Science.gov

Sample records for skin hair follicles

  1. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding.

    PubMed

    Ito, Mayumi; Yang, Zaixin; Andl, Thomas; Cui, Chunhua; Kim, Noori; Millar, Sarah E; Cotsarelis, George

    2007-05-17

    The mammalian hair follicle is a complex 'mini-organ' thought to form only during development; loss of an adult follicle is considered permanent. However, the possibility that hair follicles develop de novo following wounding was raised in studies on rabbits, mice and even humans fifty years ago. Subsequently, these observations were generally discounted because definitive evidence for follicular neogenesis was not presented. Here we show that, after wounding, hair follicles form de novo in genetically normal adult mice. The regenerated hair follicles establish a stem cell population, express known molecular markers of follicle differentiation, produce a hair shaft and progress through all stages of the hair follicle cycle. Lineage analysis demonstrated that the nascent follicles arise from epithelial cells outside of the hair follicle stem cell niche, suggesting that epidermal cells in the wound assume a hair follicle stem cell phenotype. Inhibition of Wnt signalling after re-epithelialization completely abrogates this wounding-induced folliculogenesis, whereas overexpression of Wnt ligand in the epidermis increases the number of regenerated hair follicles. These remarkable regenerative capabilities of the adult support the notion that wounding induces an embryonic phenotype in skin, and that this provides a window for manipulation of hair follicle neogenesis by Wnt proteins. These findings suggest treatments for wounds, hair loss and other degenerative skin disorders. PMID:17507982

  2. Ovine Hair Follicle Stem Cells Derived from Single Vibrissae Reconstitute Haired Skin

    PubMed Central

    Zhang, Huishan; Zhang, Shoubing; Zhao, Huashan; Qiao, Jingqiao; Liu, Shuang; Deng, Zhili; Lei, Xiaohua; Ning, Lina; Cao, Yujing; Zhao, Yong; Duan, Enkui

    2015-01-01

    Hair follicle stem cells (HFSCs) possess fascinating self-renewal capacity and multipotency, which play important roles in mammalian hair growth and skin wound repair. Although HFSCs from other mammalian species have been obtained, the characteristics of ovine HFSCs, as well as the methods to isolate them have not been well addressed. Here, we report an efficient strategy to obtain multipotent ovine HFSCs. Through microdissection and organ culture, we obtained keratinocytes that grew from the bulge area of vibrissa hair follicles, and even abundant keratinocytes were harvested from a single hair follicle. These bulge-derived keratinocytes are highly positive for Krt15, Krt14, Tp63, Krt19 and Itga6; in addition to their strong proliferation abilities in vitro, these keratinocytes formed new epidermis, hair follicles and sebaceous glands in skin reconstitution experiments, showing that these are HFSCs from the bulge outer root sheath. Taken together, we developed an efficient in vitro system to enrich ovine HFSCs, providing enough HFSCs for the investigations about the ovine hair cycle, aiming to promote wool production in the future. PMID:26247934

  3. In-vitro and in-vivo study of dye diffusion into the human skin and hair follicles

    NASA Astrophysics Data System (ADS)

    Genina, Elina A.; Bashkatov, Alexey N.; Sinichkin, Yurii P.; Kochubey, Vyacheslav I.; Lakodina, Nina A.; Perpelitzina, Olga A.; Altshuler, Gregory B.; Tuchin, Valery V.

    2000-11-01

    We present experimental results on in vitro and in vivo investigation of dye diffusion into the human skin and hair follicles. It was shown that dyeing as a method of enhancement of the absorption coefficient of hair follicle tissue components can be used for selective photodestruction of hair follicle and surrounding tissues. Strength and depth of hair follicle dyeing inside the skin were determined for various dyes.

  4. Comparison between hair follicles and split-thickness skin grafts in cutaneous wound repair

    PubMed Central

    Yang, Zhen; Liu, Jiaqi; Zhu, Ningwen; Qi, Fazhi

    2015-01-01

    Several clinical research studies have demonstrated that chronic cutaneous wounds can be treated with hair follicle grafts. However, the clinical outcomes of hair follicle grafting compared to split-thickness skin grafting have not been examined. This study sought to compare the clinical outcomes of patients with chronic wounds following hair follicle therapy and split-thickness skin graft therapy in a relatively large cohort of patients. Forty patients were enrolled in the study, a retrospective analysis of all patients underwent therapy with hair follicles (cohort A) and split-thickness skin grafts (cohort B) was performed. Safety, healing duration, skin quality (recipient site), scar formation (donor site) and overall postoperative outcome were analyzed. The wound sites were examined using photography at weeks 2, 8, and 12 after surgery. Five non-biased reviewers estimated the above-mentioned clinical outcomes using a five-point Likert scale. The ages and wound areas were similar between cohorts A (n=20) and B (n=20). Total wound closure was observed and adverse events were rare and controllable in both cohorts. The skin and scar quality were rated significantly higher in the hair follicle cohort than the split-thickness skin graft cohort (4.40 vs 3.45, P<0.05 and 4.65 vs 3.20, P<0.05; respectively). Hair follicle therapy resulted in a significantly higher overall score than split-thickness skin graft treatment (4.45 vs 3.40, P<0.05). This study demonstrated that hair follicles can achieve better skin/scar quality and overall clinical outcomes than split-thickness skin grafts. Hair follicles should be considered an effective surgical technique for the treatment of chronic cutaneous wounds. PMID:26629082

  5. Epidermal stem cells and skin tissue engineering in hair follicle regeneration

    PubMed Central

    Balañá, María Eugenia; Charreau, Hernán Eduardo; Leirós, Gustavo José

    2015-01-01

    The reconstitution of a fully organized and functional hair follicle from dissociated cells propagated under defined tissue culture conditions is a challenge still pending in tissue engineering. The loss of hair follicles caused by injuries or pathologies such as alopecia not only affects the patients’ psychological well-being, but also endangers certain inherent functions of the skin. It is then of great interest to find different strategies aiming to regenerate or neogenerate the hair follicle under conditions proper of an adult individual. Based upon current knowledge on the epithelial and dermal cells and their interactions during the embryonic hair generation and adult hair cycling, many researchers have tried to obtain mature hair follicles using different strategies and approaches depending on the causes of hair loss. This review summarizes current advances in the different experimental strategies to regenerate or neogenerate hair follicles, with emphasis on those involving neogenesis of hair follicles in adult individuals using isolated cells and tissue engineering. Most of these experiments were performed using rodent cells, particularly from embryonic or newborn origin. However, no successful strategy to generate human hair follicles from adult cells has yet been reported. This review identifies several issues that should be considered to achieve this objective. Perhaps the most important challenge is to provide three-dimensional culture conditions mimicking the structure of living tissue. Improving culture conditions that allow the expansion of specific cells while protecting their inductive properties, as well as methods for selecting populations of epithelial stem cells, should give us the necessary tools to overcome the difficulties that constrain human hair follicle neogenesis. An analysis of patent trends shows that the number of patent applications aimed at hair follicle regeneration and neogenesis has been increasing during the last decade. This

  6. Epidermal stem cells and skin tissue engineering in hair follicle regeneration.

    PubMed

    Balañá, María Eugenia; Charreau, Hernán Eduardo; Leirós, Gustavo José

    2015-05-26

    The reconstitution of a fully organized and functional hair follicle from dissociated cells propagated under defined tissue culture conditions is a challenge still pending in tissue engineering. The loss of hair follicles caused by injuries or pathologies such as alopecia not only affects the patients' psychological well-being, but also endangers certain inherent functions of the skin. It is then of great interest to find different strategies aiming to regenerate or neogenerate the hair follicle under conditions proper of an adult individual. Based upon current knowledge on the epithelial and dermal cells and their interactions during the embryonic hair generation and adult hair cycling, many researchers have tried to obtain mature hair follicles using different strategies and approaches depending on the causes of hair loss. This review summarizes current advances in the different experimental strategies to regenerate or neogenerate hair follicles, with emphasis on those involving neogenesis of hair follicles in adult individuals using isolated cells and tissue engineering. Most of these experiments were performed using rodent cells, particularly from embryonic or newborn origin. However, no successful strategy to generate human hair follicles from adult cells has yet been reported. This review identifies several issues that should be considered to achieve this objective. Perhaps the most important challenge is to provide three-dimensional culture conditions mimicking the structure of living tissue. Improving culture conditions that allow the expansion of specific cells while protecting their inductive properties, as well as methods for selecting populations of epithelial stem cells, should give us the necessary tools to overcome the difficulties that constrain human hair follicle neogenesis. An analysis of patent trends shows that the number of patent applications aimed at hair follicle regeneration and neogenesis has been increasing during the last decade. This

  7. Promotion of hair follicle development and trichogenesis by Wnt-10b in cultured embryonic skin and in reconstituted skin

    SciTech Connect

    Ouji, Yukiteru . E-mail: oujix@naramed-u.ac.jp; Yoshikawa, Masahide; Shiroi, Akira; Ishizaka, Shigeaki

    2006-06-30

    We previously showed that Wnt-10b promoted the differentiation of primary skin epithelial cells (MPSEC) toward hair shaft and inner root sheath of the hair follicle (IRS) cells in vitro. In the present study, we found that Wnt-10b promotes the development of hair follicles using a culture of mouse embryonic skin tissue and trichogenesis using a reconstitution experiment with nude mice. Hair follicle development was observed in skin taken from mouse embryos on embryonic day 10.5 following a 2-day culture with recombinant Wnt-10b (rWnt-10b), however, not without rWnt-10b. Brown hair growth was observed at the site of reconstituted skin in Balb/c nude mice where dermal fibroblasts and keratinocytes, derived from C3H/HeN new born mice, were transplanted with Wnt-10b-producing COS cells (Wnt-COS). Without the co-transplantation of Wnt-COS, no hair growth was observed. Our results suggest an important role of Wnt-10b in the initiation of hair follicle development and following trichogenesis.

  8. [Content of free and bound phenols in hair follicles of sheep skin].

    PubMed

    Shvetz', S F; Makar, I A; Hzhytsky, S Z

    1975-01-01

    The content of phenols combined with sulphuric and glucoronic acids as well as the influence of vitamin A, sulphur and insulin hormone on the quantity of phenol were studied in the hair follicles of sheep skin. The presence of free and bound phenols in the hair follicles was established. An addition of vitamin A in a dose of 3500 i. u. per head a day to the ration of sheep causes an increase in the content of conjugated phenols, especially of phenolsulphates. A still more noticeable increase in the number of conjugated phenols may be observed under influence of vitamin A, insulin and sodium sulphate. PMID:1209767

  9. Growth and viability of Liaoning Cashmere goat hair follicles during the annual hair follicle cycle.

    PubMed

    Zhang, Q L; Li, J P; Chen, Y; Chang, Q; Li, Y M; Yao, J Y; Jiang, H Z; Zhao, Z H; Guo, D

    2014-01-01

    Here, we studied hair follicle development of Liaoning Cashmere goats. Every month for 1 year, skin samples were collected from five 1.5-year-old female goats, and made into paraffin sections. A number of parameters were measured of primary and secondary hair follicles via microscopic observation including follicle depth, hair bulb width, dermis and epidermis thickness, changes in follicle activity, and histology. The results showed the presence of three phases in the annual hair cycle: anagen, catagen, and telogen. Primary and secondary hair follicle depth varied across the months; however, no significant difference was obtained between adjacent months (P>0.05). Primary hair follicles had a bigger hair bulb width compared to secondary hair follicles; however, this difference declined during hair follicle developed in anagen. As hair follicle growth slowed, the hair bulb broadened, and hair root depth became shallower. During the entire hair cycle, hair follicle depth and dermis thickness were positively correlated; however, this relationship was not significant (P>0.05) for primary and secondary hair follicle density and the ratio of secondary hair follicle density and primary hair follicle density (S/P ratio). In addition, new and old primary hair follicles coexisted with secondary hair follicles. Finally, secondary hair follicles had a higher activity rate compared to primary hair follicle in adult Liaoning Cashmere goats in certain months. PMID:25036348

  10. Permeation of topically applied Magnesium ions through human skin is facilitated by hair follicles.

    PubMed

    Chandrasekaran, Navin Chandrakanth; Sanchez, Washington Y; Mohammed, Yousuf H; Grice, Jeffrey E; Roberts, Michael S; Barnard, Ross T

    2016-06-01

    Magnesium is an important micronutrient essential for various biological processes and its deficiency has been linked to several inflammatory disorders in humans. Topical magnesium delivery is one of the oldest forms of therapy for skin diseases, for example Dead Sea therapy and Epsom salt baths. Some anecdotal evidence and a few published reports have attributed amelioration of inflammatory skin conditions to the topical application of magnesium. On the other hand, transport of magnesium ions across the protective barrier of skin, the stratum corneum, is contentious. Our primary aim in this study was to estimate the extent of magnesium ion permeation through human skin and the role of hair follicles in facilitating the permeation. Upon topical application of magnesium solution, we found that magnesium penetrates through human stratum corneum and it depends on concentration and time of exposure. We also found that hair follicles make a significant contribution to magnesium penetration. PMID:27624531

  11. Micro-RNA-31 controls hair cycle-associated changes in gene expression programs of the skin and hair follicle

    PubMed Central

    Mardaryev, Andrei N.; Ahmed, Mohammed I.; Vlahov, Nikola V.; Fessing, Michael Y.; Gill, Jason H.; Sharov, Andrey A.; Botchkareva, Natalia V.

    2010-01-01

    The hair follicle is a cyclic biological system that progresses through stages of growth, regression, and quiescence, which involves dynamic changes in a program of gene regulation. Micro-RNAs (miRNAs) are critically important for the control of gene expression and silencing. Here, we show that global miRNA expression in the skin markedly changes during distinct stages of the hair cycle in mice. Furthermore, we show that expression of miR-31 markedly increases during anagen and decreases during catagen and telogen. Administration of antisense miR-31 inhibitor into mouse skin during the early- and midanagen phases of the hair cycle results in accelerated anagen development, and altered differentiation of hair matrix keratinocytes and hair shaft formation. Microarray, qRT-PCR and Western blot analyses revealed that miR-31 negatively regulates expression of Fgf10, the components of Wnt and BMP signaling pathways Sclerostin and BAMBI, and Dlx3 transcription factor, as well as selected keratin genes, both in vitro and in vivo. Using luciferase reporter assay, we show that Krt16, Krt17, Dlx3, and Fgf10 serve as direct miR-31 targets. Thus, by targeting a number of growth regulatory molecules and cytoskeletal proteins, miR-31 is involved in establishing an optimal balance of gene expression in the hair follicle required for its proper growth and hair fiber formation.—Mardaryev, A. N., Ahmed, M. I., Vlahov, N. V., Fessing, M. Y., Gill, J. H., Sharov, A. A., and Botchkareva, N. V. Micro-RNA-31 controls hair cycle-associated changes in gene expression programs of the skin and hair follicle. PMID:20522784

  12. Micro-RNA-31 controls hair cycle-associated changes in gene expression programs of the skin and hair follicle.

    PubMed

    Mardaryev, Andrei N; Ahmed, Mohammed I; Vlahov, Nikola V; Fessing, Michael Y; Gill, Jason H; Sharov, Andrey A; Botchkareva, Natalia V

    2010-10-01

    The hair follicle is a cyclic biological system that progresses through stages of growth, regression, and quiescence, which involves dynamic changes in a program of gene regulation. Micro-RNAs (miRNAs) are critically important for the control of gene expression and silencing. Here, we show that global miRNA expression in the skin markedly changes during distinct stages of the hair cycle in mice. Furthermore, we show that expression of miR-31 markedly increases during anagen and decreases during catagen and telogen. Administration of antisense miR-31 inhibitor into mouse skin during the early- and midanagen phases of the hair cycle results in accelerated anagen development, and altered differentiation of hair matrix keratinocytes and hair shaft formation. Microarray, qRT-PCR and Western blot analyses revealed that miR-31 negatively regulates expression of Fgf10, the components of Wnt and BMP signaling pathways Sclerostin and BAMBI, and Dlx3 transcription factor, as well as selected keratin genes, both in vitro and in vivo. Using luciferase reporter assay, we show that Krt16, Krt17, Dlx3, and Fgf10 serve as direct miR-31 targets. Thus, by targeting a number of growth regulatory molecules and cytoskeletal proteins, miR-31 is involved in establishing an optimal balance of gene expression in the hair follicle required for its proper growth and hair fiber formation. PMID:20522784

  13. Hair follicle defects and squamous cell carcinoma formation in Smad4 conditional knockout mouse skin.

    PubMed

    Qiao, W; Li, A G; Owens, P; Xu, X; Wang, X-J; Deng, C-X

    2006-01-12

    Smad4 is the common mediator for TGFbeta signals, which play important functions in many biological processes. To study the role of Smad4 in skin development and epidermal tumorigenesis, we disrupted this gene in skin using the Cre-loxP approach. We showed that absence of Smad4 blocked hair follicle differentiation and cycling, leading to a progressive hair loss of mutant (MT) mice. MT hair follicles exhibited diminished expression of Lef1, and increased proliferative cells in the outer root sheath. Additionally, the skin of MT mice exhibited increased proliferation of basal keratinocytes and epidermal hyperplasia. Furthermore, we provide evidence that the absence of Smad4 resulted in a block of both TGFbeta and bone morphogenetic protein (BMP) signaling pathways, including p21, a well-known cyclin-dependent kinase inhibitor. Consequently, all MT mice developed spontaneous malignant skin tumors from 3 months to 13 months of age. The majority of tumors are malignant squamous cell carcinomas. A most notable finding is that tumorigenesis is accompanied by inactivation of phosphatase and tensin homolog deleted on chromosome 10 (Pten), activation of AKT, fast proliferation and nuclear accumulation of cyclin D1. These observations revealed the essential functions of Smad4-mediated signals in repressing skin tumor formation through the TGFbeta/BMP pathway, which interacts with the Pten signaling pathway. PMID:16170355

  14. Reinnervation of hair follicle end organs and Meissner Corpuscles in skin grafts of Macaques.

    PubMed

    Uno, H; Montagna, W

    1982-03-01

    Plugs of occipital hairy scalp and pieces of digital pads were transplanted to the frontal scalp of stump-tailed macaques (Macaca arctoides). Both types of grafts grew well and retained their original appearance for several years. We traced the regrowth and reinnervation of hair follicles and Meissner corpuscles in sequential biopsy specimens of these grafts. Two weeks after transplantation, hair follicles in the grafts appeared to have lost all integrity but began to regrow after 4 weeks. The nerve and organs of hair follicles began to reappear at 8 weeks. Thereafter, grafts with large terminal hairs remained viable in the host bald frontal scalp for as long as 8 yr. In the digital skin grafts, the cytoskeleton of the Meissner corpuscles could be distinguished after 4 weeks; after 8 weeks nerves from the host tissue could be traced to the end organs. Perivascular nerve plexuses and nerves to the piloerector muscles were clearly seen in both types of graft after 8 weeks. PMID:7035577

  15. Hair follicle-derived IL-7 and IL-15 mediate skin-resident memory T cell homeostasis and lymphoma

    PubMed Central

    Adachi, Takeya; Kobayashi, Tetsuro; Sugihara, Eiji; Yamada, Taketo; Ikuta, Koichi; Pittaluga, Stefania; Saya, Hideyuki; Amagai, Masayuki; Nagao, Keisuke

    2015-01-01

    The skin harbors a variety of resident leukocyte subsets that must be tightly regulated to maintain immune homeostasis. Hair follicles are unique structures in the skin that contribute to skin dendritic cell homeostasis via chemokine production. We demonstrate that CD4+ and CD8+ skin resident memory T cells (TRM), responsible for long-term skin immunity, resided predominantly within the hair follicle epithelium of unperturbed epidermis. TRM tropism for the epidermis and follicles was herein termed epidermotropism. Hair follicle-derived IL-15 was required for CD8+ TRM, and IL-7 for CD8+ and CD4+ TRM, to exert epidermotropism. The lack of either cytokine impaired hapten-induced contact hypersensitivity responses. In a model of cutaneous T cell lymphoma, epidermotropic CD4+ TRM lymphoma cell localization depended on hair follicle-derived IL-7. These findings implicate hair follicle-derived cytokines as regulators of malignant and non-malignant TRM cell tissue residence and suggest they may be targeted therapeutically in inflammatory skin disease and lymphoma. PMID:26479922

  16. Hair follicle anatomy (image)

    MedlinePlus

    At the base of the hair follicle are sensory nerve fibers that wrap around each hair bulb. Bending the hair stimulates the nerve endings allowing a person to feel that the hair has been moved. One of the main functions of hair is to act ...

  17. Reflectance spectroscopy for evaluating hair follicle cycle

    NASA Astrophysics Data System (ADS)

    Liu, Caihua; Guan, Yue; Wang, Jianru; Zhu, Dan

    2014-02-01

    Hair follicle, as a mini-organ with perpetually cycling of telogen, anagen and catagen, provides a valuable experimental model for studying hair and organ regeneration. The transition of hair follicle from telogen to anagen is a significant sign for successful regeneration. So far discrimination of the hair follicle stage is mostly based on canonical histological examination and empirical speculation based on skin color. Hardly a method has been proposed to quantitatively evaluate the hair follicle stage. In this work, a commercial optical fiber spectrometer was applied to monitor diffuse reflectance of mouse skin with hair follicle cycling, and then the change of reflectance was obtained. Histological examination was used to verify the hair follicle stage. In comparison with the histological examination, the skin diffuse reflectance was relatively high for mouse with telogen hair follicles; it decreased once hair follicles transited to anagen stage; then it increased reversely at catagen stage. This study provided a new method to quantitatively evaluate the hair follicle stage, and should be valuable for the basic and therapeutic investigations on hair regeneration.

  18. Discrimination between basal cell carcinoma and hair follicles in skin tissue sections by Raman micro-spectroscopy

    NASA Astrophysics Data System (ADS)

    Larraona-Puy, M.; Ghita, A.; Zoladek, A.; Perkins, W.; Varma, S.; Leach, I. H.; Koloydenko, A. A.; Williams, H.; Notingher, I.

    2011-05-01

    Skin cancer is the most common human malignancy and basal cell carcinoma (BCC) represents approximately 80% of the non-melanoma cases. Current methods of treatment require histopathological evaluation of the tissues by qualified personnel. However, this method is subjective and in some cases BCC can be confused with other structures in healthy skin, including hair follicles. In this preliminary study, we investigated the potential of Raman micro-spectroscopy (RMS) to discriminate between hair follicles and BCC in skin tissue sections excised during Mohs micrographic surgery (MMS). Imaging and diagnosis of skin sections was automatically generated using ' a priori'-built spectral model based on LDA. This model had 90 ± 9% sensitivity and 85 ± 9% specificity for discrimination of BCC from dermis and epidermis. The model used selected Raman bands corresponding to the largest spectral differences between the Raman spectra of BCC and the normal skin regions, associated mainly with nucleic acids and collagen type I. Raman spectra corresponding to the epidermis regions of the hair follicles were found to be closer to those of healthy epidermis rather than BCC. Comparison between Raman spectral images and the gold standard haematoxylin and eosin (H&E) histopathology diagnosis showed good agreement. Some hair follicle regions were misclassified as BCC; regions corresponded mainly to the outermost layer of hair follicle (basal cells) which are expected to have higher nucleic acid concentration. This preliminary study shows the ability of RMS to distinguish between BCC and other tissue structures associated to healthy skin which can be confused with BCC due to their similar morphology.

  19. Modulatory Role of Sensory Innervation on Hair Follicle Stem Cell Progeny during Wound Healing of the Rat Skin

    PubMed Central

    Martínez-Martínez, Eduardo; Galván-Hernández, Claudio I.; Toscano-Márquez, Brenda; Gutiérrez-Ospina, Gabriel

    2012-01-01

    Background The bulge region of the hair follicle contains resident epithelial stem cells (SCs) that are activated and mobilized during hair growth and after epidermal wounding. However, little is known about the signals that modulate these processes. Clinical and experimental observations show that a reduced supply of sensory innervation is associated with delayed wound healing. Since axon terminals of sensory neurons are among the components of the bulge SC niche, we investigated whether these neurons are involved in the activation and mobilization of the hair stem cells during wound healing. Methodology/Principal Findings We used neonatal capsaicin treatment to reduce sensory terminals in the rat skin and performed morphometric analyses using design-based stereological methods. Epithelial proliferation was analyzed by quantifying the number of bromodeoxyuridine-labeled (BrdU+) nuclei in the epidermis and hair follicles. After wounding, the epidermis of capsaicin-treated rats presented fewer BrdU+ nuclei than in control rats. To assess SC progeny migration, we employed a double labeling protocol with iododeoxyuridine and chlorodeoxyuridine (IdU+/CldU+). The proportion of double-labeled cells was similar in the hair follicles of both groups at 32 h postwounding. IdU+/CldU+ cell proportion increased in the epidermis of control rats and decreased in treated rats at 61 h postwounding. The epidermal volume immunostained for keratin 6 was greater in treated rats at 61 h. Confocal microscopy analysis revealed that substance P (SP) and calcitonin gene-related peptide (CGRP) receptor immunoreactivity were both present in CD34+ and BrdU-retaining cells of the hair follicles. Conclusions/Significance Our results suggest that capsaicin denervation impairs SC progeny egress from the hair follicles, a circumstance associated with a greater epidermal activation. Altogether, these phenomena would explain the longer times for healing in denervated skin. Thus, sensory innervation

  20. Ion beam microanalysis of human hair follicles

    NASA Astrophysics Data System (ADS)

    Kertész, Zs.; Szikszai, Z.; Pelicon, P.; Simčič, J.; Telek, A.; Bíró, T.

    2007-07-01

    Hair follicle is an appendage organ of the skin which is of importance to the survival of mammals and still maintains significance for the human race - not just biologically, but also through cosmetic and commercial considerations. However data on composition of hair follicles are scarce and mostly limited to the hair shaft. In this study we provide detailed information on the elemental distribution in human hair follicles in different growth phases (anagen and catagen) using a scanning proton microprobe. The analysis of skin samples obtained from human adults undergoing plastic surgery and of organ-cultured human hair follicles may yield a new insight into the function, development and cyclic activity of the hair follicle.

  1. Flat Mount Imaging of Mouse Skin and Its Application to the Analysis of Hair Follicle Patterning and Sensory Axon Morphology

    PubMed Central

    Chang, Hao; Wang, Yanshu; Wu, Hao; Nathans, Jeremy

    2014-01-01

    Skin is a highly heterogeneous tissue. Intra-dermal structures include hair follicles, arrector pili muscles, epidermal specializations (such as Merkel cell clusters), sebaceous glands, nerves and nerve endings, and capillaries. The spatial arrangement of these structures is tightly controlled on a microscopic scale - as seen, for example, in the orderly arrangement of cell types within a single hair follicle - and on a macroscopic scale - as seen by the nearly identical orientations of thousands of hair follicles within a local region of skin. Visualizing these structures without physically sectioning the skin is possible because of the 2-dimensional geometry of this organ. In this protocol, we show that mouse skin can be dissected, fixed, permeabilized, stained, and clarified as an intact two dimensional object, a flat mount. The protocol allows for easy visualization of skin structures in their entirety through the full thickness of large areas of skin by optical sectioning and reconstruction. Images of these structures can also be integrated with information about position and orientation relative to the body axes. PMID:24999071

  2. An Integrated Transcriptome Atlas of Embryonic Hair Follicle Progenitors, Their Niche, and the Developing Skin.

    PubMed

    Sennett, Rachel; Wang, Zichen; Rezza, Amélie; Grisanti, Laura; Roitershtein, Nataly; Sicchio, Cristina; Mok, Ka Wai; Heitman, Nicholas J; Clavel, Carlos; Ma'ayan, Avi; Rendl, Michael

    2015-09-14

    Defining the unique molecular features of progenitors and their niche requires a genome-wide, whole-tissue approach with cellular resolution. Here, we co-isolate embryonic hair follicle (HF) placode and dermal condensate cells, precursors of adult HF stem cells and the dermal papilla/sheath niche, along with lineage-related keratinocytes and fibroblasts, Schwann cells, melanocytes, and a population inclusive of all remaining skin cells. With next-generation RNA sequencing, we define gene expression patterns in the context of the entire embryonic skin, and through transcriptome cross-comparisons, we uncover hundreds of enriched genes in cell-type-specific signatures. Axon guidance signaling and many other pathway genes are enriched in multiple signatures, implicating these factors in driving the large-scale cellular rearrangements necessary for HF formation. Finally, we share all data in an interactive, searchable companion website. Our study provides an overarching view of signaling within the entire embryonic skin and captures a molecular snapshot of HF progenitors and their niche. PMID:26256211

  3. Light-emitting hair follicles: studying skin regeneration with in vivo imaging

    PubMed Central

    Guerrero-Juarez, Christian Fernando; Ramos, Raul; Oh, Ji Won; Hsi, Tsai-Ching; Plikus, Maksim V.

    2014-01-01

    Summary Cutting-edge imaging technologies and new luminescent and fluorescent genetic tools now make it possible to study hair regeneration in vivo in real time at the microscopic single-cell level and at the macroscopic level of hair follicle populations. These technologies also allow for non-invasive assessment of the skin’s clinically relevant homeostatic parameters, such as oxidative stress levels and pH. PMID:24825056

  4. Corneodesmosin gene ablation induces lethal skin-barrier disruption and hair-follicle degeneration related to desmosome dysfunction.

    PubMed

    Leclerc, Emilie A; Huchenq, Anne; Mattiuzzo, Nicolas R; Metzger, Daniel; Chambon, Pierre; Ghyselinck, Norbert B; Serre, Guy; Jonca, Nathalie; Guerrin, Marina

    2009-08-01

    Corneodesmosin (CDSN) is specific to desmosomes of epithelia undergoing cornification, mainly the epidermis and the inner root sheath of the hair follicles. CDSN nonsense mutations are associated with hypotrichosis simplex of the scalp, a rare disease that leads to complete baldness in young adults. CDSN displays adhesive properties, mostly attributable to its N-terminal glycine-rich domain, and is sequentially proteolyzed as corneocytes migrate towards the skin surface. K14-promoter driven Cre-mediated deletion of Cdsn in mice resulted in neonatal death as a result of epidermal tearing upon minor mechanical stress. Ultrastructural analyses revealed a desmosomal break at the interface between the living and cornified layers. After grafting onto nude mice, knockout skin showed a chronic defect in the epidermal permeability barrier. The epidermis was first hyperproliferative with a thick cornified layer, then, both the epidermis and the hair follicles degenerated. In adults, Cdsn deletion resulted in similar histological abnormalities and in a lethal barrier defect. We demonstrate that Cdsn is not essential for skin-barrier formation in utero, but is vital throughout life to preserve this barrier by maintaining desmosome integrity. The strong adhesive function that the protein confers on corneodesmosomes also seems necessary for maintaining the architecture of the hair follicle. PMID:19596793

  5. LIPH Expression in Skin and Hair Follicles of Normal Coat and Rex Rabbits

    PubMed Central

    Diribarne, Mathieu; Mata, Xavier; Rivière, Julie; Bouet, Stéphan; Vaiman, Anne; Chapuis, Jérôme; Reine, Fabienne; Fleurot, Renaud; Auvinet, Gérard; Deretz, Séverine; Allain, Daniel; Schibler, Laurent; Cribiu, Edmond-Paul; Guérin, Gérard

    2012-01-01

    Natural mutations in the LIPH gene were shown to be responsible for hair growth defects in humans and for the rex short hair phenotype in rabbits. In this species, we identified a single nucleotide deletion in LIPH (1362delA) introducing a stop codon in the C-terminal region of the protein. We investigated the expression of LIPH between normal coat and rex rabbits during critical fetal stages of hair follicle genesis, in adults and during hair follicle cycles. Transcripts were three times less expressed in both fetal and adult stages of the rex rabbits than in normal rabbits. In addition, the hair growth cycle phases affected the regulation of the transcription level in the normal and mutant phenotypes differently. LIPH mRNA and protein levels were higher in the outer root sheath (ORS) than in the inner root sheath (IRS), with a very weak signal in the IRS of rex rabbits. In vitro transfection shows that the mutant protein has a reduced lipase activity compared to the wild type form. Our results contribute to the characterization of the LIPH mode of action and confirm the crucial role of LIPH in hair production. PMID:22272275

  6. Reflectance spectroscopy for noninvasive evaluation of hair follicle stage

    NASA Astrophysics Data System (ADS)

    Liu, Caihua; Guan, Yue; Wang, Jianru; Zhong, Xiewei; Liu, Xiuli; Zhu, Dan

    2015-05-01

    Hair follicle offers an excellent model for systems biology and regenerative medicine. So far, the stages of hair follicle growth have been evaluated by histological examination. In this work, a noninvasive spectroscopy was proposed by measuring the diffuse reflectance of mouse skin and analyzing the melanin value. Results show that the skin diffuse reflectance was relatively high when hair follicles were at the telogen stage and at the beginning of the anagen stage, and decreased with the progression of the anagen stage. When the hair follicle entered into the catagen stage, the diffuse reflectance gradually increased. The changes in the melanin content of skin had contrary dynamics. Substages of the hair follicle cycle could be distinguished by comparing the changes in melanin value with the histological examination. This study provided a new method for noninvasive evaluation of the hair follicle stage, and should be valuable for basic and therapeutic investigations on hair regeneration.

  7. Reflectance spectroscopy for noninvasive evaluation of hair follicle stage.

    PubMed

    Liu, Caihua; Guan, Yue; Wang, Jianru; Zhong, Xiewei; Liu, Xiuli; Zhu, Dan

    2015-05-01

    Hair follicle offers an excellent model for systems biology and regenerative medicine. So far, the stages of hair follicle growth have been evaluated by histological examination. In this work, a noninvasive spectroscopy was proposed by measuring the diffuse reflectance of mouse skin and analyzing the melanin value. Results show that the skin diffuse reflectance was relatively high when hair follicles were at the telogen stage and at the beginning of the anagen stage, and decreased with the progression of the anagen stage. When the hair follicle entered into the catagen stage, the diffuse reflectance gradually increased. The changes in the melanin content of skin had contrary dynamics. Substages of the hair follicle cycle could be distinguished by comparing the changes in melanin value with the histological examination. This study provided a new method for noninvasive evaluation of the hair follicle stage, and should be valuable for basic and therapeutic investigations on hair regeneration. PMID:25428579

  8. Evidence that initiated keratinocytes clonally expand into multiple existing hair follicles during papilloma histogenesis in SENCAR mouse skin.

    PubMed

    Binder, R L; Gallagher, P M; Johnson, G R; Stockman, S L; Smith, B J; Sundberg, J P; Conti, C J

    1997-09-01

    We have previously shown that the precursors of cutaneous papillomas in SENCAR mice initiated with 7,12-dimethylbenz[a]anthracene and promoted with 12-O-tetradecanoylphorbol-13-acetate are focal hyperplastic lesions that we refer to as squamous cell hyperplastic foci (SCHF). Ha-ras gene codon 61 mutations were frequently found in SCHF, providing evidence that these lesions represent clones of initiated cells. We report here the pathogenesis of multiple hair follicle involvement in more advanced SCHF and describe the role of the hair follicle in papilloma histogenesis. Detailed histological evaluation of 83 SCHF and 25 early papillomas revealed a morphological continuum from the least developed SCHF, involving only one hair follicle, to advanced SCHF and early papillomas, which involved more than 10 hair follicles. These results provide evidence of the recruitment of additional hair follicles as SCHF progress. In advanced SCHF and early papillomas the bulk of the epithelial component in all cases consisted of several markedly hyperplastic adjacent hair follicles, whereas the involved interfollicular epidermis (IFE) was generally less hyperplastic. All of the hair follicles involved in SCHF appeared to have been preexisting, based on their pattern of spacing, that they were consistently normal appearing below the level of the sebaceous glands, and that they were in the same phase of the hair cycle as surrounding, uninvolved hair follicles. Also, no evidence of follicular neogenesis was observed in serially sectioned SCHF, and coalescence of smaller lesions was rare. To investigate whether the involvement of multiple hair follicles in SCHF was due to expansion of initiated cells into existing hair follicles or, possibly, to a paracrine mechanism, we analyzed different levels of three serially sectioned SCHF and one early papilloma for Ha-ras mutations. These analyses revealed cells with Ha-ras gene codon 61 mutations at multiple levels that involved different hair

  9. MicroRNA-214 controls skin and hair follicle development by modulating the activity of the Wnt pathway.

    PubMed

    Ahmed, Mohammed I; Alam, Majid; Emelianov, Vladimir U; Poterlowicz, Krzysztof; Patel, Ankit; Sharov, Andrey A; Mardaryev, Andrei N; Botchkareva, Natalia V

    2014-11-24

    Skin development is governed by complex programs of gene activation and silencing, including microRNA-dependent modulation of gene expression. Here, we show that miR-214 regulates skin morphogenesis and hair follicle (HF) cycling by targeting β-catenin, a key component of the Wnt signaling pathway. miR-214 exhibits differential expression patterns in the skin epithelium, and its inducible overexpression in keratinocytes inhibited proliferation, which resulted in formation of fewer HFs with decreased hair bulb size and thinner hair production. The inhibitory effects of miR-214 on HF development and cycling were associated with altered activities of multiple signaling pathways, including decreased expression of key Wnt signaling mediators β-catenin and Lef-1, and were rescued by treatment with pharmacological Wnt activators. Finally, we identify β-catenin as one of the conserved miR-214 targets in keratinocytes. These data provide an important foundation for further analyses of miR-214 as a key regulator of Wnt pathway activity and stem cell functions during normal tissue homeostasis, regeneration, and aging. PMID:25422376

  10. Dermal papilla cells improve the wound healing process and generate hair bud-like structures in grafted skin substitutes using hair follicle stem cells.

    PubMed

    Leirós, Gustavo José; Kusinsky, Ana Gabriela; Drago, Hugo; Bossi, Silvia; Sturla, Flavio; Castellanos, María Lía; Stella, Inés Yolanda; Balañá, María Eugenia

    2014-10-01

    Tissue-engineered skin represents a useful strategy for the treatment of deep skin injuries and might contribute to the understanding of skin regeneration. The use of dermal papilla cells (DPCs) as a dermal component in a permanent composite skin with human hair follicle stem cells (HFSCs) was evaluated by studying the tissue-engineered skin architecture, stem cell persistence, hair regeneration, and graft-take in nude mice. A porcine acellular dermal matrix was seeded with HFSCs alone and with HFSCs plus human DPCs or dermal fibroblasts (DFs). In vitro, the presence of DPCs induced a more regular and multilayered stratified epidermis with more basal p63-positive cells and invaginations. The DPC-containing constructs more accurately mimicked the skin architecture by properly stratifying the differentiating HFSCs and developing a well-ordered epithelia that contributed to more closely recapitulate an artificial human skin. This acellular dermal matrix previously repopulated in vitro with HFSCs and DFs or DPCs as the dermal component was grafted in nude mice. The presence of DPCs in the composite substitute not only favored early neovascularization, good assimilation and remodeling after grafting but also contributed to the neovascular network maturation, which might reduce the inflammation process, resulting in a better healing process, with less scarring and wound contraction. Interestingly, only DPC-containing constructs showed embryonic hair bud-like structures with cells of human origin, presence of precursor epithelial cells, and expression of a hair differentiation marker. Although preliminary, these findings have demonstrated the importance of the presence of DPCs for proper skin repair. PMID:25161315

  11. Dermal Papilla Cells Improve the Wound Healing Process and Generate Hair Bud-Like Structures in Grafted Skin Substitutes Using Hair Follicle Stem Cells

    PubMed Central

    Leirós, Gustavo José; Kusinsky, Ana Gabriela; Drago, Hugo; Bossi, Silvia; Sturla, Flavio; Castellanos, María Lía; Stella, Inés Yolanda

    2014-01-01

    Tissue-engineered skin represents a useful strategy for the treatment of deep skin injuries and might contribute to the understanding of skin regeneration. The use of dermal papilla cells (DPCs) as a dermal component in a permanent composite skin with human hair follicle stem cells (HFSCs) was evaluated by studying the tissue-engineered skin architecture, stem cell persistence, hair regeneration, and graft-take in nude mice. A porcine acellular dermal matrix was seeded with HFSCs alone and with HFSCs plus human DPCs or dermal fibroblasts (DFs). In vitro, the presence of DPCs induced a more regular and multilayered stratified epidermis with more basal p63-positive cells and invaginations. The DPC-containing constructs more accurately mimicked the skin architecture by properly stratifying the differentiating HFSCs and developing a well-ordered epithelia that contributed to more closely recapitulate an artificial human skin. This acellular dermal matrix previously repopulated in vitro with HFSCs and DFs or DPCs as the dermal component was grafted in nude mice. The presence of DPCs in the composite substitute not only favored early neovascularization, good assimilation and remodeling after grafting but also contributed to the neovascular network maturation, which might reduce the inflammation process, resulting in a better healing process, with less scarring and wound contraction. Interestingly, only DPC-containing constructs showed embryonic hair bud-like structures with cells of human origin, presence of precursor epithelial cells, and expression of a hair differentiation marker. Although preliminary, these findings have demonstrated the importance of the presence of DPCs for proper skin repair. PMID:25161315

  12. Comparative Transcriptome Analysis of Fetal Skin Reveals Key Genes Related to Hair Follicle Morphogenesis in Cashmere Goats

    PubMed Central

    Yan, Hailong; Zeng, Jie; Ma, Sen; Niu, Yiyuan; Zhou, Guangxian; Jiang, Yu; Chen, Yulin

    2016-01-01

    Cashmere goat skin contains two types of hair follicles (HF): primary hair follicles (PHF) and secondary hair follicles (SHF). Although multiple genetic determinants associated with HF formation have been identified, the molecules that determine the independent morphogenesis of HF in cashmere goats remain elusive. The growth and development of SHF directly influence the quantity and quality of cashmere production. Here, we report the transcriptome profiling analysis of nine skin samples from cashmere goats using 60- and 120-day-old embryos (E60 and E120, respectively), as well as newborns (NB), through RNA-sequencing (RNA-seq). HF morphological changes indicated that PHF were initiated at E60, with maturation from E120, while differentiation of SHF was identified at E120 until formation of cashmere occurred after birth (NB). The RNA-sequencing analysis generated over 20.6 million clean reads from each mRNA library. The number of differentially expressed genes (DEGs) in E60 vs. E120, E120 vs. NB, and E60 vs. NB were 1,024, 0 and 1,801, respectively, indicating that no significant differences were found at transcriptomic levels between E120 and NB. Key genes including B4GALT4, TNC, a-integrin, and FGFR1, were up-regulated and expressed in HF initiation from E60 to E120, while regulatory genes such as GPRC5D, PAD3, HOXC13, PRR9, VSIG8, LRRC15, LHX2, MSX-2, and FOXN1 were up-regulated and expressed in HF keratinisation and hair shaft differentiation from E120 and NB to E60. Several genes belonging to the KRT and KRTAP gene families were detected throughout the three HF developmental stages. The transcriptional trajectory analyses of all DEGs indicated that immune privilege, glycosaminoglycan biosynthesis, extracellular matrix receptor interaction, and growth factor receptors all played dominant roles in the epithelial-mesenchymal interface and HF formation. We found that the Wnt, transforming growth factor-beta/bone morphogenetic protein, and Notch family members

  13. Comparative Transcriptome Analysis of Fetal Skin Reveals Key Genes Related to Hair Follicle Morphogenesis in Cashmere Goats.

