, K.E.; Monteiro, P.J.M.; Brown, J.T.; Meyer-Ilse, W.

    1997-04-01

    In concrete, alkali metal ions and hydroxyl ions contributed by the cement and reactive silicates present in aggregate can participate in a destructive alkali-silica reaction (ASR). This reaction of the alkalis with the silicates produces a gel that tends to imbibe water found in the concrete pores, leading to swelling of the gel and eventual cracking of the affected concrete member. Over 104 cases of alkali-aggregate reaction in dams and spillways have been reported around the world. At present, no method exists to arrest the expansive chemical reaction which generates significant distress in the affected structures. Most existing techniques available for the examination of concrete microstructure, including ASR products, demand that samples be dried and exposed to high pressure during the observation period. These sample preparation requirements present a major disadvantage for the study of alkali-silica reaction. Given the nature of the reaction and the affect of water on its products, it is likely that the removal of water will affect the morphology, creating artifacts in the sample. The purpose of this research is to observe and characterize the alkali-silica reaction, including each of the specific reactions identified previously, in situ without introducing sample artifacts. For observation of unconditioned samples, x-ray microscopy offers an opportunity for such an examination of the alkali-silica reaction. Currently, this investigation is focusing on the effect of calcium ions on the alkali-silica reaction.

  10. Boron phosphide under pressure: In situ study by Raman scattering and X-ray diffraction

    SciTech Connect

    Solozhenko, Vladimir L.; Kurakevych, Oleksandr O.; Le Godec, Yann; Kurnosov, Aleksandr V.; Oganov, Artem R.

    2014-07-21

    Cubic boron phosphide, BP, has been studied in situ by X-ray diffraction and Raman scattering up to 55 GPa at 300 K in a diamond anvil cell. The bulk modulus of B{sub 0} = 174(2) GPa has been established, which is in excellent agreement with our ab initio calculations. The data on Raman shift as a function of pressure, combined with equation-of-state (EOS) data, allowed us to estimate the Grüneisen parameters of the TO and LO modes of zinc-blende structure, γ{sub G}{sup TO }= 1.26 and γ{sub G}{sup LO }= 1.13, just like in the case of other A{sup III}B{sup V} diamond-like phases, for which γ{sub G}{sup TO }> γ{sub G}{sup LO }≅ 1. We also established that the pressure dependence of the effective electro-optical constant α is responsible for a strong change in relative intensities of the TO and LO modes from I{sub TO}/I{sub LO} ∼ 0.25 at 0.1 MPa to I{sub TO}/I{sub LO} ∼ 2.5 at 45 GPa, for which we also find excellent agreement between experiment and theory.

  11. Hybrid X-ray and γ-ray spectrometer for in-situ planetary science missions

    NASA Astrophysics Data System (ADS)

    Skidmore, M. S.; Ambrosi, R. M.; Simon, H.

    2009-06-01

    γ-Ray spectroscopy, X-ray spectroscopy and γ-ray backscatter densitometry for planetary science applications are three complementary analytical techniques that can be used to determine surface and sub-surface composition, constrain heat flow through a planetary regolith and hence understand more about the processes that formed planetary bodies. Evaluating different detector types and configurations in order to achieve these scientific objectives is a key enabling step for a successful flight instrument development programme. In this study, we evaluate and compare different detector solutions and configurations including: planar and hemispherical CdTe, a CsI(Tl) scintillator, a LaBr3(Ce) scintillator and a HPGe detector. The LaBr3(Ce) detector was chosen as the most suitable detector for an in-situ planetary science mission due to its high-radiation tolerance, low mass compared with HPGe detector systems, its comparable resolution (˜3.4% at 662 keV) to compound semiconductors (planar CdTe ˜2.4% at 662 keV) and high efficiency.

  12. Shock Melting of Forsterite by In-Situ X-Ray Diffraction

    NASA Astrophysics Data System (ADS)

    Newman, M.; Kraus, R. G.; Wicks, J. K.; Coppari, F.; Smith, R.; Duffy, T. S.

    2015-12-01

    The equation of state of magnesium silicates at pressures and temperatures near the solid-liquid coexistence curve is important for understanding the thermal evolution and interior structure of rocky planets. Here, we present a series of laser driven shock-melt experiments on single crystal Mg_2SiO_4 forsterite, conducted at the Omega EP laser facility. Particle velocities in the Mg_2SiO_4 samples were measured using a line VISAR and used to infer the thermodynamic state of the shocked samples. In situ X-ray diffraction measurements are used to probe the melting transition and investigate the potential decomposition of Mg_2SiO_4 in to MgO and MgSiO_3 upon melt. This work examines potential kinetic effects of decomposition due to the short time scale of laser-shock experiments. In addition, the thermodynamic data collected in these experiments adds to a limited body of information regarding the equation of state of Mg_2SiO_4, which is the dominant end member composition in Earth's upper mantle. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  13. Hydrazine reduction of transition metal oxides - In situ characterization using X-ray photoelectron spectroscopy

    NASA Technical Reports Server (NTRS)

    Littrell, D. M.; Tatarchuk, B. J.

    1986-01-01

    The transition metal oxides (TMOs) V2O5, FeO3, Co3O4, NiO, CuO, and ZnO were exposed to hydrazine at various pressures. The metallic surfaces were surveyed by in situ X-ray photoelectron spectroscopy to determine the irrelative rate of reduction by hydrazine. The most easily reducible oxide, CuO, could be reduced to the metallic state at room temperature and 10 to the -6th torr. The reaction is first order with respect to CuO, with an activation energy of about 35 kJ/mol. Two types of adsorption were seen to occur at 295 K: (1) a reversible component in which the measured N:Cu ratio increased to 0.60 at hydrazine pressures up to 0.5 torr, and (2) an irreversible component, with a N:Cu ratio of 0.28, which could not be removed by extended vacuum pumping. The results of this study are useful for the identification of TMO's that can be used as solid neatallizers of hydrazine spills, and for the preparation of metal surfaces for electroplating and evaporative thin-film coating.

  14. Versatile in situ powder X-ray diffraction cells for solid–gas investigations

    PubMed Central

    Jensen, Torben R.; Nielsen, Thomas K.; Filinchuk, Yaroslav; Jørgensen, Jens-Erik; Cerenius, Yngve; Gray, Evan MacA.; Webb, Colin J.

