Science.gov

Sample records for situ structure-function studies

  1. Two-dimensional boron nitride structures functionalization: first principles studies.

    PubMed

    Ponce-Pérez, R; Cocoletzi, Gregorio H; Takeuchi, Noboru

    2016-09-01

    Density functional theory calculations have been performed to investigate two-dimensional hexagonal boron nitride (2D hBN) structures functionalization with organic molecules. 2x2, 4x4 and 6x6 periodic 2D hBN layers have been considered to interact with acetylene. To deal with the exchange-correlation energy the generalized gradient approximation (GGA) is invoked. The electron-ion interaction is treated with the pseudopotential method. The GGA with the Perdew-Burke-Ernzerhoff (PBE) functionals together with van der Waals interactions are considered to deal with the composed systems. To investigate the functionalization two main configurations have been explored; in one case the molecule interacts with the boron atom and in the other with the nitrogen atom. Results of the adsorption energies indicate chemisorption in both cases. The total density of states (DOS) displays an energy gap in both cases. The projected DOS indicate that the B-p and N-p orbitals are those that make the most important contribution in the valence band and the H-s and C-p orbitals provide an important contribution in the conduction band to the DOS. Provided that the interactions of the acetylene with the 2D layer modify the structural and electronic properties of the hBN the possibility of structural functionalization using organic molecules may be concluded. PMID:27566317

  2. Experimental Studies of Structure, Function, and Coherent Oscillations in Biomolecules

    NASA Astrophysics Data System (ADS)

    Champion, Paul

    2005-03-01

    Femtosecond coherence spectroscopy can be used to prepare and monitor coherent states of biological samples such as heme proteins. Following laser pulse induced ligand photolysis of myoglobin, the (initially planar) heme group is left far from its final product state equilibrium geometry. This leads to coherent oscillations of those modes composing the reaction coordinate for diatomic ligand binding and dissociation. Coherence studies, along with ``white light'' continuum measurements of the spectral dynamics, show that the timescale for diatomic ligand dissociation is much shorter than the 150fs period of the Fe-histidine vibration (the Fe-histidine bond constitutes the sole covalent linkage between the heme and protein material). Recent measurements of the effects of temperature and sample condition on the coherent motions of the heme and on the ultrafast geminate rebinding of various diatomic ligands are also reported. Investigations of heme model compounds, in the absence of the protein material, show that the spectrum of low frequency heme modes can be altered by the choice of sample conditions. The studies of the heme model compounds also allow the diatomic ligand rebinding barrier to be separated into ``proximal'' and ``distal'' contributions that can be separately determined.

  3. Inverse structure functions

    SciTech Connect

    Pearson, Bruce R.; Water, Willem van de

    2005-03-01

    While the ordinary structure function in turbulence is concerned with the statistical moments of the velocity increment {delta}u measured over a distance r, the inverse structure function is related to the distance r where the turbulent velocity exits the interval {delta}u. We study inverse structure functions of wind-tunnel turbulence which covers a range of Reynolds numbers Re{sub {lambda}}=400-1100. We test a recently proposed relation between the scaling exponents of the ordinary structure functions and those of the inverse structure functions [S. Roux and M. H. Jensen, Phys. Rev. E 69, 16309 (2004)]. The relatively large range of Reynolds numbers in our experiment also enables us to address the scaling with Reynolds number that is expected to highlight the intermediate dissipative range. While we firmly establish the (relative) scaling of inverse structure functions, our experimental results fail both predictions. Therefore, the question of the significance of inverse structure functions remains open.

  4. Evolutionary Studies Illuminate the Structural-Functional Model of Plant Phytochromes[W

    PubMed Central

    Mathews, Sarah

    2010-01-01

    A synthesis of insights from functional and evolutionary studies reveals how the phytochrome photoreceptor system has evolved to impart both stability and flexibility. Phytochromes in seed plants diverged into three major forms, phyA, phyB, and phyC, very early in the history of seed plants. Two additional forms, phyE and phyD, are restricted to flowering plants and Brassicaceae, respectively. While phyC, D, and E are absent from at least some taxa, phyA and phyB are present in all sampled seed plants and are the principal mediators of red/far-red–induced responses. Conversely, phyC-E apparently function in concert with phyB and, where present, expand the repertoire of phyB activities. Despite major advances, aspects of the structural-functional models for these photoreceptors remain elusive. Comparative sequence analyses expand the array of locus-specific mutant alleles for analysis by revealing historic mutations that occurred during gene lineage splitting and divergence. With insights from crystallographic data, a subset of these mutants can be chosen for functional studies to test their importance and determine the molecular mechanism by which they might impact light perception and signaling. In the case of gene families, where redundancy hinders isolation of some proportion of the relevant mutants, the approach may be particularly useful. PMID:20118225

  5. Use of Synthetic Peptides to Study Structure-Function Relationships of Matrix Metalloproteinases and Their Substrates.

    NASA Astrophysics Data System (ADS)

    Netzel-Arnett, Sarah Joann

    The matrix metalloproteinases (MMPs) are a family of zinc proteinases that is collectively capable of degrading the major components of the extracellular matrix. A variety of synthetic peptides has been prepared which are models for the human MMP and their substrates to study structure -function relationships in this enzyme-substrate system. To elucidate the sequence specificity of the MMP, the k _{cat}/K_ M values for the hydrolysis of over 50 synthetic octapeptides has been investigated. Similarities, as well as distinct differences have been found between the individual MMP with the largest differences occurring at subsites P_1, P_1^' and P_3 ^'. Based on these data, quenched -fluorescence substrates with optimized sequences have been developed for five human MMP. The key features of these heptapeptides are a tryptophan on the P_ n^' side and a dinitrophenol quenching group on the amino terminus. To assess the role of the triple helical conformation in the collagenase-collagen system, a series of triple helical peptides has been prepared and shown to compete with collagen in collagenase assays. This provides evidence for the existence of a triple helical recognition site distinct from the active site. All of the MMP are secreted as zymogens and it has been postulated that the portion of the propeptide surrounding a critical cysteine is responsible for maintaining latency. Conformational energy calculations and mutagenesis studies have suggested that this region adopts a specific conformation that stabilizes the latent form. Peptide models of this region of the propeptide have been prepared and shown to inhibit the MMP. CD and NMR studies, however, have failed to provide evidence for the predicted peptide conformation. Thus, the observed inhibition may reflect their propensity to adopt the propeptide conformation upon binding to the enzyme.

  6. Genetic and structure-function studies of missense mutations in human endothelial lipase.

    PubMed

    Razzaghi, Hamid; Tempczyk-Russell, Anna; Haubold, Kurt; Santorico, Stephanie A; Shokati, Touraj; Christians, Uwe; Churchill, Mair E A

    2013-01-01

    Endothelial lipase (EL) plays a pivotal role in HDL metabolism. We sought to characterize EL and its interaction with HDL as well as its natural variants genetically, functionally and structurally. We screened our biethnic population sample (n = 802) for selected missense mutations (n = 5) and identified T111I as the only common variant. Multiple linear regression analyses in Hispanic subjects revealed an unexpected association between T111I and elevated LDL-C (p-value = 0.012) and total cholesterol (p-value = 0.004). We examined lipase activity of selected missense mutants (n = 10) and found different impacts on EL function, ranging from normal to complete loss of activity. EL-HDL lipidomic analyses indicated that EL has a defined remodeling of HDL without exhaustion of the substrate and a distinct and preference for several fatty acids that are lipid mediators and known for their potent pro- and anti-inflammatory properties. Structural studies using homology modeling revealed a novel α/β motif in the C-domain, unique to EL. The EL dimer was found to have the flexibility to expand and to bind various sizes of HDL particles. The likely impact of the all known missense mutations (n = 18) on the structure of EL was examined using molecular modeling and the impact they may have on EL lipase activity using a novel structure-function slope based on their structural free energy differences. The results of this multidisciplinary approach delineated the impact of EL and its variants on HDL. Moreover, the results suggested EL to have the capacity to modulate vascular health through its role in fatty acid-based signaling pathways. PMID:23536757

  7. A detailed study of nucleon structure function in nuclei in the valence quark region

    SciTech Connect

    Bianchi, N.

    1994-04-01

    The so called {open_quotes}EMC effect{close_quotes} discovered during the 1980`s, has caused a big controversy in the community of nuclear and high energy physicists; during the last ten years, five experiments have been performed in different laboratories and several hundreds of papers about the possible interpretation of the modification of the nucleon structure function inside nuclei have been published. However, from the experimental point of view, the main goal of four experiments (EMC, BCDMS, NMC, FNAL) has been to emphasize the region of low x{sub b}, where shadowing effects appear. In the region of valence quarks and nuclear effects (x{sub b} > 0.1 - 0.2) the most reliable data presently available are from the SLAC E139 experiment performed in 1983 with only 80 hours of beam time. New precise data in the valence quark region are necessary to measure separate structure functions F{sub 2}(x{sub b}, Q{sup 2}) and R{sup lt}(x{sub b},Q{sup 2}) = {sigma}{sub l}/{sigma}{sub t}, and to investigate the real A-dependence of the ratio between bound and free-nucleon structure functions which is not completely defined by the SLAC data. Moreover, from the nuclear physics point of view, a measurement on some unexplored nuclei, like {sup 3}He and {sup 48}Ca, would be of great interest. The intermediate scaling region (0.1 < x{sub b} < 0.7) would be accessible at CEBAF if the machine energy will reach 6-8 GeV, as suggested by all the tests performed on the RF cavities. This physics program has been already presented in two letter of intents.

  8. Study of neutron spin structure functions at low Q{sup 2} with polarized {sup 3}He

    SciTech Connect

    Seonho Choi

    2000-12-12

    The recently completed experiment E94-010 at Jefferson Lab studies the neutron spin structure functions at low momentum transfer (Q{sup 2}) values. Using a polarized {sup 3} He target and polarized electron beam, we have measured the asymmetries and cross sections for {sup 3}He(e,e') from the elastic to the deep inelastic region. The covered Q{sup 2} ranges from 0.03 to 1.1 GeV{sup 2}. From the data, the Q{sup 2} evolution of the spin structure functions for {sup 3}He and neutron, and of the Gerasimov-Drell-Hearn (GDH) sum rule has been studied, and the preliminary results are presented.

  9. Structure-function studies of the human immunodeficiency virus type 1 matrix protein, p17.

    PubMed

    Cannon, P M; Matthews, S; Clark, N; Byles, E D; Iourin, O; Hockley, D J; Kingsman, S M; Kingsman, A J

    1997-05-01

    The human immunodeficiency virus type 1 (HIV-1) matrix protein, p17, plays important roles in both the early and late stages of the viral life cycle. Using our previously determined solution structure of p17, we have undertaken a rational mutagenesis program aimed at mapping structure-function relationships within the molecule. Amino acids hypothesized to be important for p17 function were mutated and examined for effect in an infectious proviral clone of HIV-1. In parallel, we analyzed by nuclear magnetic resonance spectroscopy the structure of recombinant p17 protein containing such substitutions. These analyses identified three classes of mutants that were defective in viral replication: (i) proteins containing substitutions at internal residues that grossly distorted the structure of recombinant p17 and prevented viral particle formation, (ii) mutations at putative p17 trimer interfaces that allowed correct folding of recombinant protein but produced virus that was defective in particle assembly, and (iii) substitution of basic residues in helix A that caused some relocation of virus assembly to intracellular locations and produced normally budded virions that were completely noninfectious. PMID:9094619

  10. Structural optimization and structure-functional selectivity relationship studies of G protein-biased EP2 receptor agonists.

    PubMed

    Ogawa, Seiji; Watanabe, Toshihide; Moriyuki, Kazumi; Goto, Yoshikazu; Yamane, Shinsaku; Watanabe, Akio; Tsuboi, Kazuma; Kinoshita, Atsushi; Okada, Takuya; Takeda, Hiroyuki; Tani, Kousuke; Maruyama, Toru

    2016-05-15

    The modification of the novel G protein-biased EP2 agonist 1 has been investigated to improve its G protein activity and develop a better understanding of its structure-functional selectivity relationship (SFSR). The optimization of the substituents on the phenyl ring of 1, followed by the inversion of the hydroxyl group on the cyclopentane moiety led to compound 9, which showed a 100-fold increase in its G protein activity compared with 1 without any increase in β-arrestin recruitment. Furthermore, SFSR studies revealed that the combination of meta and para substituents on the phenyl moiety was crucial to the functional selectivity. PMID:27055938

  11. Mutants of Chlamydomonas: tools to study thylakoid membrane structure, function and biogenesis.

    PubMed

    de Vitry, C; Vallon, O

    1999-06-01

    The unicellular green alga Chlamydomonas reinhardtii is a model system for the study of photosynthesis and chloroplast biogenesis. C. reinhardtii has a photosynthesis apparatus similar to that of higher plants and it grows at rapid rate (generation time about 8 h). It is a facultative phototroph, which allows the isolation of mutants unable to perform photosynthesis and its sexual cycle allows a variety of genetic studies. Transformation of the nucleus and chloroplast genomes is easily performed. Gene transformation occurs mainly by homologous recombination in the chloroplast and heterologous recombination in the nucleus. Mutants are precious tools for studies of thylakoid membrane structure, photosynthetic function and assembly. Photosynthesis mutants affected in the biogenesis of a subunit of a protein complex usually lack the entire complex; this pleiotropic effect has been used in the identification of the other subunits, in the attribution of spectroscopic signals and also as a 'genetic cleaning' process which facilitates both protein complex purification, absorption spectroscopy studies or freeze-fracture analysis. The cytochrome b6f complex is not required for the growth of C. reinhardtii, unlike the case of photosynthetic prokaryotes in which the cytochrome complex is also part of the respiratory chain, and can be uniquely studied in Chlamydomonas by genetic approaches. We describe in greater detail the use of Chlamydomonas mutants in the study of this complex. PMID:10433117

  12. Structure-function studies of DNA damage using AB INITIO quantum mechanics and molecular dynamics simulation

    SciTech Connect

    Miller, J.; Miaskiewicz, K.; Osman, R.

    1993-12-01

    Studies of ring-saturated pyrimidine base lesions are used to illustrate an integrated modeling approach that combines quantum-chemical calculations with molecular dynamics simulation. Electronic-structure calculations on the lesions in Isolation reveal strong conformational preferences due to interactions between equatorial substituents to the pyrimidine ring. Large distortions of DNA should result when these interactions force the methyl group of thymine to assume an axial orientation, as is the case for thymine glycol but not for dihydrothymine. Molecular dynamics simulations of the dodecamer d(CGCGAATTCGCG){sub 2} with and without a ring-saturated thymine lesion at position T7 support this conclusion. Implications of these studies for recognition of thymine lesions by endonuclease III are also discussed.

  13. Structural-functional insights and studies on saccharide binding of Sophora japonica seed lectin.

    PubMed

    Yadav, Priya; Shahane, Ganesh; Ramasamy, Sureshkumar; Sengupta, Durba; Gaikwad, Sushama

    2016-10-01

    Functional and conformational transitions of the Sophora japonica seed lectin (SJL) were studied in detail using bioinformatics and biophysical tools. Homology model of the lectin displayed all the characteristics of the legume lectin monomer and the experimental observations correlated well with the structural information. In silico studies were performed by protein-ligand docking, calculating the respective binding energies and the residues involved in the interactions were derived from LigPlot(+) analysis. Fluorescence titrations showed three times higher affinity of T-antigen disaccharide than N-acetyl galactosamine (GalNAc) towards SJL indicating extended sugar binding site of the lectin. Thermodynamic parameters of T-antigen binding to SJL indicated the process to be endothermic and entropically driven while those of GalNAc showed biphasic process. SDS-PAGE showed post-translationally modified homotetrameric species of the lectin under native conditions. In presence of guanidine hydrochloride (0.5-5.0M), the tetramer first dissociated into dimers followed by unfolding of the protein as indicated by size exclusion chromatography, fluorescence and CD spectroscopy. Different structural rearrangements were observed during thermal denaturation of SJL at physiological pH 7.2, native pH 8.5 and molten globule inducing pH 1.0. Topological information revealed by solute quenching studies at respective pH indicated differential hydrophobic environment and charge density around tryptophan residues. PMID:27185070

  14. Structure-function studies of the herpes simplex virus type 1 DNA polymerase.

    PubMed Central

    Haffey, M L; Novotny, J; Bruccoleri, R E; Carroll, R D; Stevens, J T; Matthews, J T

    1990-01-01

    The analysis of the deduced amino acid sequence of the herpes simplex virus type 1 (HSV-1) DNA polymerase reported here suggests that the polymerase structure consists of domains carrying separate biological functions. The HSV-1 enzyme is known to possess 5'-3'-exonuclease (RNase H), 3'-5'-exonuclease, and DNA polymerase catalytic activities. Sequence analysis suggests an arrangement of these activities into distinct domains resembling the organization of Escherichia coli polymerase I. In order to more precisely define the structure and C-terminal limits of a putative catalytic domain responsible for the DNA polymerization activity of the HSV-1 enzyme, we have undertaken in vitro mutagenesis and computer modeling studies of the HSV-1 DNA polymerase gene. Sequence analysis predicts that the major DNA polymerization domain of the HSV-1 enzyme will be contained between residues 690 and 1100, and we present a three-dimensional model of this region, on the basis of the X-ray crystallographic structure of the E. coli polymerase I. Consistent with these structural and modeling studies, deletion analysis by in vitro mutagenesis of the HSV-1 DNA polymerase gene expressed in Saccharomyces cerevisiae has confirmed that certain amino acids from the C terminus (residues 1073 to 1144 and 1177 to 1235) can be deleted without destroying HSV-1 DNA polymerase catalytic activity and that the extreme N-terminal 227 residues are also not required for this activity. Images PMID:2168983

  15. Preparation of Protein Samples for NMR Structure, Function, and Small Molecule Screening Studies

    PubMed Central

    Acton, Thomas B.; Xiao, Rong; Anderson, Stephen; Aramini, James; Buchwald, William A.; Ciccosanti, Colleen; Conover, Ken; Everett, John; Hamilton, Keith; Huang, Yuanpeng Janet; Janjua, Haleema; Kornhaber, Gregory; Lau, Jessica; Lee, Dong Yup; Liu, Gaohua; Maglaqui, Melissa; Ma, Lichung; Mao, Lei; Patel, Dayaban; Rossi, Paolo; Sahdev, Seema; Shastry, Ritu; Swapna, G.V.T.; Tang, Yeufeng; Tong, Saichiu; Wang, Dongyan; Wang, Huang; Zhao, Li; Montelione, Gaetano T.

    2014-01-01

    In this chapter, we concentrate on the production of high quality protein samples for NMR studies. In particular, we provide an in-depth description of recent advances in the production of NMR samples and their synergistic use with recent advancements in NMR hardware. We describe the protein production platform of the Northeast Structural Genomics Consortium, and outline our high-throughput strategies for producing high quality protein samples for nuclear magnetic resonance (NMR) studies. Our strategy is based on the cloning, expression and purification of 6X-His-tagged proteins using T7-based Escherichia coli systems and isotope enrichment in minimal media. We describe 96-well ligation-independent cloning and analytical expression systems, parallel preparative scale fermentation, and high-throughput purification protocols. The 6X-His affinity tag allows for a similar two-step purification procedure implemented in a parallel high-throughput fashion that routinely results in purity levels sufficient for NMR studies (> 97% homogeneity). Using this platform, the protein open reading frames of over 17,500 different targeted proteins (or domains) have been cloned as over 28,000 constructs. Nearly 5,000 of these proteins have been purified to homogeneity in tens of milligram quantities (see Summary Statistics, http://nesg.org/statistics.html), resulting in more than 950 new protein structures, including more than 400 NMR structures, deposited in the Protein Data Bank. The Northeast Structural Genomics Consortium pipeline has been effective in producing protein samples of both prokaryotic and eukaryotic origin. Although this paper describes our entire pipeline for producing isotope-enriched protein samples, it focuses on the major updates introduced during the last 5 years (Phase 2 of the National Institute of General Medical Sciences Protein Structure Initiative). Our advanced automated and/or parallel cloning, expression, purification, and biophysical screening

  16. Structure-Functional Study of Tyrosine and Methionine Dipeptides: An Approach to Antioxidant Activity Prediction

    PubMed Central

    Torkova, Anna; Koroleva, Olga; Khrameeva, Ekaterina; Fedorova, Tatyana; Tsentalovich, Mikhail

    2015-01-01

    Quantum chemical methods allow screening and prediction of peptide antioxidant activity on the basis of known experimental data. It can be used to design the selective proteolysis of protein sources in order to obtain products with antioxidant activity. Molecular geometry and electronic descriptors of redox-active amino acids, as well as tyrosine and methionine-containing dipeptides, were studied by Density Functional Theory method. The calculated data was used to reveal several descriptors responsible for the antioxidant capacities of the model compounds based on their experimentally obtained antioxidant capacities against ABTS (2,2′-Azino-bis-(3-ethyl-benzothiazoline-6-sulfonate)) and peroxyl radical. A formula to predict antioxidant activity of peptides was proposed. PMID:26512651

  17. Structure-Functional Study of Tyrosine and Methionine Dipeptides: An Approach to Antioxidant Activity Prediction.

    PubMed

    Torkova, Anna; Koroleva, Olga; Khrameeva, Ekaterina; Fedorova, Tatyana; Tsentalovich, Mikhail

    2015-01-01

    Quantum chemical methods allow screening and prediction of peptide antioxidant activity on the basis of known experimental data. It can be used to design the selective proteolysis of protein sources in order to obtain products with antioxidant activity. Molecular geometry and electronic descriptors of redox-active amino acids, as well as tyrosine and methionine-containing dipeptides, were studied by Density Functional Theory method. The calculated data was used to reveal several descriptors responsible for the antioxidant capacities of the model compounds based on their experimentally obtained antioxidant capacities against ABTS (2,2'-Azino-bis-(3-ethyl-benzothiazoline-6-sulfonate)) and peroxyl radical. A formula to predict antioxidant activity of peptides was proposed. PMID:26512651

  18. Structure-Function Study of Tertiary Amines as Switchable Polarity Solvents

    SciTech Connect

    Aaron D. Wilson; Frederick F. Stewart

    2014-02-01

    A series of tertiary amines have been screened for their function as switchable polarity solvents (SPS). The relative ratios of tertiary amine and carbonate species as well as maximum possible concentration were determined through quantitative 1H and 13C NMR spectroscopy. The viscosities of the polar SPS solutions were measured and ranged from near water in dilute systems through to gel formation at high concentrations. The van't Hoff indices for SPS solutions were measured through freezing point depression studies as a proxy for osmotic pressures. A new form of SPS with an amine : carbonate ratio significantly greater than unity has been identified. Tertiary amines that function as SPS at ambient pressures appear to be limited to molecules with fewer than 12 carbons. The N,N-dimethyl-n-alkylamine structure has been identified as important to the function of an SPS.

  19. Structural, functional and optical studies on the amino acid doped glycine crystal

    NASA Astrophysics Data System (ADS)

    Manikandan, M. R.; Mahalingam, T.; Ravi, G.

    2012-06-01

    Single crystals of pure and amino acid (L-arginine) doped γ-glycine single crystals have been grown from aqueous solution by employing slow evaporation method. Morphological changes in different crystallographic planes were observed in the L-arginine doped γ-glycine crystals. Incorporation of L-arginine was confirmed qualitatively by FTIR spectroscopy. Powder X-ray diffraction was carried out to confirm γ-glycine and assess the single phase nature of the crystals. The lower cutoff wavelength was decreased by the influence of L-arginine in γ-glycine and this leads to an increase in the band gap. Nonlinear optical study revealed that L-arginine doping increases the SHG efficiency of the glycine crystal.

  20. The application of psoralens to the study of DNA structure, function and dynamics

    SciTech Connect

    Spielmann, P.H. |

    1991-04-01

    A series of six nitroxide spin-labeled psoralens were designed, synthesized and tested as probes for DNA dynamics. The synthesis of these spin-labeled psoralen derivatives and their photoreactivity with double-stranded DNA fragments is described. The spin labels (nitroxides) were demonstrated to survive the uv irradiation required to bind the probe to the target DNA. EPR spectra of the photobound spin-labels indicate that they do not wobble with respect to the DNA on the time-scales investigated. The author has used psoralen modified DNA as a model for the study of DNA repair enzyme systems in human cell free extracts. He has shown that damage-induced DNA synthesis is associated with removal of psoralen adducts and therefore is {open_quotes}repair synthesis{close_quotes} and not an aberrant DNA synthesis reaction potentiated by deformation of the DNA by adducts. He has found that all DNA synthesis induced by psoralen monoadducts is the consequence of removal of these adducts. By the same approach he has obtained evidence that this in vitro system is capable of removing psoralen cross-links as well. Reported here are synthetic methods that make use of high intensity lasers coupled with HPLC purification to make homogeneous and very pure micromole quantities of furan-side monoadducted, cross-linked, and pyrone-side monoadducted DNA oligonucleotide. These molecules are currently being studied by NMR and X-ray crystallography. The application of the site-specifically psoralen modified oligonucleotide synthesized by these methods to the construction of substrates for the investigation of DNA repair is also discussed.

  1. Facilitating Structure-Function Studies of CFTR Modulator Sites with Efficiencies in Mutagenesis and Functional Screening.

    PubMed

    Molinski, Steven V; Ahmadi, Saumel; Hung, Maurita; Bear, Christine E

    2015-12-01

    There are nearly 2000 mutations in the CFTR gene associated with cystic fibrosis disease, and to date, the only approved drug, Kalydeco, has been effective in rescuing the functional expression of a small subset of these mutant proteins with defects in channel activation. However, there is currently an urgent need to assess other mutations for possible rescue by Kalydeco, and further, definition of the binding site of such modulators on CFTR would enhance our understanding of the mechanism of action of such therapeutics. Here, we describe a simple and rapid one-step PCR-based site-directed mutagenesis method to generate mutations in the CFTR gene. This method was used to generate CFTR mutants bearing deletions (p.Gln2_Trp846del, p.Ser700_Asp835del, p.Ile1234_Arg1239del) and truncation with polyhistidine tag insertion (p.Glu1172-3Gly-6-His*), which either recapitulate a disease phenotype or render tools for modulator binding site identification, with subsequent evaluation of drug responses using a high-throughput (384-well) membrane potential-sensitive fluorescence assay of CFTR channel activity within a 1 wk time frame. This proof-of-concept study shows that these methods enable rapid and quantitative comparison of multiple CFTR mutants to emerging drugs, facilitating future large-scale efforts to stratify mutants according to their "theratype" or most promising targeted therapy. PMID:26385858

  2. Structure-function studies of the magnetite-biomineralizing magnetosome-associated protein MamC.

    PubMed

    Nudelman, Hila; Valverde-Tercedor, Carmen; Kolusheva, Sofiya; Perez Gonzalez, Teresa; Widdrat, Marc; Grimberg, Noam; Levi, Hilla; Nelkenbaum, Or; Davidov, Geula; Faivre, Damien; Jimenez-Lopez, Concepcion; Zarivach, Raz

    2016-06-01

    Magnetotactic bacteria are Gram-negative bacteria that navigate along geomagnetic fields using the magnetosome, an organelle that consists of a membrane-enveloped magnetic nanoparticle. Magnetite formation and its properties are controlled by a specific set of proteins. MamC is a small magnetosome-membrane protein that is known to be active in iron biomineralization but its mechanism has yet to be clarified. Here, we studied the relationship between the MamC magnetite-interaction loop (MIL) structure and its magnetite interaction using an inert biomineralization protein-MamC chimera. Our determined structure shows an alpha-helical fold for MamC-MIL with highly charged surfaces. Additionally, the MamC-MIL induces the formation of larger magnetite crystals compared to protein-free and inert biomineralization protein control experiments. We suggest that the connection between the MamC-MIL structure and the protein's charged surfaces is crucial for magnetite binding and thus for the size control of the magnetite nanoparticles. PMID:26970040

  3. Deuterium Labeling Strategies for Creating Contrast in Structure-Function Studies of Model Bacterial Outer Membranes Using Neutron Reflectometry.

    PubMed

    Le Brun, Anton P; Clifton, Luke A; Holt, Stephen A; Holden, Peter J; Lakey, Jeremy H

    2016-01-01

    Studying the outer membrane of Gram-negative bacteria is challenging due to the complex nature of its structure. Therefore, simplified models are required to undertake structure-function studies of processes that occur at the outer membrane/fluid interface. Model membranes can be created by immobilizing bilayers to solid supports such as gold or silicon surfaces, or as monolayers on a liquid support where the surface pressure and fluidity of the lipids can be controlled. Both model systems are amenable to having their structure probed by neutron reflectometry, a technique that provides a one-dimensional depth profile through a membrane detailing its thickness and composition. One of the strengths of neutron scattering is the ability to use contrast matching, allowing molecules containing hydrogen and those enriched with deuterium to be highlighted or matched out against the bulk isotopic composition of the solvent. Lipopolysaccharides, a major component of the outer membrane, can be isolated for incorporation into model membranes. Here, we describe the deuteration of lipopolysaccharides from rough strains of Escherichia coli for incorporation into model outer membranes, and how the use of deuterated materials enhances structural analysis of model membranes by neutron reflectometry. PMID:26791981

  4. In Situ Vitrification Treatability Study Work Plan

    SciTech Connect

    Charboneau, B.L.; Landon, J.L.

    1989-03-01

    The Buried Waste Program was established in October, 1987 to accelerate the studies needed to develop a recommended long-term management plan for the buried mixed waste at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The In Situ Vitrification Project is being conducted in a Comprehensive Environmental Response, Compensation, and Liability Act Feasibility Study format to identify methods for the long-term management of the mixed waste buried. This In Situ Vitrification Treatability Study Work Plan gives a brief description of the site, work breakdown structure, and project organization: the in situ vitrification technology; the purpose of the tests and demonstrations; and the equipment and materials required for the tests and demonstration. 5 refs., 6 figs., 3 tabs.

  5. Microfluidic neurite guidance to study structure-function relationships in topologically-complex population-based neural networks

    NASA Astrophysics Data System (ADS)

    Honegger, Thibault; Thielen, Moritz I.; Feizi, Soheil; Sanjana, Neville E.; Voldman, Joel

    2016-06-01

    The central nervous system is a dense, layered, 3D interconnected network of populations of neurons, and thus recapitulating that complexity for in vitro CNS models requires methods that can create defined topologically-complex neuronal networks. Several three-dimensional patterning approaches have been developed but none have demonstrated the ability to control the connections between populations of neurons. Here we report a method using AC electrokinetic forces that can guide, accelerate, slow down and push up neurites in un-modified collagen scaffolds. We present a means to create in vitro neural networks of arbitrary complexity by using such forces to create 3D intersections of primary neuronal populations that are plated in a 2D plane. We report for the first time in vitro basic brain motifs that have been previously observed in vivo and show that their functional network is highly decorrelated to their structure. This platform can provide building blocks to reproduce in vitro the complexity of neural circuits and provide a minimalistic environment to study the structure-function relationship of the brain circuitry.

  6. Microfluidic neurite guidance to study structure-function relationships in topologically-complex population-based neural networks

    PubMed Central

    Honegger, Thibault; Thielen, Moritz I.; Feizi, Soheil; Sanjana, Neville E.; Voldman, Joel

    2016-01-01

    The central nervous system is a dense, layered, 3D interconnected network of populations of neurons, and thus recapitulating that complexity for in vitro CNS models requires methods that can create defined topologically-complex neuronal networks. Several three-dimensional patterning approaches have been developed but none have demonstrated the ability to control the connections between populations of neurons. Here we report a method using AC electrokinetic forces that can guide, accelerate, slow down and push up neurites in un-modified collagen scaffolds. We present a means to create in vitro neural networks of arbitrary complexity by using such forces to create 3D intersections of primary neuronal populations that are plated in a 2D plane. We report for the first time in vitro basic brain motifs that have been previously observed in vivo and show that their functional network is highly decorrelated to their structure. This platform can provide building blocks to reproduce in vitro the complexity of neural circuits and provide a minimalistic environment to study the structure-function relationship of the brain circuitry. PMID:27328705

  7. Microfluidic neurite guidance to study structure-function relationships in topologically-complex population-based neural networks.

    PubMed

    Honegger, Thibault; Thielen, Moritz I; Feizi, Soheil; Sanjana, Neville E; Voldman, Joel

    2016-01-01

    The central nervous system is a dense, layered, 3D interconnected network of populations of neurons, and thus recapitulating that complexity for in vitro CNS models requires methods that can create defined topologically-complex neuronal networks. Several three-dimensional patterning approaches have been developed but none have demonstrated the ability to control the connections between populations of neurons. Here we report a method using AC electrokinetic forces that can guide, accelerate, slow down and push up neurites in un-modified collagen scaffolds. We present a means to create in vitro neural networks of arbitrary complexity by using such forces to create 3D intersections of primary neuronal populations that are plated in a 2D plane. We report for the first time in vitro basic brain motifs that have been previously observed in vivo and show that their functional network is highly decorrelated to their structure. This platform can provide building blocks to reproduce in vitro the complexity of neural circuits and provide a minimalistic environment to study the structure-function relationship of the brain circuitry. PMID:27328705

  8. Structure function monitor

    SciTech Connect

    McGraw, John T.; Zimmer, Peter C.; Ackermann, Mark R.

    2012-01-24

    Methods and apparatus for a structure function monitor provide for generation of parameters characterizing a refractive medium. In an embodiment, a structure function monitor acquires images of a pupil plane and an image plane and, from these images, retrieves the phase over an aperture, unwraps the retrieved phase, and analyzes the unwrapped retrieved phase. In an embodiment, analysis yields atmospheric parameters measured at spatial scales from zero to the diameter of a telescope used to collect light from a source.

  9. The Neutron Structure Function

    NASA Astrophysics Data System (ADS)

    Holt, Roy

    2013-10-01

    Knowledge of the neutron structure function is important for testing models of the nucleon, for a complete understanding of deep inelastic scattering (DIS) from nuclei, and for high energy experiments. As there exist no free neutron targets, neutron structure functions have been determined from deep inelastic scattering from the deuteron. Unfortunately, the short-range part of the deuteron wave function becomes important in extracting the neutron structure function at very high Bjorken x. New methods have been devised for Jefferson Lab experiments to mitigate this problem. The BONUS experiment involves tagging spectator neutrons in the deuteron, while the MARATHON experiment minimizes nuclear structure effects by a comparison of DIS from 3H and 3He. A summary of the status and future plans will be presented. This work supported by the U. S. Department of Energy, Office of Nuclear Physics, under contract DE-AC02-06CH11357.

  10. Atomic force microscopy study of the structure function relationships of the biofilm-forming bacterium Streptococcus mutans

    NASA Astrophysics Data System (ADS)

    Cross, Sarah E.; Kreth, Jens; Zhu, Lin; Qi, Fengxia; Pelling, Andrew E.; Shi, Wenyuan; Gimzewski, James K.

    2006-02-01

    Atomic force microscopy (AFM) has garnered much interest in recent years for its ability to probe the structure, function and cellular nanomechanics inherent to specific biological cells. In particular, we have used AFM to probe the important structure-function relationships of the bacterium Streptococcus mutans. S. mutans is the primary aetiological agent in human dental caries (tooth decay), and is of medical importance due to the virulence properties of these cells in biofilm initiation and formation, leading to increased tolerance to antibiotics. We have used AFM to characterize the unique surface structures of distinct mutants of S. mutans. These mutations are located in specific genes that encode surface proteins, thus using AFM we have resolved characteristic surface features for mutant strains compared to the wild type. Ultimately, our characterization of surface morphology has shown distinct differences in the local properties displayed by various S. mutans strains on the nanoscale, which is imperative for understanding the collective properties of these cells in biofilm formation.

  11. Study of the polarized structure functions of the neutron at low Q**2 using polarized He-3

    SciTech Connect

    S.H. Choi

    2004-06-02

    We have measured the electron-He-3 longitudinal and transverse spin dependent inclusive cross sections {pol}He-3({pol}e, e-prime), mostly in the resonance region (up to W ~ 2.5 GeV), over a wide range of four-momentum transfer (Q**2 = 0.03 - 1GeV**2). The longitudinally polarized electron beam of energy ranging from 0.86 to 5.1 GeV of the Jefferson Lab was scattered at a fixed angle of 15.5 degrees, on a high pressure polarized He-3 target in Hall A. The spin dependent structure functions g_1(x), g_2(x) have been extracted and their moments were evaluated. The GDH integral shows dramatic transition from large Q**2 domain to low Q**2 domain in the Burkhardt-Cottingham sum rule for g_2 seems to hold within experimental errors. d_2 is quite large and positive consistent with the SLAC data but at odds with lattice QCD calculation.

  12. Quantum Monte Carlo estimation of complex-time correlations for the study of the ground-state dynamic structure function.

    PubMed

    Rota, R; Casulleras, J; Mazzanti, F; Boronat, J

    2015-03-21

    We present a method based on the path integral Monte Carlo formalism for the calculation of ground-state time correlation functions in quantum systems. The key point of the method is the consideration of time as a complex variable whose phase δ acts as an adjustable parameter. By using high-order approximations for the quantum propagator, it is possible to obtain Monte Carlo data all the way from purely imaginary time to δ values near the limit of real time. As a consequence, it is possible to infer accurately the spectral functions using simple inversion algorithms. We test this approach in the calculation of the dynamic structure function S(q, ω) of two one-dimensional model systems, harmonic and quartic oscillators, for which S(q, ω) can be exactly calculated. We notice a clear improvement in the calculation of the dynamic response with respect to the common approach based on the inverse Laplace transform of the imaginary-time correlation function. PMID:25796238

  13. Spin structure functions

    SciTech Connect

    Jian-ping Chen, Alexandre Deur, Sebastian Kuhn, Zein-eddine Meziani

    2011-06-01

    Spin-dependent observables have been a powerful tool to probe the internal structure of the nucleon and to understand the dynamics of the strong interaction. Experiments involving spin degrees of freedom have often brought out surprises and puzzles. The so-called "spin crisis" in the 1980s revealed the limitation of naive quark-parton models and led to intensive worldwide efforts, both experimental and theoretical, to understand the nucleon spin structure. With high intensity and high polarization of both the electron beam and targets, Jefferson Lab has the world's highest polarized luminosity and the best figure-of-merit for precision spin structure measurements. It has made a strong impact in this subfield of research. This chapter will highlight Jefferson Lab's unique contributions in the measurements of valence quark spin distributions, in the moments of spin structure functions at low to intermediate Q2, and in the transverse spin structure.

  14. A study of nuclear effect in F{sub 3} structure function in the deep inelastic v(v-bar) reactions in nuclei

    SciTech Connect

    Athar, M. Sajjad; Singh, S. K.; Simo, I. Ruiz; Vacas, M. J. Vicente

    2009-11-25

    We study nuclear effect in the F{sub 3}{sup A}(x) structure function in the deep inelastic neutrino reactions on iron by taking into account Fermi motion, binding, target mass correction, shadowing and anti-shadowing corrections. Calculations have been done in a local density approximation using relativistic nuclear spectral functions which include nucleon correlations for nuclear matter. Results for F{sub 3}{sup A}(x) have been compared with the results reported at NuTeV and also with some of the older experiments reported in the literature.

  15. LONG TERM IN SITU DISPOSAL ENGINEERING STUDY

    SciTech Connect

    ADAMS; CARLSON; BROCKMAN

    2003-07-23

    Patent application pulled per Ken Norris (FH General Counsel). The objective of this study is to devise methods, produce conceptual designs, examine and select alternatives, and estimate costs for the demonstration of long-term (300-year) in situ disposal of an existing waste disposal site. The demonstration site selected is the 216-A-24 Crib near the 200 East Area. The site contains a fission product inventory and has experienced plant, animal, and inadvertent than intrusion. Of the potential intrusive events and transport pathways at the site, potential human intrusion has been given primary consideration in barrier design. Intrusion by wind, plants, and animals has been given secondary consideration. Groundwater modeling for a number of barrier configurations has been carried out to help select a barrier that will minimize water infiltration and waste/water contact time. The estimated effective lifetime and cost of 20 barrier schemes, using a variety of materials, have been evaluated. The schemes studied include single component surface barriers, multicomponent barriers, and massively injected grout barriers. Five barriers with high estimated effective lifetimes and relatively low costs have been selected for detailed evaluation. They are basalt riprap barriers, massive soil barriers, salt basin barriers, multi-component fine/coarse barriers, and cemented basalt barriers. A variety of materials and configurations for marking the site have also been considered. A decision analysis was completed to select a barrier scheme for demonstration. The analysis indicated that the basalt riprap alternative would be the preferred choice for a full-scale demonstration. The recommended approach is to demonstrate the basalt riprap barrier at the 216-A-24 Crib as soon as possible. Methods and costs of assessing effectiveness of the demonstration are also described. Preliminary design modifications and costs for applying the five selected barrier schemes to other site types are

  16. Using Case Studies as a Semester-Long Tool to Teach Neuroanatomy and Structure-Function Relationships to Undergraduates

    PubMed Central

    Kennedy, Susan

    2013-01-01

    In addition to being inherently interesting to students, case studies can serve as useful tools to teach neuroanatomy and demonstrate important relationships between brain structure and function. In most undergraduate courses, however, neuroanatomy is presented to students as a “unit” or chapter, much like other topics (e.g., receptors, pharmacology) covered in the course, over a period of a week or two. In this article, a relatively simple model of teaching neuroanatomy is described in which students are actively engaged in the presentation and discussion of case studies throughout the semester, following a general introduction to the structure of the nervous system. In this way, the teaching of neuroanatomy is “distributed” throughout the semester and put into a more user-friendly context for students as additional topics are introduced. Generally, students report enjoying learning brain structure using this method, and commented positively on the class activities associated with learning brain anatomy. Advantages and disadvantages of such a model are presented, as are suggestions for implementing similar models of undergraduate neuroanatomy education. PMID:24319386

  17. Structure-function Studies of Nucleocytoplasmic Transport of Retroviral Genomic RNA by mRNA Export Factor TAP

    SciTech Connect

    M Teplova; L Wohlbold; N Khin; E Izaurralde; D Patel

    2011-12-31

    mRNA export is mediated by the TAP-p15 heterodimer, which belongs to the family of NTF2-like export receptors. TAP-p15 heterodimers also bind to the constitutive transport element (CTE) present in simian type D retroviral RNAs, and they mediate the export of viral unspliced RNAs to the host cytoplasm. We have solved the crystal structure of the RNA recognition and leucine-rich repeat motifs of TAP bound to one symmetrical half of the CTE RNA. L-shaped conformations of protein and RNA are involved in a mutual molecular embrace on complex formation. We have monitored the impact of structure-guided mutations on binding affinities in vitro and transport assays in vivo. Our studies define the principles by which CTE RNA subverts the mRNA export receptor TAP, thereby facilitating the nuclear export of viral genomic RNAs, and, more generally, provide insights on cargo RNA recognition by mRNA export receptors.

  18. Structure-function studies of STAR family Quaking proteins bound to their in vivo RNA target sites

    SciTech Connect

    Teplova, Marianna; Hafner, Markus; Teplov, Dmitri; Essig, Katharina; Tuschl, Thomas; Patel, Dinshaw J.

    2013-09-27

    Mammalian Quaking (QKI) and its Caenorhabditis elegans homolog, GLD-1 (defective in germ line development), are evolutionarily conserved RNA-binding proteins, which post-transcriptionally regulate target genes essential for developmental processes and myelination. We present X-ray structures of the STAR (signal transduction and activation of RNA) domain, composed of Qua1, K homology (KH), and Qua2 motifs of QKI and GLD-1 bound to high-affinity in vivo RNA targets containing YUAAY RNA recognition elements (RREs). The KH and Qua2 motifs of the STAR domain synergize to specifically interact with bases and sugar-phosphate backbones of the bound RRE. Qua1-mediated homodimerization generates a scaffold that enables concurrent recognition of two RREs, thereby plausibly targeting tandem RREs present in many QKI-targeted transcripts. Structure-guided mutations reduced QKI RNA-binding affinity in vitro and in vivo, and expression of QKI mutants in human embryonic kidney cells (HEK293) significantly decreased the abundance of QKI target mRNAs. Overall, our studies define principles underlying RNA target selection by STAR homodimers and provide insights into the post-transcriptional regulatory function of mammalian QKI proteins.

  19. Structure Function Studies of Vaccinia Virus Host Range Protein K1 Reveal a Novel Functional Surface for Ankyrin Repeat Proteins

    SciTech Connect

    Li, Yongchao; Meng, Xiangzhi; Xiang, Yan; Deng, Junpeng

    2010-06-15

    Poxvirus host tropism at the cellular level is regulated by virus-encoded host range proteins acting downstream of virus entry. The functioning mechanisms of most host range proteins are unclear, but many contain multiple ankyrin (ANK) repeats, a motif that is known for ligand interaction through a concave surface. We report here the crystal structure of one of the ANK repeat-containing host range proteins, the vaccinia virus K1 protein. The structure, at a resolution of 2.3 {angstrom}, showed that K1 consists entirely of ANK repeats, including seven complete ones and two incomplete ones, one each at the N and C terminus. Interestingly, Phe82 and Ser83, which were previously shown to be critical for K1's function, are solvent exposed and located on a convex surface, opposite the consensus ANK interaction surface. The importance of this convex surface was further supported by our additional mutagenesis studies. We found that K1's host range function was negatively affected by substitution of either Asn51 or Cys47 and completely abolished by substitution of both residues. Cys47 and Asn51 are also exposed on the convex surface, spatially adjacent to Phe82 and Ser83. Altogether, our data showed that K1 residues on a continuous convex ANK repeat surface are critical for the host range function, suggesting that K1 functions through ligand interaction and does so with a novel ANK interaction surface.

  20. Structure, function and management of semi-natural habitats for conservation biological control: a review of European studies.

    PubMed

    Holland, John M; Bianchi, Felix Jja; Entling, Martin H; Moonen, Anna-Camilla; Smith, Barbara M; Jeanneret, Philippe

    2016-09-01

    Different semi-natural habitats occur on farmland, and it is the vegetation's traits and structure that subsequently determine their ability to support natural enemies and their associated contribution to conservation biocontrol. New habitats can be created and existing ones improved with agri-environment scheme funding in all EU member states. Understanding the contribution of each habitat type can aid the development of conservation control strategies. Here we review the extent to which the predominant habitat types in Europe support natural enemies, whether this results in enhanced natural enemy densities in the adjacent crop and whether this leads to reduced pest densities. Considerable variation exists in the available information for the different habitat types and trophic levels. Natural enemies within each habitat were the most studied, with less information on whether they were enhanced in adjacent fields, while their impact on pests was rarely investigated. Most information was available for woody and herbaceous linear habitats, yet not for woodland which can be the most common semi-natural habitat in many regions. While the management and design of habitats offer potential to stimulate conservation biocontrol, we also identified knowledge gaps. A better understanding of the relationship between resource availability and arthropod communities across habitat types, the spatiotemporal distribution of resources in the landscape and interactions with other factors that play a role in pest regulation could contribute to an informed management of semi-natural habitats for biocontrol. © 2016 Society of Chemical Industry. PMID:27178745

  1. Structure Function Studies of Vaccinia Virus Host Range Protein K1 Reveal a Novel Functional Surface for Ankyrin Repeat Proteins▿

    PubMed Central

    Li, Yongchao; Meng, Xiangzhi; Xiang, Yan; Deng, Junpeng

    2010-01-01

    Poxvirus host tropism at the cellular level is regulated by virus-encoded host range proteins acting downstream of virus entry. The functioning mechanisms of most host range proteins are unclear, but many contain multiple ankyrin (ANK) repeats, a motif that is known for ligand interaction through a concave surface. We report here the crystal structure of one of the ANK repeat-containing host range proteins, the vaccinia virus K1 protein. The structure, at a resolution of 2.3 Å, showed that K1 consists entirely of ANK repeats, including seven complete ones and two incomplete ones, one each at the N and C terminus. Interestingly, Phe82 and Ser83, which were previously shown to be critical for K1's function, are solvent exposed and located on a convex surface, opposite the consensus ANK interaction surface. The importance of this convex surface was further supported by our additional mutagenesis studies. We found that K1's host range function was negatively affected by substitution of either Asn51 or Cys47 and completely abolished by substitution of both residues. Cys47 and Asn51 are also exposed on the convex surface, spatially adjacent to Phe82 and Ser83. Altogether, our data showed that K1 residues on a continuous convex ANK repeat surface are critical for the host range function, suggesting that K1 functions through ligand interaction and does so with a novel ANK interaction surface. PMID:20089642

  2. Structure-function studies of a Melanocarpus albomyces laccase suggest a pathway for oxidation of phenolic compounds.

    PubMed

    Kallio, J P; Auer, S; Jänis, J; Andberg, M; Kruus, K; Rouvinen, J; Koivula, A; Hakulinen, N

    2009-10-01

    Melanocarpus albomyces laccase crystals were soaked with 2,6-dimethoxyphenol, a common laccase substrate. Three complex structures from different soaking times were solved. Crystal structures revealed the binding of the original substrate and adducts formed by enzymatic oxidation of the substrate. The dimeric oxidation products were identified by mass spectrometry. In the crystals, a 2,6-dimethoxy-p-benzoquinone and a C-O dimer were observed, whereas a C-C dimer was the main product identified by mass spectrometry. Crystal structures demonstrated that the substrate and/or its oxidation products were bound in the pocket formed by residues Ala191, Pro192, Glu235, Leu363, Phe371, Trp373, Phe427, Leu429, Trp507 and His508. Substrate and adducts were hydrogen-bonded to His508, one of the ligands of type 1 copper. Therefore, this surface-exposed histidine most likely has a role in electron transfer by laccases. Based on our mutagenesis studies, the carboxylic acid residue Glu235 at the bottom of the binding site pocket is also crucial in the oxidation of phenolics. Glu235 may be responsible for the abstraction of a proton from the OH group of the substrate and His508 may extract an electron. In addition, crystal structures revealed a secondary binding site formed through weak dimerization in M. albomyces laccase molecules. This binding site most likely exists only in crystals, when the Phe427 residues are packed against each other. PMID:19563811

  3. Combining wet and dry research: experience with model development for cardiac mechano-electric structure-function studies.

    PubMed

    Quinn, T Alexander; Kohl, Peter

    2013-03-15

    Since the development of the first mathematical cardiac cell model 50 years ago, computational modelling has become an increasingly powerful tool for the analysis of data and for the integration of information related to complex cardiac behaviour. Current models build on decades of iteration between experiment and theory, representing a collective understanding of cardiac function. All models, whether computational, experimental, or conceptual, are simplified representations of reality and, like tools in a toolbox, suitable for specific applications. Their range of applicability can be explored (and expanded) by iterative combination of 'wet' and 'dry' investigation, where experimental or clinical data are used to first build and then validate computational models (allowing integration of previous findings, quantitative assessment of conceptual models, and projection across relevant spatial and temporal scales), while computational simulations are utilized for plausibility assessment, hypotheses-generation, and prediction (thereby defining further experimental research targets). When implemented effectively, this combined wet/dry research approach can support the development of a more complete and cohesive understanding of integrated biological function. This review illustrates the utility of such an approach, based on recent examples of multi-scale studies of cardiac structure and mechano-electric function. PMID:23334215

  4. Structure-function studies on bacteriorhodopsin. IX. Substitutions of tryptophan residues affect protein-retinal interactions in bacteriorhodopsin

    SciTech Connect

    Mogi, T.; Marti, T.; Khorana, H.G. )

    1989-08-25

    Bacteriorhodopsin contains 8 tryptophan residues distributed across the membrane-embedded helices. To study their possible functions, we have replaced them one at a time by phenylalanine; in addition, Trp-137 and -138 have been replaced by cysteine. The mutants were prepared by cassette mutagenesis of the synthetic bacterio-opsin gene, expression and purification of the mutant apoproteins, renaturation, and chromophore regeneration. The replacement of Trp-10, Trp-12 (helix A), Trp-80 (helix C), and Trp-138 (helix E) by phenylalanine and of Trp-137 and Trp-138 by cysteine did not significantly alter the absorption spectra or affect their proton pumping. However, substitution of the remaining tryptophans by phenylalanine had the following effects. (1) Substitution of Trp-86 (helix C) and Trp-137 gave chromophores blue-shifted by 20 nm and resulted in reduced proton pumping to about 30%. (2) As also reported previously, substitution of Trp-182 and Trp-189 (helix F) caused large blue shifts (70 and 40 nm, respectively) in the chromophore and affected proton pumping. (3) The substitution of Trp-86 and Trp-182 by phenylalanine conferred acid instability on these mutants. The spectral shifts indicate that Trp-86, Trp-182, Trp-189, and possibly Trp-137 interact with retinal. It is proposed that these tryptophans, probably along with Tyr-57 (helix B) and Tyr-185 (helix F), form a retinal binding pocket. We discuss the role of tryptophan residues that are conserved in bacteriorhodopsin, halorhodopsin, and the related family of opsin proteins.

  5. Structure-function studies of the muscle nicotinic acetylcholine receptor by site-directed mutagenesis in the pore region

    NASA Astrophysics Data System (ADS)

    Zhang, Haiyun

    In nicotinic acetylcholine receptors (nAChRs), as in glycine, GABA A, serotonin 5-HT3, and GluCl glutamate receptors, a leucine residue at the approximate midpoint (the 9' position) of the M2 transmembrane domain is conserved across all known subunits. We expressed the embryonic mouse muscle nAChRs with varying numbers (m* s) of subunits (2 αs, 1 β, 1 γ, and 1 δ) mutated at this position in Xenopus oocytes and discovered that mutations to serine (Leu9'Ser) result in a tenfold higher receptor sensitivity to acetylcholine (ACh) for each subunit mutated. Moreover, increases of side-chain polarity increase the sensitivity to ACh when other natural and unnatural residues are incorporated into this position. The data also indicated an especially strong interaction between the γ and δ subunits in the pore region, suggesting a specific arrangement of subunits within the pentamer. Detailed single-channel kinetic studies reveal that Leu9'Ser AChRs have (1) longer voltage- relaxation time constants, (2) longer ACh-induced openings and bursts, and (3) more frequent spontaneous openings. These effects increase with m* s. Synthesized postsynaptic currents were produced with a piezoelectric micromanipulator that delivered brief ACh pulses to multi-channel patches. Their decay time constants were, as expected, similar to the channel burst duration. Thus, both longer and more frequent openings contribute to the >=104-fold increase in the receptor sensitivity to ACh from the wild-type receptor to the receptor with m*s=4; and the highly conserved 9' leucine is crucial for the brief synaptic events that are normally observed. We also explored the effects of ligand-binding domain mutations: γD174N and δD180N (aspartic acid (D) to asparagine (N)). Macroscopic dose-response relations revealed that these mutations decrease the receptor's sensitivity to ACh. The combined effect with Leu9'Ser, however, differs from that predicted from a linear or independent sum of effects from

  6. Defining the Interactions of Cellobiohydrolase with Substrate through Structure Function Studies: Cooperative Research and Development Final Report, CRADA Number CRD-10-409

    SciTech Connect

    Beckham, G. T.; Himmel, M. E.

    2013-07-01

    NREL researchers will use their expertise and skilled resources in numerical computational modeling to generate structure-function relationships for improved cellulase variant enzymes to support the development of cellulases with improved performance in biomass conversion.

  7. Quark-hadron duality in structure functions

    SciTech Connect

    Wally Melnitchouk

    2011-09-01

    We review recent progress in the study of quark-hadron duality in electron–nucleon structure functions. New developments include insights into the local aspects of duality obtained using truncated moments of structure functions, which allow duality-violating higher-twist contributions to be identified in individual resonance regions. Preliminary studies of pion electropro-duction have also showed the first glimpses of duality in semi-inclusive cross sections, which if confirmed would greatly expand the scope of constraining the flavor and spin dependence of parton distributions.

  8. Study of structure-function relationships in proteins: Techniques and applications ot cytochrome c: Final report January 15, 1988--January 14, 1989

    SciTech Connect

    Goldstein, D.A.; Rackovsky, S.R.

    1989-08-01

    During the initial period of this work we explored the differential geometry results which had been used to explain the structure-function relationships in the set of yeast iso-1-cytochrome c mutants studied under the initial contract. In addition we continued the development of techniques which would permit the structural characterization and comparison of proteins in a very efficient manner. We have expanded the studies based on the characterization of the structural preferences of various residues in a sample of twenty six globular proteins. It has been demonstrated that the overall structural preferences and the amino acid specific preferences seen in the analysis carried out at the five alpha carbon level can not be explained by the results of the analysis carried out at the four alpha carbon level. Thus the structural preferences seen must be described by considering groups of five or more residues. We do no yet have enough data to extend the analysis to the six alpha carbon unit level. We have also verified that the yeast/tuna structural analogy which we used before was justified, and have performed a conformational energy minimization of the reduced yeast cytochrome c crystal data in order to have a baseline for the study of mutant proteins. 6 refs.

  9. In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures.

    PubMed

    Shen, Chenfei; Ge, Mingyuan; Luo, Langli; Fang, Xin; Liu, Yihang; Zhang, Anyi; Rong, Jiepeng; Wang, Chongmin; Zhou, Chongwu

    2016-01-01

    In this work, we study the lithiation behaviours of both porous silicon (Si) nanoparticles and porous Si nanowires by in situ and ex situ transmission electron microscopy (TEM) and compare them with solid Si nanoparticles and nanowires. The in situ TEM observation reveals that the critical fracture diameter of porous Si particles reaches up to 1.52 μm, which is much larger than the previously reported 150 nm for crystalline Si nanoparticles and 870 nm for amorphous Si nanoparticles. After full lithiation, solid Si nanoparticles and nanowires transform to crystalline Li15Si4 phase while porous Si nanoparticles and nanowires transform to amorphous LixSi phase, which is due to the effect of domain size on the stability of Li15Si4 as revealed by the first-principle molecular dynamic simulation. Ex situ TEM characterization is conducted to further investigate the structural evolution of porous and solid Si nanoparticles during the cycling process, which confirms that the porous Si nanoparticles exhibit better capability to suppress pore evolution than solid Si nanoparticles. The investigation of structural evolution and phase transition of porous Si nanoparticles and nanowires during the lithiation process reveal that they are more desirable as lithium-ion battery anode materials than solid Si nanoparticles and nanowires. PMID:27571919

  10. In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures

    PubMed Central

    Shen, Chenfei; Ge, Mingyuan; Luo, Langli; Fang, Xin; Liu, Yihang; Zhang, Anyi; Rong, Jiepeng; Wang, Chongmin; Zhou, Chongwu

    2016-01-01

    In this work, we study the lithiation behaviours of both porous silicon (Si) nanoparticles and porous Si nanowires by in situ and ex situ transmission electron microscopy (TEM) and compare them with solid Si nanoparticles and nanowires. The in situ TEM observation reveals that the critical fracture diameter of porous Si particles reaches up to 1.52 μm, which is much larger than the previously reported 150 nm for crystalline Si nanoparticles and 870 nm for amorphous Si nanoparticles. After full lithiation, solid Si nanoparticles and nanowires transform to crystalline Li15Si4 phase while porous Si nanoparticles and nanowires transform to amorphous LixSi phase, which is due to the effect of domain size on the stability of Li15Si4 as revealed by the first-principle molecular dynamic simulation. Ex situ TEM characterization is conducted to further investigate the structural evolution of porous and solid Si nanoparticles during the cycling process, which confirms that the porous Si nanoparticles exhibit better capability to suppress pore evolution than solid Si nanoparticles. The investigation of structural evolution and phase transition of porous Si nanoparticles and nanowires during the lithiation process reveal that they are more desirable as lithium-ion battery anode materials than solid Si nanoparticles and nanowires. PMID:27571919

  11. Chemical Library Screening and Structure-Function Relationship Studies Identify Bisacodyl as a Potent and Selective Cytotoxic Agent Towards Quiescent Human Glioblastoma Tumor Stem-Like Cells

    PubMed Central

    Mameri, Samir; Dong, Jihu; Salomé, Christophe; Chen, Wanyin; El-Habr, Elias A.; Bousson, Fanny; Sy, Mohamadou; Obszynski, Julie; Boh, Alexandre; Villa, Pascal; Assad Kahn, Suzana; Didier, Bruno; Bagnard, Dominique; Junier, Marie-Pierre; Chneiweiss, Hervé; Haiech, Jacques; Hibert, Marcel; Kilhoffer, Marie-Claude

    2015-01-01

    Cancer stem-like cells reside in hypoxic and slightly acidic tumor niches. Such microenvironments favor more aggressive undifferentiated phenotypes and a slow growing "quiescent state" which preserves them from chemotherapeutic agents that essentially target proliferating cells. Our objective was to identify compounds active on glioblastoma stem-like cells, including under conditions that mimick those found in vivo within this most severe and incurable form of brain malignancy. We screened the Prestwick Library to identify cytotoxic compounds towards glioblastoma stem-like cells, either in a proliferating state or in more slow-growing "quiescent" phenotype resulting from non-renewal of the culture medium in vitro. Compound effects were assessed by ATP-level determination using a cell-based assay. Twenty active molecules belonging to different pharmacological classes have thus been identified. Among those, the stimulant laxative drug bisacodyl was the sole to inhibit in a potent and specific manner the survival of quiescent glioblastoma stem-like cells. Subsequent structure-function relationship studies led to identification of 4,4'-dihydroxydiphenyl-2-pyridyl-methane (DDPM), the deacetylated form of bisacodyl, as the pharmacophore. To our knowledge, bisacodyl is currently the only known compound targeting glioblastoma cancer stem-like cells in their quiescent, more resistant state. Due to its known non-toxicity in humans, bisacodyl appears as a new potential anti-tumor agent that may, in association with classical chemotherapeutic compounds, participate in tumor eradication. PMID:26270679

  12. Total synthesis of vinblastine, related natural products, and key analogues and development of inspired methodology suitable for the systematic study of their structure-function properties.

    PubMed

    Sears, Justin E; Boger, Dale L

    2015-03-17

    Biologically active natural products composed of fascinatingly complex structures are often regarded as not amenable to traditional systematic structure-function studies enlisted in medicinal chemistry for the optimization of their properties beyond what might be accomplished by semisynthetic modification. Herein, we summarize our recent studies on the Vinca alkaloids vinblastine and vincristine, often considered as prototypical members of such natural products, that not only inspired the development of powerful new synthetic methodology designed to expedite their total synthesis but have subsequently led to the discovery of several distinct classes of new, more potent, and previously inaccessible analogues. With use of the newly developed methodology and in addition to ongoing efforts to systematically define the importance of each embedded structural feature of vinblastine, two classes of analogues already have been discovered that enhance the potency of the natural products >10-fold. In one instance, remarkable progress has also been made on the refractory problem of reducing Pgp transport responsible for clinical resistance with a series of derivatives made accessible only using the newly developed synthetic methodology. Unlike the removal of vinblastine structural features or substituents, which typically has a detrimental impact, the additions of new structural features have been found that can enhance target tubulin binding affinity and functional activity while simultaneously disrupting Pgp binding, transport, and functional resistance. Already analogues are in hand that are deserving of full preclinical development, and it is a tribute to the advances in organic synthesis that they are readily accessible even on a natural product of a complexity once thought refractory to such an approach. PMID:25586069

  13. Progress on nuclear modifications of structure functions

    NASA Astrophysics Data System (ADS)

    Kumano, S.

    2016-03-01

    We report progress on nuclear structure functions, especially on their nuclear modifications and a new tensor structure function for the deuteron. To understand nuclear structure functions is an important step toward describing nuclei and QCD matters from low to high densities and from low to high energies in terms of fundamental quark and gluon degrees of freedom beyond conventional hadron and nuclear physics. It is also practically important for understanding new phenomena in high-energy heavy-ion collisions at RHIC and LHC. Furthermore, since systematic errors of current neutrinooscillation experiments are dominated by uncertainties of neutrino-nucleus interactions, such studies are valuable for finding new physics beyond current framework. Next, a new tensor-polarized structure function b1 is discussed for the deuteron. There was a measurement by HERMES; however, its data are inconsistent with the conventional convolution estimate based on the standard deuteron model with D-state admixture. This fact suggests that a new hadronic phenomenon should exist in the tensor-polarized deuteron at high energies, and it will be experimentally investigated at JLab from the end of 2010's.

  14. Structure functions and parton distributions

    SciTech Connect

    Martin, A.D.; Stirling, W.J.; Roberts, R.G.

    1995-07-01

    The MRS parton distribution analysis is described. The latest sets are shown to give an excellent description of a wide range of deep-inelastic and other hard scattering data. Two important theoretical issues-the behavior of the distributions at small x and the flavor structure of the quark sea-are discussed in detail. A comparison with the new structure function data from HERA is made, and the outlook for the future is discussed.

  15. Truncated Moment Analysis of Nucleon Structure Functions

    SciTech Connect

    A. Psaker; W. Melnitchouk; M. E. Christy; C. E. Keppel

    2007-11-16

    We employ a novel new approach using "truncated" moments, or integrals of structure functions over restricted regions of x, to study local quark-hadron duality, and the degree to which individual resonance regions are dominated by leading twists. Because truncated moments obey the same Q^2 evolution equations as the leading twist parton distributions, this approach makes possible for the first time a description of resonance region data and the phenomenon of quark-hadron duality directly from QCD.

  16. The Design, Synthesis, and Study of Solid-State Molecular Rotors: Structure/Function Relationships for Condensed-Phase Anisotropic Dynamics

    NASA Astrophysics Data System (ADS)

    Vogelsberg, Cortnie Sue

    Amphidynamic crystals are an extremely promising platform for the development of artificial molecular machines and stimuli-responsive materials. In analogy to skeletal muscle, their function will rely upon the collective operation of many densely packed molecular machines (i.e. actin-bound myosin) that are self-assembled in a highly organized anisotropic medium. By choosing lattice-forming elements and moving "parts" with specific functionalities, individual molecular machines may be synthesized and self-assembled in order to carry out desirable functions. In recent years, efforts in the design of amphidynamic materials based on molecular gyroscopes and compasses have shown that a certain amount of free volume is essential to facilitate internal rotation and reorientation within a crystal. In order to further establish structure/function relationships to advance the development of increasingly complex molecular machinery, molecular rotors and a molecular "spinning" top were synthesized and incorporated into a variety of solid-state architectures with different degrees of periodicity, dimensionality, and free volume. Specifically, lamellar molecular crystals, hierarchically ordered periodic mesoporous organosilicas, and metal-organic frameworks were targeted for the development of solid-state molecular machines. Using an array of solid-state nuclear magnetic resonance spectroscopy techniques, the dynamic properties of these novel molecular machine assemblies were determined and correlated with their corresponding structural features. It was found that architecture type has a profound influence on functional dynamics. The study of layered molecular crystals, composed of either molecular rotors or "spinning" tops, probed functional dynamics within dense, highly organized environments. From their study, it was discovered that: 1) crystallographically distinct sites may be utilized to differentiate machine function, 2) halogen bonding interactions are sufficiently

  17. Structure functions for light nuclei

    SciTech Connect

    S.A. Kulagin, R. Petti

    2010-11-01

    We discuss the nuclear EMC effect with particular emphasis on recent data for light nuclei including 2H, 3He, 4He, 9Be, 12C and 14N. In order to verify the consistency of available data, we calculate the \\chi^2 deviation between different data sets. We find a good agreement between the results from the NMC, SLAC E139, and HERMES experiments. However, our analysis indicates an overall normalization offset of about 2% in the data from the recent JLab E03-103 experiment with respect to previous data for nuclei heavier than 3He. We also discuss the extraction of the neutron/proton structure function ratio F2n/F2p from the nuclear ratios 3He/2H and 2H/1H. Our analysis shows that the E03-103 data on 3He/2H require a renormalization of about 3% in order to be consistent with the F2n/F2p ratio obtained from the NMC experiment. After such a renormalization, the 3He data from the E03-103 data and HERMES experiments are in a good agreement. Finally, we present a detailed comparison between data and model calculations, which include a description of the nuclear binding, Fermi motion and off-shell corrections to the structure functions of bound proton and neutron, as well as the nuclear pion and shadowing corrections. Overall, a good agreement with the available data for all nuclei is obtained.

  18. Nuclear structure functions at small x

    SciTech Connect

    Jalilian-Marian, Jamal

    2009-11-15

    I study the nuclear structure function F{sub 2}{sup A} and its logarithmic derivative in the high-energy limit (small-x region) using the color glass condensate formalism. In this limit the structure function F{sub 2} depends on the quark-antiquark dipole-target scattering cross section N{sub F}(x{sub bj},r{sub t},b{sub t}). The same dipole cross section appears in single-hadron and hadron-photon production cross sections in the forward rapidity region in deuteron (proton)-nucleus collisions at high energy, that is, at energies available at the BNL Relativistic Heavy Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC). I use a parametrization of the dipole cross section, which has successfully been used to describe the deuteron-gold data at the RHIC, to compute the nuclear structure function F{sub 2}{sup A} and its log Q{sup 2} derivative (which is related to gluon distribution function in the double log limit). I provide a quantitative estimate of the nuclear shadowing of F{sub 2}{sup A} and the gluon distribution function in the kinematic region relevant to a future electron-ion collider.

  19. Underwater microscopy for in situ studies of benthic ecosystems

    PubMed Central

    Mullen, Andrew D.; Treibitz, Tali; Roberts, Paul L. D.; Kelly, Emily L. A.; Horwitz, Rael; Smith, Jennifer E.; Jaffe, Jules S.

    2016-01-01

    Microscopic-scale processes significantly influence benthic marine ecosystems such as coral reefs and kelp forests. Due to the ocean's complex and dynamic nature, it is most informative to study these processes in the natural environment yet it is inherently difficult. Here we present a system capable of non-invasively imaging seafloor environments and organisms in situ at nearly micrometre resolution. We overcome the challenges of underwater microscopy through the use of a long working distance microscopic objective, an electrically tunable lens and focused reflectance illumination. The diver-deployed instrument permits studies of both spatial and temporal processes such as the algal colonization and overgrowth of bleaching corals, as well as coral polyp behaviour and interspecific competition. By enabling in situ observations at previously unattainable scales, this instrument can provide important new insights into micro-scale processes in benthic ecosystems that shape observed patterns at much larger scales. PMID:27403715

  20. Underwater microscopy for in situ studies of benthic ecosystems

    NASA Astrophysics Data System (ADS)

    Mullen, Andrew D.; Treibitz, Tali; Roberts, Paul L. D.; Kelly, Emily L. A.; Horwitz, Rael; Smith, Jennifer E.; Jaffe, Jules S.

    2016-07-01

    Microscopic-scale processes significantly influence benthic marine ecosystems such as coral reefs and kelp forests. Due to the ocean's complex and dynamic nature, it is most informative to study these processes in the natural environment yet it is inherently difficult. Here we present a system capable of non-invasively imaging seafloor environments and organisms in situ at nearly micrometre resolution. We overcome the challenges of underwater microscopy through the use of a long working distance microscopic objective, an electrically tunable lens and focused reflectance illumination. The diver-deployed instrument permits studies of both spatial and temporal processes such as the algal colonization and overgrowth of bleaching corals, as well as coral polyp behaviour and interspecific competition. By enabling in situ observations at previously unattainable scales, this instrument can provide important new insights into micro-scale processes in benthic ecosystems that shape observed patterns at much larger scales.

  1. Underwater microscopy for in situ studies of benthic ecosystems.

    PubMed

    Mullen, Andrew D; Treibitz, Tali; Roberts, Paul L D; Kelly, Emily L A; Horwitz, Rael; Smith, Jennifer E; Jaffe, Jules S

    2016-01-01

    Microscopic-scale processes significantly influence benthic marine ecosystems such as coral reefs and kelp forests. Due to the ocean's complex and dynamic nature, it is most informative to study these processes in the natural environment yet it is inherently difficult. Here we present a system capable of non-invasively imaging seafloor environments and organisms in situ at nearly micrometre resolution. We overcome the challenges of underwater microscopy through the use of a long working distance microscopic objective, an electrically tunable lens and focused reflectance illumination. The diver-deployed instrument permits studies of both spatial and temporal processes such as the algal colonization and overgrowth of bleaching corals, as well as coral polyp behaviour and interspecific competition. By enabling in situ observations at previously unattainable scales, this instrument can provide important new insights into micro-scale processes in benthic ecosystems that shape observed patterns at much larger scales. PMID:27403715

  2. Structure functions for light nuclei

    SciTech Connect

    Kulagin, S. A.; Petti, R.

    2010-11-15

    We discuss the nuclear EMC effect with particular emphasis on recent data for light nuclei including {sup 2}H, {sup 3}He, {sup 4}He, {sup 9}Be, {sup 12}C, and {sup 14}N. In order to verify the consistency of available data, we calculate the {chi}{sup 2} deviation between different data sets. We find a good agreement between the results from the NMC, SLAC E139, and HERMES experiments. However, our analysis indicates an overall normalization offset of about 2% in the data from the recent JLab E03-103 experiment with respect to previous data for nuclei heavier than {sup 3}He. We also discuss the extraction of the neutron/proton structure function ratio F{sub 2}{sup n}/F{sub 2}{sup p} from the nuclear ratios {sup 3}He/{sup 2}H and {sup 2}H/{sup 1}H. Our analysis shows that the E03-103 data on {sup 3}He/{sup 2}H require a renormalization of about 3% in order to be consistent with the F{sub 2}{sup n}/F{sub 2}{sup p} ratio obtained from the NMC experiment. After such a renormalization, the {sup 3}He data from the E03-103 and HERMES experiments are in a good agreement. Finally, we present a detailed comparison between data and model calculations, which include a description of the nuclear binding, Fermi motion, and off-shell corrections to the structure functions of bound proton and neutron, as well as the nuclear pion and shadowing corrections. Overall, a good agreement with the available data for all nuclei is obtained.