    PubMed

    Gao, Ye; Wang, Xiaolong; Yan, Hailong; Zeng, Jie; Ma, Sen; Niu, Yiyuan; Zhou, Guangxian; Jiang, Yu; Chen, Yulin

    2016-01-01

    Cashmere goat skin contains two types of hair follicles (HF): primary hair follicles (PHF) and secondary hair follicles (SHF). Although multiple genetic determinants associated with HF formation have been identified, the molecules that determine the independent morphogenesis of HF in cashmere goats remain elusive. The growth and development of SHF directly influence the quantity and quality of cashmere production. Here, we report the transcriptome profiling analysis of nine skin samples from cashmere goats using 60- and 120-day-old embryos (E60 and E120, respectively), as well as newborns (NB), through RNA-sequencing (RNA-seq). HF morphological changes indicated that PHF were initiated at E60, with maturation from E120, while differentiation of SHF was identified at E120 until formation of cashmere occurred after birth (NB). The RNA-sequencing analysis generated over 20.6 million clean reads from each mRNA library. The number of differentially expressed genes (DEGs) in E60 vs. E120, E120 vs. NB, and E60 vs. NB were 1,024, 0 and 1,801, respectively, indicating that no significant differences were found at transcriptomic levels between E120 and NB. Key genes including B4GALT4, TNC, a-integrin, and FGFR1, were up-regulated and expressed in HF initiation from E60 to E120, while regulatory genes such as GPRC5D, PAD3, HOXC13, PRR9, VSIG8, LRRC15, LHX2, MSX-2, and FOXN1 were up-regulated and expressed in HF keratinisation and hair shaft differentiation from E120 and NB to E60. Several genes belonging to the KRT and KRTAP gene families were detected throughout the three HF developmental stages. The transcriptional trajectory analyses of all DEGs indicated that immune privilege, glycosaminoglycan biosynthesis, extracellular matrix receptor interaction, and growth factor receptors all played dominant roles in the epithelial-mesenchymal interface and HF formation. We found that the Wnt, transforming growth factor-beta/bone morphogenetic protein, and Notch family members

  14. Mitochondrial function in murine skin epithelium is crucial for hair follicle morphogenesis and epithelial-mesenchymal interactions.

    PubMed

    Kloepper, Jennifer E; Baris, Olivier R; Reuter, Karen; Kobayashi, Ken; Weiland, Daniela; Vidali, Silvia; Tobin, Desmond J; Niemann, Catherin; Wiesner, Rudolf J; Paus, Ralf

    2015-03-01

    Here, we studied how epithelial energy metabolism impacts overall skin development by selectively deleting intraepithelial mtDNA in mice by ablating a key maintenance factor (Tfam(EKO)), which induces loss of function of the electron transport chain (ETC). Quantitative (immuno)histomorphometry demonstrated that Tfam(EKO) mice showed significantly reduced hair follicle (HF) density and morphogenesis, fewer intrafollicular keratin15+ epithelial progenitor cells, increased apoptosis, and reduced proliferation. Tfam(EKO) mice also displayed premature entry into (aborted) HF cycling by apoptosis-driven HF regression (catagen). Ultrastructurally, Tfam(EKO) mice exhibited severe HF dystrophy, pigmentary abnormalities, and telogen-like condensed dermal papillae. Epithelial HF progenitor cell differentiation (Plet1, Lrig1 Lef1, and β-catenin), sebaceous gland development (adipophilin, Scd1, and oil red), and key mediators/markers of epithelial-mesenchymal interactions during skin morphogenesis (NCAM, versican, and alkaline phosphatase) were all severely altered in Tfam(EKO) mice. Moreover, the number of mast cells, major histocompatibility complex class II+, or CD11b+ immunocytes in the skin mesenchyme was increased, and essentially no subcutis developed. Therefore, in contrast to their epidermal counterparts, pilosebaceous unit stem cells depend on a functional ETC. Most importantly, our findings point toward a frontier in skin biology: the coupling of HF keratinocyte mitochondrial function with the epithelial-mesenchymal interactions that drive overall development of the skin and its appendages. PMID:25371971

  15. Expression of a dominant negative mutant of epidermal growth factor receptor in the epidermis of transgenic mice elicits striking alterations in hair follicle development and skin structure.

    PubMed Central

    Murillas, R; Larcher, F; Conti, C J; Santos, M; Ullrich, A; Jorcano, J L

    1995-01-01

    Epidermal growth factor receptor (EGFR) is a key regulator of keratinocyte biology. However, the physiological role of EGFR in vivo has not been well established. To analyze the role of EGFR in skin, we have generated transgenic mice expressing an EGFR dominant negative mutant in the basal layer of epidermis and outer root sheath of hair follicles. Mice expressing the mutant receptor display short and waved pelage hair and curly whiskers during the first weeks of age, but subsequently pelage and vibrissa hairs become progressively sparser and atrophic. Eventually, most mice present severe alopecia. Histological examination of the skin of transgenic mice shows striking alterations in the development of hair follicles, which fail to enter into catagen stage. These alterations eventually lead to necrosis and disappearance of the follicles, accompanied by strong infiltration of the skin with inflammatory elements. The interfollicular epidermis of these mice shows marked hyperplasia, expression of hyperproliferation-associated keratin K6 and increased 5-bromo-2-deoxyuridine incorporation. EGFR function was inhibited in transgenic skin keratinocytes, since in vivo and in vitro autophosphorylation of EGFR was almost completely abolished on EGF stimulation. These results implicate EGFR in the control of hair cycle progression, and provide new information about its role in epidermal growth and differentiation. Images PMID:7489711

  16. Optical Monitoring of Living Nerve Terminal Labeling in Hair Follicle Lanceolate Endings of the Ex Vivo Mouse Ear Skin.

    PubMed

    Bewick, Guy S; Banks, Robert W

    2016-01-01

    A novel dissection and recording technique is described for optical monitoring staining and de-staining of lanceolate terminals surrounding hair follicles in the skin of the mouse pinna. The preparation is simple and relatively fast, reliably yielding extensive regions of multiple labeled units of living nerve terminals to study uptake and release of styryl pyridinium dyes extensively used in studies of vesicle recycling. Subdividing the preparations before labeling allows test vs. control comparisons in the same ear from a single individual. Helpful tips are given for improving the quality of the preparation, the labeling and the imaging parameters. This new system is suitable for assaying pharmacologically and mechanically-induced uptake and release of these vital dyes in lanceolate terminals in both wild-type and genetically modified animals. Examples of modulatory influences on labeling intensity are given. PMID:27077818

  17. Optical Monitoring of Living Nerve Terminal Labeling in Hair Follicle Lanceolate Endings of the Ex Vivo Mouse Ear Skin

    PubMed Central

    Bewick, Guy S.; Banks, Robert W.

    2016-01-01

    A novel dissection and recording technique is described for optical monitoring staining and de-staining of lanceolate terminals surrounding hair follicles in the skin of the mouse pinna. The preparation is simple and relatively fast, reliably yielding extensive regions of multiple labeled units of living nerve terminals to study uptake and release of styryl pyridinium dyes extensively used in studies of vesicle recycling. Subdividing the preparations before labeling allows test vs. control comparisons in the same ear from a single individual. Helpful tips are given for improving the quality of the preparation, the labeling and the imaging parameters. This new system is suitable for assaying pharmacologically and mechanically-induced uptake and release of these vital dyes in lanceolate terminals in both wild-type and genetically modified animals. Examples of modulatory influences on labeling intensity are given. PMID:27077818

  18. The role of P-cadherin in skin biology and skin pathology: lessons from the hair follicle.

    PubMed

    Samuelov, Liat; Sprecher, Eli; Paus, Ralf

    2015-06-01

    Adherens junctions (AJs) are one of the major intercellular junctions in various epithelia including the epidermis and the follicular epithelium. AJs connect the cell surface to the actin cytoskeleton and comprise classic transmembrane cadherins, such as P-cadherin, armadillo family proteins, and actin microfilaments. Loss-of-function mutations in CDH3, which encodes P-cadherin, result in two allelic autosomal recessive disorders: hypotrichosis with juvenile macular dystrophy (HJMD) and ectodermal dysplasia, ectrodactyly, and macular dystrophy (EEM) syndromes. Both syndromes feature sparse hair heralding progressive macular dystrophy. EEM syndrome is characterized in addition by ectodermal and limb defects. Recent studies have demonstrated that, together with its involvement in cell-cell adhesion, P-cadherin plays a crucial role in regulating cell signaling, malignant transformation, and other major intercellular processes. Here, we review the roles of P-cadherin in skin and hair biology, with emphasize on human hair growth, cycling and pigmentation. PMID:25707507

  19. Repressing the Keratinocyte Genome: How the Polycomb Complex Subunits Operate in Concert to Control Skin and Hair Follicle Development.

    PubMed

    Botchkarev, Vladimir A; Mardaryev, Andrei N

    2016-08-01

    The Polycomb group proteins are transcriptional repressors that are critically important in the control of stem cell activity and maintenance of the identity of differentiated cells. Polycomb proteins interact with each other to form chromatin-associated repressive complexes (Polycomb repressive complexes 1 and 2) leading to chromatin compaction and gene silencing. However, the roles of the distinct components of the Polycomb repressive complex 2 in the control of skin development and keratinocyte differentiation remain obscure. Dauber et al. demonstrate the conditional ablations of three essential Polycomb repressive complex 2 subunits (EED, Suz12, or Ezh1/2) in the epidermal progenitors result in quite similar skin phenotypes including premature acquisition of a functional epidermal barrier, formation of ectopic Merkel cells, and defective postnatal hair follicle development. The reported data demonstrate that in skin epithelia, EED, Suz12, and Ezh1/2 function largely as subunits of the Polycomb repressive complex 2, which is important in the context of data demonstrating their independent activities in other cell types. The report provides an important platform for further analyses of the role of distinct Polycomb components in the control of gene expression programs in the disorders of epidermal differentiation, such as psoriasis and epidermal cancer. PMID:27450498

  20. Mimicking hair disorders by genetic manipulation of organ cultured human hair follicles

    PubMed Central

    Chen, Jiang; Roop, Dennis R.

    2013-01-01

    Human hair follicles can be dissected out of the scalp skin and cultured in vitro in defined growth medium. Hair follicle organ cultures have previously been used to investigate the molecular and cellular mechanisms through which various factors regulate the maintenance and cycling of adult hair follicles. In this issue, Samuelov et al. transfected organ-cultured human hair follicles with siRNA nucleotides and suppressed the expression of the endogenous P-cadherin gene in follicular keratinocytes. Knocking-down the expression of P-cadherin in hair follicles in vitro recapitulated the hair follicle phenotype observed in patients with hypotrichosis with juvenile macular dystrophy (HJMD), and enabled the authors to establish a cause-effect relationship between loss of P-cadherin and suppression of the canonical Wnt signaling pathway and, upregulation of TGFβ2 during the development of the hair abnormalities observed in HJMD patients. PMID:22971919

  1. Molecular characterization, expression and methylation status analysis of BMP4 gene in skin tissue of Liaoning cashmere goat during hair follicle cycle.

    PubMed

    Bai, Wen L; Dang, Yun L; Wang, Jiao J; Yin, Rong H; Wang, Ze Y; Zhu, Yu B; Cong, Yu Y; Xue, Hui L; Deng, Liang; Guo, Dan; Wang, Shi Q; Yang, Shu H

    2016-08-01

    Bone morphogenetic protein 4 (BMP4) is a member of the bone morphogenetic protein family (BMPs). It is involved in the development and cycle of hair follicle, as well as, is thought to be a potential candidate gene for cashmere traits in goats. In the present study, we isolated and characterized a full-length open reading frame (ORF) of BMP4 cDNA from the skin tissue of Liaoning cashmere goat, and investigated the transcriptional pattern and methylation status of BMP4 gene in skin tissue of this breed during different stages of hair follicle cycle. The sequence analysis indicated that the isolated cDNA was 1264-bp in length containing a complete ORF of 1230-bp. It encoded a precursor peptide of 409 amino acids with a signal peptide of 19 amino acids. The structural analysis indicated that goat BMP4 contains typical TGF-β propeptide and TGF-β domains. In skin tissue, BMP4 is generally transcribed in an ascendant pattern from anagen to telogen. The methylation level of 5' flanking regulatory region of BMP4 gene might be involved in its mRNA expression in skin tissue: a higher BMP4 methylation level in skin coincides with a lower expression of BMP4 mRNA. These results from the present work provided a foundation for further insight into the functional and regulatory characteristics of BMP4 in the development and cycle of hair follicle in Liaoning Cashmere goat. PMID:27406581

  2. Molecular cloning and expression analysis of prostaglandin E receptor 2 gene in cashmere goat (Capra hircus) skin during hair follicle development.

    PubMed

    Geng, Rong-Qing; Yuan, Chao; Chen, Yu-Lin

    2014-04-01

    As a member of the four subtypes of receptors for prostaglandin E2 (PGE2), prostaglandin E receptor 2 (PTGER2) is in the family of G-protein coupled receptors and has been characterized to be involved in the development and growth of hair follicles. In this study, we cloned and characterized the full-length coding sequence (CDS) of PTGER2 gene from cashmere goat skin. The entire open reading frame (ORF) of PTGER2 gene was 1047 bp and encoded 348 amino acid residues. The deduced protein contained one G-protein coupled receptors family 1 signature, seven transmembrane domains, and other potential sites. Tissue expression analysis showed that PTGER2 gene was expressed strongly in the skin. The general expression tendency of PTGER2 gene at different hair follicle developmental stages in the skin was gradually decreased from anagen to catagen to telogen. After comparing with the expression of BMP4 gene and related reports, we further presume that it seems to have a relationship between the hair follicle cycle and the expression level of PTGER2 gene in cashmere goat skin. PMID:24555795

  3. Nanoparticle-based targeting of vaccine compounds to skin antigen-presenting cells by hair follicles and their transport in mice.

    PubMed

    Mahe, Brice; Vogt, Annika; Liard, Christelle; Duffy, Darragh; Abadie, Valérie; Bonduelle, Olivia; Boissonnas, Alexandre; Sterry, Wolfram; Verrier, Bernard; Blume-Peytavi, Ulrike; Combadiere, Behazine

    2009-05-01

    Particle-based drug delivery systems target active compounds to the hair follicle and may result in a better penetration and higher efficiency of compound uptake by skin resident cells. As previously proposed, such delivery systems could be important tools for vaccine delivery. In this study, we investigated the penetration of solid fluorescent 40 or 200 nm polystyrene nanoparticles (NPs) as well as virus particles in murine skin to further investigate the efficacy of transcutaneously (TC) applied particulate vaccine delivery route. We demonstrated that 40 and 200 nm NPs and modified vaccinia Ankara (MVA) expressing the green-fluorescent protein penetrated deeply into hair follicles and were internalized by perifollicular antigen-presenting cells (APCs). Fibered-based confocal microscopy analyses allowed visualizing in vivo particle penetration along the follicular duct, diffusion into the surrounding tissue, uptake by APCs and transport to the draining lymph nodes. The application of small particles, such as ovalbumin coding DNA or MVA, induced both humoral and cellular immune responses. Furthermore, TC applied MVA induced protection against vaccinia virus challenge. Our results strengthen the concept of TC targeting of cutaneous APCs by hair follicles and will contribute to the development of advanced vaccination protocols using NPs or viral vectors. PMID:19052565

  4. Proteomic Analysis of Hair Follicles

    NASA Astrophysics Data System (ADS)

    Ishioka, Noriaki; Terada, Masahiro; Yamada, Shin; Seki, Masaya; Takahashi, Rika; Majima, Hideyuki J.; Higashibata, Akira; Mukai, Chiaki

    2013-02-01

    Hair root cells actively divide in a hair follicle, and they sensitively reflect physical conditions. By analyzing the human hair, we can know stress levels on the human body and metabolic conditions caused by microgravity environment and cosmic radiation. The Japan Aerospace Exploration Agency (JAXA) has initiated a human research study to investigate the effects of long-term space flight on gene expression and mineral metabolism by analyzing hair samples of astronauts who stayed in the International Space Station (ISS) for 6 months. During long-term flights, the physiological effects on astronauts include muscle atrophy and bone calcium loss. Furthermore, radiation and psychological effects are important issue to consider. Therefore, an understanding of the effects of the space environment is important for developing countermeasures against the effects experienced by astronauts. In this experiment, we identify functionally important target proteins that integrate transcriptome, mineral metabolism and proteome profiles from human hair. To compare the protein expression data with the gene expression data from hair roots, we developed the protein processing method. We extracted the protein from five strands of hair using ISOGEN reagents. Then, these extracted proteins were analyzed by LC-MS/MS. These collected profiles will give us useful physiological information to examine the effect of space flight.

  5. Direct immunofluorescence on hair follicles--present and future perspectives.

    PubMed

    Alexandru, Adina; Zurac, Sabina; Salavastru, Carmen M; Andrei, Razvan; Tebeica, Tiberiu; Staniceanu, Florica; Tiplica, George S

    2013-06-01

    Direct immunofluorescence (DIF) is an important tool for evaluating bullous autoimmune and connective tissue disorders. We report 21 cases of pemphigus vulgaris, bullous pemphigoid and lupus erythematosus that were investigated by performing DIF on scalp hair follicles. The study was done using a simplified technique of preparing the hairs for DIF testing. The anagen hairs tested positive in pemphigus vulgaris patients while the telogen hairs were negative. In bullous pemphigoid and lupus erythematosus cases hair DIF presented negative results.Hair DIF has the potential of taking the place of skin or mucosal DIF in pemphigus patients if performed on anagen hair follicles. The technique used to perform hair DIF is important in obtaining reliable results and eliminating the possibility of generating false-negative testing. Larger studies are needed in order to validate this method. PMID:23689693

  6. CD34 EXPRESSION BY HAIR FOLLICLE STEM CELLS IS REQUIRED FOR SKIN TUMOR DEVELOPMENT IN MICE

    EPA Science Inventory

    We used knockout mice to show that a cell surface protein called CD34 is required for skin tumor formation in mice. Wild type mice treated with 7-12-Dimethylbenz(a)anthracene (DMBA) and a tumor promoter developed papillomas. When we treated CD34 knockout (KO) mice the same way, n...

  7. A highly enriched niche of precursor cells with neuronal and glial potential within the hair follicle dermal papilla of adult skin.

    PubMed

    Hunt, David P J; Morris, Paul N; Sterling, Jane; Anderson, Jane A; Joannides, Alexis; Jahoda, Colin; Compston, Alastair; Chandran, Siddharthan

    2008-01-01

    Skin-derived precursor cells (SKPs) are multipotent neural crest-related stem cells that grow as self-renewing spheres and are capable of generating neurons and myelinating glial cells. SKPs are of clinical interest because they are accessible and potentially autologous. However, although spheres can be readily isolated from embryonic and neonatal skin, SKP frequency falls away sharply in adulthood, and primary sphere generation from adult human skin is more problematic. In addition, the culture-initiating cell population is undefined and heterogeneous, limiting experimental studies addressing important aspects of these cells such as the behavior of endogenous precursors in vivo and the molecular mechanisms of neural generation. Using a combined fate-mapping and microdissection approach, we identified and characterized a highly enriched niche of neural crest-derived sphere-forming cells within the dermal papilla of the hair follicle of adult skin. We demonstrated that the dermal papilla of the rodent vibrissal follicle is 1,000-fold enriched for sphere-forming neural crest-derived cells compared with whole facial skin. These "papillaspheres" share a phenotypic and developmental profile similar to that of SKPs, can be readily expanded in vitro, and are able to generate both neuronal and glial cells in response to appropriate cues. We demonstrate that papillaspheres can be efficiently generated and expanded from adult human facial skin by microdissection of a single hair follicle. This strategy of targeting a highly enriched niche of sphere-forming cells provides a novel and efficient method for generating neuronal and glial cells from an accessible adult somatic source that is both defined and minimally invasive. PMID:17901404

  8. Hair Follicle Regeneration by Transplantation of a Bioengineered Hair Follicle Germ.

    PubMed

    Tezuka, Katsunari; Toyoshima, Koh-Ei; Tsuji, Takashi

    2016-01-01

    Hair follicle morphogenesis is first induced by epithelial-mesenchymal interactions in the developing embryo. In the hair follicle, various stem-cell populations are maintained in specialized niches to promote repetitive hair follicle-morphogenesis, which is observed in the variable lower region of the hair follicle as a postnatal hair cycle. In contrast, the genesis of most organs is induced only once during embryogenesis. We developed a novel bioengineering technique, the Organ Germ Method, that employs three-dimensional stem cell culture for regenerating various organs and reproducing embryonic organogenesis. In this chapter, we describe a protocol for hair follicle germ reconstitution using adult follicle-derived epithelial stem cells and dermal papilla cells with intracutaneous transplantation of the bioengineered hair-follicle organ germ. This protocol can be useful not only for the clinical study of hair regeneration but also for studies of stem cell biology and organogenesis. PMID:27431248

  9. Desmoglein 3 anchors telogen hair in the follicle.

    PubMed

    Koch, P J; Mahoney, M G; Cotsarelis, G; Rothenberger, K; Lavker, R M; Stanley, J R

    1998-09-01

    Little is known about the function of desmosomes in the normal structure and function of hair. Therefore, it was surprising that mice without desmoglein 3 (the autoantigen in pemphigus vulgaris) not only developed mucous membrane and skin lesions like pemphigus patients, but also developed hair loss. Analysis of this phenotype indicated that hair was normal through the first growth phase ('follicular neogenesis'). Around day 20, however, when the hair follicles entered the resting phase of the hair growth cycle (telogen), mice with a targeted disruption of the desmoglein 3 gene (DSG3-/-) lost hair in a wave-like pattern from the head to the tail. Hair then regrew and was lost again in the same pattern with the next synchronous hair cycle. In adults, hair was lost in patches. Gentle hair pulls with adhesive tape showed that anagen (growing) hairs were firmly anchored in DSG3-/- mice, but telogen hairs came out in clumps compared to that of DSG3+/- and +/+ littermates in which telogen hairs were firmly anchored. Histology of bald skin areas in DSG3-/- mice showed cystic telogen hair follicles without hair shafts. Histology of hair follicles in early telogen, just before clinical hair loss occurred, showed loss of cell adhesion (acantholysis) between the cells surrounding the telogen club and the basal layer of the outer root sheath epithelium. Electron microscopy revealed 'half-desmosomes' at the plasma membranes of acantholytic cells. Similar acantholytic histology and ultrastructural findings have been previously reported in skin and mucous membrane lesions of DSG3-/- mice and pemphigus vulgaris patients. Immunoperoxidase staining with an antibody raised against mouse desmoglein 3 showed intense staining on the cell surface of keratinocytes surrounding the telogen hair club in normal mice. Similar staining was seen in human telogen hair with an anti-human desmoglein 3 antibody. Finally, a scalp biopsy from a pemphigus vulgaris patient showed empty telogen hair

  10. A model system to analyse the ability of human keratinocytes to form hair follicles.

    PubMed

    Thangapazham, Rajesh L; Klover, Peter; Li, Shaowei; Wang, Ji-An; Sperling, Leonard; Darling, Thomas N

    2014-06-01

    Earlier studies showed that dermal cells lose trichogenic capacity with passage, but studies on the effect of keratinocyte passage on human hair follicle neogenesis and graft quality have been hampered by the lack of a suitable model system. We recently documented human hair follicle neogenesis in grafted dermal-epidermal composites, and in the present study, we determined the effects of keratinocyte passage on hair follicle neogenesis. Dermal equivalents were made with cultured human dermal papilla cells and were overlaid with either primary or passaged human keratinocytes to form dermal-epidermal composites; these were then grafted onto immunodeficient mice. Superior hair follicle neogenesis was observed using early keratinocyte cultures. Characteristics such as formation of hair shafts and sebaceous glands, presence of hair follicles with features of anagen or telogen follicles, and reproducible hair and skin function parameters make this model a tool to study human hair follicle neogenesis and development. PMID:24758480

  11. Stem cell dynamics in the hair follicle niche

    PubMed Central

    Rompolas, Panteleimon; Greco, Valentina

    2014-01-01

    Hair follicles are skin appendages of the mammalian skin that have the ability to periodically and stereotypically regenerate in order to continuously produce new hair over our lifetime. The ability of the hair follicle to regenerate is due to the presence of stem cells that along with other cell populations and non-cellular components, including molecular signals and extracellular material, make up a niche microenvironment. Mounting evidence suggests that the niche is critical for regulating stem cell behavior and thus the process of regeneration. Here we review the literature concerning past and current studies that have utilized mouse genetic models, combined with other approaches to dissect the molecular and cellular composition of the hair follicle niche. We also discuss our current understanding of how stem cells operate within the niche during the process of tissue regeneration and the factors that regulate their behavior. PMID:24361866

  12. Human hair follicle: reservoir function and selective targeting.

    PubMed

    Blume-Peytavi, U; Vogt, A

    2011-10-01

    Penetration of topically applied compounds may occur via the stratum corneum, skin appendages and hair follicles. The follicular infundibulum increases the surface area, disrupts the epidermal barrier towards the lower parts of the follicle, and serves as a reservoir. Topical delivery of active compounds to specific targets within the skin, especially to distinct hair follicle compartments or cell populations, may help to treat local inflammatory reactions selectively, with reduced systemic side-effects. Various in vitro and in vivo methods exist for studying the hair follicle structure and follicular penetration pathways. These include cyanoacrylate skin surface stripping, confocal microscopy and cyanoacrylate scalp follicle biopsy. The complex anatomical structure as well as the cyclical activity of the hair follicle must be taken into consideration when designing delivery systems. In addition, delivery into and retention inside the infundibular reservoir are controlled by, for example, molecule or particle size, their polarity and the type of preparation. Preferred penetration depth and storage time must also be considered. Particles with release mechanisms should be preferred; however, the release of drugs from nanoparticles still requires further investigations. PMID:21919898

  13. Hair Follicle Morphogenesis in the Treatment of Mouse Full-Thickness Skin Defects Using Composite Human Acellular Amniotic Membrane and Adipose Derived Mesenchymal Stem Cells.

    PubMed

    Minjuan, Wu; Jun, Xiong; Shiyun, Shao; Sha, Xu; Haitao, Ni; Yue, Wang; Kaihong, Ji

    2016-01-01

    Early repair of skin injury and maximal restoration of the function and appearance have become important targets of clinical treatment. In the present study, we observed the healing process of skin defects in nude mice and structural characteristics of the new skin after transplantation of isolated and cultured adipose derived mesenchymal stem cells (ADMSCs) onto the human acellular amniotic membrane (AAM). The result showed that ADMSCs were closely attached to the surface of AAM and grew well 24 h after seeding. Comparison of the wound healing rate at days 7, 14, and 28 after transplantation showed that ADMSCs seeded on AAM facilitated the healing of full-thickness skin wounds more effectively as compared with either hAM or AAM alone, indicating that ADMSCs participated in skin regeneration. More importantly, we noticed a phenomenon of hair follicle development during the process of skin repair. Composite ADMSCs and AAM not only promoted the healing of the mouse full-thickness defects but also facilitated generation of the appendages of the affected skin, thus promoting restoration of the skin function. Our results provide a new possible therapy idea for the treatment of skin wounds with respect to both anatomical regeneration and functional restoration. PMID:27597871

  14. Hair Follicle Morphogenesis in the Treatment of Mouse Full-Thickness Skin Defects Using Composite Human Acellular Amniotic Membrane and Adipose Derived Mesenchymal Stem Cells

    PubMed Central

    Minjuan, Wu; Jun, Xiong; Shiyun, Shao; Sha, Xu; Haitao, Ni

    2016-01-01

    Early repair of skin injury and maximal restoration of the function and appearance have become important targets of clinical treatment. In the present study, we observed the healing process of skin defects in nude mice and structural characteristics of the new skin after transplantation of isolated and cultured adipose derived mesenchymal stem cells (ADMSCs) onto the human acellular amniotic membrane (AAM). The result showed that ADMSCs were closely attached to the surface of AAM and grew well 24 h after seeding. Comparison of the wound healing rate at days 7, 14, and 28 after transplantation showed that ADMSCs seeded on AAM facilitated the healing of full-thickness skin wounds more effectively as compared with either hAM or AAM alone, indicating that ADMSCs participated in skin regeneration. More importantly, we noticed a phenomenon of hair follicle development during the process of skin repair. Composite ADMSCs and AAM not only promoted the healing of the mouse full-thickness defects but also facilitated generation of the appendages of the affected skin, thus promoting restoration of the skin function. Our results provide a new possible therapy idea for the treatment of skin wounds with respect to both anatomical regeneration and functional restoration. PMID:27597871

  15. Differential Expression of microRNAs and their Regulatory Networks in Skin Tissue of Liaoning Cashmere Goat during Hair Follicle Cycles.

    PubMed

    Bai, Wen L; Dang, Yun L; Yin, Rong H; Jiang, Wu Q; Wang, Ze Y; Zhu, Yu B; Wang, Shi Q; Zhao, Ying Y; Deng, Liang; Luo, Guang B; Yang, Shu H

    2016-01-01

    MicroRNAs (miRNAs) are endogenous small noncoding RNA molecules that negatively regulate gene expression. Herein, we investigated a selective number of miRNAs for their expression in skin tissue of Liaoning Cashmere goat during hair follicle cycles, and their intracellular regulatory networks were constructed based on bioinformatics analysis. The relative expression of six miRNAs (mir-103-3p, -15b-5p, 17-5p, -200b, -25-3p, and -30c-5p) at anagen phase is significantly higher than that at catagen and/or telogen phases. In comparison to anagen, the relative expression of seven miRNAs (mir-148a-3p, -199a-3p, -199a-5p, -24-3p, -30a-5p, -30e-5p, and -29a-3p) was revealed to be significantly up-regulated at catagen and/or telogen stages. The network analyses of miRNAs indicated those miRNAs investigated might be directly or indirectly involved in several signaling pathways through their target genes. These results provided a foundation for further insight into the roles of these miRNAs in skin tissue of Liaoning Cashmere goat during hair follicle cycles. PMID:26913551

  16. Cultured dermal papilla cells induce follicle formation and hair growth by transdifferentiation of an adult epidermis.

    PubMed

    Reynolds, A J; Jahoda, C A

    1992-06-01

    Adult rat pelage follicle dermal papilla cells induced follicle neogenesis and external hair growth when associated with adult footpad skin epidermis. They thus demonstrated a capacity to completely change the structural arrangement and gene expression of adult epidermis--an ability previously undocumented for cultured adult cells. Isolation chambers ensured that de novo follicle formation must have occurred by eliminating the possibility of cellular contributions, and/or inductive influences, from local skin follicles. These findings argue against previous suggestions of vibrissa follicle specificity, and imply that the potential for hair follicle induction may be common to all adult papilla cells. PMID:1425341

  17. Intravital imaging of hair follicle regeneration in the mouse.

    PubMed

    Pineda, Cristiana M; Park, Sangbum; Mesa, Kailin R; Wolfel, Markus; Gonzalez, David G; Haberman, Ann M; Rompolas, Panteleimon; Greco, Valentina

    2015-07-01

    Hair follicles are mammalian skin organs that periodically and stereotypically regenerate from a small pool of stem cells. Hence, hair follicles are a widely studied model for stem cell biology and regeneration. This protocol describes the use of two-photon laser-scanning microscopy (TPLSM) to study hair regeneration within a living, uninjured mouse. TPLSM provides advantages over conventional approaches, including enabling time-resolved imaging of single hair follicle stem cells. Thus, it is possible to capture behaviors including apoptosis, proliferation and migration, and to revisit the same cells for in vivo lineage tracing. In addition, a wide range of fluorescent reporter mouse lines facilitates TPLSM in the skin. This protocol also describes TPLSM laser ablation, which can spatiotemporally manipulate specific cellular populations of the hair follicle or microenvironment to test their regenerative contributions. The preparation time is variable depending on the goals of the experiment, but it generally takes 30-60 min. Imaging time is dependent on the goals of the experiment. Together, these components of TPLSM can be used to develop a comprehensive understanding of hair regeneration during homeostasis and injury. PMID:26110716

  18. Intravital imaging of hair follicle regeneration in the mouse

    PubMed Central

    Pineda, Cristiana M; Park, Sangbum; Mesa, Kailin R; Wolfel, Markus; Gonzalez, David G; Haberman, Ann M; Rompolas, Panteleimon; Greco, Valentina

    2015-01-01

    Hair follicles are mammalian skin organs that periodically and stereotypically regenerate from a small pool of stem cells. Hence, hair follicles are a widely studied model for stem cell biology and regeneration. This protocol describes the use of two-photon laser-scanning microscopy (TPLSM) to study hair regeneration within a living, uninjured mouse. TPLSM provides advantages over conventional approaches, including enabling time-resolved imaging of single hair follicle stem cells. Thus, it is possible to capture behaviors including apoptosis, proliferation and migration, and to revisit the same cells for in vivo lineage tracing. In addition, a wide range of fluorescent reporter mouse lines facilitates TPLSM in the skin. This protocol also describes TPLSM laser ablation, which can spatiotemporally manipulate specific cellular populations of the hair follicle or microenvironment to test their regenerative contributions. The preparation time is variable depending on the goals of the experiment, but it generally takes 30–60 min. Imaging time is dependent on the goals of the experiment. Together, these components of TPLSM can be used to develop a comprehensive understanding of hair regeneration during homeostasis and injury. PMID:26110716

  19. Isolation of Mouse Hair Follicle Bulge Stem Cells and Their Functional Analysis in a Reconstitution Assay.

    PubMed

    Zheng, Ying; Hsieh, Jen-Chih; Escandon, Julia; Cotsarelis, George

    2016-01-01

    The hair follicle (HF) is a dynamic structure readily accessible within the skin, and contains various pools of stem cells that have a broad regenerative potential during normal homeostasis and in response to injury. Recent discoveries demonstrating the multipotent capabilities of hair follicle stem cells and the easy access to skin tissue make the HF an attractive source for isolating stem cells and their subsequent application in tissue engineering and regenerative medicine. Here, we describe the isolation and purification of hair follicle bulge stem cells from mouse skin, and hair reconstitution assays that allows the functional analysis of multipotent stem cells. PMID:27431247

  20. Skin, Hair, and Nails

    MedlinePlus

    ... special types of cells: Melanocytes produce melanin, the pigment that gives skin its color. All people have ... the epidermis). Hair also contains a yellow-red pigment; people who have blonde or red hair have ...

  1. Hairy tale of signaling in hair follicle development and cycling

    PubMed Central

    Lee, Jayhun; Tumbar, Tudorita

    2012-01-01

    Hair follicle is an appendage from the vertebrate skin epithelium, and is critical for environmental sensing, animal appearance, and body heat maintenance. Hair follicles arise from the embryonic ectoderm and regenerate cyclically during adult life. Distinct morphological and functional stages from development through homeostasis have been extensively studied for the past decades to dissect the critical molecular mechanisms. Accumulating work suggests that different signaling cascades, such as Wnt, Bmp, Shh, and Notch, together with specific combinations of transcription factors are at work at different stages. Here we provide a comprehensive review of mouse genetics studies, which include lineage tracing along with knockout and over-expression of core genes from key signaling pathways, to paint an updated view of the molecular regulatory network that govern each stage of hair follicle development and adult cycling. PMID:22939761

  2. Activating Hair Follicle Stem Cells via R-spondin2 to Stimulate Hair Growth.

    PubMed

    Smith, Andrew A; Li, Jingtao; Liu, Bo; Hunter, Daniel; Pyles, Malcolm; Gillette, Martin; Dhamdhere, Girija R; Abo, Arie; Oro, Anthony; Helms, Jill A

    2016-08-01

    Wnt signaling is required for the development of the hair follicle, and for inciting the growth (anagen) phase of the hair cycle. Most strategies to enhance Wnt signaling for hair growth create a state of constitutive Wnt activation, which leads to neoplastic transformation of the epithelial hair matrix. Using Axin2(LacZ/+) and Axin2(Cre/+)R26R(mTmG/+) reporter mice and RNA analyses, we show that Wnt signaling is elevated during anagen, is reduced at the onset of catagen, and can be reamplified in the skin and surrounding hair follicles via intradermal injection of recombinant R-spondin2 protein. Using Lgr5(LacZ/+) reporter mice, we demonstrate that this amplified Wnt environment leads to activation of leucine-rich repeat-containing G-protein coupled receptor 5-positive stem cells in the hair follicle. The onset of catagen is repressed by R-spondin2 injection, and the anagen phase persists. As a consequence, hair shafts grow longer. We conclude that R-spondin2 treatment activates hair follicle stem cells and therefore may have therapeutic potential to promote hair growth. PMID:27109869

  3. Hair follicle targeting, penetration enhancement and Langerhans cell activation make cyanoacrylate skin surface stripping a promising delivery technique for transcutaneous immunization with large molecules and particle-based vaccines.

    PubMed

    Vogt, Annika; Hadam, Sabrina; Deckert, Iliane; Schmidt, Julia; Stroux, Andrea; Afraz, Zahra; Rancan, Fiorenza; Lademann, Jürgen; Combadiere, Behazine; Blume-Peytavi, Ulrike

    2015-01-01

    Transcutaneous immunization (TCI) requires targeting of a maximum number of skin antigen-presenting cells as non-invasive as possible on small skin areas. In two clinical trials, we introduced cyanoacrylate skin surface stripping (CSSS) as a safe method for TCI. Here, using ex vivo human skin, we demonstrate that one CSSS procedure removed only 30% of stratum corneum, but significantly increased the penetration of 200 nm polystyrene particles deep into vellus and intermediate hair follicles from where they could not been retrieved by conventional tape stripping. Two subsequent CSSS had no striking additional effect. CSSS increased particle penetration in superficial stratum corneum and induced Langerhans cell activation. Formulation in amphiphilic ointment or massage did not substantially influences the interfollicular penetration profiles. Hair follicle (HF) targeting by CSSS could become a highly effective tool for TCI when combined with carrier-based delivery and is gaining new attention as our understanding on the HF immune system increases. PMID:25382068

  4. CCN2 modulates hair follicle cycling in mice

    PubMed Central

    Liu, Shangxi; Leask, Andrew

    2013-01-01

    It is critical to understand how stem cell activity is regulated during regeneration. Hair follicles constitute an important model for organ regeneration because, throughout adult life, they undergo cyclical regeneration. Hair follicle stem cells—epithelial cells located in the follicle bulge—are activated by periodic β-catenin activity, which is regulated not only by epithelial-derived Wnt, but also, through as-yet-undefined mechanisms, the surrounding dermal microenvironment. The matricellular protein connective tissue growth factor (CCN2) is secreted into the microenvironment and acts as a multifunctional signaling modifier. In adult skin, CCN2 is largely absent but is unexpectedly restricted to the dermal papillae and outer root sheath. Deletion of CCN2 in dermal papillae and the outer root sheath results in a shortened telogen-phase length and elevated number of hair follicles. Recombinant CCN2 causes decreased β-catenin stability in keratinocytes. In vivo, loss of CCN2 results in elevated numbers of K15-positive epidermal stem cells that possess elevated β-catenin levels and β-catenin–dependent reporter gene expression. These results indicate that CCN2 expression by dermal papillae cells is a physiologically relevant suppressor of hair follicle formation by destabilization of β-catenin and suggest that CCN2 normally acts to maintain stem cell quiescence. PMID:24152728

  5. Combination of infrared thermography and reflectance spectroscopy for precise classification of hair follicle stage

    NASA Astrophysics Data System (ADS)

    Wang, Jianru; Guan, Yue; Liu, Caihua; Zhu, Dan

    2015-03-01

    Hair follicles enjoy continual cycle of anagen, catagen and telogen all life. They not only provide a unique opportunity to study the physiological mechanism of organ regeneration, but also benefit to guide the treatment of organ repair in regenerative medicine. Usually, the histological examination as a gold standard has been applied to determine the stage of hair follicle cycle, but noninvasive classification of hair cycle in vivo remains unsolved. In this study, the thermal infrared imager was applied to measure the temperature change of mouse dorsal skin with hair follicle cycle, and the change of diffuse reflectance was monitored by the optical fiber spectrometer. Histological examination was used to verify the hair follicle stages. The results indicated that the skin temperature increased at the beginning of anagen. After having stayed a high value for several days, the temperature began to decrease. At the same time, the skin diffuse reflectance decreased until the end of this period. Then the temperature increased gradually after slightly decreased when the hair follicle entered into catagen stage, and the diffuse reflectance increased at this time. In telogen, both the temperature and the diffuse reflectance went back to a steady state all the time. Sub-stages of hair follicle cycle could be distinguished based on the joint curves. This study provided a new method to noninvasively recognize the hair follicle stage, and should be valuable for the basic and therapeutic investigations on hair regeneration.