    2010-01-01

    This paper describes new sample cells and techniques for in situ powder X-ray diffraction specifically designed for gas absorption studies up to ca 300 bar (1 bar = 100 000 Pa) gas pressure. The cells are for multipurpose use, in particular the study of solid–gas reactions in dosing or flow mode, but can also handle samples involved in solid–liquid–gas studies. The sample can be loaded into a single-crystal sapphire (Al2O3) capillary, or a quartz (SiO2) capillary closed at one end. The advantages of a sapphire single-crystal cell with regard to rapid pressure cycling are discussed, and burst pressures are calculated and measured to be ∼300 bar. An alternative and simpler cell based on a thin-walled silicate or quartz glass capillary, connected to a gas source via a VCR fitting, enables studies up to ∼100 bar. Advantages of the two cell types are compared and their applications are illustrated by case studies. PMID:22477780

  15. Kinetics of methane hydrate decomposition studied via in situ low temperature X-ray powder diffraction.

    PubMed

    Everett, S Michelle; Rawn, Claudia J; Keffer, David J; Mull, Derek L; Payzant, E Andrew; Phelps, Tommy J

    2013-05-01

    Gas hydrate is known to have a slowed decomposition rate at ambient pressure and temperatures below the melting point of ice. As hydrate exothermically decomposes, gas is released and water of the clathrate cages transforms into ice. Based on results from the decomposition of three nominally similar methane hydrate samples, the kinetics of two regions, 180-200 and 230-260 K, within the overall decomposition range 140-260 K, were studied by in situ low temperature X-ray powder diffraction. The kinetic rate constants, k(a), and the reaction mechanisms, n, for ice formation from methane hydrate were determined by the Avrami model within each region, and activation energies, E(a), were determined by the Arrhenius plot. E(a) determined from the data for 180-200 K was 42 kJ/mol and for 230-260 K was 22 kJ/mol. The higher E(a) in the colder temperature range was attributed to a difference in the microstructure of ice between the two regions. PMID:23557375

  16. Rapid terrestrial core formation from in situ X-ray computed microtomography

    NASA Astrophysics Data System (ADS)

    Chen, B.; Zhang, D.; Leng, W.; Jackson, J. M.; Wang, Y.; Yu, T.; Liu, J.; Li, J.

    2011-12-01

    The timescale of the terrestrial core formation constrained from the hafnium-tungsten chronometer is within 30 million years after the Solar System formation (e.g. Kleine et al., 2002; Yin et al., 2002). Possible mechanisms for core formation include diapiric instability of iron-rich liquids and percolation of the liquids through the solid silicate matrix. Core-mantle segregation by diapiric instabilities is thought to be a more rapid and efficient core formation process compared with percolation (Stevenson, 1981; Rubie et al., 2007; Golabek et al., 2008). Our experimental results from in situ X-ray computed microtomography show that at 1-1.5 GPa the iron-sulfur and iron-carbon liquids sank through the underlying olivine layer at a speed consistent with the measured core formation timescale. Our three-dimensional tomography data taken at various heating stages revealed that the iron-rich liquid diapirs in olivine induced percolative flow channeling processes, which affects the rheology of olivine and thus facilitates the sinking of iron-rich diapirs. Numerical simulations of diapir sinking based on the tomography observations suggest that the percolative flow channeling process accompanying the iron diapirs could significantly reduce the time for core formation segregation by a factor of 2 or more, depending on the viscosity reduction ratio caused by the percolative flow. Our study sheds new light on core formation processes in the Earth and terrestrial-like planetary bodies, contributing to our understanding of the origin and dynamics of planetary cores.

  17. In situ measurements of high temperature growth of correlated systems: a materials by design scheme

    NASA Astrophysics Data System (ADS)

    He, Hua

    There is great interest in developing new ways to use predictive theory to accelerate materials synthesis. We have previously shown that DFT +DMFT electronic structure calculations are successful at predicting gaps and ordered moments, even when correlations are very strong.[ 1 , 2 ] Building on these results, we set out to explore an even closer integration of theory and synthesis, aiming to discover new routes for doping Mott insulators and producing new superconductors. In situ high temperature high energy X-ray diffraction is used to determine the crystal structures of compounds just as they form from the growths, and the structural information is used as input for DFT +DMFT calculations that predict functionality, closing the synthesis loop by suggesting productive new directions. Using this approach, we have investigated the transition metal oxysulfide system Ba-Co-S-O and successfully discovered the new compound BaCoSO, and identified it as an interesting small gap Mott insulator by DFT +DMFT calculations even before any traditional crystal growth is attempted in the lab We acknowledge the Office of Assistant Secretary of Defense for Research and Engineering for providing the NSSEFF funds that supported this research.

  18. Reactive sputter magnetron reactor for preparation of thin films and simultaneous in situ structural study by X-ray diffraction.

    PubMed

    Bürgi, J; Neuenschwander, R; Kellermann, G; García Molleja, J; Craievich, A F; Feugeas, J

    2013-01-01

    The purpose of the designed reactor is (i) to obtain polycrystalline and∕or amorphous thin films by controlled deposition induced by a reactive sputtering magnetron and (ii) to perform a parallel in situ structural study of the deposited thin films by X-ray diffraction, in real time, during the whole growth process. The designed reactor allows for the control and precise variation of the relevant processing parameters, namely, magnetron target-to-sample distance, dc magnetron voltage, and nature of the gas mixture, gas pressure and temperature of the substrate. On the other hand, the chamber can be used in different X-ray diffraction scanning modes, namely, θ-2θ scanning, fixed α-2θ scanning, and also low angle techniques such as grazing incidence small angle X-ray scattering and X-ray reflectivity. The chamber was mounted on a standard four-circle diffractometer located in a synchrotron beam line and first used for a preliminary X-ray diffraction analysis of AlN thin films during their growth on the surface of a (100) silicon wafer. PMID:23387690

  19. Reactive sputter magnetron reactor for preparation of thin films and simultaneous in situ structural study by X-ray diffraction

    SciTech Connect

    Buergi, J.; Molleja, J. Garcia; Feugeas, J.; Neuenschwander, R.; Kellermann, G.; Craievich, A. F.

    2013-01-15

    The purpose of the designed reactor is (i) to obtain polycrystalline and/or amorphous thin films by controlled deposition induced by a reactive sputtering magnetron and (ii) to perform a parallel in situ structural study of the deposited thin films by X-ray diffraction, in real time, during the whole growth process. The designed reactor allows for the control and precise variation of the relevant processing parameters, namely, magnetron target-to-sample distance, dc magnetron voltage, and nature of the gas mixture, gas pressure and temperature of the substrate. On the other hand, the chamber can be used in different X-ray diffraction scanning modes, namely, {theta}-2{theta} scanning, fixed {alpha}-2{theta} scanning, and also low angle techniques such as grazing incidence small angle X-ray scattering and X-ray reflectivity. The chamber was mounted on a standard four-circle diffractometer located in a synchrotron beam line and first used for a preliminary X-ray diffraction analysis of AlN thin films during their growth on the surface of a (100) silicon wafer.

  20. In situ X-ray tomographic microscopy observations of vesiculation of bubble-free and bubble-bearing magmas

    NASA Astrophysics Data System (ADS)

    Pistone, Mattia; Caricchi, Luca; Fife, Julie L.; Mader, Kevin; Ulmer, Peter

    2015-12-01

    Magma degassing is thought to play a major role in magma fractionation, transport, storage, and volcanic eruption dynamics. However, the conditions that determine when and how magma degassing operates prior to and during an eruption remain poorly constrained. We performed experiments to explore if the initial presence of gas bubbles in magma influences the capability of gas to escape from the magma. Vesiculation of natural H2O-poor (<<1 wt.%) silicic obsidian glasses was investigated by in situ, high-temperature (above the glass transition) experiments using synchrotron-based X-ray tomographic microscopy with high spatial (3 μm/pixel) and temporal resolution (1 second per 3D dataset). As a validation, a second set of experiments was performed on identical starting materials using a Karl-Fisher titration setup to quantify the amount of extracted gas that escapes via volatile diffusion and/or bubble coalescence during vesiculation. In both sets of experiments, vesiculation was triggered by heating the samples at room pressure. Our results suggest that the presence of pre-existing gas bubbles during a nucleation event significantly decreases the tendency of bubbles to coalesce and inhibits magma outgassing. In contrast, in initially bubble-free samples, the nucleation and growth of bubbles is accompanied by significant coalescence and outgassing. We infer that volatile-undersaturated (i.e. bubble-free) magmas in the reservoirs are more likely to erupt effusively, while the presence of excess gas already at depth (i.e. bubble-bearing systems) increases the likelihood of explosive eruptions.