  3. Indentation device for in situ Raman spectroscopic and optical studies

    NASA Astrophysics Data System (ADS)

    Gerbig, Y. B.; Michaels, C. A.; Forster, A. M.; Hettenhouser, J. W.; Byrd, W. E.; Morris, D. J.; Cook, R. F.

    2012-12-01

    Instrumented indentation is a widely used technique to study the mechanical behavior of materials at small length scales. Mechanical tests of bulk materials, microscopic, and spectroscopic studies may be conducted to complement indentation and enable the determination of the kinetics and physics involved in the mechanical deformation of materials at the crystallographic and molecular level, e.g., strain build-up in crystal lattices, phase transformations, and changes in crystallinity or orientation. However, many of these phenomena occurring during indentation can only be observed in their entirety and analyzed in depth under in situ conditions. This paper describes the design, calibration, and operation of an indentation device that is coupled with a Raman microscope to conduct in situ spectroscopic and optical analysis of mechanically deformed regions of Raman-active, transparent bulk material, thin films or fibers under contact loading. The capabilities of the presented device are demonstrated by in situ studies of the indentation-induced phase transformations of Si thin films and modifications of molecular conformations in high density polyethylene films.

  4. In situ studies of grain growth in thin metal films

    SciTech Connect

    Nichols, C.S.; Mansuri, C.M. . Dept. of Materials Science and Engineering); Townsend, S.J. . Dept. of Physics); Smith, D.A. . T.J. Watson Research Center)

    1993-06-01

    Grain growth in thin films of aluminum has been studied using in situ transmission electron microscopy and a heating stage. Videotapes taken during grain growth were analyzed with the intent of searching for the predominant local rearrangement processes responsible for growth. Evolution of a soap froth can be decomposed into only two elementary local topology rearranging events. The authors have found numerous exceptions to prevailing theories that compare grain growth in thin films to the evolution of such froths. These observations suggest that a more complete picture of grain growth is necessary and that such a theory must include more complex local rearrangement processes.

  5. Calcite dissolution: an in situ study in the Panama Basin

    SciTech Connect

    Thunell, R.C.; Keir, R.S.; Honjo, S.

    1981-05-08

    The results of an in situ study of calcite dissolution in the Panama Basin indicate that the rate of dissolution in the water column increases suddenly below a water depth of about 2800 meters. This coincides with the depth at which the calcium carbonate content of surface sediments begins to decrease rapidly or the sedimentary lysocline. Since this level of increased dissolution both in the water column and on the sea floor does not appear to be related to the transition from supersaturation to undersaturation with respect to carbonate, there may be a kinetic origin for the lysocline in this region.

  6. Spin Structure Function Measurements in Hall C at Jefferson Lab

    SciTech Connect

    Wood, Stephen A.

    2008-11-01

    This presentation introduces the spin structure functions and resonant spin structure, and it discusses the experimental approaches for studying spin structure via polarized electron beam interactions with frozen polarized proton and deuteron targets.

  7. In situ TEM studies of carbon and gold nanostructures

    NASA Astrophysics Data System (ADS)

    Casillas Garcia, Gilberto

    Properties of matter change as structures go down in size to the nanoscale, creating new possibilities for creating new functional materials with better properties than the bulk. In situ TEM techniques were used to probe the properties of two different materials: atomic carbon chains and gold nanoparticles. Carbon chains were synthesized by in situ TEM electron beam irradiation from few-layers-graphene (FLG) flakes. Several chains up to 5 nm long were observed. Aberration corrected TEM confirmed the dimerization of the linear chain as predicted by Peierls. Moreover, it was observed that two linear carbon chains can cross-bond every 9 atoms, and it was confirmed by DFT calculations. Five-fold nanoparticles are not supposed to be stable beyond 5 nm size. Here, decahedra with high index facets in the order of 300 nm were studied by TEM. It was found that the high index facets were only stable by adding a capping agent, otherwise, smooth edges were observed. In this case, a (5x1) hexagonal surface reconstruction was observed on the {001} surfaces, with the hexagonal strings along a [110] and a [410] direction. Additionally, mechanical properties of gold nanoparticles, with and without twin boundaries, under 100 nm were measured by in situ TEM compression experiments. All of the nanoparticles presented yield strengths in the order of GPa. Multi twinned nanoparticles were found to be more malleable, reaching real compressing strains of 100 %, while the single crystal nanoparticle presented less plastic flow. Molecular dynamics simulations revealed that the twin boundaries contribute to the malleability of the nanoparticles, at the same time it provides a mechanism to stop dislocations, hence, strain hardening the nanoparticle at later stages of compression. Finally, the behavior of a single grain boundary was studied by in situ TEM manipulation of nanoparticles. A liquid-like behavior of a grain boundary is observed after two 40 nm gold nanoparticles are brought to

  8. Integral structural-functional method for characterizing microbial populations

    NASA Astrophysics Data System (ADS)

    Yakushev, A. V.

    2015-04-01

    An original integral structural-functional method has been proposed for characterizing microbial communities. The novelty of the approach is the in situ study of microorganisms based on the growth kinetics of microbial associations in liquid nutrient broth media under selective conditions rather than on the level of taxa or large functional groups. The method involves the analysis of the integral growth model of a periodic culture. The kinetic parameters of such associations reflect their capacity of growing on different media, i.e., their physiological diversity, and the metabolic capacity of the microorganisms for growth on a nutrient medium. Therefore, the obtained parameters are determined by the features of the microbial ecological strategies. The inoculation of a dense medium from the original inoculate allows characterizing the taxonomic composition of the dominants in the soil community. The inoculation from the associations developed on selective media characterizes the composition of syntrophic groups, which fulfill a specific function in nature. This method is of greater information value than the classical methods of inoculation on selective media.

  9. Intraductal Therapy of Ductal Carcinoma In Situ: A Presurgery Study

    PubMed Central

    Mahoney, M. Ellen; Gordon, Eva J.; Rao, Jian Yu; Jin, Yusheng; Hylton, Nola; Love, Susan M.

    2014-01-01

    Many women with ductal carcinoma in situ (DCIS) are treated with extensive surgery, radiation, and hormone therapy due to the inability to monitor the disease and to determine which cases will progress to invasive cancer. We assessed the safety and feasibility of administering chemotherapy directly into DCIS-containing ducts in 13 women before definitive surgery. The treatment was safe, feasible, and well tolerated, supporting further development of this strategy for management of DCIS. Introduction Ductal carcinoma in situ (DCIS) is a noninvasive breast cancer wherein malignant cells are confined within a ductal lobular unit. Although less than half the cases of DCIS will progress to invasive disease, most women are treated aggressively with surgery, radiation, and/or hormone therapy due to the inability to clinically evaluate the extent and location of the disease. Intraductal therapy, in which a drug is administered directly into the mammary duct through the nipple, is a promising approach for treating DCIS, but the feasibility of instilling drug into a diseased duct has not been established. Patients and Methods Four to 6 weeks before their scheduled surgery, 13 women diagnosed with DCIS were subjected to cannulation of the affected duct. After both the absence of perforation and presence of dye in the duct were confirmed by ductogram, pegylated liposomal doxorubicin was instilled. Histopathologic assessment was performed after surgery to assess the treatment effects. Results Of the 13 women enrolled in the study, 6 had their DCIS duct successfully cannulated without perforation and instilled with the drug. The treatment was well tolerated, and no serious adverse events have been reported. Biomarker studies indicated a general decrease in Ki-67 levels but an increase in annexin-1 and 8-hydroxydeoxyguanosine in the lumen of DCIS-containing ducts, which suggests a local response to pegylated liposomal doxorubicin treatment. Conclusions Intraductal therapy offers

  10. Guanylyl cyclase structure, function and regulation

    PubMed Central

    Potter, Lincoln R.

    2016-01-01

    Nitric oxide, bicarbonate, natriuretic peptides (ANP, BNP and CNP), guanylins, uroguanylins and guanylyl cyclase activating proteins (GCAPs) activate a family of enzymes variously called guanyl, guanylyl or guanylate cyclases that catalyze the conversion of guanosine triphosphate to cyclic guanosine monophosphate (cGMP) and pyrophosphate. Intracellular cyclic GMP is a second messenger that modulates: platelet aggregation, neurotransmission, sexual arousal, gut peristalsis, blood pressure, long bone growth, intestinal fluid secretion, lipolysis, phototransduction, cardiac hypertrophy and oocyte maturation. This review briefly discusses the discovery of cGMP and guanylyl cyclases, then nitric oxide, nitric oxide synthase and soluble guanylyl cyclase are described in slightly greater detail. Finally, the structure, function, and regulation of the individual mammalian single membrane-spanning guanylyl cyclases GC-A, GC-B, GC-C, GC-D, GC-E, GC-F and GC-G are described in greatest detail as determined by biochemical, cell biological and gene-deletion studies. PMID:21914472

  11. Mass Effects on the Nucleon Sea Structure Functions

    NASA Astrophysics Data System (ADS)

    Kim, Sun Myong

    Nucleon sea structure functions are studied using Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations with the massive gluon-quark splitting kernels for strange and charm quarks, the massless gluon-quark splitting kernels for up and down quarks, and the massless kernels for all other splitting parts. The SU(2)f flavor symmetry for two light quarks, ``up'' and ``down'', is assumed. Glück-Reya-Vogt (GRV) and Martin-Roberts-Stirling (MRS) sets are chosen to be the base structure functions at Q02=3 GeV2. We evolve the sea structure functions from Q02=3 GeV2 to Q2=50 GeV2 using the base structure function sets and DGLAP equations. Some (about 10%) enhancement is found in the strange quark distribution functions at low x (<0.1) in leading order of the DGLAP equations compared to results directly from those structure function sets at the value of Q2=50 GeV2. We provide the value of κ and also show the behavior of κ (x)=2s(x)/(¯ u(x)+¯ d(x)) after the evolution of structure functions.

  12. Structured Functional Principal Component Analysis

    PubMed Central

    Shou, Haochang; Zipunnikov, Vadim; Crainiceanu, Ciprian M.; Greven, Sonja

    2015-01-01

    Summary Motivated by modern observational studies, we introduce a class of functional models that expand nested and crossed designs. These models account for the natural inheritance of the correlation structures from sampling designs in studies where the fundamental unit is a function or image. Inference is based on functional quadratics and their relationship with the underlying covariance structure of the latent processes. A computationally fast and scalable estimation procedure is developed for high-dimensional data. Methods are used in applications including high-frequency accelerometer data for daily activity, pitch linguistic data for phonetic analysis, and EEG data for studying electrical brain activity during sleep. PMID:25327216

  13. Structured functional principal component analysis.

    PubMed

    Shou, Haochang; Zipunnikov, Vadim; Crainiceanu, Ciprian M; Greven, Sonja

    2015-03-01

    Motivated by modern observational studies, we introduce a class of functional models that expand nested and crossed designs. These models account for the natural inheritance of the correlation structures from sampling designs in studies where the fundamental unit is a function or image. Inference is based on functional quadratics and their relationship with the underlying covariance structure of the latent processes. A computationally fast and scalable estimation procedure is developed for high-dimensional data. Methods are used in applications including high-frequency accelerometer data for daily activity, pitch linguistic data for phonetic analysis, and EEG data for studying electrical brain activity during sleep. PMID:25327216

  14. Mechanistic studies of malonic acid-mediated in situ acylation.

    PubMed

    Chandra, Koushik; Naoum, Johnny N; Roy, Tapta Kanchan; Gilon, Chaim; Gerber, R Benny; Friedler, Assaf

    2015-09-01

    We have previously introduced an easy to perform, cost-effective and highly efficient acetylation technique for solid phase synthesis (SPPS). Malonic acid is used as a precursor and the reaction proceeds via a reactive ketene that acetylates the target amine. Here we present a detailed mechanistic study of the malonic acid-mediated acylation. The influence of reaction conditions, peptide sequence and reagents was systematically studied. Our results show that the methodology can be successfully applied to different types of peptides and nonpeptidic molecules irrespective of their structure, sequence, or conformation. Using alkyl, phenyl, and benzyl malonic acid, we synthesized various acyl peptides with almost quantitative yields. The ketenes obtained from the different malonic acid derived precursors were characterized by in situ (1) H-NMR. The reaction proceeded in short reaction times and resulted in excellent yields when using uronium-based coupling agents, DIPEA as a base, DMF/DMSO/NMP as solvents, Rink amide/Wang/Merrifield resins, temperature of 20°C, pH 8-12 and 5 min preactivation at inert atmosphere. The reaction was unaffected by Lewis acids, transition metal ions, surfactants, or salt. DFT studies support the kinetically favorable concerted mechanism for CO2 and ketene formation that leads to the thermodynamically stable acylated products. We conclude that the malonic acid-mediated acylation is a general method applicable to various target molecules. PMID:25846609

  15. RANGELAND COMMUNITIES: STRUCTURE, FUNCTION, AND CLASSIFICATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Determining the vegetational attributes of rangelands is critical to their management. Yet incorporating vegetation structure, function, and classification into a single chapter is an ambitious goal and an attempt to blur the boundaries between classical community ecology that characterize patterns...

  16. Microbial Studies Supporting Implementation of In Situ Bioremediation at TAN

    SciTech Connect

    Barnes, Joan Marie; Matthern, Gretchen Elise; Rae, Catherine; Ely, R. L.

    2000-11-01

    The Idaho National Engineering and Environmental Laboratory is evaluating in situ bioremediation of contaminated groundwater at its Test Area North Facility. To determine feasibility, microcosm and bioreactor studies were conducted to ascertain the ability of indigenous microbes to convert trichloroethene and dichloroethene to non-hazardous byproducts under aerobic and anaerobic conditions, and to measure the kinetics of microbial reactions associated with the degradation process. Microcosms were established from core samples and groundwater obtained from within the contaminant plume. These microcosms were amended with nutrients, under aerobic and anaerobic conditions, to identify electron donors capable of stimulating the degradation process. Results of the anaerobic microcosm studies showed that lactate, acetate and propionate amendments stimulated indigenous cell growth and functioned as effective substrates for reductive degradation of chloroethenes. Bioreactors inoculated with cultures from these anaerobic microcosms were operated under a batch mode for 42 days then converted to a fed-batch mode and operated at a 53-day hydraulic residence time. It was demonstrated that indigenous microbes capable of complete anaerobic reductive dechlorination are present in the subject well. It was also demonstrated that aerobic microbes capable of oxidizing chlorinated compounds produced by anaerobic reductive dechlorination are present. Kinetic data suggest that controlling the type and concentration of electron donors can increase trichlorethene conversion rates. In the event that complete mineralization of trichlorethene does not occur following stimulation, and anaerobic/aerobic treatment scheme is feasible.

  17. Process-Structure-Function Relations of Pectin in Food.

    PubMed

    Christiaens, Stefanie; Van Buggenhout, Sandy; Houben, Ken; Jamsazzadeh Kermani, Zahra; Moelants, Katlijn R N; Ngouémazong, Eugénie D; Van Loey, Ann; Hendrickx, Marc E G

    2016-04-25

    Pectin, a complex polysaccharide rich in galacturonic acid, has been identified as a critical structural component of plant cell walls. The functionality of this intricate macromolecule in fruit- and vegetable-based-derived products and ingredients is strongly determined by the nanostructure of its most abundant polymer, homogalacturonan. During food processing, pectic homogalacturonan is susceptible to various enzymatic as well as nonenzymatic conversion reactions modifying its structural and, hence, its functional properties. Consequently, a profound understanding of the various process-structure-function relations of pectin aids food scientists to tailor the functional properties of plant-based derived products and ingredients. This review describes the current knowledge on process-structure-function relations of pectin in foods with special focus on pectin's functionality with regard to textural attributes of solid plant-based foods and rheological properties of particulated fruit- and vegetable-derived products. In this context, both pectin research performed via traditional, ex situ physicochemical analyses of fractionated walls and isolated polymers and pectin investigation through in situ pectin localization are considered. PMID:25629167

  18. Generation of recombinant monoclonal antibodies to study structure-function of envelope protein VP28 of white spot syndrome virus from shrimp

    SciTech Connect

    Wang Yuzhen; Zhang Xiaohua; Yuan Li; Xu Tao; Rao Yu; Li Jia; Dai Heping

    2008-08-08

    White spot syndrome virus (WSSV) is a major pathogen in shrimp aquaculture. VP28 is one of the most important envelope proteins of WSSV. In this study, a recombinant antibody library, as single-chain fragment variable (scFv) format, displayed on phage was constructed using mRNA from spleen cells of mice immunized with full-length VP28 expressed in Escherichia coli. After several rounds of panning, six scFv antibodies specifically binding to the epitopes in the N-terminal, middle, and C-terminal regions of VP28, respectively, were isolated from the library. Using these scFv antibodies as tools, the epitopes in VP28 were located on the envelope of the virion by immuno-electron microscopy. Neutralization assay with these antibodies in vitro suggested that these epitopes may not be the attachment site of WSSV to host cell receptor. This study provides a new way to investigate the structure and function of the envelope proteins of WSSV.

  19. Circovirus-infected geese studied by in situ hybridization.

    PubMed

    Smyth, Joan; Soike, D; Moffett, Deborah; Weston, J H; Todd, D

    2005-06-01

    It has now been established that circovirus infection is common in farmed geese, but little is known about the clinicopathological significance of such infections. Ten clinically diseased geese suspected of being infected by circovirus were studied by in situ hybridization using a goose circovirus DNA probe. Circovirus DNA was demonstrated in the bursa of Fabricius (BF), spleen, thymus, bone marrow, liver, kidney, lung and heart, indicating that infection can be multisystemic. In some birds, virus DNA was present in very large quantities, most notably in the BF, liver and small intestine. With the exception of BF and thymus, there were no histological findings that would have suggested the presence of such quantities of circovirus DNA. In view of the very large quantities of virus DNA labelling present in some tissues, and by analogy to porcine circovirus type 2 infection and psittacine beak and feather virus infections, which are known to cause severe disease, and which have similar virus distribution to that found in our geese, it seems probable that the circovirus was important in the disease manifestations shown by the infected geese. PMID:16191706

  20. Structure-Function Studies of Naphthalene, Phenanthrene, Biphenyl, and Their Derivatives in Interaction with and Oxidation by Cytochromes P450 2A13 and 2A6.

    PubMed

    Shimada, Tsutomu; Takenaka, Shigeo; Kakimoto, Kensaku; Murayama, Norie; Lim, Young-Ran; Kim, Donghak; Foroozesh, Maryam K; Yamazaki, Hiroshi; Guengerich, F Peter; Komori, Masayuki

    2016-06-20

    Naphthalene, phenanthrene, biphenyl, and their derivatives having different ethynyl, propynyl, butynyl, and propargyl ether substitutions were examined for their interaction with and oxidation by cytochromes P450 (P450) 2A13 and 2A6. Spectral interaction studies suggested that most of these chemicals interacted with P450 2A13 to induce Type I binding spectra more readily than with P450 2A6. Among the various substituted derivatives examined, 2-ethynylnaphthalene, 2-naphthalene propargyl ether, 3-ethynylphenanthrene, and 4-biphenyl propargyl ether had larger ΔAmax/Ks values in inducing Type I binding spectra with P450 2A13 than their parent compounds. P450 2A13 was found to oxidize naphthalene, phenanthrene, and biphenyl to 1-naphthol, 9-hydroxyphenanthrene, and 2- and/or 4-hydroxybiphenyl, respectively, at much higher rates than P450 2A6. Other human P450 enzymes including P450s 1A1, 1A2, 1B1, 2C9, and 3A4 had lower rates of oxidation of naphthalene, phenanthrene, and biphenyl than P450s 2A13 and 2A6. Those alkynylated derivatives that strongly induced Type I binding spectra with P450s 2A13 and 2A6 were extensively oxidized by these enzymes upon analysis with HPLC. Molecular docking studies supported the hypothesis that ligand-interaction energies (U values) obtained with reported crystal structures of P450 2A13 and 2A6 bound to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, indole, pilocarpine, nicotine, and coumarin are of use in understanding the basis of possible molecular interactions of these xenobiotic chemicals with the active sites of P450 2A13 and 2A6 enzymes. In fact, the ligand-interaction energies with P450 2A13 4EJG bound to these chemicals were found to relate to their induction of Type I binding spectra. PMID:27137136

  1. The odyssey of a young gene: structure-function studies in human glutamate dehydrogenases reveal evolutionary-acquired complex allosteric regulation mechanisms.

    PubMed

    Zaganas, Ioannis V; Kanavouras, Konstantinos; Borompokas, Nikolas; Arianoglou, Giovanna; Dimovasili, Christina; Latsoudis, Helen; Vlassi, Metaxia; Mastorodemos, Vasileios

    2014-01-01

    Mammalian glutamate dehydrogenase (GDH) catalyzes the reversible inter-conversion of glutamate to α-ketoglutarate and ammonia, interconnecting carbon skeleton and nitrogen metabolism. In addition, it functions as an energy switch by its ability to fuel the Krebs cycle depending on the energy status of the cell. As GDH lies at the intersection of several metabolic pathways, its activity is tightly regulated by several allosteric compounds that are metabolic intermediates. In contrast to other mammals that have a single GDH-encoding gene, humans and great apes possess two isoforms of GDH (hGDH1 and hGDH2, encoded by the GLUD1 and GLUD2 genes, respectively) with distinct regulation pattern, but remarkable sequence similarity (they differ, in their mature form, in only 15 of their 505 amino-acids). The GLUD2 gene is considered a very young gene, emerging from the GLUD1 gene through retro-position only recently (<23 million years ago). The new hGDH2 iso-enzyme, through random mutations and natural selection, is thought to have conferred an evolutionary advantage that helped its persistence through primate evolution. The properties of the two highly homologous human GDHs have been studied using purified recombinant hGDH1 and hGDH2 proteins obtained by expression of the corresponding cDNAs in Sf21 cells. According to these studies, in contrast to hGDH1 that maintains basal activity at 35-40 % of its maximal, hGDH2 displays low basal activity that is highly responsive to activation by rising levels of ADP and/or L-leucine which can also act synergistically. While hGDH1 is inhibited potently by GTP, hGDH2 shows remarkable GTP resistance. Furthermore, the two iso-enzymes are differentially inhibited by estrogens, polyamines and neuroleptics, and also differ in heat-lability. To elucidate the molecular mechanisms that underlie these different regulation patterns of the two iso-enzymes (and consequently the evolutionary adaptation of hGDH2 to a new functional role), we have

  2. Structure/Function Studies Involving the V3 Region of the HIV-1 Envelope Delineate Multiple Factors That Affect Neutralization Sensitivity

    PubMed Central

    Cohen, Sandra Sharpe; Boyd, David; Kong, Xiang-Peng; Seaman, Michael; Nussenzweig, Michel; Klein, Florian; Overbaugh, Julie; Totrov, Max

    2015-01-01

    ABSTRACT Antibodies (Abs) specific for the V3 loop of the HIV-1 gp120 envelope neutralize most tier 1 and many tier 2 viruses and are present in essentially all HIV-infected individuals as well as immunized humans and animals. Vaccine-induced V3 Abs are associated with reduced HIV infection rates in humans and affect the nature of transmitted viruses in infected vaccinees, despite the fact that V3 is often occluded in the envelope trimer. Here, we link structural and experimental data showing how conformational alterations of the envelope trimer render viruses exceptionally sensitive to V3 Abs. The experiments interrogated the neutralization sensitivity of pseudoviruses with single amino acid mutations in various regions of gp120 that were predicted to alter packing of the V3 loop in the Env trimer. The results indicate that the V3 loop is metastable in the envelope trimer on the virion surface, flickering between states in which V3 is either occluded or available for binding to chemokine receptors (leading to infection) and to V3 Abs (leading to virus neutralization). The spring-loaded V3 in the envelope trimer is easily released by disruption of the stability of the V3 pocket in the unliganded trimer or disruption of favorable V3/pocket interactions. Formation of the V3 pocket requires appropriate positioning of the V1V2 domain, which is, in turn, dependent on the conformation of the bridging sheet and on the stability of the V1V2 B-C strand-connecting loop. IMPORTANCE The levels of antibodies to the third variable region (V3) of the HIV envelope protein correlate with reduced HIV infection rates. Previous studies showed that V3 is often occluded, as it sits in a pocket of the envelope trimer on the surface of virions; however, the trimer is flexible, allowing occluded portions of the envelope (like V3) to flicker into an exposed position that binds antibodies. Here we provide a systematic interrogation of mechanisms by which single amino acid changes in various

  3. Proteomic approaches to study structure, functions and toxicity of legume seeds lectins. Perspectives for the assessment of food quality and safety.

    PubMed

    Nasi, Antonella; Picariello, Gianluca; Ferranti, Pasquale

    2009-04-13

    Lectins are a structurally diverse class of (glyco)proteins which bind mono- and oligosaccharides with high specificity and in a reversible way. For many years, the unique sugar binding properties of plant lectins have been exploited for the development of biochemical tools for glycoprotein isolation and characterisation, and the use of lectins as a glycoprofiling tool has became much more sophisticated with the advent of lectin microarrays, in which a panel of lectins are immobilized on a single chip for glycomic analysis. Among the numerous lectins studied so far, those from legumes represent the largest family. They can be present at relatively high amounts depending on genetic as well as environmental factors, and are accumulated especially in the seeds. For this reason, some lectins as the phytohemagglutinin from the common bean Phaseolus vulgaris constitute a possible risk, since consumption of raw or incorrectly processed beans has been shown to cause outbreaks of gastroenteritis, nausea and diarrhoea. On the other hand, for these anti-nutritional properties, bean extracts enriched in lectins or in lectin-related amylase inhibitors are also finding a growing use as active ingredients of "weight-blockers" in dietetic preparations for obesity treatment. Current methods to determine the lectin levels in foods are based on immunoenzymatic or toxicity tests, which are largely aspecific. Very recently, the availability of proteomic methodologies has allowed to start development and validation of sensitive and specific assays for detecting trace amounts of harmful lectins in either raw or processed foods. In this review, the main aspects of current and perspective applications of mass spectrometry and proteomic technologies to the structural characterisation of legumes are presented, with focus on issues related to detection, identification, and quantification of phytohemagglutinins relevant for their biochemical, immunological and toxicological aspects. PMID

  4. Structure-function relationships of the yeast fatty acid synthase: negative-stain, cryo-electron microscopy, and image analysis studies of the end views of the structure.

    PubMed

    Stoops, J K; Kolodziej, S J; Schroeter, J P; Bretaudiere, J P; Wakil, S J

    1992-07-15

    The yeast fatty acid synthase (M(r) = 2.5 x 10(6)) is organized in an alpha 6 beta 6 complex. In these studies, the synthase structure has been examined by negative-stain and cryo-electron microscopy. Side and end views of the structure indicate that the molecule, shaped similar to a prolate ellipsoid, has a high-density band of protein bisecting its major axis. Stained and frozen-hydrated average images of the end views show an excellent concordance and a hexagonal ring having three each alternating egg- and kidney-shaped features with low-protein-density protrusions extending outward from the egg-shaped features. Images also show that the barrel-like structure is not hollow but has a Y-shaped central core, which appears to make contact with the three egg-shaped features. Numerous side views of the structure give good evidence that the beta subunits have an archlike shape. We propose a model for the synthase that has point-group symmetry 32 and six equivalent sites of fatty acid synthesis. The protomeric unit is alpha 2 beta 2. The ends of each of the two archlike beta subunits interact with opposite sides of the two dichotomously arranged disclike alpha subunits. Three such protomeric units form the ring. We propose that the six fatty acid synthesizing centers are composed of two complementary half-alpha subunits and a beta subunit, an arrangement having all the partial activities of the multifunctional enzyme required for fatty acid synthesis. PMID:1631160

  5. In vivo structure-function studies of human hepatic lipase: the catalytic function rescues the lean phenotype of HL-deficient (hl−/−) mice

    PubMed Central

    Chen, Jeffrey; Kaiyala, Karl J; Lam, Jennifer; Agrawal, Nalini; Nguyen, Lisa; Ogimoto, Kayoko; Spencer, Dean; Morton, Gregory J; Schwartz, Michael W; Dichek, Helén L

    2015-01-01

    The lean body weight phenotype of hepatic lipase (HL)–deficient mice (hl−/−) suggests that HL is required for normal weight gain, but the underlying mechanisms are unknown. HL plays a unique role in lipoprotein metabolism performing bridging as well as catalytic functions, either of which could participate in energy homeostasis. To determine if both the catalytic and bridging functions or the catalytic function alone are required for the effect of HL on body weight, we studied (hl−/−) mice that transgenically express physiologic levels of human (h)HL (with catalytic and bridging functions) or a catalytically-inactive (ci)HL variant (with bridging function only) in which the catalytic Serine 145 was mutated to Alanine. As expected, HL activity in postheparin plasma was restored to physiologic levels only in hHL-transgenic mice (hl−/−hHL). During high-fat diet feeding, hHL-transgenic mice exhibited increased body weight gain and body adiposity relative to hl−/−ciHL mice. A similar, albeit less robust effect was observed in female hHL-transgenic relative to hl−/−ciHL mice. To delineate the basis for this effect, we determined cumulative food intake and measured energy expenditure using calorimetry. Interestingly, in both genders, food intake was 5–10% higher in hl−/−hHL mice relative to hl−/−ciHL controls. Similarly, energy expenditure was ∼10% lower in HL-transgenic mice after adjusting for differences in total body weight. Our results demonstrate that (1) the catalytic function of HL is required to rescue the lean body weight phenotype of hl−/− mice; (2) this effect involves complementary changes in both sides of the energy balance equation; and (3) the bridging function alone is insufficient to rescue the lean phenotype of hl−/−ciHL mice. PMID:25862097

  6. Structure-Function Studies with the Unique Hexameric Form II Ribulose-1,5-bisphosphate Carboxylase/Oxygenase (Rubisco) from Rhodopseudomonas palustris*

    PubMed Central

    Satagopan, Sriram; Chan, Sum; Perry, L. Jeanne; Tabita, F. Robert

    2014-01-01

    The first x-ray crystal structure has been solved for an activated transition-state analog-bound form II ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). This enzyme, from Rhodopseudomonas palustris, assembles as a unique hexamer with three pairs of catalytic large subunit homodimers around a central 3-fold symmetry axis. This oligomer arrangement is unique among all known Rubisco structures, including the form II homolog from Rhodospirillum rubrum. The presence of a transition-state analog in the active site locked the activated enzyme in a “closed” conformation and revealed the positions of critical active site residues during catalysis. Functional roles of two form II-specific residues (Ile165 and Met331) near the active site were examined via site-directed mutagenesis. Substitutions at these residues affect function but not the ability of the enzyme to assemble. Random mutagenesis and suppressor selection in a Rubisco deletion strain of Rhodobacter capsulatus identified a residue in the amino terminus of one subunit (Ala47) that compensated for a negative change near the active site of a neighboring subunit. In addition, substitution of the native carboxyl-terminal sequence with the last few dissimilar residues from the related R. rubrum homolog increased the enzyme's kcat for carboxylation. However, replacement of a longer carboxyl-terminal sequence with termini from either a form III or a form I enzyme, which varied both in length and sequence, resulted in complete loss of function. From these studies, it is evident that a number of subtle interactions near the active site and the carboxyl terminus account for functional differences between the different forms of Rubiscos found in nature. PMID:24942737

  7. Structural-functional characterization of the cathodic haemoglobin of the conger eel Conger conger: molecular modelling study of an additional phosphate-binding site.

    PubMed Central

    Pellegrini, Mariagiuseppina; Giardina, Bruno; Verde, Cinzia; Carratore, Vito; Olianas, Alessandra; Sollai, Luigi; Sanna, Maria T; Castagnola, Massimo; di Prisco, Guido

    2003-01-01

    The protein sequence data for the alpha- and beta-chains have been deposited in the SWISS-PROT and TrEMBL protein knowledgebase under the accession numbers P83479 and P83478 respectively. The Conger conger (conger eel) haemoglobin (Hb) system is made of three components, one of which, the so-called cathodic Hb, representing approx. 20% of the total pigment, has been purified and characterized from both a structural and functional point of view. Stripped Hb showed a reverse Bohr effect, high oxygen affinity and slightly low cooperativity in the absence of any effector. Addition of saturating GTP strongly influences the pH dependence of the oxygen affinity, since the reverse Bohr effect, observed under stripped conditions, is converted into a small normal Bohr effect. A further investigation of the GTP effect on oxygen affinity, carried out by fitting its titration curve, demonstrated the presence of two independent binding sites. Therefore, on the basis of the amino acid sequence of the alpha- and beta-chains, which have been determined, a computer modelling study has been performed. The data suggest that C. conger cathodic Hb may bind organic phosphates at two distinct binding sites located along the central cavity of the tetramer by hydrogen bonds and/or electrostatic interactions with amino acid residues of both chains, which have been identified. Among these residues, the two Lys-alpha(G6) (where the letter refers to the haemoglobin helix and the number to the amino acid position in the helix) appear to have a key role in the GTP movement from the external binding region to the internal central cavity of the tetrameric molecule. PMID:12646043

  8. Structure/function studies of human immunodeficiency virus type 1 reverse transcriptase. Alanine scanning mutagenesis of an alpha-helix in the thumb subdomain.

    PubMed

    Beard, W A; Stahl, S J; Kim, H R; Bebenek, K; Kumar, A; Strub, M P; Becerra, S P; Kunkel, T A; Wilson, S H

    1994-11-11

    Human immunodeficiency virus type 1 reverse transcriptase has subunits of 66 and 51 kDa (p66 and p51, respectively). Structural studies indicate that each subunit consists of common subdomains. The polymerase domain of p66 forms a nucleic acid binding cleft, and, by analogy with a right hand, the subdomains are referred to as fingers, palm, and thumb (Kohlstaedt, L. A., Wang, J., Friedman, J. M., Rice, P. A., and Steitz, T. A. (1992) Science 256, 1783-1790). Residues 257-266 correspond to a highly conserved region of primary structure among retroviral pol genes. Crystallographic evidence indicates that these residues are in the thumb subdomain and form part of an alpha-helix (alpha H), which interacts with DNA (Jacobo-Molina, A., Ding, J., Nanni, R. G., Clark, A. D., Jr., Lu, X., Tantillo, C., Williams, R. L., Kamer, G., Ferris, A. L., Clark, P., Hizi, A., Hughes, S. H., and Arnold, E. (1993) Proc. Natl. Acad. Sci. U. S. A. 90, 6320-6324). To define the role of this region during catalytic cycling, we performed systematic site-directed mutagenesis from position 253 through position 271 by changing each residue, one by one, to alanine. Each mutant protein was expressed and purified, and their substrate-specific activities were surveyed. The results are consistent with alpha H (residues 255-268) of p66 interacting with the template and/or primer strand. The core of alpha H appears to play an important role in template-primer binding (residues Gln-258, Gly-262, and Trp-266), and in protein-protein interactions (residues Val-261 and Leu-264). The periodicity of the effects observed suggest that a segment of one face of alpha H interacts with the template-primer. The lower fidelity observed with alanine mutants of Gly-262 and Trp-266 correlated with an over 200-fold increase in the dissociation rate constant for template-primer relative to wild type enzyme and suggests that enzyme-DNA interactions in the template-primer stem are important fidelity determinants. PMID

  9. Proton structure functions at small x

    SciTech Connect

    Hentschinski, Martin

    2015-01-01

    Proton structure functions are measured in electron-proton collision through inelastic scattering of virtual photons with virtuality Q on protons; x denotes the momentum fraction carried by the struck parton. Proton structure functions are currently described with excellent accuracy in terms of scale dependent parton distribution functions, defined in terms of collinear factorization and DGLAP evolution in Q. With decreasing x however, parton densities increase and are ultimately expected to saturate. In this regime DGLAP evolution will finally break down and non-linear evolution equations w.r.t x are expected to take over. In the first part of the talk we present recent result on an implementation of physical DGLAP evolution. Unlike the conventional description in terms of parton distribution functions, the former describes directly the Q dependence of the measured structure functions. It is therefore physical insensitive to factorization scheme and scale ambiguities. It therefore provides a more stringent test of DGLAP evolution and eases the manifestation of (non-linear) small x effects. It however requires a precise measurement of both structure functions F2 and FL, which will be only possible at future facilities, such as an Electron Ion Collider. In the second part we present a recent analysis of the small x region of the combined HERA data on the structure function F2. We demonstrate that (linear) next-to-leading order BFKL evolution describes the effective Pomeron intercept, determined from the combined HERA data, once a resummation of collinear enhanced terms is included and the renormalization scale is fixed using the BLM optimal scale setting procedure. We also provide a detailed description of the Q and x dependence of the full structure functions F2 in the small x region, as measured at HERA. As a result, predictions for the structure function FL are found to be in agreement with the existing HERA

  10. Proton structure functions at small x

    DOE PAGESBeta

    Hentschinski, Martin

    2015-01-01

    Proton structure functions are measured in electron-proton collision through inelastic scattering of virtual photons with virtuality Q on protons; x denotes the momentum fraction carried by the struck parton. Proton structure functions are currently described with excellent accuracy in terms of scale dependent parton distribution functions, defined in terms of collinear factorization and DGLAP evolution in Q. With decreasing x however, parton densities increase and are ultimately expected to saturate. In this regime DGLAP evolution will finally break down and non-linear evolution equations w.r.t x are expected to take over. In the first part of the talk we present recentmore » result on an implementation of physical DGLAP evolution. Unlike the conventional description in terms of parton distribution functions, the former describes directly the Q dependence of the measured structure functions. It is therefore physical insensitive to factorization scheme and scale ambiguities. It therefore provides a more stringent test of DGLAP evolution and eases the manifestation of (non-linear) small x effects. It however requires a precise measurement of both structure functions F2 and FL, which will be only possible at future facilities, such as an Electron Ion Collider. In the second part we present a recent analysis of the small x region of the combined HERA data on the structure function F2. We demonstrate that (linear) next-to-leading order BFKL evolution describes the effective Pomeron intercept, determined from the combined HERA data, once a resummation of collinear enhanced terms is included and the renormalization scale is fixed using the BLM optimal scale setting procedure. We also provide a detailed description of the Q and x dependence of the full structure functions F2 in the small x region, as measured at HERA. As a result, predictions for the structure function FL are found to be in agreement with the existing HERA data.« less

  11. Autotaxin: structure-function and signaling

    PubMed Central

    Perrakis, Anastassis; Moolenaar, Wouter H.

    2014-01-01

    Autotaxin (ATX), or ecto-nucleotide pyrophosphatase/phosphodiesterase-2, is a secreted lysophospholipase D (lysoPLD) that hydrolyzes extracellular lysophospholipids into the lipid mediator lysophosphatidic acid (LPA), a ligand for specific G protein-coupled receptors. ATX-LPA signaling is essential for development and has been implicated in a great diversity of (patho)physiological processes, ranging from lymphocyte homing to tumor progression. Structural and functional studies have revealed what makes ATX a unique lysoPLD, and how secreted ATX binds to its target cells. The ATX catalytic domain shows a characteristic bimetallic active site followed by a shallow binding groove that can accommodate nucleotides as well as the glycerol moiety of lysophospholipids, and by a deep lipid-binding pocket. In addition, the catalytic domain has an open tunnel of unknown function adjacent to the active site. Here, we discuss our current understanding of ATX structure-function relationships and signaling mechanisms, and how ATX isoforms use distinct mechanisms to target LPA production to the plasma membrane, notably binding to integrins and heparan sulfate proteoglycans. We also briefly discuss the development of drug-like inhibitors of ATX. PMID:24548887

  12. Degradation of Bimetallic Model Electrocatalysts ___ an in situ XAS Study

    SciTech Connect

    Friebel, Daniel

    2011-06-22

    One of the major challenges in the development of clean energy fuel cells is the performance degradation of the electrocatalyst, which, apart from poisoning effects, can suffer from corrosion due to its exposure to a harsh environment under high potentials. In this communication, we demonstrate how interactions of Pt with a transition metal support affect not only, as commonly intended, the catalytic activity, but also the reactivity of Pt towards oxide formation or dissolution. We use two well-defined single-crystal model systems, Pt/Rh(111) and Pt/Au(111) and a unique x-ray spectroscopy technique with enhanced energy resolution to monitor the potential-dependent oxidation state of Pt, and find two markedly different oxidation mechanisms on the two different substrates. This information can be of great significance for future design of more active and more stable catalysts. We have studied the potential-induced degradation of Pt monolayer model electrocatalysts on Rh(111) and Au(111) single-crystal substrates. The anodic formation of Pt oxides was monitored using in situ high energy resolution fluorescence detection x-ray absorption spectroscopy (HERFD XAS). Although Pt was deposited on both substrates in a three-dimensional island growth mode, we observed remarkable differences during oxide formation that can only be understood in terms of strong Pt-substrate interactions throughout the Pt islands. Anodic polarization of Pt/Rh(111) up to +1.6 V vs. RHE (reversible hydrogen electrode) leads to formation an incompletely oxidized passive layer, whereas formation of PtO2 and partial Pt dissolution is observed for Pt/Au(111).

  13. Remedition case studies: Thermal desorption, soil washing, and in situ vitrification

    SciTech Connect

    1995-03-01

    The purpose of this report is to provide case studies of site cleanup projects utilizing thermal desorption, soil washing, and in situ vitrification. This volume contains reports on projects using thermal desorption, including six completed applications at sites contaminated with PCBs, pesticides, or chlorinated aliphatics. Two projects in this volume used soil washing and in situ vitrification technologies.

  14. Oxidative Dehydrogenation on Nanocarbon: Intrinsic Catalytic Activity and Structure-Function Relationships.

    PubMed

    Qi, Wei; Liu, Wei; Guo, Xiaoling; Schlögl, Robert; Su, Dangsheng

    2015-11-01

    Physical and chemical insights into the nature and quantity of the active sites and the intrinsic catalytic activity of nanocarbon materials in alkane oxidative dehydrogenation (ODH) reactions are reported using a novel in situ chemical titration process. A study on the structure-function relationship reveals that the active sites are identical both in nature and function on various nanocarbon catalysts. Additionally, the quantity of the active sites could be used as a metric to normalize the reaction rates, and thus to evaluate the intrinsic activity of nanocarbon catalysts. The morphology of the nanocarbon catalysts at the microscopic scale exhibits a minor influence on their intrinsic ODH catalytic activity. The number of active sites calculated from the titration process indicates the number of catalytic centers that are active (that is, working) under the reaction conditions. PMID:26388451

  15. In-situ spectroscopic studies of electrochromic tungsten oxide films

    NASA Astrophysics Data System (ADS)

    Ozer, Nilgun; Demirbas, Muharrem; Ozyurt, Secuk

    2001-11-01

    Tungsten oxide thin films were prepared using an ethanolic solution of tungsten hexachloride (WCl6) by sol-gel spin coating. The films were spin coated on indium tin oxide (ITO) coated glass substrate at temperatures in the range of 100 to 450 degree(s)C. The films were characterized by x-ray diffractometry (XRD), scanning electron microscopy (SEM) UV- visible spectroscopy and cyclic voltammetry (CV). XRD showed that they had a polycrystalline WO3 structure for heat treatment temperatures at above 350 degree(s)C. The SEM examinations showed that the surface texture was very uniform and homogeneous. In situ electrochemical reduction of WO3/ITO (2M HCl) produced a blue color in less than a second. Coloration efficiency (CE) was found to be 21 cm2/mC. In situ spectroscopic investigations showed that these films could be used as a working electrode in electrochromic devices.

  16. Towards microfluidic reactors for in situ synchrotron infrared studies

    NASA Astrophysics Data System (ADS)

    Silverwood, I. P.; Al-Rifai, N.; Cao, E.; Nelson, D. J.; Chutia, A.; Wells, P. P.; Nolan, S. P.; Frogley, M. D.; Cinque, G.; Gavriilidis, A.; Catlow, C. R. A.

    2016-02-01

    Anodically bonded etched silicon microfluidic devices that allow infrared spectroscopic measurement of solutions are reported. These extend spatially well-resolved in situ infrared measurement to higher temperatures and pressures than previously reported, making them useful for effectively time-resolved measurement of realistic catalytic processes. A data processing technique necessary for the mitigation of interference fringes caused by multiple reflections of the probe beam is also described.

  17. Holographic microscopy for in situ studies of microorganism motility

    NASA Astrophysics Data System (ADS)

    Nadeau, J.; Hu, S.; Jericho, S.; Lindensmith, C.

    2011-12-01

    Robust technologies for the detection and identification of microorganisms at low concentrations in complex liquid media are needed for numerous applications: environmental and medical microbiology, food safety, and for the search for microbial life elsewhere in the Solar System. The best current method for microbial enumeration is specific labeling with fluorescent dyes followed by high-resolution light microscopy. However, fluorescent techniques are difficult to use in situ in extreme environments (such as the Arctic and Antarctic or the open ocean) due to the fragility of the instruments and their high power demands. In addition, light microscopic techniques rarely provide insight into microbial motility behaviors. Tracking single cells would provide important insight into the physics of micron-scale motility as well as into key microbial phenomena such as surface attachment and invasiveness. An alternative to traditional light microscopy that is attracting increasing attention is holographic microscopy. Holographic microscopy works by illuminating the object of interest with coherent light from a laser. The light reflected from (or transmitted through) the object is then combined with a coherent reference beam to create an interference pattern that contains the phase and intensity information required to reconstruct a three dimensional image of the object. The interference pattern is recorded on a high resolution detector and can be used to computationally reconstruct a 3D image of the object. The lateral resolution of the image depends upon the wavelength of the light used, the laser power, camera quality, and external noise sources (vibration, stray light, and so forth). Although the principle is simple, technological barriers have prevented wider use of holographic microscopy. Laser sources and CCD cameras with the appropriate properties have only very recently become affordable. In addition, holographic microscopy leads to large data sets that are

  18. Structural Functionalism as a Heuristic Device.

    ERIC Educational Resources Information Center

    Chilcott, John H.

    1998-01-01

    Argues that structural functionalism as a method for conducting fieldwork and as a format for the analysis of ethnographic data remains a powerful model, one that is easily understood by professional educators. As a heuristic device, functionalist theory can help in the solution of a problem that is otherwise incapable of theoretical…

  19. Feminine Faces of Leadership: Beyond Structural- Functionalism?

    ERIC Educational Resources Information Center

    Fennell, Hope-Arlene

    1999-01-01

    Reviews four philosophical leadership perspectives: structural-functionalism, constructivism, critical theory, and feminism. Explores the leadership phenomenon through the eyes of six women principals. Although the behaviors of all six fall within a structural-functionalist perspective, each is attempting to construct inclusive, positive, and…

  20. Structure functions: Their status and implications

    SciTech Connect

    Hinchliffe, I.

    1988-09-29

    I discuss the current status of structure functions. Attention is given to the uncertainties in them and the implications of these uncertainties for experimental predictions. I indicate which experiments are capable of removing these uncertainties. 17 refs., 17 figs., 1 tab.

  1. 2004 Structural, Function and Evolutionary Genomics

    SciTech Connect

    Douglas L. Brutlag Nancy Ryan Gray

    2005-03-23

    This Gordon conference will cover the areas of structural, functional and evolutionary genomics. It will take a systematic approach to genomics, examining the evolution of proteins, protein functional sites, protein-protein interactions, regulatory networks, and metabolic networks. Emphasis will be placed on what we can learn from comparative genomics and entire genomes and proteomes.

  2. Evolving Technologies for In-Situ Studies of Mars Ice

    NASA Technical Reports Server (NTRS)

    Carsey, F. D.; Hecht, M. H.

    2003-01-01

    Icy sites on Mars continue to be of high scientific importance. These sites include the polar caps, the southern mid-latitude subsurface permafrost, and the seasonal frost. These sites have interest due to their roles in climate processes, past climates, surface and near-surface water, astrobiology, geomorphology, and other topics. As is the case for many planetary features, remote sensing, while of great value, cannot answer all questions; in-situ examination is essential, and the motivation for in-situ observations generally leads to the subsurface, which, fortunately, is accessible on Mars. It is clear in fact that a Mars polar cap subsurface mission is both scientifically compelling and practical. Recent data from orbiting platforms has provided a remarkable level of information about the Mars ice caps; we know, for example, the size, shape and annual cycle of the cap topography as well as we know that of Earth, and we have more information on stratification that we have of, for example, the ice of East Antarctica. To understand the roles that the Mars polar caps play, it is necessary to gather information on the ice cap surface, strata, composition and bed. In this talk the status of in-situ operations and observations will be summarized, and, since we have conveniently at hand another planet with polar caps, permafrost and ice, the role of testing and validation of experimental procedures on Earth will be addressed.

  3. Semiconductor nanorod self-assembly at the liquid/air interface studied by in situ GISAXS and ex situ TEM.

    PubMed

    Pietra, Francesca; Rabouw, Freddy T; Evers, Wiel H; Byelov, Dima V; Petukhov, Andrei V; de Mello Donegá, Celso; Vanmaekelbergh, Daniël

    2012-11-14

    We study the self-assembly of colloidal CdSe/CdS nanorods (NRs) at the liquid/air interface combining time-resolved in situ grazing-incidence small angle X-ray scattering (GISAXS) and ex situ transmission electron microscopy (TEM). Our study shows that NR superstructure formation occurs at the liquid/air interface. Short NRs self-assemble into micrometers long tracks of NRs lying side by side flat on the surface. In contrast, longer NRs align vertically into ordered superstructures. Systematic variation of the NR length and initial concentration of the NR dispersion allowed us to tune the orientation of the NRs in the final superstructure. With GISAXS, we were able to follow the dynamics of the self-assembly. We propose a model of hierarchical self-organization that provides a basis for the understanding of the length-dependent self-organization of NRs at the liquid/air interface. This opens the way to new materials based on NR membranes and anisotropic thin films. PMID:23038984

  4. Remediation case studies: In situ soil treatment technologies (soil vapor extraction, thermal processes). Volume 8

    SciTech Connect

    1998-09-01

    The case studies present available cost and performance information for full-scale remediation efforts. The studies contain varying levels of detail, reflecting the differences in the availability of data and information. The case studies in this volume describe 14 applications of soil vapor extraction (SVE) and in situ thermal processes. These include 10 full-scale and one pilot-scale SVE applications used to treat soil contaminated with chlorinated solvents and petroleum hydrocarbons. Three of these applications involved treatment or containment of both contaminated soil and groundwater through a combination of SVE, air sparging, groundwater extraction, and/or in situ bioremediation technologies. One case study describes a photolytic technology demonstrated for treatment of contaminated vapors from an SVE system. In addition, this volume describes two in situ thermal treatment applications, one used to recover free and residual coal tar, and one that was a demonstration of an in situ process to desorb PCBs from soil.

  5. Geometrical scaling in charm structure function ratios

    NASA Astrophysics Data System (ADS)

    Boroun, G. R.; Rezaei, B.

    2014-09-01

    By using a Laplace-transform technique, we solve the next-to-leading-order master equation for charm production and derive a compact formula for the ratio Rc = FLccbar/F2ccbar, which is useful for extracting the charm structure function from the reduced charm cross section, in particular, at DESY HERA, at small x. Our results show that this ratio is independent of x at small x. In this method of determining the ratios, we apply geometrical scaling in charm production in deep inelastic scattering (DIS). Our analysis shows that the renormalization scales have a sizable impact on the ratio Rc at high Q2. Our results for the ratio of the charm structure functions are in a good agreement with some phenomenological models.

  6. Nuclear diffractive structure functions at high energies

    SciTech Connect

    Marquet,C.; Kowalski, H.; Lappi, T.; Venugopalan, R.

    2008-08-08

    A future high-energy electron-ion collider would explore the non-linear weakly-coupled regime of QCD, and test the Color Glass Condensate (CGC) approach to high-energy scattering. Hard diffraction in deep inelastic scattering off nuclei will provide many fundamental measurements. In this work, the nuclear diffractive structure function F{sub 2,A}{sup D} is predicted in the CGC framework, and the features of nuclear enhancement and suppression are discussed.

  7. Structure function calculations for Ostwald Ripening processes

    NASA Technical Reports Server (NTRS)

    Hassan, Razi A.

    1990-01-01

    A program for computing the structure function for configurations involved in Ostwald Ripening was written. The basic algorithms are derived from a mathematical analysis of a two-dimensional model system developed by Bortz, et. al. (1974). While it is expected that the values form the computer simulations will reflect Ostwald Ripening, at this point the program is still being tested. Some preliminary runs seem to justify the expectations.

  8. In situ anodization of aluminum surfaces studied by x-ray reflectivity and electrochemical impedance spectroscopy

    SciTech Connect

    Bertram, F. Evertsson, J.; Messing, M. E.; Mikkelsen, A.; Lundgren, E.; Zhang, F.; Pan, J.; Carlà, F.; Nilsson, J.-O.

    2014-07-21

    We present results from the anodization of an aluminum single crystal [Al(111)] and an aluminum alloy [Al 6060] studied by in situ x-ray reflectivity, in situ electrochemical impedance spectroscopy and ex situ scanning electron microscopy. For both samples, a linear increase of oxide film thickness with increasing anodization voltage was found. However, the slope is much higher in the single crystal case, and the break-up of the oxide film grown on the alloy occurs at a lower anodization potential than on the single crystal. The reasons for these observations are discussed as are the measured differences observed for x-ray reflectivity and electrochemical impedance spectroscopy.

  9. In situ anodization of aluminum surfaces studied by x-ray reflectivity and electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Bertram, F.; Zhang, F.; Evertsson, J.; Carlà, F.; Pan, J.; Messing, M. E.; Mikkelsen, A.; Nilsson, J.-O.; Lundgren, E.

    2014-07-01

    We present results from the anodization of an aluminum single crystal [Al(111)] and an aluminum alloy [Al 6060] studied by in situ x-ray reflectivity, in situ electrochemical impedance spectroscopy and ex situ scanning electron microscopy. For both samples, a linear increase of oxide film thickness with increasing anodization voltage was found. However, the slope is much higher in the single crystal case, and the break-up of the oxide film grown on the alloy occurs at a lower anodization potential than on the single crystal. The reasons for these observations are discussed as are the measured differences observed for x-ray reflectivity and electrochemical impedance spectroscopy.

  10. MOLAB, a Mobile Laboratory for In Situ Non-Invasive Studies in Arts and Archaeology

    NASA Astrophysics Data System (ADS)

    Brunetti, B. G.; Matteini, Mauro; Miliani, C.; Pezzati, L.; Pinna, D.

    Mobile laboratory (MOLAB) is a unique joint collection of portable equipment for non-destructive in situ measurements. MOLAB activities are carried out within the frame of the Eu-ARTECH Integrated Infrastructure Initiative of the sixth F.P. In situ measurement is quite useful because it eliminates any risk connected to moving artworks or other precious objects to a laboratory. MOLAB instruments are accessible to European researchers through a peer-review selection of proposals. Starting from July 2004, MOLAB enabled non-destructive in situ studies of many precious artworks, such as paintings by Perugino, Raphael and Leonardo.

  11. Purification of integral outer-membrane protein OmpC, a surface antigen from Salmonella typhi for structure-function studies: a method applicable to enterobacterial major outer-membrane protein.

    PubMed

    Arockiasamy, A; Krishnaswamy, S

    2000-07-15

    Extraction of the outer-membrane porin, OmpC, from Salmonella typhi Ty21a was done by using a modified salt-extraction procedure. It was possible to extract only the major outer-membrane protein (OMP) from the crude membrane using this method. Aberrant lipopolysaccharide (LPS) production in the galE mutant Ty21a has resulted in more isoforms of OmpC and subsequently led to anomalous mobility in SDS-PAGE. The purity of the preparation was confirmed by denaturing urea SDS-PAGE and N-terminal sequencing. The major OMP extracts had LPS of both bound and free forms. The free form of LPS could be removed by gel filtration and the bound form, largely, was removed using ion-exchange chromatography and by passing through ultrafiltration devices. This method has been used to extract the native trimer of OmpC, the major OMP, in a large scale, for structure-function studies. S. typhi Ty21a OmpC preparation yielded reproducible diffraction-quality crystals. Extracts of porin from wild-type Escherichia coli HB101, grown under high osmolarity conditions, showed a single species of OMP on SDS-PAGE. This suggests the possible application of the method to other gram-negative bacterial porins. PMID:10929809

  12. Spin Structure Functions from Electron Scattering

    SciTech Connect

    Seonho Choi

    2012-09-01

    The spin structure of the nucleon can play a key testing ground for Quantum Chromo-Dynamics (QCD) at wide kinematic ranges from smaller to large four momentum transfer Q{sup 2}. The pioneering experiments have confirmed several QCD sum rules at high Q{sup 2} where a perturbative picture holds. For a full understanding of QCD at various scales, various measurements were made at intermediate and small Q{sup 2} region and their interpretation would be a challenging task due to the non-perturbative nature. Jefferson Lab has been one of the major experimental facilities for the spin structure with its polarized electron beams and various polarized targets. A few QCD sum rules have been compared with the measured spin structure functions g{sub 1}(x, Q{sup 2}) and g{sub 2}(x, Q{sup 2}) at low Q{sup 2} and surprising results have been obtained for the spin polarizabilities, {gamma}{sub 0} and {delta}{sub LT} . As for the proton spin structure functions, the lack of data for g{sub 2}(x,Q{sup 2}) structure functions has been complemented with a new experiment at Jefferson Lab, SANE. The results from SANE will provide a better picture of the proton spin structure at a wide kinematic range in x and Q{sup 2}.

  13. In situ studies of microbial inactivation during high pressure processing

    NASA Astrophysics Data System (ADS)

    Maldonado, Jose Antonio; Schaffner, Donald W.; Cuitiño, Alberto M.; Karwe, Mukund V.

    2016-01-01

    High pressure processing (HPP) has been shown to reduce microbial concentration in foods. The mechanisms of microbial inactivation by HPP have been associated with damage to cell membranes. The real-time response of bacteria to HPP was measured to elucidate the mechanisms of inactivation, which can aid in designing more effective processes. Different pressure cycling conditions were used to expose Enterobacter aerogenes cells to HPP. Propidium iodide (PI) was used as a probe, which fluoresces after penetrating cells with damaged membranes and binding with nucleic acids. A HPP vessel with sapphire windows was used for measuring fluorescence in situ. Membrane damage was detected during pressurization and hold time, but not during depressurization. The drop in fluorescence was larger than expected after pressure cycles at higher pressure and longer times. This indicated possible reversible disassociation of ribosomes resulting in additional binding of PI to exposed RNA under pressure and its release after depressurization.

  14. Polarized Structure Functions: Proton/Deuteron Measurements in Hall C

    SciTech Connect

    Oscar A. Rondon

    2005-02-01

    The study of the nucleon polarized structure functions has matured beyond the inclusive measurements of the past to the investigation of all eight quark distribution functions in the nucleon. Jefferson Lab's Hall C program of polarized structure functions studies started with a measurement of the proton and deuteron spin structure in the resonances at Q2 {approx} 1.3 [GeV/c]2. This work will be extended for the proton to more than 5 [GeV/c]2 for both DIS and the resonances in the upcoming SANE experiment. SANE will use a novel non-magnetic very large solid angle detector, BETA. Semi-inclusive asymmetries will be measured to determine the flavor composition of the nucleon spin in the recently approved Semi-SANE experiment. The 11 GeV energy upgrade will open new opportunities to study other functions, such as the transversity, Collins and Sievers functions, using vertical polarized targets.

  15. Polarized Structure Functions: Proton/Deuteron Measurements in Hall C

    SciTech Connect

    Rondon, Oscar A.

    2005-02-10

    The study of the nucleon polarized structure functions has matured beyond the inclusive measurements of the past to the investigation of all eight quark distribution functions in the nucleon. Jefferson Lab's Hall C program of polarized structure functions studies started with a measurement of the proton and deuteron spin structure in the resonances at Q2 {approx} 1.3 [GeV/c]2. This work will be extended for the proton to more than 5 [GeV/c]2 for both DIS and the resonances in the upcoming SANE experiment. SANE will use a novel non-magnetic very large solid angle detector, BETA. Semi-inclusive asymmetries will be measured to determine the flavor composition of the nucleon spin in the recently approved Semi -- SANE experiment. The 11 GeV energy upgrade will open new opportunities to study other functions, such as the transversity, Collins and Sievers functions, using vertical polarized targets.

  16. Setup for in situ x-ray diffraction study of swift heavy ion irradiated materials

    SciTech Connect

    Kulriya, P. K.; Singh, F.; Tripathi, A.; Ahuja, R.; Kothari, A.; Dutt, R. N.; Mishra, Y. K.; Kumar, Amit; Avasthi, D. K.

    2007-11-15

    An in situ x-ray diffraction (XRD) setup is designed and installed in the materials science beam line of the Pelletron accelerator at the Inter-University Accelerator Centre for in situ studies of phase change in swift heavy ion irradiated materials. A high vacuum chamber with suitable windows for incident and diffracted X-rays is integrated with the goniometer and the beamline. Indigenously made liquid nitrogen (LN{sub 2}) temperature sample cooling unit is installed. The snapshots of growth of particles with fluence of 90 MeV Ni ions were recorded using in situ XRD experiment, illustrating the potential of this in situ facility. A thin film of C{sub 60} was used to test the sample cooling unit. It shows that the phase of the C{sub 60} film transforms from a cubic lattice (at room temperature) to a fcc lattice at around T=255 K.

  17. a Nonextensive Statistical Model for the Nucleon Structure Function

    NASA Astrophysics Data System (ADS)

    Trevisan, Luis Augusto; Mirez, Carlos

    2013-07-01

    We studied an application of nonextensive thermodynamics to describe the structure function of nucleon, in a model where the usual Fermi-Dirac and Bose-Einstein energy distribution were replaced by the equivalent functions of the q-statistical. The parameters of the model are given by an effective temperature T, the q parameter (from Tsallis statistics), and two chemical potentials given by the corresponding up (u) and down (d) quark normalizations in the nucleon.

  18. A no extensive statistical model for the nucleon structure function

    NASA Astrophysics Data System (ADS)

    Trevisan, Luis A.; Mirez, Carlos

    2013-03-01

    We studied an application of nonextensive thermodynamics to describe the structure function of nucleon, in a model where the usual Fermi-Dirac and Bose-Einstein energy distribution were replaced by the equivalent functions of the q-statistical. The parameters of the model are given by an effective temperature T, the q parameter (from Tsallis statistics), and two chemical potentials given by the corresponding up (u) and down (d) quark normalization in the nucleon.

  19. A no extensive statistical model for the nucleon structure function

    SciTech Connect

    Trevisan, Luis A.; Mirez, Carlos

    2013-03-25

    We studied an application of nonextensive thermodynamics to describe the structure function of nucleon, in a model where the usual Fermi-Dirac and Bose-Einstein energy distribution were replaced by the equivalent functions of the q-statistical. The parameters of the model are given by an effective temperature T, the q parameter (from Tsallis statistics), and two chemical potentials given by the corresponding up (u) and down (d) quark normalization in the nucleon.

  20. Nucleon structure functions from constituent quark

    NASA Astrophysics Data System (ADS)

    Khorramian, Ali N.; Arash, Firooz

    1999-10-01

    We have used a constituent quarks model to describe the nucleon structure function, F2( χ, Q2), for a wide range of χ=[10 -6,1] and Q2 = [0.5, 5000] GeV2. We have found that although F2 rises as χ decreases, but there exists some χ0 ≤ 10 -4 - 10 -5, below which the rise of F2 subsides drastically and hence, exhibits an almost flat behavior, compatible with the latest results from HERA, at least for low Q2.

  1. Alterations in juvenile flatfish gill epithelia induced by sediment-bound toxicants: A comparative in situ and ex situ study.

    PubMed

    Martins, Carla; Alves de Matos, António P; Costa, Maria H; Costa, Pedro M

    2015-12-01

    Juvenile Solea senegalensis were exposed in the laboratory (ex situ) and field (in situ) to different sediments of a moderately impacted estuary (the Sado, Portugal) for 28 days. A qualitative histopathological screening yielded scant lesions to gills, albeit alterations such as epithelial hyperplasia being evident and more frequent in fish exposed ex situ. Fully quantitative traits, namely chloride and goblet cell count and size revealed differences between the two bioassay approaches, with ex situ experiments likely enhancing bioavailability of toxicants. Chloride cells endured autolytic processes that could, at least in part, relate to contamination by mixed metals and polycyclic aromatic hydrocarbons (PAHs). Goblet cells did not reveal changes in the chemistry of mucous. Still, their number and size was reduced in fish exposed ex situ to the sediments most contaminated by PAHs, with evidence for adaptation. Also, copper histochemistry revealed the potential role of mucocytes in the regulation of metals. PMID:26518455

  2. A-dependence of weak nuclear structure functions

    SciTech Connect

    Haider, H.; Athar, M. Sajjad; Simo, I. Ruiz

    2015-05-15

    Effect of nuclear medium on the weak structure functions F{sub 2}{sup A}(x, Q{sup 2}) and F{sub 3}{sup A}(x, Q{sup 2}) have been studied using charged current (anti)neutrino deep inelastic scattering on various nuclear targets. Relativistic nuclear spectral function which incorporate Fermi motion, binding and nucleon correlations are used for the calculations. We also consider the pion and rho meson cloud contributions calculated from a microscopic model for meson-nucleus self-energies. Using these structure functions, F{sub i}{sup A}/F{sub i}{sup proton} and F{sub i}{sup A}/F{sub i}{sup deuteron}(i=2,3, A={sup 12}C, {sup 16}O, CH and H{sub 2}O) are obtained.

  3. Miniaturized Environmental Scanning Electron Microscope for In Situ Planetary Studies

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; Abbott, Terry; Medley, Stephanie; Gregory, Don; Thaisen, Kevin; Taylor , Lawrence; Ramsey, Brian; Jerman, Gregory; Sampson, Allen; Harvey, Ralph

    2010-01-01

    The exploration of remote planetary surfaces calls for the advancement of low power, highly-miniaturized instrumentation. Instruments of this nature that are capable of multiple types of analyses will prove to be particularly useful as we prepare for human return to the moon, and as we continue to explore increasingly remote locations in our Solar System. To this end, our group has been developing a miniaturized Environmental-Scanning Electron Microscope (mESEM) capable of remote investigations of mineralogical samples through in-situ topographical and chemical analysis on a fine scale. The functioning of an SEM is well known: an electron beam is focused to nanometer-scale onto a given sample where resulting emissions such as backscattered and secondary electrons, X-rays, and visible light are registered. Raster scanning the primary electron beam across the sample then gives a fine-scale image of the surface topography (texture), crystalline structure and orientation, with accompanying elemental composition. The flexibility in the types of measurements the mESEM is capable of, makes it ideally suited for a variety of applications. The mESEM is appropriate for use on multiple planetary surfaces, and for a variety of mission goals (from science to non-destructive analysis to ISRU). We will identify potential applications and range of potential uses related to planetary exploration. Over the past few of years we have initiated fabrication and testing of a proof-of-concept assembly, consisting of a cold-field-emission electron gun and custom high-voltage power supply, electrostatic electron-beam focusing column, and scanning-imaging electronics plus backscatter detector. Current project status will be discussed. This effort is funded through the NASA Research Opportunities in Space and Earth Sciences - Planetary Instrument Definition and Development Program.

  4. Experimental study on neptunium migration under in situ geochemical conditions

    NASA Astrophysics Data System (ADS)

    Kumata, M.; Vandergraaf, T. T.

    1998-12-01

    Results are reported for migration experiments performed with Np under in situ geochemical conditions over a range of groundwater flow rates in columns of crushed rock in a specially designed facility at the 240-level of the Underground Research Laboratory (URL) near Pinawa, Manitoba, Canada. This laboratory is situated in an intrusive granitic rock formation, the Lac du Bonnet batholith. Highly altered granitic rock and groundwater were obtained from a major subhorizontal fracture zone at a depth of 250 m in the URL. The granite was wet-crushed and wet-sieved with groundwater from this fracture zone. The 180-850-μm size fraction was selected and packed in 20-cm long, 2.54-cm in diameter Teflon™-lined stainless steel columns. Approximately 30-ml vols of groundwater containing 3HHO and 237Np were injected into the columns at flow rates of 0.3, 1, and 3 ml/h, followed by elution with groundwater, obtained from the subhorizontal fracture, at the same flow rates, for a period of 95 days. Elution profiles for 3HHO were obtained, but no 237Np was detected in the eluted groundwater. After terminating the migration experiments, the columns were frozen, the column material was removed and cut into twenty 1-cm thick sections and each section was analyzed by gamma spectrometry. Profiles of 237Np were obtained for the three columns. A one-dimensional transport model was fitted to the 3HHO breakthrough curves to obtain flow parameters for this experiment. These flow parameters were in turn applied to the 237Np concentration profiles in the columns to produce sorption and dispersion coefficients for Np. The results show a strong dependence of retardation factors ( Rf) on flow rate. The decrease in the retarded velocity of the neptunium ( Vn) varied over one order of magnitude under the geochemical conditions for these experiments.

  5. Structure, Function and On-Off Switching of a Core Unit Contact between CheA Kinase and CheW Adaptor Protein in the Bacterial Chemosensory Array: A Disulfide Mapping and TAM-IDS Study

    PubMed Central

    Natale, Andrew M.; Duplantis, Jane L.; Piasta, Kene N.; Falke, Joseph J.

    2014-01-01

    The ultrasensitive, ultrastable bacterial chemosensory array of Escherichia coli and Salmonella typhimurium is representative of the large, conserved family of sensory arrays that control the cellular chemotaxis of motile bacteria and Archaea. The core framework of the membrane-bound array is a lattice assembled from three components: a transmembrane receptor, a cytoplasmic His kinase (CheA), and a cytoplasmic adaptor protein (CheW). Structural studies in the field have revealed the global architecture of the array and complexes between specific components, but much remains to be learned about the essential protein-protein interfaces that define array structure and transmit signals between components. This study has focused on the structure, function and on-off switching of a key contact between the kinase and adaptor proteins in the working, membrane-bound array. Specifically, the study addressed interface 1 in the putative kinase-adaptor ring where subdomain 1 of the kinase regulatory domain contacts subdomain 2 of the adaptor protein. Two independent approaches – disulfide mapping and site-directed Trp and Ala mutagenesis – were employed to (i) test the structural model of interface 1 and (ii) investigate its functional roles in both stable kinase incorporation and receptor-regulated kinase on-off switching. Studies were carried out in functional, membrane-bound arrays or in live cells. The findings reveal that crystal structures of binary and ternary complexes accurately depict the native interface in its kinase-activating on state. Furthermore, the findings indicate that at least part of the interface becomes less closely packed in its kinase-inhibiting off state. Together, the evidence shows the interface has a dual structural and signaling function that is crucial for stable kinase incorporation into the array, for kinase activation in the array on state, and likely for attractant-triggered kinase on-off switching. A model is presented that describes the

  6. Measurement of inclusive spin structure functions of the deuteron

    NASA Astrophysics Data System (ADS)

    Yun, J.; Kuhn, S. E.; Dodge, G. E.; Forest, T. A.; Taiuti, M.; Adams, G. S.; Amaryan, M. J.; Anciant, E.; Anghinolfi, M.; Asavapibhop, B.; Asryan, G.; Audit, G.; Auger, T.; Avakian, H.; Barrow, S.; Battaglieri, M.; Beard, K.; Bektasoglu, M.; Bertozzi, W.; Bianchi, N.; Biselli, A. S.; Boiarinov, S.; Bosted, P.; Bouchigny, S.; Bradford, R.; Branford, D.; Brooks, W. K.; Bueltmann, S.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Carman, D. S.; Carnahan, B.; Cetina, C.; Ciciani, L.; Cole, P. L.; Coleman, A.; Connelly, J.; Cords, D.; Corvisiero, P.; Crabb, D.; Crannell, H.; Cummings, J.; Sanctis, E. De; Vita, R. De; Degtyarenko, P. V.; Demirchyan, R. A.; Denizli, H.; Dennis, L. C.; Dharmawardane, K. V.; Djalali, C.; Domingo, J.; Doughty, D.; Dragovitsch, P.; Dugger, M.; Dytman, S.; Eckhause, M.; Efremenko, Y. V.; Egiyan, H.; Egiyan, K. S.; Elouadrhiri, L.; Empl, A.; Farhi, L.; Fatemi, R.; Feuerbach, R. J.; Ficenec, J.; Fissum, K.; Freyberger, A.; Frolov, V.; Funsten, H.; Gaff, S. J.; Gai, M.; Gavalian, G.; Gavrilov, V. B.; Gilad, S.; Gilfoyle, G. P.; Giovanetti, K. L.; Girard, P.; Golovatch, E.; Gordon, C. I.; Griffioen, K. A.; Guidal, M.; Guillo, M.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hancock, D.; Hardie, J.; Heddle, D.; Heimberg, P.; Hersman, F. W.; Hicks, K.; Hicks, R. S.; Holtrop, M.; Hu, J.; Hyde-Wright, C. E.; Ito, M. M.; Jenkins, D.; Joo, K.; Keith, C.; Kelley, J. H.; Khandaker, M.; Kim, K. Y.; Kim, K.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A. V.; Klusman, M.; Kossov, M.; Kramer, L. H.; Kuang, Y.; Kuhn, J.; Lachniet, J.; Laget, J. M.; Lawrence, D.; Leksin, G. A.; Loukachine, K.; Major, R. W.; Manak, J. J.; Marchand, C.; McAleer, S.; McNabb, J. W.; McCarthy, J.; Mecking, B. A.; Mestayer, M. D.; Meyer, C. A.; Minehart, R.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Morrow, S.; Muccifora, V.; Mueller, J.; Murphy, L. Y.; Mutchler, G. S.; Napolitano, J.; Nelson, S. O.; Niccolai, S.; Niculescu, G.; Niczyporuk, B.; Niyazov, R. A.; Nozar, M.; O'Rielly, G. V.; Ohandjanyan, M. S.; Opper, A.; Ossipenko, M.; Park, K.; Patois, Y.; Peterson, G. A.; Philips, S.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Preedom, B. M.; Price, J. W.; Protopopescu, D.; Qin, L. M.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Rock, S.; Ronchetti, F.; Rossi, P.; Rowntree, D.; Rubin, P. D.; Sabourov, K.; Salgado, C. W.; Sapunenko, V.; Sargsyan, M.; Schumacher, R. A.; Serov, V. S.; Sharabian, Y. G.; Shaw, J.; Shuvalov, S. M.; Simionatto, S.; Skabelin, A.; Smith, E. S.; Smith, L. C.; Smith, T.; Sober, D. I.; Sorrell, L.; Spraker, M.; Stepanyan, S.; Stoler, P.; Taylor, S.; Tedeschi, D.; Thoma, U.; Thompson, R.; Todor, L.; Tung, T. Y.; Tur, C.; Vineyard, M. F.; Vlassov, A.; Wang, K.; Weinstein, L. B.; Weller, H.; Welsh, R.; Weygand, D. P.; Whisnant, S.; Witkowski, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Zhang, B.; Zhao, J.; Zhou, Z.