  6. Integrated Analysis of the Roles of Long Noncoding RNA and Coding RNA Expression in Sheep (Ovis aries) Skin during Initiation of Secondary Hair Follicle

    PubMed Central

    Liu, Jianbin; Guo, Jian; Feng, Ruilin; Niu, Chune; Sun, Xiaoping; Yang, Bohui

    2016-01-01

    Initiation of hair follicle (HF) is the first and most important stage of HF morphogenesis. However the precise molecular mechanism of initiation of hair follicle remains elusive. Meanwhile, in previous study, the more attentions had been paid to the function of genes, while the roles of non-coding RNAs (such as long noncoding RNA and microRNA) had not been described. Therefore, the roles of long noncoding RNA(LncRNA) and coding RNA in sheep skin during the initiation of sheep secondary HF were integrated and analyzed, by using strand-specific RNA sequencing (ssRNA-seq).A total of 192 significant differentially expressed genes were detected, including 67 up-regulated genes and 125 down-regulated genes between stage 0 and stage 1 of HF morphogenesis during HF initiation. Only Wnt2, FGF20 were just significant differentially expressed among Wnt, Shh, Notch and BMP signaling pathways. Further expression profile analysis of lncRNAs showed that 884 novel lncRNAs were discovered in sheep skin expression profiles. A total of 15 lncRNAs with significant differential expression were detected, 6 up-regulated and 9 down-regulated. Among of differentially expressed genes and LncRNA, XLOC002437 lncRNA and potential target gene COL6A6 were all significantly down-regulated in stage 1. Furthermore, by using RNAhybrid, XLOC005698 may be as a competing endogenous RNA ‘‘sponges” oar-miR-3955-5p activity. Gene Ontology and KEGG pathway analyses indicated that the significantly enriched pathway was peroxisome proliferator-activated receptors (PPARs) pathway (corrected P-value < 0.05), indicating that PPAR pathway is likely to play significant roles during the initiation of secondary HF.Results suggest that the key differentially expressed genes and LncRNAs may be considered as potential candidate genes for further study on the molecular mechanisms of HF initiation, as well as supplying some potential values for understanding human hair disorders. PMID:27276011

  7. A Guide to Studying Human Hair Follicle Cycling In Vivo.

    PubMed

    Oh, Ji Won; Kloepper, Jennifer; Langan, Ewan A; Kim, Yongsoo; Yeo, Joongyeub; Kim, Min Ji; Hsi, Tsai-Ching; Rose, Christian; Yoon, Ghil Suk; Lee, Seok-Jong; Seykora, John; Kim, Jung Chul; Sung, Young Kwan; Kim, Moonkyu; Paus, Ralf; Plikus, Maksim V

    2016-01-01

    Hair follicles (HFs) undergo lifelong cyclical transformations, progressing through stages of rapid growth (anagen), regression (catagen), and relative "quiescence" (telogen). Given that HF cycling abnormalities underlie many human hair growth disorders, the accurate classification of individual cycle stages within skin biopsies is clinically important and essential for hair research. For preclinical human hair research purposes, human scalp skin can be xenografted onto immunocompromised mice to study human HF cycling and manipulate long-lasting anagen in vivo. Although available for mice, a comprehensive guide on how to recognize different human hair cycle stages in vivo is lacking. In this article, we present such a guide, which uses objective, well-defined, and reproducible criteria, and integrates simple morphological indicators with advanced, (immuno)-histochemical markers. This guide also characterizes human HF cycling in xenografts and highlights the utility of this model for in vivo hair research. Detailed schematic drawings and representative micrographs provide examples of how best to identify human HF stages, even in suboptimally sectioned tissue, and practical recommendations are given for designing human-on-mouse hair cycle experiments. Thus, this guide seeks to offer a benchmark for human hair cycle stage classification, for both hair research experts and newcomers to the field. PMID:26763421

  8. A guide to studying human hair follicle cycling in vivo

    PubMed Central

    Oh, Ji Won; Kloepper, Jennifer; Langan, Ewan A.; Kim, Yongsoo; Yeo, Joongyeub; Kim, Min Ji; Hsi, Tsai-Ching; Rose, Christian; Yoon, Ghil Suk; Lee, Seok-Jong; Seykora, John; Kim, Jung Chul; Sung, Young Kwan

    2015-01-01

    Hair follicles (HFs) undergo life-long cyclical transformations, progressing through stages of rapid growth (anagen), regression (catagen), and relative “quiescence” (telogen). Since HF cycling abnormalities underlie many human hair growth disorders, the accurate classification of individual cycle stages within skin biopsies is clinically important and essential for hair research. For preclinical human hair research purposes, human scalp skin can be xenografted onto immunocompromised mice to study human HF cycling and manipulate long-lasting anagen in vivo. While available for mice, a comprehensive guide on how to recognize different human hair cycle stages in vivo is lacking. Here, we present such a guide, which uses objective, well-defined, and reproducible criteria and integrates simple morphological indicators with advanced, (immuno)-histochemical markers. This guide also characterizes human HF cycling in xenografts and highlights the utility of this model for in vivo hair research. Detailed schematic drawings and representative micrographs provide examples of how best to identify human HF stages, even in sub-optimally sectioned tissue, and practical recommendations are given for designing human-on-mouse hair cycle experiments. Thus, this guide seeks to offer a benchmark for human hair cycle stage classification, for both hair research experts and newcomers to the field. PMID:26763421

  9. Endogenous retinoids in the hair follicle and sebaceous gland.

    PubMed

    Everts, Helen B

    2012-01-01

    Vitamin A and its derivatives (retinoids) are critically important in the development and maintenance of multiple epithelial tissues, including skin, hair, and sebaceous glands, as shown by the detrimental effects of either vitamin A deficiency or toxicity. Thus, precise levels of retinoic acid (RA, active metabolite) are needed. These precise levels of RA are achieved by regulating several steps in the conversion of dietary vitamin A (retinol) to RA and RA catabolism. This review discusses the localization of RA synthesis to specific sites within the hair follicle and sebaceous gland, including their stem cells, during both homeostasis and disease states. It also discusses what is known about the specific roles of RA within the hair follicle and sebaceous gland. This article is part of a Special Issue entitled: Retinoid and Lipid Metabolism. PMID:21914489

  10. Morphogenesis of chimeric hair follicles in engineered skin substitutes with human keratinocytes and murine dermal papilla cells.

    PubMed

    Sriwiriyanont, Penkanok; Lynch, Kaari A; Maier, Elizabeth A; Hahn, Jennifer M; Supp, Dorothy M; Boyce, Steven T

    2012-10-01

    Engineered skin substitutes (ESS) have been used successfully to treat life-threatening burns, but lack cutaneous appendages. To address this deficiency, dermal constructs were prepared using collagen-glycosaminoglycan scaffolds populated with murine dermal papilla cells expressing green fluorescent protein (mDPC-GFP), human dermal papilla cells (hDPC) and/or human fibroblasts (hF). Subsequently, human epidermal keratinocytes (hK) or hK genetically modified to overexpress stabilized β-catenin (hK') were used to prepare ESS epithelium. After 10 days incubation at air-liquid interface, ESS were grafted to athymic mice and were evaluated for 6 weeks. Neofollicles were observed in ESS containing mDPC-GFP, but not hDPC or hF, independent of whether or not the hK were genetically modified. Based on detection of GFP fluorescence, mDPC were localized to the dermal papillae of the well-defined follicular structures of grafted ESS. In addition, statistically significant increases in LEF1, WNT10A and WNT10B were found in ESS with neofollicles. These results demonstrate a model for generation of chimeric hair in ESS. PMID:23078401

  11. Effects of Wnt-10b on hair shaft growth in hair follicle cultures

    SciTech Connect

    Ouji, Yukiteru . E-mail: oujix@naramed-u.ac.jp; Yoshikawa, Masahide; Moriya, Kei; Ishizaka, Shigeaki

    2007-08-03

    Wnts are deeply involved in the proliferation and differentiation of skin epithelial cells. We previously reported the differentiation of cultured primary skin epithelial cells toward hair shaft and inner root sheath (IRS) of the hair follicle via {beta}-catenin stabilization caused by Wnt-10b, however, the effects of Wnt-10b on cultured hair follicles have not been reported. In the present study, we examined the effects of Wnt-10b on shaft growth using organ cultures of whisker hair follicles in serum-free conditions. No hair shaft growth was observed in the absence of Wnt-10b, whereas its addition to the culture promoted elongation of the hair shaft, intensive incorporation of BrdU in matrix cells flanking the dermal papilla (DP), and {beta}-catenin stabilization in DP and IRS cells. These results suggest a promoting effect of Wnt-10b on hair shaft growth that is involved with stimulation of the DP via Wnt-10b/{beta}-catenin signalling, proliferation of matrix cells next to the DP, and differentiation of IRS cells by Wnt-10b.

  12. Effect of helium-neon laser irradiation on hair follicle growth cycle of Swiss albino mice.

    PubMed

    Shukla, S; Sahu, K; Verma, Y; Rao, K D; Dube, A; Gupta, P K

    2010-01-01

    We report the results of a study carried out to investigate the effect of helium-neon (He-Ne) laser (632.8 nm) irradiation on the hair follicle growth cycle of testosterone-treated and untreated mice. Both histology and optical coherence tomography (OCT) were used for the measurement of hair follicle length and the relative percentage of hair follicles in different growth phases. A positive correlation (R = 0.96) was observed for the lengths of hair follicles measured by both methods. Further, the ratios of the lengths of hair follicles in the anagen and catagen phases obtained by both methods were nearly the same. However, the length of the hair follicles measured by both methods differed by a factor of 1.6, with histology showing smaller lengths. He-Ne laser irradiation (at approximately 1 J/cm(2)) of the skin of both the control and the testosterone-treated mice was observed to lead to a significant increase (p < 0.05) in % anagen, indicating stimulation of hair growth. The study also demonstrates that OCT can be used to monitor the hair follicle growth cycle, and thus hair follicle disorders or treatment efficacy during alopecia. PMID:20016249

  13. Trps1 deficiency inhibits the morphogenesis of secondary hair follicles via decreased Noggin expression

    SciTech Connect

    Sun, Yujing; Nakanishi, Masako; Sato, Fuyuki; Oikawa, Kosuke; Muragaki, Yasuteru; Zhou, Gengyin

    2015-01-16

    Highlights: • The number of secondary hair follicles is reduced by half in Trps1 KO embryonic skin compared to wild-type skin. • Noggin expression is significantly decreased and BMP signaling is promoted in Trps1 KO embryonic skin. • Treatment with a Noggin or BMP inhibitor rescued the decreased number of hair follicles in Trps1 KO skin graft cultures. • Cell proliferation and apoptosis of the epidermis were normalized by Noggin treatment. - Abstract: A representative phenotype of patients with tricho-rhino-phalangeal syndrome (TRPS) is sparse hair. To understand the developmental defects of these patient’s hair follicles, we analyzed the development of hair follicles histologically and biochemically using Trps1 deficient (KO) mice. First, we compared the numbers of primary hair follicles in wild-type (WT) and KO embryos at different developmental stages. No differences were observed in the E14.5 skins of WT and KO mice. However, at later time points, KO fetal skin failed to properly develop secondary hair follicles, and the number of secondary hair follicles present in E18.5 KO skin was approximately half compared to that of WT skin. Sonic hedgehog expression was significantly decreased in E17.5 KO skin, whereas no changes were observed in Eda/Edar expression in E14.5 or E17.5 skins. In addition, Noggin expression was significantly decreased in E14.5 and E17.5 KO skin compared to WT skin. In parallel with the suppression of Noggin expression, BMP signaling was promoted in the epidermal cells of KO skins compared to WT skins as determined by immunohistochemistry for phosphorylated Smad1/5/8. The reduced number of secondary hair follicles was restored in skin graft cultures treated with a Noggin and BMP inhibitor. Furthermore, decreased cell proliferation, and increased apoptosis in KO skin was rescued by Noggin treatment. Taken together, we conclude that hair follicle development in Trps1 KO embryos is impaired directly or indirectly by decreased Noggin

  14. Hair follicles are viable after delayed FUE procedure.

    PubMed

    Mohebbipour Laran, Alireza; Mirmohammadi, Ramin; Rezaei Bana, Mohammadreza; Manoochehri, Shaghayegh

    2015-01-01

    Nowadays, male pattern hair loss is usually managed with hair transplant. However, maintaining the hair follicle viability between extraction and implantation period is a great concern which restricts the hair transplantation period. However, it is possible that the hair follicles can be preserved and be viable for few days. Here, we report a case with delayed follicular unit extraction in three consecutive days with acceptable hair growth after a 5-month follow-up. PMID:25968165

  15. Functionally distinct melanocyte populations revealed by reconstitution of hair follicles in mice.

    PubMed

    Aoki, Hitomi; Hara, Akira; Motohashi, Tsutomu; Osawa, Masatake; Kunisada, Takahiro

    2011-02-01

    Hair follicle reconstitution analysis was used to test the contribution of melanocytes or their precursors to regenerated hair follicles. In this study, we first confirmed the process of chimeric hair follicle regeneration by both hair keratinocytes and follicular melanocytes. Then, as first suggested from the differential growth requirements of epidermal skin melanocytes and non-cutaneous or dermal melanocytes, we confirmed the inability of the latter to be involved as follicular melanocytes to regenerate hair follicles during the hair reconstitution assay. This clear functional discrimination between non-cutaneous or dermal melanocytes and epidermal melanocytes suggests the presence of two different melanocyte cell lineages, a finding that might be important in the pathogenesis of melanocyte-related diseases and melanomas. PMID:21054816

  16. Mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling

    PubMed Central

    Sennett, Rachel; Rendl, Michael

    2012-01-01

    Embryonic hair follicle induction and formation are regulated by mesenchymal-epithelial interactions between specialized dermal cells and epidermal stem cells that switch to a hair fate. Similarly, during postnatal hair growth, communication between mesenchymal dermal papilla cells and surrounding epithelial matrix cells coordinates hair shaft production. Adult hair follicle regeneration in the hair cycle again is thought to be controlled by activating signals originating from the mesenchymal compartment and acting on hair follicle stem cells. Although many signaling pathways are implicated in hair follicle formation and growth, the precise nature, timing, and intersection of these inductive and regulatory signals remains elusive. The goal of this review is to summarize our current understanding and to discuss recent new insights into mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling. PMID:22960356

  17. Analysis of the penetration of a caffeine containing shampoo into the hair follicles by in vivo laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Lademann, J.; Richter, H.; Schanzer, S.; Klenk, A.; Sterry, W.; Patzelt, A.

    2010-02-01

    In previous in vitro investigations, it was demonstrated that caffeine is able to stimulate the hair growth. Therefore, a penetration of caffeine into the hair follicle is necessary. In the present study, in vivo laser scanning microscopy (LSM) was used to investigate the penetration and storage of a caffeine containing shampoo into the hair follicles. It was shown that a 2-min contact time of the shampoo with the skin was enough to accumulate significant parts of the shampoo in the hair follicles. A penetration of the shampoo up to a depth of approx. 200 μm could be detected, which represents the detection limit of the LSM. At this depth, the close network of the blood capillaries surrounding the hair follicles commences. Even after 24 h, the substance was still detectable in the hair follicles. This demonstrates the long-term reservoir function of the hair follicles for topically applied substances such as caffeine.

  18. Expression of decorin throughout the murine hair follicle cycle: hair cycle dependence and anagen phase prolongation.

    PubMed

    Jing, Jing; Wu, Xian-Jie; Li, Yun-Ling; Cai, Sui-Qing; Zheng, Min; Lu, Zhong-Fa

    2014-07-01

    Decorin is a prototypical member of the small leucine-rich proteoglycan (SLRP) family, which is involved in numerous biological processes. The role of decorin, as a representative SLRP, in hair follicle morphogenesis has not been elucidated. We present our initial findings on decorin expression patterns during induced murine hair follicle (HF) cycles. It was found that decorin expression is exclusively restricted to the epidermis, outer root sheath and sebaceous glands during the anagen phase, which correlates with the upregulation of decorin mRNA and protein expression in depilated murine dorsal skin. Furthermore, we used a functional approach to investigate the effects of recombinant human decorin (rhDecorin) via cutaneous injection into HFs at various murine hair cycle stages. The local injection of rhDecorin (100 μg/ml) into the hypodermis of depilated C57BL/6 mice at anagen delayed catagen progression. In contrast, rhDecorin injection during the telogen phase caused the premature onset of anagen, as demonstrated by the assessment of the following parameters: (i) hair shaft length, (ii) follicular bulbar diameter, (iii) hair follicle cycling score and (iv) follicular phase percentage. Taken together, our results suggest that decorin may modulate follicular cycling and morphogenesis. In addition, this study also provides insight into the molecular control mechanisms governing hair follicular epithelial-mesenchymal interactions. PMID:24816226

  19. [The life of human hair follicle revealed].

    PubMed

    Bernard, Bruno A

    2006-02-01

    The human hair follicle is a unique appendage which results from epithelio-mesenchymal interactions initiated around the 3rd month of development. This appendage has a very complex structure, with a dermal compartment and an epithelial compartment. The dermal compartment comprises the connective tissue sheath and the dermal papilla, both of which are irrigated by microvessels. The epithelial compartment is made of highly replicating matrix cells giving rise to three concentrical domains, namely the outer root sheath, the inner root sheath and the hair shaft. The pigmentation unit, responsible for hair color, is made of fully active melanocytes located on top of the dermal papilla. Altogether a hair follicle contains more than 20 different cell types, engaged in different differentiation pathways and/or interacting with each other. This complex appendage has a unique behavior in mammals since, after a hair production phase, it involutes in place before entering a resting phase after which it renews itself under a cyclical but stochastic way, out of a double reservoir of pluripotent stem cells able to also regenerate epidermis. For yet unknown reasons, this well ordered process can be disturbed, provoking alopecia. The pigmentation unit also renews itself under a cyclical way, out of a melanocyte progenitor reservoir which progressively declines with time, provoking the hair whitening process. Finally, the shape of the hair shaft is programmed from the bulb. What makes this appendage unique and fascinating is its high degree of autonomy, its incredibly complex though stable structure, the number of different cell types interacting under an equilibrated way and its potential of regeneration. It represents a true paradigm of tissue homeostasis, exemplifying in a small living cylinder all the fundamental laws of cell-cell and tissue interactions. This life is revealed in this short synthesis. PMID:16457752

  20. Hybrid eccrine gland and hair follicle hamartoma: a new entity of adnexal nevus.

    PubMed

    Luo, Di-Qing; Huang, Chang-Zheng; Xie, Wen-Lin; Xu, Feng-Feng; Mo, Li-Qiu

    2015-02-01

    Eccrine nevus shows increase in number or size of eccrine glands, whereas hair follicle nevus is composed of densely packed normal vellus hairs, and eccrine-pilar angiomatous nevus reveals increase of eccrine, pilar, and angiomatous structures. No case with increased number of both eccrine glands and hair follicles only in the dermis has been previously reported. A 10-month-old girl presented with cutaneous hamartoma with overlying skin hyperpigmentation on her left hypochondrium since 3 months of age, in whom the lesion was completely excised. Histopathology demonstrated evidently increased number of both eccrine glands and hair follicles in the dermis with reactive hyperplasia of collagen fibers. No recurrence occurred after the tumor was completely excised. A term "hybrid eccrine gland and hair follicle hamartoma" is proposed for this unique lesion. PMID:24335519

  1. The role of a reaction-diffusion system in the initiation of primary hair follicles.

    PubMed

    Nagorcka, B N; Mooney, J R

    1985-05-21

    A mechanism based on a reaction-diffusion system is proposed for the initiation of hair follicles in the epidermis during fetal development. It is demonstrated that initiation of primary follicles in a series of waves, within the proposed mechanism, is a consequence of the size and shape dependent properties of the reaction-diffusion system without the need for the propagation of signals through the skin. The observed trio grouping of follicles and variation of primary follicle density per unit skin area during development are also correctly predicted. An explanation, based on the reaction-diffusion system and the variation of its characteristic spatial wavelength with time during development, is suggested for the termination of both primary and secondary follicle initiation as well as follicle neogenesis. The proposed initiation mechanism is basically the same as that used to explain various spatial patterns observed in hair fibre formation (Nagorcka & Mooney, 1982). PMID:4033155

  2. Promoted growth of murine hair follicles through controlled release of vascular endothelial growth factor.

    PubMed

    Ozeki, Makoto; Tabata, Yasuhiko

    2002-06-01

    The objective of this study is to investigate whether or not the controlled release of vascular endothelial growth factor (VEGF) is effective in promoting the hair follicle growth of mice in second anagen of hair cycle. VEGF was incorporated into a biodegradable collagen hydrogel for its controlled release. Following implantation of the collagen hydrogel incorporating 0 or 2 microg of VEGF and injection of 0 or 2 microg of VEGF in the solution form into the back subcutis of mice, the hair follicle growth was evaluated photometrically and histologically in terms of the skin color of reverse side of the implanted or injected site, the skin thickness, and the area occupied by hair follicle tissue. Ten days later, the skin color of mice implanted with the collagen hydrogel incorporating 2 microg of VEGF was significantly darker than that injected with 2 pg of VEGF. The collagen hydrogel incorporating VEGF increased the hair follicle area at the implanted site to a significantly greater extent than other agents while significant angiogenetic effect in the skin tissue was observed. VEGF-free, empty collagen hydrogels did not affect the skin darkness, hair follicle growth, and the angiogenesis. Moreover, the hair shaft length was significantly elongated by the collagen hydrogel incorporating VEGF, in marked contrast to other agents. Immunohistolchemicalstaining with proliferating cell nuclear antigen revealed that the collagen hydrogel incorporating VEGF promoted the proliferation of cells around the hair follicle more frequently than free VEGF. We concluded that the controlled release of VEGF more positively acted on the hair growth cycle of mice for hair growth than the injection of free VEGF. PMID:12013184

  3. Characterization and quantification of wound-induced hair follicle neogenesis using in vivo confocal scanning laser microscopy

    PubMed Central

    Fan, Chengxiang; Luedtke, Michael A.; Prouty, Stephen M.; Burrows, Michelle; Kollias, Nikiforos

    2011-01-01

    Background In vivo confocal scanning laser microscopy (CSLM) is a recently-developed non-invasive technique for visualizing microscopic structures with the skin. CSLM has been used to characterize proliferative and inflammatory skin diseases, neoplastic skin lesions and pigmented lesions. Objective Here, we assessed the ability of CSLM to evaluate the formation of neogenic hair follicles after a full thickness wound in mice. Methods Full-thickness wounds were made on the dorsal skin of 3-week old mice. After scab detachment (SD), the number, width, length, space and volume of neogenic hair follicles were analyzed using CSLM. The results were compared with those from conventional methods, including staining for alkaline phosphatase (AP) and keratin 17 (K17) as well as histology. Results Quantification of neogenic hair follicles using CSLM compared favorably with results from direct measurements on isolated epidermal tissue after immunostaining for K17, a marker for the epithelial portion of new hair follicles. CSLM detected 89% of K17-stained follicles. CSLM more accurately quantitated the number of new follicles compared to AP staining, which detects the dermal portion of the new follicle. The width and length measurement from CSLM and histology were very close and correlated with each other. The minimum length of a neogenic hair follicle that could be detected by CSLM was 21 μm. The space between neogenic hair follicles was decreased in histological sections compared to CSLM. Conclusions CSLM is an accurate and valuable method for counting and measuring neogenic hair follicles non-invasively. CSLM produces images similar to histology in mice. Measurements of microstructures using CSLM more accurately reflect actual sizes since this technique avoids fixation artifact. In vivo visualization of developing follicles with CSLM permits detection of serial changes in hair follicle formation, thus conserving numbers of mice required for studies and improving detection of

  4. Epidermal Wnt controls hair follicle induction by orchestrating dynamic signaling crosstalk between the epidermis and dermis.

    PubMed

    Fu, Jiang; Hsu, Wei

    2013-04-01

    A signal first arising in the dermis to initiate the development of hair follicles has been described for many decades. Wnt is the earliest signal known to be intimately involved in hair follicle induction. However, it is not clear whether the inductive signal of Wnt arises intradermally or intraepidermally. Whether Wnt acts as the first dermal signal to initiate hair follicle development also remains unclear. Here we report that Wnt production mediated by Gpr177, the mouse Wls ortholog, is essential for hair follicle induction. Gpr177, encoding a multipass transmembrane protein, regulates Wnt sorting and secretion. Cell type-specific abrogation of the signal reveals that only epidermal, but not dermal, production of Wnt is required. An intraepidermal Wnt signal is necessary and sufficient for hair follicle initiation. However, the subsequent development depends on reciprocal signaling crosstalk of epidermal and dermal cells. Wnt signals within the epidermis and dermis and crossing between the epidermis and dermis have distinct roles and specific functions in skin development. This study not only defines the cell type responsible for Wnt production, but also reveals a highly dynamic regulation of Wnt signaling at different steps of hair follicle morphogenesis. Our findings uncover a mechanism underlying hair follicle development orchestrated by the Wnt pathway. PMID:23190887

  5. Runx1 modulates developmental, but not injury-driven, hair follicle stem cell activation.

    PubMed

    Osorio, Karen M; Lee, Song Eun; McDermitt, David J; Waghmare, Sanjeev K; Zhang, Ying V; Woo, Hyun Nyun; Tumbar, Tudorita

    2008-03-01

    Aml1/Runx1 controls developmental aspects of several tissues, is a master regulator of blood stem cells, and plays a role in leukemia. However, it is unclear whether it functions in tissue stem cells other than blood. Here, we have investigated the role of Runx1 in mouse hair follicle stem cells by conditional ablation in epithelial cells. Runx1 disruption affects hair follicle stem cell activation, but not their maintenance, proliferation or differentiation potential. Adult mutant mice exhibit impaired de novo production of hair shafts and all temporary hair cell lineages, owing to a prolonged quiescent phase of the first hair cycle. The lag of stem cell activity is reversed by skin injury. Our work suggests a degree of functional overlap in Runx1 regulation of blood and hair follicle stem cells at an equivalent time point in the development of these two tissues. PMID:18256199

  6. Culture and characterization of rat hair follicle stem cells.

    PubMed

    Quan, Renfu; Zheng, Xuan; Ni, Yueming; Xie, Shangju; Li, Changming

    2016-08-01

    The purpose of this study was to establish methods for isolation, culture, expansion, and characterization of rat hair follicle stem cells (rHFSCs). Hair follicles were harvested from 1-week-old Sprague-Dawley rats and digested with dispase and collagenase IV. The bulge of the hair follicle was dissected under a microscope and cultured in Dulbecco's modified Eagle's medium/F12 supplemented with KnockOut™ Serum Replacement serum substitute, penicillin-streptomycin, L-glutamine, non-essential amino acids, epidermal growth factor, basic fibroblast growth factor, polyhydric alcohol, and hydrocortisone. The rHFSCs were purified using adhesion to collagen IV. Cells were characterized by detecting marker genes with immunofluorescent staining and real-time polymerase chain reaction (PCR). The proliferation and vitality of rHFSCs at different passages were evaluated. The cultured rHFSCs showed typical cobblestone morphology with good adhesion and colony-forming ability. Expression of keratin 15, integrin α6, and integrin β1 were shown by immunocytochemistry staining. On day 1-2, the cells were in the latent phase. On day 5-6, the cells were in the logarithmic phase. Cell vitality gradually decreased from the 7th passage. Real-time PCR showed that the purified rHFSCs had good vitality and proliferative capacity and contained no keratinocytes. Highly purified rHFSCs can be obtained using tissue culture and adhesion to collagen IV. The cultured cells had good proliferative capacity and could therefore be a useful cell source for tissue-engineered hair follicles, vessels, and skin. PMID:25407732

  7. Cutaneous retinoic acid levels determine hair follicle development and downgrowth.

    PubMed

    Okano, Junko; Levy, Clara; Lichti, Ulrike; Sun, Hong-Wei; Yuspa, Stuart H; Sakai, Yasuo; Morasso, Maria I

    2012-11-16

    Retinoic acid (RA) is essential during embryogenesis and for tissue homeostasis, whereas excess RA is well known as a teratogen. In humans, excess RA is associated with hair loss. In the present study, we demonstrate that specific levels of RA, regulated by Cyp26b1, one of the RA-degrading enzymes, are required for hair follicle (hf) morphogenesis. Mice with embryonic ablation of Cyp26b1 (Cyp26b1(-/-)) have excessive endogenous RA, resulting in arrest of hf growth at the hair germ stage. The altered hf development is rescued by grafting the mutant skin on immunodeficient mice. Our results show that normalization of RA levels is associated with reinitiation of hf development. Conditional deficiency of Cyp26b1 in the dermis (En1Cre;Cyp26b1f/-) results in decreased hair follicle density and specific effect on hair type, indicating that RA levels also influence regulators of hair bending. Our results support the model of RA-dependent dermal signals regulating hf downgrowth and bending. To elucidate target gene pathways of RA, we performed microarray and RNA-Seq profiling of genes differentially expressed in Cyp26b1(-/-) skin and En1Cre;Cyp26b1f/- tissues. We show specific effects on the Wnt-catenin pathway and on members of the Runx, Fox, and Sox transcription factor families, indicating that RA modulates pathways and factors implicated in hf downgrowth and bending. Our results establish that proper RA distribution is essential for morphogenesis, development, and differentiation of hfs. PMID:23007396

  8. Cutaneous Retinoic Acid Levels Determine Hair Follicle Development and Downgrowth*

    PubMed Central

    Okano, Junko; Levy, Clara; Lichti, Ulrike; Sun, Hong-Wei; Yuspa, Stuart H.; Sakai, Yasuo; Morasso, Maria I.

    2012-01-01

    Retinoic acid (RA) is essential during embryogenesis and for tissue homeostasis, whereas excess RA is well known as a teratogen. In humans, excess RA is associated with hair loss. In the present study, we demonstrate that specific levels of RA, regulated by Cyp26b1, one of the RA-degrading enzymes, are required for hair follicle (hf) morphogenesis. Mice with embryonic ablation of Cyp26b1 (Cyp26b1−/−) have excessive endogenous RA, resulting in arrest of hf growth at the hair germ stage. The altered hf development is rescued by grafting the mutant skin on immunodeficient mice. Our results show that normalization of RA levels is associated with reinitiation of hf development. Conditional deficiency of Cyp26b1 in the dermis (En1Cre;Cyp26b1f/−) results in decreased hair follicle density and specific effect on hair type, indicating that RA levels also influence regulators of hair bending. Our results support the model of RA-dependent dermal signals regulating hf downgrowth and bending. To elucidate target gene pathways of RA, we performed microarray and RNA-Seq profiling of genes differentially expressed in Cyp26b1−/− skin and En1Cre;Cyp26b1f/− tissues. We show specific effects on the Wnt-catenin pathway and on members of the Runx, Fox, and Sox transcription factor families, indicating that RA modulates pathways and factors implicated in hf downgrowth and bending. Our results establish that proper RA distribution is essential for morphogenesis, development, and differentiation of hfs. PMID:23007396

  9. Triggering of drug release of particles in hair follicles.

    PubMed

    Mak, Wing Cheung; Patzelt, Alexa; Richter, Heike; Renneberg, Reinhardt; Lai, Kwok Kei; Rühl, Eckart; Sterry, Wolfram; Lademann, Jürgen

    2012-06-28

    Particulate drug delivery via hair follicles represents a promising concept, although requirements are high. This process must be realized at the desired depth and at the appropriate time, due to the fact that the particles themselves are not able to overcome the follicular skin barrier. In the present study, a novel triggering concept for the release of a model drug from the delivering particles is presented based on the application of two different particle types of the same size, where one particle type is the drug carrier, and the second one is loaded with a protease. The latter particle type is supposed to interact with the drug-carrying particles to trigger the drug release. A mixture of both particles was applied onto porcine skin samples, followed by follicular analysis. As a control, the particles were applied unaided without protease, whereas one skin area remained untreated. The investigations revealed that the protease was able to release the model drug from the delivering particles in significant depths within the hair follicle (866±62nm). Additionally, an uptake of the model drug in the sebaceous gland was observed after release providing a promising novel approach for the development of treatment strategies for different skin diseases. PMID:22516090

  10. An Essential Role for Dermal Primary Cilia in Hair Follicle Morphogenesis

    PubMed Central

    Lehman, Jonathan; Laag, Essam; Michaud, Edward J.; Yoder, Bradley K.

    2009-01-01

    The primary cilium is a microtubule-based organelle implicated as an essential component of a number of signaling pathways. It is present on cells throughout the mammalian body; however, its functions in most tissues remain largely unknown. Herein we demonstrate that primary cilia are present on cells in murine skin and hair follicles throughout morphogenesis and during hair follicle cycling in postnatal life. Using the Cre-lox system, we disrupted cilia assembly in the ventral dermis and evaluated the effects on hair follicle development. Mice with disrupted dermal cilia have severe hypotrichosis (lack of hair) in affected areas. Histological analyses reveal that most follicles in the mutants arrest at stage 2 of hair development and have small or absent dermal condensates. This phenotype is reminiscent of that seen in the skin of mice lacking Shh or Gli2. In situ hybridization and quantitative RT-PCR analysis indicates that the hedgehog pathway is downregulated in the dermis of the cilia mutant hair follicles. Thus, these data establish cilia as a critical signaling component required for normal hair morphogenesis and suggest that this organelle is needed on cells in the dermis for reception of signals such as sonic hedgehog. PMID:18987668

  11. Extensive Hair Shaft Growth after Mouse Whisker Follicle Isolation, Cryopreservation and Transplantation in Nude Mice.

    PubMed

    Cao, Wenluo; Li, Lingna; Tran, Benjamin; Kajiura, Satoshi; Amoh, Yasuyuki; Liu, Fang; Hoffman, Robert M

    2015-01-01

    We previously demonstrated that whole hair follicles could be cryopreserved to maintain their stem-cells differentation potential. In the present study, we demonstrated that cryopreserved mouse whisker hair follicles maintain their hair growth potential. DMSO better cryopreserved mouse whisker follicles compared to glycerol. Cryopreserved hair follicles also maintained the hair follicle-associated-pluripotent (HAP) stem cells, evidenced by P75NTR expression. Subcutaneous transplantation of DMSO-cryopreserved hair follicles in nude mice resulted in extensive hair fiber growth over 8 weeks, indicating the functional recovery of hair shaft growth of cryopreserved hair follicles. PMID:26716690

  12. Secrets of the Hair Follicle: Now on Your iPhone.

    PubMed

    Millar, Sarah E

    2015-09-14

    Skin development requires communication between epithelial and mesenchymal cells, melanocytes, and neurons. In this issue of Developmental Cell, Sennett et al. (2015) shed new light on these mechanisms by simultaneously profiling multiple different cell types in embryonic mouse skin at the onset of hair follicle formation. PMID:26374762

  13. Fgf9 from dermal γδ T cells induces hair follicle neogenesis after wounding.

    PubMed

    Gay, Denise; Kwon, Ohsang; Zhang, Zhikun; Spata, Michelle; Plikus, Maksim V; Holler, Phillip D; Ito, Mayumi; Yang, Zaixin; Treffeisen, Elsa; Kim, Chang D; Nace, Arben; Zhang, Xiaohong; Baratono, Sheena; Wang, Fen; Ornitz, David M; Millar, Sarah E; Cotsarelis, George

    2013-07-01

    Understanding molecular mechanisms for regeneration of hair follicles provides new opportunities for developing treatments for hair loss and other skin disorders. Here we show that fibroblast growth factor 9 (Fgf9), initially secreted by γδ T cells, modulates hair follicle regeneration after wounding the skin of adult mice. Reducing Fgf9 expression decreases this wound-induced hair neogenesis (WIHN). Conversely, overexpression of Fgf9 results in a two- to threefold increase in the number of neogenic hair follicles. We found that Fgf9 from γδ T cells triggers Wnt expression and subsequent Wnt activation in wound fibroblasts. Through a unique feedback mechanism, activated fibroblasts then express Fgf9, thus amplifying Wnt activity throughout the wound dermis during a crucial phase of skin regeneration. Notably, humans lack a robust population of resident dermal γδ T cells, potentially explaining their inability to regenerate hair after wounding. These findings highlight the essential relationship between the immune system and tissue regeneration. The importance of Fgf9 in hair follicle regeneration suggests that it could be used therapeutically in humans. PMID:23727932

  14. Fgf9 from dermal γδ T cells induces hair follicle neogenesis after wounding

    PubMed Central

    Gay, Denise; Kwon, Ohsang; Zhang, Zhikun; Spata, Michelle; Plikus, Maksim V; Holler, Phillip D; Ito, Mayumi; Yang, Zaixin; Treffeisen, Elsa; Kim, Chang D; Nace, Arben; Zhang, Xiaohong; Baratono, Sheena; Wang, Fen; Ornitz, David M; Millar, Sarah E; Cotsarelis, George

    2014-01-01

    Understanding molecular mechanisms for regeneration of hair follicles provides new opportunities for developing treatments for hair loss and other skin disorders. Here we show that fibroblast growth factor 9 (Fgf9), initially secreted by γδ T cells, modulates hair follicle regeneration after wounding the skin of adult mice. Reducing Fgf9 expression decreases this wound-induced hair neogenesis (WIHN). Conversely, overexpression of Fgf9 results in a two- to threefold increase in the number of neogenic hair follicles. We found that Fgf9 from γδ T cells triggers Wnt expression and subsequent Wnt activation in wound fibroblasts. Through a unique feedback mechanism, activated fibroblasts then express Fgf9, thus amplifying Wnt activity throughout the wound dermis during a crucial phase of skin regeneration. Notably, humans lack a robust population of resident dermal γδ T cells, potentially explaining their inability to regenerate hair after wounding. These findings highlight the essential relationship between the immune system and tissue regeneration. The importance of Fgf9 in hair follicle regeneration suggests that it could be used therapeutically in humans. PMID:23727932

  15. Genetically null mice reveal a central role for epidermal growth factor receptor in the differentiation of the hair follicle and normal hair development.

    PubMed Central

    Hansen, L. A.; Alexander, N.; Hogan, M. E.; Sundberg, J. P.; Dlugosz, A.; Threadgill, D. W.; Magnuson, T.; Yuspa, S. H.

    1997-01-01

    Mice harboring a targeted disruption of the epidermal growth factor receptor (EGFR) allele exhibit a severely disorganized hair follicle phenotype, fuzzy coat, and systemic disease resulting in death before 3 weeks. This skin phenotype was reproduced in whole skin grafts and in grafts of EGFR null hair follicle buds onto nude mice, providing a model to evaluate the natural evolution of skin lacking the EGFR. Hair follicles in grafts of null skin did not progress from anagen to telogen and scanning electron micrografts revealed wavy, flattened hair fibers with cuticular abnormalities. Many of the EGFR null hair follicles in the grafted skin were consumed by an inflammatory reaction resulting in complete hair loss in 67% of the grafts by 10 weeks. Localization of follicular differentiation markers including keratin 6, transglutaminase, and the hair keratins mHa2 and hacl-1 revealed a pattern of premature differentiation within the null hair follicles. In intact EGFR null mice, proliferation in the interfollicular epidermis, but not hair follicles, was greatly decreased in the absence of EGFR. In contrast, grafting of EGFR null skin resulted in a hyperplastic response in the epidermis that did not resolve even after 10 weeks, although the wound-induced hyperplasia in EGFR wild-type grafts had resolved within 3 to 4 weeks. Thus, epithelial expression of the EGFR has complex functions in the skin. It is important in delaying follicular differentiation, may serve to protect the hair follicle from immunological reactions, and modifies both normal and wound-induced epidermal proliferation but seems dispensable for follicular proliferation. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:9176390

  16. Macrophages contribute to the cyclic activation of adult hair follicle stem cells.

    PubMed

    Castellana, Donatello; Paus, Ralf; Perez-Moreno, Mirna

    2014-12-01

    Skin epithelial stem cells operate within a complex signaling milieu that orchestrates their lifetime regenerative properties. The question of whether and how immune cells impact on these stem cells within their niche is not well understood. Here we show that skin-resident macrophages decrease in number because of apoptosis before the onset of epithelial hair follicle stem cell activation during the murine hair cycle. This process is linked to distinct gene expression, including Wnt transcription. Interestingly, by mimicking this event through the selective induction of macrophage apoptosis in early telogen, we identify a novel involvement of macrophages in stem cell activation in vivo. Importantly, the macrophage-specific pharmacological inhibition of Wnt production delays hair follicle growth. Thus, perifollicular macrophages contribute to the activation of skin epithelial stem cells as a novel, additional cue that regulates their regenerative activity. This finding may have translational implications for skin repair, inflammatory skin diseases and cancer. PMID:25536657

  17. Macrophages Contribute to the Cyclic Activation of Adult Hair Follicle Stem Cells

    PubMed Central

    Castellana, Donatello; Paus, Ralf; Perez-Moreno, Mirna

    2014-01-01

    Skin epithelial stem cells operate within a complex signaling milieu that orchestrates their lifetime regenerative properties. The question of whether and how immune cells impact on these stem cells within their niche is not well understood. Here we show that skin-resident macrophages decrease in number because of apoptosis before the onset of epithelial hair follicle stem cell activation during the murine hair cycle. This process is linked to distinct gene expression, including Wnt transcription. Interestingly, by mimicking this event through the selective induction of macrophage apoptosis in early telogen, we identify a novel involvement of macrophages in stem cell activation in vivo. Importantly, the macrophage-specific pharmacological inhibition of Wnt production delays hair follicle growth. Thus, perifollicular macrophages contribute to the activation of skin epithelial stem cells as a novel, additional cue that regulates their regenerative activity. This finding may have translational implications for skin repair, inflammatory skin diseases and cancer. PMID:25536657

  18. Decoction and Fermentation of Selected Medicinal Herbs Promote Hair Regrowth by Inducing Hair Follicle Growth in Conjunction with Wnts Signaling.

    PubMed

    Jang, Su Kil; Kim, Seung Tae; Lee, Do Ik; Park, Jun Sub; Jo, Bo Ram; Park, Jung Youl; Heo, Jong; Joo, Seong Soo

    2016-01-01

    It is well recognized that regulating the hair follicle cycle in association with Wnt signaling is one of the most interesting targets for promoting hair regrowth. In this study, we examined whether selected herbal medicines processed by decoction and fermentation promote hair growth by upregulating the number and size of hair follicles and Wnt signaling, including activation of β-catenin and Akt in telogen-synchronized C57BL/6N mice. The results revealed that the fermented extract after decoction (FDE) more effectively promoted hair growth than that of a nonfermented extract (DE). Notably, FDE effectively enhanced formation of hair follicles with clearer differentiation between the inner and outer root sheath, which is observed during the anagen phase. Mechanistic evidence was found for increased β-catenin and Akt phosphorylation levels in dorsal skin tissue along with elevated expression of hair regrowth-related genes, such as Wnt3/10a/10b, Lef1, and fibroblast growth factor 7. In conclusion, our findings suggest that FDE plays an important role in regulating the hair cycle by increasing expression of hair regrowth-related genes and activating downstream Wnt signaling targets. PMID:27110266

  19. Decoction and Fermentation of Selected Medicinal Herbs Promote Hair Regrowth by Inducing Hair Follicle Growth in Conjunction with Wnts Signaling

    PubMed Central

    Jang, Su Kil; Kim, Seung Tae; Lee, Do Ik; Park, Jun Sub; Jo, Bo Ram; Park, Jung Youl; Heo, Jong; Joo, Seong Soo

    2016-01-01

    It is well recognized that regulating the hair follicle cycle in association with Wnt signaling is one of the most interesting targets for promoting hair regrowth. In this study, we examined whether selected herbal medicines processed by decoction and fermentation promote hair growth by upregulating the number and size of hair follicles and Wnt signaling, including activation of β-catenin and Akt in telogen-synchronized C57BL/6N mice. The results revealed that the fermented extract after decoction (FDE) more effectively promoted hair growth than that of a nonfermented extract (DE). Notably, FDE effectively enhanced formation of hair follicles with clearer differentiation between the inner and outer root sheath, which is observed during the anagen phase. Mechanistic evidence was found for increased β-catenin and Akt phosphorylation levels in dorsal skin tissue along with elevated expression of hair regrowth-related genes, such as Wnt3/10a/10b, Lef1, and fibroblast growth factor 7. In conclusion, our findings suggest that FDE plays an important role in regulating the hair cycle by increasing expression of hair regrowth-related genes and activating downstream Wnt signaling targets. PMID:27110266

  20. De novo formation and ultra-structural characterization of a fiber-producing human hair follicle equivalent in vitro.