  1. X-ray photochemical alteration of planetary samples during in situ micro-XRF analysis

    NASA Astrophysics Data System (ADS)

    Flannery, D. T.; Tuite, M. L., Jr.; Hodyss, R. P.; Allwood, A.; Bhartia, R.; Abbey, W. J.; Williford, K. H.

    2015-12-01

    PIXL (Planetary Instrument for X-ray Lithochemistry; selected for the Mars 2020 mission contact science payload) uses a polycapillary to focus X-rays to a ~100 μm spot on sample surfaces, providing higher spatial resolution, higher X-ray flux, and higher fluorescence counts compared to previously flown planetary XRF instruments. Photochemical changes in organic materials occurring during investigations employing x-rays have been reported, particularly for biological samples examined in synchrotrons (e.g. George et al., J. Synchrotron Radiation, 19:875-876). However, little is known about the effect energies and fluxes typical to micro-XRF instruments may have on the organic molecules that are commonly preserved in rocks and sediments. In particular, it is essential to understand the effect of micro-XRF on organics preserved near surfaces that are later subjected to contact science that focuses on organic geochemistry (e.g. UV Raman/fluorescence instruments). We report results of an investigation in which samples containing organic molecules were exposed to X-ray energies and fluxes typical to micro-XRF. Samples containing alkanes and polycyclic aromatic hydrocarbons were characterized by GC-MS and UV Raman/fluorescence before being subjected to various X-ray energies and fluxes typical of PIXL. Following x-ray irradiation, samples were again characterized by GC-MS and UV Raman/fluorescence in order to characterize photochemical effects.

  2. Combined in Situ X-ray absorption and diffuse reflectance infraredspectroscopy: An attractive tool for catalytic investigations

    SciTech Connect

    Marinkovic, N.S.; Ehrlich, S.; Wang, Q.; Barrio, L.; Khalid, S.; et.al.

    2010-11-24

    Catalysis investigations are often followed in a range of spectroscopic techniques. While diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) can be done on a bench-top instrument, X-ray absorption spectroscopy (XAS) techniques, such as extended X-ray absorption fine structure (EXAFS) and X-ray absorption near-edge structure (XANES) require synchrotron light. In order to ensure the same conditions during in situ catalysis for each method, a combined XAS/DRIFTS has been developed at beamline X18A at the National Synchrotron Light Source, Brookhaven National Laboratory. A rapid-scan FTIR spectrometer capable of both mid- and far-infrared measurements is equipped with an arm to redirect the IR beam outside the spectrometer. An in situ reaction chamber, equipped with glassy carbon windows for X-ray light and a KBr window for IR light passage is installed firmly on the arm. The reaction cell can be heated to 600 C and allows passage of gases through the catalyst so that both XAS and DRIFTS techniques can be done simultaneously in controlled environment conditions. Together with a fast-moving monochromator for quick-EXAFS and mass-spectrometric residual gas analysis, this new tool is a powerful method for testing catalytic reactions in real time.

  3. Design and Operation of a High Pressure Reaction Cell for in situ X-ray Absorption Spectroscopy

    SciTech Connect

    Bare,S.; Yang, N.; Kelly, S.; Mickelson, G.; Modica, F.

    2007-01-01

    X-ray absorption spectroscopy measurements of catalytic reactions have been instrumental in advancing the understanding of catalytic processes. These measurements require an in situ catalysis reaction cell with unique properties. Here we describe the design and initial operation of an in situ/operando catalysis reaction cell for transmission X-ray absorption spectroscopy measurements. The cell is designed: to be an ideal catalytic reactor with no mass transfer effects; to give the same conversion and selectivity under similar space velocities as standard laboratory micro-reactors; to be operational temperatures up to 600 {sup o}C and pressures up to 14 bar; to be X-ray transparent allowing XAS measurement to be collected in transmission for all elements with Z {>=} 23 (vanadium K-edge at 5.5 keV); to measure the actual catalyst bed temperature; to not use o-ring seals, or water cooling; to be robust, compact, easy to assemble, and use, and relatively low cost to produce. The heart of the cell is fabricated from an X-ray transparent beryllium tube that forms a plug flow reactor. XAFS data recorded during the reduction of a Re/{gamma}-A{sub 2}O{sub 3} catalyst as a function of hydrogen pressure from 0.05 to 8 bar, and from a Pt-Sn/{gamma}-A{sub 2}O{sub 3} catalyst during n-heptane reforming are given as initial examples of the versatility of the reactor.

  4. Comparative analysis of ex-situ and operando X-ray diffraction experiments for lithium insertion materials

    NASA Astrophysics Data System (ADS)

    Brant, William R.; Li, Dan; Gu, Qinfen; Schmid, Siegbert

    2016-01-01

    A comparative study of ex-situ and operando X-ray diffraction techniques using the fast lithium ion conductor Li0.18Sr0.66Ti0.5Nb0.5O3 is presented. Ex-situ analysis of synchrotron X-ray diffraction data suggests that a single phase material exists for all discharges to as low as 0.422 V. For samples discharged to 1 V or lower, i.e. with higher lithium content, it is possible to determine the lithium position from the X-ray data. However, operando X-ray diffraction from a coin cell reveals that a kinetically driven two phase region occurs during battery cycling below 1 V. Through monitoring the change in unit cell dimension during electrochemical cycling the dynamics of lithium insertion are explored. A reduction in the rate of unit cell expansion of 22(2)% part way through the first discharge and 13(1)% during the second discharge is observed. This reduction may be caused by a drop in lithium diffusion into the bulk material for higher lithium contents. A more significant change is a jump in the unit cell expansion by 60(2)% once the lithium content exceeds one lithium ion per vacant site. It is suggested that this jump is caused by damping of octahedral rotations, thus establishing a link between lithium content and octahedral rotations.

  5. In-situ synchrotron x-ray spectroscopy of ruthenium nanoparticles modified with selenium for oxygen reduction reaction.