    2003-05-01

    We report the results of a new measurement of spin structure functions of the deuteron in the region of moderate momentum transfer [Q2=0.27 1.3 (GeV/c)2] and final hadronic state mass in the nucleon resonance region (W=1.08 2.0 GeV). We scattered a 2.5 GeV polarized continuous electron beam at Jefferson Lab off a dynamically polarized cryogenic solid state target (15ND3) and detected the scattered electrons with the CEBAF large acceptance spectrometer. From our data, we extract the longitudinal double spin asymmetry A|| and the spin structure function gd1. Our data are generally in reasonable agreement with existing data from SLAC where they overlap, and they represent a substantial improvement in statistical precision. We compare our results with expectations for resonance asymmetries and extrapolated deep inelastic scaling results. Finally, we evaluate the first moment of the structure function gd1 and study its approach to both the deep inelastic limit at large Q2 and to the Gerasimov-Drell-Hearn sum rule at the real photon limit (Q2→0). We find that the first moment varies rapidly in the Q2 range of our experiment and crosses zero at Q2 between 0.5 and 0.8 (GeV/c)2, indicating the importance of the Δ resonance at these momentum transfers.

  7. Time Variability of Quasars: the Structure Function Variance

    NASA Astrophysics Data System (ADS)

    MacLeod, C.; Ivezić, Ž.; de Vries, W.; Sesar, B.; Becker, A.

    2008-12-01

    Significant progress in the description of quasar variability has been recently made by employing SDSS and POSS data. Common to most studies is a fundamental assumption that photometric observations at two epochs for a large number of quasars will reveal the same statistical properties as well-sampled light curves for individual objects. We critically test this assumption using light curves for a sample of ~2,600 spectroscopically confirmed quasars observed about 50 times on average over 8 years by the SDSS stripe 82 survey. We find that the dependence of the mean structure function computed for individual quasars on luminosity, rest-frame wavelength and time is qualitatively and quantitatively similar to the behavior of the structure function derived from two-epoch observations of a much larger sample. We also reproduce the result that the variability properties of radio and X-ray selected subsamples are different. However, the scatter of the variability structure function for fixed values of luminosity, rest-frame wavelength and time is similar to the scatter induced by the variance of these quantities in the analyzed sample. Hence, our results suggest that, although the statistical properties of quasar variability inferred using two-epoch data capture some underlying physics, there is significant additional information that can be extracted from well-sampled light curves for individual objects.

  8. Structure-function correlations in tyrosinases.

    PubMed

    Kanteev, Margarita; Goldfeder, Mor; Fishman, Ayelet

    2015-09-01

    Tyrosinases are metalloenzymes belonging to the type-3 copper protein family which contain two copper ions in the active site. They are found in various prokaryotes as well as in plants, fungi, arthropods, and mammals and are responsible for pigmentation, wound healing, radiation protection, and primary immune response. Tyrosinases perform two sequential enzymatic reactions: hydroxylation of monophenols and oxidation of diphenols to form quinones which polymerize spontaneously to melanin. Two other members of this family are catechol oxidases, which are prevalent mainly in plants and perform only the second oxidation step, and hemocyanins, which lack enzymatic activity and are oxygen carriers. In the last decade, several structures of plant and bacterial tyrosinases were determined, some with substrates or inhibitors, highlighting features and residues which are important for copper uptake and catalysis. This review summarizes the updated information on structure-function correlations in tyrosinases along with comparison to other type-3 copper proteins. PMID:26104241

  9. Structure, function, and genetics of lipoprotein (a).

    PubMed

    Schmidt, Konrad; Noureen, Asma; Kronenberg, Florian; Utermann, Gerd

    2016-08-01

    Lipoprotein (a) [Lp(a)] has attracted the interest of researchers and physicians due to its intriguing properties, including an intragenic multiallelic copy number variation in the LPA gene and the strong association with coronary heart disease (CHD). This review summarizes present knowledge of the structure, function, and genetics of Lp(a) with emphasis on the molecular and population genetics of the Lp(a)/LPA trait, as well as aspects of genetic epidemiology. It highlights the role of genetics in establishing Lp(a) as a risk factor for CHD, but also discusses uncertainties, controversies, and lack of knowledge on several aspects of the genetic Lp(a) trait, not least its function. PMID:27074913

  10. The Spin Structure Function g2

    SciTech Connect

    Rock, Stephen E.

    2003-02-27

    We have measured the spin structure functions g{sub 2}{sup p} and g{sub 2}{sup d} over the kinematic range 0.02 {le} x {le} 0.8 and 0.7 {le} Q{sup 2} {le} 20 GeV{sup 2} by scattering 29.1 and 32.3 GeV longitudinally polarized electrons from transversely polarized NH{sub 3} and {sup 6}LiD targets. Our measured g{sub 2} approximately follows the twist-2 Wandzura-Wilczek calculation. The twist-3 reduced matrix elements d{sub 2}{sup p} and d{sub 2}{sup n} are less than two standard deviations from zero. The data are inconsistent with the Burkhardt-Cottingham sum rule. The Efremov-Leader-Teryaev integral is consistent with zero within our measured kinematic range.

  11. In Situ TEM Nanoindentation Studies on Stress-Induced Phase Transformations in Metallic Materials

    DOE PAGESBeta

    Liu, Y.; Wang, H.; Zhang, X.

    2015-11-30

    Though abundant phase transformations are in general thermally driven processes, there are many examples wherein stresses can induce phase transformations. We applied numerous in situ techniques, such as in situ x-ray diffraction and neutron diffraction in order to reveal phase transformations. Recently, an in situ nanoindentation technique coupled with transmission electron microscopy demonstrated the capability to directly correlating stresses with phase transformations and microstructural evolutions at a submicron length scale. We briefly review in situ studies on stress-induced diffusional and diffusionless phase transformations in amorphous CuZrAl alloy and NiFeGa shape memory alloy. Moreover, in the amorphous CuZrAl, in situ nanoindentationmore » studies show that the nucleation of nanocrystals (a diffusional process) occurs at ultra-low stresses manifested by a prominent stress drop. In the NiFeGa shape memory alloy, two distinctive types of martensitic (diffusionless) phase transformations accompanied by stress plateaus are observed, including a reversible gradual phase transformation at low stress levels, and an irreversible abrupt phase transition at higher stress levels.« less

  12. In Situ TEM Nanoindentation Studies on Stress-Induced Phase Transformations in Metallic Materials

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Wang, H.; Zhang, X.

    2016-01-01

    Although abundant phase transformations are in general thermally driven processes, there are many examples wherein stresses can induce phase transformations. Numerous in situ techniques, such as in situ x-ray diffraction and neutron diffraction, have been applied to reveal phase transformations. Recently, an in situ nanoindentation technique coupled with transmission electron microscopy demonstrated the capability to directly correlating stresses with phase transformations and microstructural evolutions at a submicron length scale. Here we briefly review in situ studies on stress-induced diffusional and diffusionless phase transformations in amorphous CuZrAl alloy and NiFeGa shape memory alloy. In the amorphous CuZrAl, in situ nanoindentation studies show that the nucleation of nanocrystals (a diffusional process) occurs at ultra-low stresses manifested by a prominent stress drop. In the NiFeGa shape memory alloy, two distinctive types of martensitic (diffusionless) phase transformations accompanied by stress plateaus are observed, including a reversible gradual phase transformation at low stress levels, and an irreversible abrupt phase transition at higher stress levels.

  13. In Situ TEM Nanoindentation Studies on Stress-Induced Phase Transformations in Metallic Materials

    SciTech Connect

    Liu, Y.; Wang, H.; Zhang, X.

    2015-11-30

    Though abundant phase transformations are in general thermally driven processes, there are many examples wherein stresses can induce phase transformations. We applied numerous in situ techniques, such as in situ x-ray diffraction and neutron diffraction in order to reveal phase transformations. Recently, an in situ nanoindentation technique coupled with transmission electron microscopy demonstrated the capability to directly correlating stresses with phase transformations and microstructural evolutions at a submicron length scale. We briefly review in situ studies on stress-induced diffusional and diffusionless phase transformations in amorphous CuZrAl alloy and NiFeGa shape memory alloy. Moreover, in the amorphous CuZrAl, in situ nanoindentation studies show that the nucleation of nanocrystals (a diffusional process) occurs at ultra-low stresses manifested by a prominent stress drop. In the NiFeGa shape memory alloy, two distinctive types of martensitic (diffusionless) phase transformations accompanied by stress plateaus are observed, including a reversible gradual phase transformation at low stress levels, and an irreversible abrupt phase transition at higher stress levels.

  14. Microcosm and in situ field studies of enhanced biotransformation of trichloroethylene by phenol-utilizing microorganisms.

    PubMed Central

    Hopkins, G D; Semprini, L; McCarty, P L

    1993-01-01

    The ability of different aerobic groundwater microorganisms to cometabolically degrade trichloroethylene (TCE), 1,2-cis-dichloroethylene (c-DCE), and 1,2-trans-dichloroethylene (t-DCE) was evaluated both in groundwater-fed microcosms and in situ in a shallow aquifer. Microcosms amended with phenol or toulene were equally effective in removing c-DCE (> 90%) followed by TCE (60 to 70%), while the microcosm fed methane was most effective in removing t-DCE (> 90%). The microcosm fed ammonia was the least effective. None of the microcosms effectively degraded 1,1,1-trichloroethane. At the Moffett Field groundwater test site, in situ removal of c-DCE and TCE coincided with biostimulation through phenol and oxygen injection and utilization, with c-DCE removed more rapidly than TCE. Greater TCE and c-DCE removal was observed when the phenol concentration was increased. Over 90% removal of c-DCE and TCE was observed in the 2-m biostimulated zone. This compares with 40 to 50% removal of c-DCE and 15 to 25% removal of TCE achieved by methane-grown microorganisms previously evaluated in an adjacent in situ test zone. The in situ removal with phenol-grown microorganisms agrees qualitatively with the microcosm studies, with the rates and extents of removal ranked as follows: c-DCE > TCE > t-DCE. These studies demonstrate the potential for in situ TCE bioremediation using microorganisms grown on phenol. PMID:8357259

  15. Structure, Function and Regulation of the Clostridium cellulovorans Cellulosome

    SciTech Connect

    Doi, Roy H

    2008-06-01

    Our major goal for this project (2004-2008) was to obtain an understanding ofthe structure, function, and regulation of the Clostridium cellulovorans cellulosomes. Our specific goals were to select genes for cellulosomal and non-cellulosomal enzymes and characterize their products, to study the synergistic action between cellulosomal and non-cellulosomal enzymes, to study the composition of cellulosomes when cells were grown with different carbon sources, continue our studies on the scaffolding protein and examine heterologous expression of cellulosomal genes in Bacillus subtilis. We fulfilled the specific goals of our proposal.

  16. In situ studies of mass transport in liquid alloys by means of neutron radiography.

    PubMed

    Kargl, F; Engelhardt, M; Yang, F; Weis, H; Schmakat, P; Schillinger, B; Griesche, A; Meyer, A

    2011-06-29

    When in situ techniques became available in recent years this led to a breakthrough in accurately determining diffusion coefficients for liquid alloys. Here we discuss how neutron radiography can be used to measure chemical diffusion in a ternary AlCuAg alloy. Neutron radiography hereby gives complementary information to x-ray radiography used for measuring chemical diffusion and to quasielastic neutron scattering used mainly for determining self-diffusion. A novel Al(2)O(3) based furnace that enables one to study diffusion processes by means of neutron radiography is discussed. A chemical diffusion coefficient of Ag against Al around the eutectic composition Al(68.6)Cu(13.8)Ag(17.6) at.% was obtained. It is demonstrated that the in situ technique of neutron radiography is a powerful means to study mass transport properties in situ in binary and ternary alloys that show poor x-ray contrast. PMID:21654050

  17. Structure Function for High-Concentration Biophantoms of Polydisperse Scatterer Sizes

    PubMed Central

    Han, Aiguo; O’Brien, William D.

    2015-01-01

    Ultrasonic backscattering coefficient (BSC) has been used extensively to characterize tissue. In most cases, sparse scatterer concentrations are assumed. However, many types of tissues have dense scattering media. This study addresses the problem of dense media scattering by taking into account the correlation among scatterers using the structure functions. The effect of scatterer polydispersity on the structure functions is investigated. Structure function models based on polydisperse scatterers are theoretically developed and experimentally evaluated against the structure functions obtained from cell pellet biophantoms. The biophantoms were constructed by placing live cells of known concentration in coagulation media to form a clot. The BSCs of the biophantoms were estimated using single-element transducers over the frequency range from 11 to 105 MHz. Experimental structure functions were obtained by comparing the BSCs of two cell concentrations. The structure functions predicted by the models agreed with the experimental structure functions. Fitting the models yielded cell radius estimates that were consistent with direct light microscope measures. The results demonstrate the role of scatterer position correlation on dense media scattering, and the significance of scatterer polydispersity on structure functions. This work may lead to more accurate modeling of ultrasonic scattering in dense medium for improved tissue characterization. PMID:25643080

  18. Antimicrobial effect of chlorhexidine digluconate in dentin: In vitro and in situ study

    PubMed Central

    Borges, Fátima Maria Cavalcante; de Melo, Mary Anne Sampaio; Lima, Juliana Paiva Marques; Zanin, Iriana Carla Junqueria; Rodrigues, Lidiany Karla Azevedo

    2012-01-01

    Aim: The aim of this study was to evaluate a very short-term in vitro and in situ effect of 2% chlorhexidine-digluconate-based (CHX) cavity cleanser on the disinfection of dentin demineralized by cariogenic bacteria. Materials and Methods: Human dentin slabs were randomly allocated and used in 2 distinct phases, in vitro and in situ, for obtaining demineralized dentin. In vitro, the slabs (n=15) were immersed for 5 days in BHI broth inoculated with Streptococcus mutans CTT 3440. In situ, a double-blind design was conducted in one phase of 14 days, during which 20 volunteers wore palatal devices containing two human dental dentin slabs. On 5th day in vitro and 14th day in situ, the slabs were allocated to the two groups: Control group (5 μl of 0.9% NaCl solution) and CHX group (5 μl of 2% chlorhexidine digluconate solution, Cavity Cleanser™ BISCO, Schaumburg, IL, EUA), for 5 minutes. The microbiological analyses were performed immediately before and after the treatments. Results: The log reductions means found for CHX treatment on tested micro organisms were higher when compared to Control group either in vitro or in situ conditions. Conclusions: Our results showed that CHX was effective in reducing the cultivable microbiota in contaminated dentin. Furthermore, although the use of chlorhexidine-digluconate-based cavity disinfectant did not completely eliminate the viable microorganisms, it served as a suitable agent to disinfect tooth preparations. PMID:22368330

  19. How to design in situ studies: an evaluation of experimental protocols

    PubMed Central

    Sung, Young-Hye; Kim, Hae-Young; Son, Ho-Hyun

    2014-01-01

    Objectives Designing in situ models for caries research is a demanding procedure, as both clinical and laboratory parameters need to be incorporated in a single study. This study aimed to construct an informative guideline for planning in situ models relevant to preexisting caries studies. Materials and Methods An electronic literature search of the PubMed database was performed. A total 191 of full articles written in English were included and data were extracted from materials and methods. Multiple variables were analyzed in relation to the publication types, participant characteristics, specimen and appliance factors, and other conditions. Frequencies and percentages were displayed to summarize the data and the Pearson's chi-square test was used to assess a statistical significance (p < 0.05). Results There were many parameters commonly included in the majority of in situ models such as inclusion criteria, sample sizes, sample allocation methods, tooth types, intraoral appliance types, sterilization methods, study periods, outcome measures, experimental interventions, etc. Interrelationships existed between the main research topics and some parameters (outcome measures and sample allocation methods) among the evaluated articles. Conclusions It will be possible to establish standardized in situ protocols according to the research topics. Furthermore, data collaboration from comparable studies would be enhanced by homogeneous study designs. PMID:25110639

  20. In-situ study of interconnect failures by electromigration inside a scanning electron microscope

    NASA Astrophysics Data System (ADS)

    Wetzig, Klaus; Wendrock, Horst; Buerke, Axel; Kötter, Thomas

    1999-11-01

    The influence of microstructure on electromigration damage of Al and Cu interconnects with different width and morphology was studied. At first, grain boundaries and local grain orientations before electromigration were registered and correlated with defect places. The investigations focussed on in-situ electromigration tests inside a SEM under accelerated loading conditions, on the in-situ observation of defect formation, and on orientation measurements at the interconnect grains. The position of individual grain boundaries and the misorientation of their neighbored grains seem to be decisive factors for the interconnect failure because of different diffusivities. Whereas the failure behavior of polycrystalline interconnects is sufficiently understood, bamboo structures require further investigations.

  1. Preparation of multilayered materials in cross-section for in situ TEM tensile deformation studies

    SciTech Connect

    Wall, M. A., LLNL

    1997-05-13

    The success of in-situ transmission electron microscopy experimentation is often dictated by proper specimen preparation. We report here a novel technique permitting the production of cross-sectioned tensile specimens of multilayered films for in-situ deformation studies. Of primary importance in the development of this technique is the production of an electron transparent micro-gauge section using focused ion beam technology. This microgauge section predetermines the position at which plastic deformation is initiated; crack nucleation, growth and failure are then subsequently observed.

  2. Study of in-situ degradation of thermal control surfaces

    NASA Technical Reports Server (NTRS)

    Gilligan, J. E.; Zerlaut, G. A.

    1972-01-01

    Experimental technique used in study of damage mechanism to semiconductor pigments exposed to ultraviolet radiation can be adapted for investigations of surface chemistry and may be used analytically to determine contamination.

  3. Development of in situ respirometers for ocean acidification studies

    NASA Astrophysics Data System (ADS)

    Risi, M. A.; Barry, J. P.; Buck, K. R.; Okuda, C. M.; Reisenbichler, K. R.; Robison, B. H.

    2009-12-01

    Studies of metabolic rates of deep-sea organisms are important components of research addressing the biological impacts of ocean acidification. These studies contribute to our understanding of the ocean carbon cycle by identifying the pathways and rates of organic carbon fluxes in ocean ecosystems. Oxygen consumption is expected to decrease in most animals in response to hypercapnic (high-CO2) stress, due to disruption of internal acid/base balance. To perform these field and laboratory studies, a respirometry system utilizing a controller with a distributed architecture was developed. The architecture has allowed the system to be adapted to midwater and benthic respirometers. The distributed nature of the architecture allows the easy expansion of the respirometers as well as the integration of new sensors. An overview of the system and field results to date will be presented.

  4. In situ and ex situ XANES study of nanodispersed Mo species in zeolites used in fine chemistry catalysis.

    PubMed

    Rentería, M; Traverse, A; Anunziata, O A; Lede, E J; Pierella, L; Requejo, F G

    2001-03-01

    Mo K-edge XANES experiments on Mo-containing zeolites at low Mo loading (1 and 2 wt% of Mo on H-ZSM-11, H-BETA and H-ZSM-5 catalysts), active in fine chemistry reactions, were performed ex situ as function of sample calcination temperature in air (in the range 773-973 K) or in situ at 873 and 973K under N2 flow. The results showed a 4-fold oxygen coordination for the incorporated Mo species in the activated (dehydrated) state. Combining these results with additional data evidences an almost total Mo exchange inside the zeolite channels. PMID:11512876

  5. In situ fixation of lead in soil: A case study

    SciTech Connect

    Keefe, M.; Robinson, W.W.

    1995-12-31

    Excavation and treatment of lead contaminated soil is routine today. Much less typical is the case where the soil is remediated and placed back into immediate use through the application of insitue techniques. A case study will be presented that will highlight the problem and the unique problem solving approach that allowed the site owner to promptly return his property to productive use.

  6. In-Situ Chemical Reduction and Oxidation of VOCs in Groundwater: Groundwater Treatability Studies

    NASA Technical Reports Server (NTRS)

    Keith, Amy; Glasgow, Jason; McCaleh, Rececca C. (Technical Monitor)

    2001-01-01

    This paper presents NASA Marshall Space Flight Center's treatability studies for volatile organic compounds in groundwater. In-Situ groundwater treatment technologies include: 1) Chemical Reduction(Ferox); 2) Chemical Oxidation (Fenton Reagents, Permanganate, and Persulfate); and 3) Thermal (Dynamic Underground Stripping, Six-Phase Heating). This paper is presented in viewgraph form.

  7. In Situ Transmission Electron Microscopy Heating Studies of Particle Coalescence and Microstructure Evolution in Nanosized Ceramics

    SciTech Connect

    2006-06-02

    Final report on in-situ transmission microscopy heating studies of particle coalescence and microstructure evolution in nanosized ceramics. Report includes summary of work on particle shape changes and stress effects, and novel infiltration techniques in the processing of alumina based ceramics.

  8. An in situ sample environment reaction cell for spatially resolved x-ray absorption spectroscopy studies of powders and small structured reactors

    SciTech Connect

    Zhang, Chu; Gustafson, Johan; Merte, Lindsay R.; Evertsson, Jonas; Norén, Katarina; Carlson, Stefan; Svensson, Håkan; Carlsson, Per-Anders

    2015-03-15

    An easy-to-use sample environment reaction cell for X-ray based in situ studies of powders and small structured samples, e.g., powder, pellet, and monolith catalysts, is described. The design of the cell allows for flexible use of appropriate X-ray transparent windows, shielding the sample from ambient conditions, such that incident X-ray energies as low as 3 keV can be used. Thus, in situ X-ray absorption spectroscopy (XAS) measurements in either transmission or fluorescence mode are facilitated. Total gas flows up to about 500 ml{sub n}/min can be fed while the sample temperature is accurately controlled (at least) in the range of 25–500 °C. The gas feed is composed by a versatile gas-mixing system and the effluent gas flow composition is monitored with mass spectrometry (MS). These systems are described briefly. Results from simultaneous XAS/MS measurements during oxidation of carbon monoxide over a 4% Pt/Al{sub 2}O{sub 3} powder catalyst are used to illustrate the system performance in terms of transmission XAS. Also, 2.2% Pd/Al{sub 2}O{sub 3} and 2% Ag − Al{sub 2}O{sub 3} powder catalysts have been used to demonstrate X-ray absorption near-edge structure (XANES) spectroscopy in fluorescence mode. Further, a 2% Pt/Al{sub 2}O{sub 3} monolith catalyst was used ex situ for transmission XANES. The reaction cell opens for facile studies of structure-function relationships for model as well as realistic catalysts both in the form of powders, small pellets, and coated or extruded monoliths at near realistic conditions. The applicability of the cell for X-ray diffraction measurements is discussed.

  9. An in situ sample environment reaction cell for spatially resolved x-ray absorption spectroscopy studies of powders and small structured reactors

    NASA Astrophysics Data System (ADS)

    Zhang, Chu; Gustafson, Johan; Merte, Lindsay R.; Evertsson, Jonas; Norén, Katarina; Carlson, Stefan; Svensson, Hâkan; Carlsson, Per-Anders

    2015-03-01

    An easy-to-use sample environment reaction cell for X-ray based in situ studies of powders and small structured samples, e.g., powder, pellet, and monolith catalysts, is described. The design of the cell allows for flexible use of appropriate X-ray transparent windows, shielding the sample from ambient conditions, such that incident X-ray energies as low as 3 keV can be used. Thus, in situ X-ray absorption spectroscopy (XAS) measurements in either transmission or fluorescence mode are facilitated. Total gas flows up to about 500 mln/min can be fed while the sample temperature is accurately controlled (at least) in the range of 25-500 °C. The gas feed is composed by a versatile gas-mixing system and the effluent gas flow composition is monitored with mass spectrometry (MS). These systems are described briefly. Results from simultaneous XAS/MS measurements during oxidation of carbon monoxide over a 4% Pt/Al2O3 powder catalyst are used to illustrate the system performance in terms of transmission XAS. Also, 2.2% Pd/Al2O3 and 2% Ag - Al2O3 powder catalysts have been used to demonstrate X-ray absorption near-edge structure (XANES) spectroscopy in fluorescence mode. Further, a 2% Pt/Al2O3 monolith catalyst was used ex situ for transmission XANES. The reaction cell opens for facile studies of structure-function relationships for model as well as realistic catalysts both in the form of powders, small pellets, and coated or extruded monoliths at near realistic conditions. The applicability of the cell for X-ray diffraction measurements is discussed.

  10. A New Mixed Model Based on the Velocity Structure Function

    NASA Astrophysics Data System (ADS)

    Brun, Christophe; Friedrich, Rainer; Da Silva, Carlos B.; Métais, Olivier

    We propose a new mixed model for Large Eddy-Simulation based on the 3D spatial velocity increment. This approach blends the non-linear properties of the Increment model (Brun & Friedrich (2001)) with the eddy viscosity characteristics of the Structure Function model (Métais & Lesieur (1992)). The behaviour of this subgrid scale model is studied both via a priori tests of a plane jet at ReH=3000 and Large Eddy-Simulation of a round jet at ReD=25000. This approach allows to describe both forward and backward energy transfer encountered in transitional shear flows.

  11. Combined in situ XRD and in situ XANES studies on the reduction behavior of a rhenium promoted cobalt catalyst.

    PubMed

    Kumar, Nitin; Payzant, E A; Jothimurugesan, K; Spivey, J J

    2011-08-28

    A 10% Co-4% Re/(2% Zr/SiO(2)) catalyst was prepared by co-impregnation using a silica support modified by 2% Zr. The catalyst was characterized by temperature programmed reduction (TPR), in situ XRD and in situ XANES analysis where it was simultaneously exposed to H(2) using a temperature programmed ramp. The results showed the two step reduction of large crystalline Co(3)O(4) with CoO as an intermediate. TPR results showed that the reduction of highly dispersed Co(3)O(4) was facilitated by reduced rhenium by a H(2)-spillover mechanism. In situ XRD results showed the presence of both, Co-hcp and Co-fcc phases in the reduced catalyst at 400 °C. However, the Co-hcp phase was more abundant, which is thought to be the more active phase as compared to the Co-fcc phase for CO hydrogenation. CO hydrogenation at 270 °C and 5 bar pressure produces no detectable change in the phases during the time of experiment. In situ XANES results showed a decrease in the metallic cobalt in the presence of H(2)/CO, which can be attributed due to oxidation of the catalyst by reaction under these conditions. PMID:21743918

  12. IN SITU INFRARED STUDY OF CATALYTIC DECOMPOSITION OF NO

    SciTech Connect

    KHALID ALMUSAITEER; RAM KRISHNAMURTHY; STEVEN S.C. CHUANG

    1998-08-18

    The growing concerns for the environment and increasingly stringent standards for NO emission have presented a major challenge to control NO emissions from electric utility plants and automobiles. Catalytic decomposition of NO is the most attractive approach for the control of NO emission for its simplicity. Successful development of an effective catalyst for NO decomposition will greatly decrease the equipment and operation cost of NO control. Due to lack of understanding of the mechanism of NO decomposition, efforts on the search of an effective catalyst have been unsuccessful. Scientific development of an effective catalyst requires fundamental understanding of the nature of active site, the rate-limiting step, and an approach to prolong the life of the catalyst. Research is proposed to study the reactivity of adsorbates for the direct NO decomposition and to investigate the feasibility of two novel approaches for improving catalyst activity and resistance to sintering. The first approach is the use of silanation to stabilize metal crystallites and supports for Cu-ZSM-5 and promoted Pt catalysts; the second is utilization of oxygen spillover and desorption to enhance NO decomposition activity. An innovative infrared reactor system will be used to observe and determine the dynamic behavior and the reactivity of adsorbates during NO decomposition, oxygen spillover, and silanation. A series of experiments including X-ray diffraction, temperature programmed desorption, temperature programmed reaction, X-ray photoelectron spectroscopy will be used to characterized the catalysts. The information obtained from this study will provide a scientific basis for developing an effective catalyst for the NO decomposition under practical flue gas conditions.

  13. In Situ Infrared Study of Catalytic Decomposition of NO

    SciTech Connect

    Cher-Dip Tan; Steven S.C. Chuang

    1997-07-17

    The growing concerns for the environment and increasingly stringent standards for NO emission have presented a major challenge to control NO emmissions from electric utility plants and automobiles. Catalytic decomposition of NO is the most attractive approach for the control of NO emission for its simplicity. Successful development of an effective catalyst for NO decomposition will greatly decrease the equipment and operation cost of NO control. Due to lack of understanding of the mechanism of NO decomposition, efforts on the search of an effective catalyst have been unsuccesful. Scientific development of an effective catalyst requires fundamental understanding of the nature of active site, the rate-limiting step, and an approach to prolong the life of the catalyst. Research is proposed to study the reactivity of adsorbates for the direct NO decomposition and to investigate the feasibility of two novel approaches for improving catalyst activity and resistance to sintering. The first approach is the use of silanation to stabilize metal crystallites and supports for Cu-ZSM-5 and promoted Pt catalysts; the second is utilization of oxygen spillover and desorption to enhance NO decomposition activity. An innovative infrared reactor system will be used to observe and determine the dynamic behavior and the reactivity of adsorbates during NO decomposition, oxygen spillover, and silanation. A series of experiments including X-ray diffraction, temperature programmed desorption, temperature programmed reaction, X-ray photoelectron spectroscopy will be used to characterized the catalysts. The information obtained from this study will provide a scientific basis for developing an effective catalyst for the NO decomposition under practical flue gas conditions.

  14. Cost studies of thermally enhanced in situ soil remediation technologies

    SciTech Connect

    Bremser, J.; Booth, S.R.

    1996-05-01

    This report describes five thermally enhanced technologies that may be used to remediate contaminated soil and water resources. The standard methods of treating these contaminated areas are Soil Vapor Extraction (SVE), Excavate & Treat (E&T), and Pump & Treat (P&T). Depending on the conditions at a given site, one or more of these conventional alternatives may be employed; however, several new thermally enhanced technologies for soil decontamination are emerging. These technologies are still in demonstration programs which generally are showing great success at achieving the expected remediation results. The cost savings reported in this work assume that the technologies will ultimately perform as anticipated by their developers in a normal environmental restoration work environment. The five technologies analyzed in this report are Low Frequency Heating (LF or Ohmic, both 3 and 6 phase AC), Dynamic Underground Stripping (DUS), Radio Frequency Heating (RF), Radio Frequency Heating using Dipole Antennae (RFD), and Thermally Enhanced Vapor Extraction System (TEVES). In all of these technologies the introduction of heat to the formation raises vapor pressures accelerating contaminant evaporation rates and increases soil permeability raising diffusion rates of contaminants. The physical process enhancements resulting from temperature elevations permit a greater percentage of volatile organic compound (VOC) or semi- volatile organic compound (SVOC) contaminants to be driven out of the soils for treatment or capture in a much shorter time period. This report presents the results of cost-comparative studies between these new thermally enhanced technologies and the conventional technologies, as applied to five specific scenarios.

  15. In situ dynamic study of hydrogen oxidation on rhodium.

    PubMed

    Visart de Bacarmé, T; Bär, T; Kruse, N

    2001-10-01

    The reaction of hydrogen/oxygen gas mixtures with rhodium single crystals was studied using video-FIM (Field Ion Microscopy) at temperatures between 350 and 550 K and up to 2 x 10(-2) Pa total pressure. Imaging at 500 K in a hydrogen rich gas mixture (H2:O2 = 9) revealed considerable morphological changes of the (0 0 1)-oriented field emitter tip, i.e. the growth of low-index at the expense of high-index planes and strong crystal coarsening. Decreasing the hydrogen partial pressure led to chemical and structural changes of the Rh sample. Starting on the [1 1 0] planes a surface oxide formed, which spread anisotropically across the surface until it finally covered the whole visible surface area. The transformation was reversible upon increasing the hydrogen pressure back to its initial value. However, a hysteresis behavior was observed, i.e. a larger hydrogen partial pressure was found to be necessary to re-establish the initial patterns of a reactive Oad/Had layer. By varying the temperature from 400 to 500 K a phase diagram was established for the Oad/Had system. Increasing the electric field proved to shift the phase diagram towards higher H2 pressures. At 550K self-sustained kinetic oscillations with a cycle time of approximately 40s could be observed. PMID:11770755

  16. Nitric oxide synthases: structure, function and inhibition.

    PubMed Central

    Alderton, W K; Cooper, C E; Knowles, R G

    2001-01-01

    This review concentrates on advances in nitric oxide synthase (NOS) structure, function and inhibition made in the last seven years, during which time substantial advances have been made in our understanding of this enzyme family. There is now information on the enzyme structure at all levels from primary (amino acid sequence) to quaternary (dimerization, association with other proteins) structure. The crystal structures of the oxygenase domains of inducible NOS (iNOS) and vascular endothelial NOS (eNOS) allow us to interpret other information in the context of this important part of the enzyme, with its binding sites for iron protoporphyrin IX (haem), biopterin, L-arginine, and the many inhibitors which interact with them. The exact nature of the NOS reaction, its mechanism and its products continue to be sources of controversy. The role of the biopterin cofactor is now becoming clearer, with emerging data implicating one-electron redox cycling as well as the multiple allosteric effects on enzyme activity. Regulation of the NOSs has been described at all levels from gene transcription to covalent modification and allosteric regulation of the enzyme itself. A wide range of NOS inhibitors have been discussed, interacting with the enzyme in diverse ways in terms of site and mechanism of inhibition, time-dependence and selectivity for individual isoforms, although there are many pitfalls and misunderstandings of these aspects. Highly selective inhibitors of iNOS versus eNOS and neuronal NOS have been identified and some of these have potential in the treatment of a range of inflammatory and other conditions in which iNOS has been implicated. PMID:11463332

  17. The ratio of the beauty structure functions Rb=FLb/F2b at low x

    NASA Astrophysics Data System (ADS)

    Boroun, G. R.

    2014-07-01

    We study the structure functions Fkb(x,Q2) (k=2,L) and the reduced cross section σrb(x,Q2) for small values of Bjorken's x variable with respect to the hard (Lipatov) pomeron for the gluon distribution and provide a compact formula for the ratio Rb that is useful to extract the beauty structure function from the beauty reduced cross section, in particular at DESY HERA. Also we show that the effects of the nonlinear corrections to the gluon distribution tame the behavior of the beauty structure function and the beauty reduced cross section at low x.

  18. Structure Function Analysis of AGN Variability using Kepler

    NASA Astrophysics Data System (ADS)

    Kasliwal, Vishal P.; Vogeley, Michael S.; Richards, Gordon T.

    2014-06-01

    We study the variability properties of AGN light-curves observed by the Kepler satellite. AGN optical fluxes are known to exhibit stochastic variations on time-scales of hours, days, months and years. Previous efforts to characterize the stochastic nature of this variability have been hampered by the lack of high-precision space-based measurements of AGN fluxes with regular cadence. Kepler provides light-curves with a S/N ratio of 10-5 for 87 AGN observed over a period of ~ 3 years with a cadence of once every 30 minutes allowing for a detailed examination of the variability process. We probe AGN variability using the Structure Functions of the light-curves of the Kepler AGN. Monte-Carlo simulations of the structure function are used to fit the observed light-curve to models for the Power Spectral Density. We test various models for the form of the PSD including the damped random walk and the powered exponential models. We show that on the shorter time-scales probed by Kepler data, the damped random walk model fails to adequately characterize AGN variability. We find that the PSD may be better modelled by combination of a steep power law of the form 1/f3 on shorter time-scales, and a more shallow power law of the form 1/f2 on the longer time-scales traditionally probed by ground-based variability studies.

  19. Materials testing for in situ stabilization treatability study of INEEL mixed wastes soils

    SciTech Connect

    Heiser, J.; Fuhrmann, M.

    1997-09-01

    This report describes the contaminant-specific materials testing phase of the In Situ Stabilization Comprehensive Environment Response, Compensation, and Liability Act (CERCLA) Treatability Study (TS). The purpose of materials testing is to measure the effectiveness of grouting agents to stabilize Idaho National Engineering and Environmental Laboratory (INEEL) Acid Pit soils and select a grout material for use in the Cold Test Demonstration and Acid Pit Stabilization Treatability Study within the Subsurface Disposal Area (SDA) at the Radioactive Waste Management Complex (RWMC). Test results will assist the selecting a grout material for the follow-on demonstrations described in Test Plan for the Cold Test Demonstration and Acid Pit Stabilization Phases of the In Situ Stabilization Treatability Study at the Radioactive Waste Management Complex.

  20. Time-resolved in situ Studies of Apatite Formation in Aqueous Solutions

    SciTech Connect

    Borkiewicz, O.; Rakovan, J; Cahill, C

    2010-01-01

    Formation of hydroxylapatite through the precipitation and evolution of calcium phosphate precursor phases under varying conditions of temperature (25-90 C), pH (6.5-9.0), and calcium to phosphorus ratio (1.0, 1.33, 1.5, and 1.67) comparable to those found in many sediments and soils were studied. The products of low-temperature precipitation were analyzed by ex situ X-ray diffraction and SEM, as well as time-resolved in situ synchrotron X-ray diffraction. Rietveld refinement was used for quantitative evaluation of relative abundances during phase evolution. The results of ex situ investigations conducted at ambient temperature and near-neutral pH indicate formation of amorphous calcium phosphate, which over the course of experiments transforms to brushite and ultimately hydroxylapatite. The results of in situ X-ray diffraction experiments suggest a more complex pathway of phase development under the same conditions. Some of the initially formed amorphous calcium phosphate and/or crystalline brushite transformed to octacalcium phosphate. In the later stage of the reactions, octacalcium phosphate transforms quite rapidly to hydroxylapatite. This is accompanied or followed by the transformation of the remaining brushite to monetite. Hydroxylapatite and monetite coexist in the sample throughout the remainder of the experiments. In contrast to the near-neutral pH experiments, the results from ex situ and in situ diffraction investigations performed at higher pH yield similar results. The precipitate formed in the initial stages in both types of experiments was identified as amorphous calcium phosphate, which over the course of the reaction quite rapidly transformed to hydroxylapatite without any apparent intermediate phases. This is the first application of time-resolved in situ synchrotron X-ray diffraction to precipitation reactions in the Ca(OH){sub 2}-H{sub 3}PO{sub 4}-H{sub 2}O system. The results indicate that precursors are likely to occur during the natural or

  1. Understanding structure, function, and mutations in the mitochondrial ATP synthase

    PubMed Central

    Xu, Ting; Pagadala, Vijayakanth; Mueller, David M.

    2015-01-01

    The mitochondrial ATP synthase is a multimeric enzyme complex with an overall molecular weight of about 600,000 Da. The ATP synthase is a molecular motor composed of two separable parts: F1 and Fo. The F1 portion contains the catalytic sites for ATP synthesis and protrudes into the mitochondrial matrix. Fo forms a proton turbine that is embedded in the inner membrane and connected to the rotor of F1. The flux of protons flowing down a potential gradient powers the rotation of the rotor driving the synthesis of ATP. Thus, the flow of protons though Fo is coupled to the synthesis of ATP. This review will discuss the structure/function relationship in the ATP synthase as determined by biochemical, crystallographic, and genetic studies. An emphasis will be placed on linking the structure/function relationship with understanding how disease causing mutations or putative single nucleotide polymorphisms (SNPs) in genes encoding the subunits of the ATP synthase, will affect the function of the enzyme and the health of the individual. The review will start by summarizing the current understanding of the subunit composition of the enzyme and the role of the subunits followed by a discussion on known mutations and their effect on the activity of the ATP synthase. The review will conclude with a summary of mutations in genes encoding subunits of the ATP synthase that are known to be responsible for human disease, and a brief discussion on SNPs. PMID:25938092

  2. In situ electrochemical studies of lithium-ion battery cathodes using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Ramdon, Sanjay; Bhushan, Bharat; Nagpure, Shrikant C.

    2014-03-01

    Lithium-ion (Li-ion) batteries have been implemented for numerous applications, including plug-in hybrid electric vehicles (PHEV) and pure electric vehicles (EV). In an effort to prolong battery life, it is important to understand the mechanisms that cause reduced battery capacity with aging. Past studies have shown that morphological changes occur in aged cathodes. In situ electrochemical studies using atomic force microscopy allow for the direct observation of the morphology of the Li-ion battery cathode, at a nanometer scale resolution, during the cycling of an electrochemical cell. A simple electrochemical cell designed for in situ characterization is introduced. Charge/discharge curves and morphology data obtained during charging and discharging of cells are presented, and relevant mechanisms are discussed.

  3. In situ STM studies of Sb(111) electrodes in aqueous electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Grozovski, V.; Kallip, S.; Lust, E.

    2013-07-01

    The in situ STM studies of Sb(111), which was cleaved at the temperature of liquid nitrogen inside the glove box, and of Sb(111), which was electrochemically polished in the KI + HCl aqueous solution, have been performed under negative polarizations from - 0.8 to - 0.15 V (versus Ag|AgCl in sat. KCl aqueous solution) in the 0.5 M Na2SO4 + 0.0003 M H2SO4 aqueous solution. The atomic resolution has been achieved. The in situ STM data show that there are no quick surface reconstruction processes and the surface structure of cleaved and electrochemically polished Sb(111) is stable within the potential region investigated, similarly for Bi(111) single crystal electrode, previously studied [S. Kallip, E. Lust, Electrochem. Comm. 7 (2005) 863].

  4. Structure-function relationship of monocot mannose-binding lectins.

    PubMed Central

    Barre, A; Van Damme, E J; Peumans, W J; Rougé, P

    1996-01-01

    The monocot mannose-binding lectins are an extended superfamily of structurally and evolutionarily related proteins, which until now have been isolated from species of the Amaryllidaceae, Alliaceae, Araceae, Orchidaceae, and Liliaceae. To explain the obvious differences in biological activities, the structure-function relationships of the monocot mannose-binding lectins were studied by a combination of glycan-binding studies and molecular modeling using the deduced amino acid sequences of the currently known lectins. Molecular modeling indicated that the number of active mannose-binding sites per monomer varies between three and zero. Since the number of binding sites is fairly well correlated with the binding activity measured by surface plasmon resonance, and is also in good agreement with the results of previous studies of the biological activities of the mannose-binding lectins, molecular modeling is of great value for predicting which lectins are best suited for a particular application. PMID:8972598

  5. In-situ Studies of Highly Charged Ions at the LLNL EBIT

    SciTech Connect

    Beiersdorfer, P

    2001-08-16

    The properties of highly charged ions and their interaction with electrons and atoms is being studied in-situ at the LLNL electron beam ion traps, EBIT-II and SuperEBIT. Spectroscopic measurements provide data on electron-ion and ion-atom interactions as well as accurate transition energies of lines relevant for understanding QED, nuclear magnetization, and the effects of relativity on complex, state-of-the-art atomic calculations.

  6. Feasibility studies of in-situ coal gasification in the Warrior coal field. Quarterly report

    SciTech Connect

    Douglas G.W.; McKinley, M.D.

    1980-01-01

    Studies in support of in-situ gasification involved experiments in bench-scale combustors where three parameters were varied independently: initial fuel bed temperature, applied air flow and water vapor influx rate. Methods for measuring the thermal conductivity of solids at high temperatures were evaluated and measurements of the thermal conductivity and thermal diffusivity were made over a temperature range for several samples of coke. (LTN)

  7. Automated data extraction from in situ protein-stable isotope probing studies.

    PubMed

    Slysz, Gordon W; Steinke, Laurey; Ward, David M; Klatt, Christian G; Clauss, Therese R W; Purvine, Samuel O; Payne, Samuel H; Anderson, Gordon A; Smith, Richard D; Lipton, Mary S

    2014-03-01

    Protein-stable isotope probing (protein-SIP) has strong potential for revealing key metabolizing taxa in complex microbial communities. While most protein-SIP work to date has been performed under controlled laboratory conditions to allow extensive isotope labeling of the target organism(s), a key application will be in situ studies of microbial communities for short periods of time under natural conditions that result in small degrees of partial labeling. One hurdle restricting large-scale in situ protein-SIP studies is the lack of algorithms and software for automated data processing of the massive data sets resulting from such studies. In response, we developed Stable Isotope Probing Protein Extraction Resources software (SIPPER) and applied it for large-scale extraction and visualization of data from short-term (3 h) protein-SIP experiments performed in situ on phototrophic bacterial mats isolated from Yellowstone National Park. Several metrics incorporated into the software allow it to support exhaustive analysis of the complex composite isotopic envelope observed as a result of low amounts of partial label incorporation. SIPPER also enables the detection of labeled molecular species without the need for any prior identification. PMID:24467184

  8. Automated data extraction from in situ protein stable isotope probing studies

    SciTech Connect

    Slysz, Gordon W.; Steinke, Laurey A.; Ward, David M.; Klatt, Christian G.; Clauss, Therese RW; Purvine, Samuel O.; Payne, Samuel H.; Anderson, Gordon A.; Smith, Richard D.; Lipton, Mary S.

    2014-01-27

    Protein stable isotope probing (protein-SIP) has strong potential for revealing key metabolizing taxa in complex microbial communities. While most protein-SIP work to date has been performed under controlled laboratory conditions to allow extensive isotope labeling of the target organism, a key application will be in situ studies of microbial communities under conditions that result in small degrees of partial labeling. One hurdle restricting large scale in situ protein-SIP studies is the lack of algorithms and software for automated data processing of the massive data sets resulting from such studies. In response, we developed Stable Isotope Probing Protein Extraction Resources software (SIPPER) and applied it for large scale extraction and visualization of data from short term (3 h) protein-SIP experiments performed in situ on Yellowstone phototrophic bacterial mats. Several metrics incorporated into the software allow it to support exhaustive analysis of the complex composite isotopic envelope observed as a result of low amounts of partial label incorporation. SIPPER also enables the detection of labeled molecular species without the need for any prior identification.

  9. Demonstration testing and evaluation of in situ soil heating. Treatability study work plan, Revision 1

    SciTech Connect

    Sresty, G.C.

    1994-07-07

    A Treatability Study planned for the demonstration of the in situ electromagnetic (EM) heating process to remove organic solvents is described in this Work Plan. The treatability study will be conducted by heating subsurface vadose-zone soils in an organic plume adjacent to the Classified Burial Ground K-1070-D located at K-25 Site, Oak Ridge. The test is scheduled to start during the fourth quarter of FY94 and will be completed during the first quarter of FY95. The EM heating process for soil decontamination is based on volumetric heating technologies developed during the `70s for the recovery of fuels from shale and tar sands by IIT Research Institute (IITRI) under a co-operative program with the US Department of Energy (DOE). Additional modifications of the technology developed during the mid `80s are currently used for the production of heavy oil and waste treatment. Over the last nine years, a number of Government agencies (EPA, Army, AF, and DOE) and industries sponsored further development and testing of the in situ heating and soil decontamination process for the remediation of soils containing hazardous organic contaminants. In this process the soil is heated in situ using electrical energy. The contaminants are removed from the soil due to enhanced vaporization, steam distillation and stripping. IITRI will demonstrate the EM Process for in situ soil decontamination at K-25 Site under the proposed treatability study. Most of the contaminants of concern are volatile organics which can be removed by heating the soil to a temperature range of 85 to 95 C. The efficiency of the treatment will be determined by comparing the concentration of contaminants in soil samples. Samples will be obtained before and after the demonstration for a measurement of the concentration of contaminants of concern.

  10. Studies of a photochromic model system using NMR with ex-situ and in-situ irradiation devices.

    PubMed

    Wolff, Christiane; Kind, Jonas; Schenderlein, Helge; Bartling, Hanna; Feldmeier, Christian; Gschwind, Ruth M; Biesalski, Markus; Thiele, Christina M

    2016-06-01

    The switching behavior of a photochromic model system was investigated in detail via NMR spectroscopy in order to improve understanding of the compound itself and to provide ways to obtain insights into composition trends of a photo switchable (polymeric) material containing spiropyran/merocyanine units. In addition to the classical irradiation performed outside the magnet (ex-situ), a device for irradiation inside the NMR spectrometer (in-situ) was tested. Both setups are introduced, their advantages and disadvantages as well as their limits are described and the setup for future investigations of photochromic materials is suggested. The influence of different sample concentrations, irradiation procedures, and light intensities on the model system was examined as well as the dependence on solvent, temperature, and irradiation wavelengths. Using the recently published LED illumination device, it was even possible to record two-dimensional spectra on this model system with rather short half-life (7 min in DMSO). This way (13) C chemical shifts of the merocyanine form were obtained, which were unknown before. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26891085

  11. In Situ Potentiometry and Ellipsometry: A Promising Tool to Study Biofouling of Potentiometric Sensors.

    PubMed

    Lisak, Grzegorz; Arnebrant, Thomas; Lewenstam, Andrzej; Bobacka, Johan; Ruzgas, Tautgirdas

    2016-03-15

    In situ potentiometry and null ellipsometry was combined and used as a tool to follow the kinetics of biofouling of ion-selective electrodes (ISEs). The study was performed using custom-made solid-contact K(+)-ISEs consisting of a gold surface with immobilized 6-(ferrocenyl)hexanethiol as ion-to-electron transducer that was coated with a potassium-selective plasticized polymer membrane. The electrode potential and the ellipsometric signal (corresponding to the amount of adsorbed protein) were recorded simultaneously during adsorption of bovine serum albumin (BSA) at the surface of the K(+)-ISEs. This in situ method may become useful in developing sensors with minimized biofouling. PMID:26864883

  12. Study of dislocations in copper by weak beam, stereo, and in situ straining TEM

    SciTech Connect

    McCabe, R. J.; Misra, A.; Mitchell, T. E.

    2002-01-01

    Conventional transmission electron microscopy (TEM) has been an invaluable tool for verifjhg and developing dislocation theories since the first direct observations of dislocations were made using a TEM in the 1950s. Several useful techniques and technological advancements have been made since, helping fbrther the advancement of dislocation knowledge. The present paper concerns two studies of dislocations in copper made by coupling several of these techniques, specifically weak beam, in situ straining, and stereo TEM. Stereo-TEM coupled with in situ straining TEM was used for tracking 3D dislocation motion and interactions in low dislocation density copper foils. A mechanism by which dislocations in a pileup bypass a dislocation node is observed and discussed. Weak beam TEM is used in conjunction with stereo-TEM to analyze the dislocation content of a dense dislocation wall (DDW).

  13. Reaction of Formic Acid over Amorphous Manganese Oxide Catalytic Systems: An In Situ Study

    SciTech Connect

    Durand, Jason; Senanayake, Sanjaya D; Mullins, David R; Suib, Steven

    2010-01-01

    The interaction of formic acid with amorphous manganese oxide (AMO) is investigated using in situ photoelectron and infrared spectroscopy techniques. Soft X-ray photoelectron spectroscopy (sXPS) and in situ FTIR illustrate two possible modes of formate bound species at the AMO surface. Two peaks in the IR region from 1340-1390 cm{sup -1} are indicative of formate species bound to the surface in a bidentate configuration. However, a 224 cm{sup -1} band gap between v{sub s}OCO and v{sub as}OCO suggests formate is bound in a bridging configuration. Temperature-programmed desorption studies confirm the formate bound species desorbs as carbon dioxide from the surface at multiple binding sites. At temperatures above 700 K, the presence of K{sup +} {hor_ellipsis} OC complex suggests the bound species interacts at vacant sites related to framework oxygen and cation mobility.

  14. Reaction of Formic Acid over Amorphous Manganese Oxide Catalytic Systems: An In Situ Study

    SciTech Connect

    J Durand; S Senanayake; S Suib; D Mullins

    2011-12-31

    The interaction of formic acid with amorphous manganese oxide (AMO) is investigated using in situ photoelectron and infrared spectroscopy techniques. Soft X-ray photoelectron spectroscopy (sXPS) and in situ FTIR illustrate two possible modes of formate bound species at the AMO surface. Two peaks in the IR region from 1340-1390 cm{sup -1} are indicative of formate species bound to the surface in a bidentate configuration. However, a 224 cm{sup -1} band gap between v{sub s}OCO and v{sub as}OCO suggests formate is bound in a bridging configuration. Temperature-programmed desorption studies confirm the formate bound species desorbs as carbon dioxide from the surface at multiple binding sites. At temperatures above 700 K, the presence of K{sup +} {hor_ellipsis} OC complex suggests the bound species interacts at vacant sites related to framework oxygen and cation mobility.

  15. In situ activity recovery of aging biofilm in biological aerated filter: Surfactants treatment and mechanisms study.

    PubMed

    Yu, Qisheng; Huang, Hui; Ren, Hongqiang; Ding, Lili; Geng, Jinju

    2016-11-01

    In situ activity recovery of aging biofilm in the biological aerated filter (BAF) is an important but underappreciated problem. Lab-scaled BAFs were established in this study and three kinds of surfactants containing sodium dodecyl sulfate (SDS), sodium dodecyl benzene sulfonate (SDBS) and rhamnolipid were employed. Multiple indicators including effluent qualities, dissolved organic matters, biofilm physiology and morphology characteristics were investigated to explore the mechanisms. Results showed that removal rates of effluent COD in test groups significantly recovered to the level before aging. Compared with the control, effluent in SDBS and rhamnolipid-treated groups obtained more protein-like and humic-like substances, respectively. Furthermore, great live cell ratio, smooth surface and low adhesion force of biofilm were observed after rhamnolipid treatment, which was in consistent with good effluent qualities in the same group. This is the first report of applying rhamnolipid for in situ activity recovery of aging biofilm in bioreactors. PMID:27513646

  16. The human prostacyclin receptor from structure function to disease.

    PubMed

    Martin, Kathleen A; Gleim, Scott; Elderon, Larkin; Fetalvero, Kristina; Hwa, John

    2009-01-01

    Thirty years have passed since Vane and colleagues first described a substance, prostanoid X, from microsomal fractions (later called prostacyclin) that relaxed rather than contracted mesenteric arteries. The critical role of prostacyclin in many pathophysiological conditions, such as atherothrombosis, has only recently become appreciated (through receptor knockout mice studies, selective cyclooxygenase-2 inhibition clinical trials, and the discovery of dysfunctional prostacyclin receptor genetic variants). Additionally, important roles in such diverse areas as pain and inflammation, and parturition are being uncovered. Prostacyclin-based therapies, currently used for pulmonary hypertension, are accordingly emerging as possible treatments for such diseases, fueling interests in structure function studies for the receptor and signal transduction pathways in native cells. The coming decade is likely to yield many further exciting advances. PMID:20374736

  17. In situ study of heavy ion irradiation response of immiscible Cu/Fe multilayers

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Li, N.; Bufford, D. C.; Li, J.; Hattar, K.; Wang, H.; Zhang, X.

    2016-07-01

    Recent studies show that immiscible metallic multilayers with incoherent interfaces can effectively reduce defect density in ion irradiated metals by providing active defect sinks that capture and annihilate radiation induced defect clusters. Although it is anticipated that defect density within the layers should vary as a function of distance to the layer interface, there is, to date, little in situ TEM evidence to validate this hypothesis. In this study monolithic Cu films and Cu/Fe multilayers with individual layer thickness, h, of 100 and 5 nm were subjected to in situ Cu ion irradiation at room temperature to nominally 1 displacement-per-atom inside a transmission electron microscope. Rapid formation and propagation of defect clusters were observed in monolithic Cu, whereas fewer defects with smaller dimensions were generated in Cu/Fe multilayers with smaller h. Furthermore in situ video shows that the cumulative defect density in Cu/Fe 100 nm multilayers indeed varies, as a function of distance to the layer interfaces, supporting a long postulated hypothesis.

  18. Development of an in Situ NMR Photoreactor To Study Environmental Photochemistry.

    PubMed

    Bliumkin, Liora; Dutta Majumdar, Rudraksha; Soong, Ronald; Adamo, Antonio; Abbatt, Jonathan P D; Zhao, Ran; Reiner, Eric; Simpson, André J

    2016-06-01

    Photochemistry is a key environmental process directly linked to the fate, source, and toxicity of pollutants in the environment. This study explores two approaches for integrating light sources with nuclear magnetic resonance (NMR) spectroscopy: sample irradiation using a "sunlight simulator" outside the magnet versus direct irradiation of the sample inside the magnet. To assess their applicability, the in situ NMR photoreactors were applied to a series of environmental systems: an atmospheric pollutant (p-nitrophenol), crude oil extracts, and groundwater. The study successfully illustrates that environmentally relevant aqueous photochemical processes can be monitored in situ and in real time using NMR spectroscopy. A range of intermediates and degradation products were identified and matched to the literature. Preliminary measurements of half-lives were also obtained from kinetic curves. The sunlight simulator was shown to be the most suitable model to explore environmental photolytic processes in situ. Other light sources with more intense UV output hold potential for evaluating UV as a remediation alternative in areas such as wastewater treatment plants or oil spills. Finally, the ability to analyze the photolytic fate of trace chemicals at natural abundance in groundwater, using a cryogenic probe, demonstrates the viability of NMR spectroscopy as a powerful and complementary technique for environmental applications in general. PMID:27172272

  19. In Situ Transmission Electron Microscopy And Spectroscopy Studies Of Rechargeable Batteries Under Dynamic Operating Conditions: A Retrospective And Perspective View

    SciTech Connect

    Wang, Chong M.

    2015-02-14

    Since the advent of the transmission electron microscope (TEM), continuing efforts have been made to image material under native and reaction environments that typically involve liquids, gases, and external stimuli. With the advances of aberration-corrected TEM for improving the imaging resolution, steady progress has been made on developing methodologies that allow imaging under dynamic operating conditions, or in situ TEM imaging. The success of in situ TEM imaging is closely associated with advances in microfabrication techniques that enable manipulation of nanoscale objects around the objective lens of the TEM. This paper summarizes and highlights recent progress involving in situ TEM studies of energy storage materials, especially rechargeable batteries. The paper is organized to cover both the in situ TEM techniques and the scientific discoveries made possible by in situ TEM imaging.

  20. An in situ approach to study trace element partitioning in the laser heated diamond anvil cell

    SciTech Connect

    Petitgirard, S.; Mezouar, M.; Borchert, M.; Appel, K.; Liermann, H.-P.; Andrault, D.

    2012-01-15

    Data on partitioning behavior of elements between different phases at in situ conditions are crucial for the understanding of element mobility especially for geochemical studies. Here, we present results of in situ partitioning of trace elements (Zr, Pd, and Ru) between silicate and iron melts, up to 50 GPa and 4200 K, using a modified laser heated diamond anvil cell (DAC). This new experimental set up allows simultaneous collection of x-ray fluorescence (XRF) and x-ray diffraction (XRD) data as a function of time using the high pressure beamline ID27 (ESRF, France). The technique enables the simultaneous detection of sample melting based to the appearance of diffuse scattering in the XRD pattern, characteristic of the structure factor of liquids, and measurements of elemental partitioning of the sample using XRF, before, during and after laser heating in the DAC. We were able to detect elements concentrations as low as a few ppm level (2-5 ppm) on standard solutions. In situ measurements are complimented by mapping of the chemical partitions of the trace elements after laser heating on the quenched samples to constrain the partitioning data. Our first results indicate a strong partitioning of Pd and Ru into the metallic phase, while Zr remains clearly incompatible with iron. This novel approach extends the pressure and temperature range of partitioning experiments derived from quenched samples from the large volume presses and could bring new insight to the early history of Earth.

  1. In situ SEM Study of Lithium Intercalation in individual V2O5 Nanowires

    DOE PAGESBeta

    Strelcov, Evgheni; Cothren, Joshua E.; Leonard, Donovan N.; Borisevich, Albina Y.; Kolmakov, Andrei

    2015-01-08

    Progress in rational engineering of Li-ion batteries requires better understanding of the electrochemical processes and accompanying transformations in the electrode materials on multiple length scales. In spite of recent progress in utilizing transmission electron microscopy (TEM) to analyze these materials, in situ scanning electron microscopy (SEM) was mostly overlooked as a powerful tool that allows probing these phenomena on the nano and mesoscale. In this paper, we report on in situ SEM study of lithiation in a V2O5-based single-nanobelt battery with ionic liquid electrolyte. Coupled with cyclic voltammetry measurements, in situ SEM revealed the peculiarities of subsurface intercalation, formation ofmore » solid-electrolyte interface (SEI) and electromigration of liquid. We observed that single-crystalline vanadia nanobelts do not undergo large-scale amorphization or fracture during electrochemical cycling, but rather transform topochemically with only a slight shape distortion. Lastly, the SEI layer seems to have significant influence on the lithium ion diffusion and overall capacity of the single-nanobelt battery.« less

  2. An in situ approach to study trace element partitioning in the laser heated diamond anvil cell.

    PubMed

    Petitgirard, S; Borchert, M; Andrault, D; Appel, K; Mezouar, M; Liermann, H-P

    2012-01-01

    Data on partitioning behavior of elements between different phases at in situ conditions are crucial for the understanding of element mobility especially for geochemical studies. Here, we present results of in situ partitioning of trace elements (Zr, Pd, and Ru) between silicate and iron melts, up to 50 GPa and 4200 K, using a modified laser heated diamond anvil cell (DAC). This new experimental set up allows simultaneous collection of x-ray fluorescence (XRF) and x-ray diffraction (XRD) data as a function of time using the high pressure beamline ID27 (ESRF, France). The technique enables the simultaneous detection of sample melting based to the appearance of diffuse scattering in the XRD pattern, characteristic of the structure factor of liquids, and measurements of elemental partitioning of the sample using XRF, before, during and after laser heating in the DAC. We were able to detect elements concentrations as low as a few ppm level (2-5 ppm) on standard solutions. In situ measurements are complimented by mapping of the chemical partitions of the trace elements after laser heating on the quenched samples to constrain the partitioning data. Our first results indicate a strong partitioning of Pd and Ru into the metallic phase, while Zr remains clearly incompatible with iron. This novel approach extends the pressure and temperature range of partitioning experiments derived from quenched samples from the large volume presses and could bring new insight to the early history of Earth. PMID:22299967

  3. Moments of Spin Structure Functions: Sum Rules and Polarizabilities

    SciTech Connect

    Jian-Ping Chen

    2010-10-01

    Nucleon structure study is one of the most important research areas in modern physics and has challenged us for decades. Spin has played an essential role and often brought surprises and puzzles to the investigation of the nucleon structure and the strong interaction. New experimental data on nucleon spin structure at low to intermediate momentum transfers combined with existing high momentum transfer data offer a comprehensive picture in the strong region of the interaction and of the transition region from the strong to the asymptotic-free region. Insight for some aspects of the theory for the strong interaction, Quantum Chromodynamics (QCD), is gained by exploring lower moments of spin structure functions and their corresponding sum rules (i.e. the Bjorken, Burkhardt-Cottingham, Gerasimov-Drell-Hearn (GDH), and the generalized GDH). These moments are expressed in terms of an operator-product expansion using quark and gluon degrees of freedom at moderately large momentum transfers.

  4. In Situ Synchrotron X-Ray Techniques for the Study of Lithium Battery Materials

    SciTech Connect

    McBreen, J.; Mukerjee, S.; Yang, X. Q.; Sun, X., Ein-Eli, Y.

    1998-11-01

    The combination of in situ X-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS) is a very powerful technique in the study of lithium battery cathode materials. XRD identifies the phase changes that occur during cycling and XAS gives information on the redox charge compensation processes that occur on the transition metal oxides. Because of its element specific nature XAS can identify the occurrence of redox processes on the various cations in doped oxide cathode materials. Since XAS probes short range order and is particularly useful in the study of amorphous tin based composite oxide anode materials.

  5. In situ vitrification and the effects of soil additives; A mixture experiment case study

    SciTech Connect

    Piepel, G.F.; Shade, J.W. )

    1992-01-01

    This paper presents a case study involving in situ vitrification (ISV), a process for immobilizing chemical or nuclear wastes in soil by melting-dissolving the contaminated soil into a glass block. One goal of the study was to investigate how viscosity and electrical conductivity were affected by mixing CaO and Na{sub 2}O with soil. A three-component constrained-region mixture experiment design was generated and the viscosity and electrical conductivity data collected. Several second-order mixture models were considered, and the Box-Cox transformation technique was applied to select property transformations. The fitted models were used to produce contour and component effects plots.

  6. In-situ x-ray absorption study of copper films in ground watersolutions

    SciTech Connect

    Kvashnina, K.O.; Butorin, S.M.; Modin, A.; Soroka, I.; Marcellini, M.; Nordgren, J.; Guo, J.-H.; Werme, L.

    2007-10-29

    This study illustrates how the damage from copper corrosion can be reduced by modifying the chemistry of the copper surface environment. The surface modification of oxidized copper films induced by chemical reaction with Cl{sup -} and HCO{sub 3}{sup -} in aqueous solutions was monitored by in situ X-ray absorption spectroscopy. The results show that corrosion of copper can be significantly reduced by adding even a small amount of sodium bicarbonate. The studied copper films corroded quickly in chloride solutions, whereas the same solution containing 1.1 mM HCO{sub 3}{sup -} prevented or slowed down the corrosion processes.

  7. In situ X-ray absorption study of copper films in ground water solutions

    NASA Astrophysics Data System (ADS)

    Kvashnina, K. O.; Butorin, S. M.; Modin, A.; Soroka, I.; Marcellini, M.; Nordgren, J.; Guo, J.-H.; Werme, L.

    2007-10-01

    This study illustrates how the damage from copper corrosion can be reduced by modifying the chemistry of the copper surface environment. The surface modification of oxidized copper films induced by chemical reaction with Cl - and HCO3- in aqueous solutions was monitored by in situ X-ray absorption spectroscopy. The results show that corrosion of copper can be significantly reduced by adding even a small amount of sodium bicarbonate. The studied copper films corroded quickly in chloride solutions, whereas the same solution containing 1.1 mM HCO3- prevented or slowed down the corrosion processes.

  8. A study of Mediterranean Eddies by in situ and remote sensing methods

    NASA Astrophysics Data System (ADS)

    Ienna, Federico Salvatore

    Subsurface coherent vortices in the North Atlantic, whose saline water originates from the Mediterranean Sea and which are known as Mediterranean Eddies ("meddies"), have been of particular interest to physical oceanographers since their discovery, especially for their salt and heat transport properties into the North Atlantic Ocean. Many studies in the past have been successful in observing and studying the typical properties of meddies by probing them with in-situ techniques. The use of remote sensing techniques would offer a much cheaper and easier alternative for studying these phenomena, but only a few past studies have been able to study meddies by remote sensing, and a reliable method for observing them remotely remains elusive. This research presents a new way of locating and tracking meddies in the North Atlantic Ocean using satellite altimeter data. The method presented in this research makes use of Ensemble Empirical Mode Decomposition (EEMD) as a mean to isolate the surface expressions of meddies on the ocean surface and separate them from any other surface constituents, allowing robust meddies to be consistently tracked by satellite. One such meddy is successfully tracked over a 6 month time period (2 November 2005 - 17 May 2006). Results of the satellite tracking method are verified using Expendable Bathythermographs (XBT). Furthermore, three other meddies are also studied by in-situ observations using Argo float data, and an analysis of the buoyancy frequency properties of meddies is made.

  9. Extracting Neutron Structure Functions in the Resonance Region

    SciTech Connect

    Yonatan Kahn

    2009-07-01

    A new iterative method is presented for extracting neutron structure functions from inclusive structure functions of nuclei, focusing specifically on the resonance region. Unlike earlier approaches, this method is applicable to both spin-averaged and spin-dependent structure functions. We show that in numerical tests, this method is able to reproduce known input functions of nearly arbitrary shape after only 5–10 iterations. We illustrate the method on extractions of F2n and g1,2n from data, and discuss the treatment of systematic errors from this extraction procedure.

  10. Electro-deposition of Cu studied with in situ electrochemical scanning transmission x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Hitchcock, A. P.; Qin, Z.; Rosendahl, S. M.; Lee, V.; Reynolds, M.; Hosseinkhannazer, H.

    2016-01-01

    Soft X-ray scanning transmission X-ray microscopy (STXM) was used to investigate Cu deposition onto, and stripping from a Au surface. Cu 2p spectromicroscopy was used to analyze initial and final states (ex situ processing) and follow the processes in situ. The in situ experiments were carried out using a static electrochemical cell with an electrolyte layer thickness of ˜1 μm. A new apparatus for in situ electrochemical STXM is described.

  11. In situ study of atomic layer deposition Al2O3 on GaP (100)

    NASA Astrophysics Data System (ADS)

    Dong, H.; Brennan, B.; Qin, X.; Zhernokletov, D. M.; Hinkle, C. L.; Kim, J.; Wallace, R. M.

    2013-09-01

    The interfacial chemistry of atomic layer deposition (ALD) of Al2O3 on chemically treated GaP (100) has been studied using in situ X-ray photoelectron spectroscopy. A "self-cleaning" effect for Ga-oxide upon exposure to trimethylaluminum is seen to be efficient on the native oxide and chemically treated surfaces. The phosphorus oxide chemical states are seen to change during the ALD process, but the total concentration of P-oxides is seen to remain constant throughout the ALD process.

  12. XAFS characterization of industrial catalysts: in situ study of phase transformation of nickel sulfide

    NASA Astrophysics Data System (ADS)

    Wang, J.; Jia, Z.; Wang, Q.; Zhao, S.; Xu, Z.; Yang, W.; Frenkel, A. I.

    2016-05-01

    The online sulfiding process for nickel-contained catalyst often ends up with a nickel sulfide mixture in refinery plant. To elucidate the local environment of nickel and its corresponding sulfur species, a model catalyst (nickel sulfide) and model thermal process were employed to explore the possibilities for characterization of real catalysts in industrial conditions. The present investigation shows effectiveness of in situ XANES and EXAFS measurements for studying the phase stability and phase composition in these systems, which could be used to simulate real sulfiding process in industrial reactions, such as hydrodesulfurizations of oil.