    PubMed

    Lindner, Gerd; Horland, Reyk; Wagner, Ilka; Ataç, Beren; Lauster, Roland

    2011-03-20

    Across many tissues and organs, the ability to create an organoid, the smallest functional unit of an organ, in vitro is the key both to tissue engineering and preclinical testing regimes. The hair follicle is an organoid that has been much studied based on its ability to grow quickly and to regenerate after trauma. But hair follicle formation in vitro has been elusive. Replacing hair lost due to pattern baldness or more severe alopecia, including that induced by chemotherapy, remains a significant unmet medical need. By carefully analyzing and recapitulating the growth conditions of hair follicle formation, we recreated human hair follicles in tissue culture that were capable of producing hair. Our microfollicles contained all relevant cell types and their structure and orientation resembled in some ways excised hair follicle specimens from human skin. This finding offers a new window onto hair follicle development. Having a robust culture system for hair follicles is an important step towards improved hair regeneration as well as to an understanding of how marketed drugs or drug candidates, including cancer chemotherapy, will affect this important organ. PMID:21277344

  1. Stem Cell-Associated Marker Expression in Canine Hair Follicles.

    PubMed

    Gerhards, Nora M; Sayar, Beyza S; Origgi, Francesco C; Galichet, Arnaud; Müller, Eliane J; Welle, Monika M; Wiener, Dominique J

    2016-03-01

    Functional hair follicle (HF) stem cells (SCs) are crucial to maintain the constant recurring growth of hair. In mice and humans, SC subpopulations with different biomarker expression profiles have been identified in discrete anatomic compartments of the HF. The rare studies investigating canine HF SCs have shown similarities in biomarker expression profiles to that of mouse and human SCs. The aim of our study was to broaden the current repertoire of SC-associated markers and their expression patterns in the dog. We combined analyses on the expression levels of CD34, K15, Sox9, CD200, Nestin, LGR5 and LGR6 in canine skin using RT-qPCR, the corresponding proteins in dog skin lysates, and their expression patterns in canine HFs using immunohistochemistry. Using validated antibodies, we were able to define the location of CD34, Sox9, Keratin15, LGR5 and Nestin in canine HFs and confirm that all tested biomarkers are expressed in canine skin. Our results show similarities between the expression profile of canine, human and mouse HF SC markers. This repertoire of biomarkers will allow us to conduct functional studies and investigate alterations in the canine SC compartment of different diseases, like alopecia or skin cancer with the possibility to extend relevant findings to human patients. PMID:26739040

  2. Spatial Distribution of Stem Cell-Like Keratinocytes in Dissected Compound Hair Follicles of the Dog

    PubMed Central

    Wiener, Dominique J.; Doherr, Marcus G.; Müller, Eliane J.; Welle, Monika M.

    2016-01-01

    Hair cycle disturbances are common in dogs and comparable to some alopecic disorders in humans. A normal hair cycle is maintained by follicular stem cells which are predominately found in an area known as the bulge. Due to similar morphological characteristics of the bulge area in humans and dogs, the shared particularity of compound hair follicles as well as similarities in follicular biomarker expression, the dog is a promising model to study human hair cycle and stem cell disorders. To gain insight into the spatial distribution of follicular keratinocytes with stem cell potential in canine compound follicles, we microdissected hair follicles in anagen and telogen from skin samples of freshly euthanized dogs. The keratinocytes isolated from different locations were investigated for their colony forming efficiency, growth and differentiation potential as well as clonal growth. Our results indicate that i) compound and single hair follicles exhibit a comparable spatial distribution pattern with respect to cells with high growth potential and stem cell-like characteristics, ii) the lower isthmus (comprising the bulge) harbors most cells with high growth potential in both, the anagen and the telogen hair cycle stage, iii) unlike in other species, colonies with highest growth potential are rather small with an irregular perimeter and iv) the keratinocytes derived from the bulbar region exhibit characteristics of actively dividing transit amplifying cells. Our results now provide the basis to conduct comparative studies of normal dogs and those with hair cycle disorders with the possibility to extend relevant findings to human patients. PMID:26788850

  3. Spatial Distribution of Stem Cell-Like Keratinocytes in Dissected Compound Hair Follicles of the Dog.

    PubMed

    Wiener, Dominique J; Doherr, Marcus G; Müller, Eliane J; Welle, Monika M

    2016-01-01

    Hair cycle disturbances are common in dogs and comparable to some alopecic disorders in humans. A normal hair cycle is maintained by follicular stem cells which are predominately found in an area known as the bulge. Due to similar morphological characteristics of the bulge area in humans and dogs, the shared particularity of compound hair follicles as well as similarities in follicular biomarker expression, the dog is a promising model to study human hair cycle and stem cell disorders. To gain insight into the spatial distribution of follicular keratinocytes with stem cell potential in canine compound follicles, we microdissected hair follicles in anagen and telogen from skin samples of freshly euthanized dogs. The keratinocytes isolated from different locations were investigated for their colony forming efficiency, growth and differentiation potential as well as clonal growth. Our results indicate that i) compound and single hair follicles exhibit a comparable spatial distribution pattern with respect to cells with high growth potential and stem cell-like characteristics, ii) the lower isthmus (comprising the bulge) harbors most cells with high growth potential in both, the anagen and the telogen hair cycle stage, iii) unlike in other species, colonies with highest growth potential are rather small with an irregular perimeter and iv) the keratinocytes derived from the bulbar region exhibit characteristics of actively dividing transit amplifying cells. Our results now provide the basis to conduct comparative studies of normal dogs and those with hair cycle disorders with the possibility to extend relevant findings to human patients. PMID:26788850

  4. Nfatc1 orchestrates aging in hair follicle stem cells

    PubMed Central

    Keyes, Brice E.; Segal, Jeremy P.; Heller, Evan; Lien, Wen-Hui; Chang, Chiung-Ying; Guo, Xingyi; Oristian, Dan S.; Zheng, Deyou; Fuchs, Elaine

    2013-01-01

    Hair production is fueled by stem cells (SCs), which transition between cyclical bouts of rest and activity. Here, we explore why hair growth wanes with age. We show that aged hair follicle SCs (HFSCs) in mice exhibit enhanced resting and abbreviated growth phases and are delayed in response to tissue-regenerating cues. Aged HFSCs are poor at initiating proliferation and show diminished self-renewing capacity upon extensive use. Only modestly restored by parabiosis, these features are rooted in elevated cell-intrinsic sensitivity and local elevation in bone morphogenic protein (BMP) signaling. Transcriptional profiling presents differences consistent with defects in aged HFSC activation. Notably, BMP-/calcium-regulated, nuclear factor of activated T-cell c1 (NFATc1) in HFSCs becomes recalcitrant to its normal down-regulating cues, and NFATc1 ChIP-sequencing analyses reveal a marked enrichment of NFATc1 target genes within the age-related signature. Moreover, aged HFSCs display more youthful levels of hair regeneration when BMP and/or NFATc1 are inhibited. These results provide unique insights into how skin SCs age. PMID:24282298

  5. Protocols for Cryopreservation of Intact Hair Follicle That Maintain Pluripotency of Nestin-Expressing Hair-Follicle-Associated Pluripotent (HAP) Stem Cells.

    PubMed

    Kajiura, Satoshi; Mii, Sumiyuki; Aki, Ryoichi; Hamada, Yuko; Arakawa, Nobuko; Kawahara, Katsumasa; Li, Lingna; Katsuoka, Kensei; Hoffman, Robert M; Amoh, Yasuyuki

    2016-01-01

    Hair follicles contain nestin-expressing pluripotent stem cells, the origin of which is above the bulge area, below the sebaceous gland. We have termed these cells hair-follicle-associated pluripotent (HAP) stem cells. Cryopreservation methods of the hair follicle that maintain the pluripotency of HAP stem cells are described in this chapter. Intact hair follicles from green fluorescent protein (GFP) transgenic mice were cryopreserved by slow-rate cooling in TC-Protector medium and storage in liquid nitrogen. After thawing, the upper part of the hair follicle was isolated and cultured in DMEM with fetal bovine serum (FBS). After 4 weeks culture, cells from the upper part of the hair follicles grew out. The growing cells were transferred to DMEM/F12 without FBS. After 1 week culture, the growing cells formed hair spheres, each containing approximately 1 × 10(2) HAP stem cells. The hair spheres contained cells which could differentiate to neurons, glial cells, and other cell types. The formation of hair spheres by the thawed and cultured upper part of the hair follicle produced almost as many pluripotent hair spheres as fresh follicles. The hair spheres derived from cryopreserved hair follicles were as pluripotent as hair spheres from fresh hair follicles. These results suggest that the cryopreservation of the whole hair follicle is an effective way to store HAP stem cells for personalized regenerative medicine, enabling any individual to maintain a bank of pluripotent stem cells for future clinical use. PMID:27431257

  6. The Hair Follicle: A Comparative Review of Canine Hair Follicle Anatomy and Physiology.

    PubMed

    Welle, Monika M; Wiener, Dominique J

    2016-06-01

    The hair follicle (HF) has a wide range of functions including thermoregulation, physical and immunological protection against external insults, sensory perception, social interactions, and camouflage. One of the most characteristic features of HFs is that they self-renew during hair cycle (HC) throughout the entire life of an individual to continuously produce new hair. HC disturbances are common in humans and comparable to some alopecic disorders in dogs. A normal HC is maintained by follicular stem cells (SCs), which are predominately found in an area known as the bulge. Due to similar morphological characteristics of the human and canine bulge area, the particularity of compound HFs in humans and dogs as well as similarities in follicular biomarker expression, the dog might be a promising model to study human HC and SC disorders. In this review, we give an overview of normal follicular anatomy, the HC, and follicular SCs and discuss the possible pathogenetic mechanisms of noninflammatory alopecia. PMID:27000375

  7. Targeted delivery of a poorly water-soluble compound to hair follicles using polymeric nanoparticle suspensions.

    PubMed

    Morgen, Michael; Lu, Guang Wei; Du, Daniel; Stehle, Randall; Lembke, Franz; Cervantes, Jessica; Ciotti, Susan; Haskell, Roy; Smithey, Dan; Haley, Kevin; Fan, Conglin

    2011-09-15

    This study explored the utility of topically applied polymeric nanoparticle suspensions to target delivery of poorly water-soluble drugs to hair follicles. Several formulations of amorphous drug/polymer nanoparticles were prepared from ethyl cellulose and UK-157,147 (systematic name (3S,4R)-[6-(3-hydroxyphenyl)sulfonyl]-2,2,3-trimethyl-4-(2-methyl-3-oxo-2,3-dihydropyridazin-6-yloxy)-3-chromanol), a potassium channel opener, using sodium glycocholate (NaGC) as a surface stabilizer. Nanoparticle suspensions were evaluated to determine if targeted drug delivery to sebaceous glands and hair follicles could be achieved. In in vitro testing with rabbit ear tissue, delivery of UK-157,147 to the follicles was demonstrated with limited distribution to the surrounding dermis. Delivery to hair follicles was also demonstrated in vivo, based on stimulation of hair growth in tests of 100-nm nanoparticles with a C3H mouse model. The nanoparticles were well-tolerated, with no visible skin irritation. In vivo tests of smaller nanoparticles with a hamster ear model also indicated targeted delivery to sebaceous glands. The nanoparticles released drug rapidly in in vitro nonsink dissolution tests and were stable in suspension for 3 months. The present results show selective drug delivery to the follicle by follicular transport of nanoparticles and rapid release of a poorly water-soluble drug. Thus, nanoparticles represent a promising approach for targeted topical delivery of low-solubility compounds to hair follicles. PMID:21722722

  8. The structure and organization of lanceolate mechanosensory complexes at mouse hair follicles

    PubMed Central

    Li, Lishi; Ginty, David D

    2014-01-01

    In mouse hairy skin, lanceolate complexes associated with three types of hair follicles, guard, awl/auchene and zigzag, serve as mechanosensory end organs. These structures are formed by unique combinations of low-threshold mechanoreceptors (LTMRs), Aβ RA-LTMRs, Aδ-LTMRs, and C-LTMRs, and their associated terminal Schwann cells (TSCs). In this study, we investigated the organization, ultrastructure, and maintenance of longitudinal lanceolate complexes at each hair follicle subtype. We found that TSC processes at hair follicles are tiled and that individual TSCs host axonal endings of more than one LTMR subtype. Electron microscopic analyses revealed unique ultrastructural features of lanceolate complexes that are proposed to underlie mechanotransduction. Moreover, Schwann cell ablation leads to loss of LTMR terminals at hair follicles while, in contrast, TSCs remain associated with hair follicles following skin denervation in adult mice and, remarkably, become re-associated with newly formed axons, indicating a TSC-dependence of lanceolate complex maintenance and regeneration in adults. DOI: http://dx.doi.org/10.7554/eLife.01901.001 PMID:24569481

  9. Immunolocalization of β-catenin and Lef-1 during postnatal hair follicle development in mice.

    PubMed

    Wang, Hai-Dong; Yang, Lei; Yu, Xiu-Ju; He, Jun-Ping; Fan, Lin-Hua; Dong, Yan-Jun; Dong, Chang-Sheng; Liu, Tian-Fu

    2012-12-01

    It is well recognized that the Wnt pathway, in which β-catenin and Lef-1 are important factors, is associated with many physiological processes, including embryogenesis and postnatal development. The Wnt pathway also plays a critical role in the development of skin. It regulates the formation of the dorsal dermis and epidermal appendages in the skin and the activity of epithelial stem cells. In this study, we investigated the presence and localization of β-catenin and Lef-1 in murine hair follicles through the first postnatal month, which encompasses the first hair cycle in mice, using Western blotting and immunohistochemistry. Our results show that β-catenin and Lef-1 are expressed during all stages in a hair cycle, most strongly in the anagen and weakly in the catagen and telogen phases. The results also suggest that the β-catenin-Lef-1 complex may regulate hair follicle cycling. This process will be of considerable interest to future studies. PMID:22521245

  10. Polymeric nanoparticles-embedded organogel for roxithromycin delivery to hair follicles.

    PubMed

    Główka, Eliza; Wosicka-Frąckowiak, Hanna; Hyla, Kinga; Stefanowska, Justyna; Jastrzębska, Katarzyna; Klapiszewski, Łukasz; Jesionowski, Teofil; Cal, Krzysztof

    2014-09-01

    Drug delivery into hair follicles with the use of nanoparticles (NPs) is gaining more importance as drug-loaded NPs may accumulate in hair follicle openings. The aim was to develop and evaluate a pluronic lecithin organogel (PLO) with roxithromycin (ROX)-loaded NPs for follicular targeting. Polymeric NPs were evaluated in terms of particle shape, size, zeta potential, suspension stability, encapsulation efficiency and in vitro drug release. Lyophilized NPs were incorporated into the PLO and rheological measurements of the nanoparticles-embedded organogels were done. The fate of the NPs in the skin was traced by incorporation of a fluorescent dye into the NPs. As a result, ROX was efficiently incorporated into polymeric NPs characterized by the appropriate size (approximately 300 nm) allowing drug delivery to hair follicles. In ex vivo human skin penetration studies, horizontal skin sections revealed fluorescence deep in the hair follicles. Although the organogel has higher affinity to the lipidic follicular area than an aqueous suspension of NPs, it did not seem to improve penetration of the NPs along the hair shaft. The results proved that it was possible to achieve preferential targeting to the pilosebaceous unit using polymeric NPs formulated either into the aqueous suspension or semisolid topical formulation. PMID:25014763

  11. The ciliopathy gene Rpgrip1l is essential for hair follicle development

    PubMed Central

    Chen, Jiang; Laclef, Christine; Moncayo, Alejandra; Snedecor, Elizabeth R.; Yang, Ning; Li, Li; Takemaru, Ken-Ichi; Paus, Ralf; Schneider-Maunoury, Sylvie; Clark, Richard A

    2014-01-01

    The primary cilium is essential for skin morphogenesis through regulating the Notch, Wnt, and hedgehog signaling pathways. Prior studies on the functions of primary cilia in the skin were based on the investigations of genes that are essential for cilium formation. However, none of these ciliogenic genes has been linked to ciliopathy, a group of disorders caused by abnormal formation or function of cilia. To determine whether there is a genetic and molecular link between ciliopathies and skin morphogenesis, we investigated the role of RPGRIP1L, a gene mutated in Joubert (JBTS) and Meckel (MKS) syndromes, two severe forms of ciliopathy, in the context of skin development. We found that RPGRIP1L is essential for hair follicle morphogenesis. Specifically, disrupting the Rpgril1 gene in mice resulted in reduced proliferation and differentiation of follicular keratinocytes, leading to hair follicle developmental defects. These defects were associated with significantly decreased primary cilium formation and attenuated hedgehog signaling. In contrast, we found that hair follicle induction and polarization and the development of interfollicular epidermis were unaffected. This study indicates that RPGRIP1L, a ciliopathy gene, is essential for hair follicle morphogenesis likely through regulating primary cilia formation and the hedgehog signaling pathway. PMID:25398052

  12. Hair follicle biology and topical minoxidil: possible mechanisms of action.

    PubMed

    Headington, J T

    1987-01-01

    The mechanism by which minoxidil, whether given orally or applied topically, stimulates hair growth remains undetermined. Possible indirect drug action, such as vasodilatation and increased blood flow to the dermal papilla, or possible local irritation related to minoxidil or to one or more components of the vehicle used for topical application has been suggested. Possible sites of direct drug action include either the dermal papilla of the follicle or hair matrix cells or possibly both. Morphometric studies of control scalp biopsies taken from young male patients with androgenetic alopecia reveal that the primary morphologic event in androgenetic alopecia is miniaturization of terminal hair follicles. Shortening and diminution of follicle size is undoubtedly accompanied by shortening of the hair growth cycle (decreased anagen time). Morphometric evaluation of scalp biopsies of patients receiving topical minoxidil in a vehicle composed of propylene glycol, water and ethanol has revealed growth of larger normally formed follicles when compared with pretreatment biopsies from the same individual. There has been no suggestion in any morphologic studies of minoxidil-treated patients for development of new follicles (follicular neogenesis). Because the dermal papilla of the hair follicle apparently controls both growth and differentiation of hair matrix cells and because there are no observable dysplastic or atypical changes in follicular germinal epithelium during or after application of topical minoxidil, it is concluded that the most probable site for the action of minoxidil is on the specialized mesenchymal cells of the follicular dermal papilla. PMID:3319729

  13. The male beard hair and facial skin - challenges for shaving.

    PubMed

    Maurer, M; Rietzler, M; Burghardt, R; Siebenhaar, F

    2016-06-01

    The challenge of shaving is to cut the beard hair as closely as possible to the skin without unwanted effects on the skin. To achieve this requires the understanding of beard hair and male facial skin biology as both, the beard hair and the male facial skin, contribute to the difficulties in obtaining an effective shave without shaving-induced skin irritation. Little information is available on the biology of beard hairs and beard hair follicles. We know that, in beard hairs, the density, thickness, stiffness, as well as the rates of elliptical shape and low emerging angle, are high and highly heterogeneous. All of this makes it challenging to cut it, and shaving techniques commonly employed to overcome these challenges include shaving with increased pressure and multiple stroke shaving, which increase the probability and extent of shaving-induced skin irritation. Several features of male facial skin pose problems to a perfect shave. The male facial skin is heterogeneous in morphology and roughness, and male skin has a tendency to heal slower and to develop hyperinflammatory pigmentation. In addition, many males exhibit sensitive skin, with the face most often affected. Finally, the hair follicle is a sensory organ, and the perifollicular skin is highly responsive to external signals including mechanical and thermal stimulation. Perifollicular skin is rich in vasculature, innervation and cells of the innate and adaptive immune system. This makes perifollicular skin a highly responsive and inflammatory system, especially in individuals with sensitive skin. Activation of this system, by shaving, can result in shaving-induced skin irritation. Techniques commonly employed to avoid shaving-induced skin irritation include shaving with less pressure, pre- and post-shave skin treatment and to stop shaving altogether. Recent advances in shaving technology have addressed some but not all of these issues. A better understanding of beard hairs, beard hair follicles and male

  14. Hair matrix germinative epidermal cells confer follicle-inducing capabilities on dermal sheath and high passage papilla cells.

    PubMed

    Reynolds, A J; Jahoda, C A

    1996-10-01

    Low passage cultured dermal papilla cells from adult rats stimulate complete hair follicle neogenesis when re-implanted into heterotypic skin. In contrast, cultured sheath cells are non-inductive despite sharing other behavioural characteristics (a common lineage and in situ proximity) with papilla cells. However, since sheath cells can behave inductively in amputated follicles after regenerating the papilla, this poses the question of what influences the sheath to papilla cell transition? During reciprocal tissue interactions specific epidermal cues are crucial to skin appendage development, and while in vivo assays to date have focussed on dermal interactive influence, our aim was to investigate epidermal potential. We have previously observed that hair follicle epidermal cells display exceptional interactive behaviour when combined with follicle dermal cells in vitro. Thus in the present study, hair follicle germinative, outer root sheath or skin basal epidermal cells were separately combined with each of three non-inductive dermal cell types (high passage papilla, low passage sheath or fibroblast) and then implanted into small ear skin wounds. The sheath/germinative and papilla/germinative cell implants repeatedly induced giant vibrissa-type follicles and fibres. In complete contrast, any single cell type and all other forms of recombination were consistently non-inductive. Hence, the adult germinative epidermal cells enable non-inductive adult dermal cells to stimulate hair follicle neogenesis, effectively, by altering their 'status', causing the sheath cells to 'specialise' and the 'aged' papilla cells to 'rejuvenate'. PMID:8898222

  15. A genetic basis of variation in eccrine sweat gland and hair follicle density.

    PubMed

    Kamberov, Yana G; Karlsson, Elinor K; Kamberova, Gerda L; Lieberman, Daniel E; Sabeti, Pardis C; Morgan, Bruce A; Tabin, Clifford J

    2015-08-11

    Among the unique features of humans, one of the most salient is the ability to effectively cool the body during extreme prolonged activity through the evapotranspiration of water on the skin's surface. The evolution of this novel physiological ability required a dramatic increase in the density and distribution of eccrine sweat glands relative to other mammals and a concomitant reduction of body hair cover. Elucidation of the genetic underpinnings for these adaptive changes is confounded by a lack of knowledge about how eccrine gland fate and density are specified during development. Moreover, although reciprocal changes in hair cover and eccrine gland density are required for efficient thermoregulation, it is unclear if these changes are linked by a common genetic regulation. To identify pathways controlling the relative patterning of eccrine glands and hair follicles, we exploited natural variation in the density of these organs between different strains of mice. Quantitative trait locus mapping identified a large region on mouse Chromosome 1 that controls both hair and eccrine gland densities. Differential and allelic expression analysis of the genes within this interval coupled with subsequent functional studies demonstrated that the level of En1 activity directs the relative numbers of eccrine glands and hair follicles. These findings implicate En1 as a newly identified and reciprocal determinant of hair follicle and eccrine gland density and identify a pathway that could have contributed to the evolution of the unique features of human skin. PMID:26195765

  16. Polyclonal origin and hair induction ability of dermal papillae in neonatal and adult mouse back skin

    PubMed Central

    Collins, Charlotte A.; Jensen, Kim B.; MacRae, Elizabeth J.; Mansfield, William; Watt, Fiona M.

    2012-01-01

    Hair follicle development and growth are regulated by Wnt signalling and depend on interactions between epidermal cells and a population of fibroblasts at the base of the follicle, known as the dermal papilla (DP). DP cells have a distinct gene expression signature from non-DP dermal fibroblasts. However, their origins are largely unknown. By generating chimeric mice and performing skin reconstitution assays we show that, irrespective of whether DP form during development, are induced by epidermal Wnt activation in adult skin or assemble from disaggregated cells, they are polyclonal in origin. While fibroblast proliferation is necessary for hair follicle formation in skin reconstitution assays, mitotically inhibited cells readily contribute to DP. Although new hair follicles do not usually develop in adult skin, adult dermal fibroblasts are competent to contribute to DP during hair follicle neogenesis, irrespective of whether they originate from skin in the resting or growth phase of the hair cycle or skin with β-catenin-induced ectopic follicles. We propose that during skin reconstitution fibroblasts may be induced to become DP cells by interactions with hair follicle epidermal cells, rather than being derived from a distinct subpopulation of cells. PMID:22537489

  17. Polyclonal origin and hair induction ability of dermal papillae in neonatal and adult mouse back skin.

    PubMed

    Collins, Charlotte A; Jensen, Kim B; MacRae, Elizabeth J; Mansfield, William; Watt, Fiona M

    2012-06-15

    Hair follicle development and growth are regulated by Wnt signalling and depend on interactions between epidermal cells and a population of fibroblasts at the base of the follicle, known as the dermal papilla (DP). DP cells have a distinct gene expression signature from non-DP dermal fibroblasts. However, their origins are largely unknown. By generating chimeric mice and performing skin reconstitution assays we show that, irrespective of whether DP form during development, are induced by epidermal Wnt activation in adult skin or assemble from disaggregated cells, they are polyclonal in origin. While fibroblast proliferation is necessary for hair follicle formation in skin reconstitution assays, mitotically inhibited cells readily contribute to DP. Although new hair follicles do not usually develop in adult skin, adult dermal fibroblasts are competent to contribute to DP during hair follicle neogenesis, irrespective of whether they originate from skin in the resting or growth phase of the hair cycle or skin with β-catenin-induced ectopic follicles. We propose that during skin reconstitution fibroblasts may be induced to become DP cells by interactions with hair follicle epidermal cells, rather than being derived from a distinct subpopulation of cells. PMID:22537489

  18. Intelligent image analysis for image-guided hair removal and skin therapy

    NASA Astrophysics Data System (ADS)

    Walker, Brian; Lu, Thomas; Chao, Tien-Hsin

    2012-02-01

    We present the development of advanced automatic target recognition (ATR) algorithms for the hair follicles identification in digital skin images to accurately direct the laser beam to remove the hair. The ATR system first performs a wavelet filtering to enhance the contrast of the hair features in the image. The system then extracts the unique features of the targets and sends the features to an Adaboost based classifier for training and recognition operations. The ATR system automatically classifies the hair, moles, or other skin lesion and provides the accurate coordinates of the intended hair follicle locations. The coordinates can be used to guide a scanning laser to focus energy only on the hair follicles. The intended benefit would be to protect the skin from unwanted laser exposure and to provide more effective skin therapy.

  19. Intelligent Image Analysis for Image-Guided Laser Hair Removal and Skin Therapy

    NASA Technical Reports Server (NTRS)

    Walker, Brian; Lu, Thomas; Chao, Tien-Hsin

    2012-01-01

    We present the development of advanced automatic target recognition (ATR) algorithms for the hair follicles identification in digital skin images to accurately direct the laser beam to remove the hair. The ATR system first performs a wavelet filtering to enhance the contrast of the hair features in the image. The system then extracts the unique features of the targets and sends the features to an Adaboost based classifier for training and recognition operations. The ATR system automatically classifies the hair, moles, or other skin lesion and provides the accurate coordinates of the intended hair follicle locations. The coordinates can be used to guide a scanning laser to focus energy only on the hair follicles. The intended benefit would be to protect the skin from unwanted laser exposure and to provide more effective skin therapy.

  20. Epigenetic control of skin and hair regeneration after wounding

    PubMed Central

    Plikus, Maksim V.; Guerrero-Juarez, Christian Fernando; Treffeisen, Elsa; Gay, Denise L.

    2014-01-01

    Skin wound healing is a complex regenerative phenomenon that can result in hair follicle neogenesis. Skin regeneration requires significant contribution from the immune system and involves substantial remodeling of both epidermal and dermal compartments. In this viewpoint, we consider epigenetic regulation of reepithelialization, dermal restructuring and hair neogenesis. Because little is known about the epigenetic control of these events, we have drawn upon recent epigenetic mapping and functional studies of homeostatic skin maintenance, epithelial-mesenchymal transition in cancer, and new works on regenerative dermal cell lineages and the epigenetic events that may shape their conversion into myofibroblasts. Finally, we speculate on how these various healing components might converge for wound-induced hair follicle neogenesis. PMID:25039994

  1. Epigenetic control of skin and hair regeneration after wounding.

    PubMed

    Plikus, Maksim V; Guerrero-Juarez, Christian Fernando; Treffeisen, Elsa; Gay, Denise L

    2015-03-01

    Skin wound healing is a complex regenerative phenomenon that can result in hair follicle neogenesis. Skin regeneration requires significant contribution from the immune system and involves substantial remodelling of both epidermal and dermal compartments. In this viewpoint, we consider epigenetic regulation of reepithelialization, dermal restructuring and hair neogenesis. Because little is known about the epigenetic control of these events, we have drawn upon recent epigenetic mapping and functional studies of homeostatic skin maintenance, epithelial-mesenchymal transition in cancer, and new works on regenerative dermal cell lineages and the epigenetic events that may shape their conversion into myofibroblasts. Finally, we speculate on how these various healing components might converge for wound-induced hair follicle neogenesis. PMID:25039994

  2. Targeted expression of GFP in the hair follicle using ex vivo viral transduction.

    PubMed

    Hoffman, Robert M; Li, Lingna

    2008-01-01

    There are many cell types in the hair follicle, including hair matrix cells which form the hair shaft and stem cells which can initiate the hair shaft during early anagen, the growth phase of the hair cycle, as well as pluripotent stem cells that play a role in hair follicle growth but have the potential to differentiate to non-follicle cells such as neurons. These properties of the hair follicle are discussed. The various cell types of the hair follicle are potential targets for gene therapy. Gene delivery system for the hair follicle using viral vectors or liposomes for gene targeting to the various cell types in the hair follicle and the results obtained are also discussed [corrected]. PMID:19066571

  3. Prostaglandin D2 inhibits wound-induced hair follicle neogenesis through the receptor, Gpr44.

    PubMed

    Nelson, Amanda M; Loy, Dorothy E; Lawson, John A; Katseff, Adiya S; Fitzgerald, Garret A; Garza, Luis A

    2013-04-01

    Prostaglandins (PGs) are key inflammatory mediators involved in wound healing and regulating hair growth; however, their role in skin regeneration after injury is unknown. Using wound-induced hair follicle neogenesis (WIHN) as a marker of skin regeneration, we hypothesized that PGD2 decreases follicle neogenesis. PGE2 and PGD2 were elevated early and late, respectively, during wound healing. The levels of WIHN, lipocalin-type prostaglandin D2 synthase (Ptgds), and its product PGD2 each varied significantly among background strains of mice after wounding, and all correlated such that the highest Ptgds and PGD2 levels were associated with the lowest amount of regeneration. In addition, an alternatively spliced transcript variant of Ptgds missing exon 3 correlated with high regeneration in mice. Exogenous application of PGD2 decreased WIHN in wild-type mice, and PGD2 receptor Gpr44-null mice showed increased WIHN compared with strain-matched control mice. Furthermore, Gpr44-null mice were resistant to PGD2-induced inhibition of follicle neogenesis. In all, these findings demonstrate that PGD2 inhibits hair follicle regeneration through the Gpr44 receptor and imply that inhibition of PGD2 production or Gpr44 signaling will promote skin regeneration. PMID:23190891

  4. Prostaglandin D2 inhibits wound-induced hair follicle neogenesis through the receptor, Gpr44

    PubMed Central

    Nelson, Amanda M.; Loy, Dorothy E.; Lawson, John A.; Katseff, Adiya S.; FitzGerald, Garret A.; Garza, Luis A.

    2012-01-01

    Prostaglandins (PGs) are key inflammatory mediators involved in wound healing and regulating hair growth; however, their role in skin regeneration after injury is unknown. Using wound-induced hair follicle neogenesis (WIHN) as a marker of skin regeneration, we hypothesized that PGD2 decreases follicle neogenesis. PGE2 and PGD2 were elevated early and late respectively during wound healing. The levels of WIHN, lipocalin-type prostaglandin D2 synthase (Ptgds) and its product PGD2 each varied significantly among background strains of mice after wounding and all correlated such that the highest Ptgds and PGD2 levels were associated with the lowest amount of regeneration. Additionally, an alternatively spliced transcript variant of Ptgds missing exon 3 correlated with high regeneration in mice. Exogenous application of PGD2 decreased WIHN in wild type mice and PGD2 receptor Gpr44 null mice showed increased WIHN compared to strain-matched control mice. Furthermore, Gpr44 null mice were resistant to PGD2-induced inhibition of follicle neogenesis. In all, these findings demonstrate that PGD2 inhibits hair follicle regeneration through the Gpr44 receptor and imply that inhibition of PGD2 production or Gpr44 signaling will promote skin regeneration. PMID:23190891

  5. Aging hair follicles rejuvenated by transplantation to a young subcutaneous environment.

    PubMed

    Cao, Wenluo; Li, Lingna; Kajiura, Satoshi; Amoh, Yasuyuki; Tan, Yuying; Liu, Fang; Hoffman, Robert M

    2016-04-17

    We demonstrate in the present study that young host mice rejuvenate aged hair follicles after transplantation. Young mice promote the hair shaft growth of transplanted old hair follicles, as well as young follicles, in contrast to old host mice, which did not support hair-shaft growth from transplanted old or young follicles. Nestin-expressing hair follicle-associated pluripotent (HAP) stem cells of transplanted old and young hair follicles remained active in young host nude mice. In contrast, the nestin-expressing HAP stem cells in young and old hair follicles transplanted to old nude mice were not as active as in young nude host mice. The present study shows that transplanted old hair follicles were rejuvenated by young host mice, suggesting that aging may be reversible. PMID:26940664

  6. Hair follicle dermal stem cells regenerate the dermal sheath, repopulate the dermal papilla, and modulate hair type.

    PubMed

    Rahmani, Waleed; Abbasi, Sepideh; Hagner, Andrew; Raharjo, Eko; Kumar, Ranjan; Hotta, Akitsu; Magness, Scott; Metzger, Daniel; Biernaskie, Jeff

    2014-12-01

    The dermal papilla (DP) provide instructive signals required to activate epithelial progenitors and initiate hair follicle regeneration. DP cell numbers fluctuate over the hair cycle, and hair loss is associated with gradual depletion/atrophy of DP cells. How DP cell numbers are maintained in healthy follicles remains unclear. We performed in vivo fate mapping of adult hair follicle dermal sheath (DS) cells to determine their lineage relationship with DP and found that a subset of DS cells are retained following each hair cycle, exhibit self-renewal, and repopulate the DS and the DP with new cells. Ablating these hair follicle dermal stem cells and their progeny retarded hair regrowth and altered hair type specification, suggesting that they function to modulate normal DP function. This work identifies a bipotent stem cell within the adult hair follicle mesenchyme and has important implications toward restoration of hair growth after injury, disease, and aging. PMID:25465495

  7. Hair follicle aging is driven by transepidermal elimination of stem cells via COL17A1 proteolysis.

    PubMed

    Matsumura, Hiroyuki; Mohri, Yasuaki; Binh, Nguyen Thanh; Morinaga, Hironobu; Fukuda, Makoto; Ito, Mayumi; Kurata, Sotaro; Hoeijmakers, Jan; Nishimura, Emi K

    2016-02-01

    Hair thinning and loss are prominent aging phenotypes but have an unknown mechanism. We show that hair follicle stem cell (HFSC) aging causes the stepwise miniaturization of hair follicles and eventual hair loss in wild-type mice and in humans. In vivo fate analysis of HFSCs revealed that the DNA damage response in HFSCs causes proteolysis of type XVII collagen (COL17A1/BP180), a critical molecule for HFSC maintenance, to trigger HFSC aging, characterized by the loss of stemness signatures and by epidermal commitment. Aged HFSCs are cyclically eliminated from the skin through terminal epidermal differentiation, thereby causing hair follicle miniaturization. The aging process can be recapitulated by Col17a1 deficiency and prevented by the forced maintenance of COL17A1 in HFSCs, demonstrating that COL17A1 in HFSCs orchestrates the stem cell-centric aging program of the epithelial mini-organ. PMID:26912707

  8. A genetic basis of variation in eccrine sweat gland and hair follicle density

    PubMed Central

    Kamberov, Yana G.; Karlsson, Elinor K.; Kamberova, Gerda L.; Lieberman, Daniel E.; Sabeti, Pardis C.; Morgan, Bruce A.; Tabin, Clifford J.

    2015-01-01

    Among the unique features of humans, one of the most salient is the ability to effectively cool the body during extreme prolonged activity through the evapotranspiration of water on the skin’s surface. The evolution of this novel physiological ability required a dramatic increase in the density and distribution of eccrine sweat glands relative to other mammals and a concomitant reduction of body hair cover. Elucidation of the genetic underpinnings for these adaptive changes is confounded by a lack of knowledge about how eccrine gland fate and density are specified during development. Moreover, although reciprocal changes in hair cover and eccrine gland density are required for efficient thermoregulation, it is unclear if these changes are linked by a common genetic regulation. To identify pathways controlling the relative patterning of eccrine glands and hair follicles, we exploited natural variation in the density of these organs between different strains of mice. Quantitative trait locus mapping identified a large region on mouse Chromosome 1 that controls both hair and eccrine gland densities. Differential and allelic expression analysis of the genes within this interval coupled with subsequent functional studies demonstrated that the level of En1 activity directs the relative numbers of eccrine glands and hair follicles. These findings implicate En1 as a newly identified and reciprocal determinant of hair follicle and eccrine gland density and identify a pathway that could have contributed to the evolution of the unique features of human skin. PMID:26195765

  9. Principles and mechanisms of regeneration in the mouse model for wound‐induced hair follicle neogenesis

    PubMed Central

    Wang, Xiaojie; Hsi, Tsai‐Ching; Guerrero‐Juarez, Christian Fernando; Pham, Kim; Cho, Kevin; McCusker, Catherine D.; Monuki, Edwin S.; Cho, Ken W.Y.; Gay, Denise L.

    2015-01-01

    Abstract Wound‐induced hair follicle neogenesis (WIHN) describes a regenerative phenomenon in adult mammalian skin wherein fully functional hair follicles regenerate de novo in the center of large excisional wounds. Originally described in rats, rabbits, sheep, and humans in 1940−1960, the WIHN phenomenon was reinvestigated in mice only recently. The process of de novo hair regeneration largely duplicates the morphological and signaling features of normal embryonic hair development. Similar to hair development, WIHN critically depends on the activation of canonical WNT signaling. However, unlike hair development, WNT activation in WIHN is dependent on fibroblast growth factor 9 signaling generated by the immune system's γδ T cells. The cellular bases of WIHN remain to be fully characterized; however, the available evidence leaves open the possibility for a blastema‐like mechanism wherein epidermal and/or dermal wound cells undergo epigenetic reprogramming toward a more plastic, embryonic‐like state. De novo hair follicles do not regenerate from preexisting hair‐fated bulge stem cells. This suggests that hair neogenesis is not driven by preexisting lineage‐restricted progenitors, as is the case for amputation‐induced mouse digit tip regeneration, but rather may require a blastema‐like mechanism. The WIHN model is characterized by several intriguing features, which await further explanation. These include (1) the minimum wound size requirement for activating neogenesis, (2) the restriction of hair neogenesis to the wound's center, and (3) imperfect patterning outcomes, both in terms of neogenic hair positioning within the wound and in terms of their orientation. Future enquiries into the WIHN process, made possible by a wide array of available skin‐specific genetic tools, will undoubtedly expand our understanding of the regeneration mechanisms in adult mammals. PMID:26504521

  10. Aqueous extract of red deer antler promotes hair growth by regulating the hair cycle and cell proliferation in hair follicles.

    PubMed

    Li, Jing-jie; Li, Zheng; Gu, Li-juan; Wang, Yun-bo; Lee, Mi-ra; Sung, Chang-keun

    2014-01-01

    Deer antlers are the only mammalian appendage capable of regeneration. We aimed to investigate the effect of red deer antler extract in regulating hair growth, using a mouse model. The backs of male mice were shaved at eight weeks of age. Crude aqueous extracts of deer antler were prepared at either 4 °C or 100 °C and injected subcutaneously to two separate groups of mice (n = 9) at 1 mL/day for 10 consecutive days, with water as a vehicle control group. The mice skin quantitative hair growth parameters were measured and 5-bromo-2-deoxyuridine was used to identify label-retaining cells. We found that, in both the 4 °C and the 100 °C deer antler aqueous extract-injection groups, the anagen phase was extended, while the number of BrdU-incorporated cells was dramatically increased. These results indicate that deer antler aqueous extract promotes hair growth by extending the anagen phase and regulating cell proliferation in the hair follicle region. PMID:24695964

  11. Telomerase activity concentrates in the mitotically active segments of human hair follicles.

    PubMed

    Ramirez, R D; Wright, W E; Shay, J W; Taylor, R S

    1997-01-01

    Telomerase is a ribonucleoprotein enzyme capable of adding hexanucleotide repeats onto the ends of linear chromosomal DNA. Whereas normal somatic cells with a limited replicative capacity fail to express telomerase activity, most immortal eukaryotic cells do. Cells of renewal tissues (e.g., skin, intestine, blood) require an extensive proliferative capacity. Some cells in such renewal tissues also express telomerase activity, most likely to prevent rapid erosion of their telomeres during cell proliferation. In this study, we measured the levels of telomerase activity in dissected compartments of the human hair follicle: hair shaft, gland-containing fragment, upper intermediate fragment (where it is thought undifferentiated stem cells reside), lower intermediate fragment, and in the bulb-containing fragment (an area with high mitotic activity containing a more differentiated pool of keratinocytes). In anagen follicles, high levels of telomerase activity were found almost exclusively in the bulb-containing fragment of the follicles, with low levels of telomerase in the bulge area (intermediate fragments) and gland-containing fragment. In comparison, catagen follicles had low levels of telomerase activity in the bulb-containing fragments as well as in other compartments. Such observations indicate that, in anagen hair follicles, the fragments containing cells actively dividing (e.g., transient amplifying cells) express telomerase activity, whereas fragments containing cells with low mitotic activity, for example, quiescent stem cells, express low levels of telomerase activity. PMID:8980299

  12. The effect of parathyroid hormones on hair follicle physiology: implications for treatment of chemotherapy-induced alopecia.