    SciTech Connect

    Inukai, J.; Cao, D.; Wieckowski, A.; Chang, K.-C.; Menzel, A.; Komanicky, V.; You, H.; Materials Science Division; Univ. of Illinois; Univ. of Yamanashi

    2007-11-15

    We used in situ Se K-edge X-ray spectroscopy to characterize Ru nanoparticles chemically modified with submonolayers of selenium (Se/Ru) [Cao et al. J. Electrochem. Soc. 2006, 153, A869]. X-ray powder diffraction verified that the Se/Ru catalyst had metallic Ru cores. The in situ X-ray absorption near edge structure taken at the open circuit potential showed that there were both elemental and oxidized selenium on the as-prepared Se/Ru samples. All selenium oxide was reduced to the elemental form of selenium by applying negative potentials. By applying positive potentials, selenium was subsequently reoxidized. The analysis of the extended X-ray absorption fine structure shows the appearance of selenium hydration (Se-OH{sub 2}) in a deaerated solution, which was not observed during the oxygen reduction reaction. We present evidence that Se-free Ru atoms play an important role in the ORR activity of the Se/Ru catalyst studied in this paper.

  6. In situ synchrotron x-ray spectroscopy of ruthenium nanoparticles modified with selenium for an oxygen reduction reaction.

    SciTech Connect

    Inukai, J.; Cao, D.; Wieckowski, A.; Chang, K.-C.; Menzel, A.; Komanicky, V.; You, H.; Univ. Illinois; Univ. Yamanashi

    2007-11-15

    We used in situ Se K-edge X-ray spectroscopy to characterize Ru nanoparticles chemically modified with submonolayers of selenium (Se/Ru) [Cao et al. J. Electrochem. Soc. 2006, 153, A869]. X-ray powder diffraction verified that the Se/Ru catalyst had metallic Ru cores. The in situ X-ray absorption near edge structure taken at the open circuit potential showed that there were both elemental and oxidized selenium on the as-prepared Se/Ru samples. All selenium oxide was reduced to the elemental form of selenium by applying negative potentials. By applying positive potentials, selenium was subsequently reoxidized. The analysis of the extended X-ray absorption fine structure shows the appearance of selenium hydration (Se-OH{sub 2}) in a deaerated solution, which was not observed during the oxygen reduction reaction. We present evidence that Se-free Ru atoms play an important role in the ORR activity of the Se/Ru catalyst studied in this paper.

  7. Solubility of Minerals in HP-HT Aqueous Fluids: Results and Potentials of in situ Synchrotron X-Ray Fluorescence

    NASA Astrophysics Data System (ADS)

    Daniel, I.; Sanchez Valle, C.; Reynard, B.; Martinez, I.; Simionovici, A. S.

    2005-12-01

    CO2-rich saline aqueous fluids are liberated into the mantle when the altered oceanic crust is subducted, leading to the important geochemical phenomena of mantle wedge metasomatism and arc magmatism. To better understand these processes, knowledge of mineral-fluid equilibria and mineral solubility in high pressure-high temperature crustal fluids is thus required. We report here in situ measurements on the solubility of strontianite (SrCO3) and GeO2-rutile at P (up to 6.6 GPa) and T (up to 400°C) relevant for cold subducted slabs. The composition of the fluid surrounding the crystal, loaded in an externally heated diamond-anvil cell, was analysed in situ by monitoring the X-ray fluorescence of Sr2+ and Ge4+ cations, respectively, until chemical equilibrium was reached. Experiments were carried out at the ESRF (ID22 beamline) using a high-resolution monochromatic beam (2x5 μm2 and 18 keV), and a collection geometry at 30° from the transmitted beam. This results in quantitative analysis of the solution down to the 20 ppm level. In the case of strontianite, kinetic data of the dissolution reaction showed instantaneous equilibration times at 400°C. Measured dissolution rates are essentially compatible with a first-order reaction mechanism and allow to retrieve the activation energy (E_A) for the dissolution of SrCO3 at HP-HT conditions. Taking into account activity coefficients, measured Sr2+ concentrations are used to determine the solubility constant (K_s) of SrCO3 at HP-HT conditions, allowing further thermodynamic modelling of carbonate dissolution. In the case of GeO2-rutile, we observed a gradient of the Ge concentration in the fluid. Hence, on the top of solubility measurements, it also allows to calculate the diffusion coefficients of Ge in high P-T aqueous fluids. This experiment thus shows the suitability of the SXRF technique for the in situ study of elemental diffusion in aqueous systems under high P-T conditions. Such data are essential for the

  8. {ital In-situ} x-ray investigation of hydrogen charging in thin film bimetallic electrodes

    SciTech Connect

    Jisrawi, N.M.; Wiesmann, H.; Ruckman, M.W.; Thurston, T.R.; Reisfeld, G.; Ocko, B.M.; Strongin, M.

    1997-08-01

    Hydrogen uptake and discharge by thin metallic films under potentiostatic control was studied using x-ray diffraction at the National Synchrotron Light Source (NSLS). The formation of metal-hydrogen phases in Pd, Pd-capped Nb and Pd/Nb multilayer electrode structures was deduced from x-ray diffraction data and correlated with the cyclic voltammetry (CV) peaks. The x-ray data was also used to construct a plot of the hydrogen concentration as a function of cell potential for a multilayered thin film. {copyright} {ital 1997 Materials Research Society.}

  9. In Situ Ptychography of Heterogeneous Catalysts using Hard X-Rays: High Resolution Imaging at Ambient Pressure and Elevated Temperature.

    PubMed

    Baier, Sina; Damsgaard, Christian D; Scholz, Maria; Benzi, Federico; Rochet, Amélie; Hoppe, Robert; Scherer, Torsten; Shi, Junjie; Wittstock, Arne; Weinhausen, Britta; Wagner, Jakob B; Schroer, Christian G; Grunwaldt, Jan-Dierk

    2016-02-01

    A new closed cell is presented for in situ X-ray ptychography which allows studies under gas flow and at elevated temperature. In order to gain complementary information by transmission and scanning electron microscopy, the cell makes use of a Protochips E-chipTM which contains a small, thin electron transparent window and allows heating. Two gold-based systems, 50 nm gold particles and nanoporous gold as a relevant catalyst sample, were used for studying the feasibility of the cell. Measurements showing a resolution around 40 nm have been achieved under a flow of synthetic air and during heating up to temperatures of 933 K. An elevated temperature exhibited little influence on image quality and resolution. With this study, the potential of in situ hard X-ray ptychography for investigating annealing processes of real catalyst samples is demonstrated. Furthermore, the possibility to use the same sample holder for ex situ electron microscopy before and after the in situ study underlines the unique possibilities available with this combination of electron microscopy and X-ray microscopy on the same sample. PMID:26914998

  10. Performance and characteristics of a high pressure, high temperature capillary cell with facile construction for operando x-ray absorption spectroscopy

    SciTech Connect

    Bansode, Atul; Urakawa, Atsushi; Guilera, Gemma; Simonelli, Laura; Avila, Marta; Cuartero, Vera

    2014-08-15

    We demonstrate the use of commercially available fused silica capillary and fittings to construct a cell for operando X-ray absorption spectroscopy (XAS) for the study of heterogeneously catalyzed reactions under high pressure (up to 200 bars) and high temperature (up to 280 °C) conditions. As the first demonstration, the cell was used for CO{sub 2} hydrogenation reaction to examine the state of copper in a conventional Cu/ZnO/Al{sub 2}O{sub 3} methanol synthesis catalyst. The active copper component of the catalyst was shown to remain in the metallic state under supercritical reaction conditions, at 200 bars and up to 260 °C. With the coiled heating system around the capillary, one can easily change the length of the capillary and control the amount of catalyst under investigation. With precise control of reactant(s) flow, the cell can mimic and serve as a conventional fixed-bed micro-reactor system to obtain reliable catalytic data. This high comparability of the reaction performance of the cell and laboratory reactors is crucial to gain insights into the nature of actual active sites under technologically relevant reaction conditions. The large length of the capillary can cause its bending upon heating when it is only fixed at both ends because of the thermal expansion. The degree of the bending can vary depending on the heating mode, and solutions to this problem are also presented. Furthermore, the cell is suitable for Raman studies, nowadays available at several beamlines for combined measurements. A concise study of CO{sub 2} phase behavior by Raman spectroscopy is presented to demonstrate a potential of the cell for combined XAS-Raman studies.