  13. Application of in-situ bioassays with macrophytes in aquatic mesocosm studies.

    PubMed

    Coors, Anja; Kuckelkorn, Jochen; Hammers-Wirtz, Monika; Strauss, Tido

    2006-10-01

    Aquatic mesocosm studies assess ecotoxicological effects of chemicals by using small artificial ponds as models of lentic ecosystems. In this study, methods of controlled insertion of macrophytes within an outdoor mesocosm study were explored. Although analytically confirmed concentrations of the model herbicide terbuthylazine were high enough to expect direct effects on phytoplankton, functional parameters and dominant taxa abundance indicated only minor and transient effects. In-situ assays with Lemna minor, Myriophyllum spicatum, Potamogeton lucens and Chara globularis revealed adverse effects at concentrations in accordance with literature data. Complex interactions such as nutrient limitation and competition were possible reasons for the observed growth promotion at the lower concentration of about 5 microg/l terbuthylazine. The approach of macrophyte in-situ bioassays within a mesocosm study proved to be applicable. Presumed advantages are simultaneous acquisition of toxicity data for several species of aquatic plants under more realistic conditions compared to laboratory tests and inclusion of macrophytes as important structural and functional components in mesocosms while limiting their domination of the model ecosystem. PMID:16960660

  14. In situ and laboratory studies of bacterial survival using a microporous membrane sandwich.

    PubMed Central

    Granai, C; Sjogren, R E

    1981-01-01

    A new device and procedure for the study of bacterial survival in an aquatic environment are described. The device uses two appressed presterilized microporous membranes to expose a bacterial cell suspension to the environment at a cell concentration that closely resembles those levels found in natural aquatic ecosystems. The device has been used under laboratory controlled conditions and in situ to study and compare bacterial survival times. In laboratory studies, Escherichia coli and Streptococcus faecalis survived the longest at 12 degrees C, pH 5, and in the presence of iron or calcium ions and cysteine. Cells in mid-stationary growth phase survived longer than those in mid- or late-logarithmic phase, whereas those maintained for a year or more as stock cultures survived for shorter period of time than did recent environmental isolates. In situ studies indicate that 5% of the starting number of E. coli and S. faecalis cells may survive longer than 96 h at 16 degrees C in potable lake water, whereas survival times in polluted lake water were approximately 12 h. PMID:6784669

  15. In situ hybridization for the study of gene expression in neuro-otologic research.

    PubMed

    Wackym, P A; Popper, P; Ward, P H; Micevych, P E

    1990-10-01

    In situ hybridization histochemistry technology was developed for future application to neuro-otologic research. This method allowed the detection of cellular mRNA in tissue sections from the temporal bone or brainstem after cRNA/mRNA hybridization. To produce specific cRNA, single-stranded 35S-labeled cRNA (complimentary to target mRNA) is transcribed from commercially available plasmid vectors. These vectors contain promotor sequences for specific synthesis of RNA, and polylinker regions that will accept cloned DNA inserts for virtually any target nucleic acid sequence of interest. The protocol used in this research was optimized for studies that included concomitant immunohistochemical evaluation. The combination of in situ hybridization and immunohistochemistry provides the only method to correlate molecular information (gene expression) with biochemical or molecular markers, such as peptides or proteins (mRNA translation products) on individual cells in the temporal bone or brainstem. Using these techniques, we examined the distribution of the neuropeptide calcitonin gene-related peptide in rat temporal bone and brainstem sections using calcitonin gene-related peptide (CGRP) antisera and CGRP cRNA probes. We used in situ hybridization histochemistry with a cRNA probe complementary to the 3'-end noncoding sequence of the alpha CGRP mRNA and immunohistochemistry with a polyclonal antibody to the (TYR)CGRP23-37 to study the distribution of CGRP mRNA and CGRP-like immunoreactivity in the central and peripheral facial nerve. Numerous motoneuron cell bodies in the facial nucleus and accessory seventh nucleus and cell bodies in the gustatory geniculate ganglion were found to contain CGRP mRNA and the CGRP peptide.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1701043

  16. Clinical in situ study investigating abrasive effects of two commercially available toothpastes.

    PubMed

    Giles, A; Claydon, N C A; Addy, M; Hughes, N; Sufi, F; West, N X

    2009-07-01

    The aim of this study was to determine if the abrasive effect on dentine of two commercially available toothpastes, known to vary in their in vitro abrasive levels, can be differentiated in an in situ model after 10 days, assessed by contact profilometry. This was a single centre, single blind, randomized, split mouth, two treatment, in situ study, in 34 healthy subjects, evaluating the abrasive effects of two marketed desensitizing toothpastes, (Colgate Sensitive Multi Protection toothpaste - C; Sensodyne Total Protection - S). Subjects wore bi-lateral, lower buccal appliances, each fitted with four dentine sections which were power brushed three times a day with the treatment regimen. Each subject received two toothpaste treatments for 10 days during the treatment period. Samples were measured at baseline and day 10 by contact and non-contact profilometry and day 5 by contact profilometry. Thirty-four subjects were included in the efficacy analysis. Results from contact profilometry showed statistically significant (P < 0.0001) dentine loss compared to baseline at day 5 and 10 for both pastes. At each time point, C showed statistically significantly greater dentine loss than S, P < 0.0001. After 10 days treatment, the difference in dentine loss between the pastes was 1.4 microm. The non-contact profilometry data showed similar trends. After 10 days of treatment, C showed statistically significantly greater dentine loss than S, with treatment difference of 0.9 microm, P = 0.0057. The methodology used has successfully differentiated between the abrasivity of the two pastes in respect of dentine surface loss over time in an in situ environment. PMID:19531090

  17. Structure, function and regulation of pyruvate carboxylase.

    PubMed Central

    Jitrapakdee, S; Wallace, J C

    1999-01-01

    Pyruvate carboxylase (PC; EC 6.4.1.1), a member of the biotin-dependent enzyme family, catalyses the ATP-dependent carboxylation of pyruvate to oxaloacetate. PC has been found in a wide variety of prokaryotes and eukaryotes. In mammals, PC plays a crucial role in gluconeogenesis and lipogenesis, in the biosynthesis of neurotransmitter substances, and in glucose-induced insulin secretion by pancreatic islets. The reaction catalysed by PC and the physical properties of the enzyme have been studied extensively. Although no high-resolution three-dimensional structure has yet been determined by X-ray crystallography, structural studies of PC have been conducted by electron microscopy, by limited proteolysis, and by cloning and sequencing of genes and cDNA encoding the enzyme. Most well characterized forms of active PC consist of four identical subunits arranged in a tetrahedron-like structure. Each subunit contains three functional domains: the biotin carboxylation domain, the transcarboxylation domain and the biotin carboxyl carrier domain. Different physiological conditions, including diabetes, hyperthyroidism, genetic obesity and postnatal development, increase the level of PC expression through transcriptional and translational mechanisms, whereas insulin inhibits PC expression. Glucocorticoids, glucagon and catecholamines cause an increase in PC activity or in the rate of pyruvate carboxylation in the short term. Molecular defects of PC in humans have recently been associated with four point mutations within the structural region of the PC gene, namely Val145-->Ala, Arg451-->Cys, Ala610-->Thr and Met743-->Thr. PMID:10229653

  18. Oxidation Induced Doping of Nanoparticles Revealed by in Situ X-ray Absorption Studies.

    PubMed

    Kwon, Soon Gu; Chattopadhyay, Soma; Koo, Bonil; Dos Santos Claro, Paula Cecilia; Shibata, Tomohiro; Requejo, Félix G; Giovanetti, Lisandro J; Liu, Yuzi; Johnson, Christopher; Prakapenka, Vitali; Lee, Byeongdu; Shevchenko, Elena V

    2016-06-01

    Doping is a well-known approach to modulate the electronic and optical properties of nanoparticles (NPs). However, doping at nanoscale is still very challenging, and the reasons for that are not well understood. We studied the formation and doping process of iron and iron oxide NPs in real time by in situ synchrotron X-ray absorption spectroscopy. Our study revealed that the mass flow of the iron triggered by oxidation is responsible for the internalization of the dopant (molybdenum) adsorbed at the surface of the host iron NPs. The oxidation induced doping allows controlling the doping levels by varying the amount of dopant precursor. Our in situ studies also revealed that the dopant precursor substantially changes the reaction kinetics of formation of iron and iron oxide NPs. Thus, in the presence of dopant precursor we observed significantly faster decomposition rate of iron precursors and substantially higher stability of iron NPs against oxidation. The same doping mechanism and higher stability of host metal NPs against oxidation was observed for cobalt-based systems. Since the internalization of the adsorbed dopant at the surface of the host NPs is driven by the mass transport of the host, this mechanism can be potentially applied to introduce dopants into different oxidized forms of metal and metal alloy NPs providing the extra degree of compositional control in material design. PMID:27152970

  19. Models of Protocellular Structure, Function and Evolution

    NASA Technical Reports Server (NTRS)

    New, Michael H.; Pohorille, Andrew; Szostak, Jack W.; Keefe, Tony; Lanyi, Janos K.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    In the absence of any record of protocells, the most direct way to test our understanding, of the origin of cellular life is to construct laboratory models that capture important features of protocellular systems. Such efforts are currently underway in a collaborative project between NASA-Ames, Harvard Medical School and University of California. They are accompanied by computational studies aimed at explaining self-organization of simple molecules into ordered structures. The centerpiece of this project is a method for the in vitro evolution of protein enzymes toward arbitrary catalytic targets. A similar approach has already been developed for nucleic acids in which a small number of functional molecules are selected from a large, random population of candidates. The selected molecules are next vastly multiplied using the polymerase chain reaction.

  20. The g2 Structure Function: An Experimental Overview

    SciTech Connect

    Slifer, Karl

    2009-08-01

    We will discuss recent results for the spin structure functions, with an emphasis on g2 . High precision g2 data allows for tests of the Burkhardt-Cottingham sum rule, and is needed to consistently evaluate higher twist effects.

  1. Neutron structure function and A=3 mirror nuclei

    SciTech Connect

    Afnan, I.R.; Bissey, F.; Gomez, J.; Katramatou, A.T.; Melnitchouk, W.; Petratos, G.G.; Thomas, A.W.

    2000-06-01

    The authors demonstrate that the free neutron structure function can be extracted in deep-inelastic scattering from A=3 mirror nuclei, with nuclear effects canceling to within 2% for x {approx_lt} 0.85.

  2. Small catalytic RNA: Structure, function and application

    SciTech Connect

    Monforte, J.A.

    1991-04-01

    We have utilized a combination of photochemical cross-linking techniques and site-directed mutagenesis to obtain secondary and tertiary structure information for the self-cleaving, self-ligating subsequence of RNA from the negative strand of Satellite Tobacco Ringspot Virus. We have found that the helical regions fold about a hinge to promoting four different possible tertiary interactions, creating a molecular of similar shape to a paperclip. A model suggesting that the paperclip'' and hammerhead'' RNAs share a similar three dimensional structure is proposed. We have used a self-cleaving RNA molecule related to a subsequence of plant viroids, a hammerhead,'' to study the length-dependent folding of RNA produced during transcription by RNA polymerase. We have used this method to determine the length of RNA sequestered within elongating E. coli and T7 RNA polymerase complexes. The data show that for E. coli RNA polymerase 12{plus minus}1 nucleotides are sequestered within the ternary complex, which is consistent with the presence of an RNA-DNA hybrid within the transcription bubble, as proposed by others. The result for T7 RNA polymerase differs from E. coli RNA polymerase, with only 10{plus minus}1 nucleotides sequestered within the ternary complex, setting a new upper limit for the minimum RNA-DNA required for a stable elongating complex. Comparisons between E. coli and T7 RNA polymerase are made. The relevance of the results to models or transcription termination, abortive initiation, and initiation to elongation mode transitions are discussed.

  3. Islet Amyloid Polypeptide: Structure, Function, and Pathophysiology.

    PubMed

    Akter, Rehana; Cao, Ping; Noor, Harris; Ridgway, Zachary; Tu, Ling-Hsien; Wang, Hui; Wong, Amy G; Zhang, Xiaoxue; Abedini, Andisheh; Schmidt, Ann Marie; Raleigh, Daniel P

    2016-01-01

    The hormone islet amyloid polypeptide (IAPP, or amylin) plays a role in glucose homeostasis but aggregates to form islet amyloid in type-2 diabetes. Islet amyloid formation contributes to β-cell dysfunction and death in the disease and to the failure of islet transplants. Recent work suggests a role for IAPP aggregation in cardiovascular complications of type-2 diabetes and hints at a possible role in type-1 diabetes. The mechanisms of IAPP amyloid formation in vivo or in vitro are not understood and the mechanisms of IAPP induced β-cell death are not fully defined. Activation of the inflammasome, defects in autophagy, ER stress, generation of reactive oxygen species, membrane disruption, and receptor mediated mechanisms have all been proposed to play a role. Open questions in the field include the relative importance of the various mechanisms of β-cell death, the relevance of reductionist biophysical studies to the situation in vivo, the molecular mechanism of amyloid formation in vitro and in vivo, the factors which trigger amyloid formation in type-2 diabetes, the potential role of IAPP in type-1 diabetes, the development of clinically relevant inhibitors of islet amyloidosis toxicity, and the design of soluble, bioactive variants of IAPP for use as adjuncts to insulin therapy. PMID:26649319

  4. Islet Amyloid Polypeptide: Structure, Function, and Pathophysiology

    PubMed Central

    Akter, Rehana; Cao, Ping; Noor, Harris; Ridgway, Zachary; Tu, Ling-Hsien; Wang, Hui; Wong, Amy G.; Zhang, Xiaoxue; Abedini, Andisheh; Schmidt, Ann Marie; Raleigh, Daniel P.

    2016-01-01

    The hormone islet amyloid polypeptide (IAPP, or amylin) plays a role in glucose homeostasis but aggregates to form islet amyloid in type-2 diabetes. Islet amyloid formation contributes to β-cell dysfunction and death in the disease and to the failure of islet transplants. Recent work suggests a role for IAPP aggregation in cardiovascular complications of type-2 diabetes and hints at a possible role in type-1 diabetes. The mechanisms of IAPP amyloid formation in vivo or in vitro are not understood and the mechanisms of IAPP induced β-cell death are not fully defined. Activation of the inflammasome, defects in autophagy, ER stress, generation of reactive oxygen species, membrane disruption, and receptor mediated mechanisms have all been proposed to play a role. Open questions in the field include the relative importance of the various mechanisms of β-cell death, the relevance of reductionist biophysical studies to the situation in vivo, the molecular mechanism of amyloid formation in vitro and in vivo, the factors which trigger amyloid formation in type-2 diabetes, the potential role of IAPP in type-1 diabetes, the development of clinically relevant inhibitors of islet amyloidosis toxicity, and the design of soluble, bioactive variants of IAPP for use as adjuncts to insulin therapy. PMID:26649319

  5. Pentraxins: structure, function, and role in inflammation.

    PubMed

    Du Clos, Terry W

    2013-01-01

    The pentraxins are an ancient family of proteins with a unique architecture found as far back in evolution as the Horseshoe crab. In humans the two members of this family are C-reactive protein and serum amyloid P. Pentraxins are defined by their sequence homology, their pentameric structure and their calcium-dependent binding to their ligands. Pentraxins function as soluble pattern recognition molecules and one of the earliest and most important roles for these proteins is host defense primarily against pathogenic bacteria. They function as opsonins for pathogens through activation of the complement pathway and through binding to Fc gamma receptors. Pentraxins also recognize membrane phospholipids and nuclear components exposed on or released by damaged cells. CRP has a specific interaction with small nuclear ribonucleoproteins whereas SAP is a major recognition molecule for DNA, two nuclear autoantigens. Studies in autoimmune and inflammatory disease models suggest that pentraxins interact with macrophage Fc receptors to regulate the inflammatory response. Because CRP is a strong acute phase reactant it is widely used as a marker of inflammation and infection. PMID:24167754

  6. Structure-function relations in flavodoxins.

    PubMed

    Simondsen, R P; Tollin, G

    1980-12-10

    Flavodoxins are low molecular weight, FMN containing, proteins which function as electron transfer agents in a variety of microbial metabolic processes, including nitrogen fixation. Utilizing structural information obtained from x-ray crystal analysis, it has been possible to derive some new and important insights into the relationships which exist between flavin properties and protein environment by comparing the spectroscopic, thermodynamic and kinetic behavior of the flavodoxins with that of free flavin. Thus, for example, a qualitative understanding of the contribution of the protein to flavin redox potentials, semiquinone reactivity and mechanism of electron transfer is beginning to emerge. The highly negative redox potential required for the biochemical activity of the flavodoxins is accomplished by stabilizing the semiquinone via a hydrogen bond to the N-5 position of the flavin and destabilizing the fully-reduced form by constraining it to assume an unfavorable planar conformation. The reactivity of the semiquinone form is lowered by the aforementioned hydrogen bond, as well as by an interaction with a tryptophan residue in the binding site. Electron transfer is accomplished through the exposed dimethylbenzene ring of the bound coenzyme. Although it is not possible at present to determine the extent to which this understanding can be generalized to other flavoproteins, it is clear that a study of the flavodoxins will provide us with at least some of the principles which biological systems have used to modify flavin properties to fulfill a biochemical need. PMID:6782445

  7. Models of Protocellular Structure, Function and Evolution

    NASA Technical Reports Server (NTRS)

    New, Michael H.; Pohorille, Andrew; Szostak, Jack W.; Keefe, Tony; Lanyi, Janos K.

    2001-01-01

    In the absence of any record of protocells, the most direct way to test our understanding of the origin of cellular life is to construct laboratory models that capture important features of protocellular systems. Such efforts are currently underway in a collaborative project between NASA-Ames, Harvard Medical School and University of California. They are accompanied by computational studies aimed at explaining self-organization of simple molecules into ordered structures. The centerpiece of this project is a method for the in vitro evolution of protein enzymes toward arbitrary catalytic targets. A similar approach has already been developed for nucleic acids in which a small number of functional molecules are selected from a large, random population of candidates. The selected molecules are next vastly multiplied using the polymerase chain reaction. A mutagenic approach, in which the sequences of selected molecules are randomly altered, can yield further improvements in performance or alterations of specificities. Unfortunately, the catalytic potential of nucleic acids is rather limited. Proteins are more catalytically capable but cannot be directly amplified. In the new technique, this problem is circumvented by covalently linking each protein of the initial, diverse, pool to the RNA sequence that codes for it. Then, selection is performed on the proteins, but the nucleic acids are replicated. Additional information is contained in the original extended abstract.

  8. The nonsinglet structure function evolution by Laplace method

    SciTech Connect

    Boroun, G. R. E-mail: boroun@razi.ac.ir; Zarrin, S.

    2015-12-15

    We derive a general scheme for the evolution of the nonsinglet structure function at the leadingorder (LO) and next-to-leading-order (NLO) by using the Laplace-transform technique. Results for the nonsinglet structure function are compared with MSTW2008, GRV, and CKMT parameterizations and also EMC experimental data in the LO and NLO analysis. The results are in good agreement with the experimental data and other parameterizations in the low- and large-x regions.

  9. Polarized and Unpolarized Structure Functions in the Valon Model

    NASA Astrophysics Data System (ADS)

    Arash, Firooz

    2006-02-01

    Hadrons are considered as the bound states of their structureful constituents, the Valons. The valon structure is calculated perturbatively in QCD; which is universal and independent of the hosting hadron. This structure is used to calculate Proton and pion structure functions. For the case of polarized structure function, the valon representation, not only gives all the available data on gp,n,d1, but also requires a sizable orbital angular momentum associated with the partonic structure of the valon.

  10. Small catalytic RNA: Structure, function and application

    SciTech Connect

    Monforte, J.A.

    1991-04-01

    We have utilized a combination of photochemical cross-linking techniques and site-directed mutagenesis to obtain secondary and tertiary structure information for the self-cleaving, self-ligating subsequence of RNA from the negative strand of Satellite Tobacco Ringspot Virus. We have found that the helical regions fold about a hinge to promoting four different possible tertiary interactions, creating a molecular of similar shape to a paperclip. A model suggesting that the ``paperclip`` and ``hammerhead`` RNAs share a similar three dimensional structure is proposed. We have used a self-cleaving RNA molecule related to a subsequence of plant viroids, a ``hammerhead,`` to study the length-dependent folding of RNA produced during transcription by RNA polymerase. We have used this method to determine the length of RNA sequestered within elongating E. coli and T7 RNA polymerase complexes. The data show that for E. coli RNA polymerase 12{plus_minus}1 nucleotides are sequestered within the ternary complex, which is consistent with the presence of an RNA-DNA hybrid within the transcription bubble, as proposed by others. The result for T7 RNA polymerase differs from E. coli RNA polymerase, with only 10{plus_minus}1 nucleotides sequestered within the ternary complex, setting a new upper limit for the minimum RNA-DNA required for a stable elongating complex. Comparisons between E. coli and T7 RNA polymerase are made. The relevance of the results to models or transcription termination, abortive initiation, and initiation to elongation mode transitions are discussed.

  11. In Situ X-ray Diffraction Studies of Cathode Materials in Lithium Batteries

    SciTech Connect

    Yang, X. Q.; Sun, X.; McBreen, J.; Mukerjee, S.; Gao, Yuan; Yakovleva, M. V.; Xing, X. K.; Daroux, M. L.

    1998-11-01

    There is an increasing interest in lithiated transition metal oxides because of their use as cathodes in lithium batteries. LiCoO{sub 2}, LiNiO{sub 2} and LiMn{sub 2}O{sub 4} are the three most widely used and studied materials, At present, although it is relative expensive and toxic, LiCoO{sub 2} is the material of choice in commercial lithium ion batteries because of its ease of manufacture, better thermal stability and cycle life. However, the potential use of lithium ion batteries with larger capacity for power tools and electric vehicles in the future will demand new cathode materials with higher energy density, lower cost and better thermal stability. LiNiO{sub 2} is isostructural with LiCoO{sub 2}. It offers lower cost and high energy density than LiCoO{sub 2}. However, it has much poorer thermal stability than LiCoO{sub 2}, in the charged (delithiated) state. Co, Al, and other elements have been used to partially replace Ni in LiNiO{sub 2} system in order to increase the thermal stability. LiMn{sub 2}O{sub 4} has the highest thermal stability and lowest cost and toxicity. However, the low energy density and poor cycle life at elevated temperature are the major obstacles for this material. In order to develop safer, cheaper, and better performance cathode materials, the in-depth understanding of the relationships between the thermal stability and structure, performance and structure are very important. The performance here includes energy density and cycle life of the cathode materials. X-ray diffraction (XRD) is one of the most powerful tools to study these relationships. The pioneer ex situ XRD work on cathode materials for lithium batteries was done by Ohzuku. His XRD studies on LiMn{sub 2}O{sub 4}, LiCoO{sub 2}, LiNiO{sub 2}, LiNi{sub 0.5}Co{sub 0.5}O{sub 2}, and LiAl{sub x}Ni{sub 1-x}O{sub 2} cathodes at different states of charge have provided important guidelines for the development of these new materials. However, the kinetic nature of the battery

  12. Studies of ferroelectric heterostructure thin films and interfaces via in situ analytical techniques.

    SciTech Connect

    Auciello, O.; Dhote, A.; Gao, Y.; Gruen, D. M.; Im, J.; Irene, E. A.; Krauss, A. R.; Mueller, A. H.; Ramesh, R.

    1999-08-30

    The science and technology of ferroelectric thin films has experienced an explosive development during the last ten years. Low-density non-volatile ferroelectric random access memories (NVFRAMs) are now incorporated in commercial products such as ''smart cards'', while high permittivity capacitors are incorporated in cellular phones. However, substantial work is still needed to develop materials integration strategies for high-density memories. We have demonstrated that the implementation of complementary in situ characterization techniques is critical to understand film growth and interface processes, which play critical roles in film microstructure and properties. We are using uniquely integrated time of flight ion scattering and recoil spectroscopy (TOF-ISARS) and spectroscopic ellipsometry (SE) techniques to perform in situ, real-time studies of film growth processes in the high background gas pressure required to growth ferroelectric thin films. TOF-ISARS provides information on surface processes, while SE permits the investigation of buried interfaces as they are being formed. Recent studies on SrBi{sub 2}Ta{sub 2}O{sub 9} (SBT) and Ba{sub x}Sr{sub 1{minus}x}TiO{sub 3} (BST) film growth and interface processes are discussed.

  13. In situ USAXS studies of nano-particle growth in a premixed flame.

    NASA Astrophysics Data System (ADS)

    Beaucage, Gregory; Kammler, Hendrik; Kohls, Douglas; Ilavsky, Jan; Agashe, Nikhil; Pratsinis, Sotiris

    2003-03-01

    Combustion of organo-metallic or halide vapors and aerosol liquid sprays can be controlled to produce enormous quantities of nano-structured powders. Such flame processes are common in the production of fumed silica, and pyrolytic titania on an industrial scale with primary particle sizes on the order of 10 nm. These nano-particles are typically connected through sintering bridges, ionic bonds or van der Waals forces into ramified, mass-fractal aggregates. The study of this promising technology for nano-particle production has been hindered by the kinetics of particle growth, typically on the order of milliseconds, at high temperature, 2000°C. Using synchrotron radiation and specialized scattering instrumentation capable of simultaneously measuring nano- to colloidal scales (1 nm to 1µm) we demonstrate the feasibility of in situ growth studies in these systems and were able to follow in situ the growth of silica nanoparticles, namely the evolution of primary and agglomerate particle diameter and mass fractal dimension df.

  14. In Situ X-ray Reflectivity Studies of Protein Adsorption onto Functionalized Surfaces

    NASA Astrophysics Data System (ADS)

    Richter, Andrew

    2007-03-01

    The adsorption of protein films onto solid surfaces, both artificial and naturally occurring, have been widely studied using a variety of techniques due to their importance in medicine, biomedical applications, and the general understanding of protein structure and function. What have yet to be performed are in situ, time-resolved, high-resolution structural studies of these systems. We have begun a project that uses the technique of in situ x-ray reflectivity to obtain highly resolved structural information with time resolution on the order of minutes. This talk will present our first findings of serum albumin and immunoglobulin G films on hydrophobic self-assembled monolayers. The protein films are readily observable, showing extensive denaturing after adsorption with a slow decay of density into the aqueous solution. Additionally, a thin low-density region that occurs between the hydrophobic film and the solution persists after protein deposition. Comparisons to films that are removed from solution, the influence of solution concentration, the effects of x-ray damage, and the time scales for protein film formation and evolution will also be discussed.

  15. In-situ Study of Nanostructure and Electrical Resistance of Nanocluster Films Irradiated with Ion Beams

    SciTech Connect

    Jiang, Weilin; Sundararajan, Jennifer A.; Varga, Tamas; Bowden, Mark E.; Qiang, You; McCloy, John S.; Henager, Charles H.; Montgomery, Robert O.

    2014-08-11

    An in-situ study is reported on the structural evolution in nanocluster films under He+ ion irradiation using an advanced helium ion microscope. The films consist of loosely interconnected nanoclusters of magnetite or iron-magnetite (Fe-Fe3O4) core-shells. The nanostructure is observed to undergo dramatic changes under ion-beam irradiation, featuring grain growth, phase transition, particle aggregation, and formation of nanowire-like network and nano-pores. Studies based on ion irradiation, thermal annealing and election irradiation have indicated that the major structural evolution is activated by elastic nuclear collisions, while both electronic and thermal processes can play a significant role once the evolution starts. The electrical resistance of the Fe-Fe3O4 films measured in situ exhibits a super-exponential decay with dose. The behavior suggests that the nanocluster films possess an intrinsic merit for development of an advanced online monitor for neutron radiation with both high detection sensitivity and long-term applicability, which can enhance safety measures in many nuclear operations.

  16. In situ treatment of arsenic contaminated groundwater by aquifer iron coating: Experimental study.

    PubMed

    Xie, Xianjun; Wang, Yanxin; Pi, Kunfu; Liu, Chongxuan; Li, Junxia; Liu, Yaqing; Wang, Zhiqiang; Duan, Mengyu

    2015-09-15

    In situ arsenic removal from groundwater by an aquifer iron coating method has great potential to be a cost effective and simple groundwater remediation technology, especially in rural and remote areas where groundwater is used as the main water source for drinking. The in situ arsenic removal technology was first optimized by simulating arsenic removal in various quartz sand columns under anoxic conditions. The effectiveness was then evaluated in an actual high-arsenic groundwater environment. The arsenic removal mechanism by the coated iron oxide/hydroxide was investigated under different conditions using scanning electron microscopy (SEM)/X-ray absorption spectroscopy, electron probe microanalysis, and Fourier transformation infrared spectroscopy. Aquifer iron coating method was developed via a 4-step alternating injection of oxidant, iron salt and oxygen-free water. A continuous injection of 5.0 mmol/L FeSO4 and 2.5 mmol/L NaClO for 96 h can form a uniform goethite coating on the surface of quartz sand without causing clogging. At a flow rate of 7.2 mL/min of the injection reagents, arsenic (as Na2HAsO4) and tracer fluorescein sodium to pass through the iron-coated quartz sand column were approximately at 126 and 7 column pore volumes, respectively. The retardation factor of arsenic was 23.0, and the adsorption capacity was 0.11 mol As per mol Fe. In situ arsenic removal from groundwater in an aquifer was achieved by simultaneous injections of As(V) and Fe(II) reagents. Arsenic fixation resulted from a process of adsorption/co-precipitation with fine goethite particles by way of bidentate binuclear complexes. Therefore, the study results indicate that the high arsenic removal efficiency of the in situ aquifer iron coating technology likely resulted from the expanded specific surface area of the small goethite particles, which enhanced arsenic sorption capability and/or from co-precipitation of arsenic on the surface of goethite particles. PMID:25956146

  17. Mutation and structure-function relationships of cytochrome c

    SciTech Connect

    Sherman, F.

    1991-05-01

    The yeast cytochrome c system has become a key vehicle for structure- function studies in vitro using modern molecular genetic techniques to clarify fundamental aspects of the molecular evolutionary design of iso-1-cytochrome c (cyt c). The spectral properties of cyt c allow estimation of the number of molecules in vivo, and growth in lactate medium allows estimation of cyt c activity. Because most of our studies involve single copy replacements of CYC1, the cyt c gene, specific activities of altered forms of cyt c in vivo can be related to properties determined in vitro. We have identified five classes of cyt c mutants, and suggest mechanisms to account for each class of mutant. Lysine 77 is evolutionarily conserved in most eukaryotes; effect either in vitro or in vivo. CYC7 encodes iso-2-cytochrome c, another form of cyt c. CYC7 contains a non-AUG transcriptional start site, and was used to study initiation of protein synthesis at non- AUG codons. 3 refs.

  18. Structure-function investigations of bacterial photosynthetic reaction centers.

    PubMed

    Leonova, M M; Fufina, T Yu; Vasilieva, L G; Shuvalov, V A

    2011-12-01

    During photosynthesis light energy is converted into energy of chemical bonds through a series of electron and proton transfer reactions. Over the first ultrafast steps of photosynthesis that take place in the reaction center (RC) the quantum efficiency of the light energy transduction is nearly 100%. Compared to the plant and cyanobacterial photosystems, bacterial RCs are well studied and have relatively simple structure. Therefore they represent a useful model system both for manipulating of the electron transfer parameters to study detailed mechanisms of its separate steps as well as to investigate the common principles of the photosynthetic RC structure, function, and evolution. This review is focused on the research papers devoted to chemical and genetic modifications of the RCs of purple bacteria in order to study principles and mechanisms of their functioning. Investigations of the last two decades show that the maximal rates of the electron transfer reactions in the RC depend on a number of parameters. Chemical structure of the cofactors, distances between them, their relative orientation, and interactions to each other are of great importance for this process. By means of genetic and spectral methods, it was demonstrated that RC protein is also an essential factor affecting the efficiency of the photochemical charge separation. Finally, some of conservative water molecules found in RC not only contribute to stability of the protein structure, but are directly involved in the functioning of the complex. PMID:22339599

  19. In situ nanoindentation study on plasticity and work hardening in aluminium with incoherent twin boundaries

    NASA Astrophysics Data System (ADS)

    Bufford, D.; Liu, Y.; Wang, J.; Wang, H.; Zhang, X.

    2014-09-01

    Nanotwinned metals have been the focus of intense research recently, as twin boundaries may greatly enhance mechanical strength, while maintaining good ductility, electrical conductivity and thermal stability. Most prior studies have focused on low stacking-fault energy nanotwinned metals with coherent twin boundaries. In contrast, the plasticity of twinned high stacking-fault energy metals, such as aluminium with incoherent twin boundaries, has not been investigated. Here we report high work hardening capacity and plasticity in highly twinned aluminium containing abundant Σ3{112} incoherent twin boundaries based on in situ nanoindentation studies in a transmission electron microscope and corresponding molecular dynamics simulations. The simulations also reveal drastic differences in deformation mechanisms between nanotwinned copper and twinned aluminium ascribed to stacking-fault energy controlled dislocation-incoherent twin boundary interactions. This study provides new insight into incoherent twin boundary-dominated plasticity in high stacking-fault energy twinned metals.

  20. In situ vitrification: Numerical studies of coupled heat transfer and viscous flow processes

    NASA Astrophysics Data System (ADS)

    Carey, Graham F.; MacKinnon, Robert J.; Murray, Paul E.

    1990-09-01

    This report describes the formulation, results and conclusions of a series of numerical studies performed to support the Idaho National Engineering Laboratory (INEL) In Situ Vitrification (ISV) treatability study. These studies were designed to explore some of the questions related to the dominant physical phenomena associated with the coupled electric field, heat transfer, and fluid flow processes. The work examines the case of a 3-D axisymmetric problem with a central electrode. Such issues as the form of an electric heating model, choice of boundary conditions, latent heat effects, and conductive and convective transport are considered. Some important conclusions and recommendations are made in relation to the convective effects, determination of property parameters, and the issue of a valid electrical heating model.

  1. In situ vitrification: Numerical studies of coupled heat transfer and viscous flow processes

    SciTech Connect

    Carey, G.F.; MacKinnon, R.J.; Murray, P.E.

    1990-09-01

    This report describes the formulation, results and conclusions of a series of numerical studies performed to support the Idaho National Engineering Laboratory (INEL) In Situ Vitrification (ISV) treatability study. These studies were designed to explore some of the questions related to the dominant physical phenomena associated with the coupled electric field, heat transfer, and fluid flow processes. The work examines the case of a 3-D axisymmetric problem with a central electrode. Such issues as the form of an electric heating model, choice of boundary conditions, latent heat effects, and conductive and convective transport are considered. Some important conclusions and recommendations are made in relation to the convective effects, determination of property parameters, and the issue of a valid electrical heating model. 4 refs., 100 figs., 1 tab.

  2. In Situ Infrared Ellipsometry for Protein Adsorption Studies on Ultrathin Smart Polymer Brushes in Aqueous Environment.

    PubMed

    Kroning, Annika; Furchner, Andreas; Aulich, Dennis; Bittrich, Eva; Rauch, Sebastian; Uhlmann, Petra; Eichhorn, Klaus-Jochen; Seeber, Michael; Luzinov, Igor; Kilbey, S Michael; Lokitz, Bradley S; Minko, Sergiy; Hinrichs, Karsten

    2015-06-17

    The protein-adsorbing and -repelling properties of various smart nanometer-thin polymer brushes containing poly(N-isopropylacrylamide) and poly(acrylic acid) with high potential for biosensing and biomedical applications are studied by in situ infrared-spectroscopic ellipsometry (IRSE). IRSE is a highly sensitive nondestructive technique that allows protein adsorption on polymer brushes to be investigated in an aqueous environment as external stimuli, such as temperature and pH, are varied. These changes are relevant to conditions for regulation of protein adsorption and desorption for biotechnology, biocatalysis, and bioanalytical applications. Here brushes are used as model surfaces for controlling protein adsorption of human serum albumin and human fibrinogen. The important finding of this work is that IRSE in the in situ experiments in protein solutions can distinguish between contributions of polymer brushes and proteins. The vibrational bands of the polymers provide insights into the hydration state of the brushes, whereas the protein-specific amide bands are related to changes of the protein secondary structure. PMID:25668395

  3. In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Lithium-Oxygen Redox Reactions

    NASA Astrophysics Data System (ADS)

    Lu, Yi-Chun; Crumlin, Ethan J.; Veith, Gabriel M.; Harding, Jonathon R.; Mutoro, Eva; Baggetto, Loïc; Dudney, Nancy J.; Liu, Zhi; Shao-Horn, Yang

    2012-10-01

    The lack of fundamental understanding of the oxygen reduction and oxygen evolution in nonaqueous electrolytes significantly hinders the development of rechargeable lithium-air batteries. Here we employ a solid-state Li4+xTi5O12/LiPON/LixV2O5 cell and examine in situ the chemistry of Li-O2 reaction products on LixV2O5 as a function of applied voltage under ultra high vacuum (UHV) and at 500 mtorr of oxygen pressure using ambient pressure X-ray photoelectron spectroscopy (APXPS). Under UHV, lithium intercalated into LixV2O5 while molecular oxygen was reduced to form lithium peroxide on LixV2O5 in the presence of oxygen upon discharge. Interestingly, the oxidation of Li2O2 began at much lower overpotentials (~240 mV) than the charge overpotentials of conventional Li-O2 cells with aprotic electrolytes (~1000 mV). Our study provides the first evidence of reversible lithium peroxide formation and decomposition in situ on an oxide surface using a solid-state cell, and new insights into the reaction mechanism of Li-O2 chemistry.

  4. Fluorescence in situ detection of human cutaneous melanoma: study of diagnostic parameters of the method.

    PubMed

    Chwirot, B W; Chwirot, S; Sypniewska, N; Michniewicz, Z; Redzinski, J; Kurzawski, G; Ruka, W

    2001-12-01

    Multicenter study of the diagnostic parameters was conducted by three groups in Poland to determine if in situ fluorescence detection of human cutaneous melanoma based on digital imaging of spectrally resolved autofluorescence can be used as a tool for a preliminary selection of patients at increased risk of the disease. Fluorescence examinations were performed for 7228 pigmented lesions in 4079 subjects. Histopathologic examinations showed 56 cases of melanoma. A sensitivity of fluorescence detection of melanoma was 82.7% in agreement with 82.5% found in earlier work. Using as a reference only the results of histopathologic examinations obtained for 568 cases we found a specificity of 59.9% and a positive predictive value of 17.5% (melanomas versus all pigmented lesions) or 24% (melanomas versus common and dysplastic naevi). The specificity and positive predictive value found in this work are significantly lower than reported earlier but still comparable with those reported for typical screening programs. In conclusion, the fluorescence method of in situ detection of melanoma can be used in screening large populations of patients for a selection of patients who should be examined by specialists. PMID:11886507

  5. In Situ Single-Nanoparticle Spectroscopy Study of Bimetallic Nanostructure Formation.

    PubMed

    Smith, Jeremy G; Chakraborty, Indranath; Jain, Prashant K

    2016-08-16

    Bimetallic nanostructures (NSs), with utility in catalysis, are typically prepared using galvanic exchange (GE), but the final catalyst morphology is dictated by the dynamics of the process. In situ single nanoparticle (NP) optical scattering spectroscopy, coupled with ex situ electron microscopy, is used to capture the dynamic structural evolution of a bimetallic NS formed in a GE reaction between Ag and [PtCl6 ](2-) . We identify an early stage involving anisotropic oxidation of Ag to AgCl concomitant with reductive deposition of small Pt clusters on the NS surface. At later stages of GE, unreacted Ag inclusions phase segregate from the overcoated AgCl as a result of lattice strain between Ag and AgCl. The nature of the structural evolution elucidates why multi-domain Ag/AgCl/Pt NSs result from the GE process. The complex structural dynamics, determined from single-NP trajectories, would be masked in ensemble studies due to heterogeneity in the response of different NPs. PMID:27381891

  6. An experimental system for high temperature X-ray diffraction studies with in situ mechanical loading

    PubMed Central

    Oswald, Benjamin B.; Schuren, Jay C.; Pagan, Darren C.; Miller, Matthew P.

    2013-01-01

    An experimental system with in situ thermomechanical loading has been developed to enable high energy synchrotron x-ray diffraction studies of crystalline materials. The system applies and maintains loads of up to 2250 N in uniaxial tension or compression at a frequency of up to 100 Hz. The furnace heats the specimen uniformly up to a maximum temperature of 1200 °C in a variety of atmospheres (oxidizing, inert, reducing) that, combined with in situ mechanical loading, can be used to mimic processing and operating conditions of engineering components. The loaded specimen is reoriented with respect to the incident beam of x-rays using two rotational axes to increase the number of crystal orientations interrogated. The system was used at the Cornell High Energy Synchrotron Source to conduct experiments on single crystal silicon and polycrystalline Low Solvus High Refractory nickel-based superalloy. The data from these experiments provide new insights into how stresses evolve at the crystal scale during thermomechanical loading and complement the development of high-fidelity material models. PMID:23556825

  7. Prioritising in situ conservation of crop resources: A case study of African cowpea (Vigna unguiculata)

    PubMed Central

    Moray, C.; Game, E. T.; Maxted, N.

    2014-01-01

    Conserving crop wild relatives (CWR) is critical for maintaining food security. However, CWR-focused conservation plans are lacking, and are often based on the entire genus, even though only a few taxa are useful for crop improvement. We used taxonomic and geographic prioritisation to identify the best locations for in situ conservation of the most important (priority) CWR, using African cowpea (Vigna unguiculata (L.) Walp.) as a case study. Cowpea is an important crop for subsistence farmers in sub-Saharan Africa, yet its CWR are under-collected, under-conserved and under-utilised in breeding. We identified the most efficient sites to focus in situ cowpea CWR conservation and assessed whether priority CWR would be adequately represented in a genus-based conservation plan. We also investigated whether priority cowpea CWR are likely to be found in existing conservation areas and in areas important for mammal conservation. The genus-based method captured most priority CWR, and the distributions of many priority CWR overlapped with established conservation reserves and targets. These results suggest that priority cowpea CWR can be conserved by building on conservation initiatives established for other species. PMID:24936740

  8. Reversible Morphology Control in Block Copolymer Films via Solvent Vapor Processing: An In Situ GISAXS study

    PubMed Central

    Paik, Marvin Y.; Bosworth, Joan K.; Smilges, Detlef-M.; Schwartz, Evan L.; Andre, Xavier; Ober, Christopher K.

    2010-01-01

    The real time changes occurring within films of cylinder-forming poly(α-methylstyrene-block-4-hydroxystyrene) (PαMS-b-PHOST) were monitored as they were swollen in tetrahydrofuran (THF) and acetone solvent vapors. In situ information was obtained by combining grazing incidence small angle X-ray scattering (GISAXS) with film thickness monitoring of the solvent vapor swollen films. We show that for self assembly to occur, the polymer thin film must surpass a swollen thickness ratio of 212% of its original thickness when swollen in THF vapors and a ratio of 268% for acetone vapor annealing. As the polymer becomes plasticized by solvent vapor uptake, the polymer chains must become sufficiently mobile to self assemble, or reorganize, at room temperature. Using vapors of a solvent selective to one of the blocks, in our case PHOST-selective acetone, an order-order transition occured driven by the shift in volume fraction. The BCC spherical phase assumed in the highly swollen state can be quenched by rapid drying. Upon treatment with vapor of a non-selective solvent, THF, the film maintained the cylindrical morphology suggested by its dry-state volume fraction. In situ studies indicate that self-assembly occurs spontaneously upon attaining the threshold swelling ratios. PMID:21116459

  9. In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Lithium-Oxygen Redox Reactions

    PubMed Central

    Lu, Yi-Chun; Crumlin, Ethan J.; Veith, Gabriel M.; Harding, Jonathon R.; Mutoro, Eva; Baggetto, Loïc; Dudney, Nancy J.; Liu, Zhi; Shao-Horn, Yang

    2012-01-01

    The lack of fundamental understanding of the oxygen reduction and oxygen evolution in nonaqueous electrolytes significantly hinders the development of rechargeable lithium-air batteries. Here we employ a solid-state Li4+xTi5O12/LiPON/LixV2O5 cell and examine in situ the chemistry of Li-O2 reaction products on LixV2O5 as a function of applied voltage under ultra high vacuum (UHV) and at 500 mtorr of oxygen pressure using ambient pressure X-ray photoelectron spectroscopy (APXPS). Under UHV, lithium intercalated into LixV2O5 while molecular oxygen was reduced to form lithium peroxide on LixV2O5 in the presence of oxygen upon discharge. Interestingly, the oxidation of Li2O2 began at much lower overpotentials (~240 mV) than the charge overpotentials of conventional Li-O2 cells with aprotic electrolytes (~1000 mV). Our study provides the first evidence of reversible lithium peroxide formation and decomposition in situ on an oxide surface using a solid-state cell, and new insights into the reaction mechanism of Li-O2 chemistry. PMID:23056907

  10. Prioritising in situ conservation of crop resources: a case study of African cowpea (Vigna unguiculata).

    PubMed

    Moray, C; Game, E T; Maxted, N

    2014-01-01

    Conserving crop wild relatives (CWR) is critical for maintaining food security. However, CWR-focused conservation plans are lacking, and are often based on the entire genus, even though only a few taxa are useful for crop improvement. We used taxonomic and geographic prioritisation to identify the best locations for in situ conservation of the most important (priority) CWR, using African cowpea (Vigna unguiculata (L.) Walp.) as a case study. Cowpea is an important crop for subsistence farmers in sub-Saharan Africa, yet its CWR are under-collected, under-conserved and under-utilised in breeding. We identified the most efficient sites to focus in situ cowpea CWR conservation and assessed whether priority CWR would be adequately represented in a genus-based conservation plan. We also investigated whether priority cowpea CWR are likely to be found in existing conservation areas and in areas important for mammal conservation. The genus-based method captured most priority CWR, and the distributions of many priority CWR overlapped with established conservation reserves and targets. These results suggest that priority cowpea CWR can be conserved by building on conservation initiatives established for other species. PMID:24936740

  11. In situ ambient pressure X-ray photoelectron spectroscopy studies of lithium-oxygen redox reactions.

    PubMed

    Lu, Yi-Chun; Crumlin, Ethan J; Veith, Gabriel M; Harding, Jonathon R; Mutoro, Eva; Baggetto, Loïc; Dudney, Nancy J; Liu, Zhi; Shao-Horn, Yang

    2012-01-01

    The lack of fundamental understanding of the oxygen reduction and oxygen evolution in nonaqueous electrolytes significantly hinders the development of rechargeable lithium-air batteries. Here we employ a solid-state Li(4+x)Ti(5)O(12)/LiPON/Li(x)V(2)O(5) cell and examine in situ the chemistry of Li-O(2) reaction products on Li(x)V(2)O(5) as a function of applied voltage under ultra high vacuum (UHV) and at 500 mtorr of oxygen pressure using ambient pressure X-ray photoelectron spectroscopy (APXPS). Under UHV, lithium intercalated into Li(x)V(2)O(5) while molecular oxygen was reduced to form lithium peroxide on Li(x)V(2)O(5) in the presence of oxygen upon discharge. Interestingly, the oxidation of Li(2)O(2) began at much lower overpotentials (~240 mV) than the charge overpotentials of conventional Li-O(2) cells with aprotic electrolytes (~1000 mV). Our study provides the first evidence of reversible lithium peroxide formation and decomposition in situ on an oxide surface using a solid-state cell, and new insights into the reaction mechanism of Li-O(2) chemistry. PMID:23056907

  12. Spatial Variances of Wind Fields and Their Relation to Second-Order Structure Functions and Spectra

    NASA Astrophysics Data System (ADS)

    King, G. P.; Vogelzang, J.; Stoffelen, A.; Portabella, M.

    2014-12-01

    Kinetic energy variance as a function of spatial scale for wind fields is commonly estimated either using second-order structure functions (in the spatial domain) or by spectral analysis (in the frequency domain). It will be demonstrated that neither spectra nor second-order structure functions offer a good representation of the variance as a function of scale. These difficulties can be circumvented by using a statistical quantity called spatial variance. It combines the advantages of spectral analysis and spatial statistics. In particular, when applied to observations, spatial variances have a clear interpretation and are tolerant for missing data. They can be related to second-order structure functions, both for discrete and continuous data. For data sets without missing points the relation is statistically exact. Spatial variances can also be Fourier transformed to yield a relation with spectra. The flexibility of spatial variances is used to study various sampling strategies, and to compare them with second-order structure functions and spectral variances. It is shown that the spectral sampling strategy is not seriously biased to calm conditions for scatterometer ocean surface vector winds, and that one-fifth of the second-order structure function value is a good proxy for the cumulative variance.

  13. Androgen Receptor Structure, Function and Biology: From Bench to Bedside

    PubMed Central

    Davey, Rachel A; Grossmann, Mathis

    2016-01-01

    The actions of androgens such as testosterone and dihydrotestosterone are mediated via the androgen receptor (AR), a ligand-dependent nuclear transcription factor and member of the steroid hormone nuclear receptor family. Given its widespread expression in many cells and tissues, the AR has a diverse range of biological actions including important roles in the development and maintenance of the reproductive, musculoskeletal, cardiovascular, immune, neural and haemopoietic systems. AR signalling may also be involved in the development of tumours in the prostate, bladder, liver, kidney and lung. Androgens can exert their actions via the AR in a DNA binding-dependent manner to regulate target gene transcription, or in a non-DNA binding-dependent manner to initiate rapid, cellular events such as the phosphorylation of 2nd messenger signalling cascades. More recently, ligand-independent actions of the AR have also been identified. Given the large volume of studies relating to androgens and the AR, this review is not intended as an extensive review of all studies investigating the AR, but rather as an overview of the structure, function, signalling pathways and biology of the AR as well as its important role in clinical medicine, with emphasis on recent developments in this field. PMID:27057074

  14. Studies of in-situ calcium-based sorbents in advanced pressurized coal conversion systems

    SciTech Connect

    Katta, S.; Shires, P.J.; O'Donnell, J.J.

    1992-01-01

    The overall objective of the project is to obtain experimental data on the reactions of calcium-based sorbents in gasification systems and to evaluate or develop kinetic models applicable to the commercial design of such systems. Both air-blown coal gasification systems and second generation fluid bed combustion systems (partial gasification) will be investigated, as well as subsequent stabilization of the solid wastes (calcium sulfide/ash) produced. More specifically, the objectives are to: Develop data on kinetics of in-situ desulfurization reactions; study the effect of calcium on the kinetics of carbon conversion rate; study kinetics of oxidation of CaS to CaSO[sup 4]; Develop and identify viable techniques to stabilize CaS; and, carry out further development work on most promising method and determine its commercial economics.

  15. Studies of in-situ calcium-based sorbents in advanced pressurized coal conversion systems

    SciTech Connect

    Katta, S.; Shires, P.J.; O`Donnell, J.J.

    1992-11-01

    The overall objective of the project is to obtain experimental data on the reactions of calcium-based sorbents in gasification systems and to evaluate or develop kinetic models applicable to the commercial design of such systems. Both air-blown coal gasification systems and second generation fluid bed combustion systems (partial gasification) will be investigated, as well as subsequent stabilization of the solid wastes (calcium sulfide/ash) produced. More specifically, the objectives are to: Develop data on kinetics of in-situ desulfurization reactions; study the effect of calcium on the kinetics of carbon conversion rate; study kinetics of oxidation of CaS to CaSO{sup 4}; Develop and identify viable techniques to stabilize CaS; and, carry out further development work on most promising method and determine its commercial economics.

  16. Acquired cystic disease-associated renal cell carcinoma: an immunohistochemical and fluorescence in situ hybridization study.

    PubMed

    Kuroda, Naoto; Yamashita, Motoki; Kakehi, Yoshiyuki; Hes, Ondrej; Michal, Michal; Lee, Gang-Hong

    2011-12-01

    Acquired cystic disease (ACD)-associated renal cell carcinoma (RCC) has been recently identified. However, there are only a few genetic studies to date. In this article, we performed an immunohistochemical and fluorescence in situ hybridization (FISH) study for six cases including one case with sarcomatoid change. As a result, we observed frequent immunohistochemical expression of AMACR. FISH of chromosome 3 showed trisomy for three cases, monosomy for two cases, and disomy for one case. Additionally, FISH of chromosome 16 showed trisomy for three cases, monosomy for two cases, and both trisomy and monosomy for one case. Furthermore, both the carcinomatous area and the sarcomatoid area of one ACD-associated RCC with sarcomatoid change revealed monosomy of chromosomes 3, 9, and 16 but showed disomy of chromosome 14. In conclusion, the numerical abnormalities of chromosomes 3 and 16, irrespective of gain or loss, may be characteristic of ACD-associated RCC. PMID:22179186

  17. Study of SGD along the French Mediterranean coastline using airborne TIR images and in situ analyses

    NASA Astrophysics Data System (ADS)

    van Beek, Pieter; Stieglitz, Thomas; Souhaut, Marc

    2015-04-01

    Although submarine groundwater discharge (SGD) has been investigated in many places of the world, very few studies were conducted along the French coastline of the Mediterranean Sea. Almost no information is available on the fluxes of water and chemical elements associated with these SGD and on their potential impact on the geochemical cycling and ecosystems of the coastal zones. In this work, we combined the use of airborne thermal infrared (TIR) images with in situ analyses of salinity, temperature, radon and radium isotopes to study SGD at various sites along the French Mediterranean coastline and in coastal lagoons. These analyses allowed us to detect SGD sites and to quantify SGD fluxes (that include both the fluxes of fresh groundwater and recirculated seawater). In particular, we will show how the Ra isotopes determined in the La Palme lagoon were used to estimate i) the residence time of waters in the lagoon and ii) SGD fluxes.

  18. Manipulating the Assembly of Spray-Deposited Nanocolloids: In Situ Study and Monolayer Film Preparation.

    PubMed

    Zhang, Peng; Santoro, Gonzalo; Yu, Shun; Vayalil, Sarathlal K; Bommel, Sebastian; Roth, Stephan V

    2016-05-01

    Fabrication of nanoparticle arrays on a substrate is one of the most concerned aspects for manipulating assembly of nanoparticles and preparing functional nanocomposites. Here, we studied in situ the assembly kinetics of polystyrene nanocolloids by using grazing incidence small-angle X-ray scattering. The structure formation of the nanoparticle film is monitored during air-brush spraying, which provides a rapid and scalable preparation. By optimizing the substrate temperature, the dispersion of the nanocolloids can be tailored to prepare monolayer film. The success of the monolayer preparations is attributed to the fast solvent evaporation which inhibits the aggregation of the nanocolloids. The present study may open a new avenue for the manufacture-friendly preparation of well-dispersed nanoparticle thin films. PMID:27070283

  19. Remediation case studies: Ex situ soil treatment technologies (bioremediation, solvent extraction, thermal desorption). Volume 7

    SciTech Connect

    1998-09-01

    The case studies in this volume describe ten applications of ex situ soil treatment technologies, including three applications of land treatment (bioremediation), one application of solvent extraction, and six applications of thermal desorption. Two of the land treatment applications were full-scale remediations of sites contaminated with polycyclic aromatic hydrocarbons (PAHs) and petroleum hydrocarbons, and one was a field demonstration at a site contaminated with pesticides. The solvent extraction application was a full-scale application to treat soil contaminated with PCBs. All six thermal desorption applications were full-scale, and involved treatment of soil contaminated with chlorinated solvents, petroleum hydrocarbons, PAHs, and pesticides. All case studies in this volume are for completed applications.

  20. In-hospital resuscitation evaluated by in situ simulation: a prospective simulation study

    PubMed Central

    2011-01-01

    Background Interruption in chest compressions during cardiopulmonary resuscitation can be characterized as no flow ratio (NFR) and the importance of minimizing these pauses in chest compression has been highlighted recently. Further, documentation of resuscitation performance has been reported to be insufficient and there is a lack of identification of important issues where future efforts might be beneficial. By implementing in situ simulation we created a model to evaluate resuscitation performance. The aims of the study were to evaluate the feasibility of the applied method, and to examine differences in the resuscitation performance between the first responders and the cardiac arrest team. Methods A prospective observational study of 16 unannounced simulated cardiopulmonary arrest scenarios was conducted. The participants of the study involved all health care personel on duty who responded to a cardiac arrest. We measured NFR and time to detection of initial rhythm on defibrillator and performed a comparison between the first responders and the cardiac arrest team. Results Data from 13 out of 16 simulations was used to evaluate the ability of generating resuscitation performance data in simulated cardiac arrest. The defibrillator arrived after median 214 seconds (180-254) and detected initial rhythm after median 311 seconds (283-349). A significant difference in no flow ratio (NFR) was observed between the first responders, median NFR 38% (32-46), and the resuscitation teams, median NFR 25% (19-29), p < 0.001. The difference was significant even after adjusting for pulse and rhythm check and shock delivery. Conclusion The main finding of this study was a significant difference between the first responders and the cardiac arrest team with the latter performing more adequate cardiopulmonary resuscitation with regards to NFR. Future research should focus on the educational potential for in-situ simulation in terms of improving skills of hospital staff and patient

  1. The Impact of the Structure, Function, and Resources of the Campus Security Office on Campus Safety

    ERIC Educational Resources Information Center

    Bennett, Patricia Anne

    2012-01-01

    The topic of this dissertation is college and university safety. This national quantitative study utilized resource dependency theory to examine relationships between the incidence of reported campus crimes and the structure, function, and resources of campus security offices. This study uncovered a difference in reported total crime rates,…

  2. Comparison between in situ and ex situ gamma measurements on land areas within a decommissioning nuclear site: a case study at Dounreay.

    PubMed

    Rostron, Peter D; Heathcote, John A; Ramsey, Michael H

    2014-09-01

    Measurements made in situ with gamma detectors and ex situ measurements of soil samples in a laboratory can have complementary roles in the assessment of radioactively contaminated land on decommissioning nuclear sites. Both in situ and ex situ methods were used to characterize (137)Cs contamination within an area at the Dounreay site in Scotland. The systematic difference (bias) between estimates of the mean activity concentration was found to be non-significant when in situ measurements were interpreted using a linear depth model, based on ex situ measurements made at two different depths. An established method of evaluating the random components of measurement uncertainty was used. The random component of analytical uncertainty in the in situ measurements, made in field conditions, was found to exceed that for the ex situ measurements, made in the controlled conditions of a laboratory. However, contamination by the target radionuclide was found to be heterogeneous over small spatial scales. This resulted in significantly higher levels of random sampling uncertainty in individual ex situ measurements. As in situ measurements are substantially less costly, a greater number of measurements can be made, which potentially reduces the uncertainty on the mean. Providing the depth profile of contaminants can be modelled with confidence, this can enable estimates of mean activity concentration over an averaging area to be made with lower overall uncertainties than are possible using ex situ methods. PMID:24938421

  3. Preliminary Results on the Experimental Investigation of the Structure Functions of Bound Nucleons

    SciTech Connect

    Bodek, Arie

    2015-09-01

    We present preliminary results on an experimental study of the nuclear modification of the longitudinal (σL) and transverse (σT) structure functions of nucleons bound in nuclear targets. The origin of these modifications (commonly referred as as the EMC effect) is not fully understood. Our measurements of R= σLT for nuclei (RA) and for deuterium (RD) indicate that nuclear modifications of the structure functions of bound nucleons are different for the longitudinal and transverse structure functions, and that contrary to expectation from several theoretical models, RA < RD.

  4. Ion Channel Voltage Sensors: Structure, Function, and Pathophysiology

    PubMed Central

    Catterall, William A.

    2010-01-01

    Voltage-gated ion channels generate electrical signals in species from bacteria to man. Their voltage-sensing modules are responsible for initiation of action potentials and graded membrane potential changes in response to synaptic input and other physiological stimuli. Extensive structure-function studies, structure determination, and molecular modeling are now converging on a sliding-helix mechanism for electromechanical coupling in which outward movement of gating charges in the S4 transmembrane segments catalyzed by sequential formation of ion pairs pulls the S4-S5 linker, bends the S6 segment, and opens the pore. Impairment of voltage-sensor function by mutations in Na+ channels contributes to several ion channelopathies, and gating pore current conducted by mutant voltage sensors in NaV1.4 channels is the primary pathophysiological mechanism in Hypokalemic Periodic Paralysis. The emerging structural model for voltage sensor function opens the way to development of a new generation of ionchannel drugs that act on voltage sensors rather than blocking the pore. PMID:20869590

  5. Ion channel voltage sensors: structure, function, and pathophysiology.

    PubMed

    Catterall, William A

    2010-09-23

    Voltage-gated ion channels generate electrical signals in species from bacteria to man. Their voltage-sensing modules are responsible for initiation of action potentials and graded membrane potential changes in response to synaptic input and other physiological stimuli. Extensive structure-function studies, structure determination, and molecular modeling are now converging on a sliding-helix mechanism for electromechanical coupling in which outward movement of gating charges in the S4 transmembrane segments catalyzed by sequential formation of ion pairs pulls the S4-S5 linker, bends the S6 segment, and opens the pore. Impairment of voltage-sensor function by mutations in Na+ channels contributes to several ion channelopathies, and gating pore current conducted by mutant voltage sensors in Na(V)1.4 channels is the primary pathophysiological mechanism in hypokalemic periodic paralysis. The emerging structural model for voltage sensor function opens the way to development of a new generation of ion-channel drugs that act on voltage sensors rather than blocking the pore. PMID:20869590

  6. Neurolinguistics: Structure, Function, and Connectivity in the Bilingual Brain.

    PubMed

    Wong, Becky; Yin, Bin; O'Brien, Beth

    2016-01-01

    Advances in neuroimaging techniques and analytic methods have led to a proliferation of studies investigating the impact of bilingualism on the cognitive and brain systems in humans. Lately, these findings have attracted much interest and debate in the field, leading to a number of recent commentaries and reviews. Here, we contribute to the ongoing discussion by compiling and interpreting the plethora of findings that relate to the structural, functional, and connective changes in the brain that ensue from bilingualism. In doing so, we integrate theoretical models and empirical findings from linguistics, cognitive/developmental psychology, and neuroscience to examine the following issues: (1) whether the language neural network is different for first (dominant) versus second (nondominant) language processing; (2) the effects of bilinguals' executive functioning on the structure and function of the "universal" language neural network; (3) the differential effects of bilingualism on phonological, lexical-semantic, and syntactic aspects of language processing on the brain; and (4) the effects of age of acquisition and proficiency of the user's second language in the bilingual brain, and how these have implications for future research in neurolinguistics. PMID:26881224

  7. Neurolinguistics: Structure, Function, and Connectivity in the Bilingual Brain

    PubMed Central

    Wong, Becky; Yin, Bin; O'Brien, Beth

    2016-01-01

    Advances in neuroimaging techniques and analytic methods have led to a proliferation of studies investigating the impact of bilingualism on the cognitive and brain systems in humans. Lately, these findings have attracted much interest and debate in the field, leading to a number of recent commentaries and reviews. Here, we contribute to the ongoing discussion by compiling and interpreting the plethora of findings that relate to the structural, functional, and connective changes in the brain that ensue from bilingualism. In doing so, we integrate theoretical models and empirical findings from linguistics, cognitive/developmental psychology, and neuroscience to examine the following issues: (1) whether the language neural network is different for first (dominant) versus second (nondominant) language processing; (2) the effects of bilinguals' executive functioning on the structure and function of the “universal” language neural network; (3) the differential effects of bilingualism on phonological, lexical-semantic, and syntactic aspects of language processing on the brain; and (4) the effects of age of acquisition and proficiency of the user's second language in the bilingual brain, and how these have implications for future research in neurolinguistics. PMID:26881224

  8. Structure/Function/Dynamics of Photosystem II Plastoquinone Binding Sites

    PubMed Central

    Lambreva, Maya D.; Russo, Daniela; Polticelli, Fabio; Scognamiglio, Viviana; Antonacci, Amina; Zobnina, Veranika; Campi, Gaetano; Rea, Giuseppina

    2014-01-01

    Photosystem II (PSII) continuously attracts the attention of researchers aiming to unravel the riddle of its functioning and efficiency fundamental for all life on Earth. Besides, an increasing number of biotechnological applications have been envisaged exploiting and mimicking the unique properties of this macromolecular pigment-protein complex. The PSII organization and working principles have inspired the design of electrochemical water splitting schemes and charge separating triads in energy storage systems as well as biochips and sensors for environmental, agricultural and industrial screening of toxic compounds. An intriguing opportunity is the development of sensor devices, exploiting native or manipulated PSII complexes or ad hoc synthesized polypeptides mimicking the PSII reaction centre proteins as bio-sensing elements. This review offers a concise overview of the recent improvements in the understanding of structure and function of PSII donor side, with focus on the interactions of the plastoquinone cofactors with the surrounding environment and operational features. Furthermore, studies focused on photosynthetic proteins structure/function/dynamics and computational analyses aimed at rational design of high-quality bio-recognition elements in biosensor devices are discussed. PMID:24678671

  9. Multiphoton microscopy: an efficient tool for in-situ study of cultural heritage artifacts

    NASA Astrophysics Data System (ADS)

    Latour, Gaël.; Echard, Jean-Philippe; Didier, Marie; Schanne-Klein, Marie-Claire

    2013-05-01

    We present multimodal nonlinear optical imaging of historical artifacts by combining Two-Photon Excited Fluorescence (2PEF) and Second Harmonic Generation (SHG) microscopies. Three-dimensional (3D) non-contact laser-scanning imaging with micrometer resolution is performed without any preparation of the objects under study. 2PEF signals are emitted by a wide range of fluorophores such as pigments and binder, which can be discriminated thanks to their different emission spectral bands by using suitable spectral filters in the detection channel. SHG signals are specific for dense non-centrosymmetric organizations such as the crystalline cellulose within the wood cell walls. We also show that plaster particles exhibit SHG signals. These particles are bassanite crystals with a non-centrosymmetric crystalline structure, while the other types of calcium sulphates exhibit a centrosymmetric crystalline structure with no SHG signal. In our study, we first characterize model single-layered samples: wood, gelatin-based films containing plaster or cochineal lake and sandarac film containing cochineal lake. We then study multilayered coating systems on wood and show that multimodal nonlinear microscopy successfully reveals the 3D distribution of all components within the stratified sample. We also show that the fine structure of the wood can be assessed, even through a thick multilayered varnish coating. Finally, in situ multimodal nonlinear imaging is demonstrated in a historical violin. SHG/2PEF imaging thus appears as an efficient non-destructive and contactless 3D imaging technique for in situ investigation of historical coatings and more generally for wood characterization and coating analysis at micrometer scale.

  10. Tensile behavior of TRIP-aided multi-phase steels studied by in situ neutron diffraction

    SciTech Connect

    Tomota, Y. . E-mail: tomota@mx.ibaraki.ac.jp; Tokuda, H.; Adachi, Y.; Wakita, M.; Minakawa, N.; Moriai, A.; Morii, Y.

    2004-12-01

    TRIP-aided multi-phase steels were made by thermo-mechanically controlled process, where the ferrite grain size and the amount of the retained austenite were changed by controlling process conditions. The tensile behavior of four steels was studied by in situ neutron diffraction. It is found that the retained austenite bearing about 1.0 wt% C is plastically harder than the ferrite matrix. The steel with a ferrite grain size of {approx}2.0 {mu}m showed tensile strength of 1.1 GPa and a uniform elongation of 18.4%, in which stress-induced martensitic transformation occurs during plastic deformation but a considerable amount of austenite remains even after the onset of necking. It is concluded that the enhancement of uniform elongation is caused mainly by the work-hardening due to the hard austenite and martensite, where the contribution of the transformation strain is negligible.

  11. In situ microscopic studies on the structural and chemical behaviors of lithium-ion battery materials

    NASA Astrophysics Data System (ADS)

    Shao, Minhua

    2014-12-01

    The direct observation of the microstructural evolution and state-of-charge (SOC) distribution in active materials is crucial to understand the lithiation/delithiation mechanisms during electrochemical cycling of lithium-ion batteries (LIBs). Owing to their high spatial resolutions and capability to map chemical states by combining other spectroscopic techniques, microscopic techniques including X-ray fluorescence (XRF) microscopy, Raman microscopy, transmission X-ray microscopy (TXM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) play significant roles in real time monitoring the dynamic changes in the LIB electrodes and materials. This paper reviews the recent progress of using in situ microscopic techniques to study LIB materials, including Si-, Sn-, Ge-, C- and metal oxides-based anode materials, and layered oxysulfide, metal fluorides, LiCoO2, LiNi0.8Co0.15Al0.05O2, LiMn2O4, LiFePO4 cathode materials.

  12. In Situ Infrared Ellipsometry for Protein Adsorption Studies on Ultrathin Smart Polymer Brushes in Aqueous Environment

    DOE PAGESBeta

    Kroning, Annika; Furchner, Andreas; Aulich, Dennis; Bittrich, Eva; Rauch, Sebastian; Uhlmann, Petra; Eichhorn, Klaus-Jochen; Seeber, Michael; Luzinov, Igor; Kilbey, S. Michael; et al

    2015-02-10

    The protein-adsorbing and -repelling properties of various smart nanometer-thin polymer brushes with high potential for biosensing and biomedical applications are studied by in-situ infrared-spectroscopic ellipsometry (IRSE). IRSE as a highly sensitive non-destructive technique allows us to investigate protein adsorption on polymer brushes in aqueous environment in dependence of external stimuli like temperature and pH. These stimuli are, for instance, relevant in switchable mixed brushes containing poly(N-isopropyl acrylamide) and poly(acrylic acid), respectively. We use such brushes as model surfaces for controlling protein adsorption of human serum albumin and human fibrinogen. IRSE can distinguish between polymer-specific vibrational bands, which yield insights intomore » the hydration state of the brushes, and changes in the protein-specific amide bands, which are related to changes of the protein secondary structure.« less

  13. In Situ Nanoindentation Studies on Detwinning and Work Hardening in Nanotwinned Monolithic Metals

    DOE PAGESBeta

    Liu, Y.; Li, N.; Bufford, D.; Lee, J. H.; Wang, J.; Wang, H.; Zhang, X.

    2015-07-14

    Certain nanotwinned (nt) metals have rare combinations of high mechanical strength and ductility. Here, we review recent in situ nanoindentation studies (using transmission electron microscopes) on the deformation mechanisms of nt face-centered cubic metals including Cu, Ni, and Al with a wide range of stacking fault energy (SFE). Moreover, in nt Cu with low-to-intermediate SFE, detwinning (accompanied by rapid twin boundary migration) occurs at ultralow stress. In Ni with relatively high SFE, coherent {111} twin boundaries lead to substantial work hardening. Twinned Al has abundant {112} incoherent twin boundaries, which induce significant work-hardening capability and plasticity in Al. Finally, twinmore » boundaries in Al also migrate but at very high stresses. Furthermore, molecular dynamics simulations reveal the influence of SFE on deformation mechanisms in twinned metals.« less

  14. Advanced sample environments for in situ neutron diffraction studies of nuclear materials

    NASA Astrophysics Data System (ADS)

    Reiche, Helmut Matthias

    Generation IV nuclear reactor concepts, such as the supercritical-water-cooled nuclear reactor (SCWR), are actively researched internationally. Operating conditions above the critical point of water (374°C, 22.1 MPa) and fuel core temperature that potentially exceed 1850°C put a high demand on the surrounding materials. For their safe application, it is essential to characterize and understand the material properties on an atomic scale such as crystal structure and grain orientation (texture) changes as a function of temperature and stress. This permits the refinement of models predicting the macroscopic behavior of the material. Neutron diffraction is a powerful tool in characterizing such crystallographic properties due to their deep penetration depth into condensed matter. This leads to the ability to study bulk material properties, as opposed to surface effects, and allows for complex sample environments to study e.g. the individual contributions of thermo-mechanical processing steps during manufacturing, operating or accident scenarios. I present three sample environments for in situ neutron diffraction studies that provide such crystallographic information and have been successfully commissioned and integrated into the user program of the High Pressure -- Preferred Orientation (HIPPO) diffractometer at the Los Alamos Neutron Science Center (LANSCE) user facility. I adapted a sample changer for reliable and fast automated texture measurements of multiple specimens. I built a creep furnace combining a 2700 N load frame with a resistive vanadium furnace, capable of temperatures up to 1000°C, and manipulated by a pair of synchronized rotation stages. This combination allows following deformation and temperature dependent texture and strain evolutions in situ. Utilizing the presented sample changer and creep furnace we studied pressure tubes made of Zr-2.5wt%Nb currently employed in CANDURTM nuclear reactors and proposed for future SCWRs, acting as the primary

  15. In Situ Nanoindentation Studies on Detwinning and Work Hardening in Nanotwinned Monolithic Metals

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Li, N.; Bufford, D.; Lee, J. H.; Wang, J.; Wang, H.; Zhang, X.

    2016-01-01

    Certain nanotwinned (nt) metals have rare combinations of high mechanical strength and ductility. In this article, we review recent in situ nanoindentation studies (using transmission electron microscopes) on the deformation mechanisms of nt face-centered cubic metals including Cu, Ni, and Al with a wide range of stacking fault energy (SFE). In nt Cu with low-to-intermediate SFE, detwinning (accompanied by rapid twin boundary migration) occurs at ultralow stress. In Ni with relatively high SFE, coherent {111} twin boundaries lead to substantial work hardening. Twinned Al has abundant {112} incoherent twin boundaries, which induce significant work-hardening capability and plasticity in Al. Twin boundaries in Al also migrate but at very high stresses. Furthermore, molecular dynamics simulations reveal the influence of SFE on deformation mechanisms in twinned metals.

  16. In-situ SAXS study on PET/ PMMT composites during tensile tests

    NASA Astrophysics Data System (ADS)

    Wei-Dong, Cheng; Xiao-Hua, Gu; Xue, Song; Peng, Zeng; Zhao-Jun, Wu; Xue-Qing, Xing; Guang, Mo; Zhong-Hua, Wu

    2016-01-01

    The nanostructures during the tensile drawing of poly(ethylene terephthalate) (PET)/hexadecyl triphenyl phosphonium bromide montmorillonite (PMMT) nanocomposites were studied by in-situ small angle x-ray scattering. For strain higher than the yield point, the scattering intensity increases dramatically due to the nucleation and growth of nanovoids and crystals. The nanovoids and crystals are significantly dependent on the heating temperature. The effective filling of PMMT in the PET matrix provokes a strong restriction to the long period. The peaks of the long period disappear gradually with the deformation strain increasing from 0% to 34%. Project supported by the National Natural Science Foundation of China (Grant Nos. U1232203, U1432104, U1332107, 11305198, and 11405199), the Program for Young Teachers Scientific Research in Qiqihar University, China (Grant No. 2012k-Z02), and the Natural Science Foundation of Heilongjiang Province, China (Grant No. E201259).

  17. In Situ Neutron Scattering Study of Nanostructured PbTe-PbS Bulk Thermoelectric Material

    NASA Astrophysics Data System (ADS)

    Ren, Fei; Schmidt, Robert; Case, Eldon D.; An, Ke

    2016-07-01

    Nanostructures play an important role in thermoelectric materials. Their thermal stability, such as phase change and evolution at elevated temperatures, is thus of great interest to the thermoelectric community. In this study, in situ neutron diffraction was used to examine the phase evolution of nanostructured bulk PbTe-PbS materials fabricated using hot pressing and pulsed electrical current sintering (PECS). The PbS second phase was observed in all samples in the as-pressed condition. The temperature dependent lattice parameter and phase composition data show an initial formation of PbS precipitates followed by a redissolution during heating. The redissolution process started around 570-600 K, and completed at approximately 780 K. During cooling, the PECS sample followed a reversible curve while the heating/cooling behavior of the hot pressed sample was irreversible.