    PubMed

    Skrok, Anna; Bednarczuk, Tomasz; Skwarek, Agata; Popow, Michał; Rudnicka, Lidia; Olszewska, Małgorzata

    2015-01-01

    Parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP) influence hair follicles through paracrine and intracrine routes. There is significant evidence that PTH and PTHrP influence the proliferation and differentiation of hair follicle cells. The PTH/PTHrP receptor signalling plays an important role in the hair follicle cycle and may induce premature catagen-telogen transition. Transgenic mice with an overexpression or blockade (PTH/PTHrP receptor knockout mice) of PTHrP activity revealed impaired or increased hair growth, respectively. Some findings also suggest that PTHrP may additionally influence the hair cycle by inhibiting angiogenesis. Antagonists of the PTH/PTHrP receptor have been shown to stimulate proliferation of hair follicle cells and hair growth. A hair-stimulating effect of a PTH/PTHrP receptor antagonist applied topically to the skin has been observed in hairless mice, as well as in mice treated with cyclophosphamide. These data indicate that the PTH/PTHrP receptor may serve as a potential target for new (topical) hair growth-stimulating drugs, especially for chemotherapy-induced alopecia. PMID:25721772

  13. Removing Hair Safely

    MedlinePlus

    ... the skin, and into the hair follicle. An electric current travels down the wire and destroys the hair ... a period of time. Tweezer epilators also use electric current to remove hair. The tweezers grasp the hair ...

  14. Restorative effect of hair follicular dermal cells on injured human hair follicles in a mouse model.

    PubMed

    Yamao, Mikaru; Inamatsu, Mutsumi; Okada, Taro; Ogawa, Yuko; Ishida, Yuji; Tateno, Chise; Yoshizato, Katsutoshi

    2015-03-01

    No model is available for examining whether in vivo-damaged human hair follicles (hu-HFs) are rescued by transplanting cultured hu-HF dermal cells (dermal papilla and dermal sheath cells). Such a model might be valuable for examining whether in vivo-damaged hu-HFs such as miniaturized hu-HFs in androgenic alopecia are improvable by auto-transplanting hu-HF dermal cells. In this study, we first developed mice with humanized skin composed of hu-keratinocytes and hu-dermal fibroblasts. Then, a 'humanized scalp model mouse' was generated by transplanting hu-scalp HFs into the humanized skin. To demonstrate the usability of the model, the lower halves of the hu-HFs in the model were amputated in situ, and cultured hu-HF dermal cells were injected around the amputated area. The results demonstrated that the transplanted cells contributed to the restoration of the damaged HFs. This model could be used to explore clinically effective technologies for hair restoration therapy by autologous cell transplantation. PMID:25557326

  15. Analysis of apoptosis during hair follicle regression (catagen)

    PubMed Central

    Lindner, G.; Botchkarev, V. A.; Botchkareva, N. V.; Ling, G.; van der Veen, C.; Paus, R.

    1997-01-01

    Keratinocyte apoptosis is a central element in the regulation of hair follicle regression (catagen), yet the exact location and the control of follicular keratinocyte apoptosis remain obscure. To generate an "apoptomap" of the hair follicle, we have studied selected apoptosis-associated parameters in the C57BL/6 mouse model for hair research during normal and pharmacologically manipulated, pathological catagen development. As assessed by terminal deoxynucleotide transferase dUTP fluorescein nick end-labeling (TUNEL) stain, apoptotic cells not only appeared in the regressing proximal follicle epithelium but, surprisingly, were also seen in the central inner root sheath, in the bulge/isthmus region, and in the secondary germ, but never in the dermal papilla. These apoptosis hot spots during catagen development correlated largely with a down-regulation of the Bcl-2/Bax ratio but only poorly with the expression patterns of interleukin-1beta converting enzyme, p55TNFR, and Fas/Apo-1 immunoreactivity. Instead, a higher correlation was found with p75NTR expression. During cyclophosphamide-induced follicle dystrophy and alopecia, massive keratinocyte apoptosis occurred in the entire proximal hair bulb, except in the dermal papilla, despite a strong up-regulation of Bax and p75NTR immunoreactivity. Selected receptors of the tumor necrosis factor/nerve growth factor family and members of the Bcl-2 family may also play a key role in the control of follicular keratinocyte apoptosis in situ. Images Figure 1 Figure 2 Figure 3 Figure 5. a Figure 6 Figure 8 PMID:9403711

  16. Differential Expression of Proteins Associated with the Hair Follicle Cycle - Proteomics and Bioinformatics Analyses

    PubMed Central

    Tian, Tian; Yang, Mifang; Li, Zhongming; Ping, Fengfeng; Fan, Weixin

    2016-01-01

    Hair follicle cycling can be divided into the following three stages: anagen, catagen, and telogen. The molecular signals that orchestrate the follicular transition between phases are still unknown. To better understand the detailed protein networks controlling this process, proteomics and bioinformatics analyses were performed to construct comparative protein profiles of mouse skin at specific time points (0, 8, and 20 days). Ninety-five differentially expressed protein spots were identified by MALDI-TOF/TOF as 44 proteins, which were found to change during hair follicle cycle transition. Proteomics analysis revealed that these changes in protein expression are involved in Ca2+-regulated biological processes, migration, and regulation of signal transduction, among other processes. Subsequently, three proteins were selected to validate the reliability of expression patterns using western blotting. Cluster analysis revealed three expression patterns, and each pattern correlated with specific cell processes that occur during the hair cycle. Furthermore, bioinformatics analysis indicated that the differentially expressed proteins impacted multiple biological networks, after which detailed functional analyses were performed. Taken together, the above data may provide insight into the three stages of mouse hair follicle morphogenesis and provide a solid basis for potential therapeutic molecular targets for this hair disease. PMID:26752403

  17. Differential Expression of Proteins Associated with the Hair Follicle Cycle - Proteomics and Bioinformatics Analyses.

    PubMed

    Wang, Lei; Xu, Wenrong; Cao, Lei; Tian, Tian; Yang, Mifang; Li, Zhongming; Ping, Fengfeng; Fan, Weixin

    2016-01-01

    Hair follicle cycling can be divided into the following three stages: anagen, catagen, and telogen. The molecular signals that orchestrate the follicular transition between phases are still unknown. To better understand the detailed protein networks controlling this process, proteomics and bioinformatics analyses were performed to construct comparative protein profiles of mouse skin at specific time points (0, 8, and 20 days). Ninety-five differentially expressed protein spots were identified by MALDI-TOF/TOF as 44 proteins, which were found to change during hair follicle cycle transition. Proteomics analysis revealed that these changes in protein expression are involved in Ca2+-regulated biological processes, migration, and regulation of signal transduction, among other processes. Subsequently, three proteins were selected to validate the reliability of expression patterns using western blotting. Cluster analysis revealed three expression patterns, and each pattern correlated with specific cell processes that occur during the hair cycle. Furthermore, bioinformatics analysis indicated that the differentially expressed proteins impacted multiple biological networks, after which detailed functional analyses were performed. Taken together, the above data may provide insight into the three stages of mouse hair follicle morphogenesis and provide a solid basis for potential therapeutic molecular targets for this hair disease. PMID:26752403

  18. Expression and localization of the vascular endothelial growth factor and changes of microvessel density during hair follicle development of Liaoning cashmere goats.

    PubMed

    Zhang, Q L; Li, J P; Li, Y M; Chang, Q; Chen, Y; Jiang, H Z; Zhao, Z H; Guo, D

    2013-01-01

    Vascular endothelial growth factors (VEGFs) play important roles in neovascularization, tissue development, and angiogenesis. In this study, changes in VEGF expression patterns and microvessel density (MVD), and their correlations, were investigated during hair follicle development in epidermal appendages of Liaoning cashmere goats. Polyclonal antibodies to VEGF and microvessels were used for monthly immunohistochemical examinations of normal skin specimens from adult female goats for one year. VEGF was expressed in the hair bulb of primary and secondary hair follicles, the outer and inner root sheaths, sebaceous glands (ductal and secretory portions), eccrine sweat glands (ductal and secretory portions), and the epidermis. Abundant expression of VEGF was observed in the follicular basement membrane zone surrounding the bulb matrix and in ductal and secretory portions of eccrine sweat glands. The change in VEGFs in primary hair follicles showed a bimodal pattern, with the first peak observed from March to May, and the second in August. Maximal expression in secondary hair follicles occurred in May and August. Therefore, VEGF expression in primary and secondary hair follicles is synchronized throughout the year, and is correlated to hair development. In the later telogen and anagen phases, VEGF expression was higher in the secondary, compared to the primary, hair follicle. Changes in MVD also showed a bimodal pattern with peaks in May and August. VEGF expression and MVD showed moderate and strongly positive correlation in the primary and secondary hair follicles, respectively. Therefore, MVD and VEGF are closely related to the processes involved in hair cycle regulation. PMID:24390991

  19. Protease activity, localization and inhibition in the human hair follicle

    PubMed Central

    Bhogal, R K; Mouser, P E; Higgins, C A; Turner, G A

    2014-01-01

    Synopsis Objective In humans, the process of hair shedding, referred to as exogen, is believed to occur independently of the other hair cycle phases. Although the actual mechanisms involved in hair shedding are not fully known, it has been hypothesized that the processes leading to the final step of hair shedding may be driven by proteases and/or protease inhibitor activity. In this study, we investigated the presence of proteases and protease activity in naturally shed human hairs and assessed enzyme inhibition activity of test materials. Methods We measured enzyme activity using a fluorescence-based assay and protein localization by indirect immunohistochemistry (IHC). We also developed an ex vivo skin model for measuring the force required to pull hair fibres from skin. Results Our data demonstrate the presence of protease activity in the tissue material surrounding club roots. We also demonstrated the localization of specific serine protease protein expression in human hair follicle by IHC. These data provide evidence demonstrating the presence of proteases around the hair club roots, which may play a role during exogen. We further tested the hypothesis that a novel protease inhibitor system (combination of Trichogen® and climbazole) could inhibit protease activity in hair fibre club root extracts collected from a range of ethnic groups (UK, Brazil, China, first-generation Mexicans in the USA, Thailand and Turkey) in both males and females. Furthermore, we demonstrated that this combination is capable of increasing the force required to remove hair in an ex vivo skin model system. Conclusion These studies indicate the presence of proteolytic activity in the tissue surrounding the human hair club root and show that it is possible to inhibit this activity with a combination of Trichogen® and climbazole. This technology may have potential to reduce excessive hair shedding. Résumé Objectif Chez l'homme, le processus de perte de cheveux, désigné comme exog

  20. Cyclosporine A increases hair follicle growth by suppressing apoptosis-inducing factor nuclear translocation: a new mechanism.

    PubMed

    Lan, Shaowei; Liu, Feilin; Zhao, Guifang; Zhou, Tong; Wu, Chunling; Kou, Junna; Fan, Ruirui; Qi, Xiaojuan; Li, Yahui; Jiang, Yixu; Bai, Tingting; Li, Pengdong; Liu, Li; Hao, Deshun; Zhang, Lihong; Li, Yulin; Liu, Jin Yu

    2015-04-01

    Cyclosporine A (CsA) enhances hair growth through caspase-dependent pathways by retarding anagen-to-catagen phase transition in the hair follicle growth cycle. Whether apoptosis-inducing factor (AIF), a protein that induces caspase-independent apoptosis, can regulate the hair follicle cycle in response to CsA is currently unclear. Here, we show that the pro-hair growth properties of CsA are in part due to blockage of AIF nuclear translocation. We first isolate hair follicles from murine dorsal skin. We then used Western blot, immunohistochemistry and immunofluorescence to evaluate the expression and localization of AIF in hair follicles. We also determined whether modulation of AIF was responsible for the effects of CsA at the anagen-to-catagen transition. AIF was expressed in hair follicles during the anagen, catagen and telogen phases. There was significant nuclear translocation of AIF as hair follicles transitioned from anagen to late catagen phase; this was inhibited by CsA, likely due to reduced cyclophilin A expression and attenuated AIF release from mitochondria. However, we note that AIF translocation was not completely eliminated, which likely explains why the transition to catagen phase was severely retarded by CsA, rather than being completely inhibited. We speculate that blockade of the AIF signalling pathway is a critical event required for CsA-dependent promotion of hair growth in mice. The study of AIF-related signalling pathways may provide insight into hair diseases and suggest potential novel therapeutic strategies. PMID:25619112

  1. Exogenous R-Spondin1 Induces Precocious Telogen-to-Anagen Transition in Mouse Hair Follicles

    PubMed Central

    Li, Na; Liu, Shu; Zhang, Hui-Shan; Deng, Zhi-Li; Zhao, Hua-Shan; Zhao, Qian; Lei, Xiao-Hua; Ning, Li-Na; Cao, Yu-Jing; Wang, Hai-Bin; Liu, Shuang; Duan, En-Kui

    2016-01-01

    R-spondin proteins are novel Wnt/β-catenin agonists, which signal through their receptors leucine-rich repeat-containing G-protein coupled receptor (LGR) 4/5/6 and substantially enhance Wnt/β-catenin activity. R-spondins are reported to function in embryonic development. They also play important roles in stem cell functions in adult tissues, such as the intestine and mammary glands, which largely rely on Wnt/β-catenin signaling. However, in the skin epithelium and hair follicles, the information about R-spondins is deficient, although the expressions and functions of their receptors, LGR4/5/6, have already been studied in detail. In the present study, highly-enriched expression of the R-spondin family genes (Rspo1/2/3/4) in the hair follicle dermal papilla is revealed. Expression of Rspo1 in the dermal papilla is specifically and prominently upregulated before anagen entry, and exogenous recombinant R-spondin1 protein injection in mid-telogen leads to precocious anagen entry. Moreover, R-spondin1 activates Wnt/β-catenin signaling in cultured bulge stem cells in vitro, changing their fate determination without altering the cell proliferation. Our pioneering study uncovers a role of R-spondin1 in the activation of cultured hair follicle stem cells and the regulation of hair cycle progression, shedding new light on the governance of Wnt/β-catenin signaling in skin biology and providing helpful clues for future treatment of hair follicle disorders. PMID:27104524

  2. Exogenous R-Spondin1 Induces Precocious Telogen-to-Anagen Transition in Mouse Hair Follicles.

    PubMed

    Li, Na; Liu, Shu; Zhang, Hui-Shan; Deng, Zhi-Li; Zhao, Hua-Shan; Zhao, Qian; Lei, Xiao-Hua; Ning, Li-Na; Cao, Yu-Jing; Wang, Hai-Bin; Liu, Shuang; Duan, En-Kui

    2016-01-01

    R-spondin proteins are novel Wnt/β-catenin agonists, which signal through their receptors leucine-rich repeat-containing G-protein coupled receptor (LGR) 4/5/6 and substantially enhance Wnt/β-catenin activity. R-spondins are reported to function in embryonic development. They also play important roles in stem cell functions in adult tissues, such as the intestine and mammary glands, which largely rely on Wnt/β-catenin signaling. However, in the skin epithelium and hair follicles, the information about R-spondins is deficient, although the expressions and functions of their receptors, LGR4/5/6, have already been studied in detail. In the present study, highly-enriched expression of the R-spondin family genes (Rspo1/2/3/4) in the hair follicle dermal papilla is revealed. Expression of Rspo1 in the dermal papilla is specifically and prominently upregulated before anagen entry, and exogenous recombinant R-spondin1 protein injection in mid-telogen leads to precocious anagen entry. Moreover, R-spondin1 activates Wnt/β-catenin signaling in cultured bulge stem cells in vitro, changing their fate determination without altering the cell proliferation. Our pioneering study uncovers a role of R-spondin1 in the activation of cultured hair follicle stem cells and the regulation of hair cycle progression, shedding new light on the governance of Wnt/β-catenin signaling in skin biology and providing helpful clues for future treatment of hair follicle disorders. PMID:27104524

  3. Structural and Functional Analysis of Intact Hair Follicles and Pilosebaceous Units by Volumetric Multispectral Optoacoustic Tomography.

    PubMed

    Ford, Steven J; Bigliardi, Paul L; Sardella, Thomas C P; Urich, Alexander; Burton, Neal C; Kacprowicz, Marcin; Bigliardi, Mei; Olivo, Malini; Razansky, Daniel

    2016-04-01

    Visualizing anatomical and functional features of hair follicle development in their unperturbed environment is key in understanding complex mechanisms of hair pathophysiology and in discovery of novel therapies. Of particular interest is in vivo visualization of the intact pilosebaceous unit, vascularization of the hair bulb, and evaluation of the hair cycle, particularly in humans. Furthermore, noninvasive visualization of the sebaceous glands could offer crucial insight into the pathophysiology of follicle-related diseases and dry or seborrheic skin, in particular by combining in vivo imaging with other phenotyping, genotyping, and microbial analyses. The available imaging techniques are limited in their ability for deep tissue in vivo imaging of hair follicles and lipid-rich sebaceous glands in their entirety without biopsy. We developed a noninvasive, painless, and risk-free volumetric multispectral optoacoustic tomography method for deep tissue three-dimensional visualization of whole hair follicles and surrounding structures with high spatial resolution below 80 μm. Herein we demonstrate on-the-fly assessment of key morphometric parameters of follicles and lipid content as well as functional oxygenation parameters of the associated capillary bed. The ease of handheld operation and versatility of the newly developed approach poise it as an indispensable tool for early diagnosis of disorders of the pilosebaceous unit and surrounding structures, and for monitoring the efficacy of cosmetic and therapeutic interventions. PMID:26743603

  4. Hair follicle melanocyte precursors are awoken by ultraviolet radiation via a cell extrinsic mechanism.

    PubMed

    Ferguson, Blake; Kunisada, Takahiro; Aoki, Hitomi; Handoko, Herlina Y; Walker, Graeme J

    2015-06-01

    Melanocyte stem cells (MCSCs) in the upper portion of the hair follicle periodically supply melanocytes (MCs) that migrate downward into the hair bulb during anagen, the growth phase of the hair cycle. However MCs can also migrate upwards. We previously observed an increase in epidermal MC density in the mouse epidermis after a single ultraviolet radiation (UVR) exposure in neonatal, but not adult mice. To better understand MCSC activation by UVR we methodically studied the response of MCs to narrow band UVB (since UVA does not invoke this response) exposure in neonatal mice, and in adults at different stages of the hair cycle. We found that a single exposure of adult mice did not induce activation of MCSCs, in any stage of the hair cycle. When adult mice MCSCs were isolated in telogen, multiple UVB exposures resulted in their activation and production of daughter cells, which migrated upwards to the epidermis. Importantly, the MCSCs produced new progeny without themselves having incurred DNA damage after UVB exposure. This, together with examination of MC localisation in the skin of mice overexpressing stem cell factor in their keratinocytes, leads us to conclude that MCSC activation by UVB is driven via paracrine production of either SCF and/or other keratinocyte cytokines. We re-examined the increase in epidermal MC density in neonatal mouse skin. This effect was much more profound after only a single exposure than that of even multiple exposures to adult skin, and we show that in this setting also, the epidermal MCs mostly derive from activation of MC precursors in the upper hair follicle, and most likely via a cell extrinsic mechanism. Hence, although adaptive changes in the skin induced by repetitive UVB exposures are necessary in adult mice, in both the adult and neonatal context the division and migration upwards of follicular MCSCs is the major mode by which epidermal MC numbers increase after UVR exposure. PMID:25966309

  5. Keratin network modifications lead to the mechanical stiffening of the hair follicle fiber.

    PubMed

    Bornschlögl, Thomas; Bildstein, Lucien; Thibaut, Sébastien; Santoprete, Roberto; Fiat, Françoise; Luengo, Gustavo S; Doucet, Jean; Bernard, Bruno A; Baghdadli, Nawel

    2016-05-24

    The complex mechanical properties of biomaterials such as hair, horn, skin, or bone are determined by the architecture of the underlying fibrous bionetworks. Although much is known about the influence of the cytoskeleton on the mechanics of isolated cells, this has been less studied in tridimensional tissues. We used the hair follicle as a model to link changes in the keratin network composition and architecture to the mechanical properties of the nascent hair. We show using atomic force microscopy that the soft keratinocyte matrix at the base of the follicle stiffens by a factor of ∼360, from 30 kPa to 11 MPa along the first millimeter of the follicle. The early mechanical stiffening is concomitant to an increase in diameter of the keratin macrofibrils, their continuous compaction, and increasingly parallel orientation. The related stiffening of the material follows a power law, typical of the mechanics of nonthermal bending-dominated fiber networks. In addition, we used X-ray diffraction to monitor changes in the (supra)molecular organization within the keratin fibers. At later keratinization stages, the inner mechanical properties of the macrofibrils dominate the stiffening due to the progressive setting up of the cystine network. Our findings corroborate existing models on the sequence of biological and structural events during hair keratinization. PMID:27162354

  6. Keratin network modifications lead to the mechanical stiffening of the hair follicle fiber

    PubMed Central

    Bornschlögl, Thomas; Bildstein, Lucien; Thibaut, Sébastien; Santoprete, Roberto; Fiat, Françoise; Luengo, Gustavo S.; Doucet, Jean; Bernard, Bruno A.; Baghdadli, Nawel

    2016-01-01

    The complex mechanical properties of biomaterials such as hair, horn, skin, or bone are determined by the architecture of the underlying fibrous bionetworks. Although much is known about the influence of the cytoskeleton on the mechanics of isolated cells, this has been less studied in tridimensional tissues. We used the hair follicle as a model to link changes in the keratin network composition and architecture to the mechanical properties of the nascent hair. We show using atomic force microscopy that the soft keratinocyte matrix at the base of the follicle stiffens by a factor of ∼360, from 30 kPa to 11 MPa along the first millimeter of the follicle. The early mechanical stiffening is concomitant to an increase in diameter of the keratin macrofibrils, their continuous compaction, and increasingly parallel orientation. The related stiffening of the material follows a power law, typical of the mechanics of nonthermal bending-dominated fiber networks. In addition, we used X-ray diffraction to monitor changes in the (supra)molecular organization within the keratin fibers. At later keratinization stages, the inner mechanical properties of the macrofibrils dominate the stiffening due to the progressive setting up of the cystine network. Our findings corroborate existing models on the sequence of biological and structural events during hair keratinization. PMID:27162354

  7. Microenvironmental reprogramming by three-dimensional culture enables dermal papilla cells to induce de novo human hair-follicle growth.

    PubMed

    Higgins, Claire A; Chen, James C; Cerise, Jane E; Jahoda, Colin A B; Christiano, Angela M

    2013-12-01

    De novo organ regeneration has been observed in several lower organisms, as well as rodents; however, demonstrating these regenerative properties in human cells and tissues has been challenging. In the hair follicle, rodent hair follicle-derived dermal cells can interact with local epithelia and induce de novo hair follicles in a variety of hairless recipient skin sites. However, multiple attempts to recapitulate this process in humans using human dermal papilla cells in human skin have failed, suggesting that human dermal papilla cells lose key inductive properties upon culture. Here, we performed global gene expression analysis of human dermal papilla cells in culture and discovered very rapid and profound molecular signature changes linking their transition from a 3D to a 2D environment with early loss of their hair-inducing capacity. We demonstrate that the intact dermal papilla transcriptional signature can be partially restored by growth of papilla cells in 3D spheroid cultures. This signature change translates to a partial restoration of inductive capability, and we show that human dermal papilla cells, when grown as spheroids, are capable of inducing de novo hair follicles in human skin. PMID:24145441

  8. Microenvironmental reprogramming by three-dimensional culture enables dermal papilla cells to induce de novo human hair-follicle growth

    PubMed Central

    Higgins, Claire A.; Chen, James C.; Cerise, Jane E.; Jahoda, Colin A. B.; Christiano, Angela M.

    2013-01-01

    De novo organ regeneration has been observed in several lower organisms, as well as rodents; however, demonstrating these regenerative properties in human cells and tissues has been challenging. In the hair follicle, rodent hair follicle-derived dermal cells can interact with local epithelia and induce de novo hair follicles in a variety of hairless recipient skin sites. However, multiple attempts to recapitulate this process in humans using human dermal papilla cells in human skin have failed, suggesting that human dermal papilla cells lose key inductive properties upon culture. Here, we performed global gene expression analysis of human dermal papilla cells in culture and discovered very rapid and profound molecular signature changes linking their transition from a 3D to a 2D environment with early loss of their hair-inducing capacity. We demonstrate that the intact dermal papilla transcriptional signature can be partially restored by growth of papilla cells in 3D spheroid cultures. This signature change translates to a partial restoration of inductive capability, and we show that human dermal papilla cells, when grown as spheroids, are capable of inducing de novo hair follicles in human skin. PMID:24145441

  9. Androgen actions on the human hair follicle: perspectives.

    PubMed

    Inui, Shigeki; Itami, Satoshi

    2013-03-01

    Androgens stimulate beard growth but suppress hair growth in androgenetic alopecia (AGA). This condition is known as 'androgen paradox'. Human pilosebaceous units possess enough enzymes to form the active androgens testosterone and dihydrotestosterone. In hair follicles, 5α-reductase type 1 and 2, androgen receptors (AR) and AR coactivators can regulate androgen sensitivity of dermal papillae (DP). To regulate hair growth, androgens stimulate production of IGF-1 as positive mediators from beard DP cells and of TGF-β1, TGF-β2, dickkopf1 and IL-6 as negative mediators from balding DP cells. In addition, androgens enhance inducible nitric oxide synthase from occipital DP cells and stem cell factor for positive regulation of hair growth in beard and negative regulation of balding DP cells. Moreover, AGA involves crosstalk between androgen and Wnt/β-catenin signalling. Finally, recent data on susceptibility genes have provided us with the impetus to investigate the molecular pathogenesis of AGA. PMID:23016593

  10. Adeno-associated virus expresses transgenes in hair follicles and epidermis.

    PubMed

    Hengge, U R; Mirmohammadsadegh, A

    2000-09-01

    Adeno-associated virus (AAV) vectors are nonpathogenic, integrating DNA vectors capable of transducing dividing and nondividing cells with the potential of long-term expression. Evaluating this interesting vector system in the skin for the first time, we found that an AAV vector containing the lacZ gene (AAVlacZ) led to the expression of beta-galactosidase for more than 6 weeks following in vivo injection. Interestingly, expression was present not only in dividing and postmitotic epidermal keratinocytes but also in hair follicle epithelial cells and eccrine sweat glands. However, expression upon readministration was limited. Functional studies in swine using human erythropoietin were hampered by immunogenicity. Thus, AAV seems to be the only vector to date that efficiently targets hair follicle epithelial cells. It may also be useful when longer term expression in keratinocytes than that achievable by direct injection of plasmid DNA is desired. PMID:10985948

  11. Therapeutic strategy for hair regeneration: Hair cycle activation, niche environment modulation, wound-induced follicle neogenesis and stem cell engineering

    PubMed Central

    Chueh, Shan-Chang; Lin, Sung-Jan; Chen, Chih-Chiang; Lei, Mingxing; Wang, Ling Mei; Widelitz, Randall B.; Hughes, Michael W.; Jiang, Ting-Xing; Chuong, Cheng Ming

    2013-01-01

    Introduction There are major new advancements in the fields of stem cell biology, developmental biology, regenerative hair cycling, and tissue engineering. The time is ripe to integrate, translate and apply these findings to tissue engineering and regenerative medicine. Readers will learn about new progress in cellular and molecular aspects of hair follicle development, regeneration and potential therapeutic opportunities these advances may offer. Areas covered Here we use hair follicle formation to illustrate this progress and to identify targets for potential strategies in therapeutics. Hair regeneration is discussed in four different categories. (1) Intra-follicle regeneration (or renewal) is the basic production of hair fibers from hair stem cells and dermal papillae in existing follicles. (2) Chimeric follicles via epithelial-mesenchymal recombination to identify stem cells and signaling centers. (3) Extra-follicular factors including local dermal and systemic factors can modulate the regenerative behavior of hair follicles, and may be relatively easy therapeutic targets. (4) Follicular neogenesis means the de novo formation of new follicles. In addition, scientists are working to engineer hair follicles, which require hair forming competent epidermal cells and hair inducing dermal cells. Expert opinion Ideally self-organizing processes similar to those occurring during embryonic development should be elicited with some help from biomaterials. PMID:23289545

  12. Hair follicles stimulation effects of gelatin nanofibers containing silver nanoparticles.

    PubMed

    Tura, V; Hagiu, B A; Mangalagiu, I I

    2010-04-01

    In the present work we studied gelatin nanofibers containing silver nanoparticles of 14 +/- 6 nm mean diameter, prepared by electrospinning. The electrospinnable solution was obtained by drop-wise adding a AgNO3/acetic acid solution to gelatin which had previously been dissolved in a mixture of formic acid and acetic acid. The silver metallic nanoparticles were formed due to the reducing action of the formic acid. The resulted material was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray diffraction (XRD). Subcutaneous implants in rabbits demonstrated that the gelatin nanofibers containing silver nanoparticles were resorbed with no inflammatory reactions. An increased number of secondary hair follicles developed in tissue regions close to implants, suggesting the existence of a stimulation effect of silver nanoparticles on hair follicles. PMID:20738075

  13. Quantification of bacteria in isolated pilosebaceous follicles in normal skin.

    PubMed

    Puhvel, S M; Reisner, R M; Amirian, D A

    1975-12-01

    A technique for quantitating bacteria in isolated pilosebaceous follicles is described. This involves microdissection of the follicles from biopsies of skin, using the method of chemical pretreatment of skin to facilitate the separation of the epidermis and epidermal appendages from the dermis. The aerobic cocci and anaerobic diphtheroids in pilosebaceous follicles in 66 biopsies of scalp and 48 biopsies of skin of the upper back were quantitated using this technique. On the back, aerobic staphylococci were very sparse in normal follicles, indicating that their primary habitat on the skin must be on the skin surface rather than within follicles. Of 138 isolated follicles from skin of the upper back, 94 contained no aerobic cocci. Anaerobic organisms were present in high numbers within normal follicles. The geometric mean density of anaerobes in 138 isolated follicles from skin of the upper back was 3.8 X 10(4) diphtheroids per follicle. Eighty-eight follicles contained more than 10(4) anaerobic diphtheroids. Using data from scalp biopsies we found that there was a correlation between the weight of sebaceous glands and the density of anaerobes within the follicles attached to these glands (coefficient of correlation = 0.6). PMID:127814

  14. Transcription Factor CTIP2 maintains hair follicle stem cell pool and contributes to altered expression of LHX2 and NFATC1

    PubMed Central

    Bhattacharya, Shreya; Wheeler, Heather; Leid, Mark; Ganguli-Indra, Gitali; Indra, Arup K.

    2015-01-01

    Transcription factor CTIP2 (COUP-TF-interacting protein 2), also known as BCL11B, is expressed in hair follicles of embryonic and adult skin. Ctip2-null mice exhibit reduced hair follicle density during embryonic development. In contrast, conditional inactivation of Ctip2 in epidermis (Ctip2ep−/− mice) leads to a shorter telogen and premature entry into anagen during the second phase of hair cycling without a detectable change in the number of hair follicles. Keratinocytes of the bulge stem cells niche of Ctip2ep−/− mice proliferate more and undergo reduced apoptosis than the corresponding cells of wild-type mice. However, premature activation of follicular stem cells in mice lacking CTIP2 leads to the exhaustion of this stem cell compartment in comparison to Ctip2L2/L2 mice, which retained quiescent follicle stem cells. CTIP2 modulates expression of genes encoding EGFR and NOTCH1 during formation of hair follicles, and those encoding NFATC1 and LHX2 during normal hair cycling in adult skin. The expression of most of these genes is disrupted in mice lacking CTIP2 and these alterations may underlie the phenotype of Ctip2-null and Ctip2ep−/− mice. CTIP2 appears to serve as a transcriptional organizer that integrates input from multiple signaling cues during hair follicle morphogenesis and hair cycling. PMID:26176759

  15. Targeting to the hair follicles: current status and potential.

    PubMed

    Wosicka, Hanna; Cal, Krzysztof

    2010-02-01

    The pilosebaceous unit is a complex structure that undergoes a specific growth cycle and comprises a few important drug targeting sites. For example, drugs can be targeted to the bulge region with stem cells or to the sebaceous glands. Interest in pilosebaceous units is directed towards their utilization as reservoirs for localized therapy and also as a transport pathway for systemic drug delivery. Improved investigative methods, such as differential stripping, are being developed in order to determine follicular penetration. This article reviews relevant aspects of effective follicle-targeting formulations and delivery systems as well as the activity status of hair follicles, and variations in follicle size and distribution throughout various body regions. Each of these factors strongly affects follicular permeation. We provide examples of improved penetration of particle-based formulations and of a size-dependent manner of follicular penetration. Contradictions are also discussed, indicating the need for detailed future investigations. PMID:20060268

  16. Skin and hair changes during pregnancy

    MedlinePlus

    Most women have changes in their skin, hair, and nails during pregnancy. Most of these are normal and go away after pregnancy. ... changes in the texture and growth of your hair and nails during pregnancy. Some women say that ...

  17. Signaling Involved in Hair Follicle Morphogenesis and Development

    PubMed Central

    Rishikaysh, Pisal; Dev, Kapil; Diaz, Daniel; Qureshi, Wasay Mohiuddin Shaikh; Filip, Stanislav; Mokry, Jaroslav

    2014-01-01

    Hair follicle morphogenesis depends on Wnt, Shh, Notch, BMP and other signaling pathways interplay between epithelial and mesenchymal cells. The Wnt pathway plays an essential role during hair follicle induction, Shh is involved in morphogenesis and late stage differentiation, Notch signaling determines stem cell fate while BMP is involved in cellular differentiation. The Wnt pathway is considered to be the master regulator during hair follicle morphogenesis. Wnt signaling proceeds through EDA/EDAR/NF-κB signaling. NF-κB regulates the Wnt pathway and acts as a signal mediator by upregulating the expression of Shh ligand. Signal crosstalk between epithelial and mesenchymal cells takes place mainly through primary cilia. Primary cilia formation is initiated with epithelial laminin-511 interaction with dermal β-1 integrin, which also upregulates expression of downstream effectors of Shh pathway in dermal lineage. PDGF signal transduction essential for crosstalk is mediated through epithelial PDGF-A and PDGFRα expressed on the primary cilia. Dermal Shh and PDGF signaling up-regulates dermal noggin expression; noggin is a potent inhibitor of BMP signaling which helps in counteracting BMP mediated β-catenin inhibition. This interplay of signaling between the epithelial and dermal lineage helps in epithelial Shh signal amplification. The dermal Wnt pathway helps in upregulation of epithelial Notch expression. Dysregulation of these pathways leads to certain abnormalities and in some cases even tumor outgrowth. PMID:24451143

  18. Influence of the hair cycle on the thickness of mouse skin

    SciTech Connect

    Hansen, L.S.; Coggle, J.E.; Wells, J.; Charles, M.W.

    1984-12-01

    The data on mouse skin thickness reported here was prompted by the need to know the true position of basal cells of the epidermis and hair follicles as these are important cells at risk for a variety of skin reactions including carcinogenesis following exposure to radiation. There is little reliable data in the literature and most previous reports have ignored the shrinkage of skin that occurs because of its natural elasticity. The values determined for mouse flank skin in telogen--the resting phase of the hair cycle for the different skin layers--are epidermis 10 micron, corium 250 micron, adipose layer 150 micron, and hair follicle depth 150 micron. Three days after chemical depilation which triggers the hair follicles into active cycle (anagen) the epidermis doubles in thickness, remains at this value for 7 days, and then gradually returns to telogen values by day 18. The corium and adipose layers also increase significantly to reach approximately 390 micron and approximately 260 micron, respectively, by day 10 and then return to control values from day 15 onward. The change in hair follicles depths are more dramatic with active follicle basal cells reaching approximately 450-550 micron into the adipose layer between days 7 and 15. One important finding is that chemical depilation does not affect the telogen thickness of skin-the teleogen values for the epidermis and dermis immediately prior to and immediately after depilation were similar to those 23 days later at the beginning of the next telogen phase.

  19. Human TSC2-null fibroblast-like cells induce hair follicle neogenesis and hamartoma morphogenesis.

    PubMed

    Li, Shaowei; Thangapazham, Rajesh L; Wang, Ji-An; Rajesh, Sangeetha; Kao, Tzu-Cheg; Sperling, Leonard; Moss, Joel; Darling, Thomas N

    2011-01-01

    Hamartomas are composed of cells native to an organ but abnormal in number, arrangement or maturity. In the tuberous sclerosis complex (TSC), hamartomas develop in multiple organs because of mutations in TSC1 or TSC2. Here we show that TSC2-null fibroblast-like cells grown from human TSC skin hamartomas induced normal human keratinocytes to form hair follicles and stimulated hamartomatous changes. Follicles were complete with sebaceous glands, hair shafts and inner and outer root sheaths. TSC2-null cells surrounding the hair bulb expressed markers of the dermal sheath and dermal papilla. Tumour xenografts recapitulated characteristics of TSC skin hamartomas with increased mammalian target of the rapamycin complex 1 (mTORC1) activity, angiogenesis, mononuclear phagocytes and epidermal proliferation. Treatment with an mTORC1 inhibitor normalized these parameters and reduced the number of tumour cells. These studies indicate that TSC2-null cells are the inciting cells for TSC skin hamartomas, and suggest that studies on hamartomas will provide insights into tissue morphogenesis and regeneration. PMID:21407201

  20. Ageing and colony-forming efficiency of human hair follicle keratinocytes.

    PubMed

    Lecardonnel, Jennifer; Deshayes, Nathalie; Genty, Gaïanne; Parent, Nathalie; Bernard, Bruno A; Rathman-Josserand, Michelle; Paris, Maryline

    2013-09-01

    The decline of tissue regenerative potential of skin and hair is a hallmark of physiological ageing and may be associated with age-related changes in tissue-specific stem cells and/or their environment. Human hair follicles (hHF) contain keratinocytes having the property of stem cells such as clonogenic potential. Growth capacity of hHF keratinocytes shows that most of the colony-forming cells are classified as holoclones, meroclones or paraclones when analysed in a clonal assay (Cell, Volume 76, page 1063). Despite the well-known impact of ageing on human hair growth, little is known about changes in hHF keratinocyte clonogenic potential with age. This study aimed at assessing the clone-forming efficiency (CFE) of hHF keratinocytes from three age groups of human donors. It demonstrates that ageing affects hHF keratinocyte CFE. PMID:23947676

  1. Red Ginseng Extract Promotes the Hair Growth in Cultured Human Hair Follicles

    PubMed Central

    Park, Gyeong-Hun; Park, Ki-young; Cho, Hong-il; Lee, Sang-Min; Han, Ji Su; Chang, Sung Eun; Lee, Mi Woo; Choi, Jee Ho; Moon, Kee Chan; Shin, Hyoseung; Kang, Yong Jung; Lee, Dong Hun

    2015-01-01

    Abstract Ginseng has been shown to promote hair growth in several recent studies. However, its effects on human hair follicles and its mechanisms of action have not been sufficiently elucidated. This study aimed to investigate the hair growth-promoting effects of red ginseng extract (RGE) and its ginsenosides. The proliferative activities of cultured human hair follicles treated with RGE and ginsenoside-Rb1 were assessed using Ki-67 immunostaining. Their effects on isolated human dermal papilla cells (hDPCs) were evaluated using cytotoxicity assays, immunoblot analysis of signaling proteins, and the determination of associated growth factors. We examined the ability of RGE and ginsenosides to protect hair matrix keratinocyte proliferation against dihydrotestosterone (DHT)-induced suppression and their effects on the expression of androgen receptor. The in vivo hair growth-promoting effect of RGE was also investigated in C57BL/6 mice. Both RGE and ginsenoside-Rb1 enhanced the proliferation of hair matrix keratinocytes. hDPCs treated with RGE or ginsenoside-Rb1 exhibited substantial cell proliferation and the associated phosphorylation of ERK and AKT. Moreover, RGE, ginsenoside-Rb1, and ginsenoside-Rg3 abrogated the DHT-induced suppression of hair matrix keratinocyte proliferation and the DHT-induced upregulation of the mRNA expression of androgen receptor in hDPCs. Murine experiments revealed that the subcutaneous injection of 3% RGE resulted in more rapid hair growth than the negative control. In conclusion, RGE and its ginsenosides may enhance hDPC proliferation, activate ERK and AKT signaling pathways in hDPCs, upregulate hair matrix keratinocyte proliferation, and inhibit the DHT-induced androgen receptor transcription. These results suggest that red ginseng may promote hair growth in humans. PMID:25396716

  2. Red ginseng extract promotes the hair growth in cultured human hair follicles.

    PubMed

    Park, Gyeong-Hun; Park, Ki-young; Cho, Hong-il; Lee, Sang-Min; Han, Ji Su; Won, Chong Hyun; Chang, Sung Eun; Lee, Mi Woo; Choi, Jee Ho; Moon, Kee Chan; Shin, Hyoseung; Kang, Yong Jung; Lee, Dong Hun

    2015-03-01

    Ginseng has been shown to promote hair growth in several recent studies. However, its effects on human hair follicles and its mechanisms of action have not been sufficiently elucidated. This study aimed to investigate the hair growth-promoting effects of red ginseng extract (RGE) and its ginsenosides. The proliferative activities of cultured human hair follicles treated with RGE and ginsenoside-Rb1 were assessed using Ki-67 immunostaining. Their effects on isolated human dermal papilla cells (hDPCs) were evaluated using cytotoxicity assays, immunoblot analysis of signaling proteins, and the determination of associated growth factors. We examined the ability of RGE and ginsenosides to protect hair matrix keratinocyte proliferation against dihydrotestosterone (DHT)-induced suppression and their effects on the expression of androgen receptor. The in vivo hair growth-promoting effect of RGE was also investigated in C57BL/6 mice. Both RGE and ginsenoside-Rb1 enhanced the proliferation of hair matrix keratinocytes. hDPCs treated with RGE or ginsenoside-Rb1 exhibited substantial cell proliferation and the associated phosphorylation of ERK and AKT. Moreover, RGE, ginsenoside-Rb1, and ginsenoside-Rg3 abrogated the DHT-induced suppression of hair matrix keratinocyte proliferation and the DHT-induced upregulation of the mRNA expression of androgen receptor in hDPCs. Murine experiments revealed that the subcutaneous injection of 3% RGE resulted in more rapid hair growth than the negative control. In conclusion, RGE and its ginsenosides may enhance hDPC proliferation, activate ERK and AKT signaling pathways in hDPCs, upregulate hair matrix keratinocyte proliferation, and inhibit the DHT-induced androgen receptor transcription. These results suggest that red ginseng may promote hair growth in humans. PMID:25396716

  3. Chitosan nanoparticles for targeting and sustaining minoxidil sulphate delivery to hair follicles.

    PubMed

    Matos, Breno Noronha; Reis, Thaiene Avila; Gratieri, Taís; Gelfuso, Guilherme Martins

    2015-04-01

    This work developed minoxidil sulphate-loaded chitosan nanoparticles (MXS-NP) for targeted delivery to hair follicles, which could sustain drug release and improve the topical treatment of alopecia. Chitosan nanoparticles were obtained using low-molecular weight chitosan and tripolyphosphate as crosslink agent. MXS-NP presented a monomodal distribution with hydrodynamic diameter of 235.5 ± 99.9 nm (PDI of 0.31 ± 0.01) and positive zeta potential (+38.6 ± 6.0 mV). SEM analysis confirmed nanoparticles average size and spherical shape. A drug loading efficiency of 73.0 ± 0.3% was obtained with polymer:drug ratio of 1:1 (w/w). Drug release through cellulose acetate membranes from MXS-NP was sustained in about 5 times in comparison to the diffusion rate of MXS from the solution (188.9 ± 6.0 μg/cm(2)/h and 35.4 ± 1.8 μg/cm(2)/h). Drug permeation studies through the skin in vitro, followed by selective recovery of MXS from the hair follicles, showed that MXS-NP application resulted in a two-fold MXS increase into hair follicles after 6h in comparison to the control solution (5.9 ± 0.6 μg/cm(2) and 2.9 ± 0.8 μg/cm(2)). MXS-loading in nanoparticles appears as a promising and easy strategy to target and sustain drug delivery to hair follicles, which may improve the topical treatment of alopecia. PMID:25647618

  4. Delivery and targeting of nanoparticles into hair follicles.

    PubMed

    Fang, Chia-Lang; Aljuffali, Ibrahim A; Li, Yi-Ching; Fang, Jia-You

    2014-01-01

    It has been demonstrated that nanoparticles used for follicular delivery provide some advantages over conventional pathways, including improved skin bioavailability, enhanced penetration depth, prolonged residence duration, fast transport into the skin and tissue targeting. This review describes recent developments using nanotechnology approaches for drug delivery into the follicles. Different types of nanosystems may be employed for management of follicular permeation, such as polymeric nanoparticles, metallic nanocrystals, liposomes, and lipid nanoparticles. This review systematically introduces the mechanisms of follicles for nanoparticulate penetration, highlighting the therapeutic potential of drug-loaded nanoparticles for treating skin diseases. Special attention is paid to the use of nanoparticles in treating appendage-related disorders, in particular, nanomedical strategies for treating alopecia, acne, and transcutaneous immunization. PMID:25375342

  5. Impaired hair follicle morphogenesis and cycling with abnormal epidermal differentiation in nackt mice, a cathepsin L-deficient mutation.