  11. Performance and characteristics of a high pressure, high temperature capillary cell with facile construction for operando x-ray absorption spectroscopy.

    PubMed

    Bansode, Atul; Guilera, Gemma; Cuartero, Vera; Simonelli, Laura; Avila, Marta; Urakawa, Atsushi

    2014-08-01

    We demonstrate the use of commercially available fused silica capillary and fittings to construct a cell for operando X-ray absorption spectroscopy (XAS) for the study of heterogeneously catalyzed reactions under high pressure (up to 200 bars) and high temperature (up to 280 °C) conditions. As the first demonstration, the cell was used for CO2 hydrogenation reaction to examine the state of copper in a conventional Cu/ZnO/Al2O3 methanol synthesis catalyst. The active copper component of the catalyst was shown to remain in the metallic state under supercritical reaction conditions, at 200 bars and up to 260 °C. With the coiled heating system around the capillary, one can easily change the length of the capillary and control the amount of catalyst under investigation. With precise control of reactant(s) flow, the cell can mimic and serve as a conventional fixed-bed micro-reactor system to obtain reliable catalytic data. This high comparability of the reaction performance of the cell and laboratory reactors is crucial to gain insights into the nature of actual active sites under technologically relevant reaction conditions. The large length of the capillary can cause its bending upon heating when it is only fixed at both ends because of the thermal expansion. The degree of the bending can vary depending on the heating mode, and solutions to this problem are also presented. Furthermore, the cell is suitable for Raman studies, nowadays available at several beamlines for combined measurements. A concise study of CO2 phase behavior by Raman spectroscopy is presented to demonstrate a potential of the cell for combined XAS-Raman studies. PMID:25173285

  12. Performance and characteristics of a high pressure, high temperature capillary cell with facile construction for operando x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Bansode, Atul; Guilera, Gemma; Cuartero, Vera; Simonelli, Laura; Avila, Marta; Urakawa, Atsushi

    2014-08-01

    We demonstrate the use of commercially available fused silica capillary and fittings to construct a cell for operando X-ray absorption spectroscopy (XAS) for the study of heterogeneously catalyzed reactions under high pressure (up to 200 bars) and high temperature (up to 280 °C) conditions. As the first demonstration, the cell was used for CO2 hydrogenation reaction to examine the state of copper in a conventional Cu/ZnO/Al2O3 methanol synthesis catalyst. The active copper component of the catalyst was shown to remain in the metallic state under supercritical reaction conditions, at 200 bars and up to 260 °C. With the coiled heating system around the capillary, one can easily change the length of the capillary and control the amount of catalyst under investigation. With precise control of reactant(s) flow, the cell can mimic and serve as a conventional fixed-bed micro-reactor system to obtain reliable catalytic data. This high comparability of the reaction performance of the cell and laboratory reactors is crucial to gain insights into the nature of actual active sites under technologically relevant reaction conditions. The large length of the capillary can cause its bending upon heating when it is only fixed at both ends because of the thermal expansion. The degree of the bending can vary depending on the heating mode, and solutions to this problem are also presented. Furthermore, the cell is suitable for Raman studies, nowadays available at several beamlines for combined measurements. A concise study of CO2 phase behavior by Raman spectroscopy is presented to demonstrate a potential of the cell for combined XAS-Raman studies.

  13. In-situ high temperature irradiation setup for temperature dependent structural studies of materials under swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Kulriya, P. K.; Kumari, Renu; Kumar, Rajesh; Grover, V.; Shukla, R.; Tyagi, A. K.; Avasthi, D. K.

    2015-01-01

    An in-situ high temperature (1000 K) setup is designed and installed in the materials science beam line of superconducting linear accelerator at the Inter-University Accelerator Centre (IUAC) for temperature dependent ion irradiation studies on the materials exposed with swift heavy ion (SHI) irradiation. The Gd2Ti2O7 pyrochlore is irradiated using 120 MeV Au ion at 1000 K using the high temperature irradiation facility and characterized by ex-situ X-ray diffraction (XRD). Another set of Gd2Ti2O7 samples are irradiated with the same ion beam parameter at 300 K and simultaneously characterized using in-situ XRD available in same beam line. The XRD studies along with the Raman spectroscopic investigations reveal that the structural modification induced by the ion irradiation is strongly dependent on the temperature of the sample. The Gd2Ti2O7 is readily amorphized at an ion fluence 6 × 1012 ions/cm2 on irradiation at 300 K, whereas it is transformed to a radiation-resistant anion-deficient fluorite structure on high temperature irradiation, that amorphized at ion fluence higher than 1 × 1013 ions/cm2. The temperature dependent ion irradiation studies showed that the ion fluence required to cause amorphization at 1000 K irradiation is significantly higher than that required at room temperature irradiation. In addition to testing the efficiency of the in-situ high temperature irradiation facility, the present study establishes that the radiation stability of the pyrochlore is enhanced at higher temperatures.

  14. Geological Carbon Sequestration: new insights from in-situ Synchrotron X-ray Microtomography

    NASA Astrophysics Data System (ADS)

    Voltolini, M.; Kwon, T.; Ajo Franklin, J. B.

    2012-12-01

    In a world with rapidly increasing atmospheric CO2 concentrations, a variety of scalable technologies are being considered to mitigate emissions from the combustion of fossil fuels; among these approaches, geological carbon storage (GCS) is being actively tested at a variety of subsurface sites. Despite these activities, a mechanistic understanding of multiphase flow in scCO2/brine systems at the pore scale is still being developed. The distribution of scCO2 in the pore space controls a variety of processes at the continuum scale including CO2 dissolution rate (by way of brine/CO2 contact area), capillary trapping, and residual brine fraction. Virtually no dynamic measurements of the pore-scale distribution of scCO2 in real geological samples have been made in three dimensions leaving models describing multi-phase fluid dynamics, reactive transport, and geophysical properties reliant on analog systems (often using fewer spatial dimensions, different fluids, or lower pressures) or theoretical models describing phase configurations. We present dynamic pore-scale imagery of scCO2 invasion dynamics in a 3D geological sample, in this case a quartz-rich sandstone core extracted from the Domengine Fm, a regionally extensive unit which is currently a target for future GCS operations in the Sacramento Basin. This dataset, acquired using synchrotron X-ray micro tomography (SXR-μCT) and high speed radiography, was made possible by development of a controlled P/T flow-through triaxial cell compatible with X-ray imaging in the 8-40 keV range. These experiments successfully resolved scCO2 and brine phases at a spatial resolution of 4.47 μm while the sample was kept at in situ conditions (45°C, 9 MPa pore pressure, 14 MPa hydrostatic confining stress) during drainage and imbibition cycles. Image volumes of the dry, brine saturated, and partially scCO2 saturated sample were captured and were used to correlate aspects of rock microstructure to development of the invasion front

  15. Synchrotron x-ray spectroscopy of EuHNO3 aqueous solutions at high temperatures and pressures and Nb-bearing silicate melt phases coexisting with hydrothermal fluids using a modified hydrothermal diamond anvil cell and rail assembly.