  18. Towards functionalization of graphene: in situ study of the nucleation of copper-phtalocyanine on graphene

    NASA Astrophysics Data System (ADS)

    Schwarz, Daniel; Henneke, Caroline; Kumpf, Christian

    2016-02-01

    Molecular films present an elegant way for the uniform functionalization or doping of graphene. Here, we present an in situ study on the initial growth of copper phthalocyanine (CuPc) on epitaxial graphene on Ir(111). We followed the growth up to a closed monolayer with low energy electron microscopy and selected area electron diffraction (μLEED). The molecules coexist on graphene in a disordered phase without long-range order and an ordered crystalline phase. The local topography of the graphene substrate plays an important role in the nucleation process of the crystalline phase. Graphene flakes on Ir(111) feature regions that are under more tensile stress than others. We observe that the CuPc molecules form ordered domains initially on those graphene regions that are closest to the fully relaxed lattice. We attribute this effect to a stronger influence of the underlying Ir(111) substrate for molecules adsorbed on those relaxed regions.

  19. In Situ Infrared Ellipsometry for Protein Adsorption Studies on Ultrathin Smart Polymer Brushes in Aqueous Environment

    SciTech Connect

    Kroning, Annika; Furchner, Andreas; Aulich, Dennis; Bittrich, Eva; Rauch, Sebastian; Uhlmann, Petra; Eichhorn, Klaus-Jochen; Seeber, Michael; Luzinov, Igor; Kilbey, S. Michael; Lokitz, Bradley S.; Minko, Sergiy; Hinrichs, Karsten

    2015-02-10

    The protein-adsorbing and -repelling properties of various smart nanometer-thin polymer brushes with high potential for biosensing and biomedical applications are studied by in-situ infrared-spectroscopic ellipsometry (IRSE). IRSE as a highly sensitive non-destructive technique allows us to investigate protein adsorption on polymer brushes in aqueous environment in dependence of external stimuli like temperature and pH. These stimuli are, for instance, relevant in switchable mixed brushes containing poly(N-isopropyl acrylamide) and poly(acrylic acid), respectively. We use such brushes as model surfaces for controlling protein adsorption of human serum albumin and human fibrinogen. IRSE can distinguish between polymer-specific vibrational bands, which yield insights into the hydration state of the brushes, and changes in the protein-specific amide bands, which are related to changes of the protein secondary structure.

  20. In situ Raman spectroscopy study of metal-enhanced hydrogenation and dehydrogenation of VO2.

    PubMed

    Wu, Hao; Fu, Qiang; Bao, Xinhe

    2016-11-01

    Vanadium dioxide (VO2) has a phase transition from insulator to metal at 340 K, and this transition can be strongly modified by hydrogenation. In this work, two dimensional (2D) VO2 sheets have been grown on Si(1 1 1) surfaces through chemical vapor deposition, and metal (Au, Pt) thin films were deposited on VO2 surfaces by sputtering. The hydrogenation and dehydrogenation of VO2 and metal-decorated VO2 structures in H2 and in air were in situ studied by Raman. We found that hydrogenation and dehydrogenation temperatures have been significantly decreased with the VO2 surface decorated by Au and Pt. The enhanced hydrogenation and dehydrogenation reactions can be attributed to catalytic dissociation of H2 and O2 molecules on metal surfaces and subsequent spillover of dissociated H and O atoms to the oxide surfaces. PMID:27603090

  1. Trade Study of Five In-Situ Propellant Production Systems for a Mars Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Green, S. T.; Deffenbaugh, D. M.; Miller, M. A.

    1999-01-01

    One of the goals of NASA's HEDS enterprise is to establish a long-term human presence on Mars at a fraction of the cost of employing today's technology. The most direct method of reducing mission cost is to reduce the launch mass of the spacecraft. If the propellants for the return phase of the mission are produced on Mars, the total spacecraft mass could be reduced significantly. An interim goal is a Mars Sample Return (MSR) mission, which is proposed to demonstrate the feasibility of in-situ propellant production (ISPP). Five candidate ISPP systems for producing two fuels and oxygen from the Martian atmosphere are considered in this design trade-off study: 1) Zirconia cell with methanol synthesis, 2) Reverse water gas shift with water electrolysis and methanol synthesis, 3) Sabatier process for methane product ion with water electrolysis, 4) Sabatier process with water electrolysis and partial methane pyrolysis, and 5) Sabatier/RWGS combination with water electrolysis.

  2. E-cadherin expression in colorectal cancer. An immunocytochemical and in situ hybridization study.

    PubMed Central

    Dorudi, S.; Sheffield, J. P.; Poulsom, R.; Northover, J. M.; Hart, I. R.

    1993-01-01

    Expression of the epithelial-specific adhesion molecule E-cadherin has been assessed in paraffin-embedded tissue from a series of 72 colorectal carcinomas. Using immunocytochemistry and in situ hybridization it was found that E-cadherin expression was related inversely to tumor differentiation. Out of 44 well- and moderately differentiated tumors, 36 expressed good positivity, whereas 24 of 28 poorly differentiated tumors were E-cadherin-negative. Classification by Dukes stage revealed a highly significant difference (P << 0.001) between A and B (32 positive, four negative) and C1 and C2 (seven positive, 29 negative) stages in terms of immunoreactivity. Of the 32 lymph node metastases studied, 20 were negative for E-cadherin expression, as were seven of eight liver metastases. These results indicate that the down-regulation of E-cadherin levels in vivo is associated with the dedifferentiation, progression, and metastasis of colorectal cancer. Images Figure 1 Figure 2 PMID:7682766

  3. The use of in-situ dilatometry in diffusion bonding studies

    SciTech Connect

    Tilford, S.; Ashworth, M.A.; Jacobs, M.H.

    1996-12-31

    The paper presents the results obtained from a study of the fundamental processes involved in HIP diffusion bonding with particular reference to the use of an in-situ dilatometer. The paper describes the operation of the dilatometer itself and its practical application to diffusion bonding of materials. The dilatometer has been used as an aid to identify the onset of plastic deformation in conjunction with a series of HIP cycles interrupted at selected points in the process cycle. The effect of temperature and pressure on process kinetics has also been investigated. The degree of diffusion bonding and the shape of the residual porosity has been determined by metallographic examination of bond cross-sections and by SEM and topographical analyses of fracture surfaces.

  4. Strain relaxation in He implanted UO2 polycrystals under thermal treatment: An in situ XRD study

    NASA Astrophysics Data System (ADS)

    Palancher, H.; Kachnaoui, R.; Martin, G.; Richard, A.; Richaud, J.-C.; Onofri, C.; Belin, R.; Boulle, A.; Rouquette, H.; Sabathier, C.; Carlot, G.; Desgardin, P.; Sauvage, T.; Rieutord, F.; Raynal, J.; Goudeau, Ph.; Ambard, A.

    2016-08-01

    Within the frame of the long-term evolution of spent nuclear fuel in dry disposal, the behavior of He in UO2 polycrystals has to be studied. Here, strain relaxation in He implanted samples has been characterized using in situ X-ray diffraction during thermal annealing. The influence of a wide range of experimental parameters (annealing atmosphere, He ion energy, orientation of the UO2 grains probed by X-rays) has been evaluated. If each of them contributes to the strain relaxation kinetics in the implanted layer, strain relaxation is not completed for temperatures below 900 °C which is equivalent to what has been found on He implanted UO2 single crystals, or aged UO2 pellets doped with α-emitters. In the case of implantation with 500 keV He ions, we clearly show that strain relaxation and He release are not correlated for temperatures below 750 °C.

  5. In Situ Nanoindentation Studies on Detwinning and Work Hardening in Nanotwinned Monolithic Metals

    SciTech Connect

    Liu, Y.; Li, N.; Bufford, D.; Lee, J. H.; Wang, J.; Wang, H.; Zhang, X.

    2015-07-14

    Certain nanotwinned (nt) metals have rare combinations of high mechanical strength and ductility. Here, we review recent in situ nanoindentation studies (using transmission electron microscopes) on the deformation mechanisms of nt face-centered cubic metals including Cu, Ni, and Al with a wide range of stacking fault energy (SFE). Moreover, in nt Cu with low-to-intermediate SFE, detwinning (accompanied by rapid twin boundary migration) occurs at ultralow stress. In Ni with relatively high SFE, coherent {111} twin boundaries lead to substantial work hardening. Twinned Al has abundant {112} incoherent twin boundaries, which induce significant work-hardening capability and plasticity in Al. Finally, twin boundaries in Al also migrate but at very high stresses. Furthermore, molecular dynamics simulations reveal the influence of SFE on deformation mechanisms in twinned metals.

  6. Kinetics of Methane Hydrate Decomposition Studied via in Situ Low Temperature X-ray Powder Diffraction

    SciTech Connect

    Everett, Susan M; Rawn, Claudia J; Keffer, David J.; Mull, Derek L; Payzant, E Andrew; Phelps, Tommy Joe

    2013-01-01

    Gas hydrates are known to have a slowed decomposition rate at ambient pressure and temperatures below the melting point of ice termed self-preservation or anomalous preservation. As hydrate exothermically decomposes, gas is released and water of the clathrate cages transforms into ice. Two regions of slowed decomposition for methane hydrate, 180 200 K and 230 260 K, were observed, and the kinetics were studied by in situ low temperature x-ray powder diffraction. The kinetic constants for ice formation from methane hydrate were determined by the Avrami model within each region and activation energies, Ea, were determined by the Arrhenius plot. Ea determined from the data for 180 200 K was 42 kJ/mol and for 230 260 K was 22 kJ/mol. The higher Ea in the colder temperature range was attributed to a difference in the microstructure of ice between the two regions.

  7. In-Situ Studies of Intercritically Austempered Ductile Iron Using Neutron Diffraction

    SciTech Connect

    Druschitz, Alan; Aristizabal, Ricardo; Druschitz, Edward; Hubbard, Camden R; Watkins, Thomas R; Walker, Larry R; Ostrander, M

    2012-01-01

    Intercritically austempered ductile irons hold promise for applications requiring fatigue durability, excellent castability, low production energy requirements, reduced greenhouse gas emissions and excellent machinability. In the present study, four different ductile iron alloys, containing manganese and nickel as the primary austenite-stabilizing elements, were heat treated to obtain different quantities of austenite in the final microstructure. This paper reports the microstructures and phases present in these alloys. Further, lattice strains and diffraction elastic constants in various crystallographic directions and the transformation characteristics of the austenite as a function of applied stress were determined using in-situ loading with neutron diffraction at the second generation Neutron Residual Stress Facility (NRSF2) at the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL).

  8. In situ surface and interface study of crystalline (3×1)-O on InAs

    NASA Astrophysics Data System (ADS)

    Qin, Xiaoye; Wang, Wei-E.; Rodder, Mark S.; Wallace, Robert M.

    2016-07-01

    The oxidation behavior of de-capped InAs (100) exposed to O2 gas at different temperatures is investigated in situ with high resolution of monochromatic x-ray photoelectron spectroscopy and low energy electron diffraction. The oxide chemical states and structure change dramatically with the substrate temperature. A (3 × 1) crystalline oxide layer on InAs is generated in a temperature range of 290-330 °C with a coexistence of In2O and As2O3. The stability of the crystalline oxide upon the atomic layer deposition (ALD) of HfO2 is studied as well. It is found that the generated (3 × 1) crystalline oxide is stable upon ALD HfO2 growth at 100 °C.

  9. First study of pathogen load and localisation of ovine footrot using fluorescence in situ hybridisation (FISH)

    PubMed Central

    Witcomb, Luci A.; Green, Laura E.; Calvo-Bado, Leo A.; Russell, Claire L.; Smith, Edward M.; Grogono-Thomas, Rose; Wellington, Elizabeth M.H.

    2015-01-01

    Analysis of bacterial populations in situ provides insights into pathogen population dynamics and potential reservoirs for disease. Here we report a culture-independent study of ovine footrot (FR); a debilitating bacterial disease that has significant economic impact on sheep farming worldwide. Disease begins as an interdigital dermatitis (ID), which may then progress to separation of the hoof horn from the underlying epidermis causing severe footrot (SFR). Dichelobacter nodosus is the causative agent of ovine FR, however, the role of Fusobacterium necrophorum and other bacteria present in the environment and on the feet of sheep is less clear. The objective of this study was to use fluorescence in situ hybridisation (FISH) to detect, localise and quantify D. nodosus, F. necrophorum and the domain Bacteria from interdigital skin biopsies of healthy, ID- and SFR-affected feet. D. nodosus and F. necrophorum populations were restricted primarily to the epidermis, but both were detected more frequently in feet with ID or SFR than in healthy feet. D. nodosus cell counts were significantly higher in feet with ID and SFR (p < 0.05) than healthy feet, whereas F. necrophorum cell counts were significantly higher only in feet with SFR (p < 0.05) than healthy feet. These results, together with other published data, indicate that D. nodosus likely drives pathogenesis of footrot from initiation of ID to SFR; with D. nodosus cell counts increasing prior to onset of ID and SFR. In contrast, F. necrophorum cell counts increase after SFR onset, which may suggest an accessory role in disease pathogenesis, possibly contributing to the severity and duration of SFR. PMID:25742734

  10. Anaerobic in situ biodegradation of TNT using whey as an electron donor: a case study.

    PubMed

    Innemanová, Petra; Velebová, Radka; Filipová, Alena; Čvančarová, Monika; Pokorný, Petr; Němeček, Jan; Cajthaml, Tomáš

    2015-12-25

    Contamination by 2,4,6-trinitrotoluene (TNT), an explosive extensively used by the military, represents a serious environmental problem. In this study, whey has been selected as the most technologically and economically suitable primary substrate for anaerobic in situ biodegradation of TNT. Under laboratory conditions, various additions of whey, molasses, acetate and activated sludge as an inoculant were tested and the process was monitored using numerous chemical analyses including phospholipid fatty acid analysis. The addition of whey resulted in the removal of more than 90% of the TNT in real contaminated soil (7 mg kg(-1) and 12 mg kg(-1) of TNT). The final bioremediation strategy was suggested on the basis of the laboratory results and tested under real conditions at a TNT contaminated site in the Czech Republic. During the pilot test, three repeated injections of whey suspension into the sandy aquifer were performed over a 10-month period. In total, approximately 5m(3) of whey were used. A substantial decrease in the TNT groundwater concentration from the original levels (equalling 1.49 mg l(-1) to 8.58 mg l(-1)) was observed in most of the injection wells, while the concentrations of the TNT biotransformation products were found to be elevated. Pilot-scale application results showed that the anoxic and/or anaerobic conditions in the aquifer were sufficient for TNT bio-reduction by autochthonous microorganisms. Whey application was not accompanied by undesirable effects such as a substantial decrease in the pH or clogging of the wells. The results of the study document the suitability of application of whey to bioremediate TNT contaminated sites in situ. PMID:25882606

  11. First study of pathogen load and localisation of ovine footrot using fluorescence in situ hybridisation (FISH).

    PubMed

    Witcomb, Luci A; Green, Laura E; Calvo-Bado, Leo A; Russell, Claire L; Smith, Edward M; Grogono-Thomas, Rose; Wellington, Elizabeth M H

    2015-04-17

    Analysis of bacterial populations in situ provides insights into pathogen population dynamics and potential reservoirs for disease. Here we report a culture-independent study of ovine footrot (FR); a debilitating bacterial disease that has significant economic impact on sheep farming worldwide. Disease begins as an interdigital dermatitis (ID), which may then progress to separation of the hoof horn from the underlying epidermis causing severe footrot (SFR). Dichelobacter nodosus is the causative agent of ovine FR, however, the role of Fusobacterium necrophorum and other bacteria present in the environment and on the feet of sheep is less clear. The objective of this study was to use fluorescence in situ hybridisation (FISH) to detect, localise and quantify D. nodosus, F. necrophorum and the domain Bacteria from interdigital skin biopsies of healthy, ID- and SFR-affected feet. D. nodosus and F. necrophorum populations were restricted primarily to the epidermis, but both were detected more frequently in feet with ID or SFR than in healthy feet. D. nodosus cell counts were significantly higher in feet with ID and SFR (p<0.05) than healthy feet, whereas F. necrophorum cell counts were significantly higher only in feet with SFR (p<0.05) than healthy feet. These results, together with other published data, indicate that D. nodosus likely drives pathogenesis of footrot from initiation of ID to SFR; with D. nodosus cell counts increasing prior to onset of ID and SFR. In contrast, F. necrophorum cell counts increase after SFR onset, which may suggest an accessory role in disease pathogenesis, possibly contributing to the severity and duration of SFR. PMID:25742734

  12. Study of Relationship between In-Situ Stress and Fluid Conduits in Hongchailin of Ilan Plain, NE Taiwan

    NASA Astrophysics Data System (ADS)

    Kao, T. E.; Yeh, E. C.; Wu, F. Y.; Wang, T. T.; Hung, J. H.; Song, S. R.

    2015-12-01

    Ilan plan in northeastern Taiwan possesses abundant geothermal resources resulted from a higher geothermal gradient due to the influences of compression of mountain building and extension of back-arc rifting. Understanding in-situ stress field can evaluate current extension state for benefiting geothermal exploration and development and providing important information to geothermal engineering. Because development of geothermal fluid conduits is highly depended on in-situ stress, for enhancing geothermal productivity, this study conducted Anelastic Strain Recovery (ASR) and core description to study the relationship between in-situ stress and fluid conduits in Hongchailin area, Ilan Plain. Based on experiments of ASR, this study assessed in-situ 3D stress field including stress direction. Information of fractures and veins with depth obtained from core observation provided insights into the distribution of fluid conduits. Current results display a mixing stress regime of normal faulting and strike-slip faulting with NW-SE compression and SW-NE extension, which is consistent with results of focal mechanisms. Results of core description showed E-W striking gouge, indicating an early N-S compression. The fluid conduits with NW-SE strike are consistent with the predicted conduits inferred from in-situ stress field. Integrating with other information of stress direction and magnitude will provide insights into developing enhanced geothermal systems and utilizing geothermal energy efficiently.

  13. In situ TEM studies of micron-sized all-solid-state fluoride ion batteries: Preparation, prospects, and challenges.

    PubMed

    Hammad Fawey, Mohammed; Chakravadhanula, Venkata Sai Kiran; Reddy, Munnangi Anji; Rongeat, Carine; Scherer, Torsten; Hahn, Horst; Fichtner, Maximilian; Kübel, Christian

    2016-07-01

    Trustworthy preparation and contacting of micron-sized batteries is an essential task to enable reliable in situ TEM studies during electrochemical biasing. Some of the challenges and solutions for the preparation of all-solid-state batteries for in situ TEM electrochemical studies are discussed using an optimized focused ion beam (FIB) approach. In particular redeposition, resistivity, porosity of the electrodes/electrolyte and leakage current are addressed. Overcoming these challenges, an all-solid-state fluoride ion battery has been prepared as a model system for in situ TEM electrochemical biasing studies and first results on a Bi/La0.9 Ba0.1 F2.9 half-cell are presented. Microsc. Res. Tech. 79:615-624, 2016. © 2016 Wiley Periodicals, Inc. PMID:27145192

  14. In situ and ex situ spectroelectrochemical and X-ray absorption studies on rechargeable, chemically-modified and other MnO{sub 2} materials

    SciTech Connect

    Conway, B.E.; Qu, D.; McBreen, J. |

    1992-12-31

    A combined series of in situ and ex situ UV spectroelectrochemical and X-ray absorption studies have been made on MnO{sub 2}, chemically-modified by small amounts of Bi(III), and comparatively on other MnO{sub 2} materials such as a blank (Bi-free) and {gamma}-MnO{sub 2}. These procedures are applied in order to follow the oxidation-states of Bi and of Mn during the course of discharge and recharge of MnO{sub 2} as a battery cathode material, and the extents of rechargeability that can be achieved with such materials. Presence of Bi appears to provide a preferred ``heterogeneous`` discharge/recharge pathway involving a soluble Mn(III) intermediate, over the alternative ``electron-proton`` hopping, solid-state mechanism. From XAS results, it is concluded that presence of Bi, although not affecting the O-coordination, does influence the Mn-Mn coordination, determining the way the MnO{sub 2} coordination octahedra are connected.

  15. Hadronic Structure Functions from the Universal and the Basic Structures

    NASA Astrophysics Data System (ADS)

    Arash, F.

    2005-04-01

    It is shown that there is a basic structure common to all hadrons, which is generated perturbatively in QCD. Basically, it is a valence quark with its own cloud of quarks and gluons, a quasi-particle that we will call it a valon. In the valon representation, structure functions of nucleon and pion are calculated and is shown that there is an excellent agreement between the data and the model results in a wide range of kinematics. Calculation of the polarized structure functions also shows that there is a sizeable orbital angular momentum contribution to the spin of a valon coming from the partonic cloud.

  16. Cysteine Modification: Probing Channel Structure, Function and Conformational Change.

    PubMed

    Akabas, Myles H

    2015-01-01

    structure-function relationships in ion channels focusing mainly on Cys-loop receptors. PMID:26381939

  17. In situ XAS studies of Pt{sub x}Pd{sub 1-x} nanoparticles under thermal annealing

    SciTech Connect

    Bernardi, F.; Morais, J.; Alves, M. C. M.

    2009-01-29

    In this work, we have studied Pt{sub x}Pd{sub 1-x}(x = 1, 0.7 or 0.5) nanoparticles subjected to H{sub 2} reduction and sulfidation under H{sub 2}S atmosphere, both at 300 deg. C. The system was studied by in-situ x-ray absorption spectroscopy (in-situ XAS). We observed that the efficiency of sulfidation is directly proportional to the quantity of Pd atoms in the nanoparticle, provided the reduction process has been achieved.

  18. Structure and growth of stearate monolayers on calcite: First results of an in situ X-ray reflectivity study

    SciTech Connect

    Fenter, P.; Sturchio, N.C.

    1999-10-01

    The adsorption of organic molecules at mineral-fluid interfaces has a profound influence upon geochemical reaction and transport processes, yet little is known about the in situ structures or properties of organic layers at mineral-fluid interfaces. The authors describe an X-ray reflectivity study of stearate monolayers adsorbed at the calcite surface from methanolic solutions. Using these measurements the authors are able to determine important aspects of the in situ structure, bonding, adsorption, and growth mechanisms of stearate monolayers. The experimental approach demonstrated here can be applied widely in studying the interaction of organic molecules with mineral surfaces in aqueous systems.

  19. Structure function analysis of two-scale Scalar Ramps. Part I: Theory and Modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Structure functions are used to study the dissipation and inertial range scales of turbulent energy, to parameterize remote turbulence measurements, and to characterize ramp features in the turbulent field. The ramp features are associated with turbulent coherent structures, which dominate energy an...

  20. Relationships Between Watershed Emergy Flow and Coastal New England Salt Marsh Structure, Function, and Condition

    EPA Science Inventory

    This study evaluated the link between watershed activities and salt marsh structure, function, and condition using spatial emergy flow density (areal empower density) in the watershed and field data from 10 tidal salt marshes in Narragansett Bay, RI. The field-collected data wer...

  1. Does one need the anomaly to describe the polarized structure functions?

    NASA Astrophysics Data System (ADS)

    Buccella, F.; Pisanti, O.; Santorelli, P.; Soffer, J.

    1996-02-01

    The SLAC data on the p, d and n polarized structure functions are fairly well reproduced with and without the contribution of the anomaly. The results are compared with a previous study based mainly on SMC data. The implications on the solution of the spin-crisis are discussed.

  2. Influence of in situ stress variations on acoustic emissions: a numerical study

    NASA Astrophysics Data System (ADS)

    Zhao, Qi; Tisato, Nicola; Grasselli, Giovanni; Mahabadi, Omid K.; Lisjak, Andrea; Liu, Qinya

    2015-11-01

    The study of acoustic emissions (AEs) is of paramount importance to understand rock deformation processes. AE recorded during laboratory experiments mimics, in a controlled geometry and environment, natural and induced seismicity. However, these experiments are destructive, time consuming and require a significant amount of resources. Lately, significant progresses have been made in numerical simulations of rock failure processes, providing detailed insights into AE. We utilized the 2-D combined finite-discrete element method to simulate the deformation of Stanstead Granite under varying confining pressure (Pc) and demonstrated that the increase of confining pressure, Pc, (i) shifts failures from tensile towards shear dominated and (ii) enhance the macroscopic ductility. We quantitatively describe the AE activity associated with the fracturing process by assessing the spatial fractal dimension (D-value), the temporal distribution (AE rate) and the slope of the frequency-magnitude distribution (b-value). Based on the evaluation of D-value and AE rate, we defined two distinct deformation phases: Phase I and Phase II. The influence of Pc on the spatial distribution of AE varies according to the deformation phase: for increasing Pc, D-value decreases and increases during Phases I and II, respectively. In addition, b-value decreases with increasing Pc during the entire experiment. Our numerical results show for the first time that variations of D- and b-values as a function of in situ stress can be simulated using the combined finite-discrete element approach. We demonstrate that the examination of seismicity should be carried out carefully, taking into consideration the deformation phase and in situ stress conditions.

  3. Corrosion in Haas expanders with and without use of an antimicrobial agent: an in situ study

    PubMed Central

    BAGATIN, Cristhiane Ristum; ITO, Izabel Yoko; ANDRUCIOLI, Marcela Cristina Damião; NELSON-FILHO, Paulo; FERREIRA, José Tarcísio Lima

    2011-01-01

    Objectives The purpose of this study was to evaluate in situ the occurrence of corrosion in the soldering point areas between the wire, silver brazing and band in Haas expanders. Material and Methods Thirty-four 7-12-year-old patients who needed maxillary expansion with a Haas expander were randomly assigned to two groups of 17 individuals each, according to the oral hygiene protocol adopted during the orthodontic treatment: Group I (control), toothbrushing with a fluoride dentifrice and Group II (experimental), toothbrushing with the same dentifrice plus 0.12% chlorhexidine gluconate (Periogard®) mouthrinses twice a week. The appliances were removed after approximately 4 months. Fragments of the appliances containing a metallic band with a soldered wire were sectioned at random for examination by stereomicroscopy, scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). Data were analyzed statistically by Fisher's test at 5% significance level. Results The analysis by optical microscopy revealed areas with color change suggestive of corrosion in the soldering point areas joining the band and the wire in all specimens of both groups, with no statistically significant difference between the groups (p=1). The peaks of chemical elements (Ni, Fe, Cr, O, C and P) revealed by EDS were also similar in both groups. Conclusion: Color changes and peaks of chemical elements suggestive of corrosion were observed in the soldering point areas between the wire, silver brazing and band in both control and experimental groups, which indicate that the 0.12% chlorhexidine gluconate mouthrinses did not influence the occurrence of corrosion in situ. PMID:22231004

  4. In situ XPS study of methanol reforming on PdGa near-surface intermetallic phases

    PubMed Central

    Rameshan, Christoph; Stadlmayr, Werner; Penner, Simon; Lorenz, Harald; Mayr, Lukas; Hävecker, Michael; Blume, Raoul; Rocha, Tulio; Teschner, Detre; Knop-Gericke, Axel; Schlögl, Robert; Zemlyanov, Dmitry; Memmel, Norbert; Klötzer, Bernhard

    2012-01-01

    In situ X-ray photoelectron spectroscopy and low-energy ion scattering were used to study the preparation, (thermo)chemical and catalytic properties of 1:1 PdGa intermetallic near-surface phases. Deposition of several multilayers of Ga metal and subsequent annealing to 503–523 K led to the formation of a multi-layered 1:1 PdGa near-surface state without desorption of excess Ga to the gas phase. In general, the composition of the PdGa model system is much more variable than that of its PdZn counterpart, which results in gradual changes of the near-surface composition with increasing annealing or reaction temperature. In contrast to near-surface PdZn, in methanol steam reforming, no temperature region with pronounced CO2 selectivity was observed, which is due to the inability of purely intermetallic PdGa to efficiently activate water. This allows to pinpoint the water-activating role of the intermetallic/support interface and/or of the oxide support in the related supported PdxGa/Ga2O3 systems, which exhibit high CO2 selectivity in a broad temperature range. In contrast, corresponding experiments starting on the purely bimetallic model surface in oxidative methanol reforming yielded high CO2 selectivity already at low temperatures (∼460 K), which is due to efficient O2 activation on PdGa. In situ detected partial and reversible oxidative Ga segregation on intermetallic PdGa is associated with total oxidation of intermediate C1 oxygenates to CO2. PMID:22875996

  5. In situ spectroellipsometric study of the nucleation and growth of amorphous silicon

    NASA Astrophysics Data System (ADS)

    Canillas, A.; Bertran, E.; Andújar, J. L.; Drévillon, B.

    1990-09-01

    A detailed in situ spectroellipsometric analysis of the nucleation and growth of hydrogenated amorphous silicon (a:Si:H) is presented. Photoelectronic quality a-Si:H films are deposited by plasma-enhanced chemical vapor deposition on smooth metal (NiCr alloy) and crystalline silicon (c-Si) substrates. The deposition of a-Si:H is analyzed from the first monolayer up to a final thickness of 1.2 μm. In order to perform an improved analysis, real time ellipsometric trajectories are recorded, using fixed preparation conditions, at various photon energies ranging from 2.2 to 3.6 eV. The advantage of using such a spectroscopic experimental procedure is underlined. New insights into the nucleation and growth mechanisms of a-Si:H are obtained. The nucleation mechanism on metal and c-Si substrates is very accurately described assuming a columnar microstructural development during the early stage of the growth. Then, as a consequence of the incomplete coalescence of the initial nuclei, a surface roughness at the 10-15 Å scale is identified during the further growth of a-Si:H on both substrates. The bulk a-Si:H grows homogeneously beneath the surface roughness. Finally, an increase of the surface roughness is evidenced during the long term growth of a-Si:H. However, the nature of the substrate influenced the film growth. In particular, the film thickness involved in the nucleation-coalescence phase is found lower in the case of c-Si (67±8 Å) as compared to NiCr (118±22 Å). Likewise films deposited on c-Si present a smaller surface roughness even if thick samples are considered (>1 μm). More generally, the present study illustrates the capability of in situ spectroellipsometry to precisely analyze fundamental processes in thin-film growth, but also to monitor the preparation of complex structures on a few monolayers scale.

  6. Plasticity and ultra-low stress induced twin boundary migration in nanotwinned Cu by in situ nanoindentation studies

    SciTech Connect

    Liu, Y.; Chen, Y.; Jian, J.; Wang, H.; Zhang, X.

    2014-06-09

    Nanotwinned metals have rare combinations of mechanical strength and ductility. Previous studies have shown that detwinning occurs in plastically deformed nanotwinned metals. Although molecular dynamics simulations have predicted that fine nanotwins can migrate at low stress, there is little in situ evidence to validate such predictions. Also it is unclear if detwinning occurs prior to or succeeding plastic yielding. Here, by using in situ nanoindentation in a transmission electron microscope, we show that a non-elastic detwinning process in nanotwinned Cu occurred at ultra-low indentation stress (0.1 GPa), well before the stress necessary for plastic yielding. Furthermore, the in situ nanoindentation technique allows us to differentiate dislocation-nucleation dominated microscopic yielding preceding macroscopic yielding manifested by dislocation-transmission through twin boundaries. This study thus provides further insights for understanding plasticity in nanotwinned metals at microscopic levels.

  7. Quantitative In Situ TEM Studies of Small-Scale Plasticity in Irradiated and Unirradiated Metals

    NASA Astrophysics Data System (ADS)

    Chisholm, Claire

    mechanical data, as the two defect conditions exhibit similar yield strengths, ultimate tensile strengths, and number and size of load-drops. This similarity implies that, even if materials contain dissimilar individual defects, the collective defect behavior can result in similar mechanical properties. Thus, the origin of mechanical properties can be ambiguous and caution should be taken when extrapolating to different size scales. Furthermore, such similarities highlight the importance of in-situ observation during deformation. These experiments provide a key test of theory, by providing a local test of behavior, which is much more stringent than testing behaviors averaged over many regions. Advanced electron microscopy imaging techniques and quantitative in-situ TEM tensile tests are performed with Au thin-film as a model FCC structural material. These investigations highlight the various hurdles experimental studies must overcome in order to probe defect behavior at a fundamental level. Two novelly-applied strain mapping techniques are performed to directly measure the matrix strain around helium bubbles in He1+ implanted Au thin-film. Dark-field inline holography (DFIH) is applied here for the first time to a metal, and nano-beam electron diffraction (NBED) transient strain mapping is shown to be experimentally feasible using the high frame rate Gatan K2 camera. The K2 camera reduces scan times from ˜18 minutes to 82 seconds for a 128x256 pixel scan at 400 fps. Both methods measure a peak strain around 10 nm bubbles of 0.7%, correlating to an internal pressure of 580 MPa, or a vacancy to helium ion ratio of 1V:2.4He. Previous studies have relied on determining the appropriate equation of state to relate measured or approximated helium density to internal bubble pressure and thus strain. Direct measurement of the surrounding matrix strain through DFIH and NBED methods effectively bypasses this step, allowing for easier defect interaction modeling as the bubble can be

  8. Comparison between direct and reverse electroporation of cells in situ: a simulation study.

    PubMed

    Towhidi, Leila; Khodadadi, Delaram; Maimari, Nataly; Pedrigi, Ryan M; Ip, Henry; Kis, Zoltan; Kwak, Brenda R; Petrova, Tatiana W; Delorenzi, Mauro; Krams, Rob

    2016-03-01

    The discovery of the human genome has unveiled new fields of genomics, transcriptomics, and proteomics, which has produced paradigm shifts on how to study disease mechanisms, wherein a current central focus is the understanding of how gene signatures and gene networks interact within cells. These gene function studies require manipulating genes either through activation or inhibition, which can be achieved by temporarily permeabilizing the cell membrane through transfection to delivercDNAorRNAi. An efficient transfection technique is electroporation, which applies an optimized electric pulse to permeabilize the cells of interest. When the molecules are applied on top of seeded cells, it is called "direct" transfection and when the nucleic acids are printed on the substrate and the cells are seeded on top of them, it is termed "reverse" transfection. Direct transfection has been successfully applied in previous studies, whereas reverse transfection has recently gained more attention in the context of high-throughput experiments. Despite the emerging importance, studies comparing the efficiency of the two methods are lacking. In this study, a model for electroporation of cells in situ is developed to address this deficiency. The results indicate that reverse transfection is less efficient than direct transfection. However, the model also predicts that by increasing the concentration of deliverable molecules by a factor of 2 or increasing the applied voltage by 20%, reverse transfection can be approximately as efficient as direct transfection. PMID:27009275

  9. Growth study of branching coral Acropora formosa between natural reef habitats and in situ coral nurseries

    NASA Astrophysics Data System (ADS)

    Xin, Loke Hai; Hyde, Julian; Cob, Zaidi Che; Adzis, Kee Alfian Abdul

    2013-11-01

    Being a common reef building coral in Malaysian waters, growth of Acropora Formosa in natural reef habitat and coral nursery condition had been studied in aspects of extension growth, survival and proto-branch generation. The study sites took place at two separate islands with different environment conditions. In this study, A. formosa samples of natural reefs at Pangkor Island turbid waters recorded better growth in average extension rate (0.71 ±0.48 cm/month) and higher proto-branch generation rate (up to 52% after 6 months) than Tioman Island samples (0.38 ±0.34 cm/month, highest 17% after 6 months). However, Tioman Island natural reef samples maintained 100% survival throughout the study period. Then, branch fragments or nubbins of A. formosa were transplanted into two coral nursery sites at Tioman Island. Among these two coral nurseries, the Tekek site had better growth in all three aspects than Air Batang site. This was believed due to Tekek nursery had been setup with nubbins for more than 6 months before Air Batang nursery, thus the Tekek samples were conditioned long enough for growing in the coral nursery environment. The results of this study documented the growth of this particular coral species in two islands of Peninsular Malaysia, and demonstrated the potential application of A. Formosa for coral transplant, in situ nursery and active reef restoration.

  10. Revisiting Stochastic Variability of AGNs with Structure Functions

    NASA Astrophysics Data System (ADS)

    Kozłowski, Szymon

    2016-08-01

    Discrepancies between reported structure function (SF) slopes and their overall flatness as compared to the expectations from the damped random walk (DRW) model, which generally well describes the variability of active galactic nuclei (AGNs), have triggered us to study this problem in detail. We review common AGN variability observables and identify their most common problems. Equipped with this knowledge, we study ∼9000 r-band AGN light curves from Stripe 82 of the Sloan Digital Sky Survey, using SFs described by stochastic processes with the power exponential covariance matrix of the signal. We model the “subensemble” SFs in the redshift–absolute magnitude bins with the full SF equation (including the turnover and the noise part) and a single power law (SPL; in the “red noise regime” after subtracting the noise term). The distribution of full-equation SF (SPL) slopes peaks at γ =0.55+/- 0.08 (0.52 ± 0.06) and is consistent with the DRW model. There is a hint of a weak correlation of γ with the luminosity and a lack of correlation with the black hole mass. The typical decorrelation timescale in the optical is τ =0.97+/- 0.46 year. The SF amplitude at one year obtained from the SPL fitting is {{SF}}0=0.22+/- 0.06 mag and is overestimated because the SF is already at the turnover part, so the true value is {{SF}}0=0.20+/- 0.06 mag. The asymptotic variability is {{SF}}∞ =0.25+/- 0.06 mag. It is strongly anticorrelated with both the luminosity and the Eddington ratio and is correlated with the black hole mass. The reliability of these results is fortified with Monte Carlo simulations.

  11. Structure function analysis of mirror fabrication and support errors

    NASA Astrophysics Data System (ADS)

    Hvisc, Anastacia M.; Burge, James H.

    2007-09-01

    Telescopes are ultimately limited by atmospheric turbulence, which is commonly characterized by a structure function. The telescope optics will not further degrade the performance if their errors are small compared to the atmospheric effects. Any further improvement to the mirrors is not economical since there is no increased benefit to performance. Typically the telescope specification is written in terms of an image size or encircled energy and is derived from the best seeing that is expected at the site. Ideally, the fabrication and support errors should never exceed atmospheric turbulence at any spatial scale, so it is instructive to look at how these errors affect the structure function of the telescope. The fabrication and support errors are most naturally described by Zernike polynomials or by bending modes for the active mirrors. This paper illustrates an efficient technique for relating this modal analysis to wavefront structure functions. Data is provided for efficient calculation of structure function given coefficients for Zernike annular polynomials. An example of this procedure for the Giant Magellan Telescope primary mirror is described.

  12. Cognitive Adequacy in Structural-Functional Theories of Language

    ERIC Educational Resources Information Center

    Butler, Christopher S.

    2008-01-01

    This paper discusses the role played by cognition in three linguistic theories which may be labelled as "structural-functional": Functional (Discourse) Grammar, Role and Reference Grammar and Systemic Functional Grammar. It argues that if we are to achieve true cognitive adequacy, we must go well beyond the grammar itself to include the processes…

  13. Regarding Chilcott's "Structural Functionalism as a Heuristic Device" Heuristically.

    ERIC Educational Resources Information Center

    Blot, Richard K.

    1998-01-01

    The heuristic value of Chilcott's essay lies less in its support for structural functionalism and more in its concern to reexamine theory in the work of earlier educational anthropologists for what earlier theories and practices can add to current research. (SLD)

  14. In-situ studies of cartilage microtribology: roles of speed and contact area

    PubMed Central

    Bonnevie, E.D.; Baro, V.; Wang, L.; Burris, D.L.

    2011-01-01

    The progression of local cartilage surface damage toward early stage osteoarthritis (OA) likely depends on the severity of the damage and its impact on the local lubrication and stress distribution in the surrounding tissue. It is difficult to study the local responses using traditional methods; in-situ microtribological methods are being pursued here as a means to elucidate the mechanical aspects of OA progression. While decades of research have been dedicated to the macrotribological properties of articular cartilage, the microscale response is unclear. An experimental study of healthy cartilage microtribology was undertaken to assess the physiological relevance of a microscale friction probe. Normal forces were on the orderof50 mN. Sliding speed varied from 0 to 5 mm/s, and two probes radii, 0.8 mm and 3.2 mm, were used in the study. In-situ measurements of the indentation depth into the cartilage enabled calculations of contact area, effective elastic modulus, elastic and fluid normal force contributions, and the interfacial friction coefficient. This work resulted in the following findings: 1) at high sliding speed (V=1–5 mm/s), the friction coefficient was low (μ = 0.025) and insensitive to probe radius (0.8 mm 3.2 mm) despite the 4-folddifference in the resulting contact areas; 2) The contact area was a strong function of the probe radius and sliding speed; 3) the friction coefficient was proportional to contact area when sliding speed varied from 0.05mm/s-5mm/s; 4) the fluid load support was greater than 85% for all sliding conditions (0% fluid support when V=0) and was insensitive to both probe radius and sliding speed. The findings were consistent with the adhesive theory of friction; as speed increased, increased effective hardness reduced the area of solid-solid contact which subsequently reduced the friction force. Where the severity of the sliding conditions dominates the wear and degradation of typical engineering tribomaterials, the results

  15. Combining vibrational biomolecular spectroscopy with chemometric techniques for the study of response and sensitivity of molecular structures/functional groups mainly related to lipid biopolymer to various processing applications.

    PubMed

    Yu, Gloria Qingyu; Yu, Peiqiang

    2015-09-01

    antisymmetric and symmetric CH3 and CH2 spectral region (ca. 3001-2799 cm(-1)) and carbonyl C=O ester band region (ca. 1771-1714 cm(-1)). This result indicated that the sensitivity to detect treatment difference by multivariate analysis of cluster analysis (CLA) and principal components analysis (PCA) might be lower compared with univariate molecular spectral analysis. In the future, other more sensitive techniques such as "discriminant analysis" could be considered for discriminating and classifying structural differences. Molecular spectroscopy can be used as non-invasive technique to study processing-induced structural changes that are related to lipid compound in legume seeds. PMID:26159573

  16. In-situ dust detection as a tool to study dust-plasma interactions in the Solar System

    NASA Astrophysics Data System (ADS)

    Srama, R.; Hsu, H. W.; Moragas-Klostermeyer, G.; Postberg, F.; Kempf, S.

    2014-12-01

    The unique results of the Cassini Cosmic Dust Analyzer onboard Cassini revealed the potential of in-situ dust detection for the study of dust-plasma interactions. In-situ techniques are charge induction, impact ionization, momentum transfer, foil depolarization, light scattering or mass spectrometry. Modern instruments like dust telescopes or the Cosmic Dust Analyzer (CDA) onboard Cassini combine different methods in one sensor. This paper gives an overview about in-situ dust measurements in space using direct detection methods. A focus is given to charge induction and impact ionization and their measurement thresholds are described. Major CDA discoveries are summarized and new results of nano-dust stream measurements in the outer Saturnian system are presented. These data show periodicities related to Saturn and its moons, leading to a deeper understanding of nano-dust origins and dynamics in Saturn's magnetosphere.

  17. Structure-function relationship of king cobra cathelicidin.

    PubMed

    Zhang, Yong; Zhao, Hui; Yu, Guo-Yu; Liu, Xiao-Dong; Shen, Ji-Hong; Lee, Wen-Hui; Zhang, Yun

    2010-08-01

    King cobra cathelicidin (OH-CATH) is composed of 34 amino acid residues having strong antibacterial and very weak hemolytic activities as reported by us recently. OH-CATH can be served as a valuable template to develop novel therapeutic drugs. In this study, OH-CATH and six of its analogs were synthesized to explore their structure-function relationships based on their bactericidal and hemolytic activities. Experimental results of OH-CATH(3-34) and OH-CATH(5-34) indicated that the N-terminal 4 amino acid residues of OH-CATH played an important role on its hemolytic activity but had weak effects on its bactericidal activity. Among OH-CATH and its analogs, OH-CATH(5-34) had the lowest hemolytic activity while maintained strong antimicrobial activity. To evaluate its potential usage, the biological activities of OH-CATH(5-34) were compared with those of pexiganan. The bactericidal activity of OH-CATH(5-34) against 5 different species (11 laboratory strains) was 2-4 times stronger than that of pexiganan (4-16 microg/ml vs 8-32 microg/ml). Hemolytic activity of OH-CATH(5-34) against human erythrocytes was 0.69% while that of pexiganan was 16.5% at the dosage of 200 microg/ml. OH-CATH(5-34) showed very weak cytotoxic activities against primary rabbit ventricular endothelial cells and four human cancer cell lines whereas pexiganan showed strong cytotoxic activity against these five cell lines (IC(50)=20-90 microg/ml). The intravenous LD(50) value of OH-CATH(5-34) on mice was 7-fold higher than that of pexiganan (175 mg/kg vs 25mg/kg). Taken together, our results suggested that OH-CATH(5-34) should be considered as an excellent candidate for developing therapeutic drugs. PMID:20576537

  18. Sensitivity Studies for In-Situ Automated Tape Placement of Thermoplastic Composites

    NASA Technical Reports Server (NTRS)

    Costen, Robert C.; Marchello, Joseph M.

    2004-01-01

    This modeling effort seeks to improve the interlaminate bond strength of thermoplastic carbon composites produced by the in-situ automated tape placement (ATP) process. An existing high productivity model is extended to lower values of the Peclet number that correspond to the present operating conditions of the Langley ATP robot. (The Peclet number is the dimensionless ratio of inertial to diffusive heat transfer.) In sensitivity studies, all of the process and material parameters are individually varied. The model yields the corresponding variations in the effective bonding time (EBT) referred to the glass transition temperature. According to reptation theory, the interlaminate bond strength after wetting occurs is proportional to the one-fourth power of EBT. The model also computes the corresponding variations in the thermal input power (TIP) and the mass and volumetric process rates. Process studies show that a 10 percent increase in the consolidation length results in a 20 percent increase in EBT and a 5 percent increase in TIP. A surprising result is that a 10 K decrease in the tooling temperature results in a 25 percent increase in EBT and an 8 percent increase in TIP. Material studies show that a 10 K decrease in glass transition temperature results in an 8 percent increase in EBT and a 8 percent decrease in TIP. A 20 K increase in polymer degradation temperature results in a 23 percent increase in EBT with no change in TIP.

  19. In situ degradation studies of two-dimensional WSe₂-graphene heterostructures.

    PubMed

    Wang, B; Eichfield, S M; Wang, D; Robinson, J A; Haque, M A

    2015-09-14

    Heterostructures of two-dimensional materials can be vulnerable to thermal degradation due to structural and interfacial defects as well as thermal expansion mismatch, yet a systematic study does not exist in the literature. In this study, we investigate the degradation of freestanding WSe2-graphene heterostructures due to heat and charge flow by performing in situ experiments inside a transmission electron microscope. Experimental results show that purely thermal loading requires higher temperatures (>850 °C), about 150 °C higher than that under combined electrical and thermal loading. In both cases, selenium is the first element to decompose and migration of silicon atoms from the test structure to the freestanding specimen initiates rapid degradation through the formation of tungsten disilicide and silicon carbide. The role of the current flow is to enhance the migration of silicon from the sample holder and to knock-out the selenium atoms. The findings of this study provide fundamental insights into the degradation of WSe2-graphene heterostructures and inspire their application in electronics for use in harsh environments. PMID:26260468

  20. In situ HVEM studies of phase transformation in Zr alloys and compounds under irradiation

    SciTech Connect

    Motta, A.T.; Faldowski, J.A.; Howe, L.M.; Okamoto, P.R.

    1996-01-01

    The High Voltage Electron Microscope (HVEM)/Tandem facility at Argonne National Laboratory has been used to conduct detailed studies of the phase stability and microstructural evolution in zirconium alloys and compounds under ion and electron irradiation. Detailed kinetic studies of the crystalline-to-amorphous transformation of the intermetallic compounds Zr{sub 3}(Fe{sub 1-x}Ni{sub x}), Zr(Fe{sub 1-x},Cr{sub x}){sub 2}, Zr{sub 3}Fe, and Zr{sub 1.5} Nb{sub 1.5} Fe, both as second phase precipitates and in bulk form, have been performed using the in-situ capabilities of the Argonne facility, under a variety of irradiation conditions (temperature, dose rate). Results include a verification of a dose rate effect on amorphization and the influence of material variables (stoichiometry x, presence of stacking faults, crystal structure) on the critical temperature and on the critical dose for amorphization. Studies were also conducted of the microstructural evolution under irradiation of specially tailored binary and ternary model alloys. The stability of the {omega}-phase in Zr-20%Nb under electron and Ar ion irradiation was investigated as well as the {beta}-phase precipitation in Zr-2.5%Nb under Ar ion irradiation. The ensemble of these results is discussed in terms of theoretical models of amorphization and of irradiation-altered solubility.

  1. Numerical studies of heat transfer and gas migration processes in relation to in situ vitrification

    SciTech Connect

    Hawkes, G.L.; MacKinnon, R.J.; Murray, P.E.

    1990-09-01

    This document presents numerical studies conducted in support of the In Situ Vitrification (ISV) treatability study. These results will be used for support of hardware design and performance assessments of ISV processes. Four models are presented and analyzed using finite element techniques: (1) heat transport and melting during the ISV process, (2) heat transfer calculations on the Intermediate Field Test (IFT) off-gas confinement hood, (3) gas migration in permeable soil surrounding the vitrified zone, and (4) melt rate calculations. Heat transport in the ISV process describes the temperature field and melt growth in the soil. Thermal radiation heat transfer calculations for the IFT hood demonstrate the sensitivity of the hood temperatures to melt temperature, melt radius, and exterior hood emissivity. The study of gas migration in permeable soil resulting from a buried source predicts that gas may migrate to the soil surface. The one-dimensional melt rate calculations conservatively predict a melt rate of 6 cm/hr. 11 refs., 20 figs., 3 tabs.

  2. Operable Unit 7-13/14 in situ thermal desorption treatability study work plan

    SciTech Connect

    Shaw, P.; Nickelson, D.; Hyde, R.

    1999-05-01

    This Work Plan provides technical details for conducting a treatability study that will evaluate the application of in situ thermal desorption (ISTD) to landfill waste at the Subsurface Disposal Area (SDA) at the Idaho National Engineering and Environmental Laboratory (INEEL). ISTD is a form of thermally enhanced vapor vacuum extraction that heats contaminated soil and waste underground to raise its temperature and thereby vaporize and destroy most organics. An aboveground vapor vacuum collection and treatment system then destroys or absorbs the remaining organics and vents carbon dioxide and water to the atmosphere. The technology is a byproduct of an advanced oil-well thermal extraction program. The purpose of the ISTD treatability study is to fill performance-based data gaps relative to off-gas system performance, administrative feasibility, effects of the treatment on radioactive contaminants, worker safety during mobilization and demobilization, and effects of landfill type waste on the process (time to remediate, subsidence potential, underground fires, etc.). By performing this treatability study, uncertainties associated with ISTD as a selected remedy will be reduced, providing a better foundation of remedial recommendations and ultimate selection of remedial actions for the SDA.

  3. Trade Study of Five In-Situ Propellant Production System for a Mars Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Green, S. T.; Deffenbaugh, D. M.; Miller, M. A.

    1999-01-01

    One of the goals of NASA''s HEDS enterprise is to establish a long-term human presence on Mars at a fraction of the cost of employing today''s technology. The most direct method of reducing mission cost is to reduce the launch mass of the spacecraft. If the propellants for the return phase of the mission are produced on Mars, the total spacecraft mass could be reduced significantly. An interim goal is a Mars Sample Return (MSR) mission, which is proposed to demonstrate the feasibility of in-situ propellant production (ISPP). Five candidate ISPP systems for producing two fuels and oxygen from the Martian atmosphere are considered in this design trade-off study:(1) Zirconia cell with methanol synthesis, (2) Reverse water gas shift (RWGS) with water electrolysis and methanol synthesis, (3) Sabatier process for methane production with water electrolysis, (4) Sabatier process with water electrolysis and partial methane pyrolysis, and (5) Sabatier/RWGS combination with water electrolysis. These systems have been the subject of numerous previous analytical studies and laboratory demonstrations. In this investigation, the systems are objectively compared on the basis of thermochemical performance models using a commonly used chemical plant analysis software package. The realistic effects of incomplete chemical conversion and gas phase separator performance are included in these models. This study focuses on the chemical processing and product separation subsystems. The CO2 compression upstream of the chemical plane and the liquefaction/storage components are not included here.

  4. Airborne Sunphotometer Studies of Aerosol Properties and Effects, Including Closure Among Satellite, Suborbital Remote, and In situ Measurements

    NASA Technical Reports Server (NTRS)

    Russlee, Philip B.; Schmid, B.; Redemann, J.; Livingston, J. M.; Bergstrom, R. W.; Ramirez, S. A.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    Airborne sunphotometry has been used to measure aerosols from North America, Europe, and Africa in coordination with satellite and in situ measurements in TARFOX (1996), ACE-2 (1997), PRIDE (2000), and SAFARI 2000. Similar coordinated measurements of Asian aerosols are being conducted this spring in ACE-Asia and are planned for North American aerosols this summer in CLAMS. This paper summarizes the approaches used, key results, and implications for aerosol properties and effects, such as single scattering albedo and regional radiative forcing. The approaches exploit the three-dimensional mobility of airborne sunphotometry to access satellite scenes over diverse surfaces (including open ocean with and without sunglint) and to match exactly the atmospheric layers sampled by airborne in situ measurements and other radiometers. These measurements permit tests of the consistency, or closure, among such diverse measurements as aerosol size-resolved chemical composition; number or mass concentration; light extinction, absorption, and scattering (total, hemispheric back and 180 deg.); and radiative fluxes. In this way the airborne sunphotometer measurements provide a key link between satellite and in situ measurements that helps to understand any discrepancies that are found. These comparisons have led to several characteristic results. Typically these include: (1) Better agreement among different types of remote measurements than between remote and in situ measurements. (2) More extinction derived from transmission measurements than from in situ measurements. (3) Larger aerosol absorption inferred from flux radiometry than from in situ measurements. Aerosol intensive properties derived from these closure studies have been combined with satellite-retrieved fields of optical depth to produce fields of regional radiative forcing. We show results for the North Atlantic derived from AVHRR optical depths and aerosol intensive properties from TARFOX and ACE-2. Companion papers

  5. Scanning force microscope for in situ nanofocused X-ray diffraction studies

    PubMed Central

    Ren, Zhe; Mastropietro, Francesca; Davydok, Anton; Langlais, Simon; Richard, Marie-Ingrid; Furter, Jean-Jacques; Thomas, Olivier; Dupraz, Maxime; Verdier, Marc; Beutier, Guillaume; Boesecke, Peter; Cornelius, Thomas W.

    2014-01-01

    A compact scanning force microscope has been developed for in situ combination with nanofocused X-ray diffraction techniques at third-generation synchrotron beamlines. Its capabilities are demonstrated on Au nano-islands grown on a sapphire substrate. The new in situ device allows for in situ imaging the sample topography and the crystallinity by recording simultaneously an atomic force microscope (AFM) image and a scanning X-ray diffraction map of the same area. Moreover, a selected Au island can be mechanically deformed using the AFM tip while monitoring the deformation of the atomic lattice by nanofocused X-ray diffraction. This in situ approach gives access to the mechanical behavior of nanomaterials. PMID:25178002

  6. Endothelial preservation in reversed and in situ autogenous vein grafts. A quantitative experimental study.

    PubMed Central

    Cambria, R P; Megerman, J; Abbott, W M

    1985-01-01

    The hypothesis that superior endothelial preservation occurs when in situ (as opposed to harvested and reversed) autogenous veins are used as arterial grafts was investigated in a canine model by quantitating endothelial loss as seen on scanning electron micrographs. In situ grafts were compared to atraumatically dissected, nondistended, reversed grafts and to grafts distended to 500 mmHg pressure. Two hours after arterial transplantation, endothelial denudation averaged 3.9 +/- 6.7% on in situ grafts, 18.6 +/- 5.9% on reversed grafts (p less than 0.01), and 35.3 +/- 5.4% on reversed and distended grafts (p less than 0.001). At 24 hours after grafting, a significant increase (p less than 0.01) in endothelial destruction on in situ grafts resulted in a smaller, yet still significant difference in endothelial preservation between in situ and reversed grafts (15.2 +/- 9.5% vs. 25.1 +/- 23.4%, p less than 0.05). Endothelial healing was largely accomplished at 2 weeks regardless of technique. No difference in endothelial fibrinolytic activity could be detected between in situ and gently handled, reversed grafts at 24 hours or 6 weeks after surgery. An obligatory, although modest, degree of endothelial destruction occurred on the undissected portion of in situ grafts as a consequence of exposure to arterial hemodynamics. However, in the immediate postoperative period, endothelial preservation on in situ grafts surpassed that seen in even the most gently handled reversed vein grafts. Images FIGS. 1A and B. FIG. 2. FIG. 3. PMID:4015211

  7. Challenges in computational studies of enzyme structure, function and dynamics.

    PubMed

    Carvalho, Alexandra T P; Barrozo, Alexandre; Doron, Dvir; Kilshtain, Alexandra Vardi; Major, Dan Thomas; Kamerlin, Shina Caroline Lynn

    2014-11-01

    In this review we give an overview of the field of Computational enzymology. We start by describing the birth of the field, with emphasis on the work of the 2013 chemistry Nobel Laureates. We then present key features of the state-of-the-art in the field, showing what theory, accompanied by experiments, has taught us so far about enzymes. We also briefly describe computational methods, such as quantum mechanics-molecular mechanics approaches, reaction coordinate treatment, and free energy simulation approaches. We finalize by discussing open questions and challenges. PMID:25306098

  8. In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Lithium-Oxygen Redox Reactions

    SciTech Connect

    Lu, Yi-Chun; Crumlin, Ethan J.; Veith, Gabriel M.; Harding, Jonathon R.; Mutoro, Eva; Baggetto, Loïc; Dudney, Nancy J.; Liu, Zhi; Shao-Horn, Yang

    2012-10-08

    The lack of fundamental understanding of the oxygen reduction and oxygen evolution in nonaqueous electrolytes significantly hinders the development of rechargeable lithium-air batteries. Here we employ a solid-state Li4+xTi5O12/LiPON/LixV2O5 cell and examine in situ the chemistry of Li-O2 reaction products on LixV2O5 as a function of applied voltage under ultra high vacuum (UHV) and near ambient-pressure of oxygen using X-ray photoelectron spectroscopy (APXPS). Oxygen reduction and evolution reactions take place on the surface of the mixed electronic and Li+ ionic conductor, LixV2O5, which eliminate parasitic reactions between oxygen reduction/evolution reaction intermediates and aprotic electrolytes used in Li-O2 batteries reported to date. Under UHV, reversible lithium intercalation and de-intercalation from LixV2O5 was noted, where the changes in the vanadium valence state revealed from XPS in this study were comparable to that reported previously from Li/LixV2O5 thin film batteries. In presence of oxygen near ambient pressure, the LixV2O5 surface was covered gradually by the reaction product of oxygen reduction, namely lithium peroxide (Li2O2) (approximately 1-2 unit cells) upon discharge. Interestingly, the LixV2O5 surface became re-exposed upon charging, and the oxidation of Li2O2 began at much lower overpotentials (~240 mV) than the charge overpotentials of Li-O2 cells (~1000 mV) with aprotic electrolytes, which can be attributed to subnanometer-thick Li2O2 with surfaces free of contaminants such as carbonate species. Our study provides first evidence of reversible lithium peroxide formation and decomposition in situ on an oxide surface using a solid-state cell, and new insights into the reaction mechanism of Li-O2 chemistry.

  9. A large volume cell for in situ neutron diffraction studies of hydrothermal crystallizations

    NASA Astrophysics Data System (ADS)

    Xia, Fang; Qian, Gujie; Brugger, Joël; Studer, Andrew; Olsen, Scott; Pring, Allan

    2010-10-01

    A hydrothermal cell with 320 ml internal volume has been designed and constructed for in situ neutron diffraction studies of hydrothermal crystallizations. The cell design adopts a dumbbell configuration assembled with standard commercial stainless steel components and a zero-scattering Ti-Zr alloy sample compartment. The fluid movement and heat transfer are simply driven by natural convection due to the natural temperature gradient along the fluid path, so that the temperature at the sample compartment can be stably sustained by heating the fluid in the bottom fluid reservoir. The cell can operate at temperatures up to 300 °C and pressures up to 90 bars and is suitable for studying reactions requiring a large volume of hydrothermal fluid to damp out the negative effect from the change of fluid composition during the course of the reactions. The capability of the cell was demonstrated by a hydrothermal phase transformation investigation from leucite (KAlSi2O6) to analcime (NaAlSi2O6ṡH2O) at 210 °C on the high intensity powder diffractometer Wombat in ANSTO. The kinetics of the transformation has been resolved by collecting diffraction patterns every 10 min followed by Rietveld quantitative phase analysis. The classical Avrami/Arrhenius analysis gives an activation energy of 82.3±1.1 kJ mol-1. Estimations of the reaction rate under natural environments by extrapolations agree well with petrological observations.

  10. In situ study of self-assembled nanocomposite films by spectral SPR sensor.

    PubMed

    Zhang, Zhe; Liu, Jie; Qi, Zhi-mei; Lu, Dan-feng

    2015-06-01

    Spectral surface plasmon resonance (SPR) sensor with a time-resolved charge-coupled device (CCD) detector is a powerful analytical tool for label-free detection of biomolecular interaction at the liquid/solid interface and for in situ study of molecular adsorption behavior. In this work, the layer-by-layer self-assembly processes for three nanocomposite films were monitored in real time using a broadband spectral SPR sensor with a large dynamic range. Kinetics studies suggest that cytochrome c (Cyt c) and deoxy ribonucleic acid (DNA) adsorptions obey the Langmuir-isotherm theory, while gold nanoparticle (GNP) adsorption follows the Diffusion-controlled model. Using poly(sodium 4-styrenesulfonate) (PSS) and poly(dimethyldiallylammonium chloride) (PDDA) as the positively charged agents, three kinds of multilayer films such as the PSS/Cyt c, GNP/Cyt c and PDDA/DNA binary nanocomposites were fabricated on the SPR chips by the electrostatic attraction based on self-assemble. The SPR response in terms of ΔλR was measured to linear increase with increasing the number of layers for a six-bilayer PSS/Cyt c nanocomposite film, indicating that every PSS/Cyt c layer has equal mass coverage. In contrast, the nonlinear dependences of ΔλR on the number of bilayers were observed for the GNP/Cyt c and PDDA/DNA nanocomposite multilayer films. PMID:25842131

  11. Bioreactor tests preliminary to landfill in situ aeration: a case study.

    PubMed

    Raga, Roberto; Cossu, Raffaello

    2013-04-01

    Lab scale tests in bioreactor were carried out in the framework of the characterization studies of a landfill where in situ aeration (possibly followed by landfill mining) had been proposed as part of the novel waste management strategy in a region in northern Italy. The tests were run to monitor the effects produced by aerobic conditions at different temperatures on waste sampled at different depths in the landfill, with focus on the carbon and nitrogen conversion during aeration. Temperatures ranging from 35 to 45°C were chosen, in order to evaluate possible inhibition of biodegradation processes (namely nitrification) at 45°C in the landfill. The results obtained showed positive effects of the aeration on leachate quality and a significant reduction of waste biodegradability. Although a delay of biodegradation processes was observed in the reactor run at 45°C, biodegradation rates increased after 2 months of aeration, providing very low values of the relevant parameters (as in the other aerated reactors) by the end of the study. Mass balances were carried out for TOC and NNH4(+); the findings obtained were encouraging and provided evidence of the effectiveness of carbon and nitrogen conversion processes in the aerated landfill simulation reactors. PMID:23274082

  12. In situ synchrotron study of electromigration induced grain rotations in Sn solder joints

    NASA Astrophysics Data System (ADS)

    Shen, Hao; Zhu, Wenxin; Li, Yao; Tamura, Nobumichi; Chen, Kai

    2016-04-01

    Here we report an in situ study of the early stage of microstructure evolution induced by electromigration in a Pb-free β-Sn based solder joint by synchrotron polychromatic X-ray microdiffraction. With this technique, crystal orientation evolution is monitored at intragranular levels with high spatial and angular resolution. During the entire experiment, no crystal growth is detected, and rigid grain rotation is observed only in the two grains within the current crowding region, where high density and divergence of electric current occur. Theoretical calculation indicates that the trend of electrical resistance drop still holds under the present conditions in the grain with high electrical resistivity, while the other grain with low resistivity reorients to align its a-axis more parallel with the ones of its neighboring grains. A detailed study of dislocation densities and subgrain boundaries suggests that grain rotation in β-Sn, unlike grain rotation in high melting temperature metals which undergo displacive deformation, is accomplished via diffusional process mainly, due to the high homologous temperature.

  13. In situ synchrotron study of electromigration induced grain rotations in Sn solder joints.

    PubMed

    Shen, Hao; Zhu, Wenxin; Li, Yao; Tamura, Nobumichi; Chen, Kai

    2016-01-01

    Here we report an in situ study of the early stage of microstructure evolution induced by electromigration in a Pb-free β-Sn based solder joint by synchrotron polychromatic X-ray microdiffraction. With this technique, crystal orientation evolution is monitored at intragranular levels with high spatial and angular resolution. During the entire experiment, no crystal growth is detected, and rigid grain rotation is observed only in the two grains within the current crowding region, where high density and divergence of electric current occur. Theoretical calculation indicates that the trend of electrical resistance drop still holds under the present conditions in the grain with high electrical resistivity, while the other grain with low resistivity reorients to align its a-axis more parallel with the ones of its neighboring grains. A detailed study of dislocation densities and subgrain boundaries suggests that grain rotation in β-Sn, unlike grain rotation in high melting temperature metals which undergo displacive deformation, is accomplished via diffusional process mainly, due to the high homologous temperature. PMID:27086863

  14. In-situ early-age hydration study of sulfobelite cements by synchrotron powder diffraction

    SciTech Connect

    Álvarez-Pinazo, G.; Cuesta, A.; García-Maté, M.; Santacruz, I.; Losilla, E.R.; Fauth, F.; Aranda, M.A.G.; De la Torre, A.G.

    2014-02-15

    Eco-friendly belite calcium sulfoaluminate (BCSA) cement hydration behavior is not yet well understood. Here, we report an in-situ synchrotron X-ray powder diffraction study for the first hours of hydration of BCSA cements. Rietveld quantitative phase analysis has been used to establish the degree of reaction (α). The hydration of a mixture of ye'elimite and gypsum revealed that ettringite formation (α ∼ 70% at 50 h) is limited by ye'elimite dissolution. Two laboratory-prepared BCSA cements were also studied: non-active-BCSA and active-BCSA cements, with β- and α′{sub H}-belite as main phases, respectively. Ye'elimite, in the non-active-BCSA system, dissolves at higher pace (α ∼ 25% at 1 h) than in the active-BCSA one (α ∼ 10% at 1 h), with differences in the crystallization of ettringite (α ∼ 30% and α ∼ 5%, respectively). This behavior has strongly affected subsequent belite and ferrite reactivities, yielding stratlingite and other layered phases in non-active-BCSA. The dissolution and crystallization processes are reported and discussed in detail. -- Highlights: •Belite calcium sulfoaluminate cements early hydration mechanism has been determined. •Belite hydration strongly depends on availability of aluminum hydroxide. •Orthorhombic ye’elimite dissolved at a higher pace than cubic one. •Ye’elimite larger reaction degree yields stratlingite formation by belite reaction. •Rietveld method quantified gypsum, anhydrite and bassanite dissolution rates.

  15. Bioreactor tests preliminary to landfill in situ aeration: A case study

    SciTech Connect

    Raga, Roberto; Cossu, Raffaello

    2013-04-15

    Highlights: ► Carbon and nitrogen mass balances in aerated landfill simulation reactors. ► Waste stabilization in aerated landfill simulation reactors. ► Effect of temperature on biodegradation processes in aerated landfills. - Abstract: Lab scale tests in bioreactor were carried out in the framework of the characterization studies of a landfill where in situ aeration (possibly followed by landfill mining) had been proposed as part of the novel waste management strategy in a region in northern Italy. The tests were run to monitor the effects produced by aerobic conditions at different temperatures on waste sampled at different depths in the landfill, with focus on the carbon and nitrogen conversion during aeration. Temperatures ranging from 35 to 45 °C were chosen, in order to evaluate possible inhibition of biodegradation processes (namely nitrification) at 45 °C in the landfill. The results obtained showed positive effects of the aeration on leachate quality and a significant reduction of waste biodegradability. Although a delay of biodegradation processes was observed in the reactor run at 45 °C, biodegradation rates increased after 2 months of aeration, providing very low values of the relevant parameters (as in the other aerated reactors) by the end of the study. Mass balances were carried out for TOC and N-NH{sub 4}{sup +}; the findings obtained were encouraging and provided evidence of the effectiveness of carbon and nitrogen conversion processes in the aerated landfill simulation reactors.

  16. In situ absorption and relative bioavailability studies of zaleplon loaded self-nanoemulsifying powders.

    PubMed

    Janga, Karthik Y; Jukanti, Raju; Sunkavalli, Sharath; Velpula, Ashok; Bandari, Suresh; Kandadi, Prabhakar; Veerareddy, Prabhakar Reddy

    2013-01-01

    Self-nanoemulsifying drug delivery systems (SNEDDSs) offer potential as suitable carriers for improved oral delivery of poorly soluble and low bioavailable drugs. To derive self-nanoemulsifying powders (SNEPs), the optimized Z-SNEDDS formulation was adsorbed onto different carriers and based on micromeritics the formulation loaded onto neusilin US2 (SNEP-N) was selected for further characterization. The solid-state characterization (scanning electron microscopy, differential scanning calorimetry and powder X-ray diffraction) studies unravel the transformation of native crystalline state to amorphous and/or molecular state. The higher predictive effective permeability coefficient and fraction absorbed in humans extrapolated from in situ single-pass intestinal absorption study data in rats provide an insight on the potential of SNEPs for augment in absorption across gastrointestinal barrier. Overall a 3.5-fold enhancement in the extent of absorption of zaleplon from SNEP-N formulation proves the feasibility of SNEPs formulation for improved oral delivery of zaleplon. PMID:22894164

  17. In situ synchrotron study of electromigration induced grain rotations in Sn solder joints

    PubMed Central

    Shen, Hao; Zhu, Wenxin; Li, Yao; Tamura, Nobumichi; Chen, Kai

    2016-01-01

    Here we report an in situ study of the early stage of microstructure evolution induced by electromigration in a Pb-free β-Sn based solder joint by synchrotron polychromatic X-ray microdiffraction. With this technique, crystal orientation evolution is monitored at intragranular levels with high spatial and angular resolution. During the entire experiment, no crystal growth is detected, and rigid grain rotation is observed only in the two grains within the current crowding region, where high density and divergence of electric current occur. Theoretical calculation indicates that the trend of electrical resistance drop still holds under the present conditions in the grain with high electrical resistivity, while the other grain with low resistivity reorients to align its a-axis more parallel with the ones of its neighboring grains. A detailed study of dislocation densities and subgrain boundaries suggests that grain rotation in β-Sn, unlike grain rotation in high melting temperature metals which undergo displacive deformation, is accomplished via diffusional process mainly, due to the high homologous temperature. PMID:27086863

  18. Occupational-health study at the Geokinetics true in-situ oil-shale retorting facility

    SciTech Connect

    Hargis, K.M.; Rom, W.N.; Grier, R.S.; Tillery, M.I.; Voelz, G.L.; Ettinger, H.J.; Wheat, L.D.

    1983-07-01

    An occupational health study was conducted during the burn of the first commercial-size retort employing the Geokinetics, Inc., horizontal in situ oil shale retorting process. The study consisted of field industrial hygiene surveys and sampling, and medical evaluation of workers and spouses living at the facility. Industrial hygiene surveys and sampling were conducted during early, middle, and late phases of the 9-month burn of the retort. An attempt was made to sample areas of expected maximum concentrations in order to characterize air contaminants near process units or areas, rather than to sample actual employee exposures. Samples were collected for analysis of dust and a number of selected gases and vapors in air, and limited monitoring was conducted for noise. Limited dust monitoring was also conducted during the drilling of blastholes for another retort. Medical evaluations consisted of medical history, physical examination, pulmonary ventilation function tests, chest x ray, and blood and urine tests (including chromosome evaluations and Ames testing of urine). 30 references.

  19. An in situ annealing study of lead implanted single crystal calcium titanate

    NASA Astrophysics Data System (ADS)

    Rankin, J.; Hobbs, L. W.; Boatner, L. A.; White, C. W.

    1988-05-01

    In situ annealing studies have been carried out in ion-implanted single crystals of CaTiO 3. These crystals were implanted along both the a and b axes of this orthorhombic perovskite structure (Pcmn). Through the use of a Panasonic video cassette recorder connected to a Gatan television system on a JEOL 200CX transmission electron microscope, the regrowth process was observed and the growth rate monitored. Samples were annealed in a Gatan single tilt hot stage at ˜ 475° C. The near-surface region of this material, approximately 190 nm, is turned amorphous by the implantation of 540 keV Pb ions at a fluence of 1 × 10 15/cm 2. Annealing at 475° C results in the epitaxial regrowth of the damaged region. The regrowth process begins at the original amorphous/crystalline interface and proceeds outward to the surface. This phenomenon has been studied for implantations along both the <010> and the <100> crystallographic directions. For constant accelerating voltage and fluence of the implanted lead ions, transmission electron microscopy (TEM) and Rutherford backscattering spectroscopy (RBS) [C.W. White et al., to be published in Proc. of Radiation Effects in Insulators, Lyon, France, 1987.] indicate that the regrowth rate is linear with time but strongly dependent on the oxygen partial pressure in the annealing atmosphere, and the implantation and subsequent regrowth direction.