    PubMed

    Benavides, Fernando; Starost, Matthew F; Flores, Mónica; Gimenez-Conti, Irma B; Guénet, Jean-Louis; Conti, Claudio J

    2002-08-01

    We previously described an autosomal-recessive mutation named nackt (nkt) exhibiting partial alopecia associated with CD4(+) T-cell deficiency. Also, we recently reported that nkt (now Ctsl(nkt)) comprises a deletion in the cathepsin L (Ctsl) gene. Another recent study reported that Ctsl knockout mice have CD4(+) T-cell deficiency and periodic shedding of hair, which recapitulate the nkt mutation and the old furless (fs) mutation. The current study focuses on the dermatological aspects of the nkt mutation. Careful histological analysis of skin development of homozygous nkt mice revealed a delayed hair follicle morphogenesis and late onset of the first catagen stage. The skin of Ctsl(nkt)/Ctsl(nkt) mice showed mild epidermal hyperplasia and hyperkeratosis, severe hyperplasia of the sebaceous glands, and structural alterations of hair follicles. Epidermal differentiation seems to be affected in nkt skin, with overexpression of involucrin and profilaggrin/filaggrin along with focal areas of keratin 6 expression in the interfollicular epidermis. Severe epidermal hyperplasia, acanthosis, orthokeratosis, and hyperkeratosis were only observed in mice maintained in nonpathogen-free environments. The analysis of Rag2-/- Ctsl(nkt)/Ctsl(nkt) double-mutant mice indicates that the skin defect remains under the absence of T and B cells. This animal model provides in vivo evidence that cysteine protease cathepsin L plays a critical role in hair follicle morphogenesis and cycling, as well as epidermal differentiation. PMID:12163394

  6. Impaired Hair Follicle Morphogenesis and Cycling with Abnormal Epidermal Differentiation in nackt Mice, a Cathepsin L-Deficient Mutation

    PubMed Central

    Benavides, Fernando; Starost, Matthew F.; Flores, Mónica; Gimenez-Conti, Irma B.; Guénet, Jean-Louis; Conti, Claudio J.

    2002-01-01

    We previously described an autosomal-recessive mutation named nackt (nkt) exhibiting partial alopecia associated with CD4+ T-cell deficiency. Also, we recently reported that nkt (now Ctslnkt) comprises a deletion in the cathepsin L (Ctsl) gene. Another recent study reported that Ctsl knockout mice have CD4+ T-cell deficiency and periodic shedding of hair, which recapitulate the nkt mutation and the old furless (fs) mutation. The current study focuses on the dermatological aspects of the nkt mutation. Careful histological analysis of skin development of homozygous nkt mice revealed a delayed hair follicle morphogenesis and late onset of the first catagen stage. The skin of Ctslnkt/Ctslnkt mice showed mild epidermal hyperplasia and hyperkeratosis, severe hyperplasia of the sebaceous glands, and structural alterations of hair follicles. Epidermal differentiation seems to be affected in nkt skin, with overexpression of involucrin and profilaggrin/filaggrin along with focal areas of keratin 6 expression in the interfollicular epidermis. Severe epidermal hyperplasia, acanthosis, orthokeratosis, and hyperkeratosis were only observed in mice maintained in nonpathogen-free environments. The analysis of Rag2−/− Ctslnkt/Ctslnkt double-mutant mice indicates that the skin defect remains under the absence of T and B cells. This animal model provides in vivo evidence that cysteine protease cathepsin L plays a critical role in hair follicle morphogenesis and cycling, as well as epidermal differentiation. PMID:12163394

  7. Advanced chemical imaging and comparison of human and porcine hair follicles for drug delivery by confocal Raman microscopy

    NASA Astrophysics Data System (ADS)

    Franzen, Lutz; Mathes, Christiane; Hansen, Steffi; Windbergs, Maike

    2013-06-01

    Hair follicles have recently gained a lot of interest for dermal drug delivery. They provide facilitated penetration into the skin and a high potential to serve as a drug depot. In this area of research, excised pig ear is a widely accepted in vitro model to evaluate penetration of drug delivery into hair follicles. However, a comparison of human and porcine follicles in terms of chemical composition has not been performed so far. In this study, we applied confocal Raman microscopy as a chemically selective imaging technique to compare human and porcine follicle composition and to visualize component distribution within follicle cross-sections. Based on the evaluation of human and porcine Raman spectra optical similarity for both species was successfully confirmed. Furthermore, cyanoacrylate skin surface biopsies, which are generally used to determine the extent of follicular penetration, were imaged by a novel complementary analytical approach combining confocal Raman microscopy and optical profilometry. This all-encompassing analysis allows investigation of intactness and component distribution of the excised hair bulb in three dimensions. Confocal Raman microscopy shows a high potential as a noninvasive and chemically selective technique for the analysis of trans-follicular drug delivery.

  8. Significant damage of the skin and hair following hair bleaching.

    PubMed

    Jeong, Mi-Sook; Lee, Chang-Moon; Jeong, Won-Ji; Kim, Seong-Jin; Lee, Ki-Young

    2010-10-01

    Scalp burns can be caused by hair bleaching with excess procedures such as unnecessary heating and excessive treatment with bleaching agents. The aim of this study was to investigate the morphological and histological changes of the hair and skin after bleaching. Ammonium persulfate and hydrogen peroxide (6% or 9%) solution mixed at a ratio of 1:2 (weight ratio) were sufficiently applied to human hairs and rat skin. The bleached hairs were brightened up to yellow by increasing the concentration of hydrogen peroxide and time of bleach treatment. After bleaching, scanning electron microscopy (SEM) was used to observe that the cuticle scales of the hairs were irregular and lifted. The mechanical properties of the bleached hairs, such as tensile strength and elongation, were slightly different than the untreated hairs. The tested rat skin showed severe swelling after treatment of the bleaching agent (9% hydrogen peroxide). The rat skin bleached with 9% hydrogen peroxide exhibited epidermal thinning and subepidermal vesicle formation. The extracellular matrix of the skin was seriously disrupted after bleaching. Therefore, the use of only suitable bleaching procedures is suggested in order to avoid injuries. PMID:20860738

  9. Gorab is required for dermal condensate cells to respond to hedgehog signals during hair follicle morphogenesis

    PubMed Central

    Liu, Ying; Snedecor, Elizabeth R.; Choi, Yeon Ja; Yang, Ning; Zhang, Xu; Xu, Yuhuan; Han, Yunlin; Jones, Evan C.; Shroyer, Kenneth R.; Clark, Richard A.; Zhang, Lianfeng; Qin, Chuan; Chen, Jiang

    2015-01-01

    GORAB is a golgin that localizes predominantly at the Golgi apparatus and physically interacts with small GTPases. GORAB is ubiquitously expressed in mammalian tissues, including the skin. However, the biological function of this golgin in skin is unknown. Here, we report that disrupting the expression of the Gorab gene in mice results in hair follicle morphogenesis defects that were characterized by impaired follicular keratinocyte differentiation. This hair follicle phenotype was associated with markedly suppressed hedgehog (Hh) signaling pathway in dermal condensates in vivo. Gorab-deficient dermal mesenchymal cells also displayed significantly reduced capability to respond to Hh pathway activation in vitro. Furthermore, we found that the formation of primary cilium, a cellular organelle that is essential for the Hh pathway, was impaired in mutant dermal papilla cells, suggesting that Gorab may be required for the Hh pathway through facilitating the formation of primary cilia. Thus, data obtained from this study provided insight onto the biological functions of Gorab during embryonic morphogenesis of skin in which Hh signaling and primary cilia exert important functions. PMID:26967474

  10. Gorab Is Required for Dermal Condensate Cells to Respond to Hedgehog Signals during Hair Follicle Morphogenesis.

    PubMed

    Liu, Ying; Snedecor, Elizabeth R; Choi, Yeon Ja; Yang, Ning; Zhang, Xu; Xu, Yuhuan; Han, Yunlin; Jones, Evan C; Shroyer, Kenneth R; Clark, Richard A; Zhang, Lianfeng; Qin, Chuan; Chen, Jiang

    2016-02-01

    GORAB is a golgin that localizes predominantly at the Golgi apparatus and physically interacts with small guanosine triphosphatases. GORAB is ubiquitously expressed in mammalian tissues, including the skin. However, the biological function of this golgin in skin is unknown. Here, we report that disrupting the expression of the Gorab gene in mice results in hair follicle morphogenesis defects that were characterized by impaired follicular keratinocyte differentiation. This hair follicle phenotype was associated with markedly suppressed hedgehog (Hh) signaling pathway in dermal condensates in vivo. Gorab-deficient dermal mesenchymal cells also displayed a significantly reduced capability to respond to Hh pathway activation in vitro. Furthermore, we found that the formation of the primary cilium, a cellular organelle that is essential for the Hh pathway, was impaired in mutant dermal condensate cells, suggesting that Gorab may be required for the Hh pathway through facilitating the formation of primary cilia. Thus, data obtained from this study provided insight into the biological functions of Gorab during embryonic morphogenesis of the skin in which Hh signaling and primary cilia exert important functions. PMID:26967474

  11. Donor-derived DNA in hair follicles of recipients after allogeneic hematopoietic stem cell transplantation.

    PubMed

    Jacewicz, R; Lewandowski, K; Rupa-Matysek, J; Jedrzejczyk, M; Brzezinski, P M; Dobosz, T; Jonkisz, A; Szram, S; Komarnicki, M; Berent, J

    2010-11-01

    The hair follicles of recipients of allogeneic hematopoietic SCT (HSCT) constitute the tissue with the greatest need for regeneration after high-dose chemotherapy. Previous studies have shown a lack of donor-derived DNA in the hair follicles of recipients. Therefore, we carried out a study to determine whether male donor-derived genetic material can be found in female recipients' hair follicles after HSCT. Fluorescent-based PCR with analyses of Y-chromosome STR (Y-STR) and RQ-PCR with the sex-determining region Y (SRY) were used independently to evaluate chimerism status. Our results proved the existence of donor-derived stem DNA in the recipients' hair follicle cells. This report undermines the validity of data indicating that hair follicle cells maintain 100% of recipient origin. PMID:20173789

  12. Wnt7b is an important intrinsic regulator of hair follicle stem cell homeostasis and hair follicle cycling.

    PubMed

    Kandyba, Eve; Kobielak, Krzysztof

    2014-04-01

    The hair follicle (HF) is an exceptional mini-organ to study the mechanisms which regulate HF morphogenesis, cycling, hair follicle stem cell (hfSCs) homeostasis, and progeny differentiation. During morphogenesis, Wnt signaling is well-characterized in the initiation of HF patterning but less is known about which particular Wnt ligands are required and whether individual Wnt ligands act in an indispensable or redundant manner during postnatal hfSCs anagen onset and HF cycle progression. Previously, we described the function of the bone morphogenetic protein (BMP) signaling target gene WNT7a in intrinsic regulation of hfSCs homeostasis in vivo. Here, we investigated the role of Wnt7b, which was also intrinsically upregulated in hfSCs during physiological and precocious anagen after BMP inhibition in vivo. We demonstrated Wnt7b to be a direct target of canonical BMP signaling in hfSCs and using Wnt7b conditional gene targeting during HF morphogenesis revealed disrupted HF cycling including a shorter anagen, premature catagen onset with overall shorter hair production, and diminished HF differentiation marker expression. Additionally, we observed that postnatal ablation of Wnt7b resulted in delayed HF activation, affecting both the hair germ and bulge hfSCs but still maintaining a two-step sequence of HF stimulation. Interestingly, Wnt7b cKO hfSCs participated in reformation of the new HF bulge, but with slower self-renewal. These findings demonstrate the importance of intrinsic Wnt7b expression in hfSCs regulation and normal HF cycling and surprisingly reveal a nonredundant role for Wnt7b in the control of HF anagen length and catagen entry which was not compensated by other Wnt ligands. PMID:24222445

  13. Epithelial Wnt ligand secretion is required for adult hair follicle growth and regeneration

    PubMed Central

    Myung, Peggy; Takeo, Makoto; Ito, Mayumi; Atit, Radhika

    2012-01-01

    β-catenin, a key transducer molecule of Wnt signaling, is required for adult hair follicle growth and regeneration. However, the cellular source of Wnt ligands required for Wnt/β-catenin activation during anagen induction is unknown. In this study, we genetically deleted Wntless, a gene required for Wnt ligand secretion by Wnt-producing cells, specifically in the hair follicle epithelium during telogen phase. We show that epithelial Wnt ligands are required for anagen, as loss of Wntless in the follicular epithelium resulted in a profound hair cycle arrest. Both the follicular epithelium and dermal papilla showed markedly decreased Wnt/β-catenin signaling during anagen induction compared to control hair follicles. Surprisingly, hair follicle stem cells that are responsible for hair regeneration maintained expression of stem cell markers but exhibited significantly reduced proliferation. Finally, we demonstrate that epidermal Wnt ligands are critical for adult wound-induced de novo hair formation. Collectively, these data show that Wnt ligands secreted by the hair follicle epithelium are required for adult hair follicle regeneration and provide new insight into potential cellular targets for the treatment of hair disorders such as alopecia. PMID:22810306

  14. Candidate genes for the development of hair follicles in Hu sheep.

    PubMed

    Lv, X Y; Ni, R; Sun, W; Su, R; Musa, H H; Yin, J F; Wang, Q Z; Gao, W; Chen, L

    2016-01-01

    The aim of this study was to detect candidate genes for the development of hair follicles in the Hu sheep breed. Seven genes have been detected in large, medium, and small wave follicles of Hu sheep using gene chip technology. The histological features of the follicles of newborn Hu-lambs were combined with fluorescence quantitative PCR technology to detect the correlation between the expression of the seven genes and hair follicle development. Among the genes studied, matrix metalloproteinase 2 (MMP2), bone morphogenetic protein-7 (BMP7), and sideroflexin 1 (SFXN1) showed a significantly different pattern of expression in large, medium, and small wave follicles (P < 0.05). The expression of MMP2 had a significant positive correlation with secondary follicles in large waves (P < 0.05), while the expression of BMP7 had a significant correlation with primary follicle diameter in small wave follicles, and a highly significant positive correlation with the number of secondary follicles in the small waves (P < 0.01). The expression of SFXN1 was significantly and positively correlated with the diameters of small wave primary follicles; it also showed a highly significant positive correlation with secondary follicle diameters. Although other genes are associated with hair follicles, their expression in large, medium, and small wave follicles was not significant. We propose that BMP7, MMP2, and SFXN1 genes could be important candidate genes for use in breeding Hu lambs with early coat development. PMID:27525902

  15. Foxi3 Deficiency Compromises Hair Follicle Stem Cell Specification and Activation.

    PubMed

    Shirokova, Vera; Biggs, Leah C; Jussila, Maria; Ohyama, Takahiro; Groves, Andrew K; Mikkola, Marja L

    2016-07-01

    The hair follicle is an ideal system to study stem cell specification and homeostasis due to its well characterized morphogenesis and stereotypic cycles of stem cell activation upon each hair cycle to produce a new hair shaft. The adult hair follicle stem cell niche consists of two distinct populations, the bulge and the more activation-prone secondary hair germ (HG). Hair follicle stem cells are set aside during early stages of morphogenesis. This process is known to depend on the Sox9 transcription factor, but otherwise the establishment of the hair follicle stem cell niche is poorly understood. Here, we show that that mutation of Foxi3, a Forkhead family transcription factor mutated in several hairless dog breeds, compromises stem cell specification. Further, loss of Foxi3 impedes hair follicle downgrowth and progression of the hair cycle. Genome-wide profiling revealed a number of downstream effectors of Foxi3 including transcription factors with a recognized function in hair follicle stem cells such as Lhx2, Runx1, and Nfatc1, suggesting that the Foxi3 mutant phenotype results from simultaneous downregulation of several stem cell signature genes. We show that Foxi3 displays a highly dynamic expression pattern during hair morphogenesis and cycling, and identify Foxi3 as a novel secondary HG marker. Absence of Foxi3 results in poor hair regeneration upon hair plucking, and a sparse fur phenotype in unperturbed mice that exacerbates with age, caused by impaired secondary HG activation leading to progressive depletion of stem cells. Thus, Foxi3 regulates multiple aspects of hair follicle development and homeostasis. Stem Cells 2016;34:1896-1908. PMID:26992132

  16. Hairless Streaks in Cattle Implicate TSR2 in Early Hair Follicle Formation.

    PubMed

    Murgiano, Leonardo; Shirokova, Vera; Welle, Monika Maria; Jagannathan, Vidhya; Plattet, Philippe; Oevermann, Anna; Pienkowska-Schelling, Aldona; Gallo, Daniele; Gentile, Arcangelo; Mikkola, Marja; Drögemüller, Cord

    2015-07-01

    Four related cows showed hairless streaks on various parts of the body with no correlation to the pigmentation pattern. The stripes occurred in a consistent pattern resembling the lines of Blaschko. The non-syndromic hairlessness phenotype observed occurred across three generations of a single family and was compatible with an X-linked mode of inheritance. Linkage analysis and subsequent whole genome sequencing of one affected female identified two perfectly associated non-synonymous sequence variants in the critical interval on bovine chromosome X. Both variants occurred in complete linkage disequilibrium and were absent in more than 3900 controls. An ERCC6L missense mutation was predicted to cause an amino acid substitution of a non-conserved residue. Analysis in mice showed no specific Ercc6l expression pattern related to hair follicle development and therefore ERCC6L was not considered as causative gene. A point mutation at the 5'-splice junction of exon 5 of the TSR2, 20S rRNA accumulation, homolog (S. cerevisiae), gene led to the production of two mutant transcripts, both of which contain a frameshift and generate a premature stop codon predicted to truncate approximately 25% of the protein. Interestingly, in addition to the presence of both physiological TSR2 transcripts, the two mutant transcripts were predominantly detected in the hairless skin of the affected cows. Immunohistochemistry, using an antibody against the N-terminal part of the bovine protein demonstrated the specific expression of the TSR2 protein in the skin and the hair of the affected and the control cows as well as in bovine fetal skin and hair. The RNA hybridization in situ showed that Tsr2 was expressed in pre- and post-natal phases of hair follicle development in mice. Mammalian TSR2 proteins are highly conserved and are known to be broadly expressed, but their precise in vivo functions are poorly understood. Thus, by dissecting a naturally occurring mutation in a domestic animal

  17. Hairless Streaks in Cattle Implicate TSR2 in Early Hair Follicle Formation

    PubMed Central

    Murgiano, Leonardo; Shirokova, Vera; Welle, Monika Maria; Jagannathan, Vidhya; Plattet, Philippe; Oevermann, Anna; Pienkowska-Schelling, Aldona; Gallo, Daniele; Gentile, Arcangelo; Mikkola, Marja; Drögemüller, Cord

    2015-01-01

    Four related cows showed hairless streaks on various parts of the body with no correlation to the pigmentation pattern. The stripes occurred in a consistent pattern resembling the lines of Blaschko. The non-syndromic hairlessness phenotype observed occurred across three generations of a single family and was compatible with an X-linked mode of inheritance. Linkage analysis and subsequent whole genome sequencing of one affected female identified two perfectly associated non-synonymous sequence variants in the critical interval on bovine chromosome X. Both variants occurred in complete linkage disequilibrium and were absent in more than 3900 controls. An ERCC6L missense mutation was predicted to cause an amino acid substitution of a non-conserved residue. Analysis in mice showed no specific Ercc6l expression pattern related to hair follicle development and therefore ERCC6L was not considered as causative gene. A point mutation at the 5'-splice junction of exon 5 of the TSR2, 20S rRNA accumulation, homolog (S. cerevisiae), gene led to the production of two mutant transcripts, both of which contain a frameshift and generate a premature stop codon predicted to truncate approximately 25% of the protein. Interestingly, in addition to the presence of both physiological TSR2 transcripts, the two mutant transcripts were predominantly detected in the hairless skin of the affected cows. Immunohistochemistry, using an antibody against the N-terminal part of the bovine protein demonstrated the specific expression of the TSR2 protein in the skin and the hair of the affected and the control cows as well as in bovine fetal skin and hair. The RNA hybridization in situ showed that Tsr2 was expressed in pre- and post-natal phases of hair follicle development in mice. Mammalian TSR2 proteins are highly conserved and are known to be broadly expressed, but their precise in vivo functions are poorly understood. Thus, by dissecting a naturally occurring mutation in a domestic animal

  18. The spatio-temporal domains of Frizzled6 action in planar polarity control of hair follicle orientation.

    PubMed

    Chang, Hao; Smallwood, Philip M; Williams, John; Nathans, Jeremy

    2016-01-01

    In mammals, hair follicles cover most of the body surface and exhibit precise and stereotyped orientations relative to the body axes. Follicle orientation is controlled by the planar cell polarity (PCP; or, more generally, tissue polarity) system, as determined by the follicle mis-orientation phenotypes observed in mice with PCP gene mutations. The present study uses conditional knockout alleles of the PCP genes Frizzled6 (Fz6), Vangl1, and Vangl2, together with a series of Cre drivers to interrogate the spatio-temporal domains of PCP gene action in the developing mouse epidermis required for follicle orientation. Fz6 is required starting between embryonic day (E)11.5 and E12.5. Eliminating Fz6 in either the anterior or the posterior halves of the embryo or in either the feet or the torso leads to follicle mis-orientation phenotypes that are limited to the territories associated with Fz6 loss, implying either that PCP signaling is required for communicating polarity information on a local but not a global scale, or that there are multiple independent sources of global polarity information. Eliminating Fz6 in most hair follicle cells or in the inter-follicular epidermis at E15.5 suggests that PCP signaling in developing follicles is not required to maintain their orientation. The asymmetric arrangement of Merkel cells around the base of each guard hair follicle dependents on Fz6 expression in the epidermis but not in differentiating Merkel cells. These experiments constrain current models of PCP signaling and the flow of polarity information in mammalian skin. PMID:26517967

  19. MicroRNA profile analysis on duck feather follicle and skin with high-throughput sequencing technology.

    PubMed

    Zhang, Li; Nie, Qinghua; Su, Ying; Xie, Xiujuan; Luo, Wen; Jia, Xinzheng; Zhang, Xiquan

    2013-04-25

    Skin acts an important protection role in animal survival and it evolves with the animal divergence. We identified the conserved miRNA families of skin among duck and other species. Cluster analysis showed that the species with similar skin characteristics were clustered into the same group, indicating miRNAs are important in skin function and skin evolution. The miRNA profiles demonstrated that different miRNA regulation mechanism may exist in contour feather follicles (with the surrounding skin) and down feather follicles (with the surrounding skin). Comparing the highly abundant miRNAs with those of mammalian hair follicles and skins, different miRNAs and miRNA families were found, suggesting the different ways in feather follicles and mammalian hair follicles. Bioinformatics prediction indicated that seven miRNAs probably targeted the genes of Wnt/β-catenin, Shh/BMP and Notch pathways which were important in feather morphogenesis. Further analysis should be conducted to experimentally validate the relationships between miRNAs and their predicted target genes because the target genes were based exclusively upon the bioinformatics. PMID:23384715

  20. Expression of amelogenin and effects of cyclosporin A in developing hair follicles in rats.

    PubMed

    Yoo, Hong-Il; Lee, Gye-Hyeok; Lee, Su-Young; Kang, Jee-Hae; Moon, Jung-Sun; Kim, Min-Seok; Kim, Sun-Hun

    2016-01-01

    Amelogenin, an enamel matrix protein has been considered to be exclusively expressed by ameloblasts during odontogenesis. However, burgeoning evidence indicates that amelogenin is also expressed in non-mineralizing tissues. Under the hypothesis that amelogenin may be a functional molecule in developing hair follicles which share developmental features with odontogenesis, this study for the first time elucidated the presence and functional changes of amelogenin and its receptors during rat hair follicle development. Amelogenin was specifically localized in the outer epithelial root sheath of hair follicles. Its expression appeared in the deeper portion of hair follicles, i.e. the bulbar and suprabulbar regions rather than the superficial region. Lamp-1, an amelogenin receptor, was localized in either follicular cells or outer epithelial sheath cells, reflecting functional changes during development. The expression of amelogenin splicing variants increased in a time-dependent manner during postnatal development of hair follicles. Amelogenin expression was increased by treatment with cyclosporin A, which is an inducer of anagen in the hair follicle, whereas the level of Lamp-1 and -2 was decreased by cyclosporin A treatment. These results suggest that amelogenin may be a functional molecule involved in the development of the hair follicle rather than an inert hair shaft matrix protein. PMID:26426935

  1. SCF/c-kit signaling is required in 12-O-tetradecanoylphorbol-13-acetate-induced migration and differentiation of hair follicle melanocytes for epidermal pigmentation.

    PubMed

    Qiu, Weiming; Yang, Ke; Lei, Mingxing; Yan, Hongtao; Tang, Hui; Bai, Xiufeng; Yang, Guihong; Lian, Xiaohua; Wu, Jinjin

    2015-05-01

    Hair follicle melanocyte stem cells (McSCs) are responsible for hair pigmentation and also function as a major melanocyte reservoir for epidermal pigmentation. However, the molecular mechanism promoting McSCs for epidermal pigmentation remains elusive. 12-O-tetradecanoylphorbol-13-acetate (TPA) mimics key signaling involved in melanocyte growth, migration and differentiation. We therefore investigated the molecular basis for the contribution of hair follicle McSCs to epidermal pigmentation using the TPA induction model. We found that repetitive TPA treatment of female C57BL/6 mouse dorsal skin induced epidermal pigmentation by increasing the number of epidermal melanocytes. Particularly, TPA treatment induced McSCs to initiate proliferation, exit the stem cell niche and differentiate. We also demonstrated that TPA promotes melanoblast migration and differentiation in vitro. At the molecular level, TPA treatment induced robust expression of stem cell factor (SCF) in keratinocytes and c-kit in melanoblasts and melanocytes. Administration of ACK2, a neutralizing antibody against the Kit receptor, suppressed mouse epidermal pigmentation, decreased the number of epidermal melanocytes, and inhibited melanoblast migration. Taken together, our data demonstrate that TPA promotes the expansion, migration and differentiation of hair follicle McSCs for mouse epidermal pigmentation. SCF/c-kit signaling was required for TPA-induced migration and differentiation of hair follicle melanocytes. Our findings may provide an excellent model to investigate the signaling mechanisms regulating epidermal pigmentation from mouse hair follicle McSCs, and a potential therapeutic option for skin pigmentation disorders. PMID:25727244

  2. Targeted expression of SV40 T antigen in the hair follicle of transgenic mice produces an aberrant hair phenotype.

    PubMed

    Keough, R; Powell, B; Rogers, G

    1995-03-01

    Directed expression of SV40 large T antigen (TAg) in transgenic mice can induce tissue-specific tumorigenesis and useful cell lines exhibiting differentiated characteristics can be established from resultant tumor cells. In an attempt to produce an immortalised mouse hair follicle cortical cell line for the study of hair keratin gene control, SV40 TAg expression was targeted to the hair follicles of transgenic mice using a sheep hair gene promoter. Expression of SV40 TAg in the follicle cortex disrupted normal fiber ultrastructure, producing a marked phenotypic effect. Affected hairs were wavy or severely kinked (depending on the severity of the phenotype) producing an appearance ranging from a ruffled coat to a stubble covering the back of the mouse. The transgenic hairs appeared to be weakened at the base of the fibers, leading to premature hair-loss and a thinner pelage, or regions of temporary nudity. No follicle tumors or neoplasia were apparent and immortalisation of cortical cells could not be established in culture. In situ hybridisation studies in the hair follicle using histone H3 as a cell proliferation marker suggested that cell proliferation had ceased prior to commencement of K2.10-TAg expression and was not re-established in the differentiating cortical cells. Hence, TAg was unable to induce cell immortalisation at that stage of cortical cell differentiation. However, transgenic mice developed various other abnormalities including vertebral abnormalities and bladder, liver and intestinal tumors, which resulted in reduced life expectancy. PMID:7542671

  3. Wnt7b is an important intrinsic regulator of hair follicle stem cell homeostasis and hair follicle cycling

    PubMed Central

    Kandyba, Eve; Kobielak, Krzysztof

    2014-01-01

    The hair follicle (HF) is an exceptional mini-organ to study the mechanisms which regulate HF morphogenesis, cycling, hair follicle stem cell (hfSCs) homeostasis and progeny differentiation. During morphogenesis, Wnt signaling is well characterized in the initiation of HF patterning but less is known about which particular Wnt ligands are required and whether individual Wnt ligands act in an indispensable or redundant manner during postnatal hfSCs anagen onset and HF cycle progression. Previously, we described the function of the Bone morphogenetic protein (BMP) signaling target gene WNT7a in intrinsic regulation of hfSCs homeostasis in vivo. Here, we investigated the role of Wnt7b, which was also intrinsically up-regulated in hfSCs during physiological and precocious anagen after BMP inhibition in vivo. We demonstrated Wnt7b to be a direct target of canonical BMP signaling in hfSCs and using Wnt7b conditional gene targeting during HF morphogenesis revealed disrupted HF cycling including a shorter anagen, premature catagen onset with overall shorter hair production and diminished HF differentiation marker expression. Additionally, we observed that postnatal ablation of Wnt7b resulted in delayed HF activation, affecting both the HG and bulge hfSCs but still maintaining a two-step sequence of HF stimulation. Interestingly, Wnt7b cKO hfSCs participated in re-formation of the new HF bulge, but with slower self-renewal. These findings demonstrate the importance of intrinsic Wnt7b expression in hfSCs regulation and normal HF cycling and surprisingly reveal a non-redundant role for Wnt7b in the control of HF anagen length and catagen entry which was not compensated by other Wnt ligands. PMID:24222445

  4. Delineating immune-mediated mechanisms underlying hair follicle destruction in the mouse mutant defolliculated.

    PubMed

    Ruge, Fiona; Glavini, Aikaterini; Gallimore, Awen M; Richards, Hannah E; Thomas, Christopher P; O'Donnell, Valerie B; Philpott, Michael P; Porter, Rebecca M

    2011-03-01

    Defolliculated (Gsdma3(Dfl)/+) mice have a hair loss phenotype that involves an aberrant hair cycle, altered sebaceous gland differentiation with reduced sebum production, chronic inflammation, and ultimately the loss of the hair follicle. Hair loss in these mice is similar to that seen in primary cicatricial, or scarring alopecias in which immune targeting of hair follicle stem cells has been proposed as a key factor resulting in permanent hair follicle destruction. In this study we examine the mechanism of hair loss in GsdmA3(Dfl)/+ mice. Aberrant expression patterns of stem cell markers during the hair cycle, in addition to aberrant behavior of the melanocytes leading to ectopic pigmentation of the hair follicle and epidermis, indicated the stem cell niche was not maintained. An autoimmune mechanism was excluded by crossing the mice with rag1-/- mice. However, large numbers of macrophages and increased expression of ICAM-1 were still present and may be involved either directly or indirectly in the hair loss. Reverse transcriptase-PCR (RT-PCR) and immunohistochemistry of sebaceous gland differentiation markers revealed reduced peroxisome proliferator-activated receptor-γ (PPARγ), a potential cause of reduced sebum production, as well as the potential involvement of the innate immune system in the hair loss. As reduced PPARγ expression has recently been implicated as a cause for lichen planopilaris, these mice may be useful for testing therapies. PMID:21160494

  5. Protection against chemotherapy-induced alopecia: targeting ATP-binding cassette transporters in the hair follicle?

    PubMed

    Haslam, Iain S; Pitre, Aaron; Schuetz, John D; Paus, Ralf

    2013-11-01

    Currently, efficacious treatments for chemotherapy-induced alopecia (hair loss) are lacking, and incidences of permanent hair loss following high-dose chemotherapy are on the increase. In this article, we describe mechanisms by which the pharmacological defense status of the hair follicle might be enhanced, thereby reducing the accumulation of cytotoxic cancer drugs and preventing or reducing hair loss and damage. We believe this could be achieved via the selective increase in ATP-binding cassette (ABC) transporter expression within the hair follicle epithelium, following application of topical agonists for regulatory nuclear receptors. Clinical application would require the development of hair follicle-targeted formulations, potentially utilizing nanoparticle technology. This novel approach has the potential to yield entirely new therapeutic options for the treatment and management of chemotherapy-induced alopecia, providing significant psychological and physical benefit to cancer patients. PMID:24100054

  6. Human hair follicle organ culture: theory, application and perspectives.

    PubMed

    Langan, Ewan A; Philpott, Michael P; Kloepper, Jennifer E; Paus, Ralf

    2015-12-01

    For almost a quarter of a century, ex vivo studies of human scalp hair follicles (HFs) have permitted major advances in hair research, spanning diverse fields such as chronobiology, endocrinology, immunology, metabolism, mitochondrial biology, neurobiology, pharmacology, pigmentation and stem cell biology. Despite this, a comprehensive methodological guide to serum-free human HF organ culture (HFOC) that facilitates the selection and analysis of standard HF biological parameters and points out both research opportunities and pitfalls to newcomers to the field is still lacking. The current methods review aims to close an important gap in the literature and attempts to promote standardisation of human HFOC. We provide basic information outlining the establishment of HFOC through to detailed descriptions of the analysis of standard read-out parameters alongside practical examples. The guide closes by pointing out how serum-free HFOC can be utilised optimally to obtain previously inaccessible insights into human HF biology and pathology that are of interest to experimental dermatologists, geneticists, developmental biologists and (neuro-) endocrinologists alike and by highlighting novel applications of the model, including gene silencing and gene expression profiling of defined, laser capture-microdissected HF compartments. PMID:26284830

  7. The in vitro use of the hair follicle closure technique to study the follicular and percutaneous permeation of topically applied drugs.

    PubMed

    Stahl, Jessica; Niedorf, Frank; Wohlert, Mareike; Kietzmann, Manfred

    2012-03-01

    Recent studies on follicular permeation emphasise the importance of hair follicles as diffusion pathways, but only a limited amount of data are available about the follicular permeation of topically applied drugs. This study examines the use of a hair follicle closure technique in vitro, to determine the participation of hair follicles in transdermal drug penetration. Various substances, with different lipophilicities, were tested: caffeine, diclofenac, flufenamic acid, ibuprofen, paracetamol, salicylic acid and testosterone. Diffusion experiments were conducted with porcine skin, the most common replacement material for human skin, in Franz-type diffusion cells over 28 hours. Different experimental settings allowed the differentiation between interfollicular and follicular permeation after topical application of the test compounds. A comparison of the apparent permeability coefficients of the drugs demonstrates that the percutaneous permeations of caffeine and flufenamic acid were significantly higher along the hair follicles. In the cases of paracetamol and testosterone, the follicular pathway appears to be of importance, while no difference was found between interfollicular and follicular permeation for diclofenac, ibuprofen and salicylic acid. Thus, the hair follicle closure technique represents an adequate in vitro method for gaining information about follicular or percutaneous permeation, and can replace in vivo testing in animals or humans. PMID:22558977

  8. Regenerative medicine and hair loss: how hair follicle culture has advanced our understanding of treatment options for androgenetic alopecia.

    PubMed

    Higgins, Claire A; Christiano, Angela M

    2014-01-01

    Many of the current drug therapies for androgenetic alopecia were discovered serendipitously, with hair growth observed as an off-target effect when drugs were used to treat a different disorder. Subsequently, several studies using cultured cells have enabled identification of hair growth modulators with similar properties to the currently available drugs, which may also provide clinical benefit. In situations where the current therapeutics do not work, follicular unit transplantation is an alternative surgical option. More recently, the concept of follicular cell implantation, or hair follicle neogenesis, has been attempted, exploiting the inherent properties of cultured hair follicle cells to induce de novo hair growth in balding scalp. In this review, we discuss both the advances in cell culture techniques that have led to a wider range of potential therapeutics to promote hair growth, in addition to detailing current knowledge on follicular cell implantation, and the challenges in making this approach a reality. PMID:24351010

  9. TR3 is preferentially expressed by bulge epithelial stem cells in human hair follicles.

    PubMed

    Xie, Lin; Yang, Ruifeng; Liu, Shujing; Lyle, Stephen; Cotsarelis, George; Xiang, Leihong; Zhang, Litao; Li, Bin; Wan, Miaojian; Xu, Xiaowei

    2016-01-01

    TR3 is an orphan member of the steroid/thyroid/retinoid nuclear receptor superfamily of transcription factors and it plays a pivotal role in regulating cell growth and apoptosis. The expression and function of TR3 in skin have not been well investigated. Using a cDNA expression assay, we discover that TR3 is significantly enriched in human telogen bulge compared with anagen bulb. Immunohistochemical staining confirms that TR3 is highly expressed in the bulge region of human hair follicles and it colocalizes with cytokeratin 15 (K15), an epithelial stem cell marker. To study the function of TR3 in the effect of androgens in keratinocytes, we treat HaCaT keratinocytes and primary human keratinocytes with dihydrotestosterone (DHT) and testosterone (T). The treated keratinocytes show a dose-dependent growth reduction to DHT and T. DHT increases the expression of TR3 in keratinocytes, associated with a concomitant increase of BAD and decrease of Bcl-2 expression. Knockdown TR3 expression by siRNA blocks the inhibitory effect of DHT on keratinocyte proliferation. Our results demonstrate that TR3 is localized to the stem cell compartment in the human hair follicles. Androgen increases TR3 expression in cultured keratinocytes. Our data suggest that TR3 mediates at least part of the inhibitory effect of androgens on keratinocytes. PMID:26707825

  10. TR3 is preferentially expressed by bulge epithelial stem cells in human hair follicles

    PubMed Central

    Xie, Lin; Yang, Ruifeng; Liu, Shujing; Lyle, Stephen; Cotsarelis, George; Xiang, Leihong; Zhang, Litao; Li, Bin; Wan, Miaojian; Xu, Xiaowei

    2016-01-01

    TR3 is an orphan member of the steroid/thyroid/retinoid nuclear receptor superfamily of transcription factors and it plays a pivotal role in regulating cell growth and apoptosis. The expression and function of TR3 in skin have not been well investigated. Using a cDNA expression assay, we discover that TR3 is significantly enriched in human telogen bulge compared with anagen bulb. Immunohistochemical staining confirms that TR3 is highly expressed in the bulge region of human hair follicles and it colocalizes with cytokeratin 15 (K15), an epithelial stem cell marker. To study the function of TR3 in the effect of androgens in keratinocytes, we treat HaCaT keratinocytes and primary human keratinocytes with dihydrotestosterone (DHT) and testosterone (T). The treated keratinocytes show a dose-dependent growth reduction to DHT and T. DHT increases the expression of TR3 in keratinocytes, associated with a concomitant increase of BAD and decrease of Bcl-2 expression. Knockdown TR3 expression by siRNA blocks the inhibitory effect of DHT on keratinocyte proliferation. Our results demonstrate that TR3 is localized to the stem cell compartment in the human hair follicles. Androgen increases TR3 expression in cultured keratinocytes. Our data suggest that TR3 mediates at least part of the inhibitory effect of androgens on keratinocytes. PMID:26707825

  11. Regenerative metamorphosis in hairs and feathers: follicle as a programmable biological printer

    PubMed Central

    Oh, Ji Won; Lin, Sung-Jan; Plikus, Maksim V.