    PubMed

    Mayanovic, Robert A; Anderson, Alan J; Bassett, William A; Chou, I-Ming

    2007-05-01

    A modified hydrothermal diamond anvil cell (HDAC) rail assembly has been constructed for making synchrotron x-ray absorption spectroscopy, x-ray fluorescence, and x-ray mapping measurements on fluids or solid phases in contact with hydrothermal fluids up to approximately 900 degrees C and 700 MPa. The diamond anvils of the HDAC are modified by laser milling grooves or holes, for the reduction of attenuation of incident and fluorescent x rays and sample cavities. The modified HDAC rail assembly has flexibility in design for measurement of light elements at low concentrations or heavy elements at trace levels in the sample and the capability to probe minute individual phases of a multiphase fluid-based system using focused x-ray microbeam. The supporting rail allows for uniform translation of the HDAC, rotation and tilt stages, and a focusing mirror, which is used to illuminate the sample for visual observation using a microscope, relative to the direction of the incident x-ray beam. A structure study of Eu(III) aqua ion behavior in high-temperature aqueous solutions and a study of Nb partitioning and coordination in a silicate melt in contact with a hydrothermal fluid are described as applications utilizing the modified HDAC rail assembly. PMID:17552838

  16. Synchrotron x-ray spectroscopy of EuHN O3 aqueous solutions at high temperatures and pressures and Nb-bearing silicate melt phases coexisting with hydrothermal fluids using a modified hydrothermal diamond anvil cell and rail assembly

    USGS Publications Warehouse

    Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming

    2007-01-01

    A modified hydrothermal diamond anvil cell (HDAC) rail assembly has been constructed for making synchrotron x-ray absorption spectroscopy, x-ray fluorescence, and x-ray mapping measurements on fluids or solid phases in contact with hydrothermal fluids up to ???900??C and 700 MPa. The diamond anvils of the HDAC are modified by laser milling grooves or holes, for the reduction of attenuation of incident and fluorescent x rays and sample cavities. The modified HDAC rail assembly has flexibility in design for measurement of light elements at low concentrations or heavy elements at trace levels in the sample and the capability to probe minute individual phases of a multiphase fluid-based system using focused x-ray microbeam. The supporting rail allows for uniform translation of the HDAC, rotation and tilt stages, and a focusing mirror, which is used to illuminate the sample for visual observation using a microscope, relative to the direction of the incident x-ray beam. A structure study of Eu(III) aqua ion behavior in high-temperature aqueous solutions and a study of Nb partitioning and coordination in a silicate melt in contact with a hydrothermal fluid are described as applications utilizing the modified HDAC rail assembly. ?? 2007 American Institute of Physics.

  17. A new experimental cell for in situ and operandoX-ray absorption measurements in heterogeneous catalysis.

    PubMed

    Girardon, J S; Khodakov, A Y; Capron, M; Cristol, S; Dujardin, C; Dhainaut, F; Nikitenko, S; Meneau, F; Bras, W; Payen, E

    2005-09-01

    A new X-ray absorption cell dedicated to in situ and operando experiments in heterogeneous catalysis has been built and tested. The cell consists of several boron nitride and stainless steel plates linked together using graphite seals. It allows the measurement of XANES and EXAFS spectra of heterogeneous catalysts within a wide range of photon energies in transmission mode under the flow of various oxidative and reductive gas mixtures at elevated temperatures. The cell is compact and easy to build. Catalysts are loaded into the cell as powders. The use of boron nitride and a small beam pathlength in the cell result in a low absorption of the X-ray beam at lower energies. The cell was tested by in situ characterizing cobalt species during oxidative and reductive pre-treatments of a silica-supported Fischer-Tropsch catalyst. An operando study of methanol conversion over alumina-supported molybdenum catalysts was also carried out. PMID:16120995

  18. A modular reactor design for in situ synchrotron x-ray investigation of atomic layer deposition processes

    NASA Astrophysics Data System (ADS)

    Klug, Jeffrey A.; Weimer, Matthew S.; Emery, Jonathan D.; Yanguas-Gil, Angel; Seifert, Sönke; Schlepütz, Christian M.; Martinson, Alex B. F.; Elam, Jeffrey W.; Hock, Adam S.; Proslier, Thomas

    2015-11-01

    Synchrotron characterization techniques provide some of the most powerful tools for the study of film structure and chemistry. The brilliance and tunability of the Advanced Photon Source allow access to scattering and spectroscopic techniques unavailable with in-house laboratory setups and provide the opportunity to probe various atomic layer deposition (ALD) processes in situ starting at the very first deposition cycle. Here, we present the design and implementation of a portable ALD instrument which possesses a modular reactor scheme that enables simple experimental switchover between various beamlines and characterization techniques. As first examples, we present in situ results for (1) X-ray surface scattering and reflectivity measurements of epitaxial ZnO ALD on sapphire, (2) grazing-incidence small angle scattering of MnO nucleation on silicon, and (3) grazing-incidence X-ray absorption spectroscopy of nucleation-regime Er2O3 ALD on amorphous ALD alumina and single crystalline sapphire.

  19. Quantifying the Nucleation and Growth Kinetics of Microwave Nanochemistry Enabled by in Situ High-Energy X-ray Scattering.

    PubMed

    Liu, Qi; Gao, Min-Rui; Liu, Yuzi; Okasinski, John S; Ren, Yang; Sun, Yugang

    2016-01-13

    The fast reaction kinetics presented in the microwave synthesis of colloidal silver nanoparticles was quantitatively studied, for the first time, by integrating a microwave reactor with in situ X-ray diffraction at a high-energy synchrotron beamline. Comprehensive data analysis reveals two different types of reaction kinetics corresponding to the nucleation and growth of the Ag nanoparticles. The formation of seeds (nucleation) follows typical first-order reaction kinetics with activation energy of 20.34 kJ/mol, while the growth of seeds (growth) follows typical self-catalytic reaction kinetics. Varying the synthesis conditions indicates that the microwave colloidal chemistry is independent of concentration of surfactant. These discoveries reveal that the microwave synthesis of Ag nanoparticles proceeds with reaction kinetics significantly different from the synthesis present in conventional oil bath heating. The in situ X-ray diffraction technique reported in this work is promising to enable further understanding of crystalline nanomaterials formed through microwave synthesis. PMID:26625184

  20. In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal-organic framework

    NASA Astrophysics Data System (ADS)