  20. In Situ Biological Contamination Studies of the Moon: Implications for Planetary Protection and Life Detection Missions

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Dworkin, Jason P.; Lupisella, Mark; Williams, David R.; Kminek, Gerhard; Rummel, John D.

    2010-01-01

    NASA and ESA have outlined visions for solar system exploration that will include a series of lunar robotic precursor missions to prepare for, and support a human return to the Moan, and future human exploration of Mars and other destinations, including possibly asteroids. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require careful operations, and that all systems be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under the Committee on Space Research's (COSPAR's) current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft, nor is there a different planetary protection category for human missions, although preliminary C SPAR policy guidelines for human missions to Mars have been developed. Future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future: Mars surface exploration plans for a human mission to Mars.

  1. In situ synchrotron study of electromigration induced grain rotations in Sn solder joints

    DOE PAGESBeta

    Shen, Hao; Zhu, Wenxin; Li, Yao; Tamura, Nobumichi; Chen, Kai

    2016-04-18

    In this paper we report an in situ study of the early stage of microstructure evolution induced by electromigration in a Pb-free β-Sn based solder joint by synchrotron polychromatic X-ray microdiffraction. With this technique, crystal orientation evolution is monitored at intragranular levels with high spatial and angular resolution. During the entire experiment, no crystal growth is detected, and rigid grain rotation is observed only in the two grains within the current crowding region, where high density and divergence of electric current occur. Theoretical calculation indicates that the trend of electrical resistance drop still holds under the present conditions in themore » grain with high electrical resistivity, while the other grain with low resistivity reorients to align its a-axis more parallel with the ones of its neighboring grains. A detailed study of dislocation densities and subgrain boundaries suggests that grain rotation in β-Sn, unlike grain rotation in high melting temperature metals which undergo displacive deformation, is accomplished via diffusional process mainly, due to the high homologous temperature.« less

  2. Deformation of nanotubes in peeling contact with flat substrate: An in situ electron microscopy nanomechanical study

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoming; Zheng, Meng; Wei, Qing; Signetti, Stefano; Pugno, Nicola M.; Ke, Changhong

    2016-04-01

    Peeling of one-dimensional (1D) nanostructures from flat substrates is an essential technique in studying their adhesion properties. The mechanical deformation of the nanostructure in the peeling experiment is critical to the understanding of the peeling process and the interpretation of the peeling measurements, but it is challenging to measure directly and quantitatively at the nanoscale. Here, we investigate the peeling deformation of a bundled carbon nanotube (CNT) fiber by using an in situ scanning electron microscopy nanomechanical peeling technique. A pre-calibrated atomic force microscopy cantilever is utilized as the peeling force sensor, and its back surface acts as the peeling contact substrate. The nanomechanical peeling scheme enables a quantitative characterization of the deformational behaviors of the CNT fiber in both positive and negative peeling configurations with sub-10 nm spatial and sub-nN force resolutions. Nonlinear continuum mechanics models and finite element simulations are employed to interpret the peeling measurements. The measurements and analysis reveal that the structural imperfections in the CNT fiber may have a substantial influence on its peeling deformations and the corresponding peeling forces. The research findings reported in this work are useful to the study of mechanical and adhesion properties of 1D nanostructures by using nanomechanical peeling techniques.

  3. Indium hydroxide to oxide decomposition observed in one nanocrystal during in situ transmission electron microscopy studies

    SciTech Connect

    Miehe, Gerhard; Lauterbach, Stefan; Kleebe, Hans-Joachim; Gurlo, Aleksander

    2013-02-15

    The high-resolution transmission electron microscopy (HR-TEM) is used to study, in situ, spatially resolved decomposition in individual nanocrystals of metal hydroxides and oxyhydroxides. This case study reports on the decomposition of indium hydroxide (c-In(OH){sub 3}) to bixbyite-type indium oxide (c-In{sub 2}O{sub 3}). The electron beam is focused onto a single cube-shaped In(OH){sub 3} crystal of {l_brace}100{r_brace} morphology with ca. 35 nm edge length and a sequence of HR-TEM images was recorded during electron beam irradiation. The frame-by-frame analysis of video sequences allows for the in situ, time-resolved observation of the shape and orientation of the transformed crystals, which in turn enables the evaluation of the kinetics of c-In{sub 2}O{sub 3} crystallization. Supplementary material (video of the transformation) related to this article can be found online at (10.1016/j.jssc.2012.09.022). After irradiation the shape of the parent cube-shaped crystal is preserved, however, its linear dimension (edge) is reduced by the factor 1.20. The corresponding spotted selected area electron diffraction (SAED) pattern representing zone [001] of c-In(OH){sub 3} is transformed to a diffuse strongly textured ring-like pattern of c-In{sub 2}O{sub 3} that indicates the transformed cube is no longer a single crystal but is disintegrated into individual c-In{sub 2}O{sub 3} domains with the size of about 5-10 nm. The induction time of approximately 15 s is estimated from the time-resolved Fourier transforms. The volume fraction of the transformed phase (c-In{sub 2}O{sub 3}), calculated from the shrinkage of the parent c-In(OH){sub 3} crystal in the recorded HR-TEM images, is used as a measure of the kinetics of c-In{sub 2}O{sub 3} crystallization within the framework of Avrami-Erofeev formalism. The Avrami exponent of {approx}3 is characteristic for a reaction mechanism with fast nucleation at the beginning of the reaction and subsequent three-dimensional growth of

  4. Ultraprecision machining of micro-structured functional surfaces on brittle materials

    NASA Astrophysics Data System (ADS)

    Yu, D. P.; Wong, Y. S.; Hong, G. S.

    2011-09-01

    Ultraprecision micro-structured functional surfaces on hard and brittle materials, e.g. ceramic and glass, are gaining increasing application in a range of areas such as engineering optics and semiconductor and biomedical products. However, due to their tendency of being damaged in brittle fracture in machining, it is challenging to achieve both a high surface finish and complex surface shapes. In this paper, ultraprecision machining of micro-structured functional surfaces on brittle materials by fast tool servo diamond turning is studied. A machining model has been developed to ensure ductile regime machining of the brittle material, in which the material is removed by both plastic deformation and brittle fracture, but the cracks produced are prevented from being extended into the finished surface. Based on the model, an iterative numerical method has been proposed to predict the maximum feed rate for producing crack-free micro-structured surfaces. Machining experiments on typical micro-structured functional surfaces have been carried out to validate the effectiveness of the proposed method for producing ultraprecision micro-structured functional surfaces.

  5. Structure-function hierarchies and von Kármán-Howarth relations for turbulence in magnetohydrodynamical equations.

    PubMed

    Basu, Abhik; Naji, Ali; Pandit, Rahul

    2014-01-01

    We generalize the method of A. M. Polyakov, [ Phys. Rev. E 52 6183 (1995)] for obtaining structure-function relations in turbulence in the stochastically forced Burgers equation, to develop structure-function hierarchies for turbulence in three models for magnetohydrodynamics (MHD). These are the Burgers analogs of MHD in one dimension [ Eur. Phys. J. B 9 725 (1999)], and in three dimensions (3DMHD and 3D Hall MHD). Our study provides a convenient and unified scheme for the development of structure-function hierarchies for turbulence in a variety of coupled hydrodynamical equations. For turbulence in the three sets of MHD equations mentioned above, we obtain exact relations for third-order structure functions and their derivatives; these expressions are the analogs of the von Kármán-Howarth relations for fluid turbulence. We compare our work with earlier studies of such relations in 3DMHD and 3D Hall MHD. PMID:24580182

  6. In situ studies of surface of NiFe2O4 catalyst during complete oxidation of methane

    DOE PAGESBeta

    Zhang, Shiran; Shan, Junjun; Nie, Longhui; Nguyen, Luan; Wu, Zili; Tao, Franklin

    2015-12-21

    Here, NiFe2O4 with an inverse spinel structure exhibits high activity for a complete oxidation of methane at 400 °C–425 °C and a higher temperature. The surface of the catalyst and its adsorbates were well characterized with ambient pressure X-ray photoelectron spectroscopy (AP-XPS) and in situ infrared spectroscopy (IR). In situ studies of the surface of NiFe2O4 using AP-XPS suggest the formation of methoxy-like and formate-like intermediates at a temperature lower than 200 °C, supported by the observed vibrational signatures in in situ IR studies. Evolutions of C1s photoemission features and the nominal atomic ratios of C/(Ni + Fe) of themore » catalyst surface suggest that the formate-like intermediate is transformed to product molecules CO2 and H2O in the temperature range of 250–300 °C. In situ studies suggest the formation of a spectator, – Olattice – CH2 – Olattice –. It strongly bonds to surface through C–O bonds and cannot be activated even at 400 °C.« less

  7. In situ studies of surface of NiFe2O4 catalyst during complete oxidation of methane

    NASA Astrophysics Data System (ADS)

    Zhang, Shiran; Shan, Junjun; Nie, Longhui; Nguyen, Luan; Wu, Zili; Tao, Franklin (Feng)

    2016-06-01

    NiFe2O4 with an inverse spinel structure exhibits high activity for a complete oxidation of methane at 400 °C-425 °C and a higher temperature. The surface of the catalyst and its adsorbates were well characterized with ambient pressure X-ray photoelectron spectroscopy (AP-XPS) and in situ infrared spectroscopy (IR). In situ studies of the surface of NiFe2O4 using AP-XPS suggest the formation of methoxy-like and formate-like intermediates at a temperature lower than 200 °C, supported by the observed vibrational signatures in in situ IR studies. Evolutions of C1s photoemission features and the nominal atomic ratios of C/(Ni + Fe) of the catalyst surface suggest that the formate-like intermediate is transformed to product molecules CO2 and H2O in the temperature range of 250-300 °C. In situ studies suggest the formation of a spectator, - Olatticesbnd CH2sbnd Olattice -. It strongly bonds to surface through Csbnd O bonds and cannot be activated even at 400 °C.

  8. First in situ TOF-PET study using digital photon counters for proton range verification.

    PubMed

    Cambraia Lopes, P; Bauer, J; Salomon, A; Rinaldi, I; Tabacchini, V; Tessonnier, T; Crespo, P; Parodi, K; Schaart, D R

    2016-08-21

    Positron emission tomography (PET) is the imaging modality most extensively tested for treatment monitoring in particle therapy. Optimal use of PET in proton therapy requires in situ acquisition of the relatively strong (15)O signal due to its relatively short half-life (~2 min) and high oxygen content in biological tissues, enabling shorter scans that are less sensitive to biological washout. This paper presents the first performance tests of a scaled-down in situ time-of-flight (TOF) PET system based on digital photon counters (DPCs) coupled to Cerium-doped Lutetium Yttrium Silicate (LYSO:Ce) crystals, providing quantitative results representative of a dual-head tomograph that complies with spatial constraints typically encountered in clinical practice (2  ×  50°, of 360°, transaxial angular acceptance). The proton-induced activity inside polymethylmethacrylate (PMMA) and polyethylene (PE) phantoms was acquired within beam pauses (in-beam) and immediately after irradiation by an actively-delivered synchrotron pencil-beam, with clinically relevant 125.67 MeV/u, 4.6  ×  10(8) protons s(-1), and 10(10) total protons. 3D activity maps reconstructed with and without TOF information are compared to FLUKA simulations, demonstrating the benefit of TOF-PET to reduce limited-angle artefacts using a 382 ps full width at half maximum coincidence resolving time. The time-dependent contributions from different radionuclides to the total count-rate are investigated. We furthermore study the impact of the acquisition time window on the laterally integrated activity depth-profiles, with emphasis on 2 min acquisitions starting at different time points. The results depend on phantom composition and reflect the differences in relative contributions from the radionuclides originating from carbon and oxygen. We observe very good agreement between the shapes of the simulated and measured activity depth-profiles for post-beam protocols. However, our results

  9. First in situ TOF-PET study using digital photon counters for proton range verification

    NASA Astrophysics Data System (ADS)

    Cambraia Lopes, P.; Bauer, J.; Salomon, A.; Rinaldi, I.; Tabacchini, V.; Tessonnier, T.; Crespo, P.; Parodi, K.; Schaart, D. R.

    2016-08-01

    Positron emission tomography (PET) is the imaging modality most extensively tested for treatment monitoring in particle therapy. Optimal use of PET in proton therapy requires in situ acquisition of the relatively strong 15O signal due to its relatively short half-life (~2 min) and high oxygen content in biological tissues, enabling shorter scans that are less sensitive to biological washout. This paper presents the first performance tests of a scaled-down in situ time-of-flight (TOF) PET system based on digital photon counters (DPCs) coupled to Cerium-doped Lutetium Yttrium Silicate (LYSO:Ce) crystals, providing quantitative results representative of a dual-head tomograph that complies with spatial constraints typically encountered in clinical practice (2  ×  50°, of 360°, transaxial angular acceptance). The proton-induced activity inside polymethylmethacrylate (PMMA) and polyethylene (PE) phantoms was acquired within beam pauses (in-beam) and immediately after irradiation by an actively-delivered synchrotron pencil-beam, with clinically relevant 125.67 MeV/u, 4.6  ×  108 protons s‑1, and 1010 total protons. 3D activity maps reconstructed with and without TOF information are compared to FLUKA simulations, demonstrating the benefit of TOF-PET to reduce limited-angle artefacts using a 382 ps full width at half maximum coincidence resolving time. The time-dependent contributions from different radionuclides to the total count-rate are investigated. We furthermore study the impact of the acquisition time window on the laterally integrated activity depth-profiles, with emphasis on 2 min acquisitions starting at different time points. The results depend on phantom composition and reflect the differences in relative contributions from the radionuclides originating from carbon and oxygen. We observe very good agreement between the shapes of the simulated and measured activity depth-profiles for post-beam protocols. However, our results also

  10. Studying the vertical aerosol extinction coefficient by comparing in situ airborne data and elastic backscatter lidar

    NASA Astrophysics Data System (ADS)

    Rosati, Bernadette; Herrmann, Erik; Bucci, Silvia; Fierli, Federico; Cairo, Francesco; Gysel, Martin; Tillmann, Ralf; Größ, Johannes; Gobbi, Gian Paolo; Di Liberto, Luca; Di Donfrancesco, Guido; Wiedensohler, Alfred; Weingartner, Ernest; Virtanen, Annele; Mentel, Thomas F.; Baltensperger, Urs

    2016-04-01

    Vertical profiles of aerosol particle optical properties were explored in a case study near the San Pietro Capofiume (SPC) ground station during the PEGASOS Po Valley campaign in the summer of 2012. A Zeppelin NT airship was employed to investigate the effect of the dynamics of the planetary boundary layer at altitudes between ˜ 50 and 800 m above ground. Determined properties included the aerosol particle size distribution, the hygroscopic growth factor, the effective index of refraction and the light absorption coefficient. The first three parameters were used to retrieve the light scattering coefficient. Simultaneously, direct measurements of both the scattering and absorption coefficient were carried out at the SPC ground station. Additionally, a single wavelength polarization diversity elastic lidar system provided estimates of aerosol extinction coefficients using the Klett method to accomplish the inversion of the signal, for a vertically resolved comparison between in situ and remote-sensing results. Note, however, that the comparison was for the most part done in the altitude range where the overlap function is incomplete and accordingly uncertainties are larger. First, the airborne results at low altitudes were validated with the ground measurements. Agreement within approximately ±25 and ±20 % was found for the dry scattering and absorption coefficient, respectively. The single scattering albedo, ranged between 0.83 and 0.95, indicating the importance of the absorbing particles in the Po Valley region. A clear layering of the atmosphere was observed during the beginning of the flight (until ˜ 10:00 LT - local time) before the mixing layer (ML) was fully developed. Highest extinction coefficients were found at low altitudes, in the new ML, while values in the residual layer, which could be probed at the beginning of the flight at elevated altitudes, were lower. At the end of the flight (after ˜ 12:00 LT) the ML was fully developed, resulting in

  11. Growth of Gallium Nitride Nanowires: A Study Using In Situ Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Diaz Rivas, Rosa Estela

    N nanowires. These findings suggest in situ electron microscopy is a powerful tool to understand the growth of GaN nanowires and also that these experimental approach can be extended to study other binary semiconductor compound such as GaP, GaAs, and InP, or even ternary compounds such as InGaN. However, further experimental work is required to fully elucidate the kinetic effects on the growth process. A better control of the growth parameters is also recommended.

  12. Understanding the effects of PEMFC contamination from balance of plant assembly aids materials: In situ studies

    DOE PAGESBeta

    Opu, Md.; Bender, G.; Macomber, Clay S.; Van Zee, J. W.; Dinh, Huyen N.

    2015-06-29

    In this study, in situ performance data were measured to assess the degree of contamination from leachates of five families of balance of plant (BOP) materials (i.e., 2-part adhesive, grease, thread lock/seal, silicone adhesive/seal and urethane adhesive/seal) broadly classified as assembly aids that may be used as adhesives and lubricants in polymer electrolyte membrane fuel cell (PEMFC) systems. Leachate solutions, derived from soaking the materials in deionized (DI) water at elevated temperature, were infused into the fuel cell to determine the effect of the leachates on fuel cell performance. During the contamination phase of the experiments, leachate solution was introducedmore » through a nebulizer into the cathode feed stream of a 50 cm2 PEMFC operating at 0.2 A/cm2 at 80°C and 32%RH. Voltage loss and high frequency resistance (HFR) were measured as a function of time and electrochemical surface area (ECA) before and after contamination were compared. Two procedures of recovery, one self-induced recovery with DI water and one driven recovery through cyclic voltammetry (CV) were investigated. Finally, performance results measured before and after contamination and after CV recovery are compared and discussed.« less

  13. Understanding the effects of PEMFC contamination from balance of plant assembly aids materials: In situ studies

    SciTech Connect

    Opu, Md.; Bender, G.; Macomber, Clay S.; Van Zee, J. W.; Dinh, Huyen N.

    2015-06-29

    In this study, in situ performance data were measured to assess the degree of contamination from leachates of five families of balance of plant (BOP) materials (i.e., 2-part adhesive, grease, thread lock/seal, silicone adhesive/seal and urethane adhesive/seal) broadly classified as assembly aids that may be used as adhesives and lubricants in polymer electrolyte membrane fuel cell (PEMFC) systems. Leachate solutions, derived from soaking the materials in deionized (DI) water at elevated temperature, were infused into the fuel cell to determine the effect of the leachates on fuel cell performance. During the contamination phase of the experiments, leachate solution was introduced through a nebulizer into the cathode feed stream of a 50 cm2 PEMFC operating at 0.2 A/cm2 at 80°C and 32%RH. Voltage loss and high frequency resistance (HFR) were measured as a function of time and electrochemical surface area (ECA) before and after contamination were compared. Two procedures of recovery, one self-induced recovery with DI water and one driven recovery through cyclic voltammetry (CV) were investigated. Finally, performance results measured before and after contamination and after CV recovery are compared and discussed.

  14. Coarsening of Pd nanoparticles in an oxidizing atmosphere studied by in situ TEM

    NASA Astrophysics Data System (ADS)

    Simonsen, Søren Bredmose; Chorkendorff, Ib; Dahl, Søren; Skoglundh, Magnus; Helveg, Stig

    2016-06-01

    The coarsening of supported palladium nanoparticles in an oxidizing atmosphere was studied in situ by means of transmission electron microscopy (TEM). Specifically, the Pd nanoparticles were dispersed on a planar and amorphous Al2O3 support and were observed during the exposure to 10 mbar technical air at 650 °C. Time-resolved TEM image series reveal that the Pd nanoparticles were immobile and that a few percent of the nanoparticles grew or shrank, indicating a coarsening process mediated by the Ostwald ripening mechanism. The TEM image contrast suggests that the largest nanoparticles tended to wet the Al2O3 support to a higher degree than the smaller nanoparticles and that the distribution of projected particle sizes consequently broadens by the appearance of an asymmetric tail toward the larger particle sizes. A comparison with computer simulations based on a simple mean-field model for the Ostwald ripening process indicates that the observed change in the particle size distribution can be accounted for by wetting of the Al2O3 support by the larger Pd nanoparticles.

  15. An electrochemical in situ study of freezing and thawing of ionic liquids in carbon nanopores.

    PubMed

    Weingarth, Daniel; Drumm, Robert; Foelske-Schmitz, Annette; Kötz, Rüdiger; Presser, Volker

    2014-10-21

    Room temperature ionic liquids (RTILs) are an emerging class of electrolytes enabling high cell voltages and, in return, high energy density of advanced supercapacitors. Yet, the low temperature behavior, including freezing and thawing, is little understood when ions are confined in the narrow space of nanopores. This study shows that RTILs may show a tremendously different thermal behavior when comparing bulk with nanoconfined properties as a result of the increased surface energy of carbon pore walls. In particular, a continuous increase in viscosity is accompanied by slowed-down charge-discharge kinetics as seen with in situ electrochemical characterization. Freezing reversibly collapses the energy storage ability and thawing fully restores the initial energy density of the material. For the first time, a different thermal behavior in positively and negatively polarized electrodes is demonstrated. This leads to different freezing and melting points in the two electrodes. Compared to bulk, RTILs in the confinement of electrically charged nanopores show a high affinity for supercooling; that is, the electrode may freeze during heating. PMID:25201074

  16. In Situ Study of Strain-Dependent Ion Conductivity of Stretchable Polyethylene Oxide Electrolyte

    PubMed Central

    Kelly, Taylor; Ghadi, Bahar Moradi; Berg, Sean; Ardebili, Haleh

    2016-01-01

    There is a strong need in developing stretchable batteries that can accommodate stretchable or irregularly shaped applications including medical implants, wearable devices and stretchable electronics. Stretchable solid polymer electrolytes are ideal candidates for creating fully stretchable lithium ion batteries mainly due to their mechanical and electrochemical stability, thin-film manufacturability and enhanced safety. However, the characteristics of ion conductivity of polymer electrolytes during tensile deformation are not well understood. Here, we investigate the effects of tensile strain on the ion conductivity of thin-film polyethylene oxide (PEO) through an in situ study. The results of this investigation demonstrate that both in-plane and through-plane ion conductivities of PEO undergo steady and linear growths with respect to the tensile strain. The coefficients of strain-dependent ion conductivity enhancement (CSDICE) for in-plane and through-plane conduction were found to be 28.5 and 27.2, respectively. Tensile stress-strain curves and polarization light microscopy (PLM) of the polymer electrolyte film reveal critical insights on the microstructural transformation of stretched PEO and the potential consequences on ionic conductivity. PMID:26831948

  17. In situ electrochemical digital holographic microscopy; a study of metal electrodeposition in deep eutectic solvents.

    PubMed

    Abbott, Andrew P; Azam, Muhammad; Ryder, Karl S; Saleem, Saima

    2013-07-16

    This study has shown for the first time that digital holographic microscopy (DHM) can be used as a new analytical tool in analysis of kinetic mechanism and growth during electrolytic deposition processes. Unlike many alternative established electrochemical microscopy methods such as probe microscopy, DHM is both the noninvasive and noncontact, the unique holographic imaging allows the observations and measurement to be made remotely. DHM also provides interferometric resolution (nanometer vertical scale) with a very short acquisition time. It is a surface metrology technique that enables the retrieval of information about a 3D structure from the phase contrast of a single hologram acquired using a conventional digital camera. Here DHM has been applied to investigate directly the electro-crystallization of a metal on a substrate in real time (in situ) from two deep eutectic solvent (DES) systems based on mixture of choline chloride and either urea or ethylene glycol. We show, using electrochemical DHM that the nucleation and growth of silver deposits in these systems are quite distinct and influenced strongly by the hydrogen bond donor of the DES. PMID:23751128

  18. Belowground carbon allocation dynamics in changing environments: insights from in situ pulse labeling studies

    NASA Astrophysics Data System (ADS)

    Bahn, M.

    2012-12-01

    Belowground carbon (C) allocation is a key process in ecosystems: it plays an important role for plant C storage, fuels root metabolism and provides substrates for soil microorganisms, with strong implications for microbial community composition and activity and thus soil organic matter turnover. Belowground C allocation has been well studied in young plants and mesocosms, and as long-term patterns in ecosystems. Much less is known on the short-term dynamics of C allocation in mature plants and ecosystems, which reflect more closely the actual processes underlying observed C allocation patterns and the mechanisms determining responses to changing environmental conditions. C allocation dynamics can best be analyzed with isotopic pulse labeling experiments, which permit a tracing of recently photo-assimilated C to carbohydrate pools, microbial communities and respiratory fluxes. This overview talk will highlight the potential and limitations of in situ isotopic tracer experiments for assessing belowground C allocation dynamics in changing environments, summarize some major recent findings and point towards emerging research questions.

  19. A nanofluidic device for single molecule studies with in situ control of environmental solution conditions.

    PubMed

    Zhang, Ce; Jiang, Kai; Liu, Fan; Doyle, Patrick S; van Kan, Jeroen A; van der Maarel, Johan R C

    2013-07-21

    We report an approach to study the in situ conformational response of single biomolecules such as DNA to a change in environmental solution conditions. These conditions are, for example, the composition of the buffer or the presence of protein. For this purpose, we designed and fabricated a nanofluidic device featuring two arrays of parallel nanochannels in a perpendicular configuration. The cross-sections of the channels are rectangular with a diameter down to 175 nm. These lab-on-a-chip devices were made of polydimethylsiloxane (PDMS) cast on a high quality master stamp, obtained by proton beam writing and UV lithography. Biomolecules can be inserted into the device through the array of channels in one direction, whereas the buffer can be exchanged through the intersecting array of channels in the other direction. A buffer exchange time inside the grid of nanochannels of less than one second was measured by monitoring the conductivity of salt solutions. The exchange time of a protein was typically a few seconds, as determined by imaging the influx of fluorescence labelled protamine. We demonstrate the functionality of the device by investigating the compaction of DNA by protamine and the unpacking of pre-compacted DNA through an increase in the concentration of salt. PMID:23674166

  20. Structure and Dynamics of Domains in Ferroelectric Nanostructures. In-situ TEM Studies

    SciTech Connect

    Pan, Xiaoqing

    2015-06-30

    The goal of this project was to explore the structure and dynamic behaviors of ferroelectric domains in ferroelectric thin films and nanostructures by advanced transmission electron microscopy (TEM) techniques in close collaboration with phase field modeling. The experimental techniques used include aberration-corrected sub-Å resolution TEM and in-situ TEM using a novel scanning tunneling microscopy (STM) - TEM holder that allows the direct observation of nucleation and dynamic evolution of ferroelectric domains under applied electric field. Specifically, this project was aimed to (1) to study the roles of static electrical boundary conditions and electrical charge in controlling the equilibrium domain structures of BiFeO3 thin films with controlled substrate constraints, (2) to explore the fundamental mechanisms of ferroelectric domain nucleation, growth, and switching under an applied electric field in both uniform thin films and nanostructures, and to understand the roles of crystal defects such as dislocations and interfaces in these processes, (3) to understand the physics of ferroelectric domain walls and the influence of defects on the electrical switching of ferroelectric domains.

  1. In situ TEM Studies of the Initial Oxidation stage of Cu and Cu Alloy Thin Films

    NASA Astrophysics Data System (ADS)

    Yang, Judith; Kang, Yihong; Luo, Langli; Ciston, James; Stach, Eric; Zhou, Guangwen

    2012-02-01

    The fundamental understanding of oxidation at the nanoscale is important for the environmental stability of coating materials as well as processing of oxide nanostructures. Our previous studies show the epitaxial growth of Cu2O islands during the initial stages of oxidation of Cu thin films, where surface diffusion and strain impact the oxide development and morphologies. The addition of secondary elements changes the oxidation mechanism. If the secondary element is non-oxidizing, such as Au, it will limit the Cu2O island growth due to the depletion of Cu near the oxide islands. When the secondary element is oxidizing, for example Ni, the alloy will show more complex behaviour, where duplex oxide islands were observed. Nucleation density and growth rate of oxide islands are observed under various temperatures and oxygen partial pressures (pO2) as a function of time by in situ ultra high vacuum (UHV)-transmission electron microscopy (TEM). Our initial results of Cu-Ni(001) oxidation is that the oxide epitaxy and morphologies change as function of Ni concentration. For higher spatial resolution, we are examining the atomic scale oxidation by aberration-corrected ETEM with 1å resolution.

  2. Metallic monoclinic phase in VO2 induced by electrochemical gating: In situ Raman study

    NASA Astrophysics Data System (ADS)

    Nath Gupta, Satyendra; Pal, Anand; Muthu, D. V. S.; Kumar, P. S. Anil; Sood, A. K.

    2016-07-01

    We report in situ Raman scattering studies of electrochemically top gated VO2 thin film to address metal-insulator transition (MIT) under gating. The room temperature monoclinic insulating phase goes to metallic state at a gate voltage of 2.6 V. However, the number of Raman modes do not change with electrolyte gating showing that the metallic phase is still monoclinic. The high-frequency Raman mode A g (7) near 616 cm‑1 ascribed to V-O vibration of bond length 2.06 Å in VO6 octahedra hardens with increasing gate voltage and the B g (3) mode near 654 cm‑1 softens. This shows that the distortion of the VO6 octahedra in the monoclinic phase decreases with gating. The time-dependent Raman data at fixed gate voltages of 1 V (for 50 minutes, showing enhancement of conductivity by a factor of 50) and 2 V (for 130 minutes, showing further increase in conductivity by a factor of 5) show similar changes in high-frequency Raman modes A g (7) and B g (3) as observed in gating. This slow change in conductance together with Raman frequency changes show that the governing mechanism for metalization is more likely due to the diffusion-controlled oxygen vacancy formation due to the applied electric field.

  3. In situ study of heavy ion induced radiation damage in NF616 (P92) alloy

    NASA Astrophysics Data System (ADS)

    Topbasi, Cem; Motta, Arthur T.; Kirk, Mark A.

    2012-06-01

    NF616 is a nominal 9Cr ferritic-martensitic steel that is amongst the primary candidates for cladding and duct applications in the Sodium-Cooled Fast Reactor, one of the Generation IV nuclear energy systems. In this study, an in situ investigation of the microstructure evolution in NF616 under heavy ion irradiation has been conducted. NF616 was irradiated to 8.4 dpa at 50 K and to 7.6 dpa at 473 K with 1 MeV Kr ions. Nano-sized defects first appeared as white dots in dark-field TEM images and their areal density increased until saturation (˜6 dpa). Dynamic observations at 50 K and 473 K showed appearance and disappearance of TEM-visible defect clusters under irradiation that continued above saturation dose. Quantitative analysis showed no significant change in the average size (˜3-4 nm) and distribution of defect clusters with increasing dose at 50 K and 473 K. These results indicate a cascade-driven process of microstructure evolution under irradiation in these alloys that involves both the formation of TEM-visible defect clusters by various degrees of cascade overlap and cascade induced defect cluster elimination. According to this mechanism, saturation of defect cluster density is reached when the rate of defect cluster formation by overlap is equal to the rate of cluster elimination during irradiation.

  4. Kinetics of methane hydrate decomposition studied via in situ low temperature X-ray powder diffraction.

    PubMed

    Everett, S Michelle; Rawn, Claudia J; Keffer, David J; Mull, Derek L; Payzant, E Andrew; Phelps, Tommy J

    2013-05-01

    Gas hydrate is known to have a slowed decomposition rate at ambient pressure and temperatures below the melting point of ice. As hydrate exothermically decomposes, gas is released and water of the clathrate cages transforms into ice. Based on results from the decomposition of three nominally similar methane hydrate samples, the kinetics of two regions, 180-200 and 230-260 K, within the overall decomposition range 140-260 K, were studied by in situ low temperature X-ray powder diffraction. The kinetic rate constants, k(a), and the reaction mechanisms, n, for ice formation from methane hydrate were determined by the Avrami model within each region, and activation energies, E(a), were determined by the Arrhenius plot. E(a) determined from the data for 180-200 K was 42 kJ/mol and for 230-260 K was 22 kJ/mol. The higher E(a) in the colder temperature range was attributed to a difference in the microstructure of ice between the two regions. PMID:23557375

  5. An in situ photoemission study of the dehydrogenation reaction of methanol on Ni( 1 0 0 )

    NASA Astrophysics Data System (ADS)

    Neubauer, R.; Whelan, C. M.; Denecke, R.; Steinrück, H.-P.

    2002-06-01

    Making use of the high intensity and resolution of synchrotron radiation at MAX-II (Sweden) we studied the dehydrogenation reaction of methanol on Ni(1 0 0) as a function of temperature by core level photoelectron spectroscopy. The temperature was increased linearly from 105 to 425 K with a heating rate of 0.06 K s -1. Measurement times of 60 s per C 1s spectrum allowed the dehydrogenation reaction to be monitored in situ. The different binding energies of the core level characteristic of different adsorbed species are reported. After exposure at 105 K, the C 1s spectra exhibit two peaks, representing methanol in multilayer and monolayer states. Above 160 K the multilayer is completely desorbed and methanol from the monolayer starts to dehydrogenate to form a methoxy species which decomposes above 240 K to carbon monoxide adsorbed in the bridge site. The onset of the on-top site occupation is observed at 270 K. The data suggests conversion from bridge to on-top site CO around 290 K. Our results show good agreement with literature values from temperature programmed desorption and Fourier transform infra-red experiments and provide new information in the form of quantitative data on the decomposition pathway of methanol adsorbed on Ni(1 0 0).

  6. In situ studies of fuel oxidation in solid oxide fuel cells.

    PubMed

    Pomfret, Michael B; Owrutsky, Jeffrey C; Walker, Robert A

    2007-03-15

    Existing electrochemical experiments and models of fuel oxidation postulate about the importance of different oxidation pathways and relative fuel conversion efficiencies, but specific information is often lacking. Experiments described below present the first direct, in situ measurements of relevant chemical species formed on solid oxide fuel cell (SOFC) cermet anodes operating with both butane and CO fuel feeds. Raman spectroscopy is used to acquire vibrational spectra from SOFC anodes at 715 degrees C during operation. Both C4H10 and CO form graphitic intermediates. In the limit of a large oxide flux, excess butane forms ordered graphite but only transiently. At higher cell potentials (e.g., less current being drawn) ordered and disordered graphite form on the Ni cermet anode following exposure to butane, and under open circuit voltage (OCV) conditions the graphite persists indefinitely. The chemistry of CO oxidation is such that ordered graphite and a Ni-COO intermediate form only at intermediate cell potentials. Concurrent voltammetry studies show that the formation of graphite with butane at OCV leads first to decreased cell performance after exposure to 25 cm3 butane, then recovered performance after 75 cm3. CO voltammetry data show that at lower potentials the oxide flux through the YSZ electrolyte is sufficient to oxidize the Ni in the anode especially near the interface with the electrolyte. PMID:17295449

  7. In situ study of atomic-vacancy ordering in stoichiometric titanium monoxide by the magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Valeeva, A. A.; Nazarova, S. Z.; Rempel, A. A.

    2015-02-01

    An in situ temperature study of a variation in the degree of long-range order in stoichiometric titanium monoxide has been performed by the magnetic susceptibility method. The measurements have been performed on annealed and quenched titanium monoxide in the temperature range from 300 to 1200 K. It has been found that the degree of long-range order depends on the regime and temperature of annealing of the initial samples. The degree of long-range order in the process of measurement of the magnetic susceptibility varies from 0.21 to 1.00; the larger the degree of long-range order, the smaller the magnetic susceptibility. Furthermore, the long-range order parameter decreases with an increase in the temperature above 1200 K and vanishes sharply at the order-disorder transition temperature. According to the results of this work, the critical long-range order parameter is 0.21 and the temperature of the nonequilibrium disorder-order transition is about 1073 K.

  8. Boron phosphide under pressure: In situ study by Raman scattering and X-ray diffraction

    SciTech Connect

    Solozhenko, Vladimir L.; Kurakevych, Oleksandr O.; Le Godec, Yann; Kurnosov, Aleksandr V.; Oganov, Artem R.

    2014-07-21

    Cubic boron phosphide, BP, has been studied in situ by X-ray diffraction and Raman scattering up to 55 GPa at 300 K in a diamond anvil cell. The bulk modulus of B{sub 0} = 174(2) GPa has been established, which is in excellent agreement with our ab initio calculations. The data on Raman shift as a function of pressure, combined with equation-of-state (EOS) data, allowed us to estimate the Grüneisen parameters of the TO and LO modes of zinc-blende structure, γ{sub G}{sup TO }= 1.26 and γ{sub G}{sup LO }= 1.13, just like in the case of other A{sup III}B{sup V} diamond-like phases, for which γ{sub G}{sup TO }> γ{sub G}{sup LO }≅ 1. We also established that the pressure dependence of the effective electro-optical constant α is responsible for a strong change in relative intensities of the TO and LO modes from I{sub TO}/I{sub LO} ∼ 0.25 at 0.1 MPa to I{sub TO}/I{sub LO} ∼ 2.5 at 45 GPa, for which we also find excellent agreement between experiment and theory.

  9. Study on In-Situ Diffusible Hydrogen Sensor for Welded Hsla Steel

    NASA Astrophysics Data System (ADS)

    Park, Yeong-Do; Kim, Yang-Do; Kim, Young-Seok; Olson, David L.

    2008-02-01

    Diffusible hydrogen contents of welds need to be measured to avoid hydrogen cracking in weldment of high strength steels. Unlike other elements in weld metal, hydrogen diffuses very quickly at normal room temperature, and hence, difficulties occur in accurate measurement. Several methods are currently being used, which are the Japanese method (JIS Z 313-1975), the International Institute of Welding (IIW) method (ISO 3690-1977), and the AWS standard (ANSI/AWS A4.3-93). However, these methods do not give identical results when applied to identical conditions. Therefore, this investigation was attempting to correlate the measured TEP (Thermo Electric Power) coefficient values with diffusible hydrogen content measured by AWS standard method. TEP measurement was studied for application as in-situ diffusible hydrogen sensor for welded HSLA (High Strength Low alloy) steel. The results of TEP measurement are shown to be sensitive to the weld diffusible hydrogen content in low temperature (-80 °C) measurement and almost thirty times faster than standard diffusible hydrogen test.

  10. Dispersion stabilization of silver nanoparticles in synthetic lung fluid studied under in situ conditions

    SciTech Connect

    MacCuspie, R.I.; Allen, A.J.; Hackley, V.A.

    2014-09-24

    The dispersion stabilization of silver nanoparticles (AgNPs) in synthetic lung fluid was studied to interrogate the effects on colloidal stability due to the principal constituents of the fluid. The colloidal stability of 20 nm citrate-AgNPs dispersed in the presence of each constituent of the synthetic lung fluid (individually, the complete fluid, and without additives) was observed during titration of increasing sodium chloride concentration. A variety of complementary in situ measurement techniques were utilized, including dynamic light scattering, ultraviolet-visible absorption spectroscopy, atomic force microscopy, and small-angle X-ray scattering, which provided a collective set of information that enabled far better understanding of the dispersion behavior in the fluid than any one technique alone. It was observed that AgNPs continued to adsorb bovine serum albumin (BSA) protein from the synthetic lung fluid solution as the sodium chloride concentration increased, until a maximum BSA coating was achieved prior to reaching the physiological sodium chloride concentration of 154 mmol L{sup -1}. BSA was determined to be the constituent of the synthetic lung fluid that is required to provide colloidal stability at high salt loadings, though the phospholipid constituent exerts a subtle effect. Additionally, as AgNPs are a distinctly different class of nanoparticles apart from the carbon nanotubes and titanium dioxide nanoparticles initially reported to be dispersible using this fluid, this work also demonstrates the broad applicability of synthetic lung fluid in providing stable dispersions for engineered nanoparticles for use in biological assays.

  11. In Situ Study of Strain-Dependent Ion Conductivity of Stretchable Polyethylene Oxide Electrolyte

    NASA Astrophysics Data System (ADS)

    Kelly, Taylor; Ghadi, Bahar Moradi; Berg, Sean; Ardebili, Haleh

    2016-02-01

    There is a strong need in developing stretchable batteries that can accommodate stretchable or irregularly shaped applications including medical implants, wearable devices and stretchable electronics. Stretchable solid polymer electrolytes are ideal candidates for creating fully stretchable lithium ion batteries mainly due to their mechanical and electrochemical stability, thin-film manufacturability and enhanced safety. However, the characteristics of ion conductivity of polymer electrolytes during tensile deformation are not well understood. Here, we investigate the effects of tensile strain on the ion conductivity of thin-film polyethylene oxide (PEO) through an in situ study. The results of this investigation demonstrate that both in-plane and through-plane ion conductivities of PEO undergo steady and linear growths with respect to the tensile strain. The coefficients of strain-dependent ion conductivity enhancement (CSDICE) for in-plane and through-plane conduction were found to be 28.5 and 27.2, respectively. Tensile stress-strain curves and polarization light microscopy (PLM) of the polymer electrolyte film reveal critical insights on the microstructural transformation of stretched PEO and the potential consequences on ionic conductivity.

  12. Initial interaction of sulfur dioxide with water covered metal surfaces: An in situ IRAS study

    SciTech Connect

    Persson, D.; Leygraf, C.

    1995-05-01

    Sulfur dioxide is considered to be one of the most important stimulators of atmospheric corrosion in outdoor environments and numerous investigations have been made to understand its role. Despite clear evidence of the corrosion accelerating effect of SO{sub 2} there is still a lack in detailed knowledge on a molecular level of how SO{sub 2} interacts with metal surfaces during conditions of atmospheric corrosion. In situ infrared reflection absorption spectroscopy (IRAS) has been used to study the initial interaction of sulfur dioxide with water adlayer covered copper, nickel, and zinc surfaces. Each metal was exposed to 0.21 ppm SO{sub 2} in flowing air at 80% relative humidity and the formation of sulfite was followed from submonolayer thickness to layers of corrosion products of a few manometers thickness. From the positions of sulfite bonds in the experimentally obtained IRAS spectra and from considerations of optically induced band shifts in calculated IRAS spectra, it is suggested that the sulfite ions are coordinated with sulfur or sulfur and oxygen to the copper surface and with oxygen to the nickel and zinc surfaces. A fast initial growth rate was observed for the sulfite layer, which was followed by a slower growth rate after a few hours of exposure. A reaction sequence is suggested where bisulfite ions, formed by hydrolysis of sulfur dioxide in the water adlayer, generate surface metal-sulfite complexes at the oxide covered metal surface which subsequently detach from the surface and precipitate as thin layers of corrosion products.

  13. Mechanisms for iron oxide formation under hydrothermal conditions: an in situ total scattering study.

    PubMed

    Jensen, Kirsten M Ø; Andersen, Henrik L; Tyrsted, Christoffer; Bøjesen, Espen D; Dippel, Ann-Christin; Lock, Nina; Billinge, Simon J L; Iversen, Bo B; Christensen, Mogens

    2014-10-28

    The formation and growth of maghemite (γ-Fe2O3) nanoparticles from ammonium iron(III) citrate solutions (C(6)O(7)H(6) · xFe(3+) · yNH(4)) in hydrothermal synthesis conditions have been studied by in situ total scattering. The local structure of the precursor in solution is similar to that of the crystalline coordination polymer [Fe(H(2)cit(H2O)](n), where corner-sharing [FeO(6)] octahedra are linked by citrate. As hydrothermal treatment of the solution is initiated, clusters of edge-sharing [FeO(6)] units form (with extent of the structural order <5 Å). Tetrahedrally coordinated iron subsequently appears, and as the synthesis continues, the clusters slowly assemble into crystalline maghemite, giving rise to clear Bragg peaks after 90 s at 320 °C. The primary transformation from amorphous clusters to nanocrystallites takes place by condensation of the clusters along the corner-sharing tetrahedral iron units. The crystallization process is related to large changes in the local structure as the interatomic distances in the clusters change dramatically with cluster growth. The local atomic structure is size dependent, and particles smaller than 6 nm are highly disordered. The final crystallite size (<10 nm) is dependent on both synthesis temperature and precursor concentration. PMID:25256366

  14. Benzalkonium runoff from roofs treated with biocide products - In situ pilot-scale study.

    PubMed

    Gromaire, M C; Van de Voorde, A; Lorgeoux, C; Chebbo, G

    2015-09-15

    Roof maintenance practices often involve the application of biocide products to fight against moss, lichens and algae. The main component of these products is benzalkonium chloride, a mixture of alkyl benzyl dimethyl ammonium chlorides with mainly C12 and C14 alkyl chain lengths, which is toxic for the aquatic environment. This paper describes, on the basis of an in-situ pilot scale study, the evolution of roof runoff contamination over a one year period following the biocide treatment of roof frames. Results show a major contamination of roof runoff immediately after treatment (from 5 to 30 mg/L), followed by an exponential decrease. 175-375 mm of cumulated rainfall is needed before the runoff concentrations become less than EC50 values for fish (280 μg/l). The residual concentration in the runoff water remains above 4 μg/L even after 640 mm of rainfall. The level of benzalkonium ions leaching depends on the roofing material, with lower concentrations and total mass leached from ceramic tiles than from concrete tiles, and on the state of the tile (new or worn out). Mass balance calculations indicate that a large part of the mass of benzalkonium compounds applied to the tiles is lost, probably due to biodegradation processes. PMID:26081434

  15. Laboratory study of polymer solutions used for mobility control during in situ NAPL recovery

    SciTech Connect

    Martel, K.E.; Martel, R.; Lefebvre, R.; Gelinas, P.J.

    1998-12-31

    The use of surfactant solutions for the in situ recovery of residual NAPL in aquifers is increasingly considered as a viable remediation technique. The injection of a few pore volumes of high-concentration surfactant solutions can mobilize or solubilize most of the residual NAPL contacted by the solutions. However, the washing solutions` physico-chemical properties (low density and high viscosity), combined with the natural porous media heterogeneity, can prevent a good sweep of the entire contaminated volume. The objective of this laboratory study is first to select and characterize polymers that would be suitable for aquifer restoration. Their experiments showed that among several polymers, xanthan gum is the most suitable for aquifer remediation. An evaluation of xanthan gum solution rheology was made in order to predict shear rates, xanthan gum concentrations, salinity, and temperature effects on solution viscosity. The second set of experiments were made with a sand box which was designed to reproduce a simple heterogeneous media consisting of layers of sand with different permeability. These tests illustrate the xanthan gum solution`s ability to increase surfactant solution`s sweep efficiency and limit viscous fingering.

  16. Surface Characterization and in situ Protein Adsorption Studies on Carbene-Modified Polymers.

    PubMed

    Nelson, Geoffrey W; Parker, Emily M; Singh, Kulveer; Blanford, Christopher F; Moloney, Mark G; Foord, John S

    2015-10-13

    Polystyrene thin films were functionalized using a facile two-step chemical protocol involving carbene insertion followed by azo-coupling, permitting the introduction of a range of chemical functional groups, including aniline, hexyl, amine, carboxyl, phenyl, phosphonate diester, and ethylene glycol. X-ray photoelectron spectroscopy (XPS) confirmed the success of the two-step chemical modification with a grafting density of at least 1/10th of the typical loading density (10(14)-10(15)) of a self-assembled monolayer (SAM). In situ, real-time quartz crystal microbalance with dissipation (QCM-D) studies show that the dynamics of binding of bovine serum albumin (BSA) are different at each modified surface. Mass, viscoelastic, and kinetic data were analyzed, and compared to cheminformatic descriptors (i.e., c log P, polar surface area) typically used for drug discovery. Results show that functionalities may either resist or adsorb BSA, and uniquely influence its adsorption dynamics. It is concluded that carbene-based surface modification can usefully influence BSA binding dynamics in a manner consistent with, and more robust than, traditional systems based on SAM chemistry. PMID:26391812

  17. In situ Raman study of Electrochemically Intercalted Bisulfate Ions in Carbon Nanotube Bundles

    NASA Astrophysics Data System (ADS)

    Sumanasekera, G. U.; Allen, J. L.; Rao, A. M.; Fang, S. L.; Eklund, P. C.

    1998-03-01

    We have investigated the electrochemical intercalation of bisulfate ions in single-walled carbon nanotubes (SWNT) using in situ Raman spectroscopy. SWNTs pressed onto a Pt plate was used as the working electrode, a Pt wire and Ag/AgCl were used, respectively, as the counter electrode and reference electrode. Sulfuric acid (95%) was used as the electrolyte. Using Raman scattering we have observed an apparent rapid spontaneous reaction involving charge transfer between ionically bonded HSO_4^- anions and the nanotubes. This is evidenced by an instantaneous shift of the Raman-active tangential mode frequency from 1593 cm -1 to 1604 cm-1 (It was not possible to reverse this shift electrochemically to 1593 cm-1, even at the expense of large reverse bias). In forward bias, after this initial instantaneous reaction, the tangential mode frequency again upshifted from 1604 cm-1 to 1614 cm-1 linearly with external electrochemical charge Q. From the slope of ω(Q) we found in this regime, δω/δ f= 1220 cm-1 (f = holes/carbon). Upon further charging, a second regime with slope δω/δ f = 118 cm-1 was observed where the frequency upshifted from 1614 cm-1 to 1620 cm-1. The results are compared to similar studies in C_p^+HSO_4^-.xH_2SO4 graphite intercalation compounds.

  18. Fundamental study of spin-coating using in-situ analysis and simulation

    NASA Astrophysics Data System (ADS)

    Harumoto, Masahiko; Yoshida, Jun-ichi; Stokes, Harold; Tanaka, Yuji; Miyagi, Tadashi; Kaneyama, Koji; Pieczulewski, Charles; Asai, Masaya

    2015-03-01

    Spin coating has been used as a photoresist application method for many years, and consequently certain defects have been recognized through each resist generation; i-line, KrF, ArF, ArF immersion and, most recently, EUV. Last year we reported an in-situ analysis via high-speed video camera that proved to be useful for understanding defect formation such as non-uniformity spots within organic film coatings and post-develop water-mark defects. In this study, fingerprints known as `tiger stripes' around the wafer's edge were analyzed. This phenomenon, for example, is directly related to the wafer spin-speed and air-flow during the coat-processing. Utilizing a high-speed camera and 3D simulation, we reveal the mechanism of fingerprint generation for tiger stripe phenomena, confirm the mechanism with several different spin-speeds, and correlate these to defect inspection results. Furthermore, we will discuss the expansion to 450mmm wafers.

  19. In situ study of dynamic recrystallization and hot deformation behavior of a multiphase titanium aluminide alloy

    NASA Astrophysics Data System (ADS)

    Liss, Klaus-Dieter; Schmoelzer, Thomas; Yan, Kun; Reid, Mark; Peel, Matthew; Dippenaar, Rian; Clemens, Helmut

    2009-12-01

    Hot-compression tests were conducted in a high-energy synchrotron x-ray beam to study in situ and in real time microstructural changes in the bulk of a β-solidifying titanium aluminide alloy. The occupancy and spottiness of the diffraction rings have been evaluated in order to access grain growth and refinement, orientation relationships, subgrain formation, dynamic recovery, and dynamic recrystallization, as well as phase transformations. This method has been applied to an alloy consisting of two coexisting phases at high temperature and it was found that the bcc β-phase recrystallizes dynamically, much faster than the hcp α-phase, which deforms predominantly through crystallographic slip underpinned by a dynamic recovery process with only a small component of dynamic recrystallization. The two phases deform to a very large extent independently from each other. The rapid recrystallization dynamics of the β-phase combined with the easy and isotropic slip characteristics of the bcc structure explain the excellent deformation behavior of the material, while the presence of two phases effectively suppresses grain growth.

  20. In situ studies of transient photoconductivity in PbSe quantum dot solar cells

    NASA Astrophysics Data System (ADS)

    Gao, Jianbo; Koh, Weon-Kyu; Makarov, Nikolay; Pietryga, Jeffrey; Klimov, Victor

    2014-03-01

    PbSe quantum dot (QD) solar cells have attracted significant interest due to their band gap tunability, easy-processing and flexibility. Efficiencies have risen from 1% just a few years ago to nearly 9% today. Furthermore, the novel concept of multiple exciton generation (MEG) resulting from quantum confinement makes these materials scientifically interesting counterparts to bulk semiconductors. Recent observations of more than 100% external quantum efficiency in PbSe QD solar cells confirm direct relevance of MEG to practical photovoltaics. However, in order to take full advantage of this effect, one needs a better understanding of photogeneration dynamics and carrier transport in QD solar cells. In this talk, we discuss a new technique for in situ measurements of transient photoconductivity with fast response time (<50 ps) applied to study carrier transport and photogeneration dynamics in PbSe QD solar cells. These measurements complement traditional photoconductivity techniques such as time-resolved microwave conductivity and time-of-flight. Based on the analysis of temperature, excitation wavelength and electrical field dependence measurements, we derive parameters such as MEG efficiency, carrier lifetime, trap-free mobility and carrier emission rate from trap states.

  1. How well do we know the neutron structure function?

    SciTech Connect

    J. Arrington, J. G. Rubin, W. Melnitchouk

    2012-06-01

    We present a detailed analysis of the uncertainty in the neutron F{sub 2}n structure function extracted from inclusive deuteron and proton deep-inelastic scattering data. The analysis includes experimental uncertainties as well as uncertainties associated with the deuteron wave function, nuclear smearing, and nucleon off-shell corrections. Consistently accounting for the Q{sup 2} dependence of the data and calculations, and restricting the nuclear corrections to microscopic models of the deuteron, we find significantly smaller uncertainty in the extracted F{sub 2}n/F{sub 2}p ratio than in previous analyses. In addition to yielding an improved extraction of the neutron structure function, this analysis also provides an important baseline that will allow future, model-independent extractions of neutron structure to be used to examine nuclear medium effects in the the deuteron.

  2. Pion structure function F2π in the valon model

    NASA Astrophysics Data System (ADS)

    Arash, Firooz

    2003-03-01

    Partonic structure of constituent quark (or valon) in the next-to-leading order is used to calculate pion structure function. This is a further demonstration of the finding that the constituent quark structure is universal, and once it is calculated, the structure of any hadron can be predicted thereafter, using a convolution method, without introducing any new free parameter. The results are compared with the pion structure function from ZEUS Collaboration leading neutron production in e+p collisions at HERA. We found good agreement with the experiment. A resolution for the issue of normalization of the experimental data is suggested. In addition, the proportionality of F2π and F2p, which have caused confusion in the normalization of ZEUS data is discussed and resolved.

  3. Precision measurement of the neutron spin dependent structure functions

    SciTech Connect

    Kolomensky, Y.G.

    1997-02-01

    In experiment E154 at the Stanford Linear Accelerator Center the spin dependent structure function g{sub 1}{sup n} (x, Q{sup 2}) of the neutron was measured by scattering longitudinally polarized 48.3 GeV electrons off a longitudinally polarized {sup 3}He target. The high beam energy allowed the author to extend the kinematic coverage compared to the previous SLAC experiments to 0.014 {le} x {le} 0.7 with an average Q{sup 2} of 5 GeV{sup 2}. The author reports the integral of the spin dependent structure function in the measured range to be {integral}{sub 0.014}{sup 0.7} dx g{sub 1}{sup n}(x, 5 GeV{sup 2}) = {minus}0.036 {+-} 0.004(stat.) {+-} 0.005(syst.). The author observes relatively large values of g{sub 1}{sup n} at low x that call into question the reliability of data extrapolation to x {r_arrow} 0. Such divergent behavior disagrees with predictions of the conventional Regge theory, but is qualitatively explained by perturbative QCD. The author performs a Next-to-Leading Order perturbative QCD analysis of the world data on the nucleon spin dependent structure functions g{sub 1}{sup p} and g{sub 1}{sup n} paying careful attention to the experimental and theoretical uncertainties. Using the parameterizations of the helicity-dependent parton distributions obtained in the analysis, the author evolves the data to Q{sup 2} = 5 GeV{sup 2}, determines the first moments of the polarized structure functions of the proton and neutron, and finds agreement with the Bjorken sum rule.

  4. Spin Structure Functions in a Covariant Spectator Quark Model

    SciTech Connect

    G. Ramalho, Franz Gross and M. T. Peña

    2010-12-01

    We apply the covariant spectator quark–diquark model, already probed in the description of the nucleon elastic form factors, to the calculation of the deep inelastic scattering (DIS) spin-independent and spin-dependent structure functions of the nucleon. The nucleon wave function is given by a combination of quark–diquark orbital states, corresponding to S, D and P-waves. A simple form for the quark distribution function associated to the P and D waves is tested.

  5. Spin structure functions: Proton / deuteron measurements in the resonance region

    SciTech Connect

    Mark Jones; RSS Collaboration

    2006-02-01

    The RSS experiment ran in Hall C at Jefferson Lab and measured the proton and deuteron beam-target asymmetries for parallel and perpendicular target fields over a W range from pion threshold to 1.9 GeV at Q{sup 2} {approx} 1.3 GeV{sup 2}. Preliminary results for the proton spin structure functions g{sub 1} and g{sub 2} are presented.

  6. Equifinality and the Scaling Exponent of the Structure Function

    NASA Astrophysics Data System (ADS)

    Fitton, G. F.; Mezematy, Y.; Schertzer, D. J. M.; Tchiguirinskaia, I.

    2014-12-01

    In turbulence the structure function is by far the most widely used tool for the empirical analysis of the velocity field. This is due mainly to the work of Kolmogorov (1941) who hypothesised a homogeneous flux of energy and derived the famous 2/3 power law for the second-order structure function; — which corresponds to a 5/3 law for the energy spectrum (Obukhov, 1942). In 1962 Kolmogorov refined his hypothesis to take into account the intermittency of the flux, with the consequence that the exponent ξ(q) of the structure function is not longer proportional to its statistical order q. In this communication, we first show that the refined hypothesis can lead to different models that can have opposite intermittency corrections. Secondly, we demonstrate that the inverse problem, i.e., starting from a given expression of ξ(q) to recover the involved flux leads to an interesting problem of equifinality for the definition of this flux. This is done in particular in the framework of the Fractionally Integrated Flux model that gives a precise meaning to the refined hypothesis. The theoretical and practical consequences are illustrated with the help data analysis and simulations of turbulence in wind farms and urban lakes.

  7. Measurements of the neutron polarized structure function at SLAC

    SciTech Connect

    Young, C.C.; E-142 Collaboration

    1995-08-01

    Detailed measurements of unpolarized or spin-averaged nucleon structure functions over the past two decades have led to detailed knowledge of the nucleon`s internal momentum distribution. Polarized nucleon structure function measurements, which probe the nucleon`s internal spin distribution, started at SLAC in 1976. E-142 has recently measured the neutron polarized structure function g{sub 1}{sup n}(x) over the range 0.03 {le} {times} {le} 0.6 at an average Q{sup 2} of 2 GeV{sup 2} and found the integral I{sup n} = {integral}{sub 0}{sup 1}g{sub 1}{sup n}(x)dx={minus}0.022{plus_minus}0.011. E-143, which took data recently, has measured g{sub 1}{sup p} and g{sub 1}{sup 4}. Two more experiments (E-154 and E-155) will extend these measurements to lower x and higher Q{sup 2}.

  8. High-x structure function of the virtually free neutron

    NASA Astrophysics Data System (ADS)

    Cosyn, Wim; Sargsian, Misak M.

    2016-05-01

    The pole extrapolation method is applied to the semi-inclusive inelastic electron scattering off the deuteron with tagged spectator protons to extract the high-x structure function of the neutron. This approach is based on the extrapolation of the measured cross sections at different momenta of the spectator proton to the nonphysical pole of the bound neutron in the deuteron. The advantage of the method is in the possibility of suppression of the nuclear effects in a maximally model-independent way. The neutron structure functions obtained in this way demonstrate a surprising x dependence at x ≥0.6 and 1.6 ≤Q2≤3.38 GeV2 , indicating a possible rise of the neutron-to-proton structure functions ratio. If the observed rise is valid in the true deep inelastic region then it may indicate new dynamics in the generation of high-x quarks in the nucleon. One such mechanism we discuss is the possible dominance of short-range isosinglet quark-quark correlations that can enhance the d -quark distribution in the proton.

  9. Sum Rules and Moments of the Nucleon Spin Structure Functions

    SciTech Connect

    Jian-Ping Chen; Alexandre Deur; Zein-Eddine Meziani

    2005-08-01

    The nucleon has been used as a laboratory to investigate its own spin structure and Quantum Chromodynamics. New experimental data on nucleon spin structure at low to intermediate momentum transfers combined with existing high momentum transfer data offer a comprehensive picture of the transition region from the confinement regime of the theory to its asymptotic freedom regime. Insight for some aspects of the theory is gained by exploring lower moments of spin structure functions and their corresponding sum rules (i.e. the Gerasimov-Drell-Hearn, Bjorken and Burkhardt-Cottingham). These moments are expressed in terms of an operator product expansion using quark and gluon degrees of freedom at moderately large momentum transfers. The sum rules are verified to a good accuracy assuming that no singular behavior of the structure functions is present at very high excitation energies. The higher twist contributions have been examined through the moments evolution as the momentum transfer varies from higher to lower values. Furthermore, QCD-inspired low energy effective theories, which explicitly include chiral symmetry breaking, are tested at low momentum transfers. The validity of these theories is further examined as the momentum transfer increases to moderate values. It is found that chiral perturbation calculations agree reasonably well with the first moment of the spin structure function g{sub 1} at momentum transfer of 0.1 GeV{sup 2} but fail to reproduce the neutron data in the case of the generalized polarizability {delta}{sub LT}.

  10. In situ infrared study of adsorbed species during catalytic oxidation and carbon dioxide adsorption

    NASA Astrophysics Data System (ADS)

    Khatri, Rajesh A.

    2005-11-01

    Hydrogen is considered to be the fuel of the next century. Hydrogen can be produced by either water splitting using the solar or nuclear energy or by catalytic cracking and reforming of the fossil fuels. The water splitting process using solar energy and photovoltaics is a clean way to produce hydrogen, but it suffers from very low efficiency. A promising scheme to produce H 2 from natural gas involves following steps: (i) partial oxidation and reforming of natural gas to syngas, (ii) water-gas shift reaction to convert CO in the syngas to additional H2, (iii) separation of the H2 from CO2, and (iv) CO2 sequestration. The requirements for the above scheme are (i) a highly active coke resistant catalyst for generation of syngas by direct partial oxidation, (ii) a highly active sulfur tolerant catalyst for the water-gas shift reaction, and (iii) a low cost sorbent with high CO2 adsorption capacity for CO2 sequestration. This dissertation will address the mechanisms of partial oxidation, CO2 adsorption, and water-gas shift catalysis using in situ IR spectroscopy coupled with mass spectrometry (MS). The results from these studies will lead to a better understanding of the reaction mechanism and design of both the catalyst and sorbent for production of hydrogen with zero emissions. Partial oxidation of methane is studied over Rh/Al2O 3 catalyst to elucidate the reaction mechanism for synthesis gas formation. The product lead-lag relationship observed with in situ IR and MS results revealed that syngas is produced via a two-step reforming mechanism: the first step involving total oxidation of CH4 to CO2 and H 2O and the second step involving the reforming of unconverted methane with CO2 and H2O to form syngas. Furthermore, the Rh on the catalyst surface remains predominantly in the partially oxidized state (Rhdelta+ and Rh0). For the water-gas shift reaction, addition of Re to the Ni/CeO2 catalyst enhanced the water gas shift activity by a factor of three. The activity

  11. In situ studies of a platform for metastable inorganic crystal growth and materials discovery

    PubMed Central

    Shoemaker, Daniel P.; Hu, Yung-Jin; Chung, Duck Young; Halder, Gregory J.; Chupas, Peter J.; Soderholm, L.; Mitchell, J. F.; Kanatzidis, Mercouri G.

    2014-01-01

    Rapid shifts in the energy, technological, and environmental demands of materials science call for focused and efficient expansion of the library of functional inorganic compounds. To achieve the requisite efficiency, we need a materials discovery and optimization paradigm that can rapidly reveal all possible compounds for a given reaction and composition space. Here we provide such a paradigm via in situ X-ray diffraction measurements spanning solid, liquid flux, and recrystallization processes. We identify four new ternary sulfides from reactive salt fluxes in a matter of hours, simultaneously revealing routes for ex situ synthesis and crystal growth. Changing the flux chemistry, here accomplished by increasing sulfur content, permits comparison of the allowable crystalline building blocks in each reaction space. The speed and structural information inherent to this method of in situ synthesis provide an experimental complement to computational efforts to predict new compounds and uncover routes to targeted materials by design. PMID:25024201

  12. Note: Sample chamber for in situ x-ray absorption spectroscopy studies of battery materials

    SciTech Connect

    Pelliccione, CJ; Timofeeva, EV; Katsoudas, JP; Segre, CU

    2014-12-01

    In situ x-ray absorption spectroscopy (XAS) provides element-specific characterization of both crystalline and amorphous phases and enables direct correlations between electrochemical performance and structural characteristics of cathode and anode materials. In situ XAS measurements are very demanding to the design of the experimental setup. We have developed a sample chamber that provides electrical connectivity and inert atmosphere for operating electrochemical cells and also accounts for x-ray interactions with the chamber and cell materials. The design of the sample chamber for in situ measurements is presented along with example XAS spectra from anode materials in operating pouch cells at the Zn and Sn K-edges measured in fluorescence and transmission modes, respectively. (C) 2014 AIP Publishing LLC.

  13. Setup for in situ X-ray diffraction studies of thin film growth by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ellmer, K.; Mientus, R.; Weiß, V.; Rossner, H.

    2001-07-01

    A novel method is described for the in situ-investigation of nucleation and growth of thin films during magnetron sputtering. Energy dispersive X-ray diffraction with synchrotron light is used for the structural analysis during film growth. An in situ-magnetron sputtering chamber was constructed and installed at a synchrotron radiation beam line with a bending magnet. The white synchrotron light (1-70 keV) passes the sputtering chamber through Kapton windows and hits one of the substrates on a four-fold sample holder. The diffracted beam, observed under a fixed diffraction angle between 3° and 10°, is energy analyzed by a high purity Ge-detector. The in situ-EDXRD setup is demonstrated for the growth of tin-doped indium oxide (ITO) films prepared by reactive magnetron sputtering from a metallic target.

  14. Annealing of hydrogen-induced defects in RF-plasma-treated Si wafers: ex situ and in situ transmission electron microscopy studies

    NASA Astrophysics Data System (ADS)

    Ghica, C.; Nistor, L. C.; Vizireanu, S.; Dinescu, G.

    2011-07-01

    The smart-cut™ process is based on inducing and processing structural defects below the free surface of semiconductor wafers. The necessary defects are currently induced by implantation of light elements such as hydrogen or helium. An alternative softer way to induce shallow subsurface defects is by RF-plasma hydrogenation. To facilitate the smart-cut process, the wafers containing the induced defects need to be subjected to an appropriate thermal treatment. In our experiments, (0 0 1) Si wafers are submitted to 200 and 50 W hydrogen RF-plasma and are subsequently annealed. The samples are studied by transmission electron microscopy (TEM), before and after annealing. The plasma-introduced defects are {1 1 1} and {1 0 0} planar-like defects and nanocavities, all of them involving hydrogen. Many nanocavities are aligned into strings almost parallel to the wafer surface. The annealing is performed either by furnace thermal treatment at 550 °C, or by in situ heating in the electron microscope at 450, 650 and 800 °C during the TEM observations. The TEM microstructural studies indicate a partial healing of the planar defects and a size increase of the nanometric cavities by a coalescence process of the small neighbouring nanocavities. By annealing, the lined up nanometric voids forming chains in the as-hydrogenated sample coalesced into well-defined cracks, mostly parallel to the wafer surface.

  15. Histopathological study of corneal flap striae following laser in situ keratomileusis in rabbits

    PubMed Central

    LIU, LI; SONG, FANG-ZHOU; BAO, LIAN-YUN

    2015-01-01

    The aim of the present study was to investigate the histopathological changes and wound healing process of rabbit corneas following conventional laser in situ keratomileusis (LASIK) with and without the complication of flap macrostriae. The right eyes of 14 rabbits underwent LASIK with the formation of flap striae (macrostriae group) and the left underwent LASIK alone (control group). Two rabbits were selected at random for sacrifice on days 1, 3, 7 and 14, and at 1, 3 and 6 months postoperatively. The histopathological characters of the corneas were compared by hematoxylin and eosin (H&E), periodic acid-Schiff (PAS) and Masson staining. In the control group, the epithelial basement membrane of the cornea exhibited microstriae and the arrangement of stromal collagen fibers was regular. The width of the microstriae in the flap was 20–40 μm one week after surgery and the microstriae were no longer visible two weeks postoperatively. In the macrostriae group, infiltration of polymorphonuclear cells occurred around the incision and irregular hyperplasia of the epithelium was observed due to undulation of the epithelial basement membrane on the first postoperative day. The collagen fibers and striae of the corneal stroma exhibited irregular undulation one month postoperatively. The area between the corneal flap and stromal bed was distinctly stained by PAS and Masson stains. Macrostriae with a width of 80–120 μm affecting two-thirds of the entire cornea remained visible six months postoperatively. In conclusion, the inflammatory reactions and clinical impact of flap macrostriae were severe. Macrostriae involving two-thirds of the entire cornea remained visible six months postoperatively. Longer-term studies are required to further elucidate the issues associated with corneal flap striae. PMID:25667649

  16. In situ powder diffraction study of belite sulfoaluminate clinkering.

    PubMed

    De la Torre, Angeles G; Cuberos, Antonio J M; Alvarez-Pinazo, Gema; Cuesta, Ana; Aranda, Miguel A G

    2011-05-01

    Belite sulfoaluminate (BSA) cements have been proposed as environmentally friendly building materials, as their production may release up to 35% less CO(2) into the atmosphere when compared with ordinary Portland cement fabrication. However, their formation mechanism has not been studied in detail so far. Here, an in situ high-temperature high-resolution synchrotron X-ray powder diffraction study is reported. Two types of BSA clinkers have been characterized, both containing 50-60 wt% C(2)S and 20-30 wt% C(4)A(3)\\underline{\\rm S} as main phases. One type is iron-rich and a second type (with different phase assemblage) is aluminium-rich. Furthermore, the C(2)S phase reacts slowly with water, thus activation of this compound is desirable in order to enhance the mechanical strength development of the resulting cements. To do so, iron-rich BSA clinkers have been doped with minor amounts of B(2)O(3) and Na(2)O to promote stabilization of α-forms of C(2)S, which are more reactive with water. The decarbonated raw materials were loaded into Pt tubes and heated to between 973 K and 1673 K, and patterns were collected using a high-energy synchrotron beam of wavelength λ = 0.30 Å. The thermal stability of Klein's salt in these clinkers has been clarified. Several reactions have been followed: formation and decomposition of Klein's salt, melting of aluminates and ferrite, and polymorphic transformations of dicalcium silicate: alpha'H-C2S → α-C(2)S. Changes in mineralogical phase assemblages at a given temperature owing to the addition of minor amounts of selected elements have also been determined. PMID:21525661

  17. Crystal structures and in-situ formation study of mayenite electrides.

    PubMed

    Palacios, Luis; De La Torre, Angeles G; Bruque, Sebastián; García-Muñoz, Jose L; García-Granda, Santiago; Sheptyakov, Denis; Aranda, Miguel A G

    2007-05-14

    Mayenite inorganic electrides are antizeolite nanoporous materials with variable electron concentration [Ca12Al14O32]2+ square5-deltaO1-delta2-e2delta- (0 < delta < or = 1), where square stands for empty sites. The oxymayenite crystal structure contains positively charged cages where loosely bounded oxide anions are located. These oxygens can be removed to yield electron-loaded materials in which the electrons behave like anions (electrides). Here, a new preparation method, which allows synthesizing powder mayenite electrides easily, is reported. Accurate structural data for the white (delta = 0) and green electride (delta approximately 0.5) are reported from joint Rietveld refinements of neutron and synchrotron X-ray powder diffraction data and also from single-crystal diffraction. The electride formation at high temperature under vacuum has been followed in-situ by neutron powder diffraction. The evolution of mayenite crystal structure, including the changes in the key occupation factor of the intracage oxide anions, is reported. Furthermore, the stability of mayenite framework in very low oxygen partial pressure conditions is also studied. It has been found that C12A7 decomposes, at 1373 K in reducing conditions, to give Ca5Al6O14 (C5A3) and Ca3Al2O6 (C3A). The kinetics of this transformation has also been studied. The fit of the transformed fraction to the classic Avrami-Erofe'ev equation gave an "Avrami exponent", n = 2, which indicates that nucleation is fast and the two-dimensional linear growth of the new phases is likely to be the limiting factor. PMID:17432850

  18. In-situ non-ambient X-ray diffraction studies of indium tungstate

    SciTech Connect

    Baiz, Tamam I.; Heinrich, Christophe P.; Banek, Nathan A.; Vivekens, Boris L.; Lind, Cora

    2012-03-15

    In situ variable temperature and high pressure X-ray diffraction studies were carried out on indium tungstate (In{sub 2}W{sub 3}O{sub 12}). This material displays positive volume expansion in both its low temperature monoclinic and high temperature orthorhombic phases, with negative thermal expansion along the a axis and positive thermal expansion along the b and c axes. Upon hydrostatic compression in a diamond anvil cell, one crystalline to crystalline phase transition is observed in the range 1.9 to 2.7 GPa, and progressive irreversible amorphization occurs at pressures above 4.3 GPa. The crystalline high pressure phase appears to be isostructural to previously observed high pressure phases in other A{sub 2}M{sub 3}O{sub 12} compounds. - Graphical abstract: Variable pressure X-ray diffraction patterns of In{sub 2}W{sub 3}O{sub 12} collected in a diamond anvil cell. A phase transition is clearly observed between 2.2 and 2.7 GPa, followed by irreversible amorphization. Highlights: Black-Right-Pointing-Pointer The structure of In{sub 2}W{sub 3}O{sub 12} was studied as a function of temperature and pressure. Black-Right-Pointing-Pointer Uniaxial negative thermal expansion was observed above 250 Degree-Sign C. Black-Right-Pointing-Pointer A pressure-induced phase transition occurred between 2.2 and 2.7 GPa. Black-Right-Pointing-Pointer Pressure-induced irreversible amorphization was observed above 4.3 GPa.