    2015-01-01

    Present-day hairs and feathers are marvels of biological engineering perfected over 200 million years of convergent evolution. Prominently, both follicle types coevolved regenerative cycling, wherein active filament making (anagen) is intermitted by a phase of relative quiescence (telogen). Such regenerative cycling enables follicles to “reload” their morphogenetic program and make qualitatively different filaments in the consecutive cycles. Indeed, many species of mammals and birds undergo regenerative metamorphosis, prominently changing their integument between juvenile and adult forms. This phenomenon is inconspicuous in mice, which led to the conventional perception that hair type is hardwired during follicle morphogenesis and cannot switch. A series of recent works by Chi and Morgan change this perception, and show that many mouse follicles naturally switch hair morphologies, for instance from “wavy” zigzag to straight awl, in the second growth cycle. A series of observations and genetic experiments show that back and forth hair type switching depends on the number of cells in the follicle's dermal papilla, with the critical threshold being around 40-50 cells. Pigmentation is another parameter that hair and feather follicles can reload between cycles, and even midway through anagen. Recent works show that hair and feather pigmentation “printing” programs coevolved to rely on pulsed expression of Agouti, a melanocortin receptor-1 antagonist, in the follicular mesenchyme. Here, we discuss broader implications of hair and feather regenerative plasticity. PMID:25557541

  12. Hair & skin derived progenitor cells: In search of a candidate cell for regenerative medicine

    PubMed Central

    Kumar, Anil; Mohanty, Sujata; Nandy, Sushmita Bose; Gupta, Somesh; Khaitan, Binod K.; Sharma, Shilpa; Bhargava, Balram; Airan, Balram

    2016-01-01

    Background & objectives: Skin is an established tissue source for cell based therapy. The hair follicle has been introduced later as a tissue source for cell based therapy. The ease of tissue harvest and multipotent nature of the resident stem cells in skin and hair follicle has promoted basic and clinical research in this area. This study was conducted to evaluate skin stem cells (SSCs) and hair follicle stem cells (HFSCs) as candidate cells appropriate for neuronal and melanocyte lineage differentiation. Methods: In this study, SSCs and hair follicle stem cells (HFSCs) were expanded in vitro by explant culture method and were compared in terms of proliferative potential and stemness; differentiation potential into melanocytes and neuronal lineage. Results: SSCs were found to be more proliferative in comparison to HFSCs, however, telomerase activity was more in HFSCs in comparison to SSCs. Capacity to differentiate into two lineages of ectoderm origin (neuronal and melanocyte) was found to be different. HFSCs cells showed more propensities towards melanocyte lineage, whereas SSCs were more inclined towards neuronal lineage. Interpretation & conclusions: The study showed that SSCs had differential advantage over the HFSCs for neuronal cell differentiation, whereas, the HFSCs were better source for melanocytic differentiation. PMID:27121515

  13. STAT5 Activation in the Dermal Papilla Is Important for Hair Follicle Growth Phase Induction.

    PubMed

    Legrand, Julien M D; Roy, Edwige; Ellis, Jonathan J; Francois, Mathias; Brooks, Andrew J; Khosrotehrani, Kiarash

    2016-09-01

    Hair follicles are skin appendages that undergo periods of growth (anagen), regression (catagen), and rest (telogen) regulated by their mesenchymal component, the dermal papilla (DP). On the basis of the reports of its specific expression in the DP, we investigated signal transducer and activator of transcription (STAT5) activation during hair development and cycling. STAT5 activation in the DP began in late catagen, reaching a peak in early anagen before disappearing for the rest of the cycle. This was confirmed by the expression profile of suppressor of cytokine signaling 2, a STAT5 target in the DP. This pattern of expression starts after the first postnatal hair cycle. Quantification of hair cycling using the Flash canonical Wnt signaling in vivo bioluminescence reporter found that conditional knockout of STAT5A/B in the DP targeted through Cre-recombinase under the control of the Sox18 promoter resulted in delayed anagen entry compared with control. Microarray analysis of STAT5 deletion versus control revealed key changes in tumor necrosis factor-α, Wnt, and fibroblast growth factor ligands, known for their role in inducing anagen entry. We conclude that STAT5 activation acts as a mesenchymal switch to trigger natural anagen entry in postdevelopmental hair follicle cycling. PMID:27131881

  14. Influence of the Vehicle on the Penetration of Particles into Hair Follicles

    PubMed Central

    Patzelt, Alexa; Richter, Heike; Dähne, Lars; Walden, Peter; Wiesmüller, Karl-Heinz; Wank, Ute; Sterry, Wolfram; Lademann, Jürgen

    2011-01-01

    Recently, it has been demonstrated that particulate substances penetrate preferentially into the hair follicles and that the penetration depth depends on the particle size. In the present study, the influence of the vehicle of the particulate substances on the penetration depth was investigated. Four different formulations (ethanolic suspension, aqueous suspension, ethanolic gel and aqueous gel) containing peptide-loaded particles of 1 μm in diameter were prepared and applied on porcine ear skin. After penetration, punch biopsies were taken and the penetration depths of the particles were investigated by laser scanning microscopy. The deepest penetration was achieved with the gel formulations demonstrating an influence of the vehicle on the penetration depth of particulate substances. PMID:24310497

  15. The mesenchymal component of hair follicle neogenesis: background, methods and molecular characterization.

    PubMed

    Ohyama, Manabu; Zheng, Ying; Paus, Ralf; Stenn, Kurt S

    2010-02-01

    Hair follicle morphogenesis and regeneration occur by an extensive and collaborative crosstalk between epithelial and mesenchymal skin components. A series of pioneering studies, which revealed an indispensable role of follicular dermal papilla and dermal sheath cells in this crosstalk, has led workers in the field to study in detail the anatomical distribution, functional properties, and molecular signature of the trichogenic dermal cells. The purpose of this paper was to provide a practical summary of the development and recent advances in the study of trichogenic dermal cells. Following a short review of the relevant literature, the methods for isolating and culturing these cells are summarized. Next, the bioassays, both in vivo and in vitro, that enable the evaluation of trichogenic properties of tested dermal cells are described in detail. A list of trichogenic molecular markers identified by those assays is also provided. Finally, this methods review is completed by defining some of the major questions needing resolution. PMID:19650868

  16. GENE EXPRESSION IN HEAD HAIR FOLLICLES PLUCKED FROM MEN AND WOMEN

    EPA Science Inventory

    Characterizing gene expression in hair follicles can help to elucidate the hair growth cycle by delineating the genes and pathways involved in follicular growth and degeneration. The objectives of this study were to determine whether intact RNA could be extracted from a small num...

  17. The dermal papilla: an instructive niche for epithelial stem and progenitor cells in development and regeneration of the hair follicle.

    PubMed

    Morgan, Bruce A

    2014-07-01

    The dermal papilla (DP) of the hair follicle is both a chemical and physical niche for epithelial progenitor cells that regenerate the cycling portion of the hair follicle and generate the hair shaft. Here, we review experiments that revealed the importance of the DP in regulating the characteristics of the hair shaft and frequency of hair follicle regeneration. More recent work showed that the size of this niche is dynamic and actively regulated and reduction in DP cell number per follicle is sufficient to cause hair thinning and loss. The formation of the DP during follicle neogenesis provides a context to contemplate the mechanisms that maintain DP size and the potential to exploit these processes for hair preservation or restoration. PMID:24985131

  18. The Dermal Papilla: An Instructive Niche for Epithelial Stem and Progenitor Cells in Development and Regeneration of the Hair Follicle

    PubMed Central

    Morgan, Bruce A.

    2014-01-01

    The dermal papilla (DP) of the hair follicle is both a chemical and physical niche for epithelial progenitor cells that regenerate the cycling portion of the hair follicle and generate the hair shaft. Here, we review experiments that revealed the importance of the DP in regulating the characteristics of the hair shaft and frequency of hair follicle regeneration. More recent work showed that the size of this niche is dynamic and actively regulated and reduction in DP cell number per follicle is sufficient to cause hair thinning and loss. The formation of the DP during follicle neogenesis provides a context to contemplate the mechanisms that maintain DP size and the potential to exploit these processes for hair preservation or restoration. PMID:24985131

  19. Penetration profile of microspheres in follicular targeting of terminal hair follicles.

    PubMed

    Toll, R; Jacobi, U; Richter, H; Lademann, J; Schaefer, H; Blume-Peytavi, U

    2004-07-01

    The transfollicular administration of pharmacologically active molecules is of current therapeutic interest, mainly with regard to delivery to specific sites of the hair follicle (HF) and the reduction of hepatic metabolism and systemic toxicity. HF are privileged pathways for specific molecules depending on formulations, which enter faster into these shunts than through the stratum corneum. The aim was to optimize the delivery of fluorescent microspheres into the HF, thereby, developing a standardized protocol for follicular targeting with microspheres. The number of HF showing penetration, as well as the depth of penetration, was determined. Freshly excised skin samples with terminal HF were divided into groups, with or without prior treatment with cyanoacrylate skin surface stripping-technique (CSSS). Thereafter microspheres at a size of 0.75-6.0 microm were applied according to the developed standardized protocol. Skin biopsies were obtained, shock-frozen, and sectioned in 5 microm slices. We demonstrated a selective penetration route of the microspheres into the HF. Optimal microsphere size proved to be approximately 1.5 microm, with a 55% rate of all HF, and with a maximum penetration depth of >2300 microm. Without previous CSSS treatment of the skin, the transfollicular microsphere penetration was below 27% with a maximum penetration depth of 1000 microm. Thus, the basis for follicular targeting of essential structures containing stem cells for keratinocytes, melanocytes, and mast cells has been laid. PMID:15191557

  20. Wnt5a Suppresses β-catenin Signaling during Hair Follicle Regeneration

    PubMed Central

    Xing, Yizhan; Ma, Xiaogen; Guo, Haiying; Deng, Fang; Yang, Jin; Li, Yuhong

    2016-01-01

    Hair follicles display periodic growth. Wnt signaling is a critical regulator for hair follicle regeneration. Previously, we reported that Wnt5a inhibits the telogen-to-anagen transition of hair follicles, but the mechanism by which this process occurs has not yet been reported. Here, we determined the expression patterns of Wnt signaling pathway molecules by quantitative reverse transcription polymerase chain reaction, western blot, and immunohistochemistry and found that β-catenin signaling was suppressed by Wnt5a. We then compared the phenotypes and expression patterns following β-catenin knockdown and Wnt5a overexpression during hair follicle regeneration induced by hair depilation and observed similar patterns. In addition, we performed a rescue experiment in the JB6 cell line and found that the inhibitory effect of Wnt5a on cell proliferation could be rescued by the addition of Wnt3a. Our data reveal that Wnt5a suppresses the activation of β-catenin signaling during hair follicle regeneration. PMID:27499692

  1. KCNQ Potassium Channels Modulate Sensitivity of Skin Down-hair (D-hair) Mechanoreceptors.

    PubMed

    Schütze, Sebastian; Orozco, Ian J; Jentsch, Thomas J

    2016-03-11

    M-current-mediating KCNQ (Kv7) channels play an important role in regulating the excitability of neuronal cells, as highlighted by mutations in Kcnq2 and Kcnq3 that underlie certain forms of epilepsy. In addition to their expression in brain, KCNQ2 and -3 are also found in the somatosensory system. We have now detected both KCNQ2 and KCNQ3 in a subset of dorsal root ganglia neurons that correspond to D-hair Aδ-fibers and demonstrate KCNQ3 expression in peripheral nerve endings of cutaneous D-hair follicles. Electrophysiological recordings from single D-hair afferents from Kcnq3(-/-) mice showed increased firing frequencies in response to mechanical ramp-and-hold stimuli. This effect was particularly pronounced at slow indentation velocities. Additional reduction of KCNQ2 expression further increased D-hair sensitivity. Together with previous work on the specific role of KCNQ4 in rapidly adapting skin mechanoreceptors, our results show that different KCNQ isoforms are specifically expressed in particular subsets of mechanosensory neurons and modulate their sensitivity directly in sensory nerve endings. PMID:26733196

  2. Expanded flap and hair follicle transplantation for reconstruction of postburn scalp alopecia.

    PubMed

    Oh, Suk Joon; Koh, Sung Hoon; Lee, Jong Wook; Jang, Young Chul

    2010-11-01

    The advent of tissue expansion started a new era of aesthetically reconstructed scalp alopecia by providing a large hair-bearing scalp area with acceptable hair density. However, residual scalp alopecia and wide visible scars still raised aesthetic problems. The hair follicle transplantation carries the possibility of producing a more natural scalp because both the desired hair density and the natural direction of the hair can be reproduced using this procedure. Our study group consisted of 62 patients (41 males and 21 females) with a mean age of 26.3 years. The median age of suffering a burn to the scalp was 3 years. The causes of burn resulting to scalp alopecia were flame (n = 28), scald (n = 18), contact (n = 7), and electrical (n = 9) injuries. The first reconstruction for all patients was the expanded flap coverage. Three patients used 2-stage expanded flaps. Five patients underwent hair follicle transplantation after they had undergone the expanded flap coverage. Expanders (n = 86) were placed in 62 patients with a total of 9 major (9.3%) and 3 minor (3.5%) complications. The overall results after expanded flap reconstruction and hair follicle transplantation were excellent (43 patients, 69.4%), good (18 patients, 29%), and bad (1 patient, 1.6%). Postburn scalp alopecia can be reconstructed by 1-stage or multiple-stage expanded flap procedures. The visible remaining alopecia and marginal scar after the procedure, especially on the anterior hairline of the forehead and the sideburns, can be refined by hair follicle transplantation. This report also suggests the possibility that cicatrical scalp alopecia with intact deep tissue can be restored by hair follicle transplantations using hair transplanter. PMID:21119411

  3. The 'follicular trochanter': an epithelial compartment of the human hair follicle bulge region in need of further characterization.

    PubMed

    Tiede, S; Kloepper, J E; Whiting, D A; Paus, R

    2007-11-01

    Recent articles on hair follicle stem cells have summarized the current state of knowledge of what has been termed the hair follicle 'bulge'. During the course of immunohistological studies aimed at characterizing the expression of selected extracellular matrix proteins in the - as yet insufficiently characterized - niche of human bulge hair follicle stem cells, we have recently come across a largely forgotten, peculiar epithelial protrusion of the outer root sheath, which was visible in only a minority of all examined hair follicles. The morphology and immunoreactivity patterns of this structure, the 'follicular trochanter', are described herein. PMID:17714535

  4. Inhibition of β-catenin signalling in dermal fibroblasts enhances hair follicle regeneration during wound healing

    PubMed Central

    Gomez, Celine; Pisco, Angela Oliveira; Rawlins, Emma L.; Simons, Ben D.

    2016-01-01

    New hair follicles (HFs) do not form in adult mammalian skin unless epidermal Wnt signalling is activated genetically or within large wounds. To understand the postnatal loss of hair forming ability we monitored HF formation at small circular (2 mm) wound sites. At P2, new HFs formed in back skin, but HF formation was markedly decreased by P21. Neonatal tail also formed wound-associated HFs, albeit in smaller numbers. Postnatal loss of HF neogenesis did not correlate with wound closure rate but with a reduction in Lrig1-positive papillary fibroblasts in wounds. Comparative gene expression profiling of back and tail dermis at P1 and dorsal fibroblasts at P2 and P50 showed a correlation between loss of HF formation and decreased expression of genes associated with proliferation and Wnt/β-catenin activity. Between P2 and P50, fibroblast density declined throughout the dermis and clones of fibroblasts became more dispersed. This correlated with a decline in fibroblasts expressing a TOPGFP reporter of Wnt activation. Surprisingly, between P2 and P50 there was no difference in fibroblast proliferation at the wound site but Wnt signalling was highly upregulated in healing dermis of P21 compared with P2 mice. Postnatal β-catenin ablation in fibroblasts promoted HF regeneration in neonatal and adult mouse wounds, whereas β-catenin activation reduced HF regeneration in neonatal wounds. Our data support a model whereby postnatal loss of hair forming ability in wounds reflects elevated dermal Wnt/β-catenin activation in the wound bed, increasing the abundance of fibroblasts that are unable to induce HF formation. PMID:27287810

  5. Inhibition of β-catenin signalling in dermal fibroblasts enhances hair follicle regeneration during wound healing.

    PubMed

    Rognoni, Emanuel; Gomez, Celine; Pisco, Angela Oliveira; Rawlins, Emma L; Simons, Ben D; Watt, Fiona M; Driskell, Ryan R

    2016-07-15

    New hair follicles (HFs) do not form in adult mammalian skin unless epidermal Wnt signalling is activated genetically or within large wounds. To understand the postnatal loss of hair forming ability we monitored HF formation at small circular (2 mm) wound sites. At P2, new HFs formed in back skin, but HF formation was markedly decreased by P21. Neonatal tail also formed wound-associated HFs, albeit in smaller numbers. Postnatal loss of HF neogenesis did not correlate with wound closure rate but with a reduction in Lrig1-positive papillary fibroblasts in wounds. Comparative gene expression profiling of back and tail dermis at P1 and dorsal fibroblasts at P2 and P50 showed a correlation between loss of HF formation and decreased expression of genes associated with proliferation and Wnt/β-catenin activity. Between P2 and P50, fibroblast density declined throughout the dermis and clones of fibroblasts became more dispersed. This correlated with a decline in fibroblasts expressing a TOPGFP reporter of Wnt activation. Surprisingly, between P2 and P50 there was no difference in fibroblast proliferation at the wound site but Wnt signalling was highly upregulated in healing dermis of P21 compared with P2 mice. Postnatal β-catenin ablation in fibroblasts promoted HF regeneration in neonatal and adult mouse wounds, whereas β-catenin activation reduced HF regeneration in neonatal wounds. Our data support a model whereby postnatal loss of hair forming ability in wounds reflects elevated dermal Wnt/β-catenin activation in the wound bed, increasing the abundance of fibroblasts that are unable to induce HF formation. PMID:27287810

  6. Ginsenosides Rb₁ and Rd regulate proliferation of mature keratinocytes through induction of p63 expression in hair follicles.

    PubMed

    Li, Zheng; Li, Jing-Jie; Gu, Li-Juan; Zhang, Dong-Liang; Wang, Yun-Bo; Sung, Chang-Keun

    2013-07-01

    Ginsenosides Rb₁ and Rd are the two main types of ginsenosides in Panax ginseng and have been used as an additive to against alopecia. However, the mechanisms involved are largely unknown. To determine how ginsenosides prevent hair loss, we topically applied protopanaxadiol-type ginsenosides Rb₁ and Rd over the shaved skin of B57CL/6 mice, and monitored and assessed them for 35 days. We then investigated the effects of ginsenosides on cell genesis in different phases of adult hair follicles (HFs), using 5-bromo-2'-deoxyuridine as a marker for dividing cells. Moreover, p63, a specific marker and a major regulator of keratinocyte progenitor cells of the multi-layered epithelia, was detected in epidermis. Results indicated that treatment with ginsenosides Rb₁ and Rd increased cell proliferation in both anagen and telogen of HFs. However, it had no significant effect on the survival of cells in the bulge and upper follicle region. Investigation of p63 demonstrated that up-regulation of p63 expression in the matrix and outer root sheath might be one of the mechanisms by which ginsenosides Rb₁ and Rd promote cell proliferation in HFs. Our study reveals a novel mechanism by which ginsenoside promotes hair growth through p63 induction in follicular keratinocytes and indicates that ginsenosides Rb₁ and Rd might be developed as a therapeutic agent for the prevention of hair loss. PMID:23007914

  7. Expression and location of phospho-Artemis (Serine516) in hair follicles during induced growth of mouse hair.

    PubMed

    Wu, Xian-Jie; Zhu, Jian-Wei; Liu, Hai; Lu, Zhong-Fa; Zheng, Min

    2012-05-01

    Artemis has been implicated in having a role in NHEJ, and it is also a multifunctional protein. Previous studies have found Omenn syndrome-like phenotype due to Artemis mutations and associated with alopecia. As Artemis phosphorylation in its c-terminus including Serine516 is prerequisite for the Artemis endonuclease reaction, we postulate that Artemis (Serine516) may be expressed in hair follicle and relate to hair cycling. In this study, hair growth in C57BL/6 mice was induced by plucking the telogen hair on the back. Expression of Artemis (Serine516) in hair follicles during the hair growth cycle was evaluated by immunofluorescence using cryosections and a specific polyclonal anti-Artemis (Serine516) immunoglobulin G (IgG) antibody. It was detected in germ cells, cap, and club hair adjoining the epidermis in telogen. In anagen II, intense staining for Artemis (Serine516) was found in the whole interfollicular epidermis, and in strand keratinocytes. In anagen IV, intense staining for Artemis (Serine516) was detected in basal cells and upper of outer root sheath (ORS) and inner root sheath (IRS). But only upper ORS and lower medulla were stained positive in anagen VI. Upper ORS and lower cortex were positively stained with Artemis (Serine516) in catagen. Based on the phenomenon that the expression of Artemis (Serine516) in mid-anagen and mature anagen was stronger than that in telogen and catagen, we suggest it may take roles in induced growth of mouse hair. PMID:22476261

  8. Tbx18 targets dermal condensates for labeling, isolation, and gene ablation during embryonic hair follicle formation.

    PubMed

    Grisanti, Laura; Clavel, Carlos; Cai, Xiaoqiang; Rezza, Amelie; Tsai, Su-Yi; Sennett, Rachel; Mumau, Melanie; Cai, Chen-Leng; Rendl, Michael

    2013-02-01

    How cell fate decisions of stem and progenitor cells are regulated by their microenvironment or niche is a central question in stem cell and regenerative biology. Although functional analysis of hair follicle epithelial stem cells by gene targeting is well established, the molecular and genetic characterization of the dermal counterpart during embryonic morphogenesis has been lacking because of the absence of cell type-specific drivers. Here, we report that T-box transcription factor Tbx18 specifically marks dermal papilla (DP) precursor cells during embryonic hair follicle morphogenesis. With Tbx18(LacZ), Tbx18(H2BGFP), and Tbx18(Cre) knock-in mouse models, we demonstrate LacZ and H2BGFP (nuclear green fluorescent protein) expression and Cre activity in dermal condensates of nascent first-wave hair follicles at E14.5. As Tbx18 expression becomes more widespread throughout the dermis at later developmental stages, we use tamoxifen-inducible Cre-expressing mice, Tbx18(MerCreMer), to exclusively target DP precursor cells and their progeny. Finally, we ablate Tbx18 in full knockout mice, but find no perturbations in hair follicle formation, suggesting that Tbx18 is dispensable for normal DP function. In summary, our study establishes Tbx18 as a genetic driver to target for the first time embryonic DP precursors for labeling, isolation, and gene ablation that will greatly enhance investigations into their molecular functions during hair follicle morphogenesis. PMID:22992803

  9. Effects of a Closed Space Environment on Gene Expression in Hair Follicles of Astronauts in the International Space Station.

    PubMed

    Terada, Masahiro; Seki, Masaya; Takahashi, Rika; Yamada, Shin; Higashibata, Akira; Majima, Hideyuki J; Sudoh, Masamichi; Mukai, Chiaki; Ishioka, Noriaki

    2016-01-01

    Adaptation to the space environment can sometimes pose physiological problems to International Space Station (ISS) astronauts after their return to earth. Therefore, it is important to develop healthcare technologies for astronauts. In this study, we examined the feasibility of using hair follicles, a readily obtained sample, to assess gene expression changes in response to spaceflight adaptation. In order to investigate the gene expression changes in human hair follicles during spaceflight, hair follicles of 10 astronauts were analyzed by microarray and real time qPCR analyses. We found that spaceflight alters human hair follicle gene expression. The degree of changes in gene expression was found to vary among individuals. In some astronauts, genes related to hair growth such as FGF18, ANGPTL7 and COMP were upregulated during flight, suggesting that spaceflight inhibits cell proliferation in hair follicles. PMID:27029003

  10. Effects of a Closed Space Environment on Gene Expression in Hair Follicles of Astronauts in the International Space Station

    PubMed Central

    Terada, Masahiro; Seki, Masaya; Takahashi, Rika; Yamada, Shin; Higashibata, Akira; Majima, Hideyuki J.; Sudoh, Masamichi; Mukai, Chiaki; Ishioka, Noriaki

    2016-01-01

    Adaptation to the space environment can sometimes pose physiological problems to International Space Station (ISS) astronauts after their return to earth. Therefore, it is important to develop healthcare technologies for astronauts. In this study, we examined the feasibility of using hair follicles, a readily obtained sample, to assess gene expression changes in response to spaceflight adaptation. In order to investigate the gene expression changes in human hair follicles during spaceflight, hair follicles of 10 astronauts were analyzed by microarray and real time qPCR analyses. We found that spaceflight alters human hair follicle gene expression. The degree of changes in gene expression was found to vary among individuals. In some astronauts, genes related to hair growth such as FGF18, ANGPTL7 and COMP were upregulated during flight, suggesting that spaceflight inhibits cell proliferation in hair follicles. PMID:27029003

  11. Dynamics of Lgr6+ Progenitor Cells in the Hair Follicle, Sebaceous Gland, and Interfollicular Epidermis

    PubMed Central

    Füllgrabe, Anja; Joost, Simon; Are, Alexandra; Jacob, Tina; Sivan, Unnikrishnan; Haegebarth, Andrea; Linnarsson, Sten; Simons, Benjamin D.; Clevers, Hans; Toftgård, Rune; Kasper, Maria

    2015-01-01

    Summary The dynamics and interactions between stem cell pools in the hair follicle (HF), sebaceous gland (SG), and interfollicular epidermis (IFE) of murine skin are still poorly understood. In this study, we used multicolor lineage tracing to mark Lgr6-expressing basal cells in the HF isthmus, SG, and IFE. We show that these Lgr6+ cells constitute long-term self-renewing populations within each compartment in adult skin. Quantitative analysis of clonal dynamics revealed that the Lgr6+ progenitor cells compete neutrally in the IFE, isthmus, and SG, indicating population asymmetry as the underlying mode of tissue renewal. Transcriptional profiling of Lgr6+ and Lgr6− cells did not reveal a distinct Lgr6-associated gene expression signature, raising the question of whether Lgr6 expression requires extrinsic niche signals. Our results elucidate the interrelation and behavior of Lgr6+ populations in the IFE, HF, and SG and suggest population asymmetry as a common mechanism for homeostasis in several epithelial skin compartments. PMID:26607954

  12. Heparan Sulfate Regulates Hair Follicle and Sebaceous Gland Morphogenesis and Homeostasis*

    PubMed Central

    Coulson-Thomas, Vivien Jane; Gesteira, Tarsis Ferreira; Esko, Jeffrey; Kao, Winston

    2014-01-01

    Hair follicle (HF) morphogenesis and cycling are a result of intricate autonomous epithelial-mesenchymal interactions. Once the first HF cycle is complete it repeatedly undergoes cyclic transformations. Heparan sulfate (HS) proteoglycans are found on the cell surface and in the extracellular matrix where they influence a variety of biological processes by interacting with physiologically important proteins, such as growth factors. Inhibition of heparanase (an HS endoglycosidase) in in vitro cultured HFs has been shown to induce a catagen-like process. Therefore, this study aimed to elucidate the precise role of HS in HF morphogenesis and cycling. An inducible tetratransgenic mouse model was generated to excise exostosin glycosyltransferase 1 (Ext1) in keratin 14-positive cells from P21. Interestingly, EXT1StEpiΔ/StEpiΔ mice presented solely anagen HFs. Moreover, waxing the fur to synchronize the HFs revealed accelerated hair regrowth in the EXT1StEpiΔ/StEpiΔ mice and hindered cycling into catagen. The ablation of HS in the interfollicular epidermal cells of mature skin led to the spontaneous formation of new HFs and an increase in Sonic Hedgehog expression resembling wild-type mice at P0, thereby indicating that the HS/Sonic Hedgehog signaling pathway regulates HF formation during embryogenesis and prevents HF formation in mature skin. Finally, the knock-out of HS also led to the morphogenesis and hyperplasia of sebaceous glands and sweat glands in mature mice, leading to exacerbated sebum production and accumulation on the skin surface. Therefore, our findings clearly show that an intricate control of HS levels is required for HF, sebaceous gland, and sweat gland morphogenesis and HF cycling. PMID:25053416

  13. Heparan sulfate regulates hair follicle and sebaceous gland morphogenesis and homeostasis.

    PubMed

    Coulson-Thomas, Vivien Jane; Gesteira, Tarsis Ferreira; Esko, Jeffrey; Kao, Winston

    2014-09-01

    Hair follicle (HF) morphogenesis and cycling are a result of intricate autonomous epithelial-mesenchymal interactions. Once the first HF cycle is complete it repeatedly undergoes cyclic transformations. Heparan sulfate (HS) proteoglycans are found on the cell surface and in the extracellular matrix where they influence a variety of biological processes by interacting with physiologically important proteins, such as growth factors. Inhibition of heparanase (an HS endoglycosidase) in in vitro cultured HFs has been shown to induce a catagen-like process. Therefore, this study aimed to elucidate the precise role of HS in HF morphogenesis and cycling. An inducible tetratransgenic mouse model was generated to excise exostosin glycosyltransferase 1 (Ext1) in keratin 14-positive cells from P21. Interestingly, EXT1(StEpiΔ/StEpiΔ) mice presented solely anagen HFs. Moreover, waxing the fur to synchronize the HFs revealed accelerated hair regrowth in the EXT1(StEpiΔ/StEpiΔ) mice and hindered cycling into catagen. The ablation of HS in the interfollicular epidermal cells of mature skin led to the spontaneous formation of new HFs and an increase in Sonic Hedgehog expression resembling wild-type mice at P0, thereby indicating that the HS/Sonic Hedgehog signaling pathway regulates HF formation during embryogenesis and prevents HF formation in mature skin. Finally, the knock-out of HS also led to the morphogenesis and hyperplasia of sebaceous glands and sweat glands in mature mice, leading to exacerbated sebum production and accumulation on the skin surface. Therefore, our findings clearly show that an intricate control of HS levels is required for HF, sebaceous gland, and sweat gland morphogenesis and HF cycling. PMID:25053416

  14. Evaluation of blood, buccal swabs, and hair follicles for DNA profiling technique using STR markers

    PubMed Central

    Chaudhary, Garima; Dogra, T D; Raina, Anupuma

    2015-01-01

    Aim To study the short tandem repeat (STR) pattern of DNA from the blood, buccal swabs, and hair follicles of the recipients of allogenic hematopoietic stem cell transplantation to examine whether these tissues contain donor derived cells. Methods The study enrolled 25 patients who sustained engraftment. Peripheral blood, buccal swabs, and hair follicles were collected on days 21-30, 90, and 180 after transplantation and the chimeric status of the recipients was evaluated. Results Donor derived cells existed in the blood and buccal swabs, but not in hair follicles, which can be used to obtain the pre-transplant sample of the recipient after transplant. Conclusion Peripheral blood and buccal swab do not serve as a reliable source of recipient’s origin for DNA analysis of individuals who underwent allogenic hematopoietic stem cell transplantation at least within 6 months after transplant. PMID:26088848

  15. Intraflagellar transport 27 is essential for hedgehog signaling but dispensable for ciliogenesis during hair follicle morphogenesis.

    PubMed

    Yang, Ning; Li, Li; Eguether, Thibaut; Sundberg, John P; Pazour, Gregory J; Chen, Jiang

    2015-06-15

    Hair follicle morphogenesis requires precisely controlled reciprocal communications, including hedgehog (Hh) signaling. Activation of the Hh signaling pathway relies on the primary cilium. Disrupting ciliogenesis results in hair follicle morphogenesis defects due to attenuated Hh signaling; however, the loss of cilia makes it impossible to determine whether hair follicle phenotypes in these cilia mutants are caused by the loss of cilia, disruption of Hh signaling, or a combination of these events. In this study, we characterized the function of Ift27, which encodes a subunit of intraflagellar transport (IFT) complex B. Hair follicle morphogenesis of Ift27-null mice was severely impaired, reminiscent of phenotypes observed in cilia and Hh mutants. Furthermore, the Hh signaling pathway was attenuated in Ift27 mutants, which was in association with abnormal ciliary trafficking of SMO and GLI2, and impaired processing of Gli transcription factors; however, formation of the ciliary axoneme was unaffected. The ciliary localization of IFT25 (HSPB11), the binding partner of IFT27, was disrupted in Ift27 mutant cells, and Ift25-null mice displayed hair follicle phenotypes similar to those of Ift27 mutants. These data suggest that Ift27 and Ift25 operate in a genetically and functionally dependent manner during hair follicle morphogenesis. This study suggests that the molecular trafficking machineries underlying ciliogenesis and Hh signaling can be segregated, thereby providing important insights into new avenues of inhibiting Hh signaling, which might be adopted in the development of targeted therapies for Hh-dependent cancers, such as basal cell carcinoma. PMID:26023097

  16. Intraflagellar transport 27 is essential for hedgehog signaling but dispensable for ciliogenesis during hair follicle morphogenesis

    PubMed Central

    Yang, Ning; Li, Li; Eguether, Thibaut; Sundberg, John P.; Pazour, Gregory J.; Chen, Jiang

    2015-01-01

    Hair follicle morphogenesis requires precisely controlled reciprocal communications, including hedgehog (Hh) signaling. Activation of the Hh signaling pathway relies on the primary cilium. Disrupting ciliogenesis results in hair follicle morphogenesis defects due to attenuated Hh signaling; however, the loss of cilia makes it impossible to determine whether hair follicle phenotypes in these cilia mutants are caused by the loss of cilia, disruption of Hh signaling, or a combination of these events. In this study, we characterized the function of Ift27, which encodes a subunit of intraflagellar transport (IFT) complex B. Hair follicle morphogenesis of Ift27-null mice was severely impaired, reminiscent of phenotypes observed in cilia and Hh mutants. Furthermore, the Hh signaling pathway was attenuated in Ift27 mutants, which was in association with abnormal ciliary trafficking of SMO and GLI2, and impaired processing of Gli transcription factors; however, formation of the ciliary axoneme was unaffected. The ciliary localization of IFT25 (HSPB11), the binding partner of IFT27, was disrupted in Ift27 mutant cells, and Ift25-null mice displayed hair follicle phenotypes similar to those of Ift27 mutants. These data suggest that Ift27 and Ift25 operate in a genetically and functionally dependent manner during hair follicle morphogenesis. This study suggests that the molecular trafficking machineries underlying ciliogenesis and Hh signaling can be segregated, thereby providing important insights into new avenues of inhibiting Hh signaling, which might be adopted in the development of targeted therapies for Hh-dependent cancers, such as basal cell carcinoma. PMID:26023097

  17. Mitochondrial aerobic respiration is activated during hair follicle stem cell differentiation, and its dysfunction retards hair regeneration

    PubMed Central

    Tang, Yan; Luo, Binping; Deng, Zhili; Wang, Ben; Liu, Fangfen; Li, Jinmao; Shi, Wei; Xie, Hongfu; Hu, Xingwang

    2016-01-01

    Background. Emerging research revealed the essential role of mitochondria in regulating stem/progenitor cell differentiation of neural progenitor cells, mesenchymal stem cells and other stem cells through reactive oxygen species (ROS), Notch or other signaling pathway. Inhibition of mitochondrial protein synthesis results in hair loss upon injury. However, alteration of mitochondrial morphology and metabolic function during hair follicle stem cells (HFSCs) differentiation and how they affect hair regeneration has not been elaborated upon. Methods. We compared the difference in mitochondrial morphology and activity between telogen bulge cells and anagen matrix cells. Expression levels of mitochondrial ROS and superoxide dismutase 2 (SOD2) were measured to evaluate redox balance. In addition, the level of pyruvate dehydrogenase kinase (PDK) and pyruvate dehydrogenase (PDH) were estimated to present the change in energetic metabolism during differentiation. To explore the effect of the mitochondrial metabolism on regulating hair regeneration, hair growth was observed after application of a mitochondrial respiratory inhibitor upon hair plucking. Results. During HFSCs differentiation, mitochondria became elongated with more abundant organized cristae and showed higher activity in differentiated cells. SOD2 was enhanced for redox balance with relatively stable ROS levels in differentiated cells. PDK increased in HFSCs while differentiated cells showed enhanced PDH, indicating that respiration switched from glycolysis to oxidative phosphorylation during differentiation. Inhibiting mitochondrial respiration in differentiated hair follicle cells upon hair plucking repressed hair regeneration in vivo. Conclusions. Upon HFSCs differentiation, mitochondria are elongated with more abundant cristae and show higher activity, accompanying with activated aerobic respiration in differentiated cells for higher energy supply. Also, dysfunction of mitochondrial respiration delays hair

  18. Mitochondrial aerobic respiration is activated during hair follicle stem cell differentiation, and its dysfunction retards hair regeneration.

    PubMed

    Tang, Yan; Luo, Binping; Deng, Zhili; Wang, Ben; Liu, Fangfen; Li, Jinmao; Shi, Wei; Xie, Hongfu; Hu, Xingwang; Li, Ji

    2016-01-01

    Background. Emerging research revealed the essential role of mitochondria in regulating stem/progenitor cell differentiation of neural progenitor cells, mesenchymal stem cells and other stem cells through reactive oxygen species (ROS), Notch or other signaling pathway. Inhibition of mitochondrial protein synthesis results in hair loss upon injury. However, alteration of mitochondrial morphology and metabolic function during hair follicle stem cells (HFSCs) differentiation and how they affect hair regeneration has not been elaborated upon. Methods. We compared the difference in mitochondrial morphology and activity between telogen bulge cells and anagen matrix cells. Expression levels of mitochondrial ROS and superoxide dismutase 2 (SOD2) were measured to evaluate redox balance. In addition, the level of pyruvate dehydrogenase kinase (PDK) and pyruvate dehydrogenase (PDH) were estimated to present the change in energetic metabolism during differentiation. To explore the effect of the mitochondrial metabolism on regulating hair regeneration, hair growth was observed after application of a mitochondrial respiratory inhibitor upon hair plucking. Results. During HFSCs differentiation, mitochondria became elongated with more abundant organized cristae and showed higher activity in differentiated cells. SOD2 was enhanced for redox balance with relatively stable ROS levels in differentiated cells. PDK increased in HFSCs while differentiated cells showed enhanced PDH, indicating that respiration switched from glycolysis to oxidative phosphorylation during differentiation. Inhibiting mitochondrial respiration in differentiated hair follicle cells upon hair plucking repressed hair regeneration in vivo. Conclusions. Upon HFSCs differentiation, mitochondria are elongated with more abundant cristae and show higher activity, accompanying with activated aerobic respiration in differentiated cells for higher energy supply. Also, dysfunction of mitochondrial respiration delays hair

  19. Squarticles as a lipid nanocarrier for delivering diphencyprone and minoxidil to hair follicles and human dermal papilla cells.