    Katsenis, Athanassios D.; Puškarić, Andreas; Štrukil, Vjekoslav; Mottillo, Cristina; Julien, Patrick A.; Užarević, Krunoslav; Pham, Minh-Hao; Do, Trong-On; Kimber, Simon A. J.; Lazić, Predrag; Magdysyuk, Oxana; Dinnebier, Robert E.; Halasz, Ivan; Friščić, Tomislav

    2015-03-01

    Chemical and physical transformations by milling are attracting enormous interest for their ability to access new materials and clean reactivity, and are central to a number of core industries, from mineral processing to pharmaceutical manufacturing. While continuous mechanical stress during milling is thought to create an environment supporting nonconventional reactivity and exotic intermediates, such speculations have remained without proof. Here we use in situ, real-time powder X-ray diffraction monitoring to discover and capture a metastable, novel-topology intermediate of a mechanochemical transformation. Monitoring the mechanochemical synthesis of an archetypal metal-organic framework ZIF-8 by in situ powder X-ray diffraction reveals unexpected amorphization, and on further milling recrystallization into a non-porous material via a metastable intermediate based on a previously unreported topology, herein named katsenite (kat). The discovery of this phase and topology provides direct evidence that milling transformations can involve short-lived, structurally unusual phases not yet accessed by conventional chemistry.

  1. A modular reactor design for in situ synchrotron X-ray investigation of atomic layer deposition processes

    SciTech Connect

    Klug, Jeffrey A.; Weimer, Matthew S.; Emery, Jonathan D.; Yanguas-Gil, Angel; Seifert, Sonke; Schleputz, Christian M.; Martinson, Alex B. F.; Elam, Jeffrey W.; Hock, Adam S.; Proslier, Thomas

    2015-11-01

    Synchrotron characterization techniques provide some of the most powerful tools for the study of film structure and chemistry. The brilliance and tunability of the Advanced Photon Source allow access to scattering and spectroscopic techniques unavailable with in-house laboratory setups and provide the opportunity to probe various atomic layer deposition (ALD) processes in situ starting at the very first deposition cycle. Here, we present the design and implementation of a portable ALD instrument which possesses a modular reactor scheme that enables simple experimental switchover between various beamlines and characterization techniques. As first examples, we present \\textit{in situ} results for 1.) X-ray surface scattering and reflectivity measurements of epitaxial ZnO ALD on sapphire, 2.) grazing-incidence small angle scattering of MnO nucleation on silicon, and 3.) grazing-incidence X-ray absorption spectroscopy of nucleation-regime Er2O3 ALD on amorphous ALD alumina and single crystalline sapphire.

  2. A modular reactor design for in situ synchrotron x-ray investigation of atomic layer deposition processes

    SciTech Connect

    Klug, Jeffrey A. Emery, Jonathan D.; Martinson, Alex B. F.; Proslier, Thomas; Weimer, Matthew S.; Yanguas-Gil, Angel; Elam, Jeffrey W.; Seifert, Sönke; Schlepütz, Christian M.; Hock, Adam S.

    2015-11-15

    Synchrotron characterization techniques provide some of the most powerful tools for the study of film structure and chemistry. The brilliance and tunability of the Advanced Photon Source allow access to scattering and spectroscopic techniques unavailable with in-house laboratory setups and provide the opportunity to probe various atomic layer deposition (ALD) processes in situ starting at the very first deposition cycle. Here, we present the design and implementation of a portable ALD instrument which possesses a modular reactor scheme that enables simple experimental switchover between various beamlines and characterization techniques. As first examples, we present in situ results for (1) X-ray surface scattering and reflectivity measurements of epitaxial ZnO ALD on sapphire, (2) grazing-incidence small angle scattering of MnO nucleation on silicon, and (3) grazing-incidence X-ray absorption spectroscopy of nucleation-regime Er{sub 2}O{sub 3} ALD on amorphous ALD alumina and single crystalline sapphire.

  3. Kinetic Control of Metal–Organic Framework Crystallization Investigated by Time-Resolved In Situ X-Ray Scattering

    SciTech Connect

    Stavitski E.; Goesten M; Juan-Alcaniz J.; Martinez-Joaristi A.; Serra-Crespo P.; Petukhov A.; Gascon J.; Kapteijn F.

    2011-07-14

    The mechanism behind the multistep synthesis of two metal-organic frameworks sharing the same metal and organic precursors was revealed by in-situ time-resolved small- and wide-angle X-ray scattering. Key factors governing the crystal assembly could be established (see picture: C gray, H white, N blue, O red, Al yellow, Cl green), including solvent, temperature, and precursor concentration.

  4. In situ flash x-ray high-speed computed tomography for the quantitative analysis of highly dynamic processes

    NASA Astrophysics Data System (ADS)

    Moser, Stefan; Nau, Siegfried; Salk, Manfred; Thoma, Klaus

    2014-02-01

    The in situ investigation of dynamic events, ranging from car crash to ballistics, often is key to the understanding of dynamic material behavior. In many cases the important processes and interactions happen on the scale of milli- to microseconds at speeds of 1000 m s-1 or more. Often, 3D information is necessary to fully capture and analyze all relevant effects. High-speed 3D-visualization techniques are thus required for the in situ analysis. 3D-capable optical high-speed methods often are impaired by luminous effects and dust, while flash x-ray based methods usually deliver only 2D data. In this paper, a novel 3D-capable flash x-ray based method, in situ flash x-ray high-speed computed tomography is presented. The method is capable of producing 3D reconstructions of high-speed processes based on an undersampled dataset consisting of only a few (typically 3 to 6) x-ray projections. The major challenges are identified, discussed and the chosen solution outlined. The application is illustrated with an exemplary application of a 1000 m s-1 high-speed impact event on the scale of microseconds. A quantitative analysis of the in situ measurement of the material fragments with a 3D reconstruction with 1 mm voxel size is presented and the results are discussed. The results show that the HSCT method allows gaining valuable visual and quantitative mechanical information for the understanding and interpretation of high-speed events.

  5. High-temperature X-ray diffraction and thermal expansion of nanocrystalline and coarse-crystalline acanthite α-Ag2S and argentite β-Ag2S.