  19. Effect of dentifrices on their remineralizing potential in artificial carious lesions: An in situ study

    PubMed Central

    Damle, Satyawan Gangaramji; Bector, Aditi; Damle, Dhanashree; Kaur, Simranjeet

    2016-01-01

    Background: The eventual sequel of dental caries is determined by the dynamic equilibrium between pathological factors which lead to demineralization and protective elements, which in turn leads to remineralization. Remineralization is the natural process for noncavitated demineralized lesions and relies on calcium and phosphate ions assisted by fluoride to rebuild a new surface on existing crystal remnants in subsurface lesions remaining after demineralization. Hence, the present study was designed to evaluate the efficacy of fluoride dentifrices in remineralizing artificial caries-like lesions in situ. Materials and Methods: A double-blind, randomized study with an initial washout period of 7 days was carried out for 3 weeks. Twenty volunteers were enrolled, who wore the intraoral cariogenicity test appliance having enamel slabs incorporated into them, for 3 weeks. 10 participants were instructed to use Group A dentifrice (fluoride) and the other 10 Group B dentifrice (nonfluoride) for brushing their teeth. The enamel slabs were analyzed by surface microhardness testing and scanning electron microscopy (SEM) at 3 intervals. Results: No significant differences was seen in the microhardness values recorded for Group A and Group B at baseline and after demineralization (P > 0.05); however Group B exhibited lesser microhardness compared to Group A, after intra-oral exposure (P < 0.05). In the SEM analysis, the Group A enamel surfaces had more regular and longer crystallites to those of the Group B. Conclusion: Fluoride dentifrices avert the decrease in enamel hardness and loss of minerals from the enamel surface to a large extent as compared to the nonfluoride dentifrices. PMID:26962320

  20. SENSITIVITY STUDIES FOR AN IN-SITU PARTIAL DEFECT DETECTOR (PDET) IN SPENT FUEL USING MONTE CARLO TECHNIQUES

    SciTech Connect

    Sitaraman, S; Ham, Y S

    2008-04-28

    This study presents results from Monte Carlo radiation transport calculations aimed at characterizing a novel methodology being developed to detect partial defects in Pressurized Water Reactor (PWR) spent fuel assemblies (SFAs). The methodology uses a combination of measured neutron and gamma fields inside a spent fuel assembly in an in-situ condition where no movement of the fuel assembly is required. Previous studies performed on single isolated assemblies resulted in a unique base signature that would change when some of the fuel in the assembly is replaced with dummy fuel. These studies indicate that this signature is still valid in the in-situ condition enhancing the prospect of building a practical tool, Partial Defect Detector (PDET), which can be used in the field for partial defect detection.

  1. Study of critical current density in superconducting magnesium diboride films grown by ex situ annealing of CVD boron films

    NASA Astrophysics Data System (ADS)

    Hanna, Mina

    MgB2 films have been processed by different techniques, the most successful of which include the hybrid physical-chemical vapor deposition (HPCVD) as well as the ex situ high temperature annealing of boron films in Mg vapor. The advantage of the ex situ method is that it allows the coating of MgB2 on large and complex surfaces, such as superconducting radio frequency (RF) cavities. However, it has always been realized that HPCVD films can carry higher J c than the ex situ annealed films. In this research, we succeeded in fabricating high quality MgB2 films by the ex situ annealing technique that produced a Jc value as high as 1.8 x 106 A/cm 2 for 1 mum thick film at 20 K and self-field. This high Jc value is, however, considerably reduced at higher thicknesses similar to that observed in YBCO coated conductors. In order to understand the mechanisms responsible for J c decrease with increasing film thickness, we studied the Jc behavior as a function of thickness in MgB2 films fabricated by ex situ annealing at 840°C of boron films, grown by chemical vapor deposition, in Mg vapor. The film thickness ranged between 300 nm and 10 mum. The values of Jc for these films ranged from 1.2 x 107 A/cm2 for 300 nm to 1.9 x 105 A/cm2 for 10 mum film thickness at 20 K and self-field. In addition, the results show that critical current (Ic) reaches a maximum value of 728 A/cm width at ˜1 mum thick MgB2 film at 20 K and self-field. These results of Jc and Ic behaviors with higher thickness are interpreted in terms of impurity diffusion during annealing and microstructural degradation for thicker films.

  2. In situ bioremediation of petroleum hydrocarbons and chlorinated hydrocarbons: Three case studies

    SciTech Connect

    Bost, R.C.; Perry, R.G.; Barber, T.

    1997-06-01

    In situ biodegradation of organic contaminants is one of the most cost-effective means of site remediation. This method has proven successful in soils, ground water, and slurries. Bacteria capable of degrading organic contaminants within an aquifer include many species from a wide spectrum of genera, e.g. Pseudomonas, Corynebacterium, Bacillus, etc. In most cases, a mixture of bacterial strains is required to completely oxidize a complex organic contaminant. Each strain of an organism may target a specific compound, working together with other organisms to ultimately degrade each intermediate until complete degradation, also known as mineralization, occurs. One or more of the following mechanisms are utilized by bacteria for organic chemical degradation: (1) aerobic, (2) anaerobic, and (3) co-metabolic. During aerobic oxidation of organic chemicals, bacteria utilize the pollutant as an electron and hydrogen source and oxygen acts as the electron and hydrogen acceptor, resulting in water. As the bacterial enzymes cleave the compound, oxidized products are produced along with energy for the reaction to proceed. This is the most rapid and widely utilized mechanism. Dehalogenation occurs under aerobic, or perhaps more often, under anoxic conditions. This process occurs in the presence of alternate electron acceptors and replaces chlorine with hydrogen. The mechanism of co-metabolism can be aerobic or anaerobic, but is more often aerobic. This process requires a separate energy source for the bacterial cell because the pollutant is not utilized as an energy source. The role of bioremediation in site remediation is demonstrated below by three case studies: (1) a refinery, (2) a municipal landfill and (3) a pesticide formulation plant.

  3. A preliminary study of the controls on melting during in situ vitrification. Environmental Restoration Program

    SciTech Connect

    Solomon, A.D.; Nyquist, J.E.; Alexiades, V.; Jacobs, G.K.; Lenhart, S.M.

    1991-12-01

    In situ vitrification (ISV), developed by Pacific Northwest Laboratory and patented for the US Department of Energy, is one method used to stabilize contaminated soils in place. ISV involves inserting four electrodes in a square array into contaminated soil and applying an electrical potential to the electrodes. The soil is heated to above its melting point, and the molten zone expands with time to encompass the contaminated zone. After cooling, the resulting solid material is usually a mixture of glass and crystalline material that has a significantly higher resistance to leaching than did the original soils. Nonvolatile elements (most radionuclides and metals) are dissolved into the melt or encapsulated in glass if their solubility in the melt is low. Organic compounds tends to be pyrolyzed, with the decomposition products diffusing to the surface and combusting on exiting the molten zone. A hood is placed over the vitrification zone to collect off-gas particulates and volatiles into a processing trailer that scrubs contaminants from the off-gas. The current study identified key parameters and processes in the ISV melt cycle and developed an improved understanding of ISV. Analytical approximations for several properties of molten soil were determined from available data. Using a simplified geometrical approximation for melt geometry, an analytical approximation for the rate of melting (depth) vs time was derived that is consistent with data from field experiments. At small times, the depth of melting increases linearly with time. After approximately 10 h in large-scale tests, however, the depth increases as the square root of time. Existing data is also consistent with a relationship that shows the volumetric growth rate of the melt to be directly proportional to time. These conclusions suggest that heat transfer processes controlling the ISV process may be at the transition between weak convection and conduction.

  4. A preliminary study of the controls on melting during in situ vitrification

    SciTech Connect

    Solomon, A.D.; Nyquist, J.E.; Alexiades, V.; Jacobs, G.K.; Lenhart, S.M.

    1991-12-01

    In situ vitrification (ISV), developed by Pacific Northwest Laboratory and patented for the US Department of Energy, is one method used to stabilize contaminated soils in place. ISV involves inserting four electrodes in a square array into contaminated soil and applying an electrical potential to the electrodes. The soil is heated to above its melting point, and the molten zone expands with time to encompass the contaminated zone. After cooling, the resulting solid material is usually a mixture of glass and crystalline material that has a significantly higher resistance to leaching than did the original soils. Nonvolatile elements (most radionuclides and metals) are dissolved into the melt or encapsulated in glass if their solubility in the melt is low. Organic compounds tends to be pyrolyzed, with the decomposition products diffusing to the surface and combusting on exiting the molten zone. A hood is placed over the vitrification zone to collect off-gas particulates and volatiles into a processing trailer that scrubs contaminants from the off-gas. The current study identified key parameters and processes in the ISV melt cycle and developed an improved understanding of ISV. Analytical approximations for several properties of molten soil were determined from available data. Using a simplified geometrical approximation for melt geometry, an analytical approximation for the rate of melting (depth) vs time was derived that is consistent with data from field experiments. At small times, the depth of melting increases linearly with time. After approximately 10 h in large-scale tests, however, the depth increases as the square root of time. Existing data is also consistent with a relationship that shows the volumetric growth rate of the melt to be directly proportional to time. These conclusions suggest that heat transfer processes controlling the ISV process may be at the transition between weak convection and conduction.

  5. Particle scattering, backscattering, and absorption coefficients: An in situ closure and sensitivity study

    NASA Astrophysics Data System (ADS)

    Wex, Heike; Neusüß, Christian; Wendisch, Manfred; Stratmann, Frank; Koziar, Christian; Keil, Andreas; Wiedensohler, Alfred; Ebert, Martin

    2002-11-01

    Comparisons between measured and calculated aerosol scattering, backscattering, and absorption coefficients were made based on in situ, ground-based measurements during the Melpitz INTensive (MINT) and Lindenberg Aerosol Characterization Experiment 1998 (LACE 98) field studies. Furthermore, airborne measurements made with the same type of instruments are reviewed and compared with the ground-based measurements. Agreement between measured and calculated values is on the order of ±20% for scattering and backscattering coefficients. A sensitivity analysis showed a large influence on the calculated particle scattering and backscattering coefficients resulting from sizing uncertainties in the measured number size distributions. Measured absorption coefficients were significantly smaller than the corresponding calculated values. The largest uncertainty for the calculated absorption coefficients resulted from the size-dependent fraction of elemental carbon (EC) of the aerosol. A correction for the measured fractions of EC could significantly improve the agreement between measured and calculated absorption coefficients. The overall uncertainty of the calculated values was investigated with a Monte Carlo method by simultaneously and randomly varying the input parameters of the calculations, where the variation of each parameter was bounded by its uncertainty. The measurements were mostly found to be within the range of uncertainties of the calculations, with uncertainties for the calculated scattering and backscattering coefficients of about ±20% and for the absorption coefficients of about ±30%. Thus, to increase the accuracy of calculated scattering, backscattering, and absorption coefficients, it is crucial to further reduce the error in particle number size distribution measurement techniques. In addition, further improvement of the techniques for measuring absorption coefficients and further investigation of the measurement of the fraction of EC of the aerosol is

  6. Rheological study of in-situ crosslinkable hydrogels based on hyaluronanic acid, collagen and sericin.

    PubMed

    Vulpe, Raluca; Le Cerf, Didier; Dulong, Virginie; Popa, Marcel; Peptu, Catalina; Verestiuc, Liliana; Picton, Luc

    2016-12-01

    The elaboration of chemically crosslinked hydrogels based on collagen (C), hyaluronanic acid (HA) and sericin (S) with different polymer ratios was investigated by in-situ rheology. This reaction was performed via amide or ester bond reaction activated by carbodiimide, in pure water. Prior to molecule crosslinking, the rheological behaviour of the biopolymers (alone or in mixture) was characterized in a semi-dilute concentration regime. Both flow and dynamic measurements showed that uncrosslinked collagen alone appears to be rather elastic with yield stress properties, whereas uncrosslinked HA alone appears to be rather shear thinning and viscoelastic in agreement with entangled polymer behaviour. Sericin exhibited Newtonian low viscosity behaviour according to its very low molar mass. Before crosslinking, HA exhibited viscoelastic behaviour at concentrations above the critical entangled concentration (C*) in the mixtures, thus HA shows promise as a matrix for future crosslinked networks, whereas sericin did not significantly modify the rheology. During the reaction, followed by rheology, the kinetics were slower for pure HA systems compared with the mixtures (i.e., with added collagen and/or to a lesser extent sericin). At the same time, the final network of hydrogels (i.e., the elastic modulus) was more structured in the mixture based systems. This result is explained by ester bonds (the only possibility for pure HA systems), which are less favourable and reactive than amide bonds (possible with sericin and collagen). The presence of collagen in the HA matrix reinforced the hydrogel network. SEM studies confirmed the structure of the hydrogels, and in vitro degradability was globally consistent with the effect of the selected enzyme according to the hydrogel composition. All the elaborated hydrogels were non-cytotoxic in vitro. PMID:27612727

  7. Study of Sn removal processes for in-situ collector cleaning

    NASA Astrophysics Data System (ADS)

    Elg, Daniel T.; Panici, Gianluca A.; Srivastava, Shailendra N.; Ruzic, D. N.

    2016-03-01

    An in-situ hydrogen plasma cleaning technique to clean Sn off of EUV collector optics is studied in detail. The cleaning process uses hydrogen radicals (formed in the hydrogen plasma) to interact with Sn-coated surfaces, forming SnH4 and being pumped away. This technique has been used to clean a 300mm-diameter stainless steel dummy collector optic, and EUV reflectivity of multilayer mirror samples was restored after cleaning Sn from them, validating the potential of this technology. This method has the potential to significantly reduce downtime and increase source availability. However, net Sn removal is limited by decomposition of the SnH4 molecule upon impact with the collector and the resulting redeposition of Sn. This is true in all cleaning systems that make use of hydrogen radicals. Thus, to guide the design of effective cleaning systems, the transport of Sn in the chamber, and the fundamental processes affecting it, must be understood. Accordingly, an investigation into these processes Sn removal is being performed. These processes include the advection of gas through the chamber, the creation of hydrogen radicals, the etching of Sn by radicals, and the surface decomposition of SnH4. In this paper, experiments to determine the radical density are presented, along with a theoretical plasma chemistry model that explains the processes behind radical creation and validates the radical density measurements. Additionally, experiments are shown that provide an insight into the etching of Sn by hydrogen radicals, yielding calculations of etching probability as well as showing that Sn etching is very sensitive to oxygen contamination and surface morphology.

  8. NOx storage and reduction in model lean NOx trap catalysts studied by in situ DRIFTS

    SciTech Connect

    Ji, Yaying; Toops, Todd J; Pihl, Josh A; Crocker, Mark

    2009-01-01

    NO{sub x} storage and reduction on a model Pt/BaO/Al{sub 2}O{sub 3} catalyst was studied by means of in situ DRIFTS measurements. To examine the effect of ceria addition, experiments were also conducted using Pt/BaO/Al{sub 2}O{sub 3} to which Pt/CeO{sub 2} was added as a physical mixture in a 74:26 weight ratio. For the former catalyst, DRIFT spectra acquired during NO/O{sub 2} and NO{sub 2}/O{sub 2} storage indicated the formation of nitrite at 200 C during the initial stages of adsorption, while increasing the adsorption temperature appeared to facilitate the oxidation of nitrite to nitrate. The ceria-containing catalyst afforded similar DRIFT spectra under these conditions, although the presence of cerium nitrates was observed at 200 and 300 C, consistent with NO{sub x} storage on the ceria phase. DRIFT spectra acquired during NO{sub x} reduction in CO and CO/H{sub 2} showed that Ba nitrate species remained on the surface of both catalysts at 450 C, whereas the use of H{sub 2}-only resulted in complete removal of stored NO{sub x}. The observation of Ba carbonates when CO was present suggests that the inferior reduction efficiency of CO may arise from the formation of a crust of BaCO{sub 3} on the Ba phase, which inhibits further NO{sub x} reduction. DRIFT spectra acquired during lean-rich cycling (6.5 min lean, 1.0 min rich) with CO/H{sub 2} as the rich phase reductants revealed that a significant concentration of nitrates remained on the catalysts at the end of the rich phase. This implies that a large fraction of nitrate is not decomposed during cycling and thus cannot participate in NO{sub x} abatement through storage and regeneration.

  9. A Next-Generation Hard X-Ray Nanoprobe Beamline for In Situ Studies of Energy Materials and Devices

    NASA Astrophysics Data System (ADS)

    Maser, Jörg; Lai, Barry; Buonassisi, Tonio; Cai, Zhonghou; Chen, Si; Finney, Lydia; Gleber, Sophie-Charlotte; Jacobsen, Chris; Preissner, Curt; Roehrig, Chris; Rose, Volker; Shu, Deming; Vine, David; Vogt, Stefan

    2014-01-01

    The Advanced Photon Source is developing a suite of new X-ray beamlines to study materials and devices across many length scales and under real conditions. One of the flagship beamlines of the APS upgrade is the In Situ Nanoprobe (ISN) beamline, which will provide in situ and operando characterization of advanced energy materials and devices under varying temperatures, gas ambients, and applied fields, at previously unavailable spatial resolution and throughput. Examples of materials systems include inorganic and organic photovoltaic systems, advanced battery systems, fuel cell components, nanoelectronic devices, advanced building materials and other scientifically and technologically relevant systems. To characterize these systems at very high spatial resolution and trace sensitivity, the ISN will use both nanofocusing mirrors and diffractive optics to achieve spots sizes as small as 20 nm. Nanofocusing mirrors in Kirkpatrick-Baez geometry will provide several orders of magnitude increase in photon flux at a spatial resolution of 50 nm. Diffractive optics such as zone plates and/or multilayer Laue lenses will provide a highest spatial resolution of 20 nm. Coherent diffraction methods will be used to study even small specimen features with sub-10 nm relevant length scale. A high-throughput data acquisition system will be employed to significantly increase operations efficiency and usability of the instrument. The ISN will provide full spectroscopy capabilities to study the chemical state of most materials in the periodic table, and enable X-ray fluorescence tomography. In situ electrical characterization will enable operando studies of energy and electronic devices such as photovoltaic systems and batteries. We describe the optical concept for the ISN beamline, the technical design, and the approach for enabling a broad variety of in situ studies. We furthermore discuss the application of hard X-ray microscopy to study defects in multi-crystalline solar cells, one

  10. A Next-Generation Hard X-Ray Nanoprobe Beamline for In Situ Studies of Energy Materials and Devices

    SciTech Connect

    Maser, Jong; Lai, Barry; Buonassisi, Toni; Cai, Zhonghou; Chen, Si; Finney, Lydia; Gleber, Sophie-Charlotte; Jacobsen, Chris; Preissner, Curt; Chris Roehrig; Rose, Volker; Shu, Deming; Vine, David; Vogt, Stefan

    2013-08-20

    The Advanced Photon Source is developing a suite of new X-ray beamlines to study materials and devices across many length scales and under real conditions. One of the flagship beamlines of the APS upgrade is the In Situ Nanoprobe (ISN) beamline, which will provide in situ and operando characterization of advanced energy materials and devices under varying temperatures, gas ambients, and applied fields, at previously unavailable spatial resolution and throughput. Examples of materials systems include inorganic and organic photovoltaic systems, advanced battery systems, fuel cell components, nanoelectronic devices, advanced building materials and other scientifically and technologically relevant systems. To characterize these systems at very high spatial resolution and trace sensitivity, the ISN will use both nanofocusing mirrors and diffractive optics to achieve spots sizes as small as 20 nm. Nanofocusing mirrors in Kirkpatrick–Baez geometry will provide several orders of magnitude increase in photon flux at a spatial resolution of 50 nm. Diffractive optics such as zone plates and/or multilayer Laue lenses will provide a highest spatial resolution of 20 nm. Coherent diffraction methods will be used to study even small specimen features with sub-10 nm relevant length scale. A high-throughput data acquisition system will be employed to significantly increase operations efficiency and usability of the instrument. The ISN will provide full spectroscopy capabilities to study the chemical state of most materials in the periodic table, and enable X-ray fluorescence tomography. In situ electrical characterization will enable operando studies of energy and electronic devices such as photovoltaic systems and batteries. We also describe the optical concept for the ISN beamline, the technical design, and the approach for enabling a broad variety of in situ studies. Furthermore, we discuss the application of hard X-ray microscopy to study defects in multi-crystalline solar

  11. In situ total X-ray scattering study of WO₃ nanoparticle formation under hydrothermal conditions.

    PubMed

    Saha, Dipankar; Jensen, Kirsten M Ø; Tyrsted, Christoffer; Bøjesen, Espen D; Mamakhel, Aref Hasen; Dippel, Ann-Christin; Christensen, Mogens; Iversen, Bo B

    2014-04-01

    Pair distribution function analysis of in situ total scattering data recorded during formation of WO3 nanocrystals under hydrothermal conditions reveal that a complex precursor structure exists in solution. The WO6 polyhedra of the precursor cluster undergo reorientation before forming the nanocrystal. This reorientation is the critical element in the formation of different hexagonal polymporphs of WO3. PMID:24574244

  12. In situ studies with membrane diffusion chambers of antibiotic resistance transfer in Escherichia coli.

    PubMed Central

    Altherr, M R; Kasweck, K L

    1982-01-01

    Coliform bacteria were isolated from raw sewage and sewage effluent-receiving waters and tested for their antibiotic susceptibility patterns and their ability to transfer antibiotic resistance to Escherichia coli K-12 C600. An environmental isolate of E. coli (MA527) capable of transferring antibiotic resistance to C600 was mated, both in vitro and in situ, with an antibiotic-sensitive E. coli environmental isolate (MA728). In situ matings were conducted in modified membrane diffusion chambers, in the degritter tank at the Grant Street (Melbourne, Fla.) sewage treatment facility, and in the sewage effluent-receiving waters in Melbourne, Fla. The transfer frequencies in situ were 3.2 x 10(-5) to 1.0 x 10(-6), compared with 1.6 x 10(-4) to 4.4 x 10(-5) observed in vitro. Transfer was shown to occur in raw sewage but was not detected in the effluent-receiving waters. The presence of a 60-megadalton plasmid species in both donor and transconjugants, but not in the recipients, provided physical evidence for the transfer of antibiotic resistance in situ. Images PMID:6756306

  13. FIELD STUDY: IN SITU OXIDATION OF 1,4-DIOXANE WITH OZONE AND HYDROGEN PEROXIDE

    EPA Science Inventory

    A pilot-scale field evaluation is underway to assess the effectiveness of in situ oxidation (using ozone with and without hydrogen peroxide) for remediation of 1,4-dioxane and chlorinated volatile organic compounds in groundwater at the Cooper Drum Company Superfund Site located ...

  14. Study of the reactivity of silica supported tantalum catalysts with oxygen followed by in situ HEROS.

    PubMed

    Błachucki, Wojciech; Szlachetko, Jakub; Kayser, Yves; Dousse, Jean-Claude; Hoszowska, Joanna; Fernandes, Daniel L A; Sá, Jacinto

    2015-07-28

    We report on the reactivity of grafted tantalum organometallic catalysts with molecular oxygen. The changes in the local Ta electronic structure were followed by in situ high-energy resolution off-resonant spectroscopy (HEROS). The results revealed agglomeration and formation of Ta dimers, which cannot be reversed. The process occurs independently of starting grafted complex. PMID:26105785

  15. In Situ Powder Diffraction Studies of Electrode Materials in Rechargeable Batteries.

    PubMed

    Sharma, Neeraj; Pang, Wei Kong; Guo, Zaiping; Peterson, Vanessa K

    2015-09-01

    The ability to directly track the charge carrier in a battery as it inserts/extracts from an electrode during charge/discharge provides unparalleled insight for researchers into the working mechanism of the device. This crystallographic-electrochemical information can be used to design new materials or modify electrochemical conditions to improve battery performance characteristics, such as lifetime. Critical to collecting operando data used to obtain such information in situ while a battery functions are X-ray and neutron diffractometers with sufficient spatial and temporal resolution to capture complex and subtle structural changes. The number of operando battery experiments has dramatically increased in recent years, particularly those involving neutron powder diffraction. Herein, the importance of structure-property relationships to understanding battery function, why in situ experimentation is critical to this, and the types of experiments and electrochemical cells required to obtain such information are described. For each battery type, selected research that showcases the power of in situ and operando diffraction experiments to understand battery function is highlighted and future opportunities for such experiments are discussed. The intention is to encourage researchers to use in situ and operando techniques and to provide a concise overview of this area of research. PMID:26223736

  16. Quantitative in situ hybridization for the study of gene expression at the regional and cellular levels.

    PubMed

    Le Moine, Catherine

    2003-08-01

    Quantitative in situ hybridization allows measurement of mRNA level modifications in a variety of experimental conditions. This analysis may be performed both at the regional anatomical and cellular levels by densitometry, neuronal counting and silver grain measurements. PMID:18428577

  17. Influence of Laser Irradiation on Pits and Fissures: An In Situ Study

    PubMed Central

    Correa–Afonso, Alessandra M; Pécora, Jesus D

    2013-01-01

    Abstract Objective: The aim of this in situ study was to analyze the influence of the Er:YAG, Nd:YAG, and CO2 lasers on the enamel acid resistance of pits and fissures. Background data: The laser tissue interaction has been studied as a method of preventing occlusal caries. Methods: Thirteen volunteers wore palatal acrylic appliances containing human occlusal enamel blocks that were divided into four groups (G1, control; G2, Er:YAG; G3, Nd:YAG; G4, CO2). Each palatal acrylic appliance was used in the four studied groups and was used for 14 consecutive days. A sucrose solution was applied to the specimens six times per day. The specimens were then sectioned in half, and a microhardness test was applied. The other halves were analyzed using polarized light microscopy to measure the caries-like lesion areas, and a morphological analysis was conducted using a scanning electron microscope (SEM). Results: For the statistical analysis of the data obtained from the microhardness test (Knoop hardness number. [KHN]) (α=5%), Fisher's exact test was performed, and the group means were as follows: G1, 247±71; G2, 258±70; G3, 272±73; and G4, 298±56. The results demonstrated that the control group was significantly different from G3 and G4, which presented higher microhardness values. The Wilcoxon signed-rank test was used to analyze the data obtained from the caries-lesion area measurements (mm2) (α=5%) (G1, 0.01±1.08; G2, 0.13±0.18; G3, 0.05±0.17; and G4, 0.09±0.22). The results no showed significant differences among the groups in this analysis. Conclusions: Based on the results from the present study, it may be concluded that the CO2 and Nd:YAG lasers increased the enamel acid resistance in pits and fissures. PMID:23336742

  18. Microparticle electrodes and single particle microbatteries: electrochemical and in situ microRaman spectroscopic studies.

    PubMed

    Jebaraj, Adriel Jebin Jacob; Scherson, Daniel A

    2013-05-21

    Studies of the intrinsic electrochemical, structural, and electronic propertiesof microparticles of energy storage materials can provide much needed insight into the factors that control various aspects of the performance of technical electrodes for battery applications. This Account summarizes efforts made in our laboratories toward the development and implementation of methods for the in situ electrical, optical, and spectroscopic characterization of microparticles of a variety of such materials, including Ni hydroxide, Zn, carbon, and lithiated Mn and Co oxides. In the case of Ni hydroxide, the much darker appearance of NiOOH compared to the virtually translucent character of virgin Ni(OH)2 allowed for the spatial and temporal evolution of charge flow within spherical microparticles of Ni(OH)2 to be monitored in real time during the first scan toward positive potentials using computer-controlled video imaging. In situ Raman scattering measurements involving single microparticles of Zn harvested from a commercial Zn|MnO2 battery revealed that passive films formed in strongly alkaline solutions by stepping the potential from 1.55 V to either 0.7 or 0.8 V vs SCE displayed a largely enhanced feature at ca. 565 cm(-1) ascribed to a longitudinal optical phonon mode of ZnO, an effect associated with the presence of interstitial Zn and oxygen deficiencies in the lattice. In addition, significant amounts of crystalline ZnO could be detected only for passive films formed at the same two potentials after the electrodes had been roughened by a single passivation-reduction step. Quantitative correlations were found in the case of LiMn2O4 and KS-44 graphite between the Raman spectral properties and the state of charge. In the case of KS-44, a chemometrics analysis of the spectroscopic data in the potential region in which the transition between dilute phase 1 and phase 4 of lithiated graphite is known to occur made it possible to determine independently the fraction of each

  19. Quark-hadron duality and truncated moments of nucleon structure functions

    SciTech Connect

    Psaker, A.; Melnitchouk, W.; Christy, M. E.; Keppel, C.

    2008-08-15

    We employ a novel new approach to study local quark-hadron duality using 'truncated' moments, or integrals of structure functions over restricted regions of x, to determine the degree to which individual resonance regions are dominated by leading twist. Because truncated moments obey the same Q{sup 2} evolution equations as the leading twist parton distributions, this approach makes possible for the first time a description of resonance region data and the phenomenon of quark-hadron duality directly from QCD.

  20. In situ scanning tunneling microscopy studies of the SEI formation on graphite electrodes for Li(+)-ion batteries.

    PubMed

    Seidl, Lukas; Martens, Slađana; Ma, Jiwei; Stimming, Ulrich; Schneider, Oliver

    2016-08-01

    The SEI-formation on graphitic electrodes operated as an Li(+)-ion battery anode in a standard 1 M LiPF6 EC/DMC (1 : 1) electrolyte has been studied in situ by EC-STM. Two different modes of in situ study were applied, one, which allowed to follow topographic and crystallographic changes (solvent cointercalation, graphite exfoliation, SEI precipitation on the HOPG basal plane) of the graphite electrode during SEI-formation, and the second, which gave an insight into the SEI precipitation on the HOPG basal plane in real time. From the in situ EC-STM studies, not only conclusions about the SEI-topography could be drawn, but also about the formation mechanism and the chemical composition, which strongly depend on the electrode potential. It was shown that above 1.0 V vs. Li/Li(+) the SEI-formation is still reversible, since the molecular structure of the solvent molecules remains intact during an initial reduction step. During further reduction, the molecular structures of the solvents are destructed, which causes the irreversible charge loss. The STM studies were completed by electrochemical methods, like cyclic voltammetry, the potentiostatic intermittent titration technique and charge/discharge tests of MCMB electrodes. PMID:27140292

  1. Sub-structures in hadrons and proton structure functions

    NASA Astrophysics Data System (ADS)

    Arash, Firooz; Khorramian, Ali N.

    2001-04-01

    We calculate the partonic structure of constituent quark in the Next-to-Leading Order. Using a convolution method, Structure function of proton is presented. While the constituent quark structure is generated purely perturbatively and accounts for the most part of the hadronic structure, there is a few percent contributions coming from the nonperturbative sector in the hadronic structure. This contribution plays the key role in explaining the SU(2) symmetry breaking of the nucleon sea and the observed violation of Gottfried sum rule. Excellent agreement with data in a wide range of x = [10 -6, 1] and Q2 = [0.5, 5000] GeV2 for Fp2 is reached.

  2. LINC complex proteins in cardiac structure, function, and disease

    PubMed Central

    Stroud, Matthew J; Banerjee, Indroneal; Lowe, Jennifer; Chen, Ju

    2014-01-01

    The LINC (LInker of Nucleoskeleton and Cytoskeleton) complex, composed of proteins within the inner and the outer nuclear membranes, connects the nuclear lamina to the cytoskeleton. The importance of this complex has been highlighted by the discovery of mutations in genes encoding LINC complex proteins, which are causative for skeletal or cardiac myopathies. Herein, this review summarizes structure, function, and interactions of major components of the LINC complex, highlights how mutations in these proteins may lead to cardiac disease, and outlines future challenges in the field. PMID:24481844

  3. The deuteron structure function F2 with CLAS

    SciTech Connect

    M. Osipenko; G. Ricco; S. Simula; M. Battaglieri; M. Ripani

    2005-07-01

    The inclusive, inelastic eD scattering cross section has been measured with the CLAS detector in Hall B of the Thomas Jefferson National Accelerator Facility (TJNAF). Combining these data and previously measured world data we have extracted Nachtmann moments of the deuteron structure function F2 in the region 0.4 < Q2 < 100 GeV2/c2. These results are published in hep-ex/0506004. The purpose of the present CLAS-Note is to tabulate the CLAS deuteron F2 data. A description of the data analysis is reported in hep-ex/0506004.

  4. Structure-Function-Property-Design Interplay in Biopolymers: Spider Silk

    PubMed Central

    Tokareva, Olena; Jacobsen, Matthew; Buehler, Markus; Wong, Joyce; Kaplan, David L.

    2013-01-01

    Spider silks have been a focus of research for almost two decades due to their outstanding mechanical and biophysical properties. Recent advances in genetic engineering have led to the synthesis of recombinant spider silks, thus helping to unravel a fundamental understanding of structure-function-property relationships. The relationships between molecular composition, secondary structures, and mechanical properties found in different types of spider silks are described, along with a discussion of artificial spinning of these proteins and their bioapplications, including the role of silks in biomineralization and fabrication of biomaterials with controlled properties. PMID:23962644

  5. Moments of the neutron g₂ structure function at intermediate Q²

    DOE PAGESBeta

    Solvignon-Slifer, Patricia H.

    2015-07-15

    We present new experimental results of the ³He spin structure function g₂ in the resonance region at Q² values between 1.2 and 3.0 (GeV/c)². Spin dependent moments of the neutron were then extracted.Our main result, the inelastic contribution to the neutron d₂ matrix element, was found to be small (Q²) = 2.4 (GeV/c)² and in agreement with the Lattice QCD calculation. The Burkhardt-Cottingham sum rule for ³He neutron was tested with the measured data and using the Wandzura-Wilczek relation for the low x unmeasured region.

  6. In-situ high temperature irradiation setup for temperature dependent structural studies of materials under swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Kulriya, P. K.; Kumari, Renu; Kumar, Rajesh; Grover, V.; Shukla, R.; Tyagi, A. K.; Avasthi, D. K.

    2015-01-01

    An in-situ high temperature (1000 K) setup is designed and installed in the materials science beam line of superconducting linear accelerator at the Inter-University Accelerator Centre (IUAC) for temperature dependent ion irradiation studies on the materials exposed with swift heavy ion (SHI) irradiation. The Gd2Ti2O7 pyrochlore is irradiated using 120 MeV Au ion at 1000 K using the high temperature irradiation facility and characterized by ex-situ X-ray diffraction (XRD). Another set of Gd2Ti2O7 samples are irradiated with the same ion beam parameter at 300 K and simultaneously characterized using in-situ XRD available in same beam line. The XRD studies along with the Raman spectroscopic investigations reveal that the structural modification induced by the ion irradiation is strongly dependent on the temperature of the sample. The Gd2Ti2O7 is readily amorphized at an ion fluence 6 × 1012 ions/cm2 on irradiation at 300 K, whereas it is transformed to a radiation-resistant anion-deficient fluorite structure on high temperature irradiation, that amorphized at ion fluence higher than 1 × 1013 ions/cm2. The temperature dependent ion irradiation studies showed that the ion fluence required to cause amorphization at 1000 K irradiation is significantly higher than that required at room temperature irradiation. In addition to testing the efficiency of the in-situ high temperature irradiation facility, the present study establishes that the radiation stability of the pyrochlore is enhanced at higher temperatures.

  7. High-voltage electron microscope high-temperature in situ straining experiments to study dislocation dynamics in intermetallics and quasicrystals.

    PubMed

    Messerschmidt, U

    2001-07-01

    The dynamic behaviour of dislocations in several intermetallic alloys, studied by in situ straining experiments in a high-voltage electron microscope, is compared at room temperature and at high temperatures. In contrast to room temperature, the dislocations move viscously at high temperatures, which is explained by diffusion processes in the dislocation cores. In quasicrystals, the viscous dislocation motion can be interpreted by models on the cluster scale. PMID:11454156

  8. Fetal t(5p;21q) misdiagnosed as monosomy 21: A plea for in situ hybridization studies

    SciTech Connect

    Gill, P.; Uhrich, S.; Cheng, E.; Disteche, C.

    1994-10-01

    We report a case of 45,XY,-5,-21,+der (5)t(5;21) (p13 or p14;q11.2 or q21) that was prenatally misdiagnosed as complete monosomy 21 and terminated at 24 weeks of gestation. Subsequent fluorescence in situ hybridization studies with a chromosome 21 painting probe documented the cryptic unbalanced translocation. 17 refs., 2 figs., 1 tab.

  9. Development of wet environment TEM (wet-ETEM) for in situ studies of liquid-catalyst reactions on the nanoscale.

    PubMed

    Gai, Pratibha L

    2002-02-01

    We present the development of in situ wet environmental transmission electron microscopy (wet-ETEM) for direct probing of controlled liquid-catalyst reactions at operating temperatures on the nanoscale. The first nanoscale imaging and electron diffraction of dynamic liquid hydrogenation and polymerization reactions in the manufacture of polyamides reported here opens up new opportunities for high resolution studies of a wide range of solution-solid and solution-gas-solid reactions in the chemical and biological sciences. PMID:14710723

  10. An Integrated approach for in situ stress prediction - Fault Block Scale Case Study for the northern Central Cordillera of Colombia

    NASA Astrophysics Data System (ADS)

    Whitehill, C. S.; Cobos, D.; Vargas, C. A.; Martinez, M.

    2013-05-01

    This study develops an integrated, geological approach for evaluation of in situ stress, and presents a case study of the Central Cordillera of Colombia. The case study considers the effect of the complex tectonic interplay between Nazca-South American subduction, Panamanian indention, continental volcanism and crustal deformation. Regional stress fields and the related potential geo-hazards for this region are constrained by the limited structural control at depth on the primary deterministic features, sparse paleoseismology and active strain measurements on fault slip. In the absence of data needed for the traditional approach to this kind of problem; we model the system from a geo-mechanical perspective that allows us to vary parameters controlling in-situ stress fields at both the fault block scale and the discrete fracture network scale. The approach presented in this paper focuses on in situ stress estimation at the fault block scale. Using available fault geometry, earthquake focal mechanism, subsurface, stratigraphic, GIS, GPS, topographic and paleoseismology data, we utilize FracMan® technology to model variations on stress field analyses along strike on the dominant structures. We interpret relative intensities and the probability for seismic release along several key faults such as the Romeral Norte, Cauca, Ibagué, Fallas de Magdalena, Murindo, Armenia and Palestina faults each with significant (Mw > 6) displays of historic seismicity.

  11. Measurement of the photon structure function F2γ at low x

    NASA Astrophysics Data System (ADS)

    OPAL Collaboration; Ackerstaff, K.; Alexander, G.; Allison, J.; Altekamp, N.; Anderson, K. J.; Anderson, S.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Ball, A. H.; Barberio, E.; Barillari, T.; Barlow, R. J.; Bartoldus, R.; Batley, J. R.; Baumann, S.; Bechtluft, J.; Beeston, C.; Behnke, T.; Bell, A. N.; Bell, K. W.; Bella, G.; Bentvelsen, S.; Bethke, S.; Biebel, O.; Biguzzi, A.; Bird, S. D.; Blobel, V.; Bloodworth, I. J.; Bloomer, J. E.; Bobinski, M.; Bock, P.; Bonacorsi, D.; Boutemeur, M.; Bouwens, B. T.; Braibant, S.; Brigliadori, L.; Brown, R. M.; Burckhart, H. J.; Burgard, C.; Bürgin, R.; Capiluppi, P.; Carnegie, R. K.; Carter, A. A.; Carter, J. R.; Chang, C. Y.; Charlton, D. G.; Chrisman, D.; Clarke, P. E. L.; Cohen, I.; Conboy, J. E.; Cooke, O. C.; Cuffiani, M.; Dado, S.; Dallapiccola, C.; Dallavalle, G. M.; Davies, R.; de Jong, S.; del Pozo, L. A.; Desch, K.; Dienes, B.; Dixit, M. S.; Do Couto e Silva, E.; Doucet, M.; Duchovni, E.; Duckeck, G.; Duerdoth, I. P.; Eatough, D.; Edwards, J. E. G.; Estabrooks, P. G.; Evans, H. G.; Evans, M.; Fabbri, F.; Fanti, M.; Faust, A. A.; Fiedler, F.; Fierro, M.; Fischer, H. M.; Fleck, I.; Folman, R.; Fong, D. G.; Foucher, M.; Fürtjes, A.; Futyan, D. I.; Gagnon, P.; Gary, J. W.; Gascon, J.; Gascon-Shotkin, S. M.; Geddes, N. I.; Geich-Gimbel, C.; Geralis, T.; Giacomelli, G.; Giacomelli, P.; Giacomelli, R.; Gibson, V.; Gibson, W. R.; Gingrich, D. M.; Glenzinski, D.; Goldberg, J.; Goodrick, M. J.; Gorn, W.; Grandi, C.; Gross, E.; Grunhaus, J.; Gruwé, M.; Hajdu, C.; Hanson, G. G.; Hansroul, M.; Hapke, M.; Hargrove, C. K.; Hart, P. A.; Hartmann, C.; Hauschild, M.; Hawkes, C. M.; Hawkings, R.; Hemingway, R. J.; Herndon, M.; Herten, G.; Heuer, R. D.; Hildreth, M. D.; Hill, J. C.; Hillier, S. J.; Hobson, P. R.; Homer, R. J.; Honma, A. K.; Horváth, D.; Hossain, K. R.; Howard, R.; Hüntemeyer, P.; Hutchcroft, D. E.; Igo-Kemenes, P.; Imrie, D. C.; Ingram, M. R.; Ishii, K.; Jawahery, A.; Jeffreys, P. W.; Jeremie, H.; Jimack, M.; Joly, A.; Jones, C. R.; Jones, G.; Jones, M.; Jost, U.; Jovanovic, P.; Junk, T. R.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Kayal, P. I.; Keeler, R. K.; Kellogg, R. G.; Kennedy, B. W.; Kirk, J.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Koetke, D. S.; Kokott, T. P.; Kolrep, M.; Komamiya, S.; Kress, T.; Krieger, P.; von Krogh, J.; Kyberd, P.; Lafferty, G. D.; Lahmann, R.; Lai, W. P.; Lanske, D.; Lauber, J.; Lautenschlager, S. R.; Layter, J. G.; Lazic, D.; Lee, A. M.; Lefebvre, E.; Lellouch, D.; Letts, J.; Levinson, L.; Lloyd, S. L.; Loebinger, F. K.; Long, G. D.; Losty, M. J.; Ludwig, J.; Macchiolo, A.; MacPherson, A.; Mannelli, M.; Marcellini, S.; Markus, C.; Martin, A. J.; Martin, J. P.; Martinez, G.; Mashimo, T.; Mättig, P.; McDonald, W. J.; McKenna, J.; McKigney, E. A.; McMahon, T. J.; McPherson, R. A.; Meijers, F.; Menke, S.; Merritt, F. S.; Mes, H.; Meyer, J.; Michelini, A.; Mikenberg, G.; Miller, D. J.; Mincer, A.; Mir, R.; Mohr, W.; Montanari, A.; Mori, T.; Morii, M.; Müller, U.; Mihara, S.; Nagai, K.; Nakamura, I.; Neal, H. A.; Nellen, B.; Nisius, R.; O'Neale, S. W.; Oakham, F. G.; Odorici, F.; Ogren, H. O.; Oh, A.; Oldershaw, N. J.; Oreglia, M. J.; Orito, S.; Pálinkás, J.; Pásztor, G.; Pater, J. R.; Patrick, G. N.; Patt, J.; Pearce, M. J.; Perez-Ochoa, R.; Petzold, S.; Pfeifenschneider, P.; Pilcher, J. E.; Pinfold, J.; Plane, D. E.; Poffenberger, P.; Poli, B.; Posthaus, A.; Rees, D. L.; Rigby, D.; Robertson, S.; Robins, S. A.; Rodning, N.; Roney, J. M.; Rooke, A.; Ros, E.; Rossi, A. M.; Routenburg, P.; Rozen, Y.; Runge, K.; Runolfsson, O.; Ruppel, U.; Rust, D. R.; Rylko, R.; Sachs, K.; Saeki, T.; Sarkisyan, E. K. G.; Sbarra, C.; Schaile, A. D.; Schaile, O.; Scharf, F.; Scharff-Hansen, P.; Schenk, P.; Schieck, J.; Schleper, P.; Schmitt, B.; Schmitt, S.; Schöning, A.; Schröder, M.; Schultz-Coulon, H. C.; Schumacher, M.; Schwick, C.; Scott, W. G.; Shears, T. G.; Shen, B. C.; Shepherd-Themistocleous, C. H.; Sherwood, P.; Siroli, G. P.; Sittler, A.; Skillman, A.; Skuja, A.; Smith, A. M.; Snow, G. A.; Sobie, R.; Söldner-Rembold, S.; Springer, R. W.; Sproston, M.; Stephens, K.; Steuerer, J.; Stockhausen, B.; Stoll, K.; Strom, D.; Szymanski, P.; Tafirout, R.; Talbot, S. D.; Tanaka, S.; Taras, P.; Tarem, S.; Teuscher, R.; Thiergen, M.; Thomson, M. A.; von Törne, E.; Towers, S.; Trigger, I.; Trócsányi, Z.; Tsur, E.; Turcot, A. S.; Turner-Watson, M. F.; Utzat, P.; van Kooten, R.; Verzocchi, M.; Vikas, P.; Vokurka, E. H.; Voss, H.; Wäckerle, F.; Wagner, A.; Ward, C. P.; Ward, D. R.; Watkins, P. M.; Watson, A. T.; Watson, N. K.; Wells, P. S.; Wermes, N.; White, J. S.; Wilkens, B.; Wilson, G. W.; Wilson, J. A.; Wolf, G.; Wyatt, T. R.; Yamashita, S.; Yekutieli, G.; Zacek, V.; Zer-Zion, D.

    1997-10-01

    Deep inelastic electron-photon scattering is studied using e+e- data collected by the OPAL detector at centre-of-mass energies sqrt(see)~MZ0. The photon structure function F2γ(x,Q2) is explored in a Q2 range of 1.1 to 6.6 GeV2 at lower x values than ever before. To probe this kinematic region events are selected with a beam electron scattered into one of the OPAL luminosity calorimeters at scattering angles between 27 and 55 mrad. A measurement is presented of the photon structure function F2γ(x,Q2) at =1.86 GeV2 and 3.76 GeV2 in five logarithmic x bins from 0.0025 to 0.2.

  12. Proton and deuteron spin structure function measurements in the resonance region

    SciTech Connect

    F.R. Wesselmann

    2003-07-01

    The RSS collaboration has measured the spin structure functions of the proton and the deuteron at Jefferson Lab using the Hall C HMS spectrometer, a polarized electron beam and a polarized solid target. The asymmetries A and A were measured in the region of the nucleon resonances (0.82 GeV < W < 1.98 GeV) at an average four momentum transfer of Q2 = 1.3 GeV2. The extracted spin structure functions and their kinematic dependence will make a significant contribution in the study of higher-twist effects and polarized duality tests. A description of the experiment and the latest findings of the analysis will be presented.

  13. From Sequence and Forces to Structure, Function and Evolution of Intrinsically Disordered Proteins

    PubMed Central

    Forman-Kay, Julie D.; Mittag, Tanja

    2015-01-01

    Intrinsically disordered proteins (IDPs), which lack persistent structure, are a challenge to structural biology due to the inapplicability of standard methods for characterization of folded proteins as well as their deviation from the dominant structure/function paradigm. Their widespread presence and involvement in biological function, however, has spurred the growing acceptance of the importance of IDPs and the development of new tools for studying their structure, dynamics and function. The interplay of folded and disordered domains or regions for function and the existence of a continuum of protein states with respect to conformational energetics, motional timescales and compactness is shaping a unified understanding of structure-dynamics-disorder/function relationships. On the 20th anniversary of this journal, Structure, we provide a historical perspective on the investigation of IDPs and summarize the sequence features and physical forces that underlie their unique structural, functional and evolutionary properties. PMID:24010708

  14. Prognostic significance of oncogenic markers in ductal carcinoma in situ of the breast: a clinicopathologic study.

    PubMed

    Altintas, Sevilay; Lambein, Kathleen; Huizing, Manon T; Braems, Geert; Asjoe, Fernando Tjin; Hellemans, Hilde; Van Marck, Eric; Weyler, Joost; Praet, Marleen; Van den Broecke, Rudy; Vermorken, Jan B; Tjalma, Wiebren A

    2009-01-01

    Ductal carcinoma in situ (DCIS) is a heterogeneous malignant condition of the breast with an excellent prognosis. Until recently mastectomy was the standard treatment. As the results of the National Surgical Adjuvant Breast and Bowel Project-17 trial and the introduction of the Van Nuys Prognostic Index (VNPI) less radical therapies are used. Objectives are to identify clinicopathologic and biologic factors that may predict outcome. Cases of DCIS diagnosed in two Belgian University Centers were included. Paraffin-embedded material and Hematoxylin and Eosin stained slides of DCIS cases were reviewed and tumor size, margin width, nuclear grade, and comedo necrosis were assessed. Molecular markers (estrogen receptor, progesterone receptor, HER1-4, Ki67, and c-myc) were assayed immunohistochemically. Applied treatment strategies were correlated with the prospective use of the VNPI score. Kaplan-Meier survival plots were generated with log-rank significance and multiple regression analysis was carried out using Cox proportional hazards regression analysis; 159 patients were included with a median age of 54 years (range 29-78); 141 had DCIS and 18 DCIS with microinvasion. The median time of follow-up was 54 months (range 5-253). Twenty-three patients developed a recurrence (14.5%). The median time to recurrence was 46 months (range 5-253). Before the introduction of the VNPI, 37.5% of the DCIS patients showed a recurrence while thereafter 6.7% recurred (p < 0.005). Two recurrences occurred in the VNPI group I (7.1%); seven in the VNPI group II (8.5%) (median time to recurrence 66.3 months) and 14 in the VNPI group III (28.5%) (median time to recurrence 40.2 months) (disease-free survival [DFS]: p < 0.05). A Cox proportional hazards regression analysis indicated that tumor size, margin width, pathologic class, and age were independent predictors of recurrence, but none of the studied molecular markers showed this. Overexpression of HER4 in the presence of HER3 was found

  15. Polarized Structure Function of Nucleon and Orbital Angular Momentum

    NASA Astrophysics Data System (ADS)

    Arash, Firooz; Taghavi-Shahri, Fatemeh

    2007-06-01

    We have utilized the concept of valon model to calculate the spin structure function of a constituent quark. This structure is universal and arises from perturbative dressing of a valence quark in QCD. With a convolution method the polarized structure functions of proton, neutron, and deuteron are obtained. Our results agree rather well with all available experimental data. It suggests that the sea quark contribution to the spin of nucleon is consistent with zero, in agreement with HERMES data. It also reveals that while the total quark contribution to the spin of a constituent quark, or valon, is almost constant and equal to one, the gluon contribution grows with the increase of Q2, and hence, requiring a sizable negative angular momentum contribution. This component, as well as singlet and non-singlet parts are calculated in the Next-to-Leading order in QCD. We speculate that the gluon contribution to the spin of proton is in the order of 50%. Furthermore, we have determined the polarized valon distribution in a nucleon.

  16. The fundamental structure function of oscillator noise models

    NASA Technical Reports Server (NTRS)

    Greenhall, C. A.

    1983-01-01

    Continuous-time models of oscillator phase noise x(t) usually have stationary nth differences, for some n. The covariance structure of such a model can be characterized in the time domain by the structure function: D sub n (t;gamma sub 1, gamma sub 2) = E delta (n) sub gamma sub 1 x(s+t) delta(n) sub gamma sub 2 x (s). Although formulas for the special case D sub 2 (0;gamma,gamma) (the Allan variance times 2 gamma(2)) exist for power-law spectral models, certain estimation problems require a more complete knowledge of (0). Exhibited is a much simpler function of one time variable, D(t), from which (0) can easily be obtained from the spectral density by uncomplicated integrations. Believing that D(t) is the simplest function of time that holds the same information as (0), D(t) is called the fundamental structure function. D(t) is computed for several power-law spectral models. Two examples are D(t) = K/t/(3) for random walk FM, D(t) = Kt(2) 1n/t/ for flicker FM. Then, to demonstrate its use, a BASIC program is given that computes means and variances of two Allan variance estimators, one of which incorporates a method of frequency drift estimation and removal.

  17. Tensor-polarized structure functions: Tensor structure of deuteron in 2020's

    NASA Astrophysics Data System (ADS)

    Kumano, S.

    2014-10-01

    We explain spin structure for a spin-one hadron, in which there are new structure functions, in addition to the ones (F1, F2, g1, g2) which exist for the spin-1/2 nucleon, associated with its tensor structure. The new structure functions are b1, b2, b3, and b4 in deep inelastic scattering of a charged-lepton from a spin-one hadron such as the deuteron. Among them, twist- two functions are related by the Callan-Gross type relation b2 = 2xb1 in the Bjorken scaling limit. First, these new structure functions are introduced, and useful formulae are derived for projection operators of b1-4 from a hadron tensor Wμν. Second, a sum rule is explained for b1, and possible tensor-polarized distributions are discussed by using HERMES data in order to propose future experimental measurements and to compare them with theoretical models. A proposal was approved to measure b1 at the Thomas Jefferson National Accelerator Facility (JLab), so that much progress is expected for b1 in the near future. Third, formalisms of polarized proton-deuteron Drell-Yan processes are explained for probing especially tensor- polarized antiquark distributions, which were suggested by the HERMES data. The studies of the tensor-polarized structure functions will open a new era in 2020's for tensor-structure studies in terms of quark and gluon degrees of freedom, which are very different from ordinary descriptions in terms of nucleons and mesons.

  18. MSATT Workshop on Innovative Instrumentation for the In Situ Study of Atmosphere-Surface Interactions on Mars

    NASA Technical Reports Server (NTRS)

    Fegley, Bruce, Jr. (Editor); Waenke, Heinrich (Editor)

    1992-01-01

    Papers accepted for the Mars Surface and Atmosphere Through Time (MSATT) Workshop on Innovative Instruments for the In Situ Study of Atmosphere-Surface Interaction of Mars, 8-9 Oct. 1992 in Mainz, Germany are included. Topics covered include: a backscatter Moessbauer spectrometer (BaMS) for use on Mars; database of proposed payloads and instruments for SEI missions; determination of martian soil mineralogy and water content using the Thermal Analyzer for Planetary Soils (TAPS); in situ identification of the martian surface material and its interaction with the martian atmosphere using DTA/GC; mass spectrometer-pyrolysis experiment for atmospheric and soil sample analysis on the surface of Mars; and optical luminescence spectroscopy as a probe of the surface mineralogy of Mars.

  19. In Situ XANES Study of CuO/TiO2 Thin Films During Photodegradation of Methylene Blue

    SciTech Connect

    Hsiung Tungli; Wang, H. Paul; Wei Yuling

    2007-02-02

    Speciation of copper in the CuO/TiO2 thin film (synthesized by the doctor-blade deposition method) during photocatalytic decomposition of methylene blue has been studied by in situ X-ray absorption near-edge structural (XANES) spectroscopy. During the UV/VIS radiation (90 min), in the presence of methylene blue, a decrease of Cu(II) and an increases of Cu(0) and Cu(I) fractions in the CuO/TiO2 thin film are observed by in situ XANES. The r-space Fourier transformation EXAFS (extend X-ray absorption fine structural) spectra also show that the bond distance of Cu-O in the thin film is decreased by 0.03 A during photocatalytic degradation of methylene blue.

  20. The home-made in situ passive flux sampler for the measurement of monoterpene emission flux: preliminary studies.

    PubMed

    Marć, Mariusz; Namieśnik, Jacek; Zabiegała, Bożena

    2015-09-01

    The paper presents the construction and metrological characteristics of the home-made in situ passive flux sampler, an analytical tool representing small-scale emission chambers working in situ and passively sampling analytes from the gaseous phase. The sorption element was a cylindrical container made of stainless steel net, packed with a carbon sorbent bed-graphitized charcoal, Carbograph 4 (35/50 mesh). The recommended working/exposure time of the constructed passive device was determined by carrying out model tests in the laboratory. In addition, a preliminary study was conducted to determine the rate of the emission flux of selected monoterpenes released from the surface of wood-based indoor materials (laminated chipboard) used in residential areas. PMID:26116240

  1. In-situ ellipsometric study of growth of Au thin films

    NASA Astrophysics Data System (ADS)

    Shibuya, Takehisa; Amano, Naoji; Kawabata, Shuichi; Yokota, Hideshi

    1996-08-01

    We have equipped an ion assisted deposition system with a rotating-analyzer ellipsometer (RAE) for in-situ monitoring of the deposition process. We propose the optimum conditions for the SiO2/Si substrate system for observation of growth processes of Au film deposition. The deposition of Au films on optimized silicon oxide substrates was observed in- situ using the RAE. The growth curves for Au films were different from those for continuous layer growth in the initial stage. The critical thickness at which the growth became continuous layer growth varied with the irradiated current density of Ar ions. The ion-current density for the minimum critical thickness of Au films has an optimum value of around 100 (mu) A/cm2. The initial stage of Au growth before continuous layer growth occurred was analyzed using the Maxwell-Garnett theory and semi-quantitative agreement was obtained between the experimental and calculated results.

  2. In situ photoelectron spectroscopy study of water adsorption on model biomaterial surfaces

    SciTech Connect

    Salmeron, Miquel; Ketteler, Guido; Ashby, Paul; Mun, B.S.; Ratera, I.; Bluhm, Hendrik; Kasemo, B.; Salmeron, Miquel

    2007-07-10

    Using in situ photoelectron spectroscopy at near ambient conditions, we compare the interaction of water with four different model biomaterial surfaces: self-assembled thiol monolayers on Au(111) that are functionalized with methyl, hydroxyl, and carboxyl groups, and phosphatidylcholine (POPC) lipid films on Silicon. We show that the interaction of water with biomaterial surfaces is mediated by polar functional groups that interact strongly with water molecules through hydrogen bonding, resulting in adsorption of 0.2-0.3 ML water on the polar thiol films in 700 mTorr water pressure and resulting in characteristic N1s and P2p shifts for the POPC films. Provided that beam damage is carefully controlled, in situ electron spectroscopy can give valuable information about water adsorption which is not accessible under ultra-high vacuum conditions.

  3. Cheese rind communities provide tractable systems for in situ and in vitro studies of microbial diversity

    PubMed Central

    Wolfe, Benjamin E.; Button, Julie E.; Santarelli, Marcela; Dutton, Rachel J.

    2014-01-01

    SUMMARY Tractable microbial communities are needed to bridge the gap between observations of patterns of microbial diversity and mechanisms that can explain these patterns. We developed cheese rinds as model microbial communities by characterizing in situ patterns of diversity and by developing an in vitro system for community reconstruction. Sequencing of 137 different rind communities across 10 countries revealed 24 widely distributed and culturable genera of bacteria and fungi as dominant community members. Reproducible community types formed independent of geographic location of production. Intensive temporal sampling demonstrated that assembly of these communities is highly reproducible. Patterns of community composition and succession observed in situ can be recapitulated in a simple in vitro system. Widespread positive and negative interactions were identified between bacterial and fungal community members. Cheese rind microbial communities represent an experimentally tractable system for defining mechanisms that influence microbial community assembly and function. PMID:25036636

  4. Application of Mythen detector: In-situ XRD study on the thermal expansion behavior of metal indium

    NASA Astrophysics Data System (ADS)

    Du, Rong; Chen, ZhongJun; Cai, Quan; Fu, JianLong; Gong, Yu; Wu, ZhongHua

    2016-07-01

    A Mythen detector has been equipped at the beamline 4B9A of Beijing Synchrotron Radiation Facility (BSRF), which is expected to enable BSRF to perform time-resolved measurement of X-ray diffraction (XRD) full-profiles. In this paper, the thermal expansion behavior of metal indium has been studied by using the in-situ XRD technique with the Mythen detector. The indium was heated from 303 to 433 K with a heating rate of 2 K/min. The in-situ XRD full-profiles were collected with a rate of one profile per 10 seconds. Rietveld refinement was used to extract the structural parameters. The results demonstrate that these collected quasi-real-time XRD profiles can be well used for structural analysis. The metal indium was found to have a nonlinear thermal expansion behavior from room temperature to the melting point (429.65 K). The a-axis of the tetragonal unit cell expands with a biquadratic dependency on temperature, while the c-axis contracts with a cubic dependency on temperature. By the time-resolved XRD measurements, it was observed that the [200] preferred orientation can maintain to about 403.15 K. While (110) is the last and detectable crystal plane just before melting of the polycrystalline indium foil. This study is not only beneficial to the application of metal indium, but also exhibits the capacity of in-situ time-resolved XRD measurements at the X-ray diffraction station of BSRF.

  5. InSitu X-Ray Diffraction Studies on Lithium-Ion Battery Cathodes

    SciTech Connect

    Doughty, Daniel H.; Ingersoll, David; Rodriguez, Mark A.

    1999-07-13

    LiNi{sub 0.8}Co{sub 0.2}O{sub 2} and LiNiO{sub 2} have been characterized in-situ XRD. LiNi{sub 0.8}Co{sub 0.2}O{sub 2} does not undergo a monoclinic phase transformation but remains a hexagonal lattice throughout the entire charging cycle. It is hypothesized that Co-doping may help stabilize the hexagonal structure.

  6. In situ Brillouin study of sodium alumino silicate glasses under pressure

    NASA Astrophysics Data System (ADS)

    Sonneville, C.; De Ligny, D.; Mermet, A.; Champagnon, B.; Martinet, C.; Henderson, G. H.; Deschamps, T.; Margueritat, J.; Barthel, E.

    2013-08-01

    The in situ elastic and plastic behaviors of sodium aluminosilicate glasses with different degrees of depolymerization were analyzed using Brillouin spectroscopy. The observed elastic anomaly progressively vanished with depolymerization. The densification process appears to be different from that observed in pure silica glass. In the plastic regime of densified glasses hysteresis loops were observed and related to modification of the local silicon environment facilitated by the addition of sodium.

  7. In-Situ Neutron Diffraction Studies of Complex Hydrogen Storage Materials

    SciTech Connect

    Yelon, William B.

    2013-05-13

    should make it a very valuable resource for the study of oxides being considered for application to solid oxide fuel cells (SOFCs), in that materials can be studied at potential operating temperatures in both reducing and oxidizing environments to determine their stoichiometry, and lattice parameters. Our research, which was predicated, in part, on the use of hydrogenous samples (as opposed to deuteration), demonstrated that such studies are feasible and can yield high quality, refinable data. The precision of the refined hydrogen positions appears to be more than adequate for theory calculations (molecular modeling-thermodynamics) and the uncertainty is certainly less than that achieved by attempting to extrapolate the hydrogen positions from refined deuterium positions. In fact the 2008 annual report from the Institute Laue Langevin (ILL), the world's premier neutron scattering laboratory, highlights: Another trend is the increasing interest in hydrogen. This defies the widespread assumption that neutron diffraction experiments need to be done at deuterated samples. In situ experiments on phase transitions involving hydrogen and in particular on the real time behaviour of hydrogen-storage systems increase in number and scope. Our work in this area predates the ILL efforts be several years. Unfortunately, the productivity of our program was significantly curtailed by the unavailability of the MURR powder diffractometer for almost all of the second years of the project. The diffractometer was disassembled to allow partial extraction of the beam tube and replacement of the graphite element that is penetrated by the beam tube. Re-commissioning of the instrument was substantially delayed by errors of the MURR engineering staff, which failed to properly reinstall the sapphire filter that conditions the beam prior to the neutron monochromator, and reduces the radiological background to acceptable levels.

  8. Thermal decomposition of t-butylamine borane studied by in situ solid state NMR

    SciTech Connect

    Feigerle, J.; Smyrl, N. R.; Morrell, J. S.; Stowe, A. C.

    2010-03-18

    of the amine borane fuel more feasible [22]. In the present study, tert-butylamine borane is investigated by heteronuclear in situ solid state NMR to understand hydrogen release from a hydrocarbon containing amine borane. tbutylamine borane has similar physical properties to amine borane with a melting point of 96 C. A single proton has been replaced with a t-butylamine group resulting in a weakening of the dihydrogen bonding framework. t-butylamine borane has a theoretical gravimetric hydrogen density of 15.1%; however, isobutane can also be evolved rather than hydrogen. If decomposition yields one mole isobutane and two moles hydrogen, 4.5 wt% H2 gas will be evolved. More importantly for the present work, the resulting spent fuel should be comprised of both (BNH)n and (CBNH)n polyimidoboranes.

  9. In situ AFM crystal growth and dissolution study of calcite in the presence of aqueous fluoride

    NASA Astrophysics Data System (ADS)

    Vavouraki, A.; Putnis, C. V.; Putnis, A.; Koutsoukos, P. G.

    2009-04-01

    Fluoride is naturally abundant, encountered in rocks, soil and fresh and ocean water. Calcite crystals, during crystal growth may incorporate fluoride ions into their lattice (Okumura et al., 1983). In situ atomic force microscopy (AFM) has been used to study the growth and dissolution of calcite {104} surfaces in aqueous solutions in the presence of fluoride, using a fluid cell in which the supersaturated and the understaturated solutions respectively, flow over a freshly cleaved calcite crystal. For growth experiments, supersaturation index (S.I.) with respect to calcite was equal to 0.89 and the initial solution pH 10.2. The crystal growth rates were measured from the closure of the rhombohedral etch pits along the [010] direction induced by an initial dissolution step using pure water. The spreading rate of 2-dimensional nuclei was also measured along the same direction. In the presence of low fluoride concentrations (≤0.33 mM), the crystal growth rate of calcite was unaffected. At higher concentrations (up to 5 mM) growth rate decreased substantially to 50% of the rate in the absence of fluoride. Potential fluoride sorption over the calcite surface may ascribe the decrease of growth rates. Dissolution experiments were conducted at pH= 7.2 and dissolution rates of calcite were measured from the spreading of rhombohedral etch pits along both [010] and [42] directions. The presence of low concentrations of fluoride (≤1.1 mM) in the undersaturated solutions enhanced the dissolution rate along the [42] direction by 50% in comparison with pure water. The morphology of rhombohedral etch pits changed to hexagonal in the presence of fluoride in the undersaturated solutions. The AFM dissolution experiments suggested that the fluoride ions adsorbed onto the calcite surface. Further increase of fluoride concentrations (up to 1.6 mM) resulted in the decrease of the calcite dissolution rate by 60% in both [010] and [42] directions. Reference: Okumura, M, Kitano, Y

  10. In-situ Dehydration Studies of Fully K- Rb- and Cs-exchanged Natrolites

    SciTech Connect

    Y Lee; D Seoung; D Liu; M Park; S Hong; H Chen; J Bai; C Kao; T Vogt; Y Lee

    2011-12-31

    In-situ synchrotron X-ray powder diffraction studies of K-, Rb-, and Cs-exchanged natrolites between room temperature and 425 C revealed that the dehydrated phases with collapsed frameworks start to form at 175, 150, and 100 C, respectively. The degree of the framework collapse indicated by the unit-cell volume contraction depends on the size of the non-framework cation: K-exchanged natrolite undergoes an 18.8% unit-cell volume contraction when dehydrated at 175 C, whereas Rb- and Cs-exchanged natrolites show unit-cell volume contractions of 18.5 and 15.2% at 150 and 100 C, respectively. In the hydrated phases, the dehydration-induced unit-cell volume reduction diminishes as the cation size increases and reveals increasingly a negative slope as smaller cations are substituted into the pores of the natrolite structure. The thermal expansion of the unit-cell volumes of the dehydrated K-, Rb-, and Cs-phases have positive thermal expansion coefficients of 8.80 x 10{sup -5} K{sup -1}, 1.03 x 10{sup -4} K{sup 01}, and 5.06 x 10{sup -5} K{sup -1}, respectively. Rietveld structure refinements of the dehydrated phases at 400 C reveal that the framework collapses are due to an increase of the chain rotation angles, {Psi}, which narrow the channels to a more elliptical shape. Compared to their respective hydrated structures at ambient conditions, the dehydrated K-exchanged natrolite at 400 C shows a 2.2-fold increase in {Psi}, whereas the dehydrated Rb- and Cs-natrolites at 400 C reveal increases of {Psi} by ca. 3.7 and 7.3 times, respectively. The elliptical channel openings of the dehydrated K-, Rb-, to Cs-phases become larger as the cation size increases. The disordered non-framework cations in the hydrated K-, Rb-, and Cs-natrolite order during dehydration and the subsequent framework collapse. The dehydrated phases of Rb- and Cs-natrolite can be stabilized at ambient conditions.

  11. In-situ Micro-structural Studies of Gas Hydrate Formation in Sedimentary Matrices

    NASA Astrophysics Data System (ADS)

    Kuhs, Werner F.; Chaouachi, Marwen; Falenty, Andrzej; Sell, Kathleen; Schwarz, Jens-Oliver; Wolf, Martin; Enzmann, Frieder; Kersten, Michael; Haberthür, David

    2015-04-01

    The formation process of gas hydrates in sedimentary matrices is of crucial importance for the physical and transport properties of the resulting aggregates. This process has never been observed in-situ with sub-micron resolution. Here, we report on synchrotron-based micro-tomographic studies by which the nucleation and growth processes of gas hydrate were observed in different sedimentary matrices (natural quartz, glass beds with different surface properties, with and without admixtures of kaolinite and montmorillonite) at varying water saturation. The nucleation sites can be easily identified and the growth pattern is clearly established. In under-saturated sediments the nucleation starts at the water-gas interface and proceeds from there to form predominantly isometric single crystals of 10-20μm size. Using a newly developed synchrotron-based method we have determined the crystallite size distributions (CSD) of the gas hydrate in the sedimentary matrix confirming in a quantitative and statistically relevant manner the impressions from the tomographic reconstructions. It is noteworthy that the CSDs from synthetic hydrates are distinctly smaller than those of natural gas hydrates [1], which suggest that coarsening processes take place in the sedimentary matrix after the initial hydrate formation. Understanding the processes of formation and coarsening may eventually permit the determination of the age of gas hydrates in sedimentary matrices [2], which are largely unknown at present. Furthermore, the full micro-structural picture and its evolution will enable quantitative digital rock physics modeling to reveal poroelastic properties and in this way to support the exploration and exploitation of gas hydrate resources in the future. [1] Klapp S.A., Hemes S., Klein H., Bohrmann G., McDonald I., Kuhs W.F. Grain size measurements of natural gas hydrates. Marine Geology 2010; 274(1-4):85-94. [2] Klapp S.A., Klein H, Kuhs W.F. First determination of gas hydrate

  12. An extended fluorescence in situ hybridization approach for the cytogenetic study of cholangiocarcinoma on endoscopic retrograde cholangiopancreatography brushing cytology preparations.

    PubMed

    Vasilieva, Larisa E; Papadhimitriou, Stefanos I; Alexopoulou, Alexandra; Pavlidis, Dimitris; Kostopoulos, Ioannis; Georgiakaki, Maria; Xinopoulos, Dimitrios; Romanos, Andreas; Dourakis, Spyridon P

    2013-10-01

    The cytological diagnosis of cholangiocarcinoma has been significantly aided by applying a 4-probe fluorescence in situ hybridization system on endoscopic retrograde cholangiopancreatography brushing smears, aiming mainly at the detection of hyperdiploidy. However, this approach adds little to our understanding of the genetic background of the disease. With the prospect of obtaining additional data on chromosomal aberrations, we have extended the fluorescence in situ hybridization study, with the application of 4 independent 2-probe systems in 35 patients with documented cholangiocarcinoma. Fluorescence in situ hybridization assays were performed on endoscopic retrograde cholangiopancreatography brushing smears, with probes for the 7q31, 11q13 (CCND1), 17p53 (TP53), and 9p21 (INK4 locus) bands, together with the respective centromeric probe. Hyperdiploidy, involving at least 2 of the 4 chromosomes targeted, was found in 31 patients. 17p13 deletion was detected in 3, and 9p21 deletion, in 5 of the hyperdiploid cases, with the 2 aberrations concurrent in 1. CCND1 amplification was found in 1 case as the sole abnormality and in another together with hyperdiploidy, but in apparently unrelated clones. This work indicates that interphase fluorescence in situ hybridization is a practical and useful tool for the cytogenetic study of cholangiocarcinoma on endoscopic retrograde cholangiopancreatography brushing smears, which is often the only available tissue specimen of the tumor. Apart from hyperdiploidy, it provides additional data on the genetic profile of cholangiocarcinoma, especially regarding structural chromosomal aberrations and clonal diversity. This line of investigation may prove useful in the delineation of oncogenesis and the interpretation of the diverse clinical features of the disease. PMID:23845469

  13. In situ x-ray photoemission studies of the oxidation of Y-Ba-Cu films

    SciTech Connect

    Price, R.J.; Jackman, R.B.; Foord, J.S.

    1988-12-15

    X-ray photoemission has been used to investigate the formation of Y-Ba-Cu films on Si(100) and as an in situ probe of their subsequent oxidation to yield the associated oxide ceramic. The layers are prepared by coevaporation of the metallic components under ultrahigh vacuum, and pure alloy phases can be deposited at 300 K; reaction with the underlying substrate resulting in loss of Cu and incorporation by Si in the film takes place, however, at higher temperatures. Room-temperature oxidation stabilizes the film against this interaction and results in the preferential oxidation and surface segregation of barium at the expense of Cu. This segregation process becomes even more apparent during higher temperature (approx.600 K) oxidation reactions. Chemical shifts and associated effects in x-ray photoelectron spectra are used to infer information on the chemical changes that occur in the film as oxidation proceeds. The thin-film phases prepared in situ in this work reveal a very similar surface composition to bulk superconducting samples prepared ex situ. This suggests that the surface segregation in bulk samples does not simply result from reaction with species such as water vapor, but instead may represent an equilibrium state of the oxide-oxygen interface.

  14. Combined In-Situ XRD and In-Situ XANES Studies on the Reduction Behavior of a Rhenium Promoted Cobalt Catalyst

    SciTech Connect

    Kumar, Nitin; Payzant, E Andrew; Jothimurugesan, K; Spivey, James J

    2011-01-01

    A 10% Co 4% Re/(2% Zr/SiO2) catalyst was prepared by co-impregnation using a silica support modified by 2% Zr. The catalyst was characterized by temperature programmed reduction (TPR), in situ XRD and in situ XANES analysis where it was simultaneously exposed to H2 using a temperature programmed ramp. The results showed the two step reduction of large crystalline Co3O4 with CoO as an intermediate. TPR results showed that the reduction of highly dispersed Co3O4 was facilitated by reduced rhenium by a H2-spillover mechanism. In situ XRD results showed the presence of both, Co-hcp and Co-fcc phases in the reduced catalyst at 400 C. However, the Co-hcp phase was more abundant, which is thought to be the more active phase as compared to the Co-fcc phase for CO hydrogenation. CO hydrogenation at 270 C and 5 bar pressure produces no detectable change in the phases during the time of experiment. In situ XANES results showed a decrease in the metallic cobalt in the presence of H2/CO, which can be attributed due to oxidation of the catalyst by reaction under these conditions.

  15. Heterogeneously catalysed partial oxidation of acrolein to acrylic acid--structure, function and dynamics of the V-Mo-W mixed oxides.

    PubMed

    Kampe, Philip; Giebeler, Lars; Samuelis, Dominik; Kunert, Jan; Drochner, Alfons; Haass, Frank; Adams, Andreas H; Ott, Joerg; Endres, Silvia; Schimanke, Guido; Buhrmester, Thorsten; Martin, Manfred; Fuess, Hartmut; Vogel, Herbert

    2007-07-21

    The major objective of this research project was to reach a microscopic understanding of the structure, function and dynamics of V-Mo-(W) mixed oxides for the partial oxidation of acrolein to acrylic acid. Different model catalysts (from binary and ternary vanadium molybdenum oxides up to quaternary oxides with additional tungsten) were prepared via a solid state preparation route and hydrochemical preparation of precursors by spray-drying or crystallisation with subsequent calcination. The phase composition was investigated ex situ by XRD and HR-TEM. Solid state prepared samples are characterised by crystalline phases associated to suitable phase diagrams. Samples prepared from crystallised and spray-dried precursors show crystalline phases which are not part of the phase diagram. Amorphous or nanocrystalline structures are only found in tungsten doped samples. The kinetics of the partial oxidation as well as the catalysts' structure have been studied in situ by XAS, XRD, temperature programmed reaction and reduction as well as by a transient isotopic tracing technique (SSITKA). The reduction and re-oxidation kinetics of the bulk phase have been evaluated by XAS. A direct influence not only of the catalysts' composition but also of the preparation route is shown. Altogether correlations are drawn between structure, oxygen dynamics and the catalytic performance in terms of activity, selectivity and long-term stability. A model for the solid state behaviour under reaction conditions has been developed. Furthermore, isotope exchange experiments provided a closer image of the mechanism of the selective acrolein oxidation. Based on the in situ characterisation in combination with micro kinetic modelling a detailed reaction model which describes the oxygen exchange and the processes at the catalyst more precisely is discussed. PMID:17612723

  16. A flow cell for in situ synchrotron x-ray diffraction studies of scale formation under Bayer processing conditions.

    PubMed

    Webster, Nathan A S; Madsen, Ian C; Loan, Melissa J; Scarlett, Nicola V Y; Wallwork, Kia S

    2009-08-01

    The design, construction, and commissioning of a stainless steel flow cell for in situ synchrotron x-ray diffraction studies of scale formation under Bayer processing conditions is described. The use of the cell is demonstrated by a study of Al(OH)(3) scale formation on a mild steel substrate from synthetic Bayer liquor at 70 degrees C. The cell design allows for interchangeable parts and substrates and would be suitable for the study of scale formation in other industrial processes. PMID:19725670

  17. Rotating Pip Detection and Stall Warning in High-Speed Compressors Using Structure Function

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Qammar, Helen; Vhora, Hanif; Schaffer, Michael

    1999-01-01

    A statistic for both rotating pip and incipient stall detection, called Structure Function is introduced for use in high speed research compressor environments. Experimental studies on stall inception processes have long observed two types of pre-stall compressor activity. Presently there exist methods for indicating modal stall precursive events in the compressor. This is a first application of a new method to detect rotating pip activity prior to stall in research compressors. The algorithm requires a very short sample of data to distinguish pip activity prior to stall, and thus may be used in a real time application. Additionally, this Structure Function algorithm is also used as a single sensor stall warning method under a variety of operating conditions, including clean inlet conditions, radially and circumferentially distorted inlet conditions, and in examples of steady air injection along the casing, and controlled air injection conditions. Structure Function provides a potential advantage over linear spectral techniques and wavelet algorithms for stall detection due to the simplicity of the algorithm and because it does not rely on a priori knowledge of frequency content.

  18. In situ Raman study of dissolved CaCO3 minerals under subduction zone conditions

    NASA Astrophysics Data System (ADS)

    Facq, S.; Daniel, I.; Sverjensky, D. A.

    2012-12-01

    The fate and the characteristics of the Earth's deep carbon reservoirs are still not well understood [1]. The connection between the surficial and the deep-Earth carbon cycles occurs at subduction zones where carbon is transported into the mantle and where hydrous silicates and carbonate minerals break down releasing H2O and C-species in fluids associated with mantle metasomatism and the generation of arc volcanism [2]. In order to obtain mass balance between recycling and burial in the deep mantle, the study of the dissolution of CaCO3 minerals in equilibrium with aqueous fluids under mantle conditions is crucial. We report a novel integrated experimental and theoretical study of the equilibration of CaCO3 minerals with aqueous solutions (pure water or NaCl solutions) at high pressures and temperatures (0.5 to 8 GPa and 250 to 500 °C). The fluid speciation was studied using in situ Raman spectroscopy coupled to an externally heated membrane type DAC equipped with 500 μm pure synthetic diamond anvils. In a typical experiment, the aqueous fluid and a calcite crystal [3] were loaded in a rhenium gasket. The pressure was determined from the calibrated shift of the carbonate υ1 symmetric stretching mode of aragonite and the temperature measured with a K-type thermocouple. Raman spectra were recorded using a Labram HR800 Raman spectrometer (Horiba Jobin-Yvon) coupled to a Spectra Physics Ar+ laser. At equilibrium with an aragonite crystal, the Raman data show that bicarbonate is the most abundant species in low-pressure fluids (below 4 GPa) whereas carbonate becomes progressively dominant at higher pressure. After correction from their Raman cross-sections [4], the relative amounts of dissolved carbonate and bicarbonate were estimated from the areas of the Raman bands of the carbonate and bicarbonate ions (υ1 and υ5 symmetric stretching modes, respectively). The presence of sodium chloride influences the speciation by extending the pressure field where the

  19. Characterisation of pore space geometry by 14C-PMMA impregnation - development work for in-situ studies

    NASA Astrophysics Data System (ADS)

    Kelokaski, M.; Sardini, P.; Möri, A.; Hellmuth, K.-H.; Siitari-Kauppi, M.

    2003-04-01

    The repository safety evaluation requires going from laboratory and surface-based field work underground to the repository level. Little is known about the changes of rock transport properties during sampling and decompression. Some recent investigations imply that non-conservative errors in transport properties derived from laboratory data may reach factors of 2--3. Recently at the Grimsel Test Site (GTS) progress with the in-situ resin impregnation using fluorescent dyes has been successful. During ten years time the PMMA method has been developed for characterisation of pore space geometry for low permeable granitic rocks. Rock matrices has been studied so far at laboratory circumstances. Impregnation with 14C-labelled methylmethacrylate (MMA) and autoradiography allows the investigation of the pattern of the spatial porosity distribution and quantitative measurement of mineral specific, local porosities. The quantitative petrography methods developed by University of Poitiers in combination with the PMMA method provide quantitative information on rock properties. The development of the PMMA method for in-situ to be tested at first at Grimsel Test Site and the necessary rock characterisation in the laboratory is reported here. The porosity parameters, hydraulic conductivity parameters, diffusive properties and mineralogical properties are measured with complementary methods. Highly conductive granite is impregnated with MMA using vacuum dried samples as well as water saturated ones. The intrusion pressure of MMA in water filled pores of different apertures will be the key point for the successful in-situ impregnation. Details of the development work will be given.

  20. Development of a Compact System for In-situ X-ray Scattering Studies of Organic Thin Film Deposition

    SciTech Connect

    Headrick, R.L.; Malliaras, G.G.; Mayer, A.C.; Deyhim, A.K.; Hunt, A.C.

    2004-05-12

    We have developed a compact vacuum deposition chamber for in-situ x-ray scattering studies of organic thin film growth. The system is based on a small cylindrical chamber that can be mounted on a standard four-circle diffractometer. Incident and scattered x-rays enter and exit the chamber through a curved Be foil window that covers 200 degrees, and is sealed to the body of the chamber. The sample is mounted on a support tube with heating and cooling from liquid nitrogen temperature to >100 deg. C. Integral to the sample stage is a multi-wire feedthrough to facilitate in-situ electrical transport characterization of organic semiconductor thin films. This is one of the novel capabilities of the system. In addition, the sample stage is mounted on a rotary vacuum feedthrough, which is mechanically coupled to the 'phi' stage of the diffractometer. An effusion cell, shutter, and quartz oscillator thickness monitor are also incorporated into the system, which is pumped by a small turbomolecular pump. The system thus configured is capable of access to full reciprocal space, within the limits of the Be window. Results of initial experiments performed at the 48-pole wiggler beamline A2, at the Cornell High Energy Synchrotron Source show that in-situ x-ray scattering is sensitive to the early stages of nucleation and growth of organic semiconductor thin films.

  1. In vitro and in situ characterization of arthroscopic loop security and knot security of braided polyblend sutures: a biomechanical study.

    PubMed

    Armstrong, Lucas C; Chong, Alexander; Livermore, Ryan W; Prohaska, Daniel J; Doyon, Amanda N; Wooley, Paul H

    2015-04-01

    We conducted a study to evaluate biomechanical performance during destructive testing of several different suture materials in various arthroscopic knot configurations under both in vitro and in situ conditions. Surgeons of different levels of experience tied the knots. Three different arthroscopic knots (static surgeon's, Weston, Tennessee slider) with 3 reverse half-hitches on alternating posts were tested using Fiberwire, ForceFiber, Orthocord, and Ultrabraid suture materials under both in vitro and in situ (blood plasma at 37°C) conditions. Three surgeons of different experience levels tied the knots on a post 30 mm in circumference. A single load-to-failure test was performed. There were no significant in vitro-in situ differences for Ultrabraid in the different knot configurations or with the different experience levels. Surgeon B (intermediate experience) showed no significant differences between test conditions for any knot configuration or suture material. With Tennessee slider knots, surgeon C (least experience) showed significantly lower clinical failure load under both test conditions and had a higher percentage of complete knot slippage. Surgeon B had no knot slippage with use of Fiberwire. Both the aqueous environment and the surgeon's familiarity with certain knots have an effect on knot security. PMID:25844588

  2. Interfacial processes studied by coupling electrochemistry at the polarised liquid-liquid interface with in situ confocal Raman spectroscopy.

    PubMed

    Poltorak, Lukasz; Dossot, Manuel; Herzog, Grégoire; Walcarius, Alain

    2014-12-28

    Interfacial processes controlled by ion transfer voltammetry at the interface between two immiscible electrolyte solutions were studied by in situ Raman spectroscopy. Raman spectra of the interface between a 5 mM NaCl aqueous solution and 10 mM bis(triphenyl-phosphoranydieneammonium) tetrakis(4-chlorophenyl)borate in 1,2-dichloroethane were recorded at open circuit potential and at various interfacial potential differences. At open-circuit potential, Raman peaks assigned to vibrational modes of 1,2-dichloroethane are clearly visible and peaks of weak intensity are measured for the organic electrolyte ions. When a negative interfacial potential difference is applied, the intensity of the peaks of the cation of the organic electrolyte increases, confirming its transfer induced by the interfacial potential difference applied. The electrochemically assisted generation of mesoporous silica deposits was then followed by in situ confocal Raman spectroscopy. The condensation of mesoporous silica was controlled by the transfer of cetyltrimethylammonium (CTA(+)) ions to an aqueous phase containing hydrolysed silanes. The transfer of CTA(+) at the interface was monitored in situ by confocal Raman spectroscopy, and formation of silica was observed. PMID:25377062

  3. Experimental moments of the nucleon structure function F2

    SciTech Connect

    Mikhail Osipenko; W. Melnitchouk; Silvano Simula; Sergey Kulagin; Giovanni Ricco

    2007-12-01

    Experimental data on the F2 structure functions of the proton and deuteron, including recent results from CLAS at Jefferson Lab, have been used to construct their n<=12 moments. A comprehensive analysis of the moments in terms of the operator product expansion has been performed to separate the moments into leading and higher twist contributions. Particular attention was paid to the issue of nuclear corrections in the deuteron, when extracting the neutron moments from data. The difference between the proton and neutron moments was compared directly with lattice QCD simulations. Combining leading twist moments of the neutron and proton we found the d/u ratio at x->1 approaching 0, although the precision of the data did not allow to exclude the 1/5 value. The higher twist components of the proton and neutron moments suggest that multi-parton correlations are isospin independent.

  4. Parton interpretation of the nucleon spin-dependent structure functions

    SciTech Connect

    Mankiewicz, L. ); Ryzak, Z. )

    1991-02-01

    We discuss the interpretation of the nucleon's polarized structure function {ital g}{sub 2}({ital x}). If the target state is represented by its Fock decomposition on the light cone, the operator-product expansion allows us to demonstrate that moments of {ital g}{sub 2}({ital x}) are related to overlap integrals between wave functions of opposite longitudinal polarizations. In the light-cone formalism such wave functions are related by the kinematical operator {ital scrY}, or light-cone parity. As a consequence, it can be shown that moments of {ital g}{sub 2} give information about the same parton wave function, or probability amplitude to find a certain parton configuration in the target which defines {ital g}{sub 1}({ital x}) or {ital F}{sub 2}({ital x}). Specific formulas are given, and possible applications to the phenomenology of the nucleon structure in QCD are discussed.

  5. Breast Milk Oligosaccharides: Structure-Function Relationships in the Neonate

    PubMed Central

    Smilowitz, Jennifer T.; Lebrilla, Carlito B.; Mills, David A.; German, J. Bruce; Freeman, Samara L.

    2015-01-01

    In addition to providing complete postnatal nutrition, breast milk is a complex biofluid that delivers bioactive components for the growth and development of the intestinal and immune systems. Lactation is a unique opportunity to understand the role of diet in shaping the intestinal environment including the infant microbiome. Of considerable interest is the diversity and abundance of milk glycans that are energetically costly for the mammary gland to produce yet indigestible by infants. Milk glycans comprise free oligosaccharides, glycoproteins, glycopeptides, and glycolipids. Emerging technological advances are enabling more comprehensive, sensitive, and rapid analyses of these different classes of milk glycans. Understanding the impact of inter- and intraindividual glycan diversity on function is an important step toward interventions aimed at improving health and preventing disease. This review discusses the state of technology for glycan analysis and how specific structure-function knowledge is enhancing our understanding of early nutrition in the neonate. PMID:24850388

  6. Mammalian O-Mannosylation: Unsolved Questions of Structure/Function

    PubMed Central

    Stalnaker, Stephanie H.; Stuart, Ryan; Wells, Lance

    2011-01-01

    Post-translational modification of polypeptides with glycans increases the diversity of the structures of proteins and imparts increased functional diversity. Here, we review the current literature on a relatively new O-glycosylation pathway, the mammalian O-mannosylation pathway. The importance of O-mannosylation is illustrated by the fact that O-mannose glycan structures play roles in a variety of processes including viral entry into cells, metastasis, cell adhesion, and neuronal development. Furthermore, mutations in the enzymes of this pathway are causal for a variety of congenital muscular dystrophies. Here we highlight the protein substrates, glycan structures, and enzymes involved in O-mannosylation as well as our gaps in understanding structure/function relationships in this biosynthetic pathway. PMID:21945038

  7. Measuring spin-dependent structure functions at CEBAF

    SciTech Connect

    Schaefer, A.

    1994-04-01

    The author analyses whether CEBAF with a 10 GeV beam could contribute significantly to the understanding of spin-dependent deep-inelastic scattering as well as semi-inclusive reactions. The main advantage of CEBAF is the much better attainable statistics, its great disadvantage its comparably low energy, which limits the accessible x-range to about 0.15 to 0.7. Within these constraints CEBAF could provide (1) high precision data which would be very valuable to understand the Q{sup 2} dependence of the spin-dependent structure functions g{sub 1}(x) and G{sub 2}(x) and (2) the by far most precise determination of the third moments of g{sub 1}(x) and g{sub 2}(x) the latter of which the author argues to be related to a fundamental property of the nucleon.

  8. Anomalous scaling of temperature structure functions in turbulent thermal convection

    NASA Astrophysics Data System (ADS)

    Tong, Penger; He, Xiaozhou; Shang, Xiaodong

    2014-11-01

    The scaling properties of the temperature structure function (SF) are investigated in turbulent Rayleigh-Benard convection. The measured SFs are found to exhibit good scaling in space and time and the resulting SF exponent is obtained both at the center of the convection cell and near the sidewall. It is found that the difference in the functional form of the measured SF exponents at the two locations in the cell is caused by the change of the geometry of the most dissipative structures in the (inhomogeneous) temperature field from being sheet-like at the cell center to filament-like near the sidewall. The experiment thus provides direct evidence showing that the universality features of turbulent cascade are linked to the degree of anisotropy and inhomogeneity of turbulent statistics. This work was supported by the Research Grants Council of Hong Kong SAR.

  9. Breast milk oligosaccharides: structure-function relationships in the neonate.

    PubMed

    Smilowitz, Jennifer T; Lebrilla, Carlito B; Mills, David A; German, J Bruce; Freeman, Samara L

    2014-01-01

    In addition to providing complete postnatal nutrition, breast milk is a complex biofluid that delivers bioactive components for the growth and development of the intestinal and immune systems. Lactation is a unique opportunity to understand the role of diet in shaping the intestinal environment including the infant microbiome. Of considerable interest is the diversity and abundance of milk glycans that are energetically costly for the mammary gland to produce yet indigestible by infants. Milk glycans comprise free oligosaccharides, glycoproteins, glycopeptides, and glycolipids. Emerging technological advances are enabling more comprehensive, sensitive, and rapid analyses of these different classes of milk glycans. Understanding the impact of inter- and intraindividual glycan diversity on function is an important step toward interventions aimed at improving health and preventing disease. This review discusses the state of technology for glycan analysis and how specific structure-function knowledge is enhancing our understanding of early nutrition in the neonate. PMID:24850388

  10. Measuring Form Factors and Structure Functions with CLAS

    SciTech Connect

    G.P. Gilfoyle

    2007-09-10

    The physics program at the Thomas Jefferson National Accelerator Facility includes a strong effort to measure form factors and structure functions to probe the structure of hadronic matter, reveal the nature of confinement, and develop an understanding of atomic nuclei using quark-gluon degrees of freedom. The CLAS detector is a large acceptance device occupying one of the end stations. We discuss here two programs that use CLAS; measuring the magnetic form factor of the neutron and the virtual photon asymmetry of the proton. The form factor has been measured with unprecedented kinematic coverage and precision up to Q2=4.7 GeV2 and is consistent within 5%-10% of the dipole parameterization. The proton virtual photon asymmetry has been measured across a wide range in Bjorken x. The data exceed the SU(6)-symmetric quark prediction and show evidence of a smooth approach to the scaling limit prescribed by perturbative QCD.

  11. Simulation study of the in-situ formation deformation behavior of a shallow formation in the Southern Kanto Natural gas field, Chiba Prefecture, Japan

    NASA Astrophysics Data System (ADS)

    Adachi, M.; Matsuyama, R.; Nakagawa, T.; Kuroshima, S.; Ogatsu, T.; Adachi, R.

    2015-11-01

    In 2010, eight companies which are exploiting natural gas and brine water in the Southern Kanto natural gas field, Chiba prefecture, Japan constructed an in-situ formation deformation monitoring well with a depth of approximately 80 m, and in-situ formation deformation was measured on a trial basis. After this field test, by conducting the simulation study, we verified whether the deformation behavior at the monitoring well was perfectly elastic or not. In addition, we compared in-situ rock properties like Young's modulus and Poisson's ratio which were estimated by the simulation study with those determined from a triaxial compression test.

  12. Recent results on nuclear structure functions for light nuclei

    SciTech Connect

    Kulagin, S. A.; Petti, R.

    2011-09-21

    We discuss the nuclear EMC effect with particular emphasis on recent data for light nuclei including {sup 2}H, {sup 3}He, {sup 4}He, {sup 9}Be, {sup 12}C and {sup 14}N. In order to verify the consistency of available data, we calculate the {chi}{sup 2} deviation between different data sets. We find a good agreement between the results from the NMC, SLAC E139, and HERMES experiments. However, our analysis indicates an overall normalization offset of about 2% in the data from the recent JLab E03-103 experiment with respect to previous data for nuclei heavier than {sup 3}He. We also discuss the extraction of the neutron/proton structure function ratio F{sub 2}{sup n}/F{sub 2}{sup p} from the nuclear ratios {sup 3}He/{sup 2}H and {sup 2}H/{sup 1}H. Our analysis shows that the E03-103 data on {sup 3}He/{sup 2}H require a renormalization of about 3% in order to be consistent with the F{sub 2}{sup n}/F{sub 2}{sup p} ratio obtained from the NMC experiment. After such a renormalization, the {sup 3}He data from the E03-103 data and HERMES experiments are in a good agreement. We also present a detailed comparison between data and model calculations, which include a description of the nuclear binding, Fermi motion and off-shell corrections to the structure functions of bound proton and neutron, as well as the nuclear pion and shadowing corrections.

  13. In situ chemical fixation of arsenic-contaminated soils: Anexperimental study

    SciTech Connect

    Yang, Li; Donahoe, Rona J.; Redwine, James C.

    2007-03-27

    This paper reports the results of an experimentalstudytesting a low-cost in situ chemical fixation method designed to reclaimarsenic-contaminated subsurface soils. Subsurface soils from severalindustrial sites in southeastern U.S. were contaminated with arsenicthrough heavy application of herbicide containing arsenic trioxide. Themean concentrations of environmentally available arsenic in soilscollected from the two study sites, FW and BH, are 325 mg/kg and 900mg/kg, respectively. The soils are sandy loams with varying mineralogicaland organic contents. The previous study [Yang L, Donahoe RJ. The form,distribution and mobility of arsenic in soils contaminated by arsenictrioxide, at sites in Southeast USA. Appl Geochem 2007;22:320 341]indicated that a large portion of the arsenic in both soils is associatedwith amorphous aluminum and iron oxyhydroxides and shows very slowrelease against leaching by synthetic precipitation. The soil's amorphousaluminum and iron oxyhydroxides content was found to have the mostsignificant effect on its ability to retain arsenic.Based on thisobservation, contaminated soils were reacted with different treatmentsolutions in an effort to promote the formation of insolublearsenic-bearing phases and thereby decrease the leachability of arsenic.Ferrous sulfate, potassium permanganate and calcium carbonate were usedas the reagents for the chemical fixation solutions evaluated in threesets of batch experiments: (1) FeSO4; (2) FeSO4 and KMnO4; (3) FeSO4,KMnO4 and CaCO3. The optimum treatment solutions for each soil wereidentified based on the mobility of arsenic during sequential leaching oftreated and untreated soils using the fluids described in EPA Method 1311[USEPA. Method 1311: toxicity characteristic leaching procedure. Testmethods for evaluating solid waste, physical/chemical methods. 3rd ed.Washington, DC: U.S. Environmental Protection Agency, Office of SolidWaste. U.S. Government Printing Office; 1992]toxic characteristicsleaching

  14. In situ spectroscopic applications to the study of rechargeable lithium batteries. Final report

    SciTech Connect

    Barbour, R.; Kim, Sunghyun; Tryk, D.; Scherson, D.A.

    1993-08-01

    In situ attenuated total reflection Fourier transform infrared spectroscopy (ATR/FTIR) has been employed to examine the reactivity of lithium toward polyethylene oxide (PEO) at ca. 60{degree}C. Uncertainties regarding the cleanliness of the Li surfaces were, minimized by electrodepositing a film of metallic Li directly onto a thin layer of gold (ca. 60 {Angstrom}) vapor deposited on a Ge ATR optical element during the spectroscopic measurements. The ATR/FTIR features observed upon stripping the Li layer were consistent with the formation of alkoxide-type moieties resulting from the Li-induced cleavage of the ether-type functionalities. Electronic and structural aspects of the electrochemical insertion of lithium from non-aqueous electroyltes into FeS{sub 2} have been investigated using in situ Fe K-edge X-ray absorption fine structure (XAFS). The results obtained indicate that the incorporation of Li{sup +} in the pyrite lattice brings about a marked decrease in the amplitude of the extended XAFS (EXAFS) oscillations, particularly for shells associated with distant atoms and a rounding of the, X-ray absorption near edge structure (XANES) region. An analysis of the EXAFS spectra yielded a value for the FeS distance of 2.29 {plus_minus} 0.02 {Angstrom}. On this basis and additional in situ room temperature {sup 57}Fe Mossbauer effect spectroscopy data for the same system it has been proposed that the electrically formed material involves a highly disordered (possibly amorphous) form of Fe{sub l-x}S (with Li+ counterbalancing the charge).

  15. Studying The Kinetics Of Crystalline Silicon Nanoparticle Lithiation With In-Situ Transmission Electron Microscopy

    SciTech Connect

    Mcdowell, Matthew T.; Ryu, Ill; Lee, Seokwoo; Wang, Chong M.; Nix, William D.; Cui, Yi

    2012-11-27

    Silicon is an attractive high-capacity anode material for Li-ion batteries, but a comprehensive understanding of the massive ~300% volume change and fracture during lithiation/delithiation is necessary to reliably employ Si anodes. Here, in-situ transmission electron microscopy (TEM) of the lithiation of crystalline Si nanoparticles reveals that the reaction slows down as it progresses into the particle interior. Analysis suggests that this behavior is due to the influence of mechanical stress at the reaction front on the driving force for the reaction. These experiments give insight into the factors controlling the kinetics of this unique reaction.

  16. In situ studies of interfacial contact evolution via a two-axis deflecting cantilever microinstrument

    NASA Astrophysics Data System (ADS)

    Liu, Fang; Laboriante, Ian; Bush, Brian; Roper, Christopher S.; Carraro, Carlo; Maboudian, Roya

    2009-09-01

    The time-dependent assessment of two contacting polycrystalline silicon surfaces is realized using a microinstrument that allows for in situ surface analysis. The evolution in contact resistance, morphology, and chemistry is probed as a function of contact cycle. Initially, the contact resistance is found to decrease and then increase with impact cycle. Upon prolonged cycling, the fracture of Si grains is observed which grow to form a wear crater. The electrical, morphological, and chemical analyses suggest that the wear of rough polysilicon surfaces due to impact proceeds through three distinct phases, namely plastic deformation of asperities, adhesive wear, and grain fracture.

  17. Anion exchange in Zn-Al layered double hydroxides: In situ X-ray diffraction study

    NASA Astrophysics Data System (ADS)

    Salak, Andrei N.; Tedim, João; Kuznetsova, Alena I.; Zheludkevich, Mikhail L.; Ferreira, Mário G. S.

    2010-07-01

    Anion exchange capacity is a key factor for the application of Zn-Al layered double hydroxides (LDHs) as nano-containers in active corrosion protection. In this work, the nitrate-pyrovanadate anion exchange/re-exchange processes in these LDHs were investigated in situ. We demonstrate that the exchange reactions lead to a decrease of the average crystallite size of LDHs as a result of mechanical fragmentation of the crystallites rather than dissolution/recrystallization. The fragmentation occurs due to fast anion exchange in the initial stage, and can be controlled by changing the ratio of the available substituent anions to the replacement anions and application of a mechanical activation.

  18. Study of nitrogen doping of graphene via in-situ transport measurements

    NASA Astrophysics Data System (ADS)

    Zhao, Rong; Afaneh, Tareq; Dharmasena, Ruchira; Jasinski, Jacek; Sumanasekera, Gamini; Henner, Victor

    2016-06-01

    Here we report in-situ monitoring of electrical transport properties of graphene subjected to sequential and controlled nitrogen plasma doping. The nitrogen is presumed to be incorporated in to the carbon lattice of graphene by making covalent bonding as observed by the swinging of the sign of the thermopower from (initial) positive to (eventual) negative. Electrical transport properties for nitrogen-doped graphene are believed to be governed by the enhanced scattering due to nitrogen dopants and presence of localized states in the conduction band induced by doping. Our results are well supported by Raman and XPS results.

  19. F4TCNQ-Induced Exciton Quenching Studied by Using in-situ Photoluminescence Measurements

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Lu, Min; Wu, Bo; Hou, Xiao-Yuan

    2012-09-01

    The role of F4TCNQ as an exciton quenching material in thin organic light-emitting films is investigated by means of in situ photoluminescence measurements. C60 was used as another quenching material in the experiment for comparison, with Alq3 as a common organic light-emitting material. The effect of the growth sequence of the materials on quenching was also examined. It is found that the radius of Förster energy transfer between F4TCNQ and Alq3 is close to 0 nm and Dexter energy transfer dominates in the quenching process.

  20. An in situ study of resin-assisted solvothermal metal-organic framework synthesis

    NASA Astrophysics Data System (ADS)

    Moorhouse, Saul J.; Wu, Yue; O'Hare, Dermot

    2016-04-01

    A newly developed in situ monochromatic high-energy X-ray diffraction setup was used to investigate the synthesis of MOFs using cation-impregnated polymer resin beads as a ion source. The Co-NDC-DMF (NDC=2,6-naphthalenedicarboxylate; DMF=dimethylformamide) system was investigated, a system which is known to produce at least three distinct frameworks. It was found that the resin-assisted synthesis results in the preferential formation of a topology previously impossible to synthesise in bulk, while the comparable nitrate-salt synthesis appeared to form an alternative phases. It was also found that the resin-assisted synthesis is highly diffusion-controlled.

  1. Studies on synthesis of in-situ Al-TiC metal matrix composites

    NASA Astrophysics Data System (ADS)

    Rai, R. N.; Saha, S. C.; Datta, G. L.; Chakraborty, M.

    2016-03-01

    In the present research work, synthesis and characterization of in-situ Al-TiC composites reinforced with ceramic phases was carried out. The formation of undesirable TiAl3 particles could be avoided justifying the correct procedural requirement adopted while preparing Al-TiC composites. It was observed that distributions of reinforced particles were uniform along the grain boundaries. It was also observed that the average size of the TiC particles was of 0.5 μm. It was also noted that the presence of TiC particles in the composite enhances the yield strength and hardness substantially.

  2. Pressure-induced amorphization of cubic Zr W2 O8 studied in situ and ex situ by synchrotron x-ray diffraction and absorption

    NASA Astrophysics Data System (ADS)

    Varga, Tamas; Wilkinson, Angus P.; Jupe, Andrew C.; Lind, Cora; Bassett, William A.; Zha, Chang-Sheng

    2005-07-01

    The behavior of cubic ZrW2O8 on compression in a DAC to 7.6GPa was examined in situ by a combination of synchrotron x-ray diffraction and x-ray absorption spectroscopy (XAS). These data were compared with x-ray absorption measurements on an amorphous sample of ZrW2O8 recovered from 7.5GPa in a multianvil apparatus. The in situ diffraction data show the complete formation of orthorhombic ZrW2O8 at low pressure (<0.5GPa) , and amorphization onset at >2.4GPa with completion at <7.6GPa . The corresponding in situ XAS data suggest a continuous evolution of the local tungsten coordination environment on compression after forming the orthorhombic phase, with the average WO bond length increasing, indicating an increase in the average coordination number, and the W LI pre-edge peak decreasing in magnitude, indicating a movement toward tungsten coordination that is closer to centrosymmetric These observations are inconsistent with a model for the amorphization that simply involves a loss of orientational/positional order among existing coordination polyhedra. The XANES data for the amorphous sample recovered from the multianvil apparatus are unlike any of the XANES seen in the in situ measurements, suggesting that the local structure in the glassy material relaxes on decompression. The XANES for the recovered sample are very similar to those for ammonium paratungstate, a material that contains tungsten in a variety of heavily distorted octahedral environments.

  3. Measurements of the Temperature Structure-Function Parameters with a Small Unmanned Aerial System Compared with a Sodar

    NASA Astrophysics Data System (ADS)

    Bonin, Timothy A.; Goines, David C.; Scott, Aaron K.; Wainwright, Charlotte E.; Gibbs, Jeremy A.; Chilson, Phillip B.

    2015-06-01

    The structure function is often used to quantify the intensity of spatial inhomogeneities within turbulent flows. Here, the Small Multifunction Research and Teaching Sonde (SMARTSonde), an unmanned aerial system, is used to measure horizontal variations in temperature and to calculate the structure function of temperature at various heights for a range of separation distances. A method for correcting for the advection of turbulence in the calculation of the structure function is discussed. This advection correction improves the data quality, particularly when wind speeds are high. The temperature structure-function parameter can be calculated from the structure function of temperature. Two case studies from which the SMARTSonde was able to take measurements used to derive at several heights during multiple consecutive flights are discussed and compared with sodar measurements, from which is directly related to return power. Profiles of from both the sodar and SMARTSonde from an afternoon case exhibited generally good agreement. However, the profiles agreed poorly for a morning case. The discrepancies are partially attributed to different averaging times for the two instruments in a rapidly evolving environment, and the measurement errors associated with the SMARTSonde sampling within the stable boundary layer.

  4. In-situ spectroscopic ellipsometry study of copper selective-area atomic layer deposition on palladium

    SciTech Connect

    Jiang, Xiaoqiang; Wang, Han; Qi, Jie; Willis, Brian G.

    2014-07-01

    Selective area copper atomic layer deposition on palladium seed layers has been investigated with in-situ real-time spectroscopic ellipsometry to probe the adsorption/desorption and reaction characteristics of individual deposition cycles. The reactants are copper bis(2,2,6,6-tetramethyl-3,5-heptanedionate) vapor and hydrogen gas. Self-limiting atomic layer deposition was observed in the temperature range of 135–230 °C in a low pressure reactor. Under optimal conditions, growth occurs selectively on palladium and not on silicon dioxide or silicon nitride layers. Based on in-situ ellipsometry data and supporting experiments, a new mechanism for growth is proposed. In the proposed mechanism, precursor adsorption is reversible, and dissociatively adsorbed hydrogen are the stable surface intermediates between growth cycles. The mechanism is enabled by continuous diffusion of palladium from the seed layer into the deposited copper film and strong H* binding to palladium sites. Less intermixing can be obtained at low growth temperatures and short cycle times by minimizing Cu/Pd inter-diffusion.

  5. [In situ FTIR and XPS study on selective hydrodesulfurization catalyst of FCC gasoline].

    PubMed

    Qiherima; Yuan, Hui; Zhang, Yun-hong; Li, Hui-feng; Xu, Guang-tong

    2011-07-01

    Improvement of the selectivity of hydrodesulfurization (HDS) for hydrogenation (HYD) of olefins is crucial to produce sulfur-free (S < 0.001%) gasoline from fluid catalytic-cracked (FCC) gasoline. A series of sulfided CoMo/Al2O3 catalysts with different metal loading were prepared by pore-filling impregnation. MoS2 and COMoS active phases on the surface of sulfided COMo/Al2O3 catalyst were identified and analyzed quantitatively by XPS and in-situ FTIR of adsorbed CO. The results reveal that the increase in COMoS phase on the catalyst surface improves the HDS activity and selectivity. And the HDS selectivity correlates linearly with the ratio of active site number of CoMoS and MoS2, the higher the ratio of active site number of CoMoS and MoS2, the better the HDS selectivity. In situ variable temperature FTIR analysis shows that CoMoS phase has stronger electron accepting ability than MoS2. The strong electron deficient property of CoMoS active sites is the main reason for its excellent HDS activity and selectivity. PMID:21942017

  6. In situ reduction study of cobalt model Fischer-Tropsch synthesis catalysts.

    PubMed

    du Plessis, Hester Esna; Forbes, Roy Peter; Barnard, Werner; Erasmus, Willem Johannes; Steuwer, Axel

    2013-07-28

    Fischer-Tropsch (FT) synthesis is an important process to manufacture hydrocarbons and oxygenated hydrocarbons from mixtures of carbon monoxide and hydrogen (syngas). The catalysis process occurs on, for example, cobalt metal surfaces at elevated temperatures and pressures. A fundamental understanding of the reduction pathway of supported cobalt oxides, and the intermediate species present during the activation, can assist in developing improved industrial supported cobalt catalysts. Hard synchrotron X-rays have the unique ability to probe atomic processes both in terms of phases present as well as the crystallographic and local structure (using the pair distribution function approach) under realistic conditions. In this manuscript we present results from measurements during in situ hydrogen activation of a model Co/alumina catalyst using in situ synchrotron X-ray powder diffraction and pair-distribution function (PDF) analysis on beam line ID31 at the ESRF in Grenoble, France. The PDF analysis showed a substantially improved understanding of the reduction of cobalt oxides, as for the first time all cobalt could be accounted for by using total scattering analysis. PMID:23752408

  7. An in situ study of amine and amide molecular interaction on Fe surfaces

    NASA Astrophysics Data System (ADS)

    Taheri, P.; Terryn, H.; Mol, J. M. C.

    2015-11-01

    The interfacial bondings formed between N,N‧-diethylmethylamine, N-methyldiethanolamine and N,N‧-dimethylsuccinamide molecules with iron surfaces have been investigated using Fourier transform infrared spectroscopy (FTIR) and electrochemical spectroscopies. In this case, the interfacial interactions have been evaluated by analyzing ex situ FTIR peaks and probing potential variations upon molecular interactions to Fe surfaces. Moreover, integrated ATR-FTIR and chronovoltammetry analyses in Kretschmann geometry have been employed to probe the interactions between the molecules and Fe surfaces in situ. The results revealed that a charge transfer between molecules and Fe surfaces takes place indicating chemisorption of the molecules on Fe surfaces. In this case, the interaction of N,N‧-diethylmethylamine and Fe surface is negligible. However, N-methyldiethanolamine molecules interact with Fe surfaces through the nitrogen atoms. Interaction of N,N‧-dimethylsuccinamide molecules and Fe surface is promoted by nitrogen and carbonyl functional groups. Moreover, interactions of N-methyldiethanolamine and N,N‧-dimethylsuccinamide molecules to Fe surfaces are encouraged by application of anodic potentials implying that the molecules and Fe surfaces are charged positively and negatively, respectively.

  8. In situ ATR-FTIR study of the early stages of fly ash geopolymer gel formation.

    PubMed

    Rees, Catherine A; Provis, John L; Lukey, Grant C; van Deventer, Jannie S J

    2007-08-14

    The kinetics of geopolymer formation are monitored using a novel in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopic technique. Reaction rates are determined from the intensity variation of the bands related to the geopolymer gel network and the unreacted fly ash particles. Comparison with deuterated geopolymer samples provides critical information regarding peak assignments. An initial induction (lag) period is observed to occur for hydroxide-activated geopolymers, followed by gel evolution according to an approximately linear reaction profile. The length of the lag period is reduced by increasing the concentration of NaOH. An increase in the rate of network formation also occurs with increasing NaOH concentration up to a maximum point, beyond which an increased NaOH concentration leads to a reduced rate of network formation. This trend is attributed to the competing effects of increased alkalinity and stronger ion pairing with an increase in NaOH concentration. In situ analysis also shows that the rate of fly ash dissolution is similar for all moderate- to high-alkali geopolymer slurries, which is attributed to the very highly water-deficient nature of these systems and is contrary to predictions from classical glass dissolution chemistry. This provides for the first time detailed kinetic information describing fly ash geopolymer formation kinetics. PMID:17658864

  9. Studies on explosively driven cracks under confining in-situ stresses

    SciTech Connect

    Simha, K.R.Y.; Fourney, W.L.; Dick, R.D.

    1984-01-01

    Successful explosive gas well stimulation requires a thorough understanding of explosively driven cracks under confining in-situ stresses. In a previous paper (Simha, et al 1983) the problem of explosively driven cracks was experimentally investigated to reveal the features of crack propagation. It was observed that the explosively driven crack propagation is the result of two different but overlapping phases. The first phase involving the initiation and early time crack propagation is entirely governed by the explosively generated stress transients. The rapidly decaying stress transients then lead to the second phase of crack propagation largely controlled by the in-situ stresses. The purpose of this paper is to more fully understand the characteristics of the first phase concerning the initiation and early time propagation of explosively driven cracks. Experiments are conducted with plastic models under biaxial compression and the dynamic event is observed with a high speed multiple spark gap camera of the Cranz-Schardin type. The experimental observations are utilized to propose analytical models of crack initiation under explosive loading to aid in the design of multiple fracturing necessary for successful application of modern well stimulation techniques. 8 references, 4 figures.

  10. An in situ corrosion study of Middle Ages wrought iron bar chains in the Amiens Cathedral

    NASA Astrophysics Data System (ADS)

    Grassini, S.; Angelini, E.; Parvis, M.; Bouchar, M.; Dillmann, P.; Neff, D.

    2013-12-01

    The corrosion behaviour of Middle Ages wrought iron bar chains exposed to indoor atmospheric corrosion for hundred of years in the Notre Dame Cathedral of Amiens (France) has been evaluated by means of Electrochemical Impedance Spectroscopy (EIS), a well-established electrochemical technique extensively used for testing anticorrosive properties of metal coatings. The measurements have been performed in situ with a portable EIS instrument designed to work as a standalone device, in six different areas of the wrought iron bar chains characterized by different aesthetical appearance. Moreover, a properly designed electrochemical cell has been employed to carry out the impedance measurements without affecting the artefacts surfaces. The wrought iron bar chains, as evidenced by μ-Raman and microscopic analyses, are covered by corrosion products constituted by iron oxides and oxyhydroxides, such as goethite, lepidocrocite, maghemite, akaganeite, organized in complex layered structures. In situ EIS allows one to investigate the phenomena involved at the electrochemical interfaces among the various corrosion products and to assess and predict their corrosion behaviour. From the analysis of the experimental findings of this monitoring campaign, EIS measurements can be proposed to restorers/conservators as a reliable indicator of dangerous situations on which they must act for the preservation of the iron artefacts.

  11. In Situ Laser Crystallization of Amorphous Silicon for TFT Applications: Controlled Ultrafast Studies in the Dynamic TEM

    SciTech Connect

    Taheri, M; Teslich, N; Lu, J P; Morgan, D; Browning, N

    2008-02-08

    An in situ method for studying the role of laser energy on the microstructural evolution of polycrystalline Si is presented. By monitoring both laser energy and microstructural evolution simultaneously in the dynamic transmission electron microscope, information on grain size and defect concentration can be correlated directly with processing conditions. This proof of principle study provides fundamental scientific information on the crystallization process that has technological importance for the development of thin film transistors. In conclusion, we successfully developed a method for studying UV laser processing of Si films in situ on nanosecond time scales, with ultimate implications for TFT application improvements. In addition to grain size distribution as a function of laser energy density, we found that grain size scaled with laser energy in general. We showed that nanosecond time resolution allowed us to see the nucleation and growth front during processing, which will help further the understanding of microstructural evolution of poly-Si films for electronic applications. Future studies, coupled with high resolution TEM, will be performed to study grain boundary migration, intergranular defects, and grain size distribution with respect to laser energy and adsorption depth.

  12. Studies of ferroelectric heterostructure thin films, interfaces, and device-related processes via in situ analytical techniques.

    SciTech Connect

    Aggarwal, S.; Auciello, O.; Dhote, A. M.; Gao, Y.; Gruen, D. M.; Im, J.; Irene, E. A.; Krauss, A. R.; Muller, A. H.; Ramesh, R.

    1999-06-29

    The science and technology of ferroelectric thin films has experienced an explosive development during the last ten years. Low-density non-volatile ferroelectric random access memories (NVFRAMS) are now incorporated in commercial products such as ''smart cards'', while high permittivity capacitors are incorporated in cellular phones. However, substantial work is still needed to develop materials integration strategies for high-density memories. We have demonstrated that the implementation of complementary in situ characterization techniques is critical to understand film growth and device processes relevant to device development. We are using uniquely integrated time of flight ion scattering and recoil spectroscopy (TOF-ISARS) and spectroscopic ellipsometry (SE) techniques to perform in situ, real-time studies of film growth processes in the high background gas pressure required to growth ferroelectric thin films. TOF-ISARS provides information on surface processes, while SE permits the investigation of buried interfaces as they are being formed. Recent studies on SrBi{sub 2}Ta{sub 2}O{sub 9} (SBT) and Ba{sub x}Sr{sub 1{minus}x}TiO{sub 3} (BST) film growth and interface processes are discussed. Direct imaging of ferroelectric domains under applied electric fields can provide valuable information to understand domain dynamics in ferroelectric films. We discuss results of piezoresponse scanning force microscopy (SFM) imaging for nanoscale studies of polarization reversal and retention loss in Pb(Zr{sub x}Ti{sub 1{minus}x})O{sub 3} (PZT)-based capacitors. Another powerful technique suitable for in situ, real-time characterization of film growth processes and ferroelectric film-based device operation is based on synchrotrons X-ray scattering, which is currently being implemented at Argonne National Laboratory.

  13. In-situ study of crystallization kinetics in ternary bulk metallic glass alloys with different glass forming abilities

    SciTech Connect

    Lan, Si; Wei, Xiaoya; Wu, Xuelian; Wang, Xun-Li; Zhou, Jie; Lu, Zhaoping; Feygenson, Mikhail; Neuefeind, Jörg

    2014-11-17

    In-situ transmission electron microcopy and time-resolved neutron diffraction were used to study crystallization kinetics of two ternary bulk metallic glasses during isothermal annealing in the supercooled liquid region. It is found that the crystallization of Zr{sub 56}Cu{sub 36}Al{sub 8}, an average glass former, follows continuous nucleation and growth, while that of Zr{sub 46}Cu{sub 46}Al{sub 8}, a better glass former, is characterized by site-saturated nucleation, followed by slow growth. Possible mechanisms for the observed differences and the relationship to the glass forming ability are discussed.

  14. In-situ study of crystallization kinetics in ternary bulk metallic glass alloys with different glass forming abilities

    DOE PAGESBeta

    Lan, Si; Wei, Xiaoya; Zhou, Jie; Lu, Zhaoping; Wu, Xuelian; Feygenson, Mikhail; Neuefeind, Jorg C.; Wang, Xun-Li

    2014-11-18

    In-situ transmission electron microcopy and time-resolved neutron diffraction were used to study crystallization kinetics of two ternary bulk metallic glasses during isothermal annealing in the supercooled liquid region. It is found that the crystallization of Zr56Cu36Al8, an average glass former, follows continuous nucleation and growth, while that of Zr46Cu46Al8, a better glass former, is characterized by site-saturated nucleation, followed by slow growth. Possible mechanisms for the observed differences and the relationship to the glass forming ability are discussed.

  15. A study to identify and compare airborne systems for in-situ measurements of launch vehicle effluents

    NASA Technical Reports Server (NTRS)

    Thomas, T. J.; Chace, A. S.

    1974-01-01

    An in-situ system for monitoring the concentration of HCl, CO, CO2, and Al2O3 in the cloud of reaction products that form as a result of a launch of solid propellant launch vehicle is studied. A wide array of instrumentation and platforms are reviewed to yield the recommended system. An airborne system suited to monitoring pollution concentrations over urban areas for the purpose of calibrating remote sensors is then selected using a similar methodology to yield the optimal configuration.

  16. In situ spectroscopic study of the plastic deformation of amorphous silicon under nonhydrostatic conditions induced by indentation

    DOE PAGESBeta

    Gerbig, Yvonne B.; Michaels, C. A.; Bradby, Jodie E.; Haberl, Bianca; Cook, Robert F.

    2015-12-17

    Indentation-induced plastic deformation of amorphous silicon (a-Si) thin films was studied by in situ Raman imaging of the deformed contact region of an indented sample, employing a Raman spectroscopy-enhanced instrumented indentation technique (IIT). The occurrence and evolving spatial distribution of changes in the a-Si structure caused by processes, such as polyamorphization and crystallization, induced by indentation loading were observed. Furthermore, the obtained experimental results are linked with previously published work on the plastic deformation of a-Si under hydrostatic compression and shear deformation to establish a model for the deformation behavior of a-Si under indentation loading.

  17. Active phase of a Pd-Cu/ZSM-5 catalyst for benzene hydroxylation: In-situ XAFS studies

    NASA Astrophysics Data System (ADS)

    Cho, Kye-Sung; Lee, Yong-Kul

    2012-07-01

    The gas-phase hydroxylation of benzene by using a mixture of oxygen and hydrogen has been carried out over Cu/ZSM-5 catalysts modified with palladium. In-situ X-ray absorption studies employed in the course of H2-tempereature programmed reduction (H2-TPR) followed by benzene hydroxylation confirmed that the oxidic phase of Cu2+ was transformed to Cu+ during the reaction. The addition of Pd to Cu/ZSM-5 noticeably improved the reducibility of the oxidic Cu phase, which resulted in an increase in the activity of the reaction.

  18. In-situ optical transmission electron microscope study of exciton phonon replicas in ZnO nanowires by cathodoluminescence

    SciTech Connect

    Yang, Shize; Tian, Xuezeng; Wang, Lifen; Wei, Jiake; Qi, Kuo; Li, Xiaomin; Xu, Zhi E-mail: xdbai@iphy.ac.cn Wang, Wenlong; Zhao, Jimin; Bai, Xuedong E-mail: xdbai@iphy.ac.cn; Wang, Enge E-mail: xdbai@iphy.ac.cn

    2014-08-18

    The cathodoluminescence spectrum of single zinc oxide (ZnO) nanowires is measured by in-situ optical Transmission Electron Microscope. The coupling between exciton and longitudinal optical phonon is studied. The band edge emission varies for different excitation spots. This effect is attributed to the exciton propagation along the c axis of the nanowire. Contrary to free exciton emission, the phonon replicas are well confined in ZnO nanowire. They travel along the c axis and emit at the end surface. Bending strain increases the relative intensity of second order phonon replicas when excitons travel along the c-axis.

  19. In situ study of electric field-induced magnetization in multiferroic BiFeO(3) nanowires.

    PubMed

    Prashanthi, K; Thundat, T

    2014-01-01

    In this work, we have studied electric field-induced magnetization effect of multiferroic BiFeO3 (BFO) nanowires in situ using magnetic force microscopy (MFM). Changes in magnetic domain contrast have been observed in the MFM phase images under applied electric potential, which indicate local magnetoelectric (ME) coupling in the nanowires. The values of saturation and magnetization at different applied electric fields were evaluated. These results suggest that one-dimensional multiferroic BFO nanowires are potential candidates for realizing multiferroic devices at nanoscale with unique functionalities. PMID:23637049

  20. A comparative study of in-situ measurement methods of a building wall thermal resistance using infrared thermography

    NASA Astrophysics Data System (ADS)

    Ibos, Laurent; Monchau, Jean-Pierre; Feuillet, Vincent; Candau, Yves

    2015-04-01

    This study concerns the in-situ determination of the thermal resistance of a building wall. Measurements were performed in the PANISSE platform, which is a residential building with two floors located in the town of Villemomble, at about ten kilometers in the east of Paris. During a renovation, a 6cm-thick external insulating layer was fixed onto the cellular concrete walls of the house. Three methods using IR thermography were used to estimate the thermal resistance of the insulated walls. Results are compared to a standardized method (ISO 9869-1) that uses contact sensors. The comparison is made considering estimated thermal resistance values, measurement uncertainties and measurement duration.

  1. Beamline electrostatic levitator for in situ high energy x-ray diffraction studies of levitated solids and liquids

    SciTech Connect

    Gangopadhyay, A.K.; Lee, G.W.; Kelto, K.F.; Rogers, J.R.; Goldman, A.I.; Robinson, D.S.; Rathz, T.J.; Hyers, R.W.

    2010-07-19

    Determinations of the phase formation sequence, crystal structures and the thermo-physical properties of materials at high temperatures are hampered by contamination from the sample container and environment. Containerless processing techniques, such as electrostatic (ESL), electromagnetic, aerodynamic, and acoustic levitation, are most suitable for these studies. An adaptation of ESL for in situ structural studies of a wide range of materials using high energy (30-130 keV) x rays at a synchrotron source is described here. This beamline ESL (BESL) allows the in situ determination of the atomic structures of equilibrium solid and liquid phases, undercooled liquids and time-resolved studies of solid-solid and liquid-solid phase transformations. The use of area detectors enables the rapid acquisition of complete diffraction patterns over a wide range (0.5-14 {angstrom}{sup -1}) of reciprocal space. The wide temperature range (300-2500 K), containerless processing environment under high vacuum (10{sup -7}-10{sup -8} Torr), and fast data acquisition capability, make BESL particularly well suited for phase stability studies of high temperature solids and liquids. An additional, but important, feature of BESL is the capability for simultaneous measurements of a host of thermo-physical properties including the specific heat, enthalpy of transformation, solidus and liquidus temperatures, density, viscosity, and surface tension, all on the same sample during the structural measurements.

  2. In situ treatment of arsenic contaminated groundwater by aquifer iron coating: Experimental Study

    SciTech Connect

    Xie, Xianjun; Wang, Yanxin; Pi, Kunfu; Liu, Chongxuan; Li, Junxia; Liu, Yaqing; Wang, Zhiqiang; Duan, Mengyu

    2015-09-15

    In situ arsenic removal from groundwater by an iron coating method has great potential to be a cost effective and simple groundwater remediation technique, especially in rural and remote areas where groundwater is used as the main source of drinking water. The in situ arsenic removal technique was first optimized by simulating arsenic removal in various quartz sand columns under anoxic conditions., Its effectiveness was then evaluated in an actual high-arsenic groundwater environment. The mechanism of arsenic removal by the iron coating was investigated under different conditions using scanning electron microscopy (SEM)/X-ray absorption spectroscopy, an electron microprobe, and Fourier transformation infrared spectroscopy. A 4-step alternative cycle aquifer iron coating method was developed. A continuous injection of 5 mmol/L FeSO4 and 2.5 mmol/L NaClO for 96 hours can create a uniform coating of crystalline goethite on the surface of quartz sand in the columns without causing clogging. At a flow rate of 0.45 cm/min of the injection reagents (vi), the time for arsenic (as Na2HAsO4) to pass through the iron-coated quartz sand column was approximately 35 hours, which was much longer than that for tracer fluorescein sodium (approximately 2 hours). The retardation factor of arsenic was 23, and its adsorption capacity was 0.11 mol As per mol Fe, leading to an excellent arsenic removal. In situ arsenic removal from groundwater in an aquifer was achieved by simultaneous injections of As (V) and Fe (II) reagents. When the arsenic content in the groundwater was 233 μg/L, the aqueous phase arsenic was completely removed with an arsenic adsorption of 0.05 mol As per mol Fe. Arsenic fixation resulted from a process of adsorption/co-precipitation, in which arsenic and iron likely formed the arsenic-bearing iron mineral phases with poor crystallinity by way of bidentate binuclear complexes. Thus, the high arsenic removal efficiency of the technique likely resulted from the

  3. In Situ Real-Time Radiographic Study of Thin Film Formation Inside Rotating Hollow Spheres

    DOE PAGESBeta

    Braun, Tom; Walton, Christopher C.; Dawedeit, Christoph; Biener, Monika M.; Kim, Sung Ho; Willey, Trevor M.; Xiao, Xianghui; van Buuren, Anthony; Hamza, Alex V.; Biener, Juergen

    2016-02-03

    The hollow spheres with uniform coatings on the inner surface have applications in optical devices, time- or site-controlled drug release, heat storage devices, and target fabrication for inertial confinement fusion experiments. The fabrication of uniform coatings, which is often critical for the application performance, requires precise understanding and control over the coating process and its parameters. We report on in situ real-time radiography experiments that provide critical spatiotemporal information about the distribution of fluids inside hollow spheres during uniaxial rotation. Furthermore, image analysis and computer fluid dynamics simulations were used to explore the effect of liquid viscosity and rotational velocitymore » on the film uniformity. The data were then used to demonstrate the fabrication of uniform sol–gel chemistry derived porous polymer films inside 2 mm inner diameter diamond shells.« less

  4. In situ study on low-k interconnect time-dependent-dielectric-breakdown mechanisms

    SciTech Connect

    Boon Yeap, Kong; Gall, Martin; Liao, Zhongquan; Sander, Christoph; Muehle, Uwe; Zschech, Ehrenfried; Justison, Patrick; Aubel, Oliver; Hauschildt, Meike; Beyer, Armand; Vogel, Norman

    2014-03-28

    An in situ transmission-electron-microscopy methodology is developed to observe time-dependent dielectric breakdown (TDDB) in an advanced Cu/ultra-low-k interconnect stack. A test structure, namely a “tip-to-tip” structure, was designed to localize the TDDB degradation in small dielectrics regions. A constant voltage is applied at 25 °C to the “tip-to-tip” structure, while structural changes are observed at nanoscale. Cu nanoparticle formation, agglomeration, and migration processes are observed after dielectric breakdown. The Cu nanoparticles are positively charged, since they move in opposite direction to the electron flow. Measurements of ionic current, using the Triangular-Voltage-Stress method, suggest that Cu migration is not possible before dielectric breakdown, unless the Cu/ultra-low-k interconnect stacks are heated to 200 °C and above.

  5. In situ sputter cleaning of thin film metal substrates for UHV-TEM corrosion studies.

    NASA Technical Reports Server (NTRS)

    Heinemann, K.; Poppa, H.

    1973-01-01

    A prerequisite for conducting valid corrosion experiments by in situ electron microscopy techniques is not only the achievement of UHV background pressure conditions at the site of the specimen but also the ability to clean the surface of the thin metal substrate specimen before initiation of the corrosive interaction. A miniaturized simple ion gun has been constructed for this purpose. The gun is small enough to be incorporated into an UHV electron microscope specimen chamber with hot stage in such a way as to permit bombardment of the substrate specimen while observing it by transmission electron microscopy TEM. It is shown that the ion beam generated is confined well enough to cause a sputtering removal of substrate material at a rate of approximately 5-10 A/min and to prevent the sputter deposition of contaminating material from the specimen holder.

  6. In situ study of the initiation of hydrogen bubbles at the aluminium metal/oxide interface

    NASA Astrophysics Data System (ADS)

    Xie, De-Gang; Wang, Zhang-Jie; Sun, Jun; Li, Ju; Ma, Evan; Shan, Zhi-Wei

    2015-09-01

    The presence of excess hydrogen at the interface between a metal substrate and a protective oxide can cause blistering and spallation of the scale. However, it remains unclear how nanoscale bubbles manage to reach the critical size in the first place. Here, we perform in situ environmental transmission electron microscopy experiments of the aluminium metal/oxide interface under hydrogen exposure. It is found that once the interface is weakened by hydrogen segregation, surface diffusion of Al atoms initiates the formation of faceted cavities on the metal side, driven by Wulff reconstruction. The morphology and growth rate of these cavities are highly sensitive to the crystallographic orientation of the aluminium substrate. Once the cavities grow to a critical size, the internal gas pressure can become great enough to blister the oxide layer. Our findings have implications for understanding hydrogen damage of interfaces.

  7. An in situ electron microscopy technique for the study of thermally activated reactions in multilayered materials

    SciTech Connect

    Wall, M.A.; Barbee, T.W. Jr.; Weihs, T.P.

    1995-04-14

    A novel in situ transmission electron microscopy technique for the observation of reaction processes in multilayered materials is reported. The technique involves constant heating rate experiments of multilayered materials in image and diffraction modes. Because the fine scale microstructure of multilayered materials is typically a small fraction of the TEM specimen thickness, realistic comparison of the microstructural evolution with that of similarly processed thick foil samples is possible. Such experiments, when well designed, can provide rapid characterization of phase transformations and stability of nano-structured materials. The results of these experiments can be recorded in both video and micrograph format. The results and limitations of this technique will be shown for the Al/Zr and Al/Monel multilayered systems.

  8. In situ Nanoindentation Study of Plastic Co-deformation in Al-TiN Nanocomposites

    PubMed Central

    Li, N.; Wang, H.; Misra, A.; Wang, J.

    2014-01-01

    We performed in situ indentation in a transmission electron microscope on Al-TiN multilayers with individual layer thicknesses of 50 nm, 5 nm and 2.7 nm to explore the effect of length scales on the plastic co-deformability of a metal and a ceramic. At 50 nm, plasticity was confined to the Al layers with easy initiation of cracks in the TiN layers. At 5 nm and below, cracking in TiN was suppressed and post mortem measurements indicated a reduction in layer thickness in both layers. The results demonstrate the profound size effect in enhancing plastic co-deformability in nanoscale metal-ceramic multilayers. PMID:25319014

  9. In Situ XAS Studies on the Structure of the Active Site of Supported Gold Catalysts

    SciTech Connect

    Weiher, Norbert; Beesley, Angela M.; Tsapatsaris, Nikolaos; Louis, Catherine; Delannoy, Laurent; Bokhoven, Jeroen A. van; Schroeder, Sven L. M.

    2007-02-02

    Gold clusters supported on Al2O3 and TiO2 have been exposed to different mixtures of CO and O2. Their structure has been probed in situ using X-ray absorption spectroscopy (XAS) at the Au L3-edge. In all materials, the dominant phase during catalysis is Au0. Both samples show variations of the electronic structure of the gold clusters with changing reaction conditions as evidenced by changes in the X-ray absorption near-edge (XANES) region. These variations are caused by interaction between the gold clusters and the carbon monoxide present in the gas phase. The gold atoms remain zerovalent throughout all experiments confirming the importance of Au0 for catalytic activity.

  10. The growth of microcrystalline silicon oxide thin films studied by in situ plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Kirner, S.; Gabriel, O.; Stannowski, B.; Rech, B.; Schlatmann, R.

    2013-02-01

    The crystallinity and refractive index of microcrystalline silicon oxide (μc-SiOx:H) n-layers and their dependence on the pressure and radio frequency power during the deposition process is correlated with plasma properties derived from in situ diagnostics. From process gas depletion measurements, the oxygen content of the layers was calculated. High crystallinities were observed for increased pressures and decreased powers, indicating clear differences to trends previously shown for microcrystalline silicon (μc-Si:H) material, which are explained by the varying oxygen incorporation. Amorphous/microcrystalline silicon (a-Si:H/μc-Si:H) tandem solar cells with μc-SiOx:H intermediate reflector layers deposited at optimized pressures showed greatly improved series resistances.

  11. In situ study of defect migration kinetics in nanoporous Ag with enhanced radiation tolerance

    PubMed Central

    Sun, C.; Bufford, D.; Chen, Y.; Kirk, M. A.; Wang, Y. Q.; Li, M.; Wang, H.; Maloy, S. A.; Zhang, X.

    2014-01-01

    Defect sinks, such as grain boundaries and phase boundaries, have been widely accepted to improve the irradiation resistance of metallic materials. However, free surface, an ideal defect sink, has received little attention in bulk materials as surface-to-volume ratio is typically low. Here by using in situ Kr ion irradiation technique in a transmission electron microscope, we show that nanoporous (NP) Ag has enhanced radiation tolerance. Besides direct evidence of free surface induced frequent removal of various types of defect clusters, we determined, for the first time, the global and instantaneous diffusivity of defect clusters in both coarse-grained (CG) and NP Ag. Opposite to conventional wisdom, both types of diffusivities are lower in NP Ag. Such a surprise is largely related to the reduced interaction energy between isolated defect clusters in NP Ag. Determination of kinetics of defect clusters is essential to understand and model their migration and clustering in irradiated materials. PMID:24435181

  12. In situ microtomography study of human bones under strain with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Bleuet, Pierre; Roux, Jean-Paul; Dabin, Yves; Boivin, Georges

    2004-10-01

    At the ESRF Micro-Fluorescence, Imaging and Diffraction beamline ID22, X-Ray micro-tomography is a routine technique proposed to users for 3D microanalysis of various samples. The purpose of this work is to extend 3D micro-tomography in order to obtain in-situ 3D information about samples at increasing pure axial loads. We developed a new device that allows one to combine mechanical testing and micro-tomography. The device is optimised for low Gpa Young moduli like plastics or bone but can easily be adapted to higher values. In this paper we present first results obtained with animal and human bone samples to gain insight into the bone microcrack problem.

  13. In situ nanoindentation study of plastic Co-deformation in Al-TiN nanocomposites

    DOE PAGESBeta

    Li, N.; Wang, H.; Misra, A.; Wang, J.

    2014-10-16

    We performed in situ indentation in a transmission electron microscope on Al-TiN multilayers with individual layer thicknesses of 50 nm, 5 nm and 2.7 nm to explore the effect of length scales on the plastic co-deformability of a metal and a ceramic. At 50 nm, plasticity was confined to the Al layers with easy initiation of cracks in the TiN layers. At 5 nm and below, cracking in TiN was suppressed and post mortem measurements indicated a reduction in layer thickness in both layers. Our results demonstrate the profound size effect in enhancing plastic co-deformability in nanoscale metal-ceramic multilayers.

  14. In Situ Real-Time Radiographic Study of Thin Film Formation Inside Rotating Hollow Spheres.

    PubMed

    Braun, Tom; Walton, Christopher C; Dawedeit, Christoph; Biener, Monika M; Kim, Sung Ho; Willey, Trevor M; Xiao, Xianghui; van Buuren, Anthony; Hamza, Alex V; Biener, Juergen

    2016-02-01

    Hollow spheres with uniform coatings on the inner surface have applications in optical devices, time- or site-controlled drug release, heat storage devices, and target fabrication for inertial confinement fusion experiments. The fabrication of uniform coatings, which is often critical for the application performance, requires precise understanding and control over the coating process and its parameters. Here, we report on in situ real-time radiography experiments that provide critical spatiotemporal information about the distribution of fluids inside hollow spheres during uniaxial rotation. Image analysis and computer fluid dynamics simulations were used to explore the effect of liquid viscosity and rotational velocity on the film uniformity. The data were then used to demonstrate the fabrication of uniform sol-gel chemistry derived porous polymer films inside 2 mm inner diameter diamond shells. PMID:26717408

  15. TEM in-situ study of dislocation motion in B2 NiAl single crystals

    SciTech Connect

    Ghosh, B.; Crimp, M.A.

    1997-12-31

    In an effort to understand dislocation mobility in stoichiometric NiAl single crystals, in-situ tensile deformation experiments have been performed in a transmission electron microscope. Commercially pure and high purity single crystals with <001> and <110> orientations have been examined. Two different thermal treatments were adopted in order to effect the mechanical response. Dislocation motion was observed in all samples. Pre-existing dislocations, either isolated or tangled, were not observed to move at any point leading up to sample failure. Cross-slip of the mobile dislocations was observed in some cases. In commercially pure single crystals, dislocations were found to move at a much slower rate and uniform manner in contrast to motion in high purity single crystals which occurs by rapid jumps.

  16. Study of tempering behavior of lath martensite using in situ neutron diffraction

    SciTech Connect

    Shi, Z.M.; Gong, W.; Tomota, Y.; Harjo, S.; Li, J.; Chi, B.; Pu, J.

    2015-09-15

    To elucidate changes in the density and substructure of dislocations during tempering of lath martensite steel, a convolutional multiple whole-profile fitting method was applied to in situ neutron diffraction profiles. With increasing tempering temperature, the dislocation density scarcely changed in the beginning and then decreased at temperatures above 473 K, whereas the dislocation arrangement drastically changed at temperatures above 673 K. The strength of the steel is speculated to depend on the density and arrangement of dislocations. - Highlights: • A convolutional multiple whole-profile fitting method was applied. • Dislocation density and dislocation arrangement changing with tempering were discussed. • Dislocation density scarcely changed in the beginning. • And then dislocation density decreased at temperatures above 473 K. • The dislocation arrangement drastically changed at temperatures above 673 K.

  17. In situ study of defect migration kinetics in nanoporous Ag with enhanced radiation tolerance.

    PubMed

    Sun, C; Bufford, D; Chen, Y; Kirk, M A; Wang, Y Q; Li, M; Wang, H; Maloy, S A; Zhang, X

    2014-01-01

    Defect sinks, such as grain boundaries and phase boundaries, have been widely accepted to improve the irradiation resistance of metallic materials. However, free surface, an ideal defect sink, has received little attention in bulk materials as surface-to-volume ratio is typically low. Here by using in situ Kr ion irradiation technique in a transmission electron microscope, we show that nanoporous (NP) Ag has enhanced radiation tolerance. Besides direct evidence of free surface induced frequent removal of various types of defect clusters, we determined, for the first time, the global and instantaneous diffusivity of defect clusters in both coarse-grained (CG) and NP Ag. Opposite to conventional wisdom, both types of diffusivities are lower in NP Ag. Such a surprise is largely related to the reduced interaction energy between isolated defect clusters in NP Ag. Determination of kinetics of defect clusters is essential to understand and model their migration and clustering in irradiated materials. PMID:24435181

  18. In situ study of the initiation of hydrogen bubbles at the aluminium metal/oxide interface.

    PubMed

    Xie, De-Gang; Wang, Zhang-Jie; Sun, Jun; Li, Ju; Ma, Evan; Shan, Zhi-Wei

    2015-09-01

    The presence of excess hydrogen at the interface between a metal substrate and a protective oxide can cause blistering and spallation of the scale. However, it remains unclear how nanoscale bubbles manage to reach the critical size in the first place. Here, we perform in situ environmental transmission electron microscopy experiments of the aluminium metal/oxide interface under hydrogen exposure. It is found that once the interface is weakened by hydrogen segregation, surface diffusion of Al atoms initiates the formation of faceted cavities on the metal side, driven by Wulff reconstruction. The morphology and growth rate of these cavities are highly sensitive to the crystallographic orientation of the aluminium substrate. Once the cavities grow to a critical size, the internal gas pressure can become great enough to blister the oxide layer. Our findings have implications for understanding hydrogen damage of interfaces. PMID:26121306

  19. The erythrasma microorganism in situ: studies using the skin surface biopsy technique

    PubMed Central

    Marks, R.; Ramnarain, N. D.; Bhogal, B.; Moore, N. T.

    1972-01-01

    The skin surface biopsy technique has been used to investigate the erythrasma organism in situ in the stratum corneum in 11 patients. Staining by PAS and Gram stain showed the presence of a large number of organisms arranged haphazardly in some areas and in microcolonies in others. With the scanning electron microscope it was possible to see that smooth filamentous chains of microorganisms had penetrated horn cells and caused disturbance of the surface structure of these cells. Enzyme histochemical tests showed that the erythrasma microorganism possessed a strong reactivity for NAD diaphorase and other mitochondrial enzymes. The reactivity was focal confirming a complex subcellular organization of organelles. It is suggested that the erythrasma microorganism secretes a mucopolysaccharide sheath in some circumstances. Images PMID:4117542

  20. The adhesion behavior of carbon coating studied by re-indentation during in situ TEM nanoindentation

    NASA Astrophysics Data System (ADS)

    Fan, Xue; Diao, Dongfeng

    2016-01-01

    We report a nanoscale adhesion induced nano-response in terms of re-indentation during in situ transmission electron microscope (TEM) nanoindentation on the carbon coating with silicon substrate. The adhesive force generated with nanoindentation was measured, and re-indentation phenomenon during unloading with displacement sudden drop and external loading force change from tension to compression was found. The occurrence of re-indentation during unloading was ascribed to the adhesive force of the contact interface between the indenter and the coating surface. Adhesion energies released for re-indentation processes were quantitatively analyzed from the re-indentation load-displacement curves, and carbon coating reduced the impact of adhesion for silicon substrate. The adhesion induced nano-response of contact surfaces would affect the reliability and performance of nano devices.