    PubMed

    Aljuffali, Ibrahim A; Sung, Calvin T; Shen, Feng-Ming; Huang, Chi-Ting; Fang, Jia-You

    2014-01-01

    Delivery of diphencyprone (DPCP) and minoxidil to hair follicles and related cells is important in the treatment of alopecia. Here we report the development of "squarticles," nanoparticles formed from sebum-derived lipids such as squalene and fatty esters, for use in achieving targeted drug delivery to the follicles. Two different nanosystems, nanostructured lipid carriers (NLC) and nanoemulsions (NE), were prepared. The physicochemical properties of squarticles, including size, zeta potential, drug encapsulation efficiency, and drug release, were examined. Squarticles were compared to a free control solution with respect to skin absorption, follicular accumulation, and dermal papilla cell targeting. The particle size of the NLC type was 177 nm; that of the NE type was 194 nm. Approximately 80% of DPCP and 60% of minoxidil were entrapped into squarticles. An improved drug deposition in the skin was observed in the in vitro absorption test. Compared to the free control, the squarticles reduced minoxidil penetration through the skin. This may indicate a minimized absorption into systemic circulation. Follicular uptake by squarticles was 2- and 7-fold higher for DPCP and minoxidil respectively compared to the free control. Fluorescence and confocal images of the skin confirmed a great accumulation of squarticles in the follicles and the deeper skin strata. Vascular endothelial growth factor expression in dermal papilla cells was significantly upregulated after the loading of minoxidil into the squarticles. In vitro papilla cell viability and in vivo skin irritancy tests in nude mice suggested a good tolerability of squarticles to skin. Squarticles provide a promising nanocarrier for topical delivery of DPCP and minoxidil. PMID:24307611

  20. The Dog Mite, Demodex canis: Prevalence, Fungal Co-Infection, Reactions to Light, and Hair Follicle Apoptosis

    PubMed Central

    Tsai, Yu-Jen; Chung, Wen-Cheng; Wang, Lian-Chen; Ju, Yu-Ten; Hong, Chin-Lin; Tsai, Yu-Yang; Li, Yi-Hung; Wu, Ying-Ling

    2011-01-01

    Infection rate, reaction to light, and hair follicle apoptosis are examined in the dogmite, Demodex canis Leydig (Prostigmata: Demodicidae), in dogs from the northern area of Taiwan. An analysis of relevant samples revealed 7.2% (73/1013) prevalence of D. canis infection. Infection during the investigation peaked each winter, with an average prevalence of 12.5% (32/255). The infection rates significantly varied in accordance with month, sex, age, and breed (p < 0.05). Most of the lesions were discovered on the backs of the infected animals, where the infection rate was 52.1% (38/73) (P < 0.05). The epidemiologic analysis of infection based on landscape area factor, found that employing a map-overlapping method showed a higher infection rate in the eastern distribution of Taiwan's northern area than other areas. Isolation tests for Microsporum canis Bodin (Onygenales: Arthrodermataceae) and Trichophyton mentagrophyte Robin (Blanchard) on the D. canis infected dogs revealed prevalence rates of 4.4% (2/45) and 2.2% (1/45), respectively. Observations demonstrated that D. canis slowly moved from a light area to a dark area. Skin samples were examined for cellular apoptosis by activated caspase3 immunohistochemical staining. Cells that surrounded the infected hair follicles were activated caspase3-positive, revealing cell apoptosis in infected follicles via the activation of caspase3. PMID:21867442

  1. Skin pigmentation and texture changes after hair removal with the normal-mode ruby laser.

    PubMed

    Haedersdal, M; Egekvist, H; Efsen, J; Bjerring, P

    1999-11-01

    Promising clinical results have been obtained with the normal mode ruby laser for removal of unwanted hair. Melanin within the hair follicles is thought to act as target for the ruby laser pulses, whereas epidermal melanin is thought to be a competitive chromophore, responsible for potential side effects. This study aimed (i) to objectify postoperative changes in skin pigmentation and texture and (ii) to evaluate the importance of variations in preoperative skin pigmentation for the development of side effects 12 weeks after 1 treatment with the normal-mode ruby laser. A total of 17 volunteers (skin types I-IV) were laser-treated in the hairy pubic region (n = 51 test areas). A shaved test area served as control. Skin reflectance spectroscopical measurements, 3-dimensional surface contour analysis and ultrasonography objectified postoperative changes in skin pigmentation and texture. Blinded clinical assessments revealed postoperative hyperpigmentation (2% of test areas) and hypopigmentation (10%), whereas no textural changes were seen. Reflectance spectroscopically-determined pigmentary changes depended on the degree of preoperative skin pigmentation, fairly pigmented skin types experiencing subclinical hyperpigmentation and darkly pigmented skin types experiencing subclinical hypopigmentation. Three-dimensional surface profilometry documented similar pre- and postoperative surface contour parameters, indicating that the skin surface texture is preserved after laser exposure. Ultrasonography revealed similar skin thicknesses in laser-exposed and untreated control areas. It is concluded that normal-mode ruby laser treatment is safe for hair removal in skin types I-IV. PMID:10598763

  2. The Nude Mutant Gene Foxn1 is a HOXC13 Regulatory Target during Hair Follicle and Nail Differentiation

    PubMed Central

    Potter, Christopher S.; Pruett, Nathanael D.; Kern, Michael J.; Baybo, Mary Ann; Godwin, Alan R.; Potter, Kathleen A.; Peterson, Ron L.; Sundberg, John P.; Awgulewitsch, Alexander

    2011-01-01

    Among the Hox genes, Hoxc13 has been shown to be essential for proper hair shaft differentiation as Hoxc13 gene-targeted (Hoxc13tm1Mrc) mice completely lack external hair. Because of the remarkable overt phenotypic parallels to the Foxn1nu (nude) mutant mice, we sought to determine whether Hoxc13 and Foxn1 might act in a common pathway of hair follicle (HF) differentiation. We show that the alopecia exhibited by both the Hoxc13tm1Mrc and Foxn1nu mice is due to strikingly similar defects in hair shaft differentiation and that both mutants suffer from a severe nail dystrophy. These phenotypic similarities are consistent with the extensive overlap between Hoxc13 and Foxn1 expression patterns in the HF and the nail matrix. Furthermore, DNA microarray analysis of skin from Hoxc13tm1Mrc mice identified Foxn1 as significantly down-regulated along with numerous hair keratin genes. This Foxn1 down-regulation apparently reflects the loss of direct transcriptional control by HOXC13 as indicated by our results obtained through co-transfection and chromatin immunoprecipitation (ChIP) assays. As presented in the discussion, these data support a regulatory model of keratinocyte differentiation in which HOXC13-dependent activation of Foxn1 is part of a regulatory cascade controlling the expression of terminal differentiation markers. PMID:21191399

  3. Transgenic flash mice for in vivo quantitative monitoring of canonical Wnt signaling to track hair follicle cycle dynamics.

    PubMed

    Hodgson, Samantha S; Neufeld, Zoltan; Villani, Rehan M; Roy, Edwige; Khosrotehrani, Kiarash

    2014-06-01

    Hair follicles (HFs) upon development enter a lifelong cycle of growth, regression, and resting. These phases have been extensively studied at the cellular and molecular levels for individual HFs. However, HFs group into domains with coordinated cycling strongly influenced by their environment. These macroscopic hair domains have been difficult to study and can be influenced by physiological or pathological conditions, such as pregnancy or skin wounds. To robustly address this issue, we generated a mouse model for quantitative monitoring of β-catenin activity reflecting HF cycle dynamics macroscopically by using live bioluminescence imaging. These mice allowed live tracking of HF cycles and development, and highlighted hair regenerative patterns known to occur through macro-environmental cues, including initiation events, propagating anagen and border stability, and allowed refinement of a mechanistic mathematical model that integrates epidermal cell population dynamics into an excitable reaction-diffusion model. HF cycling could be studied in situations of pregnancy, wound healing, hair plucking, as well as in response to cyclosporine or Wnt3a stimulation. In conclusion, we developed a model for analysis of HF cycling at the macroscopic level that will allow refined analysis of hair cycle kinetics as well as its propagation dynamics. PMID:24531689

  4. Androgen action in cultured dermal papilla cells from human hair follicles.

    PubMed

    Randall, V A; Thornton, M J; Hamada, K; Messenger, A G

    1994-01-01

    Androgens are major regulators of human hair growth with paradoxically different effects on hair follicles depending on their body site. They stimulate terminal growth in many regions including the face, have no effect on eyelashes, but may cause inhibition and balding on the scalp in genetically disposed individuals. How this occurs is unknown. However, androgens may act on the hair follicle via the cells of the dermal papilla; these would then influence the other cells of the hair follicle by altering the production of regulatory substances such as growth factors and/or extracellular matrix components. Therefore, primary lines of dermal papilla cells have been established from androgen-sensitive hair follicles, such as beard, and control, relatively androgen-independent, non-balding scalp cells and their mechanism of androgen action has been compared. Isolated beard dermal papillae were larger than those from scalp follicles. Although dermal papilla cells did not respond to in vitro androgens by alterations in growth, androgen-dependent dermal papilla cells contained higher levels of specific, low capacity, high affinity androgen receptors than non-balding scalp cells. The ability of the cells to metabolise testosterone to 5 alpha-dihydrotestosterone in culture also varied in parallel to that predicted from studies of hair growth in the 5 alpha-reductase deficiency syndrome. These results support the hypothesis that androgens act via the dermal papilla. They also show that dermal papilla cells retain differences in gene expression in culture which appear to correspond with their androgenic response in vivo. Further studies of such cells should help elucidate why bald men can grow beards! PMID:8003318

  5. No evidence of plasticity in hair follicles of recipients after allogeneic hematopoietic stem cell transplantation.

    PubMed

    Rovó, Alicia; Meyer-Monard, Sandrine; Heim, Dominik; Arber, Caroline; Passweg, Jakob R; Gratwohl, Alois; Tichelli, André

    2005-08-01

    Here we show in a prospective quantitative study of 115 patients after allogeneic hematopoietic stem cell transplantation that hair follicles remain exclusively of recipient type despite full whole blood donor-type chimerism. Our data indicate that unmanipulated hematopoietic donor stem cells do not contribute directly to reconstitution even in an organ at highest need for repair. PMID:16038783

  6. Neural Potential of a Stem Cell Population in the Hair Follicle

    PubMed Central

    Mignone, John L.; Roig-Lopez, Jose L.; Fedtsova, Natalia; Schones, Dustin E.; Manganas, Louis N.; Maletic-Savatic, Mirjana; Keyes, William M.; Mills, Alea A.; Gleiberman, Anatoli; Zhang, Michael Q.; Enikolopov, Grigori

    2013-01-01

    The bulge region of the hair follicle serves as a repository for epithelial stem cells that can regenerate the follicle in each hair growth cycle and contribute to epidermis regeneration upon injury. Here we describe a population of multipotential stem cells in the hair follicle bulge region; these cells can be identified by fluorescence in transgenic nestin-GFP mice. The morphological features of these cells suggest that they maintain close associations with each other and with the surrounding niche. Upon explantation, these cells can give rise to neurosphere-like structures in vitro. When these cells are permitted to differentiate, they produce several cell types, including cells with neuronal, astrocytic, oligodendrocytic, smooth muscle, adipocytic, and other phenotypes. Furthermore, upon implantation into the developing nervous system of chick, these cells generate neuronal cells in vivo. We used transcriptional profiling to assess the relationship between these cells and embryonic and postnatal neural stem cells and to compare them with other stem cell populations of the bulge. Our results show that nestin-expressing cells in the bulge region of the hair follicle have stem cell-like properties, are multipotent, and can effectively generate cells of neural lineage in vitro and in vivo. PMID:17873521

  7. Roles of MED1 in quiescence of hair follicle stem cells and maintenance of normal hair cycling.

    PubMed

    Nakajima, Takeshi; Inui, Shigeki; Fushimi, Tomohiro; Noguchi, Fumihito; Kitagawa, Yutaka; Reddy, Janardan K; Itami, Satoshi

    2013-02-01

    MED1 (mediator complex subunit 1) is expressed by human epidermal keratinocytes and functions as a coactivator of several transcription factors. To elucidate the role of MED1 in keratinocytes, we established keratinocyte-specific Med1-null (Med1(epi-/-)) mice using the K5Cre/LoxP system. Development of the epidermis and appendages of Med1(epi-/-) mice were macroscopically and microscopically normal until the second catagen of the hair cycle. However, the hair cycle of Med1(epi-/-) mice was spontaneously repeated after the second telogen, which does not occur in wild-type (WT) mice. Hair follicles of Med1(epi-/-) mice could not enter anagen after 6 months of age, resulting in sparse pelage hair in older Med1(epi-/-) mice. Interfollicular epidermis (IFE) of Med1(epi-/-) mice was acanthotic and more proliferative than that of WT mice, whereas these findings were less evident in older Med1(epi-/-) mice. Flow cytometric analysis revealed that the numbers of hair follicle bulge stem cells were reduced in Med1(epi-/-) mice from a few months after birth. These results suggest that MED1 has roles in maintaining quiescence of keratinocytes and preventing depletion of the follicular stem cells. PMID:22931914

  8. Skin lumps

    MedlinePlus

    ... and contains fluid or semisolid material Benign skin growths such as seborrheic keratoses or neurofibromas Boils , painful, red bumps usually involving an infected hair follicle Corn or callus, caused by skin thickening in response ...

  9. In vivo transcriptional governance of hair follicle stem cells by canonical Wnt regulators

    PubMed Central

    Lien, Wen-Hui; Polak, Lisa; Lin, Mingyan; Lay, Kenneth; Zheng, Deyou; Fuchs, Elaine

    2014-01-01

    Hair follicle stem cells (HFSCs) regenerate hair in response to Wnt signalling. Here, we unfold genome-wide transcriptional and chromatin landscapes of β-catenin–TCF3/4–TLE circuitry, and genetically dissect their biological roles within the native HFSC niche. We show that during HFSC quiescence, TCF3, TCF4 and TLE (Groucho) bind coordinately and transcriptionally repress Wnt target genes. We also show that β-catenin is dispensable for HFSC viability, and that if TCF3/4 levels are sufficiently reduced, it is dispensable for proliferation. However, β-catenin is essential to activate genes that launch hair follicle fate and suppress sebocyte fate determination. TCF3/4 deficiency mimics Wnt–β-catenin-dependent activation of these hair follicle fate targets; TCF3 overexpression parallels their TLE4-dependent suppression. Our studies unveil TCF3/4–TLE histone deacetylases as a repressive rheostat, whose action can be relieved by Wnt–β-catenin signalling. When TCF3/4 and TLE levels are high, HFSCs can maintain stemness, but remain quiescent. When these levels drop or when Wnt–β-catenin levels rise, this balance is shifted and hair regeneration initiates. PMID:24463605

  10. Cxcr4 is transiently expressed in both epithelial and mesenchymal compartments of nascent hair follicles but is not required for follicle formation.

    PubMed

    Sennett, Rachel; Rezza, Amélie; Dauber, Katherine L; Clavel, Carlos; Rendl, Michael

    2014-10-01

    Hair follicle (HF) morphogenesis relies on the coordinated exchange of signals between mesenchymal and epithelial compartments of embryonic skin. Chemokine receptor Cxcr4 expression was recently identified in dermal condensates (DCs) of nascent HFs, but its role in promoting HF morphogenesis remains unknown. Our analyses confirmed Cxcr4 expression in condensate cells, and additionally revealed transient Cxcr4 expression in incipient epithelial hair placodes. Placodal Cxcr4 appeared prior to detection in DCs, representing a switch of expression between epithelial and mesenchymal compartments. To explore the functional role of this receptor in both compartments for early HF formation, we conditionally ablated Cxcr4 with condensate-targeting Tbx18(cre) knock-in and epidermis-targeting Krt14-cre transgenic mice. Conditional knockouts for both crosses were viable throughout embryogenesis and into adulthood. Morphological and biochemical marker analyses revealed comparable numbers of HFs forming in knockout embryos compared to wild-type littermate controls in both cases, suggesting that neither dermal nor epithelial Cxcr4 expression is required for early HF morphogenesis. We conclude that Cxcr4 expression and chemokine signaling through this receptor in embryonic mouse skin is dispensable for HF formation. PMID:25066162

  11. Foxc1 reinforces quiescence in self-renewing hair follicle stem cells.

    PubMed

    Wang, Li; Siegenthaler, Julie A; Dowell, Robin D; Yi, Rui

    2016-02-01

    Stem cell quiescence preserves the cell reservoir by minimizing cell division over extended periods of time. Self-renewal of quiescent stem cells (SCs) requires the reentry into the cell cycle. In this study, we show that murine hair follicle SCs induce the Foxc1 transcription factor when activated. Deleting Foxc1 in activated, but not quiescent, SCs causes failure of the cells to reestablish quiescence and allows premature activation. Deleting Foxc1 in the SC niche of gene-targeted mice leads to loss of the old hair without impairing quiescence. In self-renewing SCs, Foxc1 activates Nfatc1 and bone morphogenetic protein (BMP) signaling, two key mechanisms that govern quiescence. These findings reveal a dynamic, cell-intrinsic mechanism used by hair follicle SCs to reinforce quiescence upon self-renewal and suggest a unique ability of SCs to maintain cell identity. PMID:26912704

  12. Determination of the cuticula thickness of human and porcine hairs and their potential influence on the penetration of nanoparticles into the hair follicles

    NASA Astrophysics Data System (ADS)

    Lademann, Juergen; Patzelt, Alexa; Richter, Heike; Antoniou, Christina; Sterry, Wolfram; Knorr, Fanny

    2009-03-01

    An efficient penetration and long-term storage of topically applied substances is important for drug delivery in medical treatment and cosmetics. It has recently become apparent that the hair follicles represent an efficient and long-term reservoir for topically applied substances. It was found that particles sized 300-600 nm penetrate more efficiently into the hair follicles than smaller or larger particles. In the present paper, the hair surface structure of human and porcine hairs was analyzed by electron microscopy. It could be observed that the thickness of the cuticula corresponds to the optimal size of the nanoparticles for penetration into the hair follicles. Additionally, it could be demonstrated that the cuticula of human vellus and terminal hairs were of similar thickness (approx. 530 nm), while the thickness of the cuticula obtained from porcine ear bristles were slightly thinner (approx. 320 nm).

  13. Development of a Model for Chemotherapy-Induced Alopecia: Profiling of Histological Changes in Human Hair Follicles after Chemotherapy.

    PubMed

    Yoon, Ji-Seon; Choi, Mira; Shin, Chang Yup; Paik, Seung Hwan; Kim, Kyu Han; Kwon, Ohsang

    2016-03-01

    Optimized research models are required to further understand the pathogenesis and prophylaxis of chemotherapy-induced alopecia. Our aim was to develop a mouse model for chemotherapy-induced alopecia by follicular unit transplantation of human hair follicles onto immunodeficient mice. Twenty-two weeks after transplantation, a single dose of cyclophosphamide (Cph) was administered to mice in the Cph100 (100 mg/kg) and Cph150 (150 mg/kg) groups. On day 6, hair follicles showed dystrophic changes, with swollen dermal papilla and ectopic melanin clumping in the hair bulb. In addition, upregulated expression of apoptotic regulators [P53, Fas/Fas-ligand, tumor necrosis factor-related apoptosis-inducing ligand/tumor necrosis factor-related apoptosis-inducing ligand receptor (TRAIL/TRAIL receptor), and Bax], increased apoptotic matrix keratinocytes, downregulated Ki67 expression, and decreased melanogenic protein in the hair bulb were noted in both groups. After 12 treatment days, hair follicles in Cph100 mice appeared to diminish dystrophic changes. In contrast, hair follicles of Cph150 mice prematurely entered a dystrophic catagen phase after 9 treatment days, and immunofluorescence staining for Ki67 and melanogenic protein expressions was barely visible. Two hair follicle damage response pathways were observed in this model, namely dystrophic anagen (Cph100) and catagen (Cph150) pathways. Our model might be useful for further understanding the impact of chemotherapy on human hair follicles. PMID:26774950

  14. Morphogenetic Mechanisms in the Cyclic Regeneration of Hair Follicles and Deer Antlers from Stem Cells

    PubMed Central

    Li, Chunyi; McMahon, Chris

    2013-01-01

    We have made comparisons between hair follicles (HFs) and antler units (AUs)—two seemingly unrelated mammalian organs. HFs are tiny and concealed within skin, whereas AUs are gigantic and grown externally for visual display. However, these two organs share some striking similarities. Both consist of permanent and cyclic/temporary components and undergo stem-cell-based organogenesis and cyclic regeneration. Stem cells of both organs reside in the permanent part and the growth centres are located in the temporary part of each respective organ. Organogenesis and regeneration of both organs depend on epithelial-mesenchymal interactions. Establishment of these interactions requires stem cells and reactive/niche cells (dermal papilla cells for HFs and epidermal cells for AUs) to be juxtaposed, which is achieved through destruction of the cyclic part to bring the reactive cells into close proximity to the respective stem cell niche. Developments of HFs and AUs are regulated by similar endocrine (particularly testosterone) and paracrine (particularly IGF1) factors. Interestingly, these two organs come to interplay during antlerogenesis. In conclusion, we believe that investigators from the fields of both HF and AU biology could greatly benefit from a comprehensive comparison between these two organs. PMID:24383056

  15. Single transcription factor reprogramming of hair follicle dermal papilla cells to induced pluripotent stem cells.

    PubMed

    Tsai, Su-Yi; Bouwman, Britta Am; Ang, Yen-Sin; Kim, Soo Jeong; Lee, Dung-Fang; Lemischka, Ihor R; Rendl, Michael

    2011-06-01

    Reprogramming patient-specific somatic cells into induced pluripotent stem (iPS) cells has great potential to develop feasible regenerative therapies. However, several issues need to be resolved such as ease, efficiency, and safety of generation of iPS cells. Many different cell types have been reprogrammed, most conveniently even peripheral blood mononuclear cells. However, they typically require the enforced expression of several transcription factors, posing mutagenesis risks as exogenous genetic material. To reduce this risk, iPS cells were previously generated with Oct4 alone from rather inaccessible neural stem cells that endogenously express the remaining reprogramming factors and very recently from fibroblasts with Oct4 alone in combination with additional small molecules. Here, we exploit that dermal papilla (DP) cells from hair follicles in the skin express all but one reprogramming factors to show that these accessible cells can be reprogrammed into iPS cells with the single transcription factor Oct4 and without further manipulation. Reprogramming was already achieved after 3 weeks and with efficiencies similar to other cell types reprogrammed with four factors. Dermal papilla-derived iPS cells are comparable to embryonic stem cells with respect to morphology, gene expression, and pluripotency. We conclude that DP cells may represent a preferred cell type for reprogramming accessible cells with less manipulation and for ultimately establishing safe conditions in the future by replacing Oct4 with small molecules. PMID:21563278

  16. A review of adipocyte lineage cells and dermal papilla cells in hair follicle regeneration

    PubMed Central

    Zhang, Peipei; Kling, Russell E; Ravuri, Sudheer K; Kokai, Lauren E; Rubin, J Peter; Chai, Jia-ke

    2014-01-01

    Alopecia is an exceedingly prevalent problem effecting men and women of all ages. The standard of care for alopecia involves either transplanting existing hair follicles to bald areas or attempting to stimulate existing follicles with topical and/or oral medication. Yet, these treatment options are fraught with problems of cost, side effects, and, most importantly, inadequate long-term hair coverage. Innovative cell-based therapies have focused on the dermal papilla cell as a way to grow new hair in previously bald areas. However, despite this attention, many obstacles exist, including retention of dermal papilla inducing ability and maintenance of dermal papilla productivity after several passages of culture. The use of adipocyte lineage cells, including adipose-derived stem cells, has shown promise as a cell-based solution to regulate hair regeneration and may help in maintaining or increasing dermal papilla cells inducing hair ability. In this review, we highlight recent advances in the understanding of the cellular contribution and regulation of dermal papilla cells and summarize adipocyte lineage cells in hair regeneration. PMID:25383178

  17. Topical Application of Oleuropein Induces Anagen Hair Growth in Telogen Mouse Skin

    PubMed Central

    Tong, Tao; Kim, Nahyun; Park, Taesun

    2015-01-01

    We observed that oleuropein, the main constituent of the leaves and unprocessed olive drupes of Olea europaea, protected mice from high-fat diet-induced adiposity by up-regulation of genes involved in Wnt10b-mediated signaling in adipose tissue. The activation of Wnt/β-catenin pathway is also well established to positively regulate the anagen phase of hair growth cycle in mice skin. Methodology and Principal Findings Oleuropein promoted cultured human follicle dermal papilla cell proliferation and induced LEF1 and Cyc-D1 mRNA expression and β-catenin protein expression in dermal papilla cells. Nuclear accumulation of β-catenin in dermal papilla cells was observed after oleuropein treatment. Topical application of oleuropein (0.4 mg/mouse/day) to C57BL/6N mice accelerated the hair-growth induction and increased the size of hair follicles in telogenic mouse skin. The oleuropein-treated mouse skin showed substantial upregulation of Wnt10b, FZDR1, LRP5, LEF1, Cyc-D1, IGF-1, KGF, HGF, and VEGF mRNA expression and β-catenin protein expression. Conclusions and Significance These results demonstrate that topical oleuroepin administration induced anagenic hair growth in telogenic C57BL/6N mouse skin. The hair-growth promoting effect of oleuropein in mice appeared to be associated with the stimulation of the Wnt10b/β-catenin signaling pathway and the upregulation of IGF-1, KGF, HGF, and VEGF gene expression in mouse skin tissue. PMID:26060936

  18. Lichen planopilaris is characterized by immune privilege collapse of the hair follicle's epithelial stem cell niche.

    PubMed

    Harries, Matthew J; Meyer, Katja; Chaudhry, Iskander; E Kloepper, Jennifer; Poblet, Enrique; Griffiths, Christopher Em; Paus, Ralf

    2013-10-01

    Lichen planopilaris (LPP) is a chronic inflammatory disease of unknown pathogenesis that leads to permanent hair loss. Whilst destruction of epithelial hair follicle stem cells (eHFSCs) that reside in an immunologically protected niche of the HF epithelium, the bulge, is a likely key event in LPP pathogenesis, this remains to be demonstrated. We have tested the hypotheses that bulge immune privilege (IP) collapse and inflammation-induced eHFSC death are key components in the pathogenesis of LPP. Biopsies of lesional and non-lesional scalp skin from adult LPP patients (n = 42) were analysed by quantitative (immuno)histomorphometry, real-time quantitative polymerase chain reaction (qRT-PCR), laser capture microdissection and microarray analysis, or skin organ culture. At both the protein and transcriptional level, lesional LPP HFs showed evidence for bulge IP collapse (ie increased expression of MHC class I and II, β2microglobulin; reduced TGFβ2 and CD200 expression). This was accompanied by a Th1-biased cytotoxic T cell response (ie increased CD8(+) GranzymeB(+) T cells and CD123(+) plasmacytoid dendritic cells, with increased CXCR3 expression) and increased expression of interferon-inducible chemokines (CXCL9/10/11). Interestingly, lesional LPP eHFSCs showed both increased proliferation and apoptosis in situ. Microarray analysis revealed a loss of eHFSC signatures and increased expression of T cell activation/binding markers in active LPP, while bulge PPARγ transcription was unaltered compared to non-lesional LPP HFs. In organ culture of non-lesional LPP skin, interferon-γ (IFNγ) induced bulge IP collapse. LPP is an excellent model disease for studying and preventing immune destruction of human epithelial stem cells in situ. These novel findings raise the possibility that LPP represents an autoimmune disease in whose pathogenesis IFNγ-induced bulge IP collapse plays an important role. Therapeutically, bulge IP protection/restoration may help to better manage

  19. Hair transplantation in mice: Challenges and solutions.

    PubMed

    Asgari, Azar Z; Rufaut, Nicholas W; Morrison, Wayne A; Dilley, Rodney J; Knudsen, Russle; Jones, Leslie N; Sinclair, Rodney D

    2016-07-01

    Hair follicle cells contribute to wound healing, skin circulation, and skin diseases including skin cancer, and hair transplantation is a useful technique to study the participation of hair follicle cells in skin homeostasis and wound healing. Although hair follicle transplantation is a well-established human hair-restoration procedure, follicular transplantation techniques in animals have a number of shortcomings and have not been well described or optimized. To facilitate the study of follicular stem and progenitor cells and their interaction with surrounding skin, we have established a new murine transplantation model, similar to follicular unit transplantation in humans. Vibrissae from GFP transgenic mice were harvested, flip-side microdissected, and implanted individually into needle hole incisions in the back skin of immune-deficient nude mice. Grafts were evaluated histologically and the growth of transplanted vibrissae was observed. Transplanted follicles cycled spontaneously and newly formed hair shafts emerged from the skin after 2 weeks. Ninety percent of grafted vibrissae produced a hair shaft at 6 weeks. After pluck-induced follicle cycling, growth rates were equivalent to ungrafted vibrissae. Transplanted vibrissae with GFP-positive cells were easily identified in histological sections. We established a follicular vibrissa transplantation method that recapitulates human follicular unit transplantation. This method has several advantages over current protocols for animal hair transplantation. The method requires no suturing and minimizes the damage to donor follicles and recipient skin. Vibrissae are easier to microdissect and transplant than pelage follicles and, once transplanted, are readily distinguished from host pelage hair. This facilitates measurement of hair growth. Flip-side hair follicle microdissection precisely separates donor follicular tissue from interfollicular tissue and donor cells remain confined to hair follicles. This makes it

  20. Tyrosinase Depletion Prevents the Maturation of Melanosomes in the Mouse Hair Follicle

    PubMed Central

    Paterson, Elyse K.; Fielder, Thomas J.; MacGregor, Grant R.; Ito, Shosuke; Wakamatsu, Kazumasa; Gillen, Daniel L.; Eby, Victoria; Boissy, Raymond E.; Ganesan, Anand K.

    2015-01-01

    The mechanisms that lead to variation in human skin and hair color are not fully understood. To better understand the molecular control of skin and hair color variation, we modulated the expression of Tyrosinase (Tyr), which controls the rate-limiting step of melanogenesis, by expressing a single-copy, tetracycline-inducible shRNA against Tyr in mice. Moderate depletion of TYR was sufficient to alter the appearance of the mouse coat in black, agouti, and yellow coat color backgrounds, even though TYR depletion did not significantly inhibit accumulation of melanin within the mouse hair. Ultra-structural studies revealed that the reduction of Tyr inhibited the accumulation of terminal melanosomes, and inhibited the expression of genes that regulate melanogenesis. These results indicate that color in skin and hair is determined not only by the total amount of melanin within the hair, but also by the relative accumulation of mature melanosomes. PMID:26619124

  1. Tyrosinase Depletion Prevents the Maturation of Melanosomes in the Mouse Hair Follicle.

    PubMed

    Paterson, Elyse K; Fielder, Thomas J; MacGregor, Grant R; Ito, Shosuke; Wakamatsu, Kazumasa; Gillen, Daniel L; Eby, Victoria; Boissy, Raymond E; Ganesan, Anand K

    2015-01-01

    The mechanisms that lead to variation in human skin and hair color are not fully understood. To better understand the molecular control of skin and hair color variation, we modulated the expression of Tyrosinase (Tyr), which controls the rate-limiting step of melanogenesis, by expressing a single-copy, tetracycline-inducible shRNA against Tyr in mice. Moderate depletion of TYR was sufficient to alter the appearance of the mouse coat in black, agouti, and yellow coat color backgrounds, even though TYR depletion did not significantly inhibit accumulation of melanin within the mouse hair. Ultra-structural studies revealed that the reduction of Tyr inhibited the accumulation of terminal melanosomes, and inhibited the expression of genes that regulate melanogenesis. These results indicate that color in skin and hair is determined not only by the total amount of melanin within the hair, but also by the relative accumulation of mature melanosomes. PMID:26619124

  2. Planar polarization in embryonic epidermis orchestrates global asymmetric morphogenesis of hair follicles.

    PubMed

    Devenport, Danelle; Fuchs, Elaine

    2008-11-01

    Mammalian body hairs align along the anterior-posterior (A-P) axis and offer a striking but poorly understood example of global cell polarization, a phenomenon known as planar cell polarity (PCP). We have discovered that during embryogenesis, marked changes in cell shape and cytoskeletal polarization occur as nascent hair follicles become anteriorly angled, morphologically polarized and molecularly compartmentalized along the A-P axis. Hair follicle initiation coincides with asymmetric redistribution of Vangl2, Celsr1 and Fzd6 within the embryonic epidermal basal layer. Moreover, loss-of-function mutations in Vangl2 and Celsr1 show that they have an essential role in hair follicle polarization and orientation, which develop in part through non-autonomous mechanisms. Vangl2 and Celsr1 are both required for their planar localization in vivo, and physically associate in a complex in vitro. Finally, we provide in vitro evidence that homotypic intracellular interactions of Celsr1 are required to recruit Vangl2 and Fzd6 to sites of cell-cell contact. PMID:18849982

  3. Malignant hair follicle tumors of the periorbital region: A review of literature and suggestion of a management guideline.

    PubMed

    Sia, Paul Ikgan; Figueira, Edwin; Allende, Alexandra; Selva, Dinesh

    2016-06-01

    Malignant hair follicle tumors are rare skin adnexal malignancies that have a predilection for the head and neck region. They can be categorized into a number of different subtypes. Histologically, they are distinct from their benign counterpart. To the best of our knowledge, there is no extensive review of these malignancies, especially in the periorbital region. We aim to provide a literature review and a guideline for management of these malignant tumors in the periorbital region. Database from Medline, PubMed, Embase, and Google Scholar were consulted. A total of 16 cases from the literature on hair follicle malignancies in the periorbital region were included in this review. The clinical presentations, diagnostic patterns, investigations used, and best management approach of these tumors are discussed. The American Joint Committee on Cancer (AJCC) 7(th) edition carcinoma of the eyelid staging system was used to describe their behaviors. We recommend wide excision surgery and a close follow-up for these tumors. Tumors presenting with a late stage require work-up for distant metastasis and consideration for exenteration procedures. The role of radiotherapy and chemotherapy in this context is still uncertain. PMID:27171562

  4. The targeted overexpression of a Claudin mutant in the epidermis of transgenic mice elicits striking epidermal and hair follicle abnormalities.

    PubMed

    Troy, Tammy-Claire; Turksen, Kursad

    2007-06-01

    Skin is one of the largest organs of the body, and is formed during development through a highly orchestrated process involving mesenchymal-epithelial interactions, cell commitment, and terminal differentiation. It protects against microorganism invasion and UV irradiation, inhibits water loss, regulates body temperature, and is an important part of the immune system. Using transgenic mouse technology, we have demonstrated that Claudin (Cldn)-containing tight junctions (TJs) are intricately involved in cell signaling during epidermal differentiation and that an epidermal suprabasal overexpression of Cldn6 results in a perturbed epidermal terminal differentiation program with distinct phenotypic abnormalities. To delineate the role of the Cldn cytoplasmic tail domain in epidermal differentiation, we engineered transgenic mice targeting the overexpression of a Cldn6 cytoplasmic tail-truncation mutant in the epidermis. Transgenic mice were characterized by a lethal barrier dysfunction in addition to the existence of hyperproliferative squamous invaginations/cysts replacing hair follicles. Immunohistochemical analysis revealed an epidermal cytoplasmic accumulation of Cldn6, Cldn11, Cldn12, and Cldn18, downregulation of Cldn1 and aberrant expression of various classical markers of epidermal differentiation; namely the basal keratins as well as K1, involucrin, loricrin, and filaggrin. Collectively these studies suggest an important role for Cldns in epidermal/hair follicle differentiation programs likely involving cross talk to signaling pathways (e.g., Notch) directing cell fate selection and differentiation. PMID:17914196

  5. PDGF signaling in the dermis and in dermal condensates is dispensable for hair follicle induction and formation

    PubMed Central

    Rezza, Amélie; Sennett, Rachel; Tanguy, Manon; Clavel, Carlos; Rendl, Michael

    2016-01-01

    Embryonic hair follicle (HF) induction and formation is dependent on signaling crosstalk between the dermis and specialized dermal condensates on the mesenchymal side and epidermal cells and incipient placodes on the epithelial side, but the precise nature and succession of signals remain unclear. Platelet Derived Growth Factor (PDGF) signaling is involved in the development of several organs and the maintenance of adult tissues, including HF regeneration in the hair cycle. As both PDGF receptors, PDGFRα and PDGFRβ, are expressed in embryonic dermis and dermal condensates, we explored in this study the role of PDGF signaling in HF induction and formation in the developing skin mesenchyme. We conditionally ablated both PDGF receptors with Tbx18Cre in early dermal condensates before follicle formation, and with Prx1-Cre broadly in the ventral dermis prior to HF induction. In both PDGFR double mutants, HF induction and formation ensued normally, and the pattern of HF formation and HF numbers were unaffected. These data demonstrate that mesenchymal PDGF signaling, either in the specialized niche or broadly in the dermis, is dispensable for HF induction and formation. PMID:25708924

  6. Localizations of γ-Actins in Skin, Hair, Vibrissa, Arrector Pili Muscle and Other Hair Appendages of Developing Rats

    PubMed Central

    Morioka, Kiyokazu; Takano-Ohmuro, Hiromi

    2016-01-01

    Six isoforms of actins encoded by different genes have been identified in mammals including α-cardiac, α-skeletal, α-smooth muscle (α-SMA), β-cytoplasmic, γ-smooth muscle (γ-SMA), and γ-cytoplasmic actins (γ-CYA). In a previous study we showed the localization of α-SMA and other cytoskeletal proteins in the hairs and their appendages of developing rats (Morioka K., et al. (2011) Acta Histochem. Cytochem. 44, 141–153), and herein we determined the localization of γ type actins in the same tissues and organs by immunohistochemical staining. Our results indicate that the expression of γ-SMA and γ-CYA is suggested to be poor in actively proliferating tissues such as the basal layer of the epidermis and the hair matrix in the hair bulb, and as well as in highly keratinized tissues such as the hair cortex and hair cuticle. In contrast, the expression of γ-actins were high in the spinous layer, granular layer, hair shaft, and inner root sheath, during their active differentiations. In particular, the localization of γ-SMA was very similar to that of α-SMA. It was located not only in the arrector pili muscles and muscles in the dermis, but also in the dermal sheath and in a limited area of the outer root sheath in both the hair and vibrissal follicles. The γ-CYA was suggested to be co-localized with γ-SMA in the dermal sheath, outer root sheath, and arrector pili muscles. Sparsely distributed dermal cells expressed both types of γ-actin. The expression of γ-actins is suggested to undergo dynamic changes according to the proliferation and differentiation of the skin and hair-related cells. PMID:27222613

  7. Smad1 and 5 but not Smad8 establish stem cell quiescence which is critical to transform the premature hair follicle during morphogenesis toward the postnatal state.

    PubMed

    Kandyba, Eve; Hazen, Virginia M; Kobielak, Agnieszka; Butler, Samantha J; Kobielak, Krzysztof

    2014-02-01

    Hair follicles (HFs) are regenerative miniorgans that offer a highly informative model system to study the regulatory mechanisms of hair follicle stem cells (hfSCs) homeostasis and differentiation. Bone morphogenetic protein (BMP) signaling is key in both of these processes, governing hfSCs quiescence in the bulge and differentiation of matrix progenitors. However, whether canonical or noncanonical pathways of BMP signaling are responsible for these processes remains unresolved. Here, we conditionally ablated two canonical effectors of BMP signaling, Smad1 and Smad5 during hair morphogenesis and postnatal cycling in mouse skin. Deletion of Smad1 and Smad5 (dKO) in the epidermis during morphogenesis resulted in neonatal lethality with lack of visible whiskers. Interestingly, distinct patterns of phospho-Smads (pSmads) activation were detected with pSmad8 restricted to epidermis and pSmad1 and pSmad5 exclusively activated in HFs. Engraftment of dKO skin revealed retarded hair morphogenesis and failure to differentiate into visible hair. The formation of the prebulge and bulge reservoir for quiescent hfSCs was precluded in dKO HFs which remained in prolonged anagen. Surprisingly, in postnatal telogen HFs, pSmad8 expression was no longer limited to epidermis and was also present in dKO bulge hfSCs and matrix progenitors. Although pSmad8 activity alone could not prevent dKO hfSCs precocious anagen activation, it sustained efficient postnatal differentiation and regeneration of visible hairs. Together, our data suggest a pivotal role for canonical BMP signaling demonstrating distinguished nonoverlapping function of pSmad8 with pSmad1 and pSmad5 in hfSCs regulation and hair morphogenesis but a redundant role in adult hair progenitors differentiation. PMID:24023003

  8. Polycaprolactone fiber meshes provide a 3D environment suitable for cultivation and differentiation of melanocytes from the outer root sheath of hair follicle.

    PubMed

    Savkovic, Vuk; Flämig, Franziska; Schneider, Marie; Sülflow, Katharina; Loth, Tina; Lohrenz, Andrea; Hacker, Michael Christian; Schulz-Siegmund, Michaela; Simon, Jan-Christoph

    2016-01-01

    Melanocytes differentiated from the stem cells of human hair follicle outer root sheath (ORS) have the potential for developing non-invasive treatments for skin disorders out of a minimal sample: of hair root. With a robust procedure for melanocyte cultivation from the ORS of human hair follicle at hand, this study focused on the identification of a suitable biocompatible, biodegradable carrier as the next step toward their clinical implementation. Polycaprolactone (PCL) is a known biocompatible material used for a number of medical devices. In this study, we have populated electrospun PCL fiber meshes with normal human epidermal melanocytes (NHEM) as well as with hair-follicle-derived human melanocytes from the outer root sheath (HUMORS) and tested their functionality in vitro. PCL fiber meshes evidently provided a niche for melanocytes and supported their melanotic properties. The cells were tested for gene expression of PAX3, PMEL, TYR and MITF, as well as for proliferation, expression of melanocyte marker proteins tyrosinase and glycoprotein 100 (gp100), L-DOPA-tautomerase enzymatic activity and melanin content. Reduced mitochondrial activity and PAX-3 gene expression indicated that the three-dimensional PCL scaffold supported differentiation rather than proliferation of melanocytes. The monitored melanotic features of both the NHEM and HUMORS cultivated on PCL scaffolds significantly exceeded those of two-dimensional adherent cultures. PMID:26126647

  9. Keratin-6 driven ODC expression to hair follicle keratinocytes enhances stemness and tumorigenesis by negatively regulating Notch

    SciTech Connect

    Arumugam, Aadithya; Weng, Zhiping; Chaudhary, Sandeep C.; Afaq, Farrukh; Elmets, Craig A.; Athar, Mohammad

    2014-08-29

    Highlights: • Targeting ODC to hair follicle augments skin carcinogenesis and invasive SCCs. • Hair follicle ODC expands stem cell compartment carrying CD34{sup +}/K15{sup +}/p63{sup +} keratinocytes. • Negatively regulated Notch1 is associated with expansion of stem cell compartment. - Abstract: Over-expression of ornithine decarboxylase (ODC) is known to be involved in the epidermal carcinogenesis. However, the mechanism by which it enhances skin carcinogenesis remains undefined. Recently, role of stem cells localized in various epidermal compartments has been shown in the pathogenesis of skin cancer. To direct ODC expression in distinct epidermal compartments, we have developed keratin 6 (K6)-ODC/SKH-1 and keratin 14 (K14)-ODC/SKH-1 mice and employed them to investigate the role of ODC directed to these epidermal compartments on UVB-induced carcinogenesis. K6-driven ODC over-expression directed to outer root sheath (ORS) of hair follicle was more effective in augmenting tumorigenesis as compared to mice where K14-driven ODC expression was directed to inter-follicular epidermal keratinocytes. Chronically UVB-irradiated K6-ODC/SKH-1 developed 15 ± 2.5 tumors/mouse whereas K14-ODC/SKH-1 developed only 6.8 ± 1.5 tumors/mouse. K6-ODC/SKH-1 showed augmented UVB-induced proliferation and much higher pro-inflammatory responses than K14-ODC/SKH-1 mice. Tumors induced in K6-ODC/SKH-1 were rapidly growing, invasive and ulcerative squamous cell carcinoma (SCC) showing decreased expression of epidermal polarity marker E-cadherin and enhanced mesenchymal marker, fibronectin. Interestingly, the number of CD34/CK15/p63 positive stem-like cells was significantly higher in chronically UVB-irradiated K6-ODC/SKH-1 as compared to K14-ODC/SKH-1 mice. Reduced Notch1 expression was correlated with the expansion of stem cell compartment in these animals. However, other signaling pathways such as DNA damage response or mTOR signaling pathways were not significantly different in

  10. Transcriptome Sequencing Reveals Differences between Primary and Secondary Hair Follicle-derived Dermal Papilla Cells of the Cashmere Goat (Capra hircus)

    PubMed Central

    Yuan, Jianlong; Guo, Xudong; Liu, Dongjun

    2013-01-01

    The dermal papilla is thought to establish the character and control the size of hair follicles. Inner Mongolia Cashmere goats (Capra hircus) have a double coat comprising the primary and secondary hair follicles, which have dramatically different sizes and textures. The Cashmere goat is rapidly becoming a potent model for hair follicle morphogenesis research. In this study, we established two dermal papilla cell lines during the anagen phase of the hair growth cycle from the primary and secondary hair follicles and clarified the similarities and differences in their morphology and growth characteristics. High-throughput transcriptome sequencing was used to identify gene expression differences between the two dermal papilla cell lines. Many of the differentially expressed genes are involved in vascularization, ECM-receptor interaction and Wnt/β-catenin/Lef1 signaling pathways, which intimately associated with hair follicle morphogenesis. These findings provide valuable information for research on postnatal morphogenesis of hair follicles. PMID:24069460