    PubMed

    Sadovnikov, S I; Gusev, A I; Chukin, A V; Rempel, A A

    2016-02-14

    An in situ study of thermal expansion of polymorphic phases of coarse-crystalline and nanocrystalline silver sulfide - monoclinic acanthite α-Ag2S and cubic argentite β-Ag2S - has been carried out for the first time using the high-temperature X-ray diffraction method. The temperature dependencies of the unit cell parameters of acanthite and argentite in the interval of 300-623 K have been determined, and the thermal expansion coefficients of acanthite and argentite have been found. It is shown that the observed difference in the thermal expansion coefficients for nano- and coarse-crystalline acanthite is due to the small particle size of nanocrystalline silver sulfide leading to the growth of anharmonicity of atomic vibrations. It is established by differential thermal analysis that a reversible polymorphic acanthite-argentite phase transformation takes place at ∼449-450 K and the phase transformation enthalpy is equal to ∼3.7-3.9 kJ mol(-1). PMID:26796061

  6. In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Lithium-Oxygen Redox Reactions

    SciTech Connect

    Lu, Yi-Chun; Crumlin, Ethan J.; Veith, Gabriel M.; Harding, Jonathon R.; Mutoro, Eva; Baggetto, Loïc; Dudney, Nancy J.; Liu, Zhi; Shao-Horn, Yang

    2012-10-08

    The lack of fundamental understanding of the oxygen reduction and oxygen evolution in nonaqueous electrolytes significantly hinders the development of rechargeable lithium-air batteries. Here we employ a solid-state Li4+xTi5O12/LiPON/LixV2O5 cell and examine in situ the chemistry of Li-O2 reaction products on LixV2O5 as a function of applied voltage under ultra high vacuum (UHV) and near ambient-pressure of oxygen using X-ray photoelectron spectroscopy (APXPS). Oxygen reduction and evolution reactions take place on the surface of the mixed electronic and Li+ ionic conductor, LixV2O5, which eliminate parasitic reactions between oxygen reduction/evolution reaction intermediates and aprotic electrolytes used in Li-O2 batteries reported to date. Under UHV, reversible lithium intercalation and de-intercalation from LixV2O5 was noted, where the changes in the vanadium valence state revealed from XPS in this study were comparable to that reported previously from Li/LixV2O5 thin film batteries. In presence of oxygen near ambient pressure, the LixV2O5 surface was covered gradually by the reaction product of oxygen reduction, namely lithium peroxide (Li2O2) (approximately 1-2 unit cells) upon discharge. Interestingly, the LixV2O5 surface became re-exposed upon charging, and the oxidation of Li2O2 began at much lower overpotentials (~240 mV) than the charge overpotentials of Li-O2 cells (~1000 mV) with aprotic electrolytes, which can be attributed to subnanometer-thick Li2O2 with surfaces free of contaminants such as carbonate species. Our study provides first evidence of reversible lithium peroxide formation and decomposition in situ on an oxide surface using a solid-state cell, and new insights into the reaction mechanism of Li-O2 chemistry.

  7. Development of a Compact System for In-situ X-ray Scattering Studies of Organic Thin Film Deposition

    SciTech Connect

    Headrick, R.L.; Malliaras, G.G.; Mayer, A.C.; Deyhim, A.K.; Hunt, A.C.

    2004-05-12

    We have developed a compact vacuum deposition chamber for in-situ x-ray scattering studies of organic thin film growth. The system is based on a small cylindrical chamber that can be mounted on a standard four-circle diffractometer. Incident and scattered x-rays enter and exit the chamber through a curved Be foil window that covers 200 degrees, and is sealed to the body of the chamber. The sample is mounted on a support tube with heating and cooling from liquid nitrogen temperature to >100 deg. C. Integral to the sample stage is a multi-wire feedthrough to facilitate in-situ electrical transport characterization of organic semiconductor thin films. This is one of the novel capabilities of the system. In addition, the sample stage is mounted on a rotary vacuum feedthrough, which is mechanically coupled to the 'phi' stage of the diffractometer. An effusion cell, shutter, and quartz oscillator thickness monitor are also incorporated into the system, which is pumped by a small turbomolecular pump. The system thus configured is capable of access to full reciprocal space, within the limits of the Be window. Results of initial experiments performed at the 48-pole wiggler beamline A2, at the Cornell High Energy Synchrotron Source show that in-situ x-ray scattering is sensitive to the early stages of nucleation and growth of organic semiconductor thin films.

  8. Grain rotation and lattice deformation during photoinduced chemical reactions revealed by in situ X-ray nanodiffraction.

    PubMed

    Huang, Zhifeng; Bartels, Matthias; Xu, Rui; Osterhoff, Markus; Kalbfleisch, Sebastian; Sprung, Michael; Suzuki, Akihiro; Takahashi, Yukio; Blanton, Thomas N; Salditt, Tim; Miao, Jianwei

    2015-07-01

    In situ X-ray diffraction (XRD) and transmission electron microscopy (TEM) have been used to investigate many physical science phenomena, ranging from phase transitions, chemical reactions and crystal growth to grain boundary dynamics. A major limitation of in situ XRD and TEM is a compromise that has to be made between spatial and temporal resolution. Here, we report the development of in situ X-ray nanodiffraction to measure high-resolution diffraction patterns from single grains with up to 5 ms temporal resolution. We observed, for the first time, grain rotation and lattice deformation in chemical reactions induced by X-ray photons: Br(-) + hv → Br + e(-) and e(-) + Ag(+) → Ag(0). The grain rotation and lattice deformation associated with the chemical reactions were quantified to be as fast as 3.25 rad s(-1) and as large as 0.5 Å, respectively. The ability to measure high-resolution diffraction patterns from individual grains with a temporal resolution of several milliseconds is expected to find broad applications in materials science, physics, chemistry and nanoscience. PMID:26053760

  9. X-ray irradiation of soda-lime glasses studied in situ with surface plasmon resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Serrano, A.; Gálvez, F.; Rodríguez de la Fuente, O.; García, M. A.

    2013-03-01

    We present here a study of hard X-ray irradiation of soda-lime glasses performed in situ and in real time. For this purpose, we have used a Au thin film grown on glass and studied the excitation of its surface plasmon resonance (SPR) while irradiating the sample with X-rays, using a recently developed experimental setup at a synchrotron beamline [Serrano et al., Rev. Sci. Instrum. 83, 083101 (2012)]. The extreme sensitivity of the SPR to the features of the glass substrate allows probing the modifications caused by the X-rays. Irradiation induces color centers in the soda-lime glass, modifying its refractive index. Comparison of the experimental results with simulated data shows that both, the real and the imaginary parts of the refractive index of soda-lime glasses, change upon irradiation in time intervals of a few minutes. After X-ray irradiation, the effects are partially reversible. The defects responsible for these modifications are identified as non-bridging oxygen hole centers, which fade by recombination with electrons after irradiation. The kinetics of the defect formation and fading process are also studied in real time.

  10. X-ray irradiation of soda-lime glasses studied in situ with surface plasmon resonance spectroscopy

    SciTech Connect

    Serrano, A.; Galvez, F.; Rodriguez de la Fuente, O.; Garcia, M. A.

    2013-03-21

    We present here a study of hard X-ray irradiation of soda-lime glasses performed in situ and in real time. For this purpose, we have used a Au thin film grown on glass and studied the excitation of its surface plasmon resonance (SPR) while irradiating the sample with X-rays, using a recently developed experimental setup at a synchrotron beamline [Serrano et al., Rev. Sci. Instrum. 83, 083101 (2012)]. The extreme sensitivity of the SPR to the features of the glass substrate allows probing the modifications caused by the X-rays. Irradiation induces color centers in the soda-lime glass, modifying its refractive index. Comparison of the experimental results with simulated data shows that both, the real and the imaginary parts of the refractive index of soda-lime glasses, change upon irradiation in time intervals of a few minutes. After X-ray irradiation, the effects are partially reversible. The defects responsible for these modifications are identified as non-bridging oxygen hole centers, which fade by recombination with electrons after irradiation. The kinetics of the defect formation and fading process are also studied in real